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Abstract

The use of high–resolution, active sonar systems in littoral en-
vironments often results in high false alarm rates. False alarm rate
inflation (FARI) and non–Rayleigh reverberation (NRR) are two well–
documented causes. FARI may occur when the reverberation in the
normaliser window is non–stationary, while NRR may occur when the
sonar footprint is too small for the central limit theorem to apply for
the scatterer statistics. The main originator for false alarms in littoral
environments are either the sea floor itself or objects located on the
sea floor.

Automatic classification methods may be used to reduce the false
alarm rate. Conventionally, advanced sonar processing or image pro-
cessing techniques have been used directly on received data. Increased
availability of environmental information allows for more sophisticated
algorithms that employ acoustic modelling to extract more informa-
tion from recorded data.

This thesis addresses two topics of interest. The first topic is on
how acoustic modelling combined with environmental knowledge may
be used to increase the ability of anti–submarine warfare sonars to
classify a detected target. The second topic is on how environmental
uncertainty may be reduced in order to improve the fidelity of the
proposed classification algorithms.
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Summary

Littoral sonar operation is complicated by high false alarm rates, particularly
for high–resolution sonar systems such as modern anti–submarine warfare
sonars. Typically, high concentrations of false alarms are observed around
wrecks, sea mounts, and along rocky ridges. Some of these false alarms
result in generation of tracks exhibiting target–like behaviour. Improved
classification algorithms are needed to reduce the false alarm rate.

This thesis presents seven papers describing methods that may increase
the performance of modern sonars in anti–submarine warfare operations. All
presented methods pursue at least one of two topics of interest. Topic A is on
exploiting available environmental information to increase the classification
ability of anti–submarine warfare sonars in littoral waters. Topic B is on
limiting the environmental uncertainty during operation.

Four papers relate to topic A and introduce new methods for target clas-
sification. The two first papers present methods on how reverberation mod-
elling may be used to predict what areas are prone to increased false alarm
rates. The next two papers apply a ray tracing algorithm for determining
the depth of a detected target. This algorithm requires a known environ-
ment and recorded arrival times and angles. The fourth paper also includes
a focalisation method that tunes the environment in order to increase the
accuracy of the target depth estimates. All these methods are sensitive to
environmental uncertainty. Errors in environmental parameters, particularly
the sound speed profile, may result in ambiguous or erroneous target classifi-
cation. The remaining papers, all on topic B, seek to alleviate this problem.
The fifth paper introduces a method that inverts sound speed profiles from
data recorded on available sensors, such as measurements of sound speed
close to the sonar depth. The sixth paper presents a method that classifies
areas as acoustically stable or unstable on basis of modelled oceanographic
data by employing empirical orthogonal function classification, clustering ap-
proaches, and acoustic modelling. The seventh paper investigates how the
sonar – target geometry influences acoustic stability in face of environmental
uncertainty.
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1 Introduction

Sea trials in littoral environments show that high–resolution, active sonars
generate particularly many false alarms in presence of ship wrecks and terrain
features such as seamounts and underwater ridges [1–4]. Possible causes
for high false alarm rates include false alarm rate inflation [5–8] and non–
Rayleigh reverberation [1, 9–16]. False alarm rate inflation is induced by a
non–stationary reverberation power level in the normaliser windows. Non–
Rayleigh reverberation, also called clutter, appears when the sonar resolution
is so high that the sonar footprint is too small for the central limit theorem
to apply for the scatterer statistics. The false alarm rate depends on the
sonar system, the choice of signal processing, and on the present environment
[1, 6, 13, 15, 16]. In littoral environments the main originators of false alarms
are either the sea floor itself or objects located on the sea floor [2–4].

Recently, much research has been made on predicting and controlling false
alarm rates. This research includes fields such as normalisation [6, 7, 11, 17],
detection [10], image processing [18–20], acoustic modelling [4, 21, 22], and
alternative matched filtering techniques [3]. The research is partly motivated
by the increased use of high resolution naval sonars in littoral environments.
After the cold war the focus of anti–submarine warfare has shifted from open
water scenarios to littoral scenarios. Concurrently the resolution of naval
sonars has improved; higher bandwidths due to improved processing and
sonar technology, and improved bearing resolution due to the introduction
of active towed array systems in naval warfare.

This thesis presents false alarm rate reduction methods based on acoustic
modelling. False alarms are suppressed by classifiying received sonar echoes
as either false alarms or potential targets. The first four papers in this thesis
present two different types of target classification methods. The first type
of method predicts the occurence of false alarm rate inflation using rever-
beration modelling. The predictions are used to estimate a probability of a
received echo being a false alarm. The second type of method uses a ray back-
propagation scheme [23] to estimate the depth of a detected target. Since
false alarms typically originate from the sea floor, target depth information
is a useful classification clue. The fidelities of the proposed methods depend
strongly on the accuracy of available environmental input, since the acoustic
field is sensitive to environmental uncertainty [24–29]. For mid–frequency
sonars (1–10 kHz) an uncertain sound speed profile is an important contrib-
utor to the uncertainty in acoustic field predictions. The last four papers
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of this thesis explore how uncertainty in sound speed may be reduced to
increase the accuracy of acoustic modelling and thereby improve both the
results of the proposed classification methods and sonar performance mod-
elling in general.

1.1 Motivation

The Norwegian navy is procuring modern anti–submarine warfare (ASW)
frigates, Fridtjof Nansen–class frigates. The first frigate was delivered to the
Norwegian navy in 2006. The frigates are equipped with advanced acous-
tic sensors for submarine detection; a hull–mounted sonar called Spherion
MRS2000 and an active towed array sonar called CAPTAS. Both systems
have high resolutions and similar systems have been shown to generate large
amounts of false alarms in littoral environments [4, 22].

The Norwegian government funds a large number of programs intended to
increase the knowledge of the environment in the Norwegian economic zone.
In the underwater domain, these programs include oceanography (the Nor-
wegian Meteorological Institute, Nansen Environmental and Remote Sensing
Center, Institute of Marine Research), fishery (Institute of Marine Research),
and sea floor mapping (Norwegian Mapping Authority, Geological Survey of
Norway, Norwegian Defence Research Establishment). Sea floor mapping
includes mapping of bottom depths and bottom properties. The ongoing
project Mareano [30] gives public access to some of this information. The
abundance of information on the subsurface environment may give Norway
a considerable tactical advantage in ASW operations in Norwegian territory.
However, knowing the environment is not enough, equally important is know-
ing how to take advantage of this knowledge. The Russian admiral Sergei
Gorshkov said: ”The major navies of the world are technological equals –
that navy possessing a superior knowledge of the environment, and knowing
how to take tactical advantage, will be victor.” Gorshkov makes a point of
not only knowing the environment, but also taking advantage of this knowl-
edge. The latter is a key–point for the motivation of this thesis. The thesis
includes seven papers that present methods and theories on how environ-
mental knowledge may be extended and exploited with the overall goal to
improve the classification performance of modern naval sonars.

8



1.2 Focus of the thesis

The main focus of the presented work is to improve the classification ability
of active ASW sonars in littoral environments. The two main topics of this
thesis are:

A How to exploit available environmental information in order to increase
the classification ability of ASW sonars

B How to deal with environmental uncertainty

Topic A includes use of various sources of environmental information,
refined processing algorithms, and acoustic modelling in order to extract
additional information from recorded sonar data during operations. Topic B
includes methods that reduce the impact environmental uncertainty has on
the methods introduced in topic A.

1.3 History of naval sonars

The emergence of submarines in naval warfare introduced a need for new
sensors capable of detecting submerged targets. Unlike electromagnetic sig-
nals, acoustic signals may propagate for hundreds of kilometers in water and
still be detected above ambient noise. As early as 1490, Leonardo da Vinci
showed that distant ships could be heard by extending a listening tube into
the water by placing an ear to the dry end of the tube. During World War
I the British developed the ASDIC, the first anti–submarine warfare (ASW)
sonar. The first operational ASDIC, presented in 1919, was an active, hull–
mounted sonar and operated on frequencies from 20 to 50 kHz.

In the inter–war period, low–frequency acoustic signals were observed
to propagate longer distances than high–frequency signals due to frequency–
dependent attenuation. Another important discovery, made in the late 1940s
by the American scientist Ewing, was that submarines could be detected via
other propagation paths than the direct path, e. g. bottom reflected path
and in convergence zones. These two discoveries encouraged the development
of high–powered, low–frequency, active sonar systems. New hull–mounted
sonars were introduced with increased power and lower frequencies, culmi-
nating in the scanning sonar. The scanning sonar consisted of an array of
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hydrophones capable of both transmission and reception. This allowed di-
rectionality in both transmission and reception.

Sonar development was clearly driven by the rapid development of the
submarine. During the cold war, passive, towed array sonars were introduced
as an alternative to active, hull–mounted sonars for long–range detection.
However, as submarines became more quiet, passive sonar systems no longer
obtained the necessary detection ranges, and as the speed of the submarines
increased, longer detection ranges were required. In the 1980s and 1990s the
low–frequency, active, towed array sonar was developed as an alternative to
passive towed array sonars.

ASW in World War II consisted mainly of protecting high–value units, for
instance transport vessels, from submarine attacks. Allied transport convoys
were constantly attacked by German submarines, and ASW vessels were
deployed to defend the convoys. During the Cold War, ASW was played
out in the blue ocean with the intent of tracking large nuclear submarines at
long distances. After the Cold War the focus of ASW has shifted from blue
ocean scenarios to littoral scenarios. For instance protecting landing crafts
during landing of military personell or equipment. In littoral environments
modern sonar systems, such as low–frequency, active, towed array sonars are
troubled with high false alarm rates. In addition, nuclear submarines are
no longer the main subsurface threat. Affordable, small, silent submarines
with low target strengths are considered the main threat in the future. Their
maneouverability enables them to hide in shallow waters close to the coast
line among rocks and sea mounts, making them almost impossible to detect
and classify.

1.4 Organisation of the thesis

Chapter 2 contains the necessary background for understanding the attached
papers. Important concepts and theory are described and presented. Chapter
3 briefly summarises the key points of each attached paper. Chapter 4 gives
an overall conclusion of the work described in this thesis. The attached
papers are included at the end of the thesis.
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2 Background

This thesis covers a range of subjects within the fields of acoustics and signal
processing such as sonar processing, acoustic modelling, empirical orthogonal
functions, inversion, detection theory, and sensitivity analysis. The following
sections provide the reader with definitions of concepts and a background for
each of these subjects.

2.1 Sonar systems

This thesis treats two different types of sonar systems; anti–submarine war-
fare (ASW) sonars and echo sounder systems. Each system is described in
the following sections.

2.1.1 Anti–submarine warfare sonars

This thesis includes data from two different types of active ASW sonars;
hull–mounted sonars and towed array sonars. Active ASW sonars use under-
water sound propagation to detect submerged targets. An acoustic signal is
transmitted from a source, the signal echoes off targets present in the ocean
before returning to the acoustic receiver. At the same time ambient noise
and returns from other acoustic scatterers in the ocean are received. The
sonar attempts to detect the target echo among reverberation and noise.

Towed array systems are horisontal arrays of hydrophones towed by a
vessel. Active systems also include a towed source. The main advantages of
such systems are that the array depth is adjustable and that their large size
allows high horisontal angle resolution even for low frequencies. Adjustable
depth allows the sonar operator to place the array at a depth that is advan-
tageous for long–range acoustic propagation, e. g. in a sound channel. Long
arrays allow beamforming with high resolution in angle, which is essential for
resolving target location at long ranges and also improves noise suppression,
see section 2.2.1. Linear arrays, arrays with a single hydrophone width, have
left–right ambiguity. This means that the array is unable to discern which
side of the array a detected target is present. In modern ASW towed array
systems this problem is solved by using either two parallell linear arrays or
triplet arrays [31].

As the name suggests, hull–mounted sonars are fixed to the hull of the
vessel with an acoustically transparent sonar dome separating the transduc-
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ers from the water. Due to the size–limitation of such systems, they are
limited to mid– or higher frequencies. Modern hull–mounted systems are
able to beamform both vertically and horisontally and have no left–right
ambiguities. Vertical beamforming is used to concentrate transmitted power
in vertical angles dominated by propagating modes, e. g. propagation paths
with minimal bottom interaction. Horisontal beamforming improves the ca-
pability of the sonar for locating a target.

2.1.2 Echo sounders

Echo sounding is a technique for measuring bottom depth by transmitting
an acoustic pulse vertically from a hull–mounted echo sounder and receiving
the subsequent bottom reflections. The bottom depth, D, is estimated using
the following expression:

D =
T

2ŝ
, (1)

where T is the time from transmission to reception, ŝ is the depth–averaged
slowness. Slowness is defined as:

s =
1

c
, (2)

where c is the sound speed. The sound speed must be measured frequently
during operation in order to secure high accuracy in the measurements.

The coverage of an echo sounder system may be improved by using multi–
beam systems. Multi–beam systems transmit an acoustic pulse in a wide
sector and receive in beams with different vertical steering angles. For more
information on beams, see section 2.2.1. Cross–path coverage may be gained
by using ray tracing models to estimate cross–path bottom depths from ar-
rivals at angles other than the vertical. The high–resolution topography
information used in several of the attached papers was measured using a
multi–beam echo sounder.

2.2 Sonar processing

The main focus of the thesis is on ASW sonar systems, the sonar processing
described below is the processing used for detecting a submarine using a fre-
quency modulated (FM) pulse. Other pulses, such as the continuous wave
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pulse requires different processing, but since the FM pulse is the only pulse
shape considered in the attached papers, theory on different pulses are not
included here. The main intent of conventional active ASW sonar processing
is to detect and locate targets whose acoustic returns are embedded in rever-
beration and noise. The following paragraphs give a brief introduction to the
different signal processing techniques used in conventional sonar processing
to detect and locate a target.

2.2.1 Beamforming

Beamforming is a commonly used technique to aid in detection and locali-
sation of a target. Beamforming exploits the relative time delays of received
arrivals on different hydrophones in the receiver array in order to determine
the direction from which an echo arrives [32]. A conventional beamformer
sums the received signal from all hydrophones after applying a phase shift
that depends on hydrophone location. For linear arrays with K equally
spaced hydrophones the beamformed signal, sb, equals [33]:

sb(j, θ) =
K−1∑
k=0

sh(j, k) exp

(
2πik

d

λ
sin θ

)
,

where sh(j, k) is the received signal in hydrophone number k at sample num-
ber j, θ is the steering angle, d is the distance between hydrophones, and λ is
the wavelength. On conventional sonars a set of beams with different steering
angles are processed. The main advantages of beamforming are directivity
and noise suppression [34]. Directivity allows determination of target direc-
tion. Noise sources are suppressed since the noise from only a limited angular
space is received. An example of a beamformed data sequence is shown in
Fig. 1. Interested readers are referred to Therrien [35] and Van Trees [36]
for more thorough descriptions of beamforming.

2.2.2 Matched filter

Like beamforming, the matched filter is commonly used to improve detection
and localisation of a target. Matched filtering [36], also called pulse compres-
sion, correlates the received signal with a known signal. The matched filtered
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signal, sm(j, θ), is then given by:

sm(j, θ) =
∞∑

n=−∞
h(j − n)sb(n, θ). (3)

For active sonars, h(j) is a time–reversed version of the transmitted signal.
The advantages of matched filtering include a processing gain and increased
range resolution. The processing gain, G, depends on the product of the
frequency bandwidth, B, and the pulse length, T , of the signal used:

G = BT. (4)

Note that increased pulse length also results in increased reverberation, and
increased bandwidth in increased noise levels. An example of a matched
filtered data sequence is shown in Fig. 1. Interested readers are referred to
Therrien [35] and Van Trees [36] for more thorough descriptions of matched
filtering.

2.2.3 Normalisation

After beamforming and matched filtering, the received signal is passed through
a normaliser:

sn(j, θ) =
sm(j, θ)

n(j)
,

where j is the analysed sample, sn(j, θ) is the normalised signal, also fre-
quently called the estimated signal–to–reverberation and noise ratio (SNR),
and n(j) is the estimated background. The background is typically estimated
as follows:

n(j) =
1

C

L/2∑
l=−L/2

c(l)sm(j, θ),

where L is the width of the normalisation filter. C is defined as:

C =

L/2∑
l=−L/2

c(l). (5)
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c(l) varies for different normalisers. For the CA CFAR (cell averaging con-
stant false alarm rate) normaliser [5] c(l) is defined as:

c(l) = 0, |l| < K

c(l) = 1, l ≥ K

whereK < L
2
. Samples where c(l) = 0 is commonly called the guard band [6].

The main intent of the normaliser is to remove trends from the received signal,
such as the signal decay with range. The reader is referred to Richards [5]
for thorough discussions on the subject of normalisation.

2.2.4 Detection

Target detection using active sonars is a binary decision problem, where the
intent is to decide between two hypotheses:

1. a target echo is present in the received signal

2. a target echo is not present in the received signal

The decision is made by applying a threshold, T , to the normalised signal [36]:

sn(j, θ) ≥ T ⇒ choose hypothesis 1

sn(j, θ) < T ⇒ choose hypothesis 2

Samples with a present target that results in a threshold–crossing are called
detections. The normalised signal may fail to cross the threshold even with
a target present. This is frequently called a miss. The probability of de-
tection, Pd, is the probability that the signal crosses the threshold when a
target echo is present. Pd depends on the threshold and the signal strength
distribution. Due to spikes in reverberation and noise, the normalised sig-
nal may exceed the selected threshold even without a present target. Such
threshold–crossings are undesired and are called false alarms. Probability of
false alarm, Pfa, is the probability of undesired threshold–crossings. Assum-
ing an exponentially distributed normalised signal and using a CA CFAR
normaliser, then the probability of false alarm is given by [5]:

Pfa = exp(−T ).
The threshold is therefore uniquely determined from the desired probability
of false alarm. Interested readers are referred to Van Trees exhaustive work
on detection theory for further reading [36].
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Figure 1: A data segment is processed. The magnitude of hydrophone data
(HP), beamformed data (BF), matched filtered data (MF), and normalised
data (Norm) are shown. All scales on the vertical axes are logarithmic.

