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Problem description

For high quality video compression in contribution environments, intra-only encod-
ing with JPEG 2000 has been preferred by many. However, this solution does not
exploit the temporal redundancy in a sequence of images, and therefore limits the
possibility of further reduction of the bit rate.

There are several ways of estimating the motion in an image sequence. One of them
is calculating the optical flow. By calculating the optical flow, each pixel will get
its own vector that represents its motion, resulting in a vector field for the entire
image.

The task is to explore the performance of a hybrid video codec that uses optical
flow for motion estimation and JPEG 2000 to encode the estimation error. Its
performance shall be assessed by considering the quality compared to a chosen
baseline codec.
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Abstract

In broadcasting environments intra-only video coding with JPEG 2000 has shown
to provide many desired features along with high picture quality. However, there
is no exploitation of temporal redundancy, which can reduce the bit rate while
maintaining the quality.

Optical flow algorithms are designed to find the apparent movement of brightness in
an image, and can be used to estimate the motion of each pixel between consecutive
images. This thesis explores the performance of a hybrid video codec that uses the
’Classic+NL’ optical flow algorithm[1] for motion compensation and JPEG 2000
for encoding the estimation error.

The motion estimation proved to be inaccurate at the edges of objects. This can
cause high frequency components in the residue image, which will decrease the
efficiency of JPEG 2000. Occluded regions will also have poor estimation, as they
are not present in the previous frame. Since noise is not considered when the optical
flow is calculated, the energy of the noise may increase after motion compensation.
Without addressing these issues, optical flow algorithms are not well suited for
motion estimation in hybrid video codecs.

Even with the inaccurate motion compensation performed by the optical flow algo-
rithm, there was an overall reduction in bit rate of 18.8%, compared to intra-only
coding with JPEG 2000. The performance was highly content dependent, ranging
from a reduction of 90% to an increase of 27%. The reduction comes at a cost of
increased delay, higher complexity, vulerability to transmission errors, and a lack
of a constant bit stream. The proposed hybrid codec is therefore not suited to
replace intra-only coding with JPEG 2000 in contribution environments.
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Chapter 1

Introduction

Since the television became commercially available in the late 1920s, there has been
an enormous development in the broadcasting industry. From the first black and
white television sets, to todays high definition flat screens, there has been a huge
improvement in picture quality. Not only did the quality improve, but also the
quantity; in 2008 the average US household received 118.6 TV channels [2]. The
increase in quality and quantity had not been possible without the introduction of
digital compression of video.

With digital compression of video and audio it is possible to reduce the bandwidth
requirements without significantly reducing the perceived quality. In satellite dis-
tribution, a single transponder was used to carry one analog TV channel. However,
it does not have the capacity to carry a single uncompressed digital channel. By
employing state-of-the-art lossy video compression, a transponder can now carry 26
standard definition channels, or 6 high definition channels [3]. Even though lossy
compression is used, the perceived quality is still higher than for analog channels.
When analog signals are transmitted, their quality is reduced by the presence of
noise. Analog noise reduction systems exist, but perfect reconstruction of the orig-
inal signal is not possible. However, this is possible with digital transmission, and
the quality experienced by TV viewers can be decided by the broadcasters.

While digital video not necessarily suffer from quality loss by transmission, com-
pression errors will be introduced each time the video is lossy encoded. For every
lossy compression, there will be a further reduction in quality, without necessarily
a reduction of the bandwidth requirements. In most cases the bandwidth capacity
is limited from the TV distributor to the customer, resulting in high compression.
Therefore it is important that the quality of the video is as high as possible before
the last encoding.

In the TV studio it is desired to maintain the highest possible quality of the signal
at each processing step. If possible, the signal should be kept uncompressed. How-
ever, for high definition content, the bandwidth requirements for uncompressed

1



2 CHAPTER 1. INTRODUCTION

video are extremely high and it may be necessary to use compression. The image
compression standard JPEG 2000 offers both lossy and lossless compression, and
has the possibility of greatly reducing the bit rate of a video. Even though JPEG
2000 uses advanced coding techniques, it is outperformed at lower bit rates by video
coding standards that exploit the temporal correlation in a sequence of images.

By estimating the motion from one image to another, it is possible to reduce the
bit rate of a video, without reducing the quality. In [4], Gary Demos proposed a
video codec that uses wavelet transformations for encoding of the estimation error.
The encoder estimates a motion vector for each pixel from one frame to the next,
with the collection of these vectors resulting in a ’flowfield’. An investigation of the
work by Gary Demos was wanted, to see how it could be applied in a contribution
scenario. However, this proved to be a challenge since the article does not provide
enough details to recreate the encoder.

Normally, motion vectors are not selected to predict a correctly appearing image.
The vectors are selected to minimize the overall bit rate, without regard to the
actual motion in the sequence. The term ’flowfield’ is more accurate if the actual
flow of the pixels is described by the vector field. To estimate the motion between
two images, techniques that calculate the optical flow can be applied. "Optical flow
is the distribution of apparent velocities of movement of brightness patterns in an
image." [5] Thus, a vector field calculated with an optical flow algorithm, could
represent the apparent motion between two images.

By using an optical flow algorithm for motion estimation and JPEG 2000 for en-
coding of the estimation error, it could be possible to further reduce the bit rate.
This thesis will therefore explore the performance of a hybrid video codec that is
built on this principle.

The thesis is organized as follows: Chapter 2 presents relevant information about
optical flow, JPEG 2000 and hybrid video coding. It also includes a short overview
of other types of wavelet based video coding. In Chapter 3 the methods used in
this thesis are presented, which includes how the proposed hybrid codec was im-
plemented and tested. It also gives an overview of how the results were analyzed.
Chapter 4 presents the results of the hybrid codecs performance for different set-
tings and approaches. A more general discussion of how optical flow performs for
motion compensation in combination with JPEG 2000 can be found in Chapter 5.
The thesis is concluded in Chapter 6, which also includes proposed future work.



Chapter 2

Theory

In the following sections theory on optical flow, JPEG 2000, hybrid video coding
and wavelet video coding is presented.

2.1 Optical flow

Optical flow (OF) is defined as the apparent movement of brightness in a visual
scene. Since the relative motion between objects and the viewer is a cause for the
movement of brightness, it would be easy to say that optical flow represents the
velocity of objects [5]. Although this may be true under certain circumstances,
there are many exceptions. A moving object may for instance cause a constant
brightness pattern, or the brightness pattern may change even though no objects
move in the visual scene.

The first work on optical flow was done as early as in 1950 by Gibson [6]. In
1981 both Horn/Schunck and Lucas/Kanade published new approaches to finding
the optical flow [5, 7]. After these significant contributions, many new algorithms
where introduced, and a large amount was based on the work published in 1981.
These algorithms are described as differential methods, since they are based on
partial derivatives to find the flow.

2.1.1 Horn and Schunck’s method

In the field of optical flow algorithms Horn and Schunck’s differential method (HS)
has been the basis for much work. The fundamentals of this approach are presented
in the following section, as they will give a basic understanding of today’s state
of the art algorithms. For a more comprehensive explanation, refer to the original
article by Horn and Schunck [5].

3



4 CHAPTER 2. THEORY

Some restrictions regarding the content of an image is made: The image is flat to
avoid shading problems, the incident illumination is uniform and the reflectance
of objects is constant and does not have spatial discontinuities. It is also assumed
that no objects occlude one another. With these restrictions it can be said that
the change of brightness between images arises directly from the motion of corre-
sponding points.

The image brightness at point (x, y) at time t is denoted by E(x, y, t). If assumed
that the brightness of the point is constant, and has the ability to move, one has
the following equality:

E(x, y, t) = E(x+ ∂x, y + ∂y, t+ ∂t) (2.1)

Where ∂x and ∂y is the displacement along the x-axis and y-axis respectively, and
∂t is the displacement in in the temporal domain. The right side of the equation
can then be expanded

E(x+ ∂x, y + ∂y, t+ ∂t) = E(x, y, t) + ∂x
∂E

∂x
+ ∂y

∂E

∂y
+ ∂t

∂E

∂t
+H.O.T. (2.2)

where H.O.T. represents the higher order terms in the expansion. By combining
(2.1) and (2.2), subtracting E(x, y, t) from both sides of the equation, and then
dividing by ∂t, the following remains:

∂x

∂t

∂E

∂x
+ ∂y

∂t

∂E

∂y
+ ∂E

∂t
+O(∂t) = 0 (2.3)

O(∂t) is a term of order ∂t. With the limit ∂t→ 0 the equation becomes:

∂E

∂x

dx

dt
+ ∂E

∂y

dy

dt
+ ∂E

∂t
= 0 (2.4)

Let
u = ∂x

∂t
v = ∂y

∂t
(2.5)

and

Ex = ∂E

∂x
Ey = ∂E

∂y
Et = ∂E

∂t
(2.6)

When replacing the terms in (2.4) one has:

Exu+ Eyv + Et = 0 (2.7)
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or

(Ex, Ey) · (u, v) = −Et (2.8)

Equation (2.8) expresses the constraint on the local flow velocity. Since this is an ill
posed problem, it cannot be solved directly, and additional constraints are needed.

An important factor not considered in the previous equations is that there is a
correlation in velocitys for adjacent pixels. For example, if an object is moving
in the image, all pixels corresponding to the object will have the same or similar
velocity. The velocity will in fact vary smoothly across the field, and discontinuities
will reflect areas where one object occludes another. This smoothness can be added
as an extra constraint in the algorithm, for example by minimizing the following
expression:

ε2
c =

(
∂u

∂x

)2
+
(
∂u

∂y

)2
+
(
∂v

∂x

)2
+
(
∂v

∂y

)2
(2.9)

As a result of this smoothness constraint, it is that likely the algorithm will have
difficulties with occluding edges. Also the first constraint in equation (2.7) need to
be expressed as a minimization problem:

εb = Exu+ Eyv + Et (2.10)

Combining these two minimization problems, the total error to be minimized is

ε2 =
∫ ∫

(α2ε2
c + ε2

b)dxdy. (2.11)

Because the brightness in the image is expected to have quantization noise, εb
can not be expected to be zero. The weighing factor α2 adjusts the strength
of the smoothness. By minimizing this expression with an appropriate weighing
factor it is possible to find a fairly accurate vector field representing the optical
flow between the images. For more information about the weighting factor and a
practical solution to minimize the expression, refer to the original paper by Horn
and Schunck [5].

2.1.2 Principles and practices

The assumptions about the image content in Horn and Schunck’s method lim-
its the accuracy of the algorithm when used on natural images. In this section,
some principles and practices that improve the calculation of the optical flow are
presented.
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Penalty function When minimizing error HS minimizes the square of εb and εc.
This is referred to as a square penalty function, p(x) = x2. Other penalty functions
can be employed as well: For example the Charbonnier function p(x) =

√
x2 + ε2 [8]

or the Lorentzian function p(x) = log(1 + x2

2σ2 ) [9].

Preprocessing: While the HS method assumes constant illumination of the im-
ages, changes in lighting can affect the calculation of the optical flow. Preprocessing
of the images can therefore provide robustness against lighting changes [10].

Coarse-to-fine estimation: When there are large displacements, the calculation
of the optical flow can be improved by using coarse-to-fine estimation techniques [1,
8]. The optimization involves downsampling of the image, often in several steps,
and calculation of the optical flow for the lowest resolution. The estimation of the
optical flow at the lowest resolution can be applied to correct the vector field at a
higher resolution, a process referred to as warping. This process is then repeated
at increasing resolutions.

Median filtering: To increase the robustness to sampling artifacts, median fil-
tering of the vectors can be performed between warping steps. This process has
shown to increase the accuracy of the optical flow significantly [1, 10].

2.1.3 Optical flow in video compression

Optical flow has already been proposed for use in video coding. For motion esti-
mation, the algorithm has been proposed in several codecs, especially for low bit
rates [11, 12, 13].

More recently, there has been a suggestion to employ optical flow algorithms to
increase the performance of the new High Efficiency Video Coding (HEVC) stan-
dard [14]. Even though this method reduced the bit rate, it increased the decoding
time substantially.

2.2 JPEG 2000

With the increasing use of the Internet and multimedia in the mid 90s is was
clear that an image compression standard with new features and improved perfor-
mance was desired. In March 1997 International Organization for Standardization
(ISO)/International Electrotechnical Commission(IEC) issued the first call for pro-
posal for their work on a new image compression standard that would follow the
very successful JPEG standard. In 2000 a Discrete Wavelet Transform (DWT)
based compression standard was complete (JPEG 2000), and it provided many
features not available in previous standards. In the following sections only Part 1
of the JPEG 2000 standard will be discussed.
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2.2.1 Features

Some of the more notable features in the JPEG 2000 standard are listed in this
section. For more information about these features refer to [15] and [16].

Superior low bit-rate performance: Even though JPEG 2000 has a compres-
sion advantage over JPEG at high bit-rates, it is especially at low bit-rates (0.25
bit per pixel and below) where JPEG may suffer from severe blocking artifacts,
that JPEG 2000 excels.

Lossless and lossy compression: When using the reversible (integer) wavelet
transformation instead of the irreversible and skipping quantization of the coeffi-
cients, perfect reconstruction is possible.

Continuous-tone and bi-level compression: JPEG 2000 supports a pixel
depth from 1 to 16 bit for each image component. This allows for both bi-level
compression and higher color accuracy.

Tiling: An image can be split into rectangular tiles, which are encoded separately.
The main advantage of this is the lower memory requirements at both the encoder
and decoder.

