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Problem Description

Most speech recognizers are trained on databases with speech from young
to middle age adult speakers. There are, however, many groups of people
who have voices that fall outside this category. Kids voices will, for exam-
ple, differ from adult voices in that the base frequency will be higher than
for adults, and the formant placements will be different. For older speak-
ers, there are also systemic differences in the speech. Since the short time
frequency analysis uses estimates of the spectral envelope, changes in the
formant placements, for example due to the shorter vocal tract in children
compared to adults, will be an important reason for the difference. The effect
of such systematic differences can be simulated, so that a training database
can be created for different voice classes that are not covered by available
databases. This will be a substantially more effective (and cheap) alterna-
tive to building a new database for these voice classes. The assignment is
to find what factors characterise speech from different voice classes, build
a simulated database based on a standard database and a model of these
factors, and evaluate the performance of a speech recognizer trained on these
simulated databases.
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Abstract

Most automatic speech recognition systems are based on statistical models
that require training. While these types of systems have reached recognition
rates that are sufficient for many purposes, they perform poorly for speaker
types that are not present in the training material. Children are often absent
from training material for speech recognizers, and creating good training
material for children can be difficult and expensive.

To address this issue, this thesis focuses on using adult training material
to train a recognizer for children by adapting the training material during
training. Instead of performing speaker-dependent adaptation during recog-
nition, where computational power may be scarce, and responsiveness may be
essential, adaptation is performed during training towards a class of speakers.

Using a combination of vocal tract length normalization (VTLN) and
cepstral mean normalization during training, promising results have been
obtained. In a connected-digits task, a reduction in errors as high as 70%
was shown, with a reduction of almost 50% in a large vocabulary task. Using
VTLN to warp the same training material several times, combining these
warped materials to train one recognizer, a similar reduction in errors was
shown, but with an increased robustness indicating a less speaker-dependent
system. It is also shown that a piecewise linear warping method is better
suited to warp adult speech to child speech, than a bilinear warping method.
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Chapter 1

Introduction

Todays speech recognition systems are overwhelmingly based on a statistical
approach, where a database of recorded speech with known content is used to
train an Automatic Speech Recognition (ASR) system and create models that
are later used to recognize speech based on the same statistical principles.
This approach has proven to be fairly successful in speech recognition, but
has certain obvious weaknesses. A significant problem is that any type of
speech not present in the training material will suffer from poor performance
in such a recognizer, due to the statistical properties not being present in the
training material.

This thesis describes efforts to increase the recognition rate for speakers
with uncommon speech types, specifically children, who are often under-
represented in training databases. Studies have shown that the recognition
rate for children suffer when they are not included in the training material
[Wilpon and Jacobsen, 1996]. Creating good training material for children
is a difficult and time consuming task. Depending on the age, the child may
be unable to read, in which case the sentences would have to be prompted
by an adult speaker, which could lead to the child imitating the adult and
pronounce it differently that he or she normally would. If the child reads
poorly, it could also affect the pronunciation. Children also tire more quickly
than adults and tend to lose focus faster, so making training material for
children often involve development of special interfaces to keep the children
interested [Kazemzadeh et al., 2005, Shobaki et al., 2000].

To address the problem of creating training material for children, at-
tempts are made to adapt adult training material to serve as child training
material. The focus in this thesis is on acoustical adaptation of the speech,
but it has been shown that there is a necessity for special language models for
children as well [Das et al., 1998]. By adapting the material during training,
the computational costs occur mainly during training, where computational
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power is cheap.
The primary adaptation method used is Vocal tract length normalization

(VTLN). This is a method used to adjust for spectral differences between
speakers by warping of the frequency spectrum [Lee and Rose, 1996]. Studies
show that the spectral differences between children and adults can be very
significant [Lee et al., 1999, Narayanan and Potamianos, 2002], so adjusting
for these differences is important when comparing adult and child speech.
The age of the speaker can also be related to the length of the vocal tract
[Fitch and Giedd, 1999].