2.2.5 Example

A sonar data segment is processed using the processing chain described in
the previous sections. Fig. 1 shows processed data on each level. Only data
from a single hydrophone is shown, but data from all hydrophones are used
in the processing. Two threshold–crossings are detected. The first detection
is obvious at all processing stages. The second detection is not discernable
in the hydrophone and beamformed data and only barely discernable in the
matched filtered data. This illustrates the importance of the normaliser as a
trend–remover. Notice also how the matched filter effectively pinpoints the
location of the first detection.
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2.3 Raytracing and sonar performance modelling

Numerical models may be used to estimate sound propagation. Jensen et
al. [37] give a thorough description of the most popular modelling methods
available for estimating sound propagation in water. One such modelling
method is the raytracer, which is a geometrical method that traces rays per-
pendicular to the wavefront of an acoustic wave. Ray theory was originally
formalised to describe the propagation of light in optics and is an extension
of Snells law, also called the law of refraction, which forces rays to refract
towards lower sound speeds as they propagate through the medium. Ray-
tracing is a high–frequency approximation that does not take diffraction into
account. The work presented in this thesis involves sonar data with frequen-
cies in the kHz domain where the high–frequency assumption holds. This
makes raytracing the preferred acoustic model in this thesis.

The following sections give a brief description of raytracing and how it
may be used to model reverberation and sonar performance. Two raytracers
used in this thesis, PlaneRay and Lybin, are presented.

2.3.1 Basic ray concepts

The list below contains a description of basic ray concepts:

• Refraction is the bending of rays due to changing sound speed along
the path of the ray.

• A turning point is where the ray grazing angle changes sign due to
refraction.

• Travel time, at a specific raypoint, is the time it takes the ray to prop-
agate from the source to the specific raypoint.

• Initial angle is the grazing angle of the ray at the source.

• Adjacent rays have adjacent initial angles.

• Ray tube is a volume bounded by three adjacent rays, or in the case of
2d raytracing, an area bounded by two adjacent rays.

• Ray intensity at a certain point depends on the area of the ray tube
at that point as well as source power, Jensen et al. [37] give a detailed
account on how ray intensity is estimated.
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2.3.2 Ray categories

Rays are frequently categorised. The ray reflection and refraction history
determines what category a ray belongs to. The list below describes the
basic categories:

1. Direct path (DP): No reflections and refractions

2. Bottom bounce (BB): One bottom reflection

3. Surface bounce (SB): One surface reflection

4. Upward refracted (UR): One lower turning point (convex shape of the
path)

5. Downward refracted (DR): One upper turning point (concave shape of
the path)

Fig. 2 illustrates the different categories. Higher order categories include
several combinations of reflections and refractions, e. g. BB–SB–BB, a cat-
egory containing rays reflected off the bottom, then the surface, and finally
the bottom again.

2.3.3 Eigenrays

Eigenrays are rays of different categories that propagate from a given source
position to a specified target position, see Fig. 2. Jensen et al. [37] suggest
different eigenray search methods. One of them, the interpolation method,
traces a fan of rays from the source and registers the two adjacent rays of
each category that pass each side of the target. The properties of the rays,
such as initial angle, travel time, and intensity are then interpolated to find
a single eigenray for each ray category.

2.3.4 Transmission loss modelling

Raytracers are frequently categorized as either coherent and incoherent [37].
This relates to how the raytracer estimates the acoustic pressure, p(r, z, θ),
at a single point. The acoustic pressure is here represented in sylindrical
coordinates where r is the range, z is the depth, and θ is the horisontal
angle. Coherent raytracers sum the pressure contribution from each eigenray
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Figure 2: Eigenrays from a source (star) at 80 m depth to a receiver (circle)
1560 m distant at 120 m depth are shown. Three categories of eigenrays are
shown in the upper right plot; bottom bounce (BB), surface bounce (SB),
and direct path (DP). Two categories of eigenrays are shown in the lower
right plot; upward (UR) and downward refracted (DR). The plots to the left
show the sound speed profiles used to determine the paths. The rays were
traced using PlaneRay.

crossing the relevant point coherently, that is, a complex summation that
includes pressure phase and magnitude:

p(c)(r, z, θ) =
N−1∑
j=0

pj(r, z, θ), (6)

where N is the number of eigenrays crossing (r, z, θ) and pj(r, z, θ) is the com-
plex pressure of eigenray number j. Incoherent raytracers sum the squared
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pressure magnitude of each ray crossing the relevant point:

p(i)(r, z, θ) =

√√√√N−1∑
j=0

|pj(r, z, θ)|2. (7)

The transmission loss, tl, is found using the following expression [37]:

tl(r, z, θ) =
I(r, z, θ)

I0
. (8)

The logarithmic expression is more frequently used in literature:

TL(r, z, θ) = 10 log10 tl(r, z, θ). (9)

I(r, z, θ) is the intensity:

I(r, z, θ) =
p(r, z, θ)2

2ρ(r, z, θ)c(r, z, θ)
, (10)

where ρ is the density, c is the sound speed, and I0 is the intensity at 1
m distance from a reference spherical, free source. The transmission loss is
incoherent if the input pressure is estimated as shown in (7), and coherent if
the pressure from (6) is input.

2.3.5 Reverberation modelling

The principle behind active sonars is to transmit an acoustic signal from a
source and then receive returns on a receiver. Acoustic returns consist of both
desired and undesired returns. Desired returns are echoes from targets, e. g.
submarines in anti–submarine warfare. Undesired returns, also called scat-
tering, consist of returns from acoustic scatterers in the ocean. The summed
contribution of all these scatterers is called reverberation. Reverberation is
typically divided into three categories [34]: surface reverberation, volume
reverberation, and bottom reverberation. In littoral sonar operations, and
particularly for variable depth sonars such as the active, low–frequency, towed
array sonar, bottom reverberation typically limits the sonar conditions and
causes increased false alarm rates and possibly sonar clutter, as discussed
later. Bottom reverberation, rl(r, θ), from a scattering patch with area A,
may be modelled using the following expression [39]:

rl(r, θ) =
N−1∑
j=0

N−1∑
k=0

tlj(r, zb, θ)tlk(r, zb, θ)Aσ(φj, φk), (11)
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where tlj(r, zb, θ) is the linear transmission loss of a single eigenray from the
source to the scattering patch, tlk(r, zb, θ) is the linear transmission loss of a
single eigenray from the scattering patch to the receiver, and φj and φk are
the grazing angles of the incoming and outgoing eigenrays at the scattering
patch. σ(φj, φk) is the scattering function [38]. A commonly used scattering
function is Lamberts law:

σ(φj, φk) = μ sinφj sinφk. (12)

More realistic scattering functions, such as the perturbation model and the
Kirchhoff model are described by Hovem [39].

2.3.6 Sonar performance modelling

Sonar performance may be modelled by using the logarithmic sonar equation
[34]:

SE = SL− TLf − TLb −RNL+ TS −DT, (13)

where SE is the signal excess, TLf is the transmission loss from the source to
the target, TLb is the transmission loss from the target to the receiver, RNL
is the reverberation and noise level, TS is the target strength, and DT is the
detection threshold. A thorough description of each parameter can be found
in Urick [34]. Transmission loss and reverberation may be estimated using
an acoustic model, e. g. a raytracer. The probability of detecting a target at
a location where the modelled signal excess level is 0 dB, is 50 %. Receiver
operating curves [34] may be used to determine the probability of detection
for other signal excess levels. The probability of false alarm depends on the
selected detection threshold, see section 2.2.4.

2.3.7 PlaneRay

PlaneRay [40] was developed and is maintained by professor Jens Hovem at
Sintef and the Norwegian University of Science and Technology. PlaneRay
is a coherent raytracer that uses the interpolation method for determining
eigenrays. The raytracer was originally tailored for fast geoacoustic inversion.
The idea is that since the water–column raytracing is independent of the
bottom properties, PlaneRay is run a single time only during the inversion
process. The losses due to bottom reflections are updated for each bottom
interacting ray as the bottom properties change during the inversion.
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In this thesis, PlaneRay is used for modelling travel times and initial
angles of eigenrays. The eigenrays shown in Fig. 2 are estimated using
PlaneRay. In the figure basic eigenrays are presented only, but PlaneRay is
also capable of estimating more complex arrivals.

2.3.8 Lybin

Lybin [41] is the property of the Norwegian Navy and was developed by Svein
Mjølsnes at the Norwegian Defence Logistic Organisation and is currently
maintained by the Norwegian Defence Research Establishment. The model
was originally developed for use on sonar vessels in the Norwegian Navy for
sonar performance modelling.

In this thesis, Lybin is used for incoherent modelling of reverberation and
sonar performance. Fig. 3 shows the graphical user interface of Lybin as well
as plots of modelled rays, transmission loss, and reverberation. Lybin has
very low computation time, less than 0.1 s for simple cases such as the one
shown in Fig. 3.

2.4 Empirical orthogonal functions

Empirical orthogonal functions (EOF) or principal component analysis (PCA)
is used for statistical analysis of spatial or temporal variability of physi-
cal fields. Preisendorfer and Mobley [42] give a detailed account of PCA
techniques on oceanographic and meteorological data. Characterisation of
oceanographic data by EOFs was introduced in the 1970s [42], and extended
to represent sound speed profiles (SSP) by Tolstoy et al [43] in the early
1990s. The main advantage of characterising SSPs by EOFs is that the in-
formation from entire SSPs may be contained in a few scalar coefficients. For
example, two EOFs and their coefficients give a sufficient representation of
the Munk–profile [23].

EOFs for a set of SSPs may be derived by first interpolating the SSPs to
a uniform grid of N depths and then organising them in a data matrix, C:

C =

⎡⎢⎢⎢⎣
c1

T

c2
T

...
cM

T

⎤⎥⎥⎥⎦ , (14)
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Figure 3: Graphical user interface of the acoustic model Lybin v6.0. The
upper right plot shows the raytrace. The lower left plot shows modelled
transmission loss levels. The lower right plot shows modelled noise and re-
verberation levels.

where cj is an interpolated SSP. Let c be the depth–averaged sound speed
profile:

c =
1

M

M∑
j=1

cj. (15)

A single SSP may then be expanded in any set of orthonormal basis vectors
[35]:

cj = c+UTκ(j). (16)

The elements of the coefficient vector κ(j) may be determined as follows [35]:

κ(j) = Uxj, (17)

where U is a matrix containing the transposed basis vectors, uk
T , on each

row, and xj is given by:

xj = cj − c. (18)
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The basis vectors are called EOFs. Since the EOFs are orthonormal, then:

uk
Tul =

{
1, k = 1
0, k �= 1

(19)

The EOFs are found by solving the following eigenvalue problem:

Rxuk = λkuk, (20)

where λk is the eigenvalue corresponding to the kth EOF and Rx is the
covariance matrix [35]:

Rx =
1

M
XTX, (21)

where the mean subtracted data matrix, X, is given by:

X =

⎡⎢⎢⎢⎣
x1

T

x2
T

...
xM

T

⎤⎥⎥⎥⎦ . (22)

The method is only meaningful if there is some correlation between the
inputted SSPs. Poorly correlated data sets require more EOFs than well
correlated data sets for proper representation of the data. The proportion of
variances, Λl, is a useful indicator of this correlation and is frequently used
for determining how many EOFs are required for a sufficient representation
of the data set:

Λl =
l∑

k=0

λk

/
N−1∑
k=0

λk. (23)

Note that the eigenvalues are here sorted from largest at k = 0 to smallest
at k = N − 1. Typically, a threshold T is selected, and the number of EOFs
used is determined as follows:

min
l

(Λl ≥ T ) . (24)

New sound speed profiles with the same statistical properties as the orig-
inal data set may be constructed using:

c = c+UTκ. (25)
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The elements, κk, of the coefficient vector are modelled as zero–mean random
processes with variances given by λk [35]. The probability density function
used to model the random process should be selected with care so as to retain
the higher order moments as well as the mean and variance.

2.4.1 Example

In connection to the sea acceptance tests of the new Norwegian frigates, a
set of 20 SSPs were measured in the Norwegian trench in September 2008,
see Fig. 4 (a). Fig. 4 (b) shows the first four EOFs estimated from the
measured SSPs. The corresponding eigenvalues are shown in Fig. 4 (c).
Observe how quickly the eigenvalues fall off for increasing coefficient number.
Using a threshold, T , of 0.9, see (24), then according to the proportion of
variances shown in Fig. 4 (d) four EOFs are sufficient for representing the
measured SSPs. A set of constructed SSPs using (25) are shown in Fig. 4
(e). Gaussian probability density functions are used to model the coefficients.
Notice the maxima (at approximately 40 m) and minima (at approximately
60 m) in the constructed SSPs. These extreme values are not observed in
the original data set and are probably unphysical. They are generated due
to outliers in the first and third coefficient, see Fig. 4 (b). This is a good
example of how non–physical artifacts are generated in statistically modelled
SSPs when using a random generator that does not model the physics. Such
artifacts may be avoided by replacing the Gaussian random generator by
a more physical random generator, or by introducing some kind of reality
filter. A simple and robust filter here is selecting a maximum and minimum
allowed sound speed at all depths. Fig. 4 (f) shows a set of generated SSPs
where c ∈ [1480m/s, 1512m/s]. The new set generated SSPs compare better
visually with the original set of SSPs.

2.5 False alarm rates in high reverberant conditions

Sea trials in littoral environments with high reverberant conditions show that
high–resolution sonars generate particularly many false alarms in presence
of ship wrecks and terrain features such as seamounts and underwater ridges
[1–4]. Possible causes for the high false alarm rates include false alarm rate
inflation [5–8] and non–Rayleigh reverberation [1, 9–16].

False alarm rate inflation is a signal–processing–induced phenomenon that
occurs when the reverberation power level is non–stationary in the normaliser
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Figure 4: (a) 20 SSPs measured in the Norwegian Trench in September
2008. (b) First (blue), second (green), third (red), and fourth (cyan) EOF
derived from the 20 SSP measurements. (c) Eigenvalues corresponding to
the first 15 EOFs. (d) Proportion of variances plot for the first 15 EOFs. (e)
Original SSPs (red) and constructed SSPs (blue) using (25) with coefficients
modelled as random processes. (f) Original SSPs (red) and constructed SSPs
(blue) using (25) with coefficients modelled as random processes, but with
requirements on maximum and minimum sound speed.
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window. E. g., the reverberation in the analysed sample originates from a
sea mount, while most of the normaliser window falls to the side of the
seamount, resulting in an underestimated background power estimate and
therefore increased false alarm rate. This phenomenon is closely related to
target masking [5], which occurs in the opposite situation when the seamount
is located within the normalisation window resulting in an overestimation of
the background level and therefore lost detections.

Non–Rayleigh reverberation is often referred to as sonar clutter. The
Rayleigh probability density function is often assumed to model reverbera-
tion induced matched filter (MF) envelope well. The reverberation is non–
Rayleigh when this assumption does not hold. Use of high–resolution sonars
in littoral environments often result in non–Rayleigh distribution of MF data,
typically with heavier tailed distributions [1, 9–11, 13–16]. This results in
greater false alarm rates than anticipated when assuming Rayleigh reverber-
ation.

Prediction and reduction of clutter and raised false alarm rates are the
focus of many published studies. Studies cover different fields such as nor-
malisation [6–8,17], detection theory [44], image processing [18–20], acoustic
modelling [4,21,22,45], and other signal processing techniques [3]. Recently,
several papers have been published on which environmental and sonar char-
acteristics control clutter, such as sonar beamwidth [15] and multi–path en-
vironments [13, 16]. These papers give useful and insightful descriptions of
the clutter phenomenon.

2.6 Acoustic inversion

Bucker [46] introduced matched field processing (MFP), a widely used tech-
nique for estimating the location of detected noise sources. Given a known
environment, the acoustic fields received on an array of hydrophones from
various target locations are modelled. The modelled acoustic field is then
compared to the recorded acoustic field by using a cost function, and the
target location is estimated by finding the location with optimal cost and
therefore best comparison between model and recordings. Detailed descrip-
tions of MFP cost functions and their advantages and disadvantages are
found in [47]. Baggeroer et al. [48] give an excellent overview of the work
done on MFP up until 1993.

The method has since been extended by including nuisance parameters in
the search. Nuisance parameters may for instance be environmental param-
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eters or the geometry of the receiver array. These parameters are uncertain
and this uncertainty must be accounted for to secure good target location es-
timates. Focalisation [23] and marginalisation [49] are commonly used meth-
ods for including nuisance parameters in the inversion process. Focalisation
selects a set of parameters that minimises the cost function, while marginal-
isation integrates the cost function over all environmental parameters before
determining the optimal target location (or whatever other parameters are
attempted inverted). Dosso and Wilmut [50] compare marginalisation to
focalisation.

Bayesian inversion [51–53] is an extension to MFP. Unlike traditional
MFP, Bayesian inversion outputs the posterior probability density function
(PPD) for each parameter in the inversion process. The PPD may be used to
determine standard deviations, mean estimates, and MAP-estimates for each
inverted parameter. This additional information gives an understanding of
the quality of inverted parameters.

In the above mentioned work, data from passive sonars were used. MFP
has also successfully been extended to low–frequency, active sonars [54] show-
ing promising results for target depth estimation. The main advantage of
active sonars is that the propagation time from the sonar to the target is
known. The propagation time may be used to estimate the range of the
target.

Target location estimation using back propagation was introduced by
Tappert [57], and later demonstrated for passive sonars using raytracing [23,
55, 56]. Vertical angles of incoming signals from a target are measured on a
receiver array. Rays are traced from the sonar in the direction given by the
measured angles. Locations where traced rays intersect are candidate target
positions. Back propagation is related to the method called time–reversal
[58]. Time–reversal or phase–conjugation is a method borrowed from the
field of optics where the received field is retransmitted from the receiver and
thereby, due to reciprocity, focused on the source. This method is popular in
current underwater communication research. Instead of retransmitting the
received field, the back propagation method inputs the environment and the
received field into an acoustic model in order to find the target location. The
method has recently also been used in air acoustics [59, 60]. To the authors
knowledge back propagation has not before been demonstrated for active
sonar data.
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2.7 Acoustic sensitivity to environmental uncertainty

Validity of sonar performance models is generally limited by environmental
uncertainty. James and Dowling [29] give an extensive overview of research
on how environmental uncertainty influences acoustic field predictions. In
littoral environments acoustic propagation is strongly influenced by bottom
interaction [25] and the water–column sound speed [24–27]. The acoustic
field in littoral environments is therefore very sensitive to uncertainty in the
sound speed profile and bottom properties.

The acoustic sensitivity to environmental uncertainty is typically anal-
ysed by running an acoustic model repeatedly with Monte Carlo simulated
environmental input and then analysing the output using some kind of sen-
sitivity measure, for instance the coefficient of variation [28]:

σ(r, z, φ)

m(r, z, φ)
, (26)

where σ and m are the standard deviation and expectation of a suitable
acoustic field parameter, e. g. pressure. Both are represented in sylindrical
coordinates, (r, z, φ). The coefficient of variation represents the sensitivity
of the acoustic field in a single position, and must therefore be spatially
integrated in some way to examine the total sensitivity.