Progressive transmission by pixel accuracy and resolution: The code
stream can be organized so that the decoder can view the picture before all the
information is available and thus improve the quality as more information becomes
available. This can either be done by first displaying a lower resolution and later
increasing it, or by improving the accuracy of the pixels.

Random code stream access and processing: JPEG 2000 has the ability to
increase the quality of spatial regions in an image, and has mechanisms to allow
spatial random access in the code stream.

Error resilience: The data in JPEG 2000 are stored in small independent code
blocks, so that the loss of synchronization only will affect one block. This is espe-
cially helpful when transferring the image over an error prone channel.

2.2.2 Architecture overview

The basic building blocks of the JPEG 2000 encoder is shown in Figure 2.1. First
the image samples are preprocessed, then a DWT is performed, followed by quan-
tization and finally entropy coding. It is important to remember that this process
is performed once for each tile. The samples can follow one of two paths; one that
allows a perfect reconstruction of the samples and one that does not. These are
referred to as the reversible and the irreversible path respectively.
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Figure 2.1: Overview of JPEG 2000 encoder.

2.2.3 Level offset and normalization

Before the wavelet transformation, the image samples are preprocessed. If the input
bits are unsigned, a level offset is performed. Samples represented by B number of
bits will then be in the range

−2B−1 ≤ x[n] < 2B−1. (2.12)

This is done to avoid irregularities in the coefficients produced by the DWT. As
shown in Figure 2.1 the level offset is performed for both the reversible and the
irreversible path. After the level offset, samples following the irreversible path are
normalized. This is done by dividing them by 2B , such that the samples values
are conformed to [− 1

2 ,
1
2 ]. Because of this normalization, the irreversible path is

independent of the sample bit-depth. The decoder can choose the desired number
of bits for the samples when decoding. Thus, a 12 bit image can be decoded as a
8 bit image, and vice versa.

2.2.4 Discrete Wavelet Transform

One essential difference between JPEG and JPEG 2000 is how the spatial decorre-
lation is performed. Whereas JPEG used a Discrete Cosine Transform (DCT) on
an 8x8 pixel block, JPEG 2000 uses a DWT on the entire tile. While JPEG suffers
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from visual blocking artifacts due to its block size, JPEG 2000 does not have this
problem. However, if the image is divided into tiles, similar artifacts can be seen
at low bit-rates.

The DWT can be viewed as a pair of lowpass and highpass filters, followed by a
decimator. As seen in Figure 2.2, the input samples are split into a highpass and
a lowpass signal, and then downsampled by a factor of two. These samples are
referred to as wavelet coefficients.

Figure 2.2: One dimensional three level wavelet transform, where h[n] is the highpass
filter, and g[n] is lowpass the filter [17].

Because of the downsampling, the number of wavelet coefficients will be the same as
the number of input samples. Since an image is two-dimensional it is necessary to
extend the one-dimensional wavelet transformation. This is done by first perform-
ing the one-dimensional transformation on each row in the image, then performing
the one-dimensional transformation vertically on the filtered, downsampled data.
Since the filtering process is performed two times, the image will be divided into
four set of frequency bands. These set of wavelet coefficients are referred to as
subband images, or subbands.

In Figure 2.3 it can be seen how the different subbands are labeled. 1HH refers
to the samples that have been highpass filtered in both the horizontal and vertical
direction. These coefficients contain the high frequency parts of the image, for
example sharp edges and noise. 1HL refers to the samples that have first been
highpass filtered, then lowpassed filtered, while 1LH represents lowpass followed
by highpass.

1LL refers to the samples that have been lowpass filtered two times, but for these
coefficients there are still a lot of correleation. Therefore the process is performed
again on the 1LL subband. Normally a JPEG 2000 image would use around five de-
composition levels. It is important to remember that because of the downsampling,
the components with high frequency at the first decomposition level (1HH , 1HL
and 1LH) will contain 3/4 of the total number of wavelet coefficients, regardless of
the number of decomposition levels.

In Figure 2.4 a two-level decomposition of an image is shown, with the different
subbands corresponding to those in Figure 2.3. To emphasize the content in the
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Figure 2.3: Labeling of subbands after a two-dimensional DWT.

image, the contrast has been adjusted for all the subbands (with the exception of
the 2LL subband), and the samples have not been level shifted.

In JPEG 2000 Part 1, two different filter banks are available for wavelet trans-
formation, the (9,7) irreversible floating-point filter bank and the (5,3) reversible
integer filer bank. Filter taps for the analysis part of the filter banks can be found
in Table 2.1 and 2.2. While the (9,7) filter bank has the advantage of giving the
highest compression efficiency, the (5,3) filter bank allows for perfect reconstruction.

Table 2.1: Daubechies (9,7) analysis filter used by the irreversible DWT in JPEG 2000.

n Lowpass filter h0(n) Highpass filter h1(n)
0 0.6029490182363579 1.115087052456994
±1 0.2668641184428723 -0.5912717631142470
±2 -0.07822326652898785 -0.05754352622849957
±3 -0.01686411844287495 0.09127176311424948
±4 0.02674875741080976

For more detailed information about these filter banks, refer to [15].
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Figure 2.4: An image decomposed with a two-dimensional DWT [18]

Table 2.2: Integer (5,3) analysis filter used by the reversible DWT in JPEG 2000.

n Lowpass filter h0(n) Highpass filter h1(n)
0 6/8 1
±1 2/6 -1/2
±2 -1/8
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2.2.5 Quantization and entropy coding

Quantization is an irreversible process that reduces the entropy of the coefficients,
and is therefore only used in the irreversible encoding path. To quantize the wavelet
coefficients, JPEG 2000 employs a uniform quantizer with a central dead zone. The
quantizer is shown in Figure 2.5, which displays how the quantizer maps wavelet
coefficients to the appropriate quantization index. Around zero, the quantization
step is 2∆b, instead of ∆b, which is referred to as the central dead zone.

Figure 2.5: Uniform quantizer with a central dead zone.

The mathematical way to represent the quantization would be with the following
equation:

qb(u, v) = sign(yb(u, v))
⌊
|yb(u, v)|

∆b

⌋
(2.13)

From both Figure 2.5 and equation (2.13) it is apparent that the parameter ∆b

decides the error introduced when quantizing. For each subband, ∆b is selected and
represented by two bytes, a 5-bit exponent εb and an 11-bit mantissa µb, according
to

∆b = 2Rb−εb(1 + µb
211 ) (2.14)

where Rb represents the number of bits in the nominal dynamic range of subband
b. It is up to the encoder to select the quantization step, and the choice can be
driven by a number of factors. For example the visual importance of each subband
or rate control.

After the the coefficients have been quantized they are entropy coded to create the
compressed bit-stream. This process is referred to as the Embedded Block Coding
With Optimal Truncation (EBCOT). In JPEG 2000 each subband is divided into a
rectangular group of coefficients referred to as code-blocks. These code-blocks are
then bit-plane coded using arithmetic coding, starting with the most significant bit.
The encoding is performed in three passes for each bit-plane, with the possibility
of truncating the bit-stream after each pass. A rate-allocation process called Post
Compression Rate Distortion (PRCD) is applied to achieve the desired bit-rate with
the minimum amount of distortion, by truncating the appropriate code-blocks.
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2.3 Hybrid video coding

Most video codecs are based on the hybrid video codec (HVC) principle. A HVC
reduces the bit rate by exploiting the temporal correlation in a video, without
reducing the quality. This is done by estimating the motion from image A to image
B. Since the predicted image will differ from the original, the estimation error needs
to be encoded as well. Figure 2.6 shows a block diagram of this process.

Figure 2.6: Block diagram of a generic hybrid video encoder.

If prediction of motion is satisfactory, the number of bits required to represent the
estimation error is smaller than the image being predicted. This reduction in bits
must outweigh the number of bits needed to represent the motion vectors, or there
will be no overall reduction in bit rate.

In a HVC there are three types of frames: Intra coded frames (I-frames), predictive
coded frames (P-frames), and bidirectionally predictive coded frames (B-frames).
Normally, only I- and P-frames are anchor frames, which means that motion vectors
point from these particular frames to others frames. The I-frame is encoded as a
normal still image, completely independent of other frames, and can therefore be
decoded without the presence of other frames. A P-frames contains the prediction
error of a single frame, whose motion prediction is based on preceding I- and/or
P-frames. Along with the motion vectors, preceding frames are therefore needed
to decode a P-frame. B-frames can have vectors pointing from both preceding and
following I- and/or P-frames. To limit complexity, and assure that errors do not
propagate all the way through a video, motion vectors can only point between
frames in a group of pictures (GOP). Figure 2.7 shows an example of how the
frames within a GOP normally are organized.
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Figure 2.7: Example of normal GOP structure - arrow indicates motion vectors.

This definition of a GOP structure is rather strict, and it is important to notice
that as the complexity and performance of a video codec increases, so does the
flexibility of the GOP structure. More flexible GOP structures may allow B-frames
to be anchor frames and increase the number of anchor frames each frame can
have. As an example, H.264/AVC allows motion vectors to point from one GOP
to another [19].

2.3.1 Motion estimation and compensation

The process of finding the motion vectors between two frames is referred to as
motion estimation. A single vector can represent the motion of an arbitrary number
of pixels, ranging from a single pixel to the entire image. When vectors represent
the motion of the entire image, the estimation is referred to as global motion
estimation, which will reflect the motion of the camera. This type of estimation
works best if there are no moving objects in the scene.

For scenes with moving objects, it is normal to let the motion vector represent
a group of pixels. To reduce the overhead a vector would normally represent a
rectangular shaped block of pixels, instead of more complex group of pixels. The
most common algorithm used in video codec is the block matching algorithm. The
following equation is used for finding optimal vectors

Q(I(x, y, t), I(x+ ∆x, y + ∆y, t+ ∆t)) (2.15)

where I(x, y, t) represents the group of pixels (macroblock) at horizontal position
x, vertical position y, in frame t. Q denotes the evaluation matrix, and a motion
vector ~v can be decomposed to ∆x,∆y and ∆t. There are several types of evalua-
tion matrices that are commonly used, including mean square error (MSE), mean
absolute difference (MAD), sum of absolute difference (SAD), sum of squared er-
rors (SSE) and sum of absolute transformed differences (SATD). If equation (2.15)
is minimized with respect to all valid vectors ~v, the optimal vector is found. Which
vectors that are valid depends on which frames that can be anchor frames, and
other restrictions that may be applicable.
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For standard block compensation, the image is divided into equally sized mac-
roblocks. For each block an optimal vector is calculated so that all pixels are
represented by a single vector. To minimize the bit rate of the vectors, encoders
can choose non-optimal vectors, if they require fewer bits to be represented. More
advanced designs allow for a variable size of the macroblock, and allows the encoder
to select this at its own discretion. This type of motion compensation is referred
to as variable block-size motion compensation (VBSMC).

Both standard block compensation and VBSMC suffers from discontinuities at the
block borders (blocking artifacts). Depending on the transform coding used, these
sharp edges may be visible in the decoded image. While some design employs
deblocking filters to combat these artifacts, another solution is to use overlapped
block motion compensation (OBMC). In OBMC the macroblocks are larger and
overlap each other, so that each pixel belong to different blocks. The value assigned
to each pixel will be weighted by a window function over the estimations. By using
this method, there will be no block borders in the regular sense.

Interpolation can be used to increase the accuracy of the estimation. If the vec-
tors ∆x and ∆y are allowed sub-pixel accuracy, then interpolation can be used to
calculate sub-samples in the original image. An efficient optimization should be in
place to determine if the extra accuracy obtained from interpolation outweigh the
increased bit cost of the vectors. A precision of half a pixel can be found in older
designs [20], while the newest employ quarter pixel precision [19].

2.3.2 Transform coding

To reduce the bit rate further, spatial correlation in the residual frame can be
exploited. To do this, transform coding found in still image compression standards
are used. The two most common transforms are the DCT and the DWT, the first
used by JPEG and the latter used by JPEG 2000. These transformations allows
encoders to quantize coefficients in the transform domain, which allows for better
rate-distortion than quantization of pixel values.

DCT is the most common transform coding used in video compression. When
DCT is used, the frame is divided into rectangular blocks of pixels, before each is
transformed separately. The DCT transforms a macroblock from the pixel domain
into the frequency domain, and allows for different quantization of the different
frequency components. If blocking artifacts are present in a macroblock, they will
lead to high frequency components. If the macroblock from the motion compensa-
tion corresponds to the DCT macroblocks, the blocking artifacts will not be inside
the DCT macroblock, and will not cause high frequency components.

Today, DWT is mostly used in still image compression, and not in video com-
pression. For example in the JPEG 2000 standard. Unlike the DCT-based codecs
where the image is divided into macroblocks before transformation, the wavelet
transformation is normally applied to the entire image. With block based mo-
tion compensation the blocking artifacts will cause high frequency components in
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all subbands of the wavelet transformation. Therefore, OBMC that does not in-
troduce blocking artifact is a better choice when DWT is applied to the residue
image.

2.4 Wavelet based video coding

There has been a lot of research in wavelet based video coding, and a few different
approaches are presented in this section, except for the hybrid codec with wavelet
transformation discussed in Section 2.3.2.

2.4.1 Wavelet domain motion compensation

In this approach the motion compensation is performed in the transformed domain,
instead of the pixel domain as done in hybrid codec. Each frame is first passed
through a wavelet decomposition, and then motion estimation is performed on the
wavelet coefficients. For example, a video coding system that uses VBSMC for
motion compensation in the redundant wavelet domain is proposed in [21].