Earlier work has shown that using linear VTLN on adult training mate-
rial can significantly increase the performance of recognizers when tested on
children [Elenius, 2010, Potamianos and Narayanan, 2003], with reduction in
errors as high as 50% compared to unadapted adult training material. The
use of phoneme-dependent adaptation showed varying results, but the lack
of reduction in errors was primarily blamed on the huge search space and the
problems of estimating good warp factors in a large search space. To solve
this issue, adaptation based on phonetic classes was suggested as a suitable
substitute, which would reduce the search space significantly.

In [Stemmer et al., 2003] using non-linear VTLN was attempted to fur-
ther increase the recognition rate for children. While the non-linear approach
attempted only showed a marginal increase in recognition rate, it did not give
any conclusive answers, but suggested that a non-linear approach may out-
perform linear adaptation.

Many of the experiments performed have been on small vocabulary, con-
nected digits task. In this thesis, the performance of adapting adult training
material to work as child training material on a large vocabulary task is
evaluated.

This thesis is the continuation of a specialization project done in the
autumn semester of 2010, which focused on the use of VTLN to improve the
recognition rates for children using adult training data [Fjær, 2010].

1.1 Report outline

The rest of this thesis is organized as follows. In Chapter 2 the basic recog-
nition system is explained, and some information about the specific software
used in this thesis.

An explanation of how the performance of the system is evaluated is given
in Chapter 3.

Chapter 4 explains the process of creating Mel-frequency cepstral coef-
ficient (MFCC)s, the basic features used to model the speech used in these
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experiments.
In Chapter 5 the statistical techniques used to create a model to be used

for recognition are explained.
VTLN is explained in chapter 6. Here, different methods of performing

VTLN is detailed, as well as how VTLN is implemented in the recognition
systems used in these experiments.

Chapter 7 explains the principles behind Cepestral Mean Normalisation
(CMN).

The speech corpora used in these experiments are detailed in 8. An
overview is given of the different sets used for training and recognition.

The experiments performed and the results obtained are shown in 9. Due
to the experiments performed stemming from results of previous experiments,
a small discussion of the results is usually given to keep the natural progres-
sion of experiments.

Chapter 10 discusses the results found and details some problems, and
some further improvements that could be made.

In Chapter 11 the conclusions are given about what the results have
shown and what purpose they might serve.
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Chapter 2

Recognition system

Figure 2.1 shows the training process of an ASR system. Training material
containing recordings of speech and a transcription of the content in each
recording is needed. Feature extraction is performed on the speech, passing
it to the modelling stage together with the transcribed text. The transcribed
text is used to make a decision about which model each of the features belong
to.

Figure 2.1: Training of acoustic models for an automatic speech recognizer

In Figure 2.2 the testing procedure of an ASR is shown. Again, feature
extraction is performed on the speech to obtain the same kind of features as
used during training. The acoustic models obtained during training are then
used to calculate the probability for each of the models producing the fea-
tures. The acoustical probabilities are then combined with any grammatical
constraints, and in the case of phoneme models; lexical information, and a
decision is made about what is said.
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Figure 2.2: Recognition procedure of an automatic speech recognizer

The Hidden Markov Model Toolkit (HTK) was used as the framework
to create the ASR system in this thesis. HTK is an open source toolkit for
building and manipulating hidden Markov models, primarily made for speech
recognition [Young et al., 2006]. It has implemented support for most of the
algorithms used, and being open source, makes it easy to implement new
algorithms for testing.
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Chapter 3

Performance estimates

3.1 Word error rate

The performance of a recognizer is estimated primarily based on the achieved
Word error rate (WER). The WER is defined in (3.1), where Nsub, Nins,
Ndel and Ntot represents the number of substitutions, insertions, deletions
and total number of words, respectively.

WER = 100
Nsub + Nins + Ndel

Ntot

(3.1)

While the maximal recognition rate that can be achieved is in itself in-
teresting, the robustness of the recognizer is also essential. Because the
adaptation is done during training, the recognizer is adapted for a class of
speakers, not a specific speaker. This means that no information about the
specific speaker is available at the time of adaptation. The experiments in
this paper are tested on a limited set of test data, but attempts are made to
evaluate how well the recognizer would handle a different set of speakers.