Monte Carlo methods require a large amount of calculations and are there-
fore time consuming. Other methods have been suggested. Dosso et al. [28]
introduce a linearised measure of sensitivity. The underlying assumption is
that for sufficiently small environmental perturbation the relationship be-
tween changes in the acoustic field is linearly dependent on changes in the
environment. If this assumption holds, then the acoustic sensitivity to dif-
ferent environmental parameters may be analysed one parameter at a time,
which is far more efficient than a full Monte Carlo approach. Finette [61]
shows how environmental uncertainty may be included directly in an acoustic
model by incorporating the uncertainty in sound speed in the narrow angle
parabolic equation [37].

The uncertainty in sound speed may be reduced by frequent sound speed
measurements, but this is costly and not always feasible. An alternative ap-
proach is to invert sound speed profiles (SSP) from recorded acoustic data
in order to improve the acoustic modelling [23, 52, 56, 62, 63]. Inversion ap-
proaches may also be used to obtain other environmental information such
as bottom properties. Generally speaking, if the acoustic field is sensitive to
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uncertainty in an environmental parameter, then the parameter is eligible for
inversion. Inversion techniques using data from naval sonars are frequently
called through–the–sensor techniques. One such application is inverting bot-
tom properties from recorded reverberation data [53]. The inverted bottom
properties are then used in acoustic modelling in order to improve the results
from sonar performance modelling for that system.

3 Description of attached papers

The following subsections give brief summaries of the contents of the papers.
All papers are related to at least one of the two topics listed in section
1.2. The papers are listed below together with their status (published or
unpublished), my role in writing them, and what topic is adressed:

1. Sonar false alarm reduction using detailed bathymetry data
and acoustic propagation modelling

• Published in the proceedings of Underwater Defense Technology
Conference Exhibition 2005 in Amsterdam.

• Main author

• Adresses topic A

2. Predicting sonar false alarm rate inflation using acoustic mod-
elling and a high-resolution terrain model

• Published in IEEE Journal of Oceanic Engineering april 2010

• Sole author

• Adresses topic A

3. Target depth estimation using a ray backpropagation scheme
on sonar data – simulations and experiments

• Unpublished manuscript. Submitted to IEEE Journal of Oceanic
Engineering

• Sole author

• Adresses topic A
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4. Target depth estimation using a ray backpropagation scheme
on mid-frequency, active sonar data

• Published in proceedings of European Conference in Underwater
Acoustics 2010.

• Sole author

• Adresses topic A and B

5. Inverting the water–column sound speed

• Published in proceedings of European Conference in Underwater
Acoustics 2010.

• Sole author

• Adresses topic B

6. Finding acoustically stable areas through EOF classification

• Unpublished manuscript. Submitted to IEEE Journal of Oceanic
Engineering.

• coauthor

• Adresses topic B

7. In ocean evaluation of low frequency active sonar systems

• Published in proceedings of Acoustics08 in 2008.

• Main author

• Adresses topic B

3.1 Summary of the first paper: Sonar false alarm re-
duction using detailed bathymetry data and acous-
tic propagation modelling

Active low-frequency towed array sonar systems used in littoral waters expe-
rience high false alarm rate, mainly due to reflections from bottom features
and steep slopes. This was confirmed by results from two sea trials (2001
and 2002) carried out in the NAT III (New Array Technology) project. The
partners in NAT III were TNO-FEL (Netherlands Organisation for Applied
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Scientific Research, Physics and Electronics Laboratory), TUS (Thales Un-
derwater Systems) and FFI (Norwegian Defence Research Establishment).

The paper describes an automatic algorithm for classifying detections
as false alarms due to raised reverberation levels. Given a high–resolution
topography map, the acoustic model Lybin [41] is used to predict received
reverberation levels on a specified active sonar. Zones of high probability of
false alarms are introduced as geographical areas where normalised modelled
reverberation exceeds a preset threshold. Echoes are automatically correlated
to predicted zones of high probability of false alarms. Each echo is assigned
a value called the percentile overlap. High percentile overlap values indicate
that there is a high probability of that echo being generated due to raised
reverberation levels.

The method is employed on a data set from the 2002 NAT III sea trial
carried out in the Norwegian trench. Data from a small area (8 km by 7 km)
with strong variations in the topography was focused on. 5% of the area was
predicted as zones of high probability of false alarm, and 60% of the echoes
accumulated over 20 pings in the selected area were located within zones of
high probability of false alarms.

3.2 Summary of the second paper: Predicting sonar
false alarm rate inflation using acoustic modelling
and a high-resolution terrain model

This paper refines the method presented in the first paper, and gives a the-
oretical foundation for why high normalised modelled reverberation levels
coincide with increased false alarm rates.

By combining a fast and accurate acoustic model with a high-resolution
terrain model, occurence of false alarm rate inflation may be predicted. The
described method outputs the modelled probability of false alarm, which is
the probability that a false alarm is generated at a given location due to false
alarm rate inflation.

Given high–resolution topography and a measured sound speed profile,
the acoustic model Lybin [41] is used to model reverberation for a specified
sonar. The modelled reverberation is then normalised using a normaliser
window equivalent to the normaliser window used on recorded sonar data
from the specified sonar. For a given model–resolution cell, the probability
that a single sample in matched filtered and beam formed sonar data exceeds
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the detector threshold is derived from the normalised modelled reverberation.
This probability is the probability of false alarm due to false alarm rate
inflation.

The presented method is used on a data set from the 2002 NAT III sea
trial in the Norwegian trench. Modelled probability of false alarm is shown
to compare well with spatial concentrations of recorded false alarms, but the
modelling underestimates the probability of false alarm by approximately a
factor of four. The cause of the underestimation is probably that the method
does not completely predict the true probability of false alarm, since other
causes of false alarms may also be present, e. g. clutter and noise spikes.

3.3 Summary of the third paper: Target depth estima-
tion using a ray backpropagation scheme on sonar
data – simulations and experiments

This paper presents a method that uses ray backpropagation, see section 2.6,
on active sonar data in order to estimate the depth of a detected target.
A narrow vertical beamwidth of the sonar is required, since accurate verti-
cal arrival angle measurements are needed. The arrival time, vertical arrival
angle, and measured environment are inputted in the acoustic raytracer Plan-
eRay [40]. Due to uncertainties in measured arrival angle a fan of rays are
traced with initial vertical angles within two standard deviations of the mea-
sured vertical arrival angle. Each ray is assigned a probability determined
from a Gaussian probability density distribution with an expectation given
by the measured vertical angle. The probability of the target being located
at a specific depth is determined by summing the probability contribution of
all rays with end points at that depth. The target depth probability density
function is determined, and a maximum a posteriori (MAP) estimate and an
estimate for the standard deviation are extracted. This information may be
used for classification, for instance by prioritising targets with target depth
MAP estimates above the sea floor. The estimated standard deviation is a
measure of how reliable the target depth estimate is.

The fidelity of the method is studied by simulating different environ-
ments with detected targets at different depths and ranges and with different
signal–to–reverberation and noise ratios (SNR). The target depth estimates
are shown to deteriorate for increasing ranges and decreasing SNRs. In sim-
ple scenarios and for sufficiently high SNR (23 dB), the method is shown
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applicable for ranges up to 15 km.
The method is finally tested on recorded data for targets located on the

sea floor and in the upper half of the water column. The method successfully
estimates the target depth with an accuracy sufficient for classification pur-
poses 82% of the time. Averaged over all measurements the target depths
are estimated within 40 m of the true depth.

3.4 Summary of the fourth paper: Target depth es-
timation using a ray backpropagation scheme on
mid-frequency, active sonar data

In this paper the method described in the third paper is developed fur-
ther and given a stronger theoretical foundation. As in the third paper ray
backpropagation is used, but is here combined with a Bayesian inversion
approach [51] to estimate the a posteriori target depth probability density
function. The introduction of Bayesian theory allows inclusion of a priori
probabilities assigned to the environment. Tuning of the environment, by
means of focalisation [23], is included in order to improve target depth es-
timation. Two environmental parameters are considered; sonar depth and
sound speed profile. The former is included to take into account ship heave
due to surface waves and ship motion. The latter is included by using em-
pirical orthogonal functions (EOF) to represent sound speed profiles. Two
EOFs are assumed sufficient for describing the sound speed variability. The
sonar depth and EOF coefficients are varied in order to find the MAP esti-
mate of the target depth. The computation time of this method far exceeds
the computation time of the method described in the third paper, but the
inclusion of focalisation improves the accuracy of the results.

3.5 Summary of the fifth paper: Inverting the water–
column sound speed

This work presents an inversion method for estimating sound speed profiles
by exploiting available sensor information. Sensor information considered in-
cludes sound speed measurements close to sonar equipment and echo sounder
data used to estimate depth–averaged slowness. The depth–averaged slow-
ness may be estimated from echo sounder data if the bottom depth is known.

Empirical orthogonal functions are determined from a set of known sound
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speed profiles. The sound speed profiles used may be climatological data or,
as used in this work, modelled sound speed profiles, e. g. from the MI-
POM ocean model [64]. Sound speed profiles are generated by varying the
weights of each EOF. Analytical and differentiable expressions, that include
the EOF–coefficients as the only variables, are derived for each type of mea-
surement (direct sound speed measurements and depth–averaged slowness).
A conjugate gradient search is used in order to estimate a sound speed profile
that matches well with measured values collected from the sensors.

A common problem during sonar operations is to determine how often to
measure the sound speed profile. An algorithm for assessing the quality of
the most recently measured sound speed profile is introduced. The sonar per-
formance modelled using the most recent sound speed profile measurement is
compared to the sonar performance modelled using an inverted sound speed
profile. The hypothesis is that when the most recent measured sound speed
profile results in a poor comparison, then a new sound speed profile should
be measured. This is equivalent to a binary decision problem. The algorithm
was applied on a simulated data set, and the probability of detection (the
probability of deciding that a poor–quality measured sound speed profile is
of poor quality) and probability of false alarm (the probability of deciding
that a high–quality measurement is of poor quality) were shown to be 61%
and 6%, respectively.

For a simulated data set, sonar performance predictions based on inverted
sound speed profiles were shown to be comparable to performance modelled
on basis of four-hourly sound speed measurements. This indicates that for
simple sonar performance modelling, for instance for modelling the expected
detection range during sonar operation, the presented inversion method may
be used instead of measurements of the sound speed profile.

3.6 Summary of the sixth paper: Finding acoustically
stable areas through EOF classification

Validity of sonar performance models is generally limited by environmen-
tal uncertainty [29], and particularly uncertainty in the sound speed profile
(SSP) [24–27, 65]. Rapid environmental assessment (REA) missions, e. g.
using gliders, and advanced ocean models may be used to reduce this uncer-
tainty prior to sonar operation.

This paper presents a method on how EOFs may be used for locating
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acoustically stable water masses in otherwise unstable waters. Acoustically
stable water masses are defined as areas where modelled target signal excess
has low sensitivity to expected oceanographic variability. A simple stability
measure based on modelled signal excess is derived in order to measure the
acoustic stability of an area.

A map of acoustically stable areas is the main output. This output is
for instance useful for planning deployment of gliders during a REA mis-
sion. Large, geographically contiguous groups indicate acoustically stable
areas where frequent SSP measurements are unnecessary, e. g. low concen-
tration of gliders. Geographically mixed groups indicate the opposite. Other
applications include determination of suitable locations for sonar tests that
require stable sonar conditions and efficient optimization of sonar parameters
in acoustically stable areas.

Modelled oceanography from the MI-POM ocean model [64] for an area
close to the Western coast of Norway is used as an example. Surface salin-
ity is a commonly used indicator for classifying water masses as either At-
lantic water or coastal water. A simple comparison of the distribution of
the first EOF coefficient and the surface salinity values shows that EOFs
are also useful for classifying water masses. Based on the modelled sound
speed profiles, the area is divided into acoustically stable subareas using the
method described above. Both large contiguous groups and smaller, geo-
graphically mixed groups are generated. The locations of the geographically
mixed groups match well with areas where mixing of coastal water masses
and Atlantic water masses supposedly occurs, while the larger groups coin-
cide well with homogeneous water masses.

3.7 Summary of the seventh paper: In ocean evalua-
tion of low frequency active sonar systems

All though this paper does not directly address the topic B, as described
in section 1.2, the relevance is strong enough for the work to be included
here. Unlike the other papers, the work presented in this paper relates to a
non–operational scenario, namely acceptance tests for naval sonars at sea.

Sonar performance measurements in the sea are always affected by un-
controllable and/or uncertain environmental conditions, such as sound speed
variations, bottom topography, or the acoustic properties of the sea floor.
This paper presents a method to determine a sonar – target geometry which
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minimizes the uncertainty in target signal excess due to environmental vari-
ability.

An acoustic model is used to estimate signal excess for a large number of
sound speed profiles measured in the relevant area. The results are compared
while searching for a target range and depth where estimated signal excess
is robust with respect to the expected variability of the sound speed profile
in the actual area.

The achieved sensitivity of signal excess to environmental changes is
demonstrated for different test geometries. Robustness in signal excess is
shown to be highly dependent on target range and depth and sonar depth.
Careful selection of the sonar – target geometry may reduce the uncertainty
in modelled signal excess.

4 Conclusion

The thesis contains seven papers that address two relevant topics of research:

A How to exploit available environmental information in order to increase
the classification ability of anti–submarine warfare (ASW) sonars

B How to deal with environmental uncertainty

The first topic is addressed by developing new classification algorithms. The
first two papers present methods of predicting what areas are prone to high
false alarm rates. The predictions are based on detailed environmental knowl-
edge and acoustic modelling. The third and fourth papers present methods
were vertical beamforming of sonar data is exploited in order to find the
vertical arrival angle of target echoes. Ray backpropagation is then used to
estimate target depth. Target depth is a very useful classification clue, and
the method is proved sufficiently accurate for classification.

The achilles heel of the proposed classification algorithms is their need
for accurate environmental information. Uncertainty in sound speed profile
may result in ambiguous or erroneous results. The second topic deals with
methods that reduces the uncertainty in the sound speed profile. The fourth
and fifth papers present methods on how the sound speed profile may be
extracted from data recorded during sonar operation. The last two papers
present methods that analyse the acoustic stability of geographical areas.
The assessment is based on a large set of sound speed profiles from the
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analysed area. This data set can either be obtained from an ocean model or
be densely measured sound speed profiles.

Papers six and seven introduce methods that are useful for determin-
ing acoustically stable areas for conducting sea trials in, for instance sonar
tests. During the sea acceptance tests for the sonars on the new Norwegian
F310–class frigates, these methods have been employed successfully. The
oceanographic field was sampled densely using a moving vessel profiler. The
method described in the sixth paper was then used to find acoustically stable
areas within the measured area. On basis of the sound speed profiles mea-
sured in the selected area, the method in the seventh paper was then used
to find the optimal sonar – target geometry for the acceptance tests. By
optimal is here meant minimised uncertainty in the acoustic field.

4.1 Future work

Listed below are unresolved issues that are suggested for future work.

4.1.1 Normalisation optimiser

The second attached paper introduces a method where reverberation mod-
elling is used to find areas susceptible to false alarm rate inflation. The oc-
curence of false alarm rate inflation depends not only on the present environ-
ment, but also on the sonar parameters used and particularly the normaliser
used. The developed method may be extended to automatically configure
the normaliser in order to reduce false alarm rate inflation, e. g. by varying
the normaliser window and guardband sizes.

4.1.2 Countering target masking

Another possible extension of the method introduced in the second paper is
prediction of target masking. Target masking is often exploited tactically
in order to hide from radars, for instance by placing military assets next
to forests or other strong scatterers. Likewise, in naval warfare, submarines
could hide in front of strong upslopes or seamounts to avoid detection. This
tactic can be countered by predicting what areas are prone to target masking
and then use one–sided normaliser windows to avoid the effects of target
masking.
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4.1.3 Automatic classification on basis of target depth estimation

The target depth estimator introduced in the third and fourth papers is
suitable for implementation in combat management systems as a classifica-
tion tool. The next step should be to test a prototype version live during
sonar operation. An unresolved issue is how to best exploit multiple ping
information. The two papers introduce different ways of coping with this
problem. The method used in the fourth paper is most refined but also
very slow. The computational cost could be reduced by implementing an
improved search algorithm, such as simulated annealing. Another problem
is that the assumption of independence between pings made in equation (13)
in the fourth paper is in some cases questionable. The arrival time and angle
measurements are probably independent, but the environmental input is not.
If the assumption of independence is invalid then other means of exploiting
multiple ping information must be made, such as the ones described in the
third paper.

4.1.4 Sound speed profile inversion

The fifth paper presents a method for inverting the sound speed profile from
echo sounder data and direct sound speed measurements. This method has
been tested on a simulated scenario only and should therefore be tested on
measurements for verification. The next step would be to make a prototype
version live on a sonar vessel. The inverted sound speed profile can then
be used either to check if the most recently measured sound speed profile is
valid or to be used as input to sonar performance modelling. This could also
be combined with the target depth estimator or normalisation optimiser to
improve the results.

4.1.5 Spatio–temporal assessment of acoustic stability

The method for categorising the acoustic stability of geographical areas pre-
sented in the sixth paper may be extended to take into account temporal
variablity. By analysing spatio–temporal variations, it should be possible to
estimate how often sound speed measurements should be made to ensure a
proper sampling of the environment during for instance sonar operation or
rapid environmental assessment missions.
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4.1.6 Acoustic sensitivity analyses for different sources of envi-
ronmental uncertainty

The method described in the seventh paper has been successfully put to use
during the sea acceptance tests for the Norwegian F310 frigates. However, the
uncertainty in the sound speed profile is the only environmental uncertainty
considered. The method may easily be extended to include other environmen-
tal parameters such as wind speed, bottom depths, and bottom properties.
Furthermore, geometric uncertainties such as uncertainty in sonar depth and
target location may also be included. Assuming locally linear acoustic sensi-
tivity to each of these uncertain parameters, then stability plots that combine
uncertainty in all these parameters simultaneously may easily be made. The
contribution of each parameter may also be studied separately in order to
determine what parameters the acoustic field is most sensitive to uncertain-
ties in. This may shed light on how a test procedure may be improved to
reduce the uncertainty of the test results.