2.4.2 Three dimensional wavelet transform

When a three dimensional wavelet transform is used for video coding, the standard
2D DWT is expanded to include the temporal axis in the subband decomposition. If
there is little motion in the sequence there will be little energy in the high frequency
components for the temporal dimension. Therefore, for video sequences with static
content, a 3D wavelet scheme will have high energy compaction. However, if there
is motion in the sequence, the correlation along the temporal axis can be reduced,
resulting in larger coefficients and lower compression. To maintain the high energy
compaction in this case, motion compensated temporal filtering (MCTF) can be
employed [22].

2.4.3 Motion compensated temporal filtering

MCTF is often used to achieve temporal scalability [23], for example in the Scal-
able Video Coding (SVC) extension of H.264/AVC [19]. The SVC extension, like
regular H.264/AVC, uses DCT for the remaining frames. Whether MCTF is used
in combination with DCT or wavelet transforms, the (5,3) wavelet is often used to
perform the MCTF. Figure 2.8 shows the MCTF structure for the (5,3) wavelet.

Ln denotes the low-pass frames at decomposition level n, and Hn denotes the
high-pass frame. Remember that level 0 is the original frame. For every odd-
numbered frame, a high-pass frame is predicted from the adjacent even-numbered
frames. The even index frame is updated, using the the two adjacent high-pass
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Figure 2.8: The MCTF structure for the (5,3) wavelet [23].
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frames to generate a low-pas frame. From these generated low pass frames, a new
decomposition level can then be calculated. For each decomposition level, a new
level of temporal scalability is provided. Before the prediction and update, motion
compensation is performed to reduce temporal redundancy [23].

When MCTF is followed by wavelet decomposition of the frames, the scheme is
referred to as ’t+2D’. This way the MCTF offers temporal scalability, while the 2D
wavelet offers resolution and peak signal-to-noise ratio (PSNR) scalability.



Chapter 3

Method

The following sections contain the methods used in this thesis. First the scenario
and the test material is described. Followed by a description of the selected ref-
erence codec, and the proposed hybrid codec. Finally, methods for analyzing the
estimation error is presented.

3.1 Scenario

With the introduction of high definition flat screen TVs in households, there has
been an increased demand of high definition content. It is not possible to meet the
demand without a contribution that supports the increase in quality. State of the
art TV resolution has 1080 progressive horizontal lines with 60 frames per second
(1080p60), which uncompressed has bit rates of approximately 3 Gb/sec. If the
video has to be transferred over long distances, or over communication networks
with limited bandwidth, compression of the signal may often be necessary. This
can either be done with a video codec or a still image codec that codes each frame
separately.

T-Vips AS, an Oslo based company, produces video gateways that compress HD
content and transfer it over an IP network. These gateways offers both lossless and
lossy compression using the JPEG 2000 still image codec to reduce the overall bit
rate [24, 25]. This intra-only video coding offer many advantages, for example easier
editing due to no predictive frames, higher bit depth than many video codecs, no
blocking artifacts, low latency, robustness to transmission errors, and less suffering
from generation loss [26]. However, since the gateways utilize JPEG 2000 still
image encoding, there is no exploitation of temporal redundancy.

The scenario is that the proposed hybrid video codec is used in the same environ-
ments as the T-Vips gateways.

19
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3.2 Test Material

The test material is chosen to represent different types of content with assorted
degrees of difficulty. A total of eight sequences are used, five of them are from ’The
SVT High Definition Multi Format Test Set’, two are provided by the European
Broadcasting Union (EBU) and the last one is provided by the Blender Institute
as an open source project. All sequences have been retrieved in the resolution
1920x1080. Only sequences with 8 bit per component were used in the tests. These
sequences are again combined to form a standard test sequence. One frame from
each sequence can be found in Appendix D.

3.2.1 The SVT High Definition Multi Format Test Set

The sequences in the test set are excerpts from the multi-genre TV-program ’Fairy-
tale’ produced by SVT. The sequences are filmed with a high end professional 65mm
camera in 50p, digitized and mastered in 3840x2160p50. The sequences were re-
trieved in 1080p50 with 16 bits per color plane (RGB), and XnView was used to
convert each frame to an 8-bit grayscale image. All the sequences suffers from noise
to a certain extent.

Table 3.1: List of SVT sequences.

Name Difficulty Frames used
Crowdrun Difficult 7111-7140
Parkjoy Difficult 15720-15749
DucksTakeOff (Ducks) Difficult 13060-13089
IntoTree Easy 5119-5148
OldTownCross (OldTown) Easy 1217-1230

The Crowdrun sequence offers a lot of local movement and sharp edges. This
movement results in much occlusion in the form of small areas around the athletes.
There is little global motion or larger objects with high velocity in this sequences.
In the sequence DucksTakeOff the flapping of the wings of the ducks results in much
occlusion, and there is a lot of slower motion caused by the waves in the water.
The sequence with the most occlusion is Parkjoy, which has a large tree passing by
in front of the scene, in addition to local movement. The sequences IntoTree and
OldTownCross offers little occlusion and local movement, but has instead global
movement.
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3.2.2 EBU sequences

The sequences Horse and Vegies are more static than the SVT sequences, and they
are not excerpts from what would be considered ordinary content. They do however
represent content with a different type of movement and less noise than the SVT
material. The sequences were provided in 1080p50 with a chroma subsampling of
4:2:2 and 10 bits per color component. To reduce the bit depth from 10 bit to 8 bit
a crude downsample was performed [27]. XnView was then used to convert each
frame to 8-bit grayscale.

Table 3.2: List of EBU sequences.

Name Difficulty Frames used
Horse Easy 0-29
Vegies Easy 0-29

In the Horse sequence, most of the frames are static but there is movement in
two objects. The first is a toy horse connected to a ball that moves in opposite
directions, and the second is a metronome with a moving pendulum. Due to the
swinging motion of the objects, there will be some resulting occlusion. The Vegies
sequence is a shot of a rotating plate with vegetables, with a static background.
Also this sequence will experience some occlusion, arising due to the rotational
movement of the vegetables.

3.2.3 Big Buck Bunny

The short computer animated film Big Buck Bunny (Bunny) has been produced by
Peach Open Movie Team using the free software tool Blender. The frames selected
from the movie are from the opening scene, with a vertical panning of the camera,
revealing more and more of the landscape (frame 100-129). Since the sequence is
computer animated, there is no noise in the frames and the global motion appears
constant. The difficulty is defined as easy for the frames selected. The sequence
was retrieved in y4m format and converted first to avi and then to ppm images by
using FFmpeg. Again XnView was used to convert the images to 8-bit grayscale.

3.2.4 Standard test sequence

All of the above test sequences have been combined into one single test sequence.
Thirty frames from each sequence gives a total of 240 frames. The entire sequence
was 8 bit grayscale in the resolution 1920x1080p, and all the material was produced
in 50 frames per second.
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3.3 Reference codec

To analyze the performance of the proposed video codec, a reference codec had to
be chosen. According to the scenario a JPEG 2000 intra-only still image encoder
would be preferable for comparison. To simplify the process, the Matlab function
imwrite was used to create the reference video sequences. In this process, Matlab
will read the uncompressed images from the hard drive, then compress and save
each image using the JPEG 2000 encoder. The bit depth and resolution of the
JPEG 2000 files will match that of the uncompressed sequence, unless otherwise is
specified.

When compressing the images, the compressed file size is 1/10 of its original. For
an 8 bit grayscale image, the average number of bits needed to encode each pixel
will then be 0.8. This will lead to an acceptable compromise between bit rate and
quality. The default setting of 6 reduction levels in the wavelet transform, and one
tile for the entire image was also used. The following Matlab-code can be used to
save an image into a JPEG 2000 file

imwrite(matlabmatrix,’iframe.jp2’,’CompressionRatio’,10);

where matlabmatrix is an M-by-N matrix representing a grayscale image, or M-by-
N-by-3 matrix representing an image with three color components.

3.4 Proposed hybrid codec

The proposed hybrid codec was designed with regards to the scenario presented in
Section 3.1. A block diagram is shown in Figure 3.1, with some differences from
the generic hybrid encoder: The optical flow can be calculated from uncompressed
frames, and an in-loop denoise filer can be applied before motion compensation.

To avoid a long delay, B-frames that are dependent of both preceding and following
frames are not allowed. By limiting the use to only P-frames, there will be no
need to buffer subsequent frames before decoding. Extra delay, in comparison
with an intra only codec, will therefore be limited to estimation of motion vectors
and calculation of the residual frames. How much this extra delay will amount
to is implementation dependent and can be decreased with extra computational
resources. If B-frames were allowed, the extra delay could not be smaller than the
time required to buffer the needed frames.

3.4.1 Vector calculation - optical flow algorithm

To calculate the optical flow an existing state of the art algorithm, classic+nl, is
used. The algorithm is presented in [1] and at the time of its publication (March
2010), it ranked 1st in both average angular and average end-point errors in the
the Middlebury evaluation. However, as of May 2011 the algorithm ranks 5th
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Figure 3.1: Block diagram of proposed hybrid encoder.

in the same tests [28]. The Middlebury evaluation is a database and evaluation
methodology for optical flow calculations [29]. Even though the algorithm does
not rank 1st anymore, it was chosen because the Matlab implementation has been
made available for research purposes [30]. A faster version of the algorithm was
used to calculate the results, using default parameters. The following Matlab-code
calculates the optical flow between frame I(t) and I(t+1):

estimate_flow_interface(I(t), I(t+1), ’classic+nl-fast’);

If not otherwise specified, the vectors are calculated based on the uncompressed
original version of the frames I(t) and I(t+1).

The vector field can be calculated based on the original full resolution image,
or on a downsized version. If the flow is calculated on a downsized version, the
processing time will decrease, the number of vectors will be fewer, and the resolution
of the vector field will not match the resolution of the original image. Bicubic
interpolation can then be used to upscale the vector field resolution, such that it
matches the resolution of the original image. The Matlab function imresize was
used for upscaling of the vectors and downsizing of the images.

3.4.2 Vector calculation - mean squared error

In addition to using optical flow to calculate vectors, some vectors were calculated
using equation (2.15) where the cost function Q is the mean squared error defined
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by

Q = E[(I(x+ ∆x, y + ∆y, t+ ∆t)− I(x, y, t))2] (3.1)

and minimized over all valid values of ∆x,∆y, and∆t. This was implemented as an
exhaustive search in predefined rectangular areas in the previous frame. The frame
I(x, y, t) is the decoded version of the original frame, containing some compression
errors.

3.4.3 Vector compression

The motion vectors along with the residual frame are needed to decode P-frames.
Without compression the optical flow vectors would require 128 extra bit per vector
(two vector components with double precision), which would be 16 times higher
than an uncompressed 8 bit pixel value. To reduce this size, the vectors are first
rounded to the desired accuracy and then the vector field is compressed with lossless
data compression. The rounding is performed in the following matter

V=round(V*pixelresolution)

where V is anM×N×2 matrix containing the motion vectors, and pixelresolution
is the accuracy of the motion vector. For example, a pixelresolution value of 4
equal a quarter-pixel resolution. The compression process removes information
not needed to decode the frames and thus it reducees the entropy of the vector
field. The Matlab function save (version 7) was used to save the vector field using
lossless data compression. The entire matrix was saved in Matlabs .mat format
that uses buffered in-memory gzip for lossless compression. The compression ratio
could probably be reduced further by using an algorithm and file-structure specially
designed for motion vectors, rather than using a general purpose method.

3.4.4 Residual frame calculation

The codec has been implemented in Matlab 7.11.0 (2010b) and consists of a frame-
work with both an encoder and a decoder, such that all frames are first encoded
and then decoded. During calculations the internal bit depth was increased to
double precision.

The residual frame Iresidual has been calculated in the following matter. First an
estimation of frame I at time t+ 1 is calculated:

Iest(x, y, t+ 1) = I(x+ ∆x, y + ∆y, t)) ∀ x, y (3.2)

where ∆x and ∆y represents the motion vector pointing from frame t+1 to t. If the
motion vectors have sub pixel accuracy, bilinear interpolation is used to calculate
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the sub pixels. For resource and performance purposes the bilinear interpolation
is performed on the entire frame I with the Matlab function imresize. The pixel
values in the original frame I are used when the vector does not have sub-pixel
accuracy. After this process the estimation error is calculated:

Iresidual(x, y, t+ 1) = Iest(x, y, t+ 1)− I(x, y, t+ 1) (3.3)

When the pixel values in I(x, y, t) have a bit depth of 8 and are in the range
[0,255], the pixel values in Iresidual will be in the range [-255,255]. To represent
this range more than 8 bits are needed, and with Matlab’s implementation of the
JPEG 2000 encoder the residual image must then be encoded with 16 bits. Two
possible approaches to encode the residual image with a bit depth of 8 have been
implemented. The first one is to add 127 to all pixel values, so that the new range
becomes [-128,382]. Afterwards all values below 0 is set to 0, and all values above
255 are set to 255. The second approach first scales the values by a factor of x,
and then adds 127 to each pixel. Afterwards all pixels are rounded to the nearest
integer in the range [0,255]. The scaling factor x is selected as follows:

y =

⌈
127

max(abs(Iresidual(x, y, t)))
· 10
⌉

10 for each t (3.4)

x =
{
y if y < 1
1 if y > 1

(3.5)

While equation (3.4) sets a scaling factor with one decimal, equation (3.5) only
allows for scaling values up to and including 1. Each frame will then have a scaling
value in the range [0.5, 1] with a step size of 0.1.