3.2 Confidence intervals

In order to test whether the results achieved are statistically significant, we
want to find an interval inside which we can, with some degree of certainty,
say that the true error rate can be found. In order to compare two algorithms
against the same test set, McNemar’s test was used [Gillick and Cox, 1989].
This test was used to estimate the confidence intervals for different test sets.
The calculation of the lower and upper limit of the confidence interval is
shown in (3.2) and (3.3), respectively [Harborg, 1990].
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a1(ne) =
ne − 0.5 + 0.5u2

a/2 − ua/2

√

0.25u2
a/2 + (ne−0.5)(n−ne+0.5)

n

n + u2
a/2

(3.2)

a2(ne) =
ne + 0.5 + 0.5u2

a/2 + ua/2

√

0.25u2
a/2 + (ne+0.5)(n−ne−0.5)

n

n + u2
a/2

(3.3)

n is the total number of words in the test set, ne is the total number
of errors. ua/2 is defined by Pr(N (0, 1) > ua/2) = a/2, where a is the
significance level of the test.

McNemar’s test requires that each test is independent. Proper language
models change the probability of what words should follow based on the
previous words. Because of this dependence, McNemar’s test cannot be
used to calculate confidence intervals for WER when using proper language
models.
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Chapter 4

Mel-Frequency Cepstral

Coefficients

In order to create a statistical model of different sounds, some form of repre-
sentation of the speech signal is needed. Ideally, this representation should
be constant for the same phoneme across all speakers, different from other
phonemes, and easy to extract. These are features created from the speech
signal, used to create the acoustical models and used in the pattern matching
procedure against the acoustical models in Figure 2.1 and 2.2.

The waveform itself is a bad choice, since variations are very large, even
between different pronunciations from the same speaker. Several types of fea-
tures have been attempted in speech recognition, with different degrees of suc-
cess. In these experiments, MFCCs are used. These features are widely used
in speech recognition and have been shown to perform well for speech recogni-
tion tasks [Davis and Mermelstein, 1980]. They are based on the short-time
spectral envelope of the signal, are easy to calculate, and provide a simple
and effective way of performing frequency warping, which is an integral part
of these experiments.

Figure 4.1: Process of creating Mel-Frequency Cepstral Coefficients

The calculation of MFCCs is shown in Figure 4.1. The signal is divided
into many short, overlapping, windows, using a Hamming window. The
absolute value of the Digital Fourier Transform (DFT) is taken, and these
are run through a triangular Mel filterbank. This is a triangular filterbank
spaced according to the Mel scale [Stevens et al., 1937]. The logarithm is
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then taken, and a Discrete Cosine Transform (DCT) is performed. In HTK
(4.1) is used as the DCT [Young et al., 2006].

ci =

√

2

N

N
∑

j=1

mj cos
(

πi

N
(j − 0.5)

)

(4.1)
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Chapter 5

Statistics

Once the MFCCs have been extracted from training data, certain statistical
methods are used to create the acoustical models from this data. These
models are in turn used to recognize new MFCCs. The Hidden Markov
Model (HMM) and Gaussian Mixture Model (GMM) are both an integral
part of many ASR systems, and are used to create the acoustical models in
these experiments.

5.1 Hidden Markov Models

A Markov chain is a model of a random process. It has a finite number of
observable outputs, with a state representing each output. The special thing
about a Markov chain is that the probability of a certain state relies only on
the previous state, thus using a minimal amount of memory without being
completely memoryless.

A HMM is essentially a Markov chain, except that the state can only
partially be determined by observations. This means that each state does
not represent one particular output, but has a certain probability of giving
each observable output. The fact that each state has an output probability
of different observations means that the actual state sequence from a set of
observations is unknown, thus the name Hidden Markov Model.

A HMM is defined by: O, the observable output alphabet; Ω, a set
of states; A, a transition probability matrix representing the probability of
transitioning from one state to another; B, an output probability matrix
representing the probability of each state generating a certain output; and
π, an initial state probability vector representing the probability of starting
in each state.

In these experiments, left-to-right HMMs are mainly used. This means
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that each state can only jump to one other state in addition to being able
to jump to itself, and every state has to be visited. This way, every state is
visited sequentially from start to finish. The only exceptions to this are the
models for silence, which can jump more freely between states.