Another possible extension is to find more objective ways of determining
whether a certain situation is acoustically stable. The current method is
subjective since it requires visual inspection of stability plots to determine
the stability.
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1 Abstract
Active low-frequency towed array sonar systems used in littoral waters experience 
high false alarm rate, mainly due to reflections from bottom features and steep slopes. 
This was confirmed by results from two sea trials (2001 and 2002) carried out in the 
NAT III (New Array Technology) project. The partners in NAT III were TNO-FEL 
(Netherlands Organisation for Applied Scientific Research, Physics and Electronics 
Laboratory), TUS (Thales Underwater Systems) and FFI (Norwegian Defence 
Research Establishment).
This paper describes a method of reducing the false alarm rate using an acoustic 
model. Predicted zones of high probability of false alarms are introduced as 
geographical areas where the normalised modelled reverberation exceeds a preset 
threshold. A method of automatically correlating recorded monostatic echoes with the 
predicted zones is presented. A probability of false alarm is linked to the echoes for 
tracking purposes, resulting in lower track probability in zones of high probability of 
false alarms.

2 Introduction
This paper is based on work in the NAT III programme. NAT III, was a co-operation 
between TNO-FEL, TUS and FFI. The purpose of the programme was to assess the 
advantages of bistatic operations with low frequency active sonars, LFAS. An LFAS 
system was tested in Norwegian waters in two sea trials in 2001 and 2002. In 
particular, the system’s performance in shallow and coastal waters was evaluated. The 
programme was closed in November 2004. The data presented in this paper is from 
the 2002 sea trial. 

The main advantages of LFAS systems are the high beam resolution and the good 
performance at long distances. A problem in fjords and in shallow, coastal waters is 
the amount of echoes2 generated from each transmission3. Submarines are not the 
only reflectors, but terrain features causes cluttering of echoes. These false echoes 
behave similarly to submarine echoes, and they are in great numbers. An ideal 
tracker4

1 Scientist at the Norwegian Defence Research Establishment.

is easily jammed if fed by many echoes, and is not able to process the data in 
real-time. Approaches to deal with this problem can roughly be divided into two 
categories; simplifying the tracker or reducing the amount of echoes. The method 
suggested in this paper is of the latter sort. The idea is to use knowledge on the 

2 Echoes are received reflections of the transmitted pulse from reflectors in the sonified medium.
3 A transmission is the acoustic energy transmitted by the sonar.
4 A tracker is an algorithm that creates a path of a hypothetical target using series of echoes from 
different transmissions.
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environment in combination with an acoustic propagation model in order to predict 
what areas are most likely to generate false echoes. This information can be used to 
either remove recorded echoes within these areas or reduce the track probability of 
tracks generated in them. Either solution would reduce the computational cost of the 
tracking process, allowing more advanced and accurate trackers to be used.

The method described is based on the work presented by Jon Wegge at the 
Underwater Defence Technology conference in Malmo 2003, see ref [1].

3 Low frequency active towed array sonars in 
Norwegian waters

Norwegian waters offer a wide range of environmental challenges due to the 
complexity in the oceanography and variations in the sea floor terrain. The north 
Atlantic Gulf steam interacts with coastal streams and fresh water from the land. The 
terrain varies between archipelago, deep fjords, shelves, and deep ocean conditions. In 
addition the waters are rich in terms of biology, not only introducing high false alarm 
likelihood, but also imposing restrictions on the use of LFAS.

Detailed hydrographic mapping enables us to better model the sonar performance. 
This again makes us more capable of predicting the likely locations of echoes from 
bottom reverberation, in addition to the range and path of acoustic energy.

Sonar processing in the past did not add detailed information neither from the terrain 
nor from any acoustic model. It was basically left to the operator to interpret the sonar 
response. However, with new sonars, the false alarms increase in number as a result 
of the increased range and bandwidth, but the alarms may be more accurately 
localized as a result of a narrower beam width. Thus there is a need for a more 
effective false alarm reduction filter, a method that is closer to reality as a result of the 
more accurate echo localization and detailed terrain information.

4 Method of correlating echoes with terrain
This section describes the method used to automatically correlate echoes with 
modelled zones of high reverberation. The first subsection presents the acoustic 
raytrace model, LYBIN. The second subsection defines zones of high probability of 
false alarm, and describes the method of predicting them. The third section describes 
how recorded echoes are correlated with zones of high probability of false alarm.

4.1 Acoustic model and reverberation modelling
The acoustic propagation model used is LYBIN. LYBIN is an incoherent ray trace 
model developed by Svein Mjølsnes at NDLO/Sea (Norwegian Defence Logistic 
Organisation). It models the transmission loss and reverberation in a single vertical 
cross section and uses the sonar equations, see ref [2], to compute the signal excess 
and probability of detection of a hypothetical target within the cross section. Input is 
the sonar parameters5, a depth dependent sound speed profile, wind speed6

5 Such as sonar position, source level, frequency band, pulse length, beam widths and side lobe levels. 

, bottom 
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parameters7 and range dependent bottom depths. Recent developments of LYBIN 
have made it range dependent in wind speed, sound speed and in bottom parameters 
as well.

A single LYBIN run computes the reverberation in a single direction from the sonar. 
LYBIN must therefore be run once for every direction of interest. The general 
problem requires a full, 3600 coverage. In the examples shown in this paper a 
resolution in direction of two degrees has been used, that is LYBIN is run 360 times 
for every ping, and the direction of each LYBIN run is separated by 10. This method 
of using a 2d acoustic propagation model in a 3d problem, is in literature referred to 
as the n*2d method. The range resolution used is 45m. The depth resolution varies. 50 
depth cells are used and the maximum depth depends on the current bottom profile.

4.2 Predicted zones of high probability of false alarms
Predicted zones of high probability of false alarms are areas where the acoustic model 
predicts local maxima in the reverberation.. The reverberation is computed using 
LYBIN and the n*2d method. The reverberation is then normalized in range using:

( )
( )

i i
i

i

rev rev
Norm rev

std rev
�

� Equation 1

irev is the modelled reverberation in range cell i. ( )iNorm rev is the normalized 
reverberation in range cell i. irev is the average reverberation in two split-windows to 
each side of range cell i. The windows have widths of 15 cells (675m), and five cells 
separate them (225m). ( )istd rev is the estimated standard deviation using the same 
windows as in the averaging.

After normalization the data is thresholded to find the local maxima. In the example 
shown in this paper, the threshold is 8dB. (This threshold must not be confused with 
the threshold commonly used in detectors to extract echoes, see next section.) Note 
that the model resolution in range, the width of the normalization windows and the 
threshold value are interconnected. Peaks in the modelled reverberation are typically 
reduced when the model resolution decreases. The reason is that the reflected energy 
from bathymetric features is smeared out over large range cells. The size and 
separation of the normalization windows also directly influence the peaks in the 
normalized reverberation. Finally, the preset threshold determines which of these 
peaks result in modelled detections. Figure 1 illustrates the procedure for a single 
direction. This is done for all n directions, resulting in a set of discreet positions 
where the modelled and normalized reverberation exceeds a threshold. 

6 The wind speed is used to compute the surface back scatter, bubble attenuation close to the surface, 
ambient noise level and also surface forward scattering.
7 LYBIN uses a single-valued parameter between 0 and 10 to classify all bottom types for both bottom 
backscatter and loss computations.
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Figure 1: Left plot is modelled reverberation in dB rel 1 Pa. The right plot is the same data after 
normalization. The black dashed line in the right-hand plot is the threshold value.

Each range cell in a single LYBIN run represents an area, henceforth called area cells, 
which is equal to:

A=r�r �� A Equation 2

r is the range. r� is the size of a range cell and equals the maximum model range R
divided by the number of range cells. �� is the bearing resolution, that is the 
difference in angle between neighbouring LYBIN runs. The size of the area is 
proportional to range, which means that larger ranges results in higher uncertainty, 
and less ability to recognize bathymetric features. Keep in mind that a single bottom 
profile is used for each direction. This means that a prominent bathymetric feature 
within an area could be missed by the bottom profile, and therefore not modelled 
correctly. Higher resolution in bearing solves this problem, but bear in mind that the 
computational effort is inversely proportional to the bearing resolution, when using 
the n*2d method.

We realize that the exact position and extent of a clutter is uncertain. To make the 
method more robust to localisation errors, we extend all predicted areas to including 
neighbouring cells and we also merge areas that at very close. An imaging technique 
called dilation is used. Figure 2 illustrates the procedure. The areas are here called 
modelled detections, or just detections in the figure. The red squares represent
detections. Yellow squares represent neighbouring cells. Cyan squares represent 
common neighbours of two or more modelled detections. A zone of high probability 
of false alarms is an area consisting of red, yellow and cyan cells in contact, directly 
or indirectly. In the example there are five zones, each of them are numbered and 
bounded by a red box. 
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Figure 2: Illustration of dilation. The axis represents Cartesian resolution cells. The red squares 
represents modelled detections. Yellow squares represent neighbouring cells. Cyan squares 
represent common neighbours of two or more modelled detections 

4.3 Correlating recorded echoes with zones of high 
probability of false alarms

The correlation of recorded echoes with modelled zones of high probability of false 
alarms is simple and straightforward. Each recorded echo’s area of uncertainty is 
geographically compared to the location of zones. If they overlap, then the echo is 
defined as linked to that zone with a percentile overlap equal to the ratio of the 
overlapping area and the total uncertainty area of the echo. Figure 3 illustrates the 
concept. The intension of the percentile overlap (PO) is to use it in the tracking 
process. High PO of an echo should lower the probability of a track using it.

*100%dAPO
A

�

Figure 3: Illustration of correlation of recorded echoes (red and blue dots) with predicted zones 
high probability of false alarms (cyan areas).

Correlation percentage of a single transmission is a statistical parameter that shows 
how many echoes that are linked to a zone, compared to the total number of echoes 
for that transmission. 
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5 Results from correlation of recorded echoes and 
zones of high probability of false alarm

An area of 8km by 7km in Norwegian waters is used to illustrate the method. The area 
has strongly varying depth, ranging from 0m to 600m. Such varying bathymetry 
typically results in huge amounts of echoes. For the transmissions presented here, the 
average number of recorded echoes within the area is 2500. No methods of echo-
reduction were applied.

Figure 4 shows echoes and zones of high probability of false alarm for four 
consecutive pings in a 8km by 7km area in littoral waters. The red echoes are linked 
to a zone, while the blue echoes are not. Clusters of echoes are bounded by ellipses 
and numbered. Most of these clusters consist of red echoes, especially the large 
clusters.  A cluster with mainly red echoes is assumed predicted by the model. The 
correlation between clusters of echoes and zones of high probability of false alarm is 
good. The model does not easily predict lone echoes, but they seldom generate long 
living tracks anyway. In ping 17 it seems that there is a shift in angle of all echoes 
relative the sonar, reducing the correlation. This is most likely due to an error in the
array heading, such errors influence positioning of echoes directly. 

Figure 4: Echoes and zones of high probability of false alarm for four consecutive pings in 
example 1. The black line coming in from the left side in the upper-left plot represents the 
direction towards the sonar. 

Clusters 12, 14, 16 and 17 are not predicted. Common for these clusters, are that they 
are generated in deeper terrain than the predicted clusters. Other studies on the same 
data set indicate that the sound speed profile used in the modelling has a too strong 
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sound speed channel. This results in entrapment of too much acoustic energy within 
the channel. See Figure 5. The peak labelled 1 is the probable cause for cluster 12, 
while the peak labelled 2 is the cause for cluster 11. A weaker sound channel would 
result in more acoustic energy propagating into the depths, and therefore deeper zones 
of high probability of false alarm.

Figure 5: Transmission loss plot towards cluster 12 in ping 19.

Figure 6 shows statistics of how well the echoes and zones of high probability of false 
alarm are correlated for twenty pings. The average amount of echoes per ping is 2500 
for the area studied. For most pings the correlation percentage exceeds 50%. There 
seems to be a shift in angle of all echoes in pings 2, 17 and 20, due to an error in the 
array heading. This is easily seen for ping 17 by studying Figure 4.

Figure 6: Correlation percentage in example 1 for 20 pings. Correlation percentage is the 
percentage of echoes that are linked to a zone of high probability of false alarm.
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6 Thoughts on using the results in a recursive 
tracking algorithm

A popular and cost-effective algorithm for target tracking in a cluttered environment 
is the Interacting Multiple Model combined with the Probabilistic Data Association 
Filter (IMMPDAF) [3]. This filter manages to initiate, maintain and terminate tracks, 
and yields the probability that there is a target in track. As the algorithm is presented 
in [3] it ignores the information about the amplitude or the signal to noise ratio (SNR) 
of the echo. An improvement of the IMMPDAF to include means to benefit from the 
amplitude information (IMMFDAFAI) is presented in [4]. This made the data 
association better by weighing the echoes within the validation gate by their SNR, 
combined with the traditional weighing of echoes due to their position deviation 
compared to the predicted position. Further it also included using additional models 
when a track entered the maintenance mode. This allowed for better tracking under 
the manoeuvring of targets. 
Our intention is to decrease the probability of detection (PD) when our Percentile 
Overlap (PO, see Figure 3) is increasing. Our PO must not be confused with the 
probability of false alarm (PF) [5]. How PO is related to PD and SNR is not defined, 
but some pragmatically statements for the tracking algorithm can be defined:

a) Echoes with PO > � can not initiate tracks
b) Tracks in initiation mode (age < 10 pings) [4] can not use echoes with PO > �
c) The amplitude (a) of echoes (M) with PO �������	�
��	���������
�����[3]

will be weighted (w) based on a function of PO and a: wi = f(POi ai,), i� M. 

Here ��� [0,1] is a fixed threshold for PO to allow tracking in areas with heavy 
density of bottom reverberation.
The computational cost of the algorithm will be reduced by the statements a) and b). 
With statement c), the weight of the echo with a high PO will be decreased, and thus 
have a reduced influence on the data association of new measurements. 

In some cases, the echoes from bottom reflection gain a higher SNR than the 
submarine close to the area. This is due to the differences in depths and size of the 
reflecting areas of the bottom feature and the submarine. When using the target 
tracker with amplitude information feature, we will suppress the echo from the 
submarine in favour of the stronger echo from the bottom feature, and possibly lead 
the tracker off the target. This opens for an investigation on the possibility of 
estimating the amplitude of a target, when tracking a target with some defined 
variation in amplitude. For estimation one have to expand the system models to 
include the SNR as a state variable. For computational cost effectiveness, this can be 
combined with the use of Percentile Overlap. Doing so, this can be used to define an 
additional maintenance mode for tracks near areas with high probability of false 
alarms due to reverberation. 
The Percentile Overlap is expected to be an effective input variable to tracking 
algorithms to reduce false target tracks based on bottom reverberation, and to reduce 
computational cost of the tracking algorithms.
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7 Conclusions
The method presented predicts that 5% of an 8km x 7km area are zones with high 
probability of false alarms. Comparison with real sonar echoes for that area shows 
that an average of 60% of the echoes falls within these zones. Each echo within a 
zone is assigned a Percentile Overlap. The Percentile Overlap can be used to reduce 
computation cost of tracking algorithms. It can also reduce the probability of tracks 
initiated based on echoes from bottom features, and possibly help the algorithm track 
targets through areas with dense clutter from bottom reverberation.

The method is sensitive to errors in array heading and environmental information. 
Errors in array heading cause a shifting of angle of all echoes. If the echoes are 
misplaced, then the model has no real chance in linking them to zones of high 
probability of false alarm. Errors in the sound speed profile cause the sound to 
propagate along wrong paths, typically displacing the zones of high probability of 
false alarm to either shallower or deeper areas. Finally, the method demands a high-
resolution bottom depth grid in order to model the bottom reverberation with any 
success. 
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Classification is one of the main challenges in anti–submarine warfare using active sonars in littoral waters. Sea
mounts and rocky ridges may result in large numbers of false alarms, some exhibiting submarine–like behaviour.
High false alarm rates result in complex tactical pictures. Efficient classification tools for reducing the amounts
of false alarms are needed.

Conventional active sonar processing outputs a target’s range and bearing. The presented method gives an esti-
mate of the target depth on basis of data from a mid–frequency, active sonar. The vertical arrival angle is deter-
mined by beamforming received sonar data vertically. Ray backpropagation is combined with Bayesian inversion
to estimate the a posteriori target depth probability density function. Empirical orthogonal functions (EOF) are
used to represent the sound speed profile. EOF coefficients and sonar depth are included in the inversion in order
to improve the target depth estimate.

The method is tested on recorded data from two targets; one located at 300 m depth and one at an unknown depth
in the upper 81 m of the water–column. Target depth is estimated to 285 m depth and 45 m, respectively, which
is sufficient for classification purposes in anti–submarine warfare.

1 Introduction

One of the main challenges in anti–submarine warfare us-
ing active sonars in littoral waters is classification. Varying
topography and rocky outcrops result in a large number of
false alarms [1–4], some of which exhibit very submarine–
like behaviour [2]. High number of false alarms results in
a complex tactical picture. Efficient classification tools for
reducing the amounts of false alarms are therefore needed.
This work presents a method that estimates target depth.
Knowledge of target depth is a powerful classification clue
which allows separation of false targets located on the sea
floor, such as wrecks, sea mounts, and large boulders, from
true targets.

Matched–field processing (MFP) is a widely used technique
for estimating target location, and is mostly used for pass-
ive sonars [5, 6]. MFP has also successfully been extended
to low–frequency, active sonars [7] showing promising re-
sults for target depth estimation. Bayesian inversion is an
extension of MFP that also outputs the probability density
function for the model parameters [8]. Collins and Kuper-
man [9] introduced focalisation as a means for improving
target depth estimates by including environmental parame-
ters, e. g. sound speed profiles, in the inversion process.
An alternative method for target localisation is ray back-
propagation [9–11]. This method has been demonstrated for
low–frequency, passive sonar systems [9, 11]. Ray back-
propagation is a method where acoustic rays are traced in
a direction defined by the angle of arrival measured on the
sonar. In the passive sonar case, multiple arrivals are needed.
Locations where rays representing the different arrivals in-
tersect are candidate target locations.

This paper presents a method that estimates the a posteriori

target depth probability density function of a detected tar-
get. Vertical arrival angles and arrival times are measured
using a mid–frequency, active sonar. Bayesian inversion
and ray backpropagation are used to estimate probable target
depths. Focalisation is employed by including sonar depth
and the sound speed profile in the inversion process. Em-
pirical orthogonal function (EOF) coefficients represent the
sound speed profiles [9] in the inversion.

The method is applied on a data set containing detections of
two different targets. The first target is a pipeline located on
the sea floor at 300 m depth. The second target is an echo
repeater located at an unknown depth less than 81 m.