If a bit depth of 16 is used in the residual image, 32640 is added to each pixel value,
so that the pixels are in the range [32385, 32895]. The three different approaches
are referred to as ‘8 bit cutoff‘,‘8 bit scaling‘ and ‘16 bit‘.

3.4.5 Residual frame compression

The estimation error is compressed with the same built in Matlab function as the
reference codec, the imwrite function. The complementary imread function is
used by the decoder to decompress the files. To achieve the same bit rate for both
8 bit and 16 bit frames, the ’CompressionRatio’ setting for 16 bit frames must be
twice that of the 8 bit frames.
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3.4.6 Noise

When noise was removed on the entire sequence, the XnView filter ’Median Box 5x5’
was used. For in-loop denoise filter the Matlab functions wiener2 and medfilt2
was used. The wiener filter was applied with default settings, while the median
filter was calculated based on a 5× 5 pixel neighborhood.

The XnView filter ’Add laplacian noise’ was used when noise was added to the
images, because it resembles noise that can be present in some types of content.

3.5 Analysis methods

All tests were performed on greyscale content, to represent the luminance or bright-
ness of the sequences. While colors are an essential part in the visual experience,
the human visual system is more sensitive to intensity in luminance than in chromi-
nance. In most video compression system, this is exploited to reduce the overall
bit rate [31]. For easier comparison between the reference codec and the proposed
hybrid codec, color images was not used in the tests.

Most test are performed on the standard test sequence described in Section 3.2.4.
The GOP size is two frames long to prevent propagation of error from one frame
to another, unless specified otherwise. Also the in-loop denoise filter is switched
off, unless specified otherwise

The test were performed with Matlab 7.11.0.586 (2010b) 64 bit edition, on a com-
puter with a 3.2GHz quad core Intel i7 960 processor, 6 Gb RAM and Windows 7
Enterprise 64-bit edition.

3.5.1 Objective metrics

To evaluate the performance of the proposed hybrid codec the objective metrics
peak signal to noise ratio (PSNR) and structural similarity (SSIM) are applied.
PSNR calculates the signal to noise ratio in the following way

PSNR = 10 · log
(
MAX2

I

MSE

)
(3.6)

where MAX2
I is the maximum signal intensity squared, which is 2552 for 8 bit

images, and MSE is the mean squared error between the compressed and the orig-
inal image. Since PSNR only considers the signal to noise ratio, and not how
errors are perceived by the human visual system, SSIM is designed to take this
into account [32]. SSIM is calculated with the following equation:
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SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) (3.7)

where µx and µy is the average of x and y, σ2
x and σ2

y is the variance of x and
y,σxy is the covariance of x and y, and c1 = (0.01 ∗ 2B)2 and c2 = (0.03 ∗ 2B)2

are variables that stabilizes the division (B is bit depth). The Matlab software
MetrixMux was used to calculate PSNR and SSIM [33].

3.5.2 Objective test method

The performance of the proposed hybrid codec is either presented as a difference
in PSNR, or as a bit rate fraction, both compared to the reference codec. When
the numbers are presented as a difference in PSNR the following course has been
taken to calculate them:

1. The standard test sequence is encoded and decoded with the reference codec,
as described in Section 3.3.

2. The standard test sequence is encoded and decoded with the proposed hybrid
codec. The residual frames will have the same bit rate as the reference codec.

3. Difference in PSNR and SSIM for each sequence, along with the confidence
intervals, are calculated with the Matlab script found in Appendix B. Only
P-frames are considered.

Positive and negative value will indicate increase and decrease in PSNR, respec-
tively. Remember that the value is compared to the reference codec and that the
bit rate of the vectors are not taken into consideration.

To include the bit rate of the vectors, an overall reduction in bit rate has been
calculated. A distortion control has been implemented so that each frame com-
pressed by the proposed codec will have the same PSNR as the one encoded by the
reference codec. The bit rate is then calculated in the following manner:

E
[residualbitrate + vectorbitrate

referencebitrate

]
(3.8)

With equation (3.8) only the bit rate of P-frames are considered. A rate below 100%
indicates an overall improvement, while a rate above indicates poorer performance.

3.5.3 Analysis of residual frames

To obtain more detailed information about the estimation error and the contents
of residual frames, two different approaches are used. The first is to evaluate the
distribution of the pixel values in a frame. Figure 3.2 shows a histogram created
by the Matlab function imhist.
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Figure 3.2: Histogram of pixel values for grayscale version of Lena, resolution 512x512.

While a histogram will show the distribution of the pixel values, it does not neces-
sary represent how much it can be compressed by JPEG 2000 at a certain distortion
level. To analyze the residual frame with regard to the encoding performed in JPEG
2000 the following process is performed on both the original uncompressed frame
and the estimation error:

1. The pixel values are scaled to the range [− 1
2 ,

1
2 ], according to the irreversible

path in Section 2.2.2.

2. A two-level wavelet decomposition is performed using the filter taps in Ta-
ble 2.1.

3. For each subband the mean, minimum value, maximum value, standard
derivation and entropy1 is calculated for the coefficients.

4. Each subband is weighted according to number of coefficients, and the average
entropy is calculated.

There are several reasons this approach will not accurately represent the JPEG
2000 encoding.

• The entropy function does not accurately reflect the arithmetic encoder in
JPEG 2000, as neither the central dead zone, nor the spatial distribution of
the coefficients are taken into account.

• JPEG 2000 employs truncation with the EBCOT scheme.

• Only a two-level decomposition is performed.
1The Matlab function entropy uses 256 levels (bins) for calculating probability
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• The PRCD scheme is not implemented.

The approach will however give information about the wavelet coefficients distribu-
tion, and the difference between the original and the residual frame. The Matlab
implementation of this process can be found in Appendix B.
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Chapter 4

Tests and Results

The following sections contains the results of tests performed, along with a brief
discussion of each test. First, a bit depth for encoding of the estimation error
is selected. Then the results from a general evaluation of the selected optical
flow algorithm is presented. After this, the effect different resolutions and pixel
accuracies have is evaluated. Then the overall bit rate of the proposed codec is
determined, followed by results for different GOP structures. Finally, the effect of
noise and the performance of the in-loop denoise filter is presented.

4.1 Bit depth of residue image

As explained in Section 3.4.4, the dynamic range of a residue image can exceed
that of an 8 bit image. The three proposed solutions to this problem have been
tested and the results can be seen in Table 4.1. The vector field is calculated using
the optical flow algorithm and pixel accuracy of the vectors.

Table 4.1: PSNR (dB) difference for different bitdepths of residue image. Vector field
of 1920x1080 with one pixel accuracy.

Method Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
8 bit cutoff 1.58 0.65 -0.96 0.19 0.25 -0.02 -0.56 3.60 0.82
8 bit scaling 1.58 0.84 -0.80 0.19 0.25 0.74 -0.53 3.32 0.89
16 bit 1.83 0.85 -0.62 -0.08 0.017 0.71 -0.33 3.24 0.89

As seen in Table 4.1 there are only small differences in the average PSNR between
the different solutions. While ’8bit cutoff’ has an average improvement of 0.82 dB,
the two others have a slightly higher average, i.e. 0.89 dB. The only sequence where
’8 bit cutoff’ performs better than the others, is the Horse sequence. There is an

31
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even distribution between which one of ’8 bit scaling’ and ’16 bit’ that performs
best.

More notable, the visual compression artifacts will be different for the different
methods. With the ’8 bit cutoff’ method, areas that experience a high estimation
error will also have a corresponding visual degradation. This is easy to perceive for
occluded regions in the sequences Ducks and Parkjoy. ’8 bit scaling’ on the other
hand, will have an overall reduction in pixel accuracy when the range is scaled. In
’16 bit’ there is no scaling of the values, and no irreversible processing of the pixel
values before the residue image is passed to the JPEG 2000 encoder.

To compare ’16 bit’ and ’8 bit scaling’ more closely, the average PSNR difference
with a 95% confidence interval is plotted in Figure 4.1.

Figure 4.1: PSNR (dB) difference for 1920x1080 vector field with one pixel accuracy.

The results for the ’16 bit’ method and for the ’8 bit scaling’ method are practically
the same, with some differences for a few of the sequences. ’8 bit scaling’ performs a
little better for the IntoTree and OldTown sequnces, while ’16 bit’ performs better
for the Ducks and Vegies sequnces.

The ’16 bit’ residue images would appear to be gray and homogeneous when viewed
on a computer screen, and software support for 16 bit images is limited. To ease
visual analysis of the residual images, ’8 bit scaling’ is used for encoding of residual
images.
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4.2 Quality of optical flow algorithm

To determine the quality of the optical flow algorithm, two computer generated
images have been coded with the proposed hybrid codec. The first image, shown
in Figure 4.2, is a black arrow on a gray background. The second image contains
the same arrow, moved five pixels to the right. With these images it is possible to
calculate an optimal optical flow.

Figure 4.2: Image of black arrow on gray background. Used to calculate quality of the
optical flow algorithm

To see how the codec performs when the images suffer from noise, different degrees
of laplacian noise have been added, which mostly distorts the gray background. Ta-
ble 4.2 shows that there is a significant reduction in PSNR as the noise increases.
This reduction can be seen for both I-frames and P-frames, and shows the effect
that noise has on the performance of the JPEG 2000 encoder.

Table 4.2: PSNR (dB) of arrow sequence with calculated OF vectors. Laplacian noise
added with XnView filter ’Add laplacian noise’.

without noise laplacian 1.0 laplacian 2.0 laplacian 3.0 laplacian 4.0
I-frame 75.7 47.4 42.0 38.4 36.2
Vector + residual 75.8 43.7 39.2 36.6 33.9
Vector 75.1 41.6 35.7 33.3 30.4

There is no perceptual degradation from the uncompressed to the decoded, when
the same amount of bits are used to encode the residue image as the original image.
The drop in PSNR can be attributed to errors in the noise, which will affect PSNR
but not the visual quality. However, with increased noise in the images, there is an
increased drop in the performance of the optical flow algorithm. This can be seen
in the residual images, where the edges of the arrow suffer from estimation errors,
and shows that noise will affect the calculation of the optical flow. This error is
not present with the lowest degree of noise.

Table 4.2 also shows the PSNR when no bits are used to encode the residual im-
age, so that the estimation error is not corrected. This will cause some noteworthy
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visual artifacts: In addition to the error around the edges of the arrow, the noise
in the image will move according to the calculated optical flow. In these situations
the noise will not behave as noise anymore, but rather as moving texture. Fur-
thermore, the moving noise is already compressed in the anchor frame. This effect
would appear unnatural for the human eye, and will cause both a drop in PSNR
and a degradation of the subjective quality.

Table 4.3: PSNR (dB) of arrow sequence with optimal OF vectors.

without noise laplacian 1 laplacian 2 laplacian 3 laplacian 4
I-frame 75.7 47.4 42.0 38.4 36.2
Vector + residual 75.8 43.7 39.2 36.4 33.7
Vector 75.0 41.6 36.6 33.4 30.9

Table 4.3 shows how the encoder performs if the motion vectors are optimal. The
same vectors are used for all levels of noise, and are based on the original images
without noise. By comparing with the results in Table 4.2, it can be seen that there
are only small differences between the calculated optical flow, and the optimal vec-
tors. When the residual frame is encoded, the results are visually indistinguishable
from when the vectors are calculated using optical flow. However, when optimal
vectors are used and the estimation error is not corrected, the arrow will not suffer
from edge errors. For the noiseless images this will cause a small decrease in PSNR,
which can be attributed to error propagating from the anchor frame. For the other
images, the degradation in PSNR can be attributed to moving noise.

In the previous tests, the optical flow was calculated between two original un-
compressed images. However, the motion compensation is performed from the
compressed version of the previous frame. Table 4.4 shows the results when the
OF vectors are calculated from the compressed version of the previous frame.

Table 4.4: PSNR (dB) of arrow sequence with OF vectors calculated from compressed
image.

without noise laplacian 1 laplacian 2 laplacian 3 laplacian 4
I-frame 75.7 47.4 42.0 38.4 36.2
Vector + residual 75.8 43.8 39.3 36.6 34.0
Vector 75.1 41.2 35.7 32.9 30.6

A comparison between these results and the results presented in Table 4.2, shows
that there is little difference of wether the optical flow is calculated from the original
image, or the compressed version. It could however be differences for other types
of content.
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4.3 Resolution and accuracy of vector field

In this section, different settings for the resolution and the accuracy of the vector
field are tested on the standard test sequence.

4.3.1 Resolution

The vector field can be calculated based on the original full resolution image, or
on a downsized version. Table 4.5 shows the results when different resolutions are
used to calculate the flow with one pixel accuracy. Also included in the table, is
the results when all the vectors are zero, i.e. when standard differential encoding
is performed.

Table 4.5: PSNR (dB) difference: Optical flow calculated with a accuracy of one pixel.

Resolution Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
1920x1080 1.56 0.83 -0.80 0.19 0.25 0.73 -0.54 3.32 0.88
960x540 1.62 0.86 -0.83 0.15 0.21 0.76 -0.57 3.34 0.88
480x270 1.58 0.69 -0.90 0.16 0.22 0.64 -0.53 3.17 0.81
320x180 1.60 0.58 -0.94 0.15 0.24 0.50 -0.56 3.15 0.77
240x135 1.49 0.49 -0.97 0.14 0.24 0.37 -0.58 3.13 0.72
160x90 1.35 0.37 -0.96 0.11 0.22 0.14 -0.84 3.16 0.63

differential -2.50 -0.03 -0.50 -0.69 -0.33 -1.97 -1.14 3.20 -0.16

From the results it is obvious that optical flow outperforms differential encoding.
Differential encoding experiences no improvement in PSNR, except for the Horse
sequence where there is an improvement of 3.20 dB.