Because the observable output alphabet, O, is not a discrete alphabet
but a continuous set of observable outputs of MFCCs, the output probability
matrix, B, needs to represent a continuous output probability. To represent
these output probabilities, GMMs are used.

5.2 Gaussian Mixture Models

GMMs are used to model continuous output probabilities in the HMM. Be-
cause of their ability to model almost any distribution function parametri-
cally, GMMs are very effective in this sense.

The output distribution is given in (5.1). Here, bj(o) is the probability
for state j to generate observation o, where N (o; µ, Σ) is a multivariate
Gaussian distribution as shown in (5.2) [Huang et al., 2001]. bj(o) are used
as the elements of the output probability matrix B in the HMM.

bj(o) =
M
∑

m=1

cjmN (o; µjm, Σjm) (5.1)

N (o; µ, Σ) =
1

√

(2π)n|Σ|
e−

1

2
(o−µ)TΣ

−1(o−µ) (5.2)

Thus, when the MFCC features are to be tested during recognition to de-
termine which model is more likely to have produced the sound, the GMMs
produce a certain probability for each MFCC vector, in each HMM state,
representing the probability that that state would produce that MFCC vec-
tor.
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Chapter 6

Vocal tract length

normalization

VTLN is a method used to compensate for spectral differences between differ-
ent speakers [Lee and Rose, 1996]. As mentioned in Chapter 4, the features
used to represent speech rely heavily on the spectral information in the speech
signal. This means that spectral differences between speakers could have a
large impact on the recognition rate, so adjusting for these differences would
be important. VTLN is based on spectral warping, essentially remapping
certain frequencies to others.

6.1 Warping methods

The warping method is a way of mapping an original frequency to a new,
warped frequency. There are several methods used when performing fre-
quency warping for VTLN. In these experiments the pieciewise linear and
bilinear warping methods were used.

The amount of warping performed depends on a warp factor, α. Because
of the differences in the warping methods, the range of warp factors are
different and not directly comparable. To distinguish between bilinear and
piecewise linear warp factors, the bilinear warp factors are denoted as αb and
the piecewise linear warp factors as αpw.

6.1.1 Bilinear warping

The bilinear warping methods make use of the bilinear transformation of
filters to digital filters. The bilinear filter is implemented as an Infinite
Impulse Response (IIR) filter as described by the z-transform in equation
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(6.1).

ẑ = m(z) =
z−1 − αb

1 − αbz−1
(6.1)

αb is the warp factor for the bilinear transform. It is required that |αb| < 1
for the filter to be stable. This gives a frequency transformation as shown in
equation (6.2) [Oppenheim and Johnson, 1972].

Ω̂ = arctan

(

(1 − α2
b) sin Ω

(1 + α2
b) cos Ω − 2αb

)

(6.2)
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Figure 6.1: Frequency warping using the bilinear method

Figure 6.1 shows the result of bilinear warping with values of αb above
and below zero, compared to the unwarped case where αb = 0. As can be
seen from the plot, a value of αb below zero results in an increased resolution
at low frequencies and generally moves the spectrum to lower frequencies,
except at the end points. With a warping factor above zero, this is reversed
with a higher resolution at high frequencies and moving the spectrum to
higher frequencies than the unwarped.
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6.1.2 Piecewise linear warping

Piecewise linear warping is a warping method where the spectrum is divided
into parts and each part is multiplied by a constant warp factor. The HTK
implementation for piecewise linear warping was used. HTK accepts the warp
factor as 1

αpw

. Because of this, the piecewise warping factors in the results

are always given as 1
αpw

, to avoid large decimals or rounding errors. The

HTK implementation of piecewise linear warping needs some explanation, as
it does involve a few quirks.

The spectrum is divided into three parts by cutoff frequencies. αpw is
the warp factor used in the main area of the spectrum, and the warped
frequencies in this area are calculated as shown in (6.3).

fwarped = αpwforiginal (6.3)

The provided cutoff frequencies, fcu and fcl, are not used directly as cutoff
frequencies, but are calculated based on both the provided cutoff frequencies
and the warp factor used. The actual cutoff frequencies used, cu and cl, are
calculated from (6.4) and (6.5). Because of the way the cutoff frequencies
are calculated, they may lie outside the used frequency spectrum.

cu =
2fcu

1 + αpw
(6.4)

cl =
2fcl

1 + αpw
(6.5)

The calculation of the warp factors used above and below the main area
are shown in (6.6) and (6.7), respectively. fmin and fmax are the minimum
and maximum frequencies used, and unless specified these are based on the
bandwidth of the signal, in which case fmin is zero. (6.7) shows that αl will
then become equal to αpw, so the same warp factor is used below the lower
cutoff frequency as in the main area.