2 Method

Let an unknown target be detected using standard active
sonar processing; beamforming, matched filtering, and de-
tection [12]. The measured vertical arrival angle is defined
as the vertical steering angle maximising the signal–to–noise
ratio (SNR) of the target echo. The vertical arrival angle, φ,
and arrival time, t, are considered as Gaussian distributed
random processes with standard deviations [13] given by:

σφ =
φBW√
s

(1)

σt =
1

B
√
s

(2)

s is the signal–to–noise ratio of the target echo. φBW is the
vertical beamwidth of the sonar. B is the sonar bandwidth.

Let the model parameter vector, m, contain relevant infor-
mation on the environment as well as arrival time and verti-
cal arrival angle. Target depth may then be modelled from
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m by a raytracer [14]:

d(m) = g(m) (3)

g is an operator describing the raytracer. d(m) is the mod-
elled target depth.

Let the elements in m be samples from independent random
processes, and let the joint probability density distribution
for the model parameters be given by P (m), then:

Pm(m) = Pm1(m1)Pm2(m2) . . . PmL(mL) (4)

P (mj) is the probability density distribution for the jth para-
meter,mj .

Bayes law states that:

Pzd(z|d(m))Pd(d(m)) = Pdz(d(m)|z)Pz(z) (5)

z is the true target depth, and d(m) is the modelled target
depth given by (3). The a posteriori probability density dis-
tribution (PPD) for target depth, Pzd(z|d(m)), is given by:

Pzd(z|d(m)) =
Pdz(d(m)|z)Pz(z)

Pd(d(m))
(6)

Assuming Pz(z) is uniform, then Pd(d(m)) may be esti-
mated by:

Pd(d(m)) = Pz(z)

∫ ∞

−∞
Pdz(d(m)|z)dz (7)

Combining (6-7) gives:

Pzd(z|d(m)) =
Pdz(d(m)|z)∫∞

−∞ Pdz(d(m)|z)dz (8)

Pdz(d(m)|z) is estimated by modelling the target depth for
all combinations of model parameters, and assigning a prob-
ability to modelled target depth equal to the combined prob-
ability of all model parameters, Pm(m). If multiple model
parameter combinations result in the same depth, then the
corresponding probabilities are summed. Let the water col-
umn be divided intoK intervals, each of Δz width and cen-
tred at zk. Pdz(d(m)|zk) may then be approximated as a
step function with K intervals where the step heights are
given by:

Pdz(d(m)|zk) ≈
1

Δz

∫
m

H

(
Δz

2
− |zk − d(m)|

)
Pm(m)∂m (9)

H is the unit–step–function, which equals unity for non–
negative arguments and zero otherwise. An expression for
the PPD can then be found by combining (8–9). Fig. 1 il-
lustrates how the PPD is derived.

Target depth mean– and MAP–estimates [15] are given by:

zmean =

K−1∑
k=0

zkPzd(zk|d(m))Δz (10)

zMAP = max
zk

(
Pzd(zk|d(m))

)
(11)

and the associated variance is given by:

σ2z =
K−1∑
k=0

(zk − zmean)
2Pzd(zk|d(m))Δz (12)

Mean–estimates, for targets located close to the sea floor, are
generally pulled away from the sea floor due to reflectivity
of the sea floor. This makes the mean–estimate a poor choice
for separating real targets from false alarms generated at the
sea floor. The MAP–estimate has no obvious weaknesses in
that regard, and is therefore used here.

The PPD is so far derived for single–ping information only.
Assuming stationary target depth and independent measure-
ments of arrival time and arrival angle, then the theory may
be extended to apply for multi–ping information as follows:

P (zk|d(M)) =

∏N−1
j=0 Pdz(d(mj)|zk)∫∞

−∞
∏N−1

j=0 Pdz(d(mj)|zk)dz
(13)

mj is the model parameter vector that applies for ping num-
ber j. M is the model parameter matrix containing the
model parameter vectors for all pings. The elements of the
vector d(M) are target depths estimated by inputting mj

in (3). Pdz(d(mj)|zk) is determined from (9). The MAP–
estimate then becomes:

zMAP = max
zk

(
Pzd(zk|d(M))

)
(14)

The theory may also be extended to limit the stationarity re-
quirement for some or all model parameters. For instance,
requiring that the sound speed profile remains the same for
all pings, but allowing a non–stationary arrival time and arri-
val angle due to sonar and target movement. This extension
is not within the scope of this work and therefore not in-
cluded here.

3 Experimental data

A sea trial was conducted in the Norwegian trench at ap-
proximately 60◦ North and 4◦ East. The area is virtually flat
with a sea floor depth of 300 m. The sound speed profiles
were measured six times during the trial, see Fig. 2.

The vessel was equipped with a hull-mounted sonar, at 5
m depth, working on frequencies below 10 kHz. The sonar
transmitted hyperbolic FM pulses with 2 kHz bandwidth and
1 s pulse length. The vertical beamwidth was 15◦.

Several oil pipelines located on the seafloor, at approximately
300 m depth, crisscross the area of the sea trial. The sonar
detected and maintained tracks on several pipelines. Mea-
sured arrival times and vertical arrival angles for one such
track are shown in Fig. 3. This track was maintained for 16
pings.

An echo repeater was located in the area. The echo repeater
was attached to a buoy and left to drift. The length of the
cable from the buoy to the echo repeater was 81 m. The true
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Figure 1: (a-d) show ray paths for four different pings. Each
ray represents a single realisation of the random model in-
put vector given by mj. The colour of the ray represents the
a priori probability of the model given by Pm(mj). The a
priori probabilities of all rays with end points within a single
depth interval, centered at zk, are summed to find the prob-
ability, Pdz(d(m)|zk), that the modelled target depth lies in
that depth interval. (e-h) show the PPD estimated using (8).
(i) shows the PPD based on all four measurements and is
essentially the normalised product of (e-h), see (13).

Figure 2: Measured sound speed profiles in the Norwegian
trench at the time of the sea trial.

depth of the echo repeater is unknown, but is clearly less
than 81 m. The sonar detected and maintained a track on
the echo repeater for 87 pings. Measured arrival times and
vertical arrival angles for this track are shown in Fig. 3.

4 Results and discussion

The described method is tested on data measured during the
sea trial described in section 3. A raytracer called Plane-
Ray [17] is used. The model parameter vector, m, includes

Figure 3: Measured arrival time (upper plot) and vertical
optimal arrival angle (lower plot) as a function of ping num-
ber for the track on the pipeline (blue) and the echo repeater
(red).

sound speed profile, sonar depth, arrival time, and vertical
arrival angle. Each of these parameters are considered as
Gaussian distributed random parameters.

On a flat sea surface, the sonar depth is 5 m below the sea
surface. However, due to ship heave, the sonar depth is con-
sidered uniformly distributed between 2 m and 8 m.

The vertical arrival angle is considered Gaussian distributed
with a standard deviation given by (1). Angles within two
standard deviations of the measured arrival angles are con-
sidered. The uncertainty in arrival time is so low that errors
of several standard deviations in size have no significant im-
pact on the results. The arrival time is therefore considered
as a deterministic constant.

The sound speed profile is represented by empirical ortho-
gonal functions (EOF). EOFs are derived from the measured
sound speed profiles shown in Fig. 2. Details on how this is
done can be found in [16]. The proportion of variances [16]
for the two first EOFs are 85 %, which is assumed sufficient
to describe the sound speed profiles. Sound speed profiles
are generated as follows:

c(κ) = c+UTκ (15)

c is a vector containing the expected sound speed profile es-
timated by averaging the measured sound speed profiles. U
is a matrix containing EOFs as rows. κ is a vector contain-
ing EOF coefficients. The EOF coefficients are zero–mean,
Gaussian–distributed random processes and are included in
the model parameter vector. The standard deviations of the
coefficients are given by the square root of the correspond-
ing eigenvalues [15]. Coefficient values within two standard
deviations of 0 are considered.

Target depth PPDs based on the two tracks presented in sec-
tion 3 are estimated using the described method. Ten depth–
intervals are used in (9), each 30 m wide. Fig. 4 shows the
target depth PPDs for the detected pipeline for all 16 pings.



ECUA 2010 Istanbul Conference Hjelmervik

Figure 4: The target depth PPD for the pipeline is plotted
for each ping number. The function is estimated using (8)
on the data set presented in Fig. 3.

The method estimates the target depth to be close to the bot-
tom for all pings. Fig. 5 shows the PPD accumulated over
all pings. The MAP–estimate for the target depth is 284 m,
and the estimated standard deviation is 10 m. The true depth
of the target is 300 m.

Fig. 6 shows the target depth PPDs for the echo repeater.
The method estimates the target depth to be within the up-
per 60 m of the water–column for most pings. For a few
pings, the PPD is almost uniform. These are pings where the
SNR is low, resulting in high vertical angle standard devia-
tions (1). Due to their high estimated target depth standard
deviation, these pings have little influence on the PPD esti-
mated from all pings shown in Fig. 7. The MAP–estimate
for the target depth is 45 m, and the estimated standard de-
viation is 9 m. The true target depth is unknown, but below
81 m.

The accuracy of the target depth estimates is considered suf-
ficient for classification purposes, since the main goal is to
separate targets in the upper water–column from targets lo-
cated on the sea floor.

5 Conclusion

A method capable of estimating the depth of a submerged
target using mid–frequency, active sonar data is demonstrated.
Ray backpropagation and Bayesian inversion are combined.
The methods input is the present environment and recorded
arrival times and vertical arrival angles.

The method is applied on a data set containing acoustic re-
turns from a pipeline located on the sea floor at 300 m depth
and an echo repeater located at an unknown depth less than
81 m. The a posteriori target depth probability density func-
tion was derived using Bayesian inversion and ray backprop-
agation. The sound speed profile was represented by empir-
ical orthogonal functions (EOF), and the resulting EOF co-

Figure 5: The target depth PPD for the pipeline estimated
using (13) is plotted. This is essentially the product of all
PPDs shown in Fig. 4.

Figure 6: The target depth PPD for the echo repeater is plot-
ted for each ping number. The function is estimated using
(8) on the data set presented in Fig. 3.

efficients were included in the inversion. Sonar depth was
also varied in the inversion process. The maximum a poste-
riori (MAP) estimate of the depth of the pipeline was 285 m
and the standard deviation was 10 m. The MAP estimate
of the depth of the echo repeater was 45 m with a standard
deviation of 9 m.

Knowing the depth of a target is a powerful tool for class-
ification of submarines and mine–like objects in the ocean.
Filtering tracks on account of target depth may reduce the
false alarm rate in littoral areas significantly.
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Sonar performance models are commonly used in anti–submarine warfare operations. The validity of sonar
performance models are generally limited by available environmental information, such as the present sound
speed profile. However, frequent sound speed measurements are costly and slows down the operation.

This work presents an inversion method for estimating sound speed profiles by exploiting available sensor infor-
mation. Sensor information considered includes sound speed measurements close to sonar equipment, and echo
sounder data used to estimate depth–averaged slowness. Predicted oceanographic data and a bottom model are
required. The inversion method derives empirical orthogonal functions (EOF) for modelled sound speed profiles.
EOF coefficients are varied using conjugate gradient searches, in order to estimate a sound speed profile that
matches well with measured values collected from the sensors.

The method is applied on simulated data. The inverted sound speed profiles are shown to resemble the simulated
truth data well, and that sonar performance modelling based on inverted sound speed profiles is comparable to
performance modelled on basis of four-hourly sound speed measurements. Furthermore, inverted sound speed
profiles are shown useful for quality assessment of sound speed measurements.

1 Introduction

Validity of sonar performance models is generally limited by
environmental uncertainty. James and Dowling [1] give an
overview of research on how environmental uncertainty in-
fluences acoustic field predictions. Modelled acoustic fields
are sensitive to uncertain water–column sound speed [2–5].
Frequent sound speed measurements reduce the uncertainty,
but may be costly and is not always feasible. An alterna-
tive approach is to invert the sound speed profile (SSP) from
recorded acoustic data. Collins and Kuperman introduced
focalisation [6] as a means of improving source localisation
by including the SSP in matched–field processing. Empir-
ical orthogonal functions (EOFs) [7] were used to charac-
terise the SSPs. The EOF coefficients were used as addi-
tional parameters in the inversion process. Inverting SSPs
from acoustic data in order to improve acoustic modelling,
has since been used in matched–field processing [8, 9] as
well as other methods [10, 11].

This work presents an inversion method that estimates a lo-
cal SSP from available sensor information using inversion.
Sensor information considered are sound speed measured
close to sonar equipment, and echo sounder data. Echo
sounder data are used to estimate depth–averaged slowness.
The measurements are performed in the immediate vicinity
of the sensors and have high–update rates, and are therefore
considered local in space and time.

The inversion method is applied on a simulated data set. In
the simulations, a set of SSPs collected during a sea trial in
the Norwegian trench using a moving vessel profiler [12],
are simulated as truth data. Measurements are simulated by
extracting data at the measurement depth from the truth data.
Predicted SSPs from the MI-POM ocean model [13] are

used to determine a set of EOFs. EOF coefficients are var-
ied using conjugate gradient searches [15] in order to gener-
ate an SSP matching the simulated measurements. Inverted
SSPs are compared to truth data. Modelled sonar perfor-
mance using inverted SSPs is compared to modelled sonar
performance using sound speed measurements. The acous-
tic model Lybin [14] is used to model the sonar performance.
A method of assessing the quality of sound speed measure-
ments using inverted sound speed profiles is also presented
and discussed.

2 Method

The proposed method employs an inversion approach to es-
timate the SSP from a limited set of sound speed measure-
ments. The inverted SSP is generated using EOFs. EOF
coefficients are varied in order to minimise the difference
between measurements and the inverted SSP. For easier im-
plementation, slowness, s, is used instead of sound speed,
c:

s =
1
c

(1)

Section 2.1 shows how EOFs are generated from a set of
SSPs. Costfunctions for minimisation and a minimisation
method are presented in sections 2.2 and 2.3. A function
for comparing modelled sonar performance for two different
input SSPs is described in section 2.4.
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2.1 Determining the empirical orthogonal
functions for a set of measured slowness
profiles

Consider a set of M measured slowness profiles each con-
taining N equally gridded depth samples. Let sm be an N–
dimensional vector containing the slowness values from the
mth profile. Let the slowness data matrix, S, be given by:

S =

⎡⎢⎢⎢⎣
s0T
s1T
...

sM−1T

⎤⎥⎥⎥⎦ (2)

The mean slowness, s, is given by:

s =
1
M
STv (3)

v is an M–dimensional vector consisting of ones only. Let
the scaled slowness, x, be given by:

x= s− s (4)

The scaled slowness data matrix is defined as:

X =

⎡⎢⎢⎢⎣
x0T
x1T
...

xM−1T

⎤⎥⎥⎥⎦ (5)

xm may be expanded in any set of N orthonormal eigenvec-
tors un with coefficient vector κm, section 4.6.1 [7]:

xm = UTκm (6)

U is the eigenmatrix given by:

U =

⎡⎢⎢⎢⎣
u0T
u1T
...

uN−1T

⎤⎥⎥⎥⎦ (7)

The eigenvectors are found by solving the eigenvalue prob-
lem [7]:

Rxun = λnun (8)

In literature un are often referred to as empirical orthogonal
functions (EOF). Rx is the covariance matrix of the scaled
slowness data matrix [7]:

Rx =
1
M
XTX (9)

λn is the eigenvalue corresponding to eigenvector un. The
eigenvalues equal the variances of the corresponding coeffi-
cients κn [7]:

Var(κn) = λn (10)

New slowness profiles of the same class as the slowness pro-
files in the original data set may be generated by using (4)
and (6). For an arbitrary coefficient vector κ, a new profile,
x̂, may be generated using the following equation:

x̂ = UTκ (11)

Random slowness profiles may be generated by modelling
the coefficient vector as a zero–mean random vector with
variances given by the corresponding eigenvalues.

Let λn be ordered such that for increasing n, λn decreases.
Higher orders of n often represent noise [7]. The vectors
in (11) may therefore be truncated with insignificant loss
of information on the slowness profile. A commonly used
approach is to cut–off when the proportion of variances, Γl ,
exceeds a selected threshold. The proportion of variances is
defined as:

Γl =
∑l

n=0λn

∑N−1
n=0 λn

(12)

The chosen threshold depends on the specific application,
but a commonly used threshold is 95%.