From the results, it can be seen that for resolutions lower than 960x540, PSNR will
decrease with the resolution. Some of the sequences suffer more from the decline
than the others, most notable is Parkjoy that falls from 0.73 dB to 0.14 dB, and
Crowdrun from 0.83 dB to 0.37 dB. These sequences have in common that there is
a lot of local motion in opposite directions for small objects.

4.3.2 Accuracy

Since the optical flow algorithm calculates motion vectors on a sub-pixel level, these
sub-pixels can be used instead of the original values when calculating the residual
image.

From Table 4.6 it can be seen that one pixel accuracy is outperformed by half pixel
accuracy for all sequences. On average one pixel accuracy gives an improvement of
0.88 dB, while half pixel accuracy gives an improvement of 1.32 dB. Quarter pixel
accuracy however, gives the same or slightly more improvement on average than
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Table 4.6: PSNR (dB) difference: Optical flow calculated from original image with a
resolution of 1920x1080.

Accuracy Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
One pixel 1.56 0.83 -0.80 0.19 0.25 0.73 -0.54 3.32 0.88
Half pixel 1.71 1.55 -0.20 0.76 0.70 1.42 0.05 3.46 1.32
Quarter pixel 1.58 1.60 -0.17 0.79 0.72 1.46 0.07 3.46 1.33

half pixel accuracy. This is true for all resolution, and can be seen when comparing
Table A.2 with A.3.

The increased accuracy will also lead to an increased bit rate. In Table 4.7 the
average improvement along with the bit rate of the vectors are given. Remember
that the vector bit rate is given in relation to the total bit rate of the reference codec.

Table 4.7: PSNR (dB) difference and vector size for one pixel, half pixel and quarter
pixel accuracy.

One pixel Half pixel Quarter pixel
Resolution Difference Vector size Difference Vector size Difference Vector size
1920x1080 0.88 62.16% 1.32 93.87% 1.33 142.92%
960x540 0.88 20.38% 1.29 30.40% 1.33 44.82%
480x270 0.81 6.26% 1.22 9.34% 1.26 13.91%
320x180 0.77 3.13% 1.16 4.74% 1.19 7.10%
240x135 0.72 2.03% 1.10 3.10% 1.15 4.61%
160x90 0.63 1.10% 1.00 1.69% 1.04 2.49%

Increasing the accuracy at a lower resolution gives a better improvement per bit,
than a high resolution and lower accuracy. For example, the highest resolution
with the lowest accuracy gives 0.88 dB improvement at the cost of 62.16% increase
in bit rate, while the lowest resolution and the highest accuracy gives 1.04 dB
improvement at the cost of 2.49% increase in bit rate.

4.3.3 MSE correction of OF vectors

Even with quarter pixel accuracy, optical flow algorithm still produces estimation
errors. To adjust the vector field calculated by the optical flow algorithm, the
endpoint of each vector has been adjusted with a MSE search. The search is
performed over 3x3 pixels, where the middle pixel is the original estimate. The
difference in PSNR for each sequence is shown in Figure 4.3.

There is an significant improvement in PSNR for all sequences. This can be at-
tributed to less estimation error in areas with noise and at edges. The improved
vector field has a bit rate of over 600%, while the original had a bit rate of 62.16%.
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Figure 4.3: Difference in PSNR (dB) for optical flow and optical flow corrected with
MSE-search. Vector field of 1920x1080 and one pixel accuracy. Search area for MSE was
3x3 pixels.

This shows that the smoothness of an optical flow field reduces the bit rate of the
vectors substantially.

4.3.4 Performance

To compare the performance of the proposed hybrid codec to the reference codec,
the standard test sequence has been encoded with the same PSNR for both se-
quences. The best average performance was achieved when the vector field had a
resolution of 240x135, with half pixel accuracy.

Table 4.8: Bit rate for P-frames, given as percentage of I-frame. Vector field of 240x135
and half pixel accuracy.

Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
Residue 73.0% 79.8% 108.8% 80.4% 78.4% 83.8% 103.1% 23.9% 78.9%
Vector 1.3% 5.5% 5.6% 2.3% 2.0% 4.4% 2.5% 1.1% 3.1%
Total 74.3% 85.3% 114.4% 82.8% 80.4% 88.2% 105.6% 25.1% 82.0%

The proposed hybrid encoder achieves a bit rate of 82.0% of the refererence codec
for P-frames, with the same PSNR. When comparing Table A.2 with the reduction
in bit rate, it is clear that a higher improvement in PSNR gives a higher reduction
in bit rate. For the sequences Vegies and Ducks, which had a decline in PSNR,
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there was an increase in bit rate for the residue image. Along with the bit rate of
the vectors, the total bit rate will be significantly higher than the reference codec.
In situations with a bit rate higher than the reference codec, the encoder should
switch to intra-only coding.

To assess if there has been a degradation in image quality, the difference in SSIM
has been calculated for each sequence. This is shown in Figure 4.4.

Figure 4.4: Difference in SSIM between proposed hybrid codec and reference codec.
Vector field 240x135 and with half pixel accuracy.

There is a slight decrease in SSIM for the Ducks sequence, and some increase for a
few of the other sequences. Since both the PSNR and the SSIM practically are the
same for the reference codec and the proposed hybrid codec, and the fact that both
codecs are wavelet based, it is reasonable to assume that the subjective quality is
the same.

4.4 GOP structure

How the GOP is structured is critical for the performance of a hybrid codec. With
a longer GOP a higher portion of the frames will be P-frames, which normally will
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reduce the overall bit rate. The achieved reduction of 18% for P-frames will only
cause a total bit rate reduction of 9% if the GOP structure is IPIPIPI. How the
proposed hybrid codec responds to a change in GOP structure is therefore crucial
to the overall performance of the codec.

Figure 4.5: Increase in PSNR for sequence with a GOP of 2 and 30 frames, shown for
each sequence. Vector field is 240x135 and with half pixel accuracy. The same 14 frames
are compared for each sequence.

In Figure 4.5 the average increase in PSNR for the difference sequences are shown
for each frame. When the GOP size is increased to 30 frames, the average difference
in PSNR is lower or the same for all sequences, except the Horse sequence. A
decrease in PSNR is to be expected, as errors not corrected by the residual frame
can propagate inside a GOP.

The impact the change in PSNR has on bit rate is shown in Table 4.9. The Horse
sequence, which had an increase in PSNR, has a reduction in bit rate from 23.9%
to 8.9%. For all the other sequences there is an increase in bit rate, even for the
sequences with the same PSNR.

The results when the optical flow is calculated from the decoded image instead of
the uncompressed are also shown. There is an increase of 1.3% in bit rate for the
residue image, and a decrease in bit rate for the vectors of 0.3%. In total, there
is no gain in calculating the optical flow from the decoded image. Results can be
found in Table A.6

Even though there is an increase in bit rate for P-frames when the GOP size is
increased, there will still be an overall reduction in bit rate. The overall bit rate
with a GOP size of 2 is 91%, and 88.3% for 30 frames.
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Table 4.9: Bit rate for residue-frames, given as percentage of I-frame, for GOP size of
2 and 30. Vector field of 240x135 and half pixel accuracy. *=Optical flow is calculated
from the decoded frames.

Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
GOP=2 73.0% 79.8% 108.8% 80.4% 78.4% 83.8% 103.1% 23.9% 78.9%
GOP=30 84.6% 82.5% 121.5% 82.9% 89.3% 87.1% 121.7% 8.9% 84.8%
GOP=30* 84.4% 85.8% 119.6% 84.3% 90.4% 93.0% 122.2% 9.5% 86.1%

A good encoder would not use motion prediction if it does not reduce the bit rate.
Such a situation may for example occur when there is a scene change, and the
encoder would swap the P-frame with an I-frame. If the proposed hybrid encoder
switches to I-frames for frames that have no reduction in bit rate, the overall
reduction would increase. For a GOP size of 2 the overall bit rate would be 89.8%,
and with a GOP size of 30 the rate would be 82.1%.

4.5 Removal of Noise

In the following section some experiments regarding the noise in the images are
presented. In Figure 4.6 the difference in PSNR is show when the sequences have
been median filtered. It can be seen that the PSNR is higher for the original
sequences, except for the OldTown sequence, where the difference is the same.

Since median filtering has a tendency to not only remove noise, but also distort
details and edges, this can affect the performance of the optical flow algorithm.
When median filtering is applied before encoding, the decoded video will suffer
from the same artifacts, which is an undesirable effect.

As shown in Figure 3.1, the removal of noise can be performed in-loop to improve
the motion compensation. In Figure 4.7 it can be seen that using median filtering
does not improve the results. However, the wiener filter improves the performance
for several of the sequences.

Table 4.10: Bit rate for in-loop wiener denoise filter, calculated for GOP size of 2 and
30 frames. Vector field of 240x135 and half pixel accuracy.

Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
GOP=2 original 74.3% 85.3% 114.4% 82.8% 80.4% 88.2% 105.6% 25.1% 82.0%
GOP=2 wiener 81.4% 85.3% 104.9% 79.1% 77.0% 88.5% 92.4% 48.5% 82.1%
GOP=30 original 85.9% 88.0% 127.1% 85.2% 91.3% 91.4% 124.1% 10.0% 87.9%
GOP=30 wiener 82.1% 86.4% 106.4% 79.7% 79.6% 89.9% 93.2% 54.1% 83.9%

In Table 4.10 the difference in bit rate for each sequence is shown. With a GOP
of 2 frames, there was a decrease in bit rate for all sequences, except for Bunny
and Horse, which matches the results in Figure 4.7. However, when changing to 30
frames in the GOP, the decrease in bit rate was larger, and the Bunny sequence had
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Figure 4.6: PSNR increase with original and median filtered sequences. Vector field is
240x135 and with half pixel accuracy.

Figure 4.7: PSNR difference with in-loop denoise filter. Vector field is 240x135 and with
half pixel accuracy. Filter is either median 5x5 or wiener filter.
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a decrease in bit rate. With a GOP of 30 frames the Horse sequence experienced
a high decrease in bit rate without the wiener filter, but not with a filter.

Since only the Ducks sequence had a bit rate over 100%, changing to intra-only
mode will not reduce the bit rate much. With this feature, the overall bit rate was
83.7%, due to the increase of the Horse sequence.



Chapter 5

Discussion

In the following sections the presented results are further discussed. An analysis of
the estimation error is presented, followed by a discussion of optical flows suitability
for motion compensation. Then the performance of the proposed hybrid codec is
compared to that of the reference codec in the chosen scenario. Finally, there is a
brief discussion of the potential for a hybrid encoder with a wavelet transform.

5.1 Analysis of estimation error

Compared to the reference codec, the proposed hybrid codec has a bit rate at 25.1%
for the best sequence (Horse), and 114.5% for the worst sequence (Ducks) with the
following settings: A GOP size of 2 frames, vector field of 240x135, half pixel
accuracy, and the in-loop denoise filter switched off. In this section, the properties
of a few residue images are analyzed.

Two interesting sequences to compare, are the Horse and the Vegies sequences
provided by EBU, described in Section 3.2.2. The Vegies sequence needed a bit
rate of 105% for P-frames, over four times that of the Horse sequence. Figure 5.1
is a visualization of the estimation error.

As presented earlier in Figure 4.1, the scaling of the residue image has a negative
effect on the performance for the Vegies sequence. The Vegies frame was scaled
with a factor of 0.7, while the Horse frame was scaled with a factor of 0.8. All
analysis of the residual images has been performed after the scaling.

From Figure 5.1, it can be seen that both sequences suffer from estimation errors in
areas with motion. In the Horse frame there are defined edges between the moving
objects and the background, which suffer from estimation error. Also, there is
some estimation error for the background. For the Vegies frame, there are some
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(a) Vegies - frame 13

(b) Horse - frame 1

Figure 5.1: Visualization of estimation error where white indicates error. Vector field
resolution of 240x160 and half pixel accuracy.
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estimation errors on the edges between the objects and the background. There are
also some errors one the surface of the vegetables due to the rotational movement.

(a) Vegies: original, entropy=7.4, std=53 (b) Horse: original, entropy=7.67, std=54

(c) Vegies: residue, entropy=3.7, std=3.9 (d) Horse: residue, entropy=4.1, std=5.0

Figure 5.2: Histogram of uncompressed and corresponding residue images from the
Horse (frame 1) and Vegies (frame 13) sequences. Vector field resolution of 240x160 and
half pixel accuracy.

Figure 5.2 shows the distribution of the pixel values in the frames. From the
histograms, it is clear that the motion compensations packs the pixels around the
value 127 (no estimation error). The motion compensation appears to perform
equally well for both sequences. All in all, both sequences seem to suffer from the
same amount of estimation error.

Since the distribution of pixel values gives no indication of the difference in per-
formance, an analysis of the wavelet coefficients is necessary. A two-level wavelet
decomposition was done on both the original and the residue image. In Figure 5.3
and 5.4 the change in the wavelet coefficients for the different subbands is shown.
Details can be found in Appendix C.