αu =
fmax − cuαpw

fmax − cu
(6.6)

αl =
clαpw − fmin

cl − fmin

(6.7)

From (6.4) it is apparent that even if fcu is below fmax, warp factors
below a certain threshold will result in a cutoff frequency, cu, above fmax.
The result of this is that parts of the upper spectrum is removed, because
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the upper cutoff is never reached. When fmin is zero, this will result in a
completely linear warping.

6.2 Warping implementation

As shown in Figure 4.1, the process of creating MFCCs involve using a tri-
angular Mel filterbank. The frequency warping is implemented by changing
the positions of the Mel triangular filters. Figure 6.2 compares the Mel tri-
angular windows on an unwarped scale to warped scales using bilinear and
piecewise linear warping.

As Figure 6.1 shows, a warp factor of αb < 0 gives a warped frequency
that is lower than the original frequency, except at the endpoints, as well as
an increased resolution at low frequencies. Figure 6.2(b) shows this applied
to the Mel triangular windows.

In Figure 6.2(c) the Mel triangular windows when using piecewise warping
with a warp factor of 1

αpw

= 1.24 are shown. Here it is apparent that the

combination of the warp factor and provided cutoff frequency has resulted
in a cutoff frequency above the maximum frequency, resulting in the upper
part of the spectrum not being covered by the triangular windows.

Once the warped feature vectors have been calculated, they are treated
as if they were placed as the unwarped triangular Mel filters. Because of
this, the warp factors are opposite of what would be used if warping was
used directly on the signals themselves.

VTLN is most often used during both training and recognition. When
done this way, the models are trained iteratively and the warping is de-
cided based on the former models to normalize them with regards to each
other [Potamianos and Rose, 1997]. When used during recognition, an at-
tempt is made to estimate the best warp factor for the specific speaker. Sev-
eral methods exist to estimate the best warp factor [Faria and Gelbart, 2005,
Loof et al., 2006], but all of them require a certain amount of extra computa-
tion during recognition by both estimating a warp factor and performing the
VTLN. Here, the focus is on using VTLN during training for a whole class
of people, so the problem of estimating the best warp factor for a specific
speaker is not important.
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Chapter 7

Cepestral mean normalization

CMN is a simple and effective way of increasing the robustness of a ASR. It
subtracts the mean of cepstral vectors. This can help to reduce the spectral
effects of different microphones and audio channels.

CMN is performed by first finding the mean of a set of cepstral vectors
as shown in (7.1), then subtracting this mean from the cepstral vectors to
obtain a normalized cepstral vector, x̂t, instead, as shown in equation (7.2)
[Huang et al., 2001].

x̄ =
1

T

T −1
∑

t=0

xt (7.1)

x̂t = xt − x̄ (7.2)

In HTK the mean is calculated across each input file [Young et al., 2006].
This is likely to make CMN more effective in the offline tests performed than
in live recoginition, where the mean would have to be calculated from a more
limited set of data.
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Chapter 8

Corpus

Several different speech corpora were used in these experiments, each for
different purposes. Two large vocabulary corpora, one of adults and one of
children, as well as a connected digits corpora of both children and adults,
was used.

The two large vocabulary corpora, CMU Kids and TIMIT, were originally
used in the specialization project.

8.1 CMU Kids

The Carnegie Mellon University (CMU) Kids corpus is a database of chil-
dren’s speech [Eskenazi et al., 1997]. It contains recordings of 76 children
aged 6 to 11, with 24 male and 52 female speakers. There are 356 different
sentences used with 878 distinct words.

The corpus was recorded using a Sennheiser headset. Recordings were
done on site in a computer room at the school of the children. This resulted
in a certain amount of background noise normal in a school environment, such
as changing classes. The children read sentences from Weekly Reader, a color
reading supplement given out to children. Reading the sentences eliminates
any potential imitation one would obtain if the children were asked to repeat
sentences from adults; however, it also creates new problems concerning the
children’s reading abilities.