2.2 Minimisation problem

Let the eigenmatrix, U, and eigenvalue vector, λ, be esti-
mated from a set of M slowness profiles, as described in the
previous section. Let d be an JxK matrix containing K in-
dependent measurements made on J different sensors (e. g.
depth–averaged slowness from an echo sounder or single–
depth slowness values from sound speed sensors). If J = N,
the coefficients, κ, may be found analytically. If J < N, then
the system of equations is indeterminate and may not be
solved directly. However, the problem may be solved by
inversion, where a set of coefficients is sought that results in
a generated slowness profile, ŝ(κ), best matching the mea-
sured slowness values. Let d̂(κ) be a vector containing val-
ues derived from ŝ(κ) that corresponds to the measurements
d.
d and d̂(κ) are related by Bayes theorem [16]:

P(d̂(κ)|d)P(d) = P(d|d̂(κ))P(d̂(κ)) (13)

The measurements, d, are regarded as fixed values, P(d) is
therefore constant. κ is a random vector with independent
elements and variance λ. The prior coefficient probability is
then given by:

P(κ) =
N−1

∏
n=0

P(κn) (14)

κ is assumed Gaussian distributed. The probability density
function relating to P(κn) is then given by:

fκn(κn) =
1√

2πλn
exp
(
− κ2

n

2λn

)
(15)
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Assuming a one–to–one relationship between κ and d̂(κ)
and since κ is the only random input to d̂(κ), then:

P(d̂(κ)) = P(κ) (16)

P(d|d̂(κ)) is interpreted as the likelihood function, and the
elements of d̂(κ) are assumed independent and Gaussian
distributed. The likelihood function is then given by:

L(κ) =
J−1

∏
j=0

Lj(κ) (17)

where,

Lj(κ) =
1√

2πσd j

exp

⎛⎜⎝−K−1

∑
k=0

(
d jk− d̂ j(κ)

)2

2σ2
d j

⎞⎟⎠ (18)

d jk are the elements of d. σd j is the estimated standard de-
viation of the jth sensor. d̂ j(κ) are the elements of d̂(κ).
The marginal probability density function that relates to the
probability P(d)may be determined by integrating the likelihood–
function over all κ:

fd(d) =
∫ ∞

−∞
L(κ)dκ (19)

Combining (13–19) gives the posterior probability density
(PPD) for the EOF coefficients:

fd̂(d̂(κ)|d) =
J−1

∏
j=0

Lj(κ)
N−1

∏
n=0

fκn(κn)
/∫ ∞

−∞
L(κ)dκ(20)

The MAP–estimates of the coefficients are found at the max-
imum value of the PPD. The PPD maximum value is found
by maximising the exponents in (15) and (18), which is
equivalent to the following minimisation problem:

min
κ∈RN

(
F(κ)

)
= min

κ∈RN

(
J−1

∑
j=0

K−1

∑
k=0

(
d jk− d̂ j(κ)

)2

σ2
d j

+
N−1

∑
n=0

κ2
n

λn

)
(21)

F(κ) is the costfunction of the inversion problem, and the
coefficient vector that minimises F(κ) yields the optimal in-
verted slowness profile. According to Dosso et al. [16] the
standard deviations, σd j , may be estimated from the follow-
ing expression:

σ2
d j

=
1
K

K−1

∑
k=0

(
d jk− d̃ j(κ)

)2 (22)

where d̃ j(κ) is estimated by solving the following minimi-
sation problem:

min
κ∈RN

(F(κ)) = min
κ∈RN

(
J−1

∑
j=0

K−1

∑
k=0

(
d jk− d̃ j(κ)

)2
+

N−1

∑
n=0

κ2
n

λn

)
(23)

2.3 Example costfunction

A costfunction that applies for two types of slowness mea-
surements is determined. The first type of measurements are
slowness values, s jk, derived from direct sound speed mea-
surements at given measurement depths. j corresponds to
measurement depth, and k to measurement number. The
second type of measurement is depth–averaged slowness,
msk, which may be measured by an echo sounder. Depth–
averaged slowness is given by:

msk =
Tk

2(D− zs)
(24)

where zs is the depth of the echo sounder. Tk is the kth mea-
surement of the time it takes a transmitted acoustic pulse to
reach the bottom and back again. D is the bottom depth.
The depth–averaged slowness may be estimated from a gen-
erated slowness profile:

m̂s(κ) =
1

N−ns

N−1

∑
j=ns

ŝ j(κ) (25)

where ns is the element number corresponding to zs. The
following costfunction then applies:

F(κ) =
N−1

∑
j=0

K−1

∑
k=0

a j

σ2
s j

(
s jk− ŝ j(κ)

)2
+

1
σ2
ms

K−1

∑
k=0

(msk− m̂s(κ))2 +
N−1

∑
n=0

κ2
n

λn
(26)

The standard deviations, σs j and σms , are estimated using
(22). The vector a with elements a j, has the same length
as uk, and is defined as 1 in elements corresponding to the
measurement depths and 0 otherwise. Inserting (4) yields:

F(κ) =
N−1

∑
j=0

K−1

∑
k=0

a j

σ2
x j

(
x jk− x̂ j(κ)

)2
+

1
σ2
mx

K−1

∑
k=0

(mxk− m̂x(κ))2 +
N−1

∑
n=0

κ2
n

λn
(27)

where x jk and mxk are scaled versions of the measured slow-
nesses and depth–averaged slownesses, respectively. The
costfunction may be split in three:

F(κ) = Fx(κ)+Fm(κ)+Fκ(κ) (28)

where,

Fx(κ) =
N−1

∑
j=0

K−1

∑
k=0

a j

σ2
x j

(
x jk− x̂ j(κ)

)2 (29)

Fm(κ) =
1

σ2
mx

K−1

∑
k=0

(mxk− m̂x(κ))2 (30)

Fκ(κ) =
N−1

∑
n=0

κ2
n

λn
(31)
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Inserting (11) and (25):

Fx(κ) =
N−1

∑
j=0

K−1

∑
k=0

a j

σ2
x j

(
x jk−

N−1

∑
n=0

Ujnκn

)2

(32)

Fm(κ) =
1

σ2
mx

K−1

∑
k=0

(
mxk−

N−1

∑
j=ns

N−1

∑
n=0

Ujnκn

N−ns

)2

(33)

Equations (31–33) are all differentiable with respect to κn:

∂Fx(κ)
∂κn

= −2
N−1

∑
j=0

K−1

∑
k=0

a jUjn

σ2
x jk

(
x j−

N−1

∑
n=0

Ujnκn

)
∂Fm(κ)
∂κn

= − 2
N−ns

(
N−1

∑
j=ns

Ujn

σ2
mx

)
K−1

∑
k=0

(
mxk−

N−1

∑
j=ns

N−1

∑
n=0

Ujnκn

N−ns

)
∂Fκ(κ)
∂κn

= 2
N−1

∑
n=0

κn

λn

The costfunction differentiated with respect to κn then be-
comes:

∂F(κ)
∂κn

=
∂Fx(κ)
∂κn

+
∂Fm(κ)
∂κn

+
∂Fκ(κ)
∂κn

(34)

Since the costfunction and its derivatives are analytically
known, the minimisation problem in (26) may be solved us-
ing a conjugate gradient method [15]. The computational
cost may be strongly reduced by first truncating the coeffi-
cient vector with insignificant loss of accuracy, as discussed
in section 2.1.

2.4 Comparing modelled sonar performance

In anti–submarine warfare operations sonar performance mod-
elling is mainly used for determining whether the submarine
is detected or not. Let the detection matrix, D, be given by:

D(m) = H
(
SE(m)

)
(35)

The modelled signal excess [17], SE, is a matrix containing
logarithmic signal excess values for all model depth– and
range–cells. The depths and ranges are typically bounded by
the sonar range, surface, and bottom depth. m is the model
input, such as environment and sonar parameters. H(x) is
the Heaviside–function, which is defined as 1 for x ≥ 0 and
0 otherwise. The detection matrix shows at what depths and
ranges the sonar is expected to detect a submarine.

Let the model inputs mi and mj contain different SSPs, but
be otherwise identical. Let the SSPs be given by ci and cj.
Let the compare function, G(ci,cj), be defined as:

G(ci,cj) =
1

NrNz

Nr−1

∑
m=0

Nz−1

∑
n=0

δ
(
Dmn(mi)−Dmn(mj)

)
(36)

Nr and Nz are the number of model range and depth cells, re-
spectively. δ(l) is the Kronecker–delta function and defined
as 1 when l = 0 and 0 otherwise. Dmn are the elements of

Figure 1: Path of the vessel (upper plot). Measured SSPs
(centre plot). Inverted SSPs (bottom plot). The numbers
(time indexes) and stars along the path of the vessel indicate
the positions where the sound speed is measured in the first
three scenarios described in section 5.2.

D. The compare function is used to evaluate how well the
modelled sonar performance matches for two different input
SSPs. A value of 1 indicates that the detection functions are
identical, while 0 indicates a complete misfit.

3 Environment

In January 2010 the Norwegian Defence Research Estab-
lishment (FFI) conducted a sea trial in the Norwegian trench.
FFI‘s research vessel, HU Sverdrup II, measured pressure,
conductivity, and temperature as a function of depth down
to approximately 200 m depth using an ODIM MVP200, a
moving vessel profiler (MVP) [12]. SSPs are estimated from
the measurements using the UNESCO formula [18]. Esti-
mated SSPs (centre plot) and the path of the vessel (upper
plot) are shown in Fig. 1.

An oceanographic model is available for the area the sea trial
was conducted in. The model covers a 16 500 square kilo-
meter area at the Western coast of Norway. The ocean model
Westcoast-200m is a version of Princeton Ocean Model (POM)
called MI-POM [13]. Fig. 2 shows SSPs extracted from the
model for the area and time the sea trial was conducted in.

4 Simulated example

Consider a simulated sea trial where a sonar vessel follows
the path shown in the upper plot in Fig. 1. Let the vessel’s
position be given by xl at time tl . The SSPs shown in the
centre plot in Fig. 1 simulate the true SSPs, c̃(l)j , at position
xl at time tl . The true SSPs are assumed constant and range–
independent at times close to tl and positions close to xl. j is
the depth numerator. The depth is divided into 5 m intervals
from 0 m to 200 m.
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Figure 2: Modelled SSPs from the MI-POM ocean model
[13].

The simulated vessel is equipped with an echo sounder, a
towed transmitter, and a towed receiver array. The echo
sounder and the towed array are both equipped with sensors
measuring the sound speed directly with standard deviation,
σc, of 0.2 m

s , e. g. an AQSV–1500 [22]. The echo sounder is
mounted on the hull of the vessel at 5 m depth, correspond-
ing to j = 1. The towed receiver array and transmitter are
kept at 100 m depth, corresponding to j = 20. For each tl ,
30 direct sound speed measurements and echo sounder pings
are simulated. The sound speed measurements are simulated
by adding noise to the simulated true sound speed at the cor-
responding position and measurement depth:

c(l)1k = c̃(l)1 +g (37)

c(l)20k = c̃(l)20 +g (38)

k is the measurement number. The noise is modelled as
zero–mean, Gaussian distributed noise with standard devi-
ation given by σc

Let the expected bottom depth be 200 m with a standard
deviation of 0.5 m. Measured depth–averaged slowness is
simulated by computing mean slowness from simulated true
SSP at that position and adding a zero–mean, Gaussian dis-
tributed noise, h, with standard deviation given by σm:

m(l)
sk =

N−1

∑
j=ns

1

c̃(l)j
+h (39)

ns is the depth–sample corresponding to the echo sounder
depth. N− 1 is the depth–sample number corresponding to
bottom depth. The standard deviation, σm, is 2 · 10−6 s

m ,
which corresponds to 0.5 m standard deviation in the bottom
model.

EOFs are derived from the SSPs in the oceanographic model,
shown in Fig. 2. The four first coefficients are used in the
inversion, resulting in a proportion of variances of 0.98. A
single inverted SSP, ĉ(l), is determined for each tl by solv-
ing (21). The MATLAB function MINIMIZE.M created by

Carl Edward Rasmussen [19, 20] is used. It utilizes conju-
gate gradients and approximate linesearches. All inverted
SSPs are shown in the lower plot in Fig. 1. The sound speed
is generally underestimated in the lower 100 m, while the
upper half of the SSPs are visually quite convincing. This is
as expected since the two direct sound speed measurements
made are in the upper half of the water–column; 5 m and
100 m depths.

5 Applications

Two applications using inverted SSPs are discussed on basis
of the simulated data in the previous section: Quality assess-
ment of measured SSPs and sonar performance modelling
using inverted SSPs.

5.1 Quality assessment of measured sound
speed profiles

This section shows how inverted SSPs may be used to assess
the quality of measured SSPs. Let the vessel in the simulated
example in section 4 make a single SSP measurement, given
by c(m), at time tm during the sea trial. The SSP measure-
ment is simulated as follows:

c(m) = c̃(m) (40)

Let all true SSPs have an equal probability of being the one
measured. At time tl the quality, Qlm, of the measured SSP
is given by:

Qlm = G(c̃(l),c(m)) (41)

where G is defined in (36). In a real sea trial this is an un-
known quantity since the true SSP is unknown. However,
Qlm may be modelled by using the inverted SSP at time tl
instead of the true SSP:

Q̂lm = G(ĉ(l),c(m)) (42)

Fig. 3 shows Q̂lm plotted versus Qlm for all combinations
of l and m. Notice that the main bulk of instances result in
values close to 1.

The quality assessment of the measured SSP may be formu-
lated as a binary hypothesis test. For each time tl there are
two outcomes of the test:

1. The measured SSP is high–quality

2. The measured SSP is low–quality

This is a binary decision problem [21], where the goal is to
detect and report low–quality SSPs. Quality is determined
by applying a threshold, T0, on Qlm:

Qlm ≥ T0 ⇒ high–quality SSP
Qlm < T0 ⇒ low–quality SSP
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T0 is here chosen to be 50%, but should be sufficiently high
to meet any requirements on the quality of the sonar perfor-
mance modelling. Since Qlm is unknown, this metric may
not be used in the assessment. Instead the known quantity
Q̂lm may be used:

Q̂lm ≥ T ⇒ high–quality SSP predicted
Q̂lm < T ⇒ low–quality SSP predicted

The threshold T is here chosen to be 0.5 as indicated in Fig.
3. The test may result in four different outcomes:

1. The measured SSP is high–quality

a) high–quality predicted

b) low–quality predicted

2. The measured SSP is low–quality

a) high–quality predicted

b) low–quality predicted

Alternatives 1a and 2b are correct decisions, and correspond
to the upper right and lower left quadrants in Fig. 3, re-
spectively. 1b is a false alarm and 2a is a failed detection,
corresponding to the lower right and upper left quadrants of
Fig. 3, respectively.

Let probability of detection, Pd , be the probability that a
low–quality profile is chosen to be low–quality by the test,
and probability of false alarm, Pfa be the probability that a
high–quality profile is chosen to be low–quality. Pd and Pfa
may be estimated from the simulated data set as follows:

Pd(T ) =
∑l∑mH

(
T − Q̂lm

)
H
(
T0−Qlm

)
∑l∑mH

(
T0−Qlm

)
Pfa(T ) =

∑l∑mH
(
T − Q̂lm

)
H
(
Qlm−T0

)
∑l∑mH

(
Qlm−T0

)
where H(x) is the Heaviside function. By varying T from
0 to 1 in 0.1 steps receiver operating characteristic (ROC)
curves [21] are estimated and shown in Fig. 4. The pro-
posed detector algorithm performs significantly better than
random decision. For T = 0.5 and T0 = 0.5 there is a 61%
probability of detecting a low–quality SSP and 6% probabil-
ity of false alarm. The false alarm rate may be suppressed
further by for instance requiring two consecutive detections
before reporting a SSP as low–quality, all though this would
decrease the probability of detecting a low–quality SSP as
well.

5.2 Sonar performance modelling

In this section the quality of modelled sonar performance
using inverted SSPs is compared to the quality of modelled
sonar performance using SSP measurements of varying fre-
quency.

Figure 3: The modelled quality, Q̂lm, of the measured SSP
vs the true quality, Q̂lm for all l and m. Low–quality SSPs are
to the left of the vertical dashed line, and high–quality to the
right. Detections are below the horisontal dashed line. The
lower left quadrant contains detected low–quality SSPs. The
upper left quadrant contains undetected low–quality SSPS.
The upper right quadrant contains undetected high–quality
SSPs. The lower right quadrant contains detected high–
quality SSPs, so called false alarms.

Figure 4: The solid line is the ROC–curve for the proposed
detector when T0 = 0.5 and T ranges from 0 to 1. The
dashed line indicates the ROC–curve for a uniform, random
choice of quality.

Four simulated scenarios based in the simulated sea trial de-
scribed in section 4 are considered. In the first scenario the
SSP is measured at the start of the run. In the second sce-
nario two SSPs are measured, one at the start and one in
the middle of the run. In the third scenario one measure-
ment is made along every East-West going lag. Assuming
a vessel speed of 4 m

s this corresponds to one measurement
every four hours. The positions of the measurements are in-
dicated in Fig. 1. In order to simulate the limited accuracy
of the measurements, zero–mean, Gaussian distributed ran-
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Figure 5: Distributions of estimated SSP qualities for the
first (blue), second (red), third (green), and fourth (black)
scenario.

dom noise with standard deviation of 0.25 m
s is added to the

measured sound speed at each depth. This error corresponds
to the expected error on a Sippican XSV–01 [23], which is
an expendable sound velocity profiler. The resulting SSP is
then smoothed in a 5 m rectangular window. In the final sce-
nario the inversion algorithm described in section 2 is used
to estimate the SSP.

The quality of each SSP in each scenario is found by com-
paring the profiles to the true SSPs using the method de-
scribed in section 2.4:

Q(l)
1 = G

(
c(l),c1

)
Q(l)

2 = G
(
c(l),c(l)2

)
Q(l)

3 = G
(
c(l),c(l)3

)
Q(l)

4 = G
(
c(l), ĉ(l)

)
c1 equals the measurement in the first scenario, as described
above. c(l)2 and c(l)3 equal the most recent measurements in
the second and third scenarios, respectively. The results of
the comparison are presented in Fig. 5. The averaged qual-
ity over all timesteps are 0.73 in the first scenario, 0.77 in
the second, and 0.79 in the third scenario. When using the
inverted SSPs, the averaged quality is 0.78. For simple sonar
performance modelling, where the main goal is to determine
the maximum detection range of a sonar, the inverted SSPs
have a quality that is comparable to four–hourly sound speed
measurements.

6 Conclusion

A new method for inverting water–column sound speed pro-
files is presented. The inversion is based on sound speed and
echo sounder measurements made from the sonar platform.
The high update–rates of these sensors ensure a local sound
speed profile.

Sound speed profiles were inverted using a simulated data
set. The inverted sound speed profiles resembled the true
sound speed profiles. However the method must be tested
on recorded data for final validation.

An algorithm for detecting poor–quality sound speed pro-
files was developed and tested on the simulated data set. In-
verted sound speed profiles were used to assess the quality
of measured sound speed profiles. By sound speed profile
quality is here meant how well the modelled sonar perfor-
mance using that particular sound speed profile compare to
the modelled sonar performance using the true sound speed
profile. The algorithm was shown to have a probability of
detection of 61% and a probability of false alarm of 6% for
the simulated test case.

The inverted sound speed profiles were also shown to result
in modelled sonar performance comparable to four–hourly
measured sound speed profiles for the simulated test case.

The inversion method gives some operational advantages
during an actual anti–submarine warfare operation. The sound
speed profile may be inverted for any vessel speed, unlike
the traditional expendable sound velocity profiler which has
an upper speed limit, e. g. 8m

s for a Sippican XSV–01 [23].
Secondly, the update rate of the inverted sound speed pro-
file is higher than any other sound speed profiler known to
the author. The measurement frequency depends on the bot-
tom depth, due to the echo sounder, while the computation
time of the method is a few seconds on a standard desktop
computer.
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Abstract

Validity of sonar performance models is generally limited by environmental uncertainty, and particularly uncer-

tainty in the sound speed profile (SSP). Rapid environmental assessment (REA) missions, e. g. using gliders, and

advanced ocean models may be used to reduce this uncertainty prior to sonar operation in hostile waters.

The presented work shows how data from ocean models may be used for planning of REA–missions. The area of

operation is divided into oceanographically stable subareas using empirical orthogonal functions and different methods

of clustering analyses on SSPs from the ocean model. The acoustic stability of each subarea is assessed using sonar

performance modelling. Acoustically unstable areas are divided into smaller subareas. Acoustically stable groups are

represented by a single SSP.