The only subband where the reduction in the standard deviation, range and entropy
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Figure 5.3: Difference in wavelet coefficients for residue and original of Horse frame 1.
The ratio between the residue and the original is shown for standard deviation (STD),
range of coefficients, and entropy of coefficients.
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Figure 5.4: Difference in wavelet coefficients for residue and original of Vegies frame 13.
The ratio between the residue and the original is shown for standard deviation (STD),
range of coefficients, and entropy of coefficients.
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are higher for the Vegies frame, is the 2LL sub band. The wavelet coefficients
in this subband, representing the low frequency parts of the image, only counts
for one-sixteenth of the coefficients. The motion compensation works better for
reducing the standard deviance, range and entropy for all the other subbands. One
exception is higher decrease of the range for the 2LH sub band. With this analysis it
is possible to see that the motion compensation has higher reduction in most of the
subbands for the Horse sequence, than the Vegies sequence. However, as described
in Section 3.5.3, this analysis does not accurately describe why the Horse sequence
achieves better bit rate than the Vegies sequence, it only gives an indication.

Table 5.1: Wavelet analysis - Vector field 240x135 - Half pixel accuracy - GOP size of
2 frames - Range, Entropy and STD given for residue frame, as a percentage of original
frame.

Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse
PSNR (dB) 1.61 1.12 -0.36 0.65 0.65 1.04 -0.08 3.18

Range 80% 69% 79% 70% 61% 102% 76% 47%
Entropy 74% 85% 84% 94% 92% 86% 96% 79%
STD 61% 53% 61% 83% 77% 56% 79% 36%

In Table 5.1 the average difference between the the original frames, and the residue
frames, is shown for each sequence. There is no distinct correlation between the
increase in PSNR, and the average differences. In general a reduction in range
and variance should reduce the quantization errors, and thus increase the PSNR.
However, the JPEG 2000 compression scheme is more complication than this ap-
proximation.

5.2 Optical flow and motion compensation

In general, optical flow algorithms try to find the actual motion in a sequence
of images. This is different from standard motion estimation, that only tries to
minimize the estimation error with respect to a cost function.

In Section 5.1 it was shown that the optical flow algorithm reduces entropy of
the residual frame, and in Appendix D the estimation error for each sequence is
visualized.

5.2.1 Noise

A good optical flow algorithm will not let noise affect the calculations of the flow.
As demonstrated in Section 4.2, motion compensation in the presence of noise
can lead to estimation error, as the vectors only move the noise around instead
of compensating for it. As an example, assume that the pixels in a homogeneous
region suffer from independent Gaussian noise with a zero mean, N(0, σ2). If
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motion compensation is performed between two arbitrary pixels in this region, the
residue pixel will then have a distribution of N(0, 2σ2). As there is no correlation
in noise, this will reduce the efficiency of the JPEG 2000 encoder, and thus the
performance of the proposed hybrid codec.

This effect can be reduced by adding a in-loop denoise filter, which increased the
performance for most sequences. This shows that an effective way of addressing
the noise problem can reduce the bit rate further.

5.2.2 Occlusion

Regions that have been occluded are obviously difficult to estimate, since these
parts of the image are not present in the previous frame. In these situations block
based motion compensation would have searched for the best match in available
anchor-frames. Optical flow however, will not calculate valid vectors, and thus
experience high estimation error. This effect can easily be seen in the estimation
error for the sequences Ducks and Parkjoy, and will cause very high frequency
components in the residue image, and reduce the performance of the JPEG 2000
encoding.

5.2.3 Performance of optical flow algorithm

In addition to errors in occluded regions, there are errors at the edge of objects, even
if the motion is global. This can be seen in the Bunny sequence, where there are
errors at the edge between the trees and the sky. These errors are minimized with
increased resolution of the vector field, and when interpolation is used to calculate
sub-pixel values. The lowest estimation error is achieved when the optical flow
vectors are calculated for the original resolution, and with quarter pixel precision.
However, the bit rate for the vector field will then be larger than the bit rate for
I-frames. To achieve an overall reduction in bit rate it is therefore necessary to use
a vector field calculated for downsized images.

In the Middlebury Evaluation there are several others algorithms that perform
better than ’Classic+NL’, which is the one used in the proposed hybrid codec [28].
Even though the average endpoint error ranges from 0.09 to 0.65 pixels for the
highest ranking algorithm (MDP-Flow2), many pixels still have poorer estimation:
16% of the pixels had an endpoint error above 1 pixel, and 9.24% had an endpoint
error over 2 pixels. The best optical flow algorithms available, does not have perfect
estimation.

5.2.4 Summary

With an improved optical flow algorithm and motion estimation, the estimation
error would decrease, resulting in better performance for the JPEG 2000 encoding.
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Since the bit rate of the most accurate vector field generated by the ’Classic+NL’
algorithm exceeded that of the reference codec, it is unclear what the bit rate
would have been for an improved vector field. However, even with a perfect optical
flow algorithm, the impact occluded regions and noise have on the estimation error
would still be a problem, and must be addressed.

5.3 Evaluation of the proposed codec

To assess the quality and performance of the proposed hybrid codec, it is compared
to the performance of the reference codec in the contribution scenario described in
Section 3.1.

5.3.1 Delay and complexity

The proposed hybrid encoder has considerable higher complexity than the reference
encoder. The calculation of the optical flow is a time consuming process at full
resolution, ranging from a few minutes to half an hour depending on the content.
Calculating the optical flow for the resolution 240x180 takes between 7 and 15
seconds. Even though this is a software implementation in Matlab, and can be
optimized in hardware, the T-Vips TVG450 gateway only has a delay of 60 ms
per frame for 1080p50 content [25]. In addition to being a CPU-intensive process,
the memory requirements of the optical flow algorithm are also large. Matlab was
registered to use over 4GB of RAM during some of the calculations.

Not only the calculation of the vector field, but also the motion compensation re-
quires additional processing time and requirements. To perform motion estimation
and compensation, the anchor frame or frames need to be buffered. Extra pro-
cessing power is also necessary to perform interpolation when sub-pixel accuracy
is used.

5.3.2 Error resilianse

The reference codec is very robust against transmission errors. If there is an trans-
mission error, for example in the form of a packet loss, it will only cause a degra-
dation in quality for the corresponding frame. With the GOP structure proposed
for the hybrid encoder, a packet loss can cause degradation in quality in all the
remaining frames in the GOP. These errors can be minimized by error detection
and correction techniques. Regardless, the proposed codec will be more vulnerable
to transmission errors than the reference codec.
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5.3.3 Bit rate

The proposed hybrid codec achieves an average reduction in bit rate of 11.7% over
all sequences, while maintaining the same PSNR and SSIM. If the codec is allowed
to switch to intra-only mode when deemed nesecarry, the reduction will increase
to 18.8%.

For IP-networks a constant bit rate is often a desired feature. As an example,
assume that a constant bit rate is set 10% lower than the bit rate in the reference
codec. Only half of the sequences will in this case have the same or improved
PSNR. The other half will suffer from a degradation in quality. Therefore, the
proposed hybrid codec can not have a constant bit rate that is lower than the
reference codec, while matching the quality for all types of content. However, if
the codec can switch to I-frames when deemed necessary, the proposed codec will
have the same or higher PSNR at the same bit rate, regardless of the content.

5.3.4 Possible improvements

There are several improvements that can be made to the proposed hybrid codec
that could reduce the bit rate further. Some of them are presented below.

• As the lossless compression of the vector field uses a generic file format and
compression, it is possible to reduce the bit rate of the vector field by changing
to a compression algorithm suited for vector fields. Differential encoding of
the vector field could also reduce the bit rate further.

• An improved optical flow algorithm, or one designed for motion compensa-
tion, can reduce the estimation error, especially the high frequency errors at
the edges of objects.

• In addition to optical flow, there should be extra motion compensation in
areas with high estimation errors, which often arises from occluded regions.

• Even though JPEG 2000 encoders are very good at maximizing quality at
a given bit rate, the knowledge of the residue images could further improve
this maximization.

• Either an improvement of the in-loop denoise filter, or find other ways to
combat the effects of noise.

5.4 Hybrid video codec with wavelet transform

Instead of using optical flow for motion estimation, it is also possible to use block
based techniques. As explained in Section 2.3.1 the block based motion compensa-
tion that does not introduce blocking artifacts is the OBMC. Hybrid codecs that
combine OBMC and wavelet transformation have been proposed earlier [34, 35]. If
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the motion estimation is performed in the wavelet domain, blocking artifacts will
not be an issue, and techniques that employ wavelet domain motion compensation
have been proposed [21]. These techniques have in common that they do not match
the performance of the best DCT-based hybrid codecs.

The next generation video codec HEVC, uses VBMC and integer transforms which
causes blocking artifacts. These artifacts are however minimized by introducing
advanced in-loop deblocking filters. For example, the in-loop deblocking filter found
in H.264/AVC improves the subjective quality and the PSNR [36].

In addition to deblocking, several other techniques can be employed by DCT based
codecs, that are not practical with wavelet decomposition. One technique is the
option to discard encoding of blocks with little information. This is not possible if
the transform is performed on larger areas, as is the case in JPEG 2000. Another
is the use of intra prediction which can further exploit the spatial redundancy.
In fact, by employing these techniques and more, some reports suggest that the
H.264/AVC High 4:4:4 Intra Profile perform similar to JPEG 2000, and this is
without exploiting the temporal redundancy [37, 38].

The emerging HEVC standard aims at a bit rate half of H.264/AVC with the same
quality. From the HEVC standard, it can be seen that the video compression
community see most potential in hybrid codecs with assorted block based motion
compensation techniques and DCT integer transforms [39, 40].



Chapter 6

Conclusions

A hybrid codec that uses optical flow for motion estimation and JPEG 2000 for
coding of the estimation error has been presented. The performance of the motion
estimation has been evaluated and the estimation error has been analyzed. The
overall quality of the codec has been compared to an intra-only JPEG 2000 codec,
in a broadcast scenario.

Motion compensation with optical flow reduces the entropy in the residue images,
and most pixels will have a low estimation error. Inaccuracies in the optical flow
will often cause estimation errors at the edge of objects, which in turn will create
high frequency components in the residue image. In addition to these inaccuracies
the optical flow algorithm suffer from high estimation error in occluded regions. As
optical flow algorithms try not to take noise into consideration when calculating the
flow, the energy of the noise may increase after motion compensation. Promising
results were achieved by employing an in-loop wiener filter, to reduce the effect of
noise.

Even with an optimal optical flow algorithm the estimation error is not suited for
being encoded with a wavelet transform, without addressing the problems of noise
and occluded regions.

At the same objective quality as the reference codec there were significant differ-
ences between the sequences, tested with the settings that gave the best overall
reduction in bit rate. The bit rate ranged from a decrease of 90% to an increase of
27%, with an overall reduction of 11.7%. If the codec switches to intra-only coding
when deemed necessary, the reduction increases to 18.8%.

There are several disadvantages with the proposed codec in a contribution environ-
ment: Increased delay, high complexity, higher vulnerability to transmission error,
and the lack of a constant bit stream. Even with the overall reduction in bit rate
the proposed codec is not suited to replace the reference codec in an contribution
environment.

53



54 CHAPTER 6. CONCLUSIONS

6.1 Future Work

There are several improvements that can be made to the proposed hybrid codec
that could increase the performance, which are described in Section 5.3.4. It is
the author’s opinion that future work should focus on more promising alternatives,
instead of improving this scheme.

First, wavelet based MCTF provides both temporal, spatial and SNR scalability.
No research on how this principle behaves in an contribution environment has been
found, and an investigations should therefore be performed.

Second, the new HEVC video codec under development aims to achieve a bit rate
half that of H.264/AVC, with the same quality. Interestingly, a ’Low Delay’ profile
has been proposed that may suite some of the requirements in contribution environ-
ments [40]. Investigations into HEVC performance in a contribution environment
should also be conducted.
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Appendix A

Results

Table A.1: PSNR (dB) difference: Optical flow calculated with one pixel accuracy.

Resolution Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
1920x1080 1.56 0.83 -0.80 0.19 0.25 0.73 -0.54 3.32 0.88
960x540 1.62 0.86 -0.83 0.15 0.21 0.76 -0.57 3.34 0.88
480x270 1.58 0.69 -0.90 0.16 0.22 0.64 -0.53 3.17 0.81
320x180 1.60 0.58 -0.94 0.15 0.24 0.50 -0.56 3.15 0.77
240x135 1.49 0.49 -0.97 0.14 0.24 0.37 -0.58 3.13 0.72
160x90 1.35 0.37 -0.96 0.11 0.22 0.14 -0.84 3.16 0.63

differential -2.50 -0.03 -0.50 -0.69 -0.33 -1.97 -1.14 3.20 -0.16

Table A.2: PSNR (dB) difference: Optical flow calculated with half a pixel accuracy.

Resolution Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
1920x1080 1.71 1.55 -0.20 0.76 0.70 1.42 0.05 3.46 1.32
960x540 1.76 1.55 -0.23 0.67 0.65 1.44 -0.02 3.39 1.29
480x270 1.72 1.36 -0.26 0.68 0.65 1.31 0.00 3.27 1.22
320x180 1.71 1.22 -0.30 0.67 0.65 1.18 -0.04 3.19 1.16
240x135 1.61 1.12 -0.36 0.65 0.65 1.04 -0.08 3.18 1.10
160x90 1.43 0.99 -0.40 0.62 0.62 0.80 -0.32 3.16 1.00

Table A.3: PSNR (dB) difference: Optical flow calculated with a quarter pixel accuracy.