The corpus came with the utterances divided into two groups, utterances
that correctly follow the intended sentences, and utterances containing one or
more divergences from the intended sentences. Of a total of 5180 utterances,
4344 contains one or more divergences. This leaves 836 sentences that are
properly pronounced. In these experiments, only the properly pronounced
recordings were used in testing, in order to limit the influence of the language
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model. A word-pair language model was used for this corpus.

Table 8.1: CMU Kids sets
Set name Speakers Recordings Estimated length
CMU Testing set 51 829 48 m
CMU Training set 40 2933 250 m

The sets used from the CMU corpus is shown in Table 8.1. As the number
of speakers show, there is some overlap between the speakers in each set. This
is due to the testing set using all the properly pronounced sentences, thus
encompassing too many of the speakers to avoid any overlap.

8.2 TIMIT

For adult speech the TIMIT Acoustic-Phonetic Continuous Speech Corpus
was used [Garofolo et al., 1993]. This is a database of 630 speakers of Amer-
ican English distributed across the seven major dialect regions of the United
States of America, as well as one for people who moved around a lot and
have no distinct dialect. The TIMIT corpus contains 70% male speakers and
30% female speakers.

The sentences in the TIMIT corpus is divided into three different sets,
each for a specific purpose. One set contained sentences designed to expose
differences in the various dialects present in the database. Another set was
created to maximize the coverage of phoneme pairs. The third set contains
sentences from other speech corpora, used to create diversity in sentence
types and phonetic contexts. While the sentences used make sense, many
are awkward and are unlikely to be used in normal speech.

Table 8.2: TIMIT sets
Set name Speakers Recordings Estimated length
TIMIT Testing set 168 1680 80 m
TIMIT Training set 462 4620 220 m

The corpus is a large vocabulary database. There are 6147 distinct words
used in 2342 sentences. The language model used for the TIMIT database is
a word-pair model.
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8.3 TIDigits

TIDigits is a speech corpus containing recordings of connected digits from
both children and adults, male and female. There are in total 326 speakers,
and their distribution by age and gender is shown in table 8.3.

Table 8.3: TIDigits age and gender distribution
Category Number Age range [years]
Man 111 21-70
Woman 114 17-59
Boy 50 6-14
Girl 51 8-15

Recordings were made in an acoustically treated sound room, using a
Electro-Voice RE-16 Dynamic Cardioid microphone. The corpus is originally
recorded with a sampling rate of 20 kHz. The recordings were resampled to
16 kHz to keep the results more comparable to the CMU/TIMIT task.

This corpus does not contain any transcriptions apart from information
about what numbers are spoken in each recording. Since phoneme level
transcriptions with timing details were required in some experiments, forced
alignment was used in HTK to create these.

For the TIDigits recognition tasks, a simple word-loop language model
was used, where every word has equal probability of following any word. This
makes it possible to use McNemar’s test to estimate the confidence intervals
of the test sets from TIDigits. The 99% and 95% confidence intervals for the
TIDigits testing sets are shown in figures A.1 and A.2.

Table 8.4: TIDigits sets
Set name Speakers Recordings Estimated length
TIDigits adult testing set 113 8700 223 m
TIDigits adult training set 112 8623 220 m
TIDigits child testing set 50 3847 116 m
TIDigits child training set 51 3926 117 m
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Chapter 9

Experiments and results

9.1 Setup

The general setup was the same across all experiments.
13 MFCCs were used, including an energy coefficient, as well as the delta

and acceleration (first and second order derivatives) of these coefficients, for
a total of 39 coefficients.

All recordings initially had a sampling rate of 16 kHz. A 10 ms frame rate
was used, with a 25 ms window size. Hamming windows were used, as well
as a pre-emphasis coefficient of 0.97. 26 filterbank channels were used, N in
(4.1). 16 mixtures were used.

When using phoneme models, 3 states are used per phoneme. All exper-
iments included a 3 state silence model and a 1 state model for short pause,
bound to the middle state of the silence model.