A map of acoustically stable areas in the area of operation is the main output. Large, geographically contiguous

groups indicate acoustically stable areas where frequent SSP measurements are unnecessary, e. g. low concentration of

gliders. Small and non–contiguous groups indicate the opposite. Other applications include determination of suitable

locations for sonar tests that require stable sonar conditions, and efficient optimization of sonar operation in acoustically

stable areas.

I. INTRODUCTION

Validity of sonar performance models is generally limited by environmental uncertainty. James and Dowling

[1] give an extensive overview of research on how environmental uncertainty influences acoustic field predictions.

Modelled acoustic fields are sensitive to uncertainty in sound speed profile (SSP) [2]–[7]. During sonar operations,

sonar performance models are used for prediction of sonar ranges and for determining optimal placement of sonar

assets during multi–platform sonar operations. A consequence of uncertainty in predicted sonar range is that more

sonar assets are required during a sonar operation to obtain the required probability of success. This uncertainty

can be reduced by increasing the knowledge of the environment, for instance by using ocean models or conducting

rapid environmental assessment (REA) missions in the area of operation, e. g. glider operations.

Davis [8] introduced empirical orthogonal functions (EOF) to characterise oceanographic data. EOF has since

been extensively used to describe and characterise water masses and spatial and temporal variations of the ocean
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e. g. [9]. EOFs are also frequently used in acoustic inversion and tomography e. g. [10], [11]. The main advantage

of characterising sound speed profiles by EOFs is that information from the entire SSP may be contained in a few

scalar coefficients. For example, two coefficients are sufficient to characterise the Munk–profile [11].

Clustering analysis is a multivariate statistical technique for grouping data points with similar characteristics

into clusters. In oceanography, it has most commonly been used to label and identify water masses according to

measurements of depth, temperature and salinity [12]–[14]. In this study we take the leading coefficients from the

EOF analysis of SSP as input to our cluster analysis. This is a method frequently used on echo sounder data for

sea bottom classification e. g. [15]. The EOF analysis reduces the dimensionality of the considered data set before

the cluster analysis classifies the data set into several different categories. This has the desired effect of clustering

SSPs with similar acoustic properties. A sonar performance model is then used to assess the acoustic sensitivity to

oceanographic variations within those groups. This proves to be a useful tool for quick classification of acoustically

stable versus unstable groups of SSPs. The main output of the method is a map of acoustically stable areas, where

an acoustically stable area contains SSPs from the same group. Such maps are useful planning aids during REA

missions and sonar operations since they indicate the presence of stable and unstable regions. Stable regions are

typically dominated by large, geographically contiguous stable areas. Frequent SSP measurements are unnecessary

in such regions, e. g. low concentration of gliders. Unstable regions typically consists of many small and non–

contiguous stable areas. In such areas frequent SSP measurements are required. The information is also useful

for determining a suitable area for conducting sonar tests that require stable acoustic conditions. Finally, a single

SSP is assumed sufficient to model a representative sonar performance for an acoustically stable area. Optimal

sonar parameters for sonar operation in each area may then be obtained with low computation cost, since the sonar

performance is modelled for a single SSP only. Examples of how optimal sonar performance is determined using

acoustic modelling can be found in literature, e. g. [16].

The method is tested on SSPs from MI-POM [17], a high resolution numerical ocean model covering 16.000

square kilometers adjacent to the Norwegian West coast. Using this high resolution model as a basis for our

calculations gives us a gridded data set where oceanographic dynamical features are realistically resolved. From

an acoustic point of view, the main interest lies in the horizontal and vertical gradients of sound speed that is

associated with the interface between low temperature, low salinity coastal water masses and comparatively warmer

and more saline water masses of Atlantic origin. EOFs are determined for the modelled SSPs, and the geographical

distribution of the first EOF coefficient is shown to correlate well with the distribution of upper layer salinity. The

full method is applied on the data set and a map of acoustically stable areas is presented.

II. METHOD

The presented method divides a large set of SSPs into several smaller groups of profiles that are acoustically

stable. A group is considered acoustically stable if variations in modelled signal excess [18], using the sound speed

profiles of that group, are lower than a chosen threshold (section II-C). Groups not acoustically stable are split

into smaller groups using a subdivision algorithm (section II-B). The subdivision is based on properties of the



3

coefficients in an EOF representation of the SSPs (section II-A). The end product is a map showing the geographic

extent of the acoustically stable groups.

The overall method is as follows:

1) A group/subgroup of SSPs are input

a) The acoustic fitness of the inputted group/subgroup is determined

i) Groups/Subgroups with acoustic fitness exceeding the threshold T are accepted and not further

processed.

ii) Group/Subgroups with acoustic fitness lower than the threshold T are passed on to step 2).

2) A subdivision algorithm splits the group/subgroup into two or more subgroups

a) Subgroups with less than K SSPs are removed

b) Subgroups with more than K SSPs are returned to step 1)

For step 2) two different subdivision algorithms are used: Clustering of coefficients (CC), described in section

II-B1, and ordering of coefficient magnitudes (OCM), described in section II-B2.

A. Empirical orthogonal functions

Consider a set of M SSPs each containing N depth samples. Let cm(zn) be the sound speed at depth zn in the

m‘th profile. The mean sound speed, c, as a function of depth, is given by:

c(zn) =
1

M

M−1∑
m=0

cm(zn) (1)

Let xm[n] be defined as:

xm[n] = cm(zn)− c(zn) (2)

xm[n] may be expanded in any set of N orthonormal basis functions uk[n] with coefficients κk, [19] chapter 4.6.1:

xm[n] =
N−1∑
k=1

κ
(m)
k uk[n] (3)

For real values of xm[n] the coefficients for expanding xm[n] are given by:

κ
(m)
k =

N−1∑
n=0

uk[n]xm[n] (4)

The basis functions are determined by solving the eigenvalue problem given by:

Rxuk = λkuk (5)

where uk are eigenvectors and contain the function values of the discrete orthonormal basis functions uk[n]. In

literature uk[n] are often referred to as empirical orthogonal functions (EOF), λk are the corresponding eigenvalues

and equal the variance of the corresponding coefficients κk [19]. Rx is the covariance matrix of the data matrix:

Rx =
1

M
XTX (6)
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where,

X =

⎡⎢⎢⎢⎢⎢⎢⎣
x1

T

x2
T

...

xM
T

⎤⎥⎥⎥⎥⎥⎥⎦ (7)

New SSPs, ci[zn] may be generated by combining (2) and (3):

ci[zn] = c[zn] +
N−1∑
k=1

κkuk[n] (8)

The coefficients, κk, should be modelled as zero-mean random processes with variance λk.

Higher orders of k often represent noise in the measurements. The series in (8) may therefore be truncated

without risking loss of information on the SSP. A frequently used approach to select the cut–off is to determine

where the proportion of variances exceeds a set threshold. The proportion of variances is defined as:

Λl =

∑l
k=0 λk∑N−1
k=0 λk

(9)

l is the cut–off. The selected threshold depends on the applications, but a commonly used threshold is 95%.

B. Subdivision algorithms

1) Clustering of EOF coefficients (CC): Cluster analysis is assigning data points with similar characteristics to

the same group of data, called cluster [20]. A common implementation, called hierarchical clustering, is to start

with each data point contained within its own unique cluster, one point per cluster. Some function gives an objective

measure of the similarity – or distance – between cluster pairs, and the most similar (closest) cluster pair is joined.

The process is repeated until some metric of success is achieved (e.g. [21]) or when the process is subjectively judged

to give the most meaningful representation of the data distribution. Among the vast multitude of possible functions,

the Euclidean distance function is a straight forward choice with intuitive parallels to conventional geometry. Also,

some choices must be made about defining distances between clusters with more than one member, such as closest

neighbor, average midpoint, weighted average and so on.

In oceanography, cluster analysis has proven successful for identifying water masses according to the data points

of temperature, salinity and depth [13], [14]. In this study we perform cluster analysis on the leading EOF coefficients

for SSPs calculated in section II-A. SSP’s with similar vertical structure will have similar coefficients and be close

together in coefficient space — and will be assigned to the same cluster. This method is strikingly similar to the

bottom type classification of acoustic survey data by Milligan and others [22], but we have not been able to find

literature where this is done for SSP’s or other oceanographic parameters.

The cluster analysis is merely a tool for the overall algorithm presented in II. Conceptually, we describe the overall

method as starting with one large cluster which then is tested by the acoustic fitness function II-C. If approved, all

is good; if it fails, then that cluster is split in two and the test is repeated for each of the new clusters.
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Fig. 1. a) The area is divided into subgroups based on the absoulute value of the strongest coefficients to the SSPs, in this case the first and

second coefficient are the strongest, noted 1 and 2. b) Groups found in a) is split based on the sign of the strongest coefficient. Subgroups

containing fewer than K SSPs are removed and the acoustic stability of each remaining group is determined. c) Step a) is repeated for the

unstable areas in b) using the second strongest coefficient. d) Step b) is repeated for the new areas found in c).

2) Ordering of EOF coefficient magnitude (OCM): Ordering of EOF coefficient magnitude is a method introduced

here for dividing a large group of SSPs into several smaller subgroups with similar statistical properties. The main

advantage of this method compared to previously described clustering method is its ability to process very large

data sets. The full method, as described in section II, using the OCM subdivision algorithm, is illustrated with an

example in Fig. 1.

The coefficient with the highest absolute value is found for each SSP and is henceforth called the strongest

coefficient. The SSPs are divided into subgroups represented by their strongest coefficient. In this case, for all

SSPs, the first or second coefficient is strongest and the areas containing each subgroup are represented by 1 and 2

in the plot (Fig 1 a). b) Each of the subgroups are split in two by taking the sign of the coefficient into account, which

results in one subgroup with a positive strongest coefficient, and a subgroup with a negative strongest coefficient.

Subgroups containing fewer than K SSPs are removed, in this case the area with coefficient number 3 (both
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positive and negative) as the strongest coefficient (Fig 1 b). The acoustic stability of each subgroup is tested. Stable

subgroups are kept. Unstable subgroups are divided again by repeating the steps above on the second strongest

coefficient (Fig 1 c) Two of the subgroups (1 and 2) in Fig 1 b) were found unstable and divided into smaller

subgroups. For the SSPs in subgroup 1, the second and third coefficients are the second strongest coefficients. For

subgroup 2 the first and third coefficients are second strongest, see Fig 1 c). These areas are again divided based

on the sign of the second strongest coefficient. Note that subgroups 2 3 and 1 3 are removed as they contain less

than K SSPs. In Fig 1 d) the remaining areas are checked if they are acoustic stable. This process continues until

all subgroups are found stable or too small.

C. Acoustic fitness function

Assume cylindrical symmetry and let the random function SE(r, z, c) represent the true signal excess of a target

located in (r, z), where the vector c contains the depth–dependent SSP. The SSP is assumed range–independent.

Let c be the only random parameter influencing SE(r, z, c).

Given N SSPs, cn, where n = 1, 2, 3, ..., N , in an area, let c for that area be uniformly distributed over the

N SSPs, meaning all SSPs have an equal probability of being the true SSP in the given area. SE(r, z, cn) is the

modelled signal excess in dB using the nth SSP as input. s(r, z, cn) is the linear signal excess:

SE(r, z, cn) = 10 log10 s(r, z, cn) (10)

The expected signal excess in the area is estimated as the mean modelled, linear signal excess:

ms(r, z) =
1

N

N−1∑
n=0

s(r, z, cn) (11)

Let PSE(r, z, cn, TΔSE) be the probability that the mean signal excess lies within TΔSE of the true signal excess

at an arbitrary target location given by (r, z):

PSE(r, z, c, TΔSE) = Pr {|10 log10ms(r, z)− SE(r, z, c)| ≤ TΔSE} (12)

The true SSP, c, is unknown, but since all SSPs have an equal probability of being the true SSP, then (12) may be

estimated as follows:

PSE(r, z, TΔSE) ≈ 1

N

N−1∑
n=0

H

(∣∣∣∣10 log10( ms(r, z)

s(r, z, cn)

)∣∣∣∣− TΔSE

)
(13)

where H(x) is the Heaviside function and outputs 0 for arguments lower than 0, and 1 otherwise.

P̂ (TΔSE) is the probability that the modelled signal excess lies within TΔSE of the true signal excess at the

target location. An a priori probability density distribution of the target location, g(r, z, φ), is required. If unknown,

a uniform distribution is used. P (TΔSE) is then given by:

P̂ (TΔSE) =

∫ 2π

0

∫ H

0

∫ R

0

PSE(r, z, TΔSE)g(r, z, φ)rdrdzdφ (14)

H is the bottom depth and R is the sonar range.
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The depths and ranges considered should be limited to regions with sufficient acoustic energy. This is implemented

by adding the following constraint:

10 log10ms(r, z) > TSE (15)

This constraint is added to (14) yielding the acoustic fitness function (AFF):

P (TΔSE) =

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞
PSE(r, z, TΔSE)g(r, z, φ)H(10 log10ms(r, z)− TSE)rdrdzdφ (16)

AFF is used to determine the acoustic stability of a group of SSPs, as described in step 1 in section II.

A potential problem for large, acoustically stable groups, is that the group may contain several disparate sets of

SSPs that would be best represented as different acoustically stable groups. This may occur because the number

of SSPs in the largest of these sets is large enough to satisfy the requirement on P (TΔSE), masking the presence

of smaller but distictly different sets of SSPs. Therefore we have added an additional requirement on acoustically

stable groups: if the number of SSPs with negative argument in the Heaviside function in (13) exceeds a selected

number, for instance 10% of the number of SSPs in the original data set, then the group is considered acoustically

unstable.

The proposed fitness function is a robust means of assessing acoustic stability. Note that signal excess is estimated

from incoherent transmission loss, acoustic phase is therefore completely ignored. The chosen fitness is useful for

the application considered; sonar performance modelling. Other applications may require different fitness functions

that may also include phase information, but this is not considered within the scope of this work.

III. DATA SETS

The SSPs used in this study are based on three dimensional forecasts of temperature and salinity for 12 UTC,

March 7th, 2007 from the high resolution numerical ocean model Westcoast 200m. This ocean model is a version

of Princeton Ocean Model (POM) called MI-POM [17], [23], run operationally by the Norwegian Meteorological

Institute (met.no). The model domain covers an area of approximately 16.500 km2, from 59.30 N 4 E to 61 N

5.75 E with a horizontal resolution of 200 m, see Fig. 2. The data are downsampled to a horizontal resolution of

approximately 1 km, which we here refer to as the full data set. SSPs from surface to 200 m depth at nine depth

levels are used and shown in Fig. 3. Most data from fjords and inlets are removed and locations where model

depth is less than 200 m are excluded. The data set then totals 10033 profiles, from which 3 additional subsets

are extracted: One subsampled to 2873 profiles in a semi–regular grid (blue outline in figure 2) and two smaller

area subsets with resolutions identical to the full data set. Subset 1 is bounded by the coordinates 60.00–60.17 N,

4.00–4.51 E (720 profiles) and subset 2 is bounded by 60.47-60.92 N, 3.98-4.48 E (175 profiles), shown in Fig. 2.

IV. EXPERIMENTAL RESULTS

The two following subsections present results from an oceanographic analysis and results from the method

described in section II. The oceanographic analysis compares surface salinity contours to geographic distributions

of EOF coefficients. EOF coefficients for each SSP in the full data set and each subset are derived using (4). Fig.
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Fig. 2. Green rectangle: Full model area. Blue outline: Extent of the model data used when excluding data with model depth less than 200 m

and data in fjords and inlets. Magenta rectangle: Subset 1. Red rectangle: Subset 2.

4 shows the proportion of variances. The proportion of variances exceeds 95 % when using three coefficients for

the full area data sets (full and reduced resolution), and five and four coefficients, respectively, for subset 1 and 2.

The subdivision algorithms, CC and OCM use five and four coefficients, respectively.

A. Investigation of the acoustic fitness function

The proposed method divides a large group of SSPs into acoustically stable sub–groups using EOF and cluster

analysis on the SSPs. For this to be meaningful acoustic stability must in some way correlate with SSP variability.

This correlation is demonstrated in Fig. 5, where the AFF proposed in section II-C is shown to decrease for

increasing sound speed variability.

The number of SSPs needed to ensure a tolerable accuracy in the AFF is studied in Fig. 6. The estimated standard

deviation of P (TΔSE) drops for increasing number of SSPs used to estimate P (TΔSE). Sufficiently high K in step

2, see II, should be selected in order to ensure the desired accuracy in P (TΔSE).
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Fig. 3. Sound speed profiles from the March 2007 data set (grey) and the mean sound speed profile based on all the other sound speed profiles

(black).

B. Oceanographic analysis

The study area is in the Norwegian Trench, close to the western coast of Norway. This part of the Norwegian

Trench is relatively flat, with a depth around 300 meters, with a steep rise at the Norwegian Coast to the east.

Further west, adjacent to the study area, is the slope leading up to the Norwegian Sea plateau, with a depth of about

100-150 meters. Circulation in the area is dominated by inflow and recirculation of saline Atlantic water (AW)

which enters the North Sea from the north and the low salinity coastal waters (CW) in the Norwegian Coastal

Current (NCC). The NCC originates in Skagerrak as a mixture of very low salinity water from the Baltic and water

masses of Atlantic origin that has been more or less diluted through their residence in the North Sea [24]–[26]. The

NCC follows the Norwegian coast, but with variable lateral extent which is mainly controlled by wind forcing and

meander/eddy formation processes. The usual arsenals of frontal dynamics (frontal structures, filaments, meanders

and eddies) are found at the transition between NCC and AW water masses [25], [27], [28].

In general water masses with salinity greater than 35 psu are referred to as AW and below 35 psu as CW, but
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Fig. 4. The proportion of variances for the March 2007 full data set and each of the three subsets. The dashed line indicates the required

threshold of 0.95.

34.5 psu is a better separation along most of the Norwegian coast [29]. In March, there is a strong correlation

between water temperature and salinity, with CW being cold and fresh and AW being higher in temperature and

salinity. Both our own observations as well as temperature and salinity values from the literature indicate that the

typical difference in sound speed between the AW and CW water masses for March is on the order of 10 m/s.