Resolution Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
1920x1080 1.58 1.60 -0.17 0.79 0.72 1.46 0.07 3.46 1.33
960x540 1.62 1.69 -0.15 0.76 0.69 1.48 0.04 3.41 1.33
480x270 1.58 1.51 -0.18 0.74 0.69 1.35 0.05 3.30 1.26
320x180 1.57 1.32 -0.20 0.73 0.69 1.24 0.03 3.18 1.19
240x135 1.54 1.23 -0.24 0.72 0.70 1.12 -0.02 3.19 1.15
160x90 1.37 1.09 -0.30 0.68 0.67 0.89 -0.24 3.14 1.04
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Table A.4: Bit rate - Vector field 240x135 - Half pixel accuracy - GOP size of 2 frames.

Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
Residue 73.0% 79.8% 108.8% 80.4% 78,4% 83.8% 103.1% 23.9% 78,9%
Vector 1.3% 5.5% 5.6% 2.3% 2.0% 4.4% 2.5% 1.1% 3.1%
SUM 74.3% 85.3% 114.4% 82.8% 80.4% 88.2% 105.6% 25.1% 82.0%

SUM optimal 74.3% 85.3% 100.0% 82.8% 80.4% 88.2% 100.0% 25.1% 79.5%

Table A.5: Bit rate - Vector field 240x135 - Half pixel accuracy - GOP size of 30 frames.

Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
Residue 84.6% 82.5% 121.5% 82.9% 89.3% 87.1% 121.7% 8.9% 84.8%
Vector 1.3% 5.5% 5.6% 2.3% 1.9% 4.4% 2.5% 1.1% 3.1%
SUM 85.9% 88.0% 127.1% 85.2% 91.3% 91.4% 124.1% 10.0% 87.9%

SUM optimal 85.9% 88.0% 100.0% 85.2% 91.3% 91.4% 100.1% 10.0% 81.5%

Table A.6: Bit rate - Vector field 240x135 - Half pixel accuracy - GOP size of 30 frames
- Flow calculated from decoded picture.

Bunny Crowdrun Ducks IntoTree OldTown Parkjoy Vegies Horse Average
Residue 84,4% 85,8% 119,6% 84,3% 90,4% 93,0% 122,2% 9,5% 86,1%
Vector 1,9% 4,3% 3,9% 2,3% 2,0% 4,1% 2,4% 1,1% 2,8%
SUM 86,4% 90,1% 123,5% 86,6% 92,4% 97,1% 124,6% 10,6% 88,9%

SUM optimal 86,4% 90,1% 100,0% 86,6% 92,4% 97,1% 100,0% 10,6% 82,9%
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Matlab code

B.1 parse_results.m

1 function [] = parse_results(PSNR,SSIM,filename,file_descripion,CSV,...
SSIMerrorbar,PSNRerrorbar)

2 if(size(PSNR) 6= [2 ,240])
3 warning('PSNR has wrong size, must be [2,240]');
4 elseif(size(SSIM) 6= [2 ,240])
5 warning('SSIM has wrong size, must be [2,240]');
6 else
7

8 %Other values not supported without changing code
9 frames_pr_sequence=15;

10 number_of_sequences=8;
11

12 % 13 degrees of freedom − Students t
13 confidence_factor_sequence= ...
14 2.145/sqrt(frames_pr_sequence);
15

16 % 119 degrees of freedom − Students t
17 confidence_factor_total= ...
18 1.980/sqrt(frames_pr_sequence*number_of_sequences);
19

20 sequence_names=char('Bunny', 'Crowdrun', 'Ducks', ...
21 'IntoTree', 'OldTown', 'Parkjoy', 'Vegies', 'Horse');
22

23 PSNR_calc=zeros(4,number_of_sequences+1);
24 SSIM_calc=zeros(4,number_of_sequences+1);
25

26 %PSNR Calculation
27 PSNR=10.^(PSNR./10);
28 PSNR_tmp=PSNR(1,:)./PSNR(2,:);
29 PSNR_tmp=PSNR_tmp(2:2:end);
30

31 for x=1:number_of_sequences;
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32 PSNR_calc(1,x)=mean(PSNR_tmp((x−1)*frames_pr_sequence+1 : ...
33 x*frames_pr_sequence));
34

35 PSNR_calc(4,x)=std(PSNR_tmp((x−1)*frames_pr_sequence+1 : ...
36 x*frames_pr_sequence));
37

38 PSNR_calc(2,x)=PSNR_calc(1,x)−confidence_factor_sequence * ...
39 PSNR_calc(4,x);
40

41 PSNR_calc(3,x)=PSNR_calc(1,x)+confidence_factor_sequence * ...
42 PSNR_calc(4,x);
43 end
44

45 PSNR_calc(1,end)=mean(PSNR_tmp);
46 PSNR_calc(4,end)=std(PSNR_tmp);
47

48 PSNR_calc(2,end)=PSNR_calc(1,end)−confidence_factor_total * ...
49 PSNR_calc(4,end);
50

51 PSNR_calc(3,end)=PSNR_calc(1,end)+confidence_factor_total * ...
52 PSNR_calc(4,end);
53

54 PSNR_calc=10*log10(PSNR_calc);
55

56 %SSIM Calculation
57 SSIM_tmp=SSIM(1,:)−SSIM(2,:);
58 SSIM_tmp=SSIM_tmp(2:2:end);
59

60 for x=1:number_of_sequences;
61 SSIM_calc(1,x)=mean(SSIM_tmp((x−1)*frames_pr_sequence+1 : ...
62 x*frames_pr_sequence));
63

64 SSIM_calc(4,x)=std(SSIM_tmp((x−1)*frames_pr_sequence+1 : ...
65 x*frames_pr_sequence));
66

67 SSIM_calc(2,x)=SSIM_calc(1,x)− ...
68 confidence_factor_sequence * SSIM_calc(4,x);
69

70 SSIM_calc(3,x)=SSIM_calc(1,x)+...
71 confidence_factor_sequence * SSIM_calc(4,x);
72 end
73

74 SSIM_calc(1,end)=mean(SSIM_tmp);
75 SSIM_calc(4,end)=std(SSIM_tmp);
76

77 SSIM_calc(2,end)=SSIM_calc(1,end)− ...
78 confidence_factor_total * SSIM_calc(4,end);
79

80 SSIM_calc(3,end)=SSIM_calc(1,end)+ ...
81 confidence_factor_total * SSIM_calc(4,end);
82

83 %Write CSV−file
84 if (CSV==1)
85 fw = fopen(filename, 'w');
86

87 fprintf(fw,'Description:;');
88 fprintf(fw,file_descripion);
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89 fprintf(fw,'\n\n');
90 fprintf(fw,'PSNR\n');
91 fprintf(fw,'Sequence;Lower (dB);Mean (dB);Upper (dB)\n');
92

93 for x=1:number_of_sequences
94 fprintf(fw,'%s',sequence_names(x,:)); fprintf(fw,';');
95 fprintf(fw,'%f',PSNR_calc(2,x)); fprintf(fw,';');
96 fprintf(fw,'%f',PSNR_calc(1,x)); fprintf(fw,';');
97 fprintf(fw,'%f',PSNR_calc(3,x)); fprintf(fw,'\n');
98 end
99 fprintf(fw,'Total;');

100 fprintf(fw,'%f',PSNR_calc(2,end)); fprintf(fw,';');
101 fprintf(fw,'%f',PSNR_calc(1,end)); fprintf(fw,';');
102 fprintf(fw,'%f',PSNR_calc(3,end)); fprintf(fw,'\n');
103

104

105 fprintf(fw,'\nSSIM\n');
106 fprintf(fw,'Sequence;Lower;Mean;Upper\n');
107 for x=1:number_of_sequences
108 fprintf(fw,'%s', sequence_names(x,:)); fprintf(fw,';');
109 fprintf(fw,'%f',SSIM_calc(2,x)); fprintf(fw,';');
110 fprintf(fw,'%f',SSIM_calc(1,x)); fprintf(fw,';');
111 fprintf(fw,'%f',SSIM_calc(3,x)); fprintf(fw,'\n');
112 end
113 fprintf(fw,'Total;');
114 fprintf(fw,'%f',SSIM_calc(2,end)); fprintf(fw,';');
115 fprintf(fw,'%f',SSIM_calc(1,end)); fprintf(fw,';');
116 fprintf(fw,'%f',SSIM_calc(3,end)); fprintf(fw,'\n');
117

118 fclose(fw);
119 end
120

121 %Create and save errorbar plot of SSIM difference
122 if (SSIMerrorbar==1)
123 errorbar(1:number_of_sequences, SSIM_calc(1,1:end−1), ...
124 SSIM_calc(2,1:end−1)−SSIM_calc(1,1:end−1), ...
125 SSIM_calc(3,1:end−1)−SSIM_calc(1,1:end−1), 'o');
126 hold on;
127 grid on;
128 plot(0:number_of_sequences+1,zeros(1,number_of_sequences+2),...
129 'color', 'black');
130 set(gca,'XTickLabel',{' ',sequence_names,' '});
131 set(gca,'FontSize',14);
132 set(gcf,'Color',[1.0 1.0 1.0]);
133 set(gcf,'Position',[100,100,1024,768]);
134 ylabel('SSIM difference');
135 frame=getframe(gcf);
136 [X,map]=frame2im(frame);
137 close;
138 imwrite(X,'SSIMdiff.png');
139

140 end
141

142 %Create and save errorbar plot of PSNR difference
143 if (PSNRerrorbar==1)
144 errorbar(1:number_of_sequences, PSNR_calc(1,1:end−1),...
145 PSNR_calc(2,1:end−1)−PSNR_calc(1,1:end−1), ...
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146 PSNR_calc(3,1:end−1)−PSNR_calc(1,1:end−1), 'o');
147 hold on;
148 grid on;
149 plot(0:number_of_sequences+1,zeros(1,number_of_sequences+2),...
150 'color', 'black');
151 set(gca,'XTickLabel',{' ',sequence_names,' '});
152 set(gca,'FontSize',14);
153 set(gcf,'Color',[1.0 1.0 1.0]);
154 set(gcf,'Position',[100,100,1024,768]);
155 ylabel('PSNR (dB) difference');
156 frame=getframe(gcf);
157 [X,map]=frame2im(frame);
158 close;
159 imwrite(X,'PSNRdiff.png');
160

161 end
162

163 end
164 end
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B.2 wavelet_decomp.m

1 function [out] = wavelet_decomp(input_I,input_P)
2 input_I=strcat(input_I,'.pgm');
3 input_P=strcat(input_P,'.pgm');
4

5 %Read image files
6 I=(imread(input_I));
7 P=(imread(input_P));
8

9 %Normalization
10 I=im2double(I);
11 P=im2double(P);
12

13 %Level offset
14 I=I−0.5;
15 P=P−0.5;
16

17 %Filters in JPEG 2000
18 Lo_D=[0.0267 −0.0168 −0.0782 0.2668 0.6029 0.2668 −0.0782 −0.0168 ...
19 0.0267];
20 Hi_D=[0.0912 −0.0575 −0.5912 1.1150 −0.5912 −0.0575 0.0912];
21

22 %Calculate the 2−level Wavelet transform
23 [scaledI, verticalI, horizontalI, diagonalI]=dwt2(I,Lo_D,Hi_D);
24

25 [scaledI2, verticalI2, horizontalI2, diagonalI2]= ...
26 dwt2(scaledI, Lo_D,Hi_D);
27

28 [scaledP, verticalP, horizontalP, diagonalP]= ...
29 dwt2(P, Lo_D, Hi_D);
30

31 [scaledP2, verticalP2, horizontalP2, diagonalP2]= ...
32 dwt2(scaledP, Lo_D,Hi_D);
33

34 %Concatenate matrix so total mean, max, min, and std can be calculated
35 scaledI=catmat(scaledI);
36 verticalI=catmat(verticalI);
37 horizontalI=catmat(horizontalI);
38 diagonalI=catmat(diagonalI);
39

40 scaledI2=catmat(scaledI2);
41 verticalI2=catmat(verticalI2);
42 horizontalI2=catmat(horizontalI2);
43 diagonalI2=catmat(diagonalI2);
44

45 scaledP=catmat(scaledP);
46 verticalP=catmat(verticalP);
47 horizontalP=catmat(horizontalP);
48 diagonalP=catmat(diagonalP);
49

50 scaledP2=catmat(scaledP2);
51 verticalP2=catmat(verticalP2);
52 horizontalP2=catmat(horizontalP2);
53 diagonalP2=catmat(diagonalP2);
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54

55 %Calculate Mean, STD, Min, Mac, Range and Entropy for all sub bands.
56

57 strings=' Mean STD Min Max Range Entropy'...
;

58 disp(strcat('Original image:',input_I));
59 disp(strcat('Residue image:',input_P));
60

61 disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−1LL−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−');
62 disp(strings);
63

64 mxI=max((scaledI));
65 mxP=max((scaledP));
66 miI=min((scaledI));
67 miP=min((scaledP));
68

69 disp([mean((scaledI)),std((scaledI)),miI,mxI,mxI−miI, ...
70 entropy(scaledI)]);
71

72 disp([mean((scaledP)),std((scaledP)),miP,mxP,mxP−miP, ...
73 entropy(scaledP2)]);
74

75 disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−2LL−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−');
76 disp(strings);
77

78 mxI=max((scaledI2));
79 mxP=max((scaledP2));
80 miI=min((scaledI2));
81 miP=min((scaledP2));
82

83 I_RANGE=(mxI−miI)*0.0625;
84 P_RANGE=(mxP−miP)*0.0625;
85

86 I_ENT=entropy(scaledI2)*0.0625;
87 P_ENT=entropy(scaledP2)*0.0625;
88 STD_ratio=0.0625*(std((scaledP2))/std((scaledI2)));
89