The upper and lower cut off frequencies used in piecewise linear warping
was set to 7500 Hz and 500 Hz, respectively. According to (6.4), this will
result in a completely linear warping from a warp factor above 1

αpw

= 1.14.

9.2 Initial problem

The initial results from the specialization project were gained by using the
TIMIT corpus to train a recognizer using piecewise linear VTLN, to adapt
it to work better for recognizing children’s voices in the CMU Kids corpus.
The best achieved result was a WER of 80.35, a reduction of 11% from the
initial WER of 90.67, using unwarped adult training data.

Because these experiments were carried out using two separate databases,
recorded using different equipment and at different locations, the acoustical
differences stemming from differences in recording equipment and location
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between the recordings are significant. In addition, the CMU kids corpus that
was used as an example of children’s speech is a large vocabulary corpus with
sentences based on children’s books. This is problematic in terms of finding
a good language model. To reduce these problems in order to focus more
on matching the acoustical properties of speech between children and adult
speakers, the experiments in this thesis were first performed on the TIDigits
corpus. Several new methods were tried to further reduce the errors for
children, before the best performing methods were tested against the TIMIT
and CMU corpus task, to see if a similar performance gain could be achieved
in the large vocabulary task.

9.3 TIDigits

Because of the high WER achieved in the specialization project, the initial
recognition attempts using the TIDigits corpus used whole word models.
Because this is a connected digits corpus containing only 11 words, this is
a feasible task and it is made possible by both the training data and the
testing data containing the same words. The whole word models are longer
than phoneme models and are likely to be more distinct from each other.

The experiments were carried out with two versions of word models with
a different amount of states in the HMM model, one where all words were
modelled with 10 states each, and one with a variable amount of states per
model to reflect the variable amount of phonemes for each word. The number
of states per word used in the variable-state models are shown in Table 9.1.

Table 9.1: Number of states and phonemes per word in the variable-state
word models

Word States Phonemes
oh 3 1

zero 8 4
one 6 3
two 5 2

three 6 3
four 6 3
five 6 3
six 8 4

seven 10 5
eight 5 2
nine 6 3

26



Figure 9.1 shows the results of using bilinear warping on the TIDigits
adult training set and running recognition on the TIDigits child testing set.
The results using piecewise linear warping are shown in Figure 9.2. The
detailed results are given in Appendix B.1. In Table 9.2 the results of training
on the TIDigits child training set are shown for the different model types.

Table 9.2: WER of a recognizer trained on TIDigits child training set tested
against the TIDigits child testing set, using different models

Variable-state 10-state Phoneme
2.41 0.68 1.71

Of the word models, the 10-state models clearly work best. The variable-
state models suffer from a lot of insertion errors because of the oh word
for zero, which has the least amount of states. The phoneme model does
not work as well as the 10-state models, but obtains better results than the
variable-state models.
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Figure 9.1: Word error rate using bilinear vocal tract length normalisation
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Figure 9.2: Word error rate using piecewise linear vocal tract length normal-
isation

As the figures show, all the models benefit from the use of CMN, so
following experiments all include CMN. The piecewise linear warping method
yields better results than the bilinear method. The best achieved WER on
the phoneme models was 2.69 for the piecewise linear method and 3.16 for
the bilinear method. 3.16 is outside the 99% confidence interval for 2.69
on the TIDigits child testing set, shown in Figure A.1. The range of warp
factors where the WER is reduced compared to the unwarped version is also
larger when using piecewise linear warping. The WER of 2.69 is a reduction
of over 70% compared to the WER of 9.04 when using adult data without
CMN and VTLN.

9.3.1 Phonetic class warping

Because the variations in frequencies from different speakers comes in part
from the differences in vocal tract length, it would be natural that these
differences are smaller for phonemes that are not as influenced by the vocal
tract, such as fricatives. It has been suggested that VTLN can cause some
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spectral distortion, especially to the silence models [Elenius, 2010]. By not
adapting the complete training material with one global warp factor, but
using class-dependent warp factors, the silence models can be left unwarped,
avoiding any distortions.