The typical distribution of the two water masses is that the CW is wedged between the Norwegian coast and the

adjacent AW, the deepest part of CW being close to the coast. The upper layer salinity values is therefore a good

indicator of the geographical distribution of the different water masses [29]. Fig. 7 shows surface salinity contours

and the first EOF coefficient plotted geographically. Observe that most AW areas is associated with negative values

of the first coefficient and most of the positive values correspond to CW. Since 80% of the variance is contained

in the first coefficient, see Fig. 4, most of the oceanographic structure is expected to be seen in the first coefficient.
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Fig. 5. The acoustic fitness function, P (TΔSE), is computed for ten different groups of 1000 SSPs using a threshold TΔSE = 6dB. The

SSPs are generated using (8) with the EOFs and eigenvalues estimated from the data set presented in section III, with one minor exception:

The last group utilizes the actual eigenvalues as the variances in (8), but in the remaining groups the variances are lowered in 10% steps. E g

the first group uses a variance 90% lower than the last group.

C. Results

The described method for determining acoustic stability is applied on the data sets described in section III. The

acoustic model Lybin [30] is used to model the signal excess. A towed array sonar at 50 m depth and working

at frequencies around 1.5 kHz is used in the acoustic modelling. The bottom is assumed flat and 300 m deep. A

group of SSPs is deemed acoustically stable if AFF is greater than 90%. The threshold on signal excess variations,

TΔSE , see (12), is set to 5 dB. The stability analysis is limited to ranges between 2 km and 10 km, and depths

between 20 m and 200 m. All locations within the area are considered equally probable target locations. Signal

excess levels greater than 0 dB are required, see (15).

Figs. 8 and 10 show the geographical distribution of acoustically stable groups for the full and subsampled data

set and subset 1. Table I lists statistical data for each combination of data set and subdivision algorithm. Due to
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Fig. 6. The estimated standard deviation of the probability P (TΔSE) in percent as a function of the number of SSPs used to estimate

P (TΔSE). A group of 1000 SSPs are generated using (8), where κk are modelled as zero–mean Gaussian random functions with variances

given by λk . The standard deviations are estimated from random subsets of this group. Twenty subsets per subset size are used. The subset size

is the number of SSPs used to estimate P (TΔSE).

computing power limitations on the number of SSPs, the CC method was not used on the full data set. The entire

subset 2 data set was in fact judged to be acoustically stable, with AFF exceeding 90% for all SSPs in that area.

We compare the distribution of groups for the full (Fig. 8 a) and subsampled (Fig. 8 b) data sets when using

the OCM subdivision algorithm. The similarities for the largest groups (yellow, red, pink, light green and dark

green colors) are obvious, both in area distribution and shape similarities. As for the smaller groups, their speckled,

non-contiguous distribution indicate areas of high acoustic variability. It is expected that these small speckled groups

are highly sensitive to the resolution of the data set, and detailed study of these discrepancies does not reveal much

of interest. However, it is interesting to note that unclassified areas – the white areas in Fig. 8 a) and b) – are much

smaller in the subsampled data set. These areas contain SSPs in groups that fail to meet the minimum size criteria

after subdivision (section II).
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Fig. 7. The first EOF coefficient is plotted with surface salinity contours on top. The value of the surface salinity contour is 34.5 psu. Areas

with surface salinity values above 34.5 psu are assumed AW, and the remaining areas are considered CW.

The most distinct differences between the OCM (Fig. 8 b) and CC results (Fig. 8 c) is that fewer, more contiguous,

and larger groups are generated when using the CC method. There are no longer any voids due to groups that fail

to meet the minimum size criteria. The CC method on the subsampled data set (Fig. 8 c) divides the whole area

into four groups, much less than OCM subsampled (15 groups) and OCM full data set (10 groups). The shape and

area of the largest OCM groups are comparable to the CC groups: The yellow areas are strikingly similar and the

light green area of the CC method corresponds to the light green and red areas of the OCM full and subsampled

data set. The pink CC area is composed of the pink, brown and dark green areas of the OCM method. There are

some nuances in the exact boundaries, particular in the OCM areas of high variability, but the similarities in shape

and extent are striking. OCM generates more groups because acoustically unstable groups are split into several

groups, depending on the number of coefficients used. The CC subdivision algorithm, on the other hand, splits an

acoustically unstable group in two.

Fig. 9 shows the sound speed as a function of depth along the east–west cross–section at 60.5 N (upper panel)

together with the group distribution from the OCM and CC method along this line (lower panel). The classical
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Fig. 8. The group distributions for the large area data sets. (a) Full resolution, OCM method. (b) Reduced resolution, OCM method. (c)

Reduced resolution, CC method. Each colour represents a different group of SSPs. The black rectangles show the location of subset 1 (60-60.17

N) and subset 2 (60.47-60.92 N).

wedge–like structure of CW close to the coast can be seen, corresponding to systematic lower sound speed values in

the upper right part of the cross section. The associated changes in vertical sound speed gradient and how that affects

the sonar performance is distilled in the distribution of groups. The yellow group is clearly AW, with moderate

vertical sound speed gradients. Further east, the green group of the CC method and the red group of the OCM

method is associated with a slab of CW (low sound speed) above AW, and with a stronger vertical sound speed

gradient at the transition between those two water masses. The interface is tilted downwards to the east. Closest

to the coast, the pink (CC) and brown (OCM) group classifies a set of vertical SSPs where the interface between

CW and AW is deeper, the gradient is stronger and the location of the strongest gradients are shifted downwards.

The fact that the CC method produces fewer and more contiguous groups than the OCM method is also apparent

in this cross section.

Subsets 1 and 2 are subsets of the full data set. Subset 1 is placed in an area with high concentration of groups

when processing the full and subsampled data set, see Fig. 8 and 10. The high concentration of groups indicates
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Fig. 9. East–West cross section of sound speed along 60.5 N (upper panel) compared with the results of the OCM and CC method.

that this area is acoustically unstable, see table IV-C.

Subset 2 is placed in an area with low concentration of groups when processing the full and downsampled data

set. Processing the SSPs contained in subset 2 resulted in a single group with an AFF of 93% and therefore well

above the threshold. This shows that groups initially classified as stable areas, see Fig. 8, are classified as stable

also when applying the full method on SSPs from that area only. Note that when applying the method on the full

data set, there is a second group also in the area containing subset 2, this group is not present when applying the

method on data from subset 2 only because the group is too small to reduce the AFF below the 90% threshold.

Figs. 8 and 10 may serve as stability maps for sonar and rapid environmental assessment operations. A sonar

platform operating in the presented area is advised to measure the SSP more frequently in areas with small, non–

contiguous groups, e. g. subset 1. In contrast, less frequent measurements are required in areas like subset 2, where

all profiles are contained in a single acoustically stable group. Similarly, in rapid environmental assessment missions

more resources must be allocated to unstable regions than stable regions. Maps such as these may therefore provide

valuable assistance in estimating how often new SSP measurements should be undertaken.
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Fig. 10. The group distributions for sub area 1 using the OCM (left) and CC method (right).

Another useful application is for sonar operation planning. Detection ranges, based on representative SSPs from

each group, may be estimated. The representative SSPs are generated by inputting the groups median coefficients in

(8). Since the acoustic model is run only once per group, different sets of sonar parameters may be tested in order to

maximise the detection range in each group at minimum computational cost. Note that the initial grouping is based

on a single set of sonar parameters. Changes in the sonar parameters influence the groups acoustic stability, but

studies made in connection to the presented work have shown that the group distribution remains almost the same

for small changes in the sonar parameters. The considered sonar parameters were source level and sonar depth. This

study is not considered within the scope of this work and therefore not presented here. If entirely different sonar

systems are considered, for instance sonars working on different frequencies, then the method must be repeated for

the specific sonar system. Furthermore, the method can easily be extended to other sonar applications not involving

sonar performance prediction, but in that case the acoustic fitness function should be reconsidered.

V. SUMMARY

A set of modelled sound speed profiles (SSP) is represented by empirical orthogonal functions (EOF). An approach

based on EOF coefficients is shown equally efficient in classifying different water masses as traditional approaches

based on salinity values. The EOF based approach is refined into two different automatic algorithms for separating

groups of SSPs into several lesser and more homogeneous groups of SSPs; clustering of coefficients (CC) and

ordering of coefficient magnitudes (OCM). The algorithms are combined with an acoustic fitness function, which

is used for evaluating the acoustic stability within a group of SSPs. The combined method efficiently splits a large

set of SSPs into several smaller acoustically stable groups.

The proposed method outputs a map of the group structure. Such maps may be used as decision aids for how often

SSPs should be measured in a given area. Stable regions typically consist of large and geographically contiguous

groups. Regions containing many small and non–contiguous groups are typically acoustically unstable, meaning that
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the acoustic field is sensitive to the present oceanographic variations. For instance, during a rapid environmental

assessment mission using gliders, the concentration of gliders should be higher in unstable regions than in stable

regions. Likewise, during sonar operations, SSPs should be measured more frequently in unstable regions, than in

stable regions.

Another possible application, useful for planning sonar operations, is to present maps of detection ranges based

on a representative SSP from each group. A single representative SSP for an entire stable area also allows efficient

optimisation of sonar performance. Sonar performance is modelled for the representative SSP. The optimisation is

performed by tuning the sonar parameters for maximum sonar performance.

The method may be tuned to a specific type of operation by varying a set of parameters. The parameters include a

priori knowledge of target behavior, for instance the maximum and minimum target depth. Other parameters allows

the user to tune the requirements for a group of profiles to be classified as acoustically stable.
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TABLE I

RESULTS FROM ALL COMBINATIONS OF DATA SETS AND SUBDIVISION ALGORITHMS.

Data set Method No groups No profiles Mean AFF

Full data set OCM 10 8816 (88%) 94%

OCM 15 2715 (95%) 94
Subsampled data set

CC 4 2873 (100%) 93%

OCM 5 600 (83%) 94
Subset 1

CC 3 640 (89%) 94%

Subset 2 Both 1 All 93%
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Sonar performance measurements in the sea are always affected by uncontrollable and/or uncertain 
environmental conditions as sound speed variations, bottom topography or the acoustic properties of the sea 
floor. This paper presents a method to determine a sonar – target geometry which minimizes the uncertainty in 
target signal excess due to environmental variability.   
An acoustic model is used to estimate the signal excess for a large number of sound speed profiles measured in 
the relevant area. The results are compared while searching for  a target range and depth where the estimated 
signal excess is robust with respect to the expected variability of the sound speed profile in the actual area. 
Results from sea trials will be presented, as well as simulated examples used to demonstrate the achieved 
robustness or sensitivity of the signal excess to environmental changes, at different test geometries. 

1 Introduction

In general there is a need for quantifiable sonar 
performance tests carried out at sea under conditions 
resembling the normal working conditions for the 
equipment. The accuracy and reliability of such tests are 
frequently questioned. The limited confidence in such tests 
is due to acknowledged uncertainty in the environmental 
parameters and experienced inaccuracy of meso-scale 
ocean acoustic experiments.  However experimental 
verification of propagation models may often show good 
agreement for some measurements while under different 
conditions there is virtually no resemblance between model 
and reality. Also a closer look at some modelling results 
indicates that the sensitivity of the received signal level, to 
for instance the target location, may vary significantly over 
an actual area in the ocean. In some cases the signal excess 
may remain near constant over a significant depth and 
range interval, while only a few meters displacement may 
cause large deviations of the signal or reverberation levels. 
Similarly a small deviation in the sound speed profile may 
cause entirely different propagation patterns for some cases 
and experiment geometries while other choices of target 
and sonar locations may provide more robust conditions. 

With this background we have developed a method of 
conducting experiments at sea where the uncertainty of the 
results are limited, quantifiable and assessable. The method 
is based on running an acoustic model repeatedly. Each run 
uses a single sampled realisation of the environment as 
input. This paper focuses on variations in sound speed 
profile. Therefore a sample sound speed profile represents a 
realisation of the environment. The computations are based 
on a selection of sound speed profiles measured within the 
actual area as close to the test schedule as possible. The 
results are then analyzed to find favourable positions for the 
sonar and the target. 

Overall considerations and aspects of underwater sensor 
testing is presented in ref (1). The current paper goes into 
more detail on how to handle the acoustic sensitivity issues 
due to varying oceanography. 

Section 2 presents the tools used in the analysis. Section 3 
shows an example of how the method can be used to find 
good locations for the sonar and the target during a test. 
Section 5 concludes the paper. 

2 Numerical tools 

Two different numerical tools are used in the method of 
finding stable conditions for testing acoustic equipment. 
The main tool is Lybin, an acoustic ray trace model that 
estimates the signal excess in a single vertical cross-section 
for a given environment and sonar. The second tool is a 
method of presenting the sensitivity of the signal excess to 
environmental variation. The results are presented 
graphically, denoted “stability plots”. 

Lybin 
Lybin is an acoustic ray trace model developed by 
Svein Mjølsnes, Norwegian Defence Logistic 
Organization. Ref (2) gives an overview of ray tracing 
and the underlying theory. The model is two-
dimensional, covering depth and range. It estimates 
the transmission loss, the reverberation level and the 
noise level based on sonar data and environmental 
data. These data are applied to the sonar equations for 
estimation of signal excess. Detection theory (5,6) is 
used to find the probability of detection and the 
corresponding detection range. In this paper the signal 
excess is used. 

Lybins transmission loss module was verified by 
NURC1, (3). The evaluation team conclude: “The 
general conclusion of this test is that the range-
dependent ray-trace model LYBIN, developed by the 
Norwegian Navy, is indeed a valid alternative to 
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existing propagation models in the AESS2. The LYBIN 
model has prediction accuracy similar to the GRAB 
‘reference’ model but is considerably faster.”

Lybin was presented at the Underwater Defense Conference 
and Exhibition in Glasgow 2008, ref (4). 

Stability plots 
The idea of stability plots is to compare the signal excess 
results from several different Lybin-runs, and find ranges 
and depths where the signal excess remains nearly constant 
from run to run.  

For the purpose of finding stable acoustic conditions in an 
area of both spatially and temporally varying 
oceanography, Lybin is run using several different sound 
speed profiles measured in the actual area. The results from 
these runs are then compiled into the stability plots. One of 
these sound speed profiles is selected as a representative 
sound speed profile for the entire set of sound speed 
profiles. This could either be a mean of all the other sound 
speed profiles, or presumably better, a single measured 
sound speed profile, possessing some characteristics judged 
as typical for that set of sound speed profiles. In the latter 
case, the representative sound speed profile should be 
smoothed to remove measurement artifacts.  

The stability plot shows the stability parameter, SP,given 
by: 
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SEr(r,z) is the modelled signal excess at range r and depth z,
measured in dB, using the representative sound speed 
profile. SEi(r,z)  is the modelled signal excess for the i-th 
sound speed profile in the set. N denotes the size of the set. 
T is a set threshold, for example 3dB as used in this work. 
step() denotes the unit step function taking the value 1 for 
positive arguments and 0 elsewhere. SP(r,z) is therefore a 
two-dimensional matrix of values between 0 and 1. The 
value of a single element is simply the fraction of cases that 
has a signal excess deviation from the typical case, lower 
than the selected threshold. Thus, an element takes the 
value 1 if the complete set of sound speed profiles results in 
a signal excess difference less than the selected threshold. 
The value 0.5 indicates that half the set of sound speed 
profiles results in a low signal excess difference. Figure 2 
shows an example of the stability plot. The red areas 
represent areas where 100% of the runs resulted in signal 
excess values within a margin of T from the signal excess 
computed using the representative sound speed profile. 
Simply stated, red areas are stable, blue areas are unstable. 
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Figure 2 Stability plot for a set of sound speed 
profiles. The sonar is at 25m depth. 

3 Results

The task of finding a stable environment for testing of the 
acoustic equipment is divided into two parts. First, a 
historically stable area must be found. Areas prone to 
oceanographic fronts or strong variations in terrain should 
be avoided. Second, just prior to the testing of the 
equipment, oceanographic measurements should be made to 
find the most stable region in that area and the relative 
positions of the equipment resulting in the most stable 
conditions. This paper is focused on the second part. 

In the present example, a monostatic sonar is tested using a 
stationary, artificial test target (echo repeater). During the 
test, the distance between the sonar and the target is kept 
constant by letting the sonar vessel encircle the target. 
Three geometric parameters remain to be determined, in 
order to gain stable conditions for the test; sonar depth and 
target depth and range (distance from sonar vessel). 

Sound speed measurements 
The sound speed profiles used in this study was measured 
in November 2007, along lines using a towed CTD. The ten 
lines were approximately 27km long with 5km separation 
between the lines, see figure 3. Each star in figure 3 
corresponds to a single sound speed profile. The red stars 
indicate positions suitable for performing the acoustic tests 
due to homogenous sound speed profiles. In the following 
analyses these seven sound speed profiles are used. The 
measurements resulted in a total of 170 sound speed 
profiles. Figure 4 presents all the measured sound speed 
profiles. Figure 5 shows a filled contour plot as a function 
of range and depth for line nr 5. 



4.1 4.2 4.3 4.4 4.5

59.7

59.8

59.9

60

60.1

60.2

Longitude

La
tit

ud
e

Figure 3 Positions of the sound speed 
measurements made. The coordinates are 
presented in decimal degrees. The sound 
speed profiles were measured along east-
west oriented lines. 
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Figure 4 170 sound speed profiles. Notice the 
strong variations below 60m depth 
compared to above 60m depth. The red 
curves are the sound speed profiles 
measured in the positions indicated by the 
red stars in figure 3. The yellow curve 
depicts the selected and smoothed 
representative sound speed profile. 

Figure 5 Sound speed as a function of depth and 
range from west to east along line 5 (Line 
one in figure 3 is furthest to the north). 
The preferred area is between the two 
black vertical lines. 

Stability plot 
The threshold, T, for determining the stability parameter 
was set to 3dB. Figure 6 shows a stability plot for the sonar 
at 50m depth. The red areas indicate range - depth pairs 
with stable signal excess, and therefore suitable positions 
for the target. Figure 7 shows the stability picture when the 
sonar is at 5m depth. Both cases show reasonably large 
areas for robust measurements. This is however not always 
the case. Figure 8 shows a stability plot using a set of sound 
speed profiles measured in April 2008. In this case the 
target should be deeper than 60m in order to ensure 
stability. 
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Figure 6 Stability plot for a sonar at 50m depth. 
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Figure 7 Stability plot for a sonar at 5m depth. 
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Figure 8 Stability plot for a sonar at 25m depth. 

5 Conclusion 

A mono-variable perturbation analysis is used to quantify 
the sensitivity of sonar performance measurements to 
temporal and spatial variations of environmental parameters 
with impact on the sonar performance. This analysis 
indicates that by a careful choice of sonar and target 
deployment, the sensitivity to unaccounted parameter 
variations may be kept within acceptable limits. Stability 
plots are introduced to quantify the stability of different 
sonar-target geometries. 
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