90 disp([mean((scaledI2)),std((scaledI2)),miI,mxI,mxI−miI, ...
91 entropy(scaledI2)]);
92

93 disp([mean((scaledP2)),std((scaledP2)),miP,mxP,mxP−miP, ...
94 entropy(scaledP2)]);
95

96 disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−1HL−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−');
97 disp(strings);
98

99 mxI=max((verticalI));
100 mxP=max((verticalP));
101 miI=min((verticalI));
102 miP=min((verticalP));
103

104 I_RANGE=I_RANGE+(mxI−miI)*0.25;
105 P_RANGE=P_RANGE+(mxP−miP)*0.25;
106

107 I_ENT=I_ENT+entropy(verticalI)*0.25;
108 P_ENT=P_ENT+entropy(verticalP)*0.25;
109 STD_ratio=STD_ratio + 0.25*(std((verticalP))/std((verticalI)));
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110

111 disp([mean((verticalI)),std((verticalI)),miI,mxI,mxI−miI, ...
112 entropy(verticalI)]);
113

114 disp([mean((verticalP)),std((verticalP)),miP,mxP,mxP−miP, ...
115 entropy(verticalP)]);
116

117 disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−2HL−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−');
118 disp(strings);
119

120 mxI=max((verticalI2));
121 mxP=max((verticalP2));
122 miI=min((verticalI2));
123 miP=min((verticalP2));
124

125 I_RANGE=I_RANGE+(mxI−miI)*0.0625;
126 P_RANGE=P_RANGE+(mxP−miP)*0.0625;
127

128 I_ENT=I_ENT+entropy(verticalI2)*0.0625;
129 P_ENT=P_ENT+entropy(verticalP2)*0.0625;
130 STD_ratio=STD_ratio + 0.0625*(std((verticalP2))/ std((verticalI2)));
131

132 disp([mean((verticalI2)),std((verticalI2)),miI,mxI,mxI−miI, ...
133 entropy(verticalI2)]);
134

135 disp([mean((verticalP2)),std((verticalP2)),miP,mxP,mxP−miP, ...
136 entropy(verticalP2)]);
137

138 disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−1LH−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−');
139 disp(strings);
140

141 mxI=max((horizontalI));
142 mxP=max((horizontalP));
143 miI=min((horizontalI));
144 miP=min((horizontalP));
145

146 I_RANGE=I_RANGE+(mxI−miI)*0.25;
147 P_RANGE=P_RANGE+(mxP−miP)*0.25;
148

149 I_ENT=I_ENT+entropy(horizontalI)*0.25;
150 P_ENT=P_ENT+entropy(horizontalP)*0.25;
151

152 STD_ratio=STD_ratio + 0.25*(std((horizontalP))/ std((horizontalI)));
153

154 disp([mean((horizontalI)),std((horizontalI)),miI,mxI,mxI−miI, ...
155 entropy(horizontalI)]);
156

157 disp([mean((horizontalP)),std((horizontalP)),miP,mxP,mxP−miP, ...
158 entropy(horizontalP)]);
159

160 disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−2LH−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−');
161 disp(strings);
162

163 mxI=max((horizontalI2));
164 mxP=max((horizontalP2));
165 miI=min((horizontalI2));
166 miP=min((horizontalP2));
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167

168 I_RANGE=I_RANGE+(mxI−miI)*0.0625;
169 P_RANGE=P_RANGE+(mxP−miP)*0.0625;
170

171 I_ENT=I_ENT+entropy(horizontalI2)*0.0626;
172 P_ENT=P_ENT+entropy(horizontalP2)*0.0625;
173

174 STD_ratio=STD_ratio + ...
175 0.0625*(std((horizontalP2))/ std((horizontalI2)));
176

177 disp([mean((horizontalI2)),std((horizontalI2)),miI,mxI,mxI−miI, ...
178 entropy(horizontalI2)]);
179

180 disp([mean((horizontalP2)),std((horizontalP2)),miP,mxP,mxP−miP, ...
181 entropy(horizontalP2)]);
182

183 disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−1HH−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−');
184 disp(strings);
185

186 mxI=max((diagonalI));
187 mxP=max((diagonalP));
188 miI=min((diagonalI));
189 miP=min((diagonalP));
190

191 I_RANGE=I_RANGE+(mxI−miI)*0.25;
192 P_RANGE=P_RANGE+(mxP−miP)*0.25;
193

194 I_ENT=I_ENT+entropy(diagonalI)*0.25;
195 P_ENT=P_ENT+entropy(diagonalP)*0.25;
196

197 STD_ratio=STD_ratio + 0.25*(std((diagonalP))/ std((diagonalI)));
198

199 disp([mean((diagonalI)),std((diagonalI)),miI,mxI,mxI−miI, ...
200 entropy(diagonalI)]);
201

202 disp([mean((diagonalP)),std((diagonalP)),miP,mxP,mxP−miP, ...
203 entropy(diagonalP)]);
204

205 disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−2HH−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−');
206 disp(strings);
207

208 mxI=max((diagonalI2));
209 mxP=max((diagonalP2));
210 miI=min((diagonalI2));
211 miP=min((diagonalP2));
212

213 I_RANGE=I_RANGE+(mxI−miI)*0.0625;
214 P_RANGE=P_RANGE+(mxP−miP)*0.0625;
215

216 I_ENT=I_ENT+entropy(diagonalI2)*0.0625;
217 P_ENT=P_ENT+entropy(diagonalP2)*0.0625;
218

219 STD_ratio=STD_ratio + 0.0625*(std((diagonalP2))/ std((diagonalI2)));
220

221 disp([mean((diagonalI2)),std((diagonalI2)),miI,mxI,mxI−miI, ...
222 entropy(diagonalI2)]);
223
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224 disp([mean((diagonalP2)),std((diagonalP2)),miP,mxP,mxP−miP, ...
225 entropy(diagonalP2)]);
226 disp('−−−−−−−−−−−−−−−−−−−−−−−−−−AVERAGE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−');
227 disp(' RANGE I: RANGE P: RANGE I/P:');
228 disp([I_RANGE,P_RANGE,P_RANGE/I_RANGE]);
229

230 disp(' ENT. I: ENT. P: ENROPY I/P:');
231 disp([I_ENT,P_ENT,P_ENT/I_ENT]);
232

233 disp(' STD %:');
234 disp(STD_ratio);
235

236 out=[I_RANGE,P_RANGE,P_RANGE/I_RANGE,I_ENT,P_ENT,P_ENT/I_ENT, ...
237 STD_ratio];
238

239 end



72 APPENDIX B. MATLAB CODE



Appendix C

Matlab script output

C.1 Wavelet decomposition of Vegies frame 13

wavelet_decomp.m script applied to frame 13 of Vegies sequence, and the residue
image after motion compensation by a 240x135 resolution vector field with half
pixel accuracy.
>> wavelet_decomp(’194’,’p194’)
Original image:194.pgm
Residue image:p194.pgm
----------------------------1LL-------------------------------

Mean STD Min Max Range Entropy
-0.2303 0.2064 -0.5274 0.5739 1.1014 1.6575

-0.0020 0.0099 -0.3899 0.2478 0.6377 0.7987

----------------------------2LL-------------------------------
Mean STD Min Max Range Entropy
-0.2319 0.2044 -0.5128 0.5314 1.0442 1.6258

-0.0020 0.0063 -0.1690 0.1203 0.2893 0.7987

----------------------------1HL-------------------------------
Mean STD Min Max Range Entropy
-0.0000 0.0258 -0.8480 0.8756 1.7237 2.2780

-0.0000 0.0175 -0.5156 0.5457 1.0613 2.1240

----------------------------2HL-------------------------------
Mean STD Min Max Range Entropy
0.0001 0.0249 -0.5566 0.7480 1.3046 1.9137

0.0001 0.0101 -0.2975 0.2523 0.5498 1.6254

----------------------------1LH-------------------------------
Mean STD Min Max Range Entropy
-0.0029 0.0138 -0.2889 0.2994 0.5883 1.7769

73
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-0.0024 0.0115 -0.2728 0.2073 0.4801 1.6791

----------------------------2LH-------------------------------
Mean STD Min Max Range Entropy
0.0001 0.0156 -0.3789 0.3667 0.7456 1.9110

0.0001 0.0084 -0.1862 0.1919 0.3781 1.6339

----------------------------1HH-------------------------------
Mean STD Min Max Range Entropy
0.0000 0.0237 -0.4191 0.3932 0.8123 2.6274

0.0000 0.0199 -0.3189 0.2960 0.6149 2.4848

----------------------------2HH-------------------------------
Mean STD Min Max Range Entropy
0.0001 0.0247 -0.7312 0.8274 1.5586 2.3843

0.0000 0.0163 -0.2890 0.3921 0.6811 2.2152

--------------------------AVERAGE-----------------------------
RANGE I: RANGE P: RANGE I/P:
1.0719 0.6577 0.6136

ENT. I: ENT. P: ENROPY I/P:
2.1605 1.9641 0.9091

STD %:
0.6913

C.2 Wavelet decomposition of Horse frame 1

wavelet_decomp.m script applied to frame 1 of Horse sequence, and the residue
image after motion compensation by a 240x135 resolution vector field with half
pixel accuracy.
>> wavelet_decomp(’212’,’p212’)
Original image:212.pgm
Residue image:p212.pgm
----------------------------1LL-------------------------------

Mean STD Min Max Range Entropy
-0.1382 0.2090 -0.5848 0.6354 1.2202 2.6107

-0.0021 0.0143 -0.4686 0.4581 0.9267 1.0896

----------------------------2LL-------------------------------
Mean STD Min Max Range Entropy
-0.1360 0.2026 -0.5511 0.5365 1.0876 2.5919

-0.0021 0.0089 -0.3096 0.3486 0.6583 1.0896

----------------------------1HL-------------------------------
Mean STD Min Max Range Entropy
-0.0000 0.0506 -0.8163 0.7835 1.5997 2.8897
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-0.0000 0.0166 -0.2928 0.4092 0.7020 2.3039

----------------------------2HL-------------------------------
Mean STD Min Max Range Entropy
-0.0001 0.0559 -0.7284 0.9078 1.6362 2.8821

-0.0001 0.0119 -0.2717 0.2381 0.5098 1.9547

----------------------------1LH-------------------------------
Mean STD Min Max Range Entropy
-0.0018 0.0468 -0.6185 0.6238 1.2424 2.7151

-0.0010 0.0162 -0.3215 0.3149 0.6363 2.1620

----------------------------2LH-------------------------------
Mean STD Min Max Range Entropy
0.0002 0.0649 -0.6966 0.8297 1.5263 3.0922

0.0001 0.0146 -0.4698 0.6250 1.0948 2.0825

----------------------------1HH-------------------------------
Mean STD Min Max Range Entropy
0.0001 0.0501 -0.6682 1.0022 1.6704 3.0815

0.0000 0.0250 -0.3549 0.2945 0.6494 2.6680

----------------------------2HH-------------------------------
Mean STD Min Max Range Entropy
-0.0002 0.0838 -1.4203 0.9925 2.4127 3.2771

-0.0001 0.0239 -0.3749 0.3096 0.6845 2.5769

--------------------------AVERAGE-----------------------------
RANGE I: RANGE P: RANGE I/P:
1.5445 0.6811 0.4410

ENT. I: ENT. P: ENROPY I/P:
2.9121 2.2650 0.7778

STD %:
0.3418
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Appendix D

Images

77
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Figure D.1: Frame 115 of Big Buck Bunny (Bunny) sequence.

Figure D.2: Estimation error in frame 115 of Big Buck Bunny (Bunny) sequence. White
indicates estimation error. Optical flow vector field with a resolution of 1920x1080 and
quarter pixel accuracy.
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Figure D.3: Frame 7130 of Crowdrun sequence

Figure D.4: Estimation error of frame 7130 of Crowdrun sequence. White indicates
estimation error. Optical flow vector field with a resolution of 1920x1080 and quarter
pixel accuracy.
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Figure D.5: Frame 13077 of DuckTakeOff (Ducks) sequence.

Figure D.6: Estimation error of frame 13077 of DuckTakeOff (Ducks) sequence. White
indicates estimation error. Optical flow vector field with a resolution of 1920x1080 and
quarter pixel accuracy.
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Figure D.7: Frame 5130 of IntoTree sequence

Figure D.8: Estimation error of frame 5130 of IntoTree sequence. White indicates
estimation error. Optical flow vector field with a resolution of 1920x1080 and quarter
pixel accuracy.
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Figure D.9: Frame 1218 of OldTownCross (OldTown) sequence.

Figure D.10: Estimation error of frame 1218 of OldTownCross (OldTown) sequence.
White indicates estimation error. Optical flow vector field with a resolution of 1920x1080
and quarter pixel accuracy.
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Figure D.11: Frame 15739 of Parkjoy sequence.

Figure D.12: Estimation error of frame 15739 of Parkjoy sequence. White indicates
estimation error. Optical flow vector field with a resolution of 1920x1080 and quarter
pixel accuracy.
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Figure D.13: Frame 13 of Vegies sequence.

Figure D.14: Estimation error of frame 13 of Vegies sequence. White indicates esti-
mation error. Optical flow vector field with a resolution of 1920x1080 and quarter pixel
accuracy.
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Figure D.15: Frame 1 of Horse sequence.

Figure D.16: Estimation error of 115 of frame 1 of Horse sequence. White indicates
estimation error. Optical flow vector field with a resolution of 1920x1080 and quarter
pixel accuracy.
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Appendix E

Zip file

Content:

1. Matlab files

2. Results

3. Figures in higher resolution
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