To adjust for this, HTK was modified to allow for phoneme-specific warp
factors. Because of the huge search space in finding the best warp factor for
each phoneme when using phoneme-specific warp factors, finding the best
warp factor for each phoneme would be a very difficult task. Instead, the
phonemes were divided into three classes depending on the significance of
the vocal tract when creating the sound. One class with a low warp factor,
one with a medium warp factor, and one with a high warp factor. The best
warp factor was found using an exhaustive search with with warp factors,

1
αpw

, between 1.00 to 1.30 in steps of 0.02 for all classes, with the assumption

that the highest class, containing vowels, should have a higher warp factor
than the medium class, containing nasals and glides, which should have a
higher warp factor than the lowest class, containing fricatives.
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Due to the problem of representing four dimensions on paper, Figure 9.3
shows the results when having the highest warped class constant at 1

αpw

= 1.2

and varying the warp factor of the two other classes. The brighter the color,
the lower the WER.

As the figure shows, the WER is generally lower closer to the top right,
where the warp factors are closer together. This general form holds true
when changing the higher warp factor as well. The best result gained is a
WER of 2.64, which is barely lower than using a constant warp factor and
well inside the 95% confidence interval.

9.3.2 Multiple warp factors

As the constant warp factor results show, there is a certain amount of ripple
in the results. This indicates a lack of robustness, where the recognition rate
of each speaker relies heavily on the warp factor chosen during training. In
order to increase the robustness of the recognizer, the TIDigits adult training
set was warped with several different warp factors and then combined to train
the recognizer, creating a multi set.

Table 9.3: WER of a recognizer trained on the TIDigits adult training set
with several warp factors, using CMN and phoneme models. Tested against
TIDigits child testing set and TIDigits adult testing set

Warping method Range Step Sets WER child WER adult

Piecewise linear 1.00 - 1.30 0.03 11 2.71 2.36
Piecewise linear 1.00 - 1.30 0.05 7 2.90 2.26
Piecewise linear 1.10 - 1.30 0.03 7 2.60 3.75
Piecewise linear 1.10 - 1.30 0.05 5 2.56 3.57

Bilinear 1.00 - 1.20 0.03 7 2.76 2.39
Bilinear 1.00 - 1.20 0.05 5 3.01 2.42
Bilinear 1.05 - 1.15 0.03 4 2.89 3.62
Bilinear 1.05 - 1.15 0.05 3 2.96 3.66

Table 9.3 shows the result of using the same training material, with dif-
ferent combinations warp factors, using phoneme models. While these sets
do not provide a large decrease in WER towards children’s speech compared
to the single warp factor recognizers, they do retain their recognition rate
much better than the single warp factor recognizers, as shown in table B.7.
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9.3.3 Recognizer comparison
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Figure 9.4: Comparison of word error rates of different TIDigits train-
ing sets against both child and adult speech. The different sets used are:
Child, the TIDigits child training set; Adult, the TIDigits adult training set;
Adult+Child, the TIDigits adult and child training sets; and multi, the set
using 11 warp factors between 1.00 and 1.30 with piecewise linear warping
made from the TIDigits adult training set.

Figure 9.4 gives a comparison of the different sets being tested against both
adult and child speech. The recognizers trained on only adult or only child
material perform best on their respective testing sets, but definitely perform
worst on the other set. The recognizer trained on combined adult and child
data perform fairly well on both sets, with an 12% increase in WER against
adult speech, compared to the recognizer trained on adult material, and a
30% increase against child speech, compared to the recognizer trained on
child material.

The multi training set performs worse than the combined set, but other-
wise has much the same form, with a slightly higher WER on child speech

31



than adult speech. The increase in WER compared to the combined set is
22% and 36% for child and adult speech, respectively.

9.4 TIMIT and CMU

The improvements made to the recognition rate on the TIDigits database
was transferred back to the recognizer trained on TIMIT. Table B.8 shows
the results of applying both VTLN and CMN. This shows a best WER of
46.70, which a 41.9% reduction from the best result of the specialization
project, without CMN, and a 48.5% reduction from the initial unwarped
WER without CMN.

Table 9.4: Results of using multiple warp factors in one recognizer with adult
data from TIMIT using piecewise linear warping.
Warp factor range Step Number of sets WER TIMIT Test WER CMU Test
1.00-1.30 0.05 7 22.39 48.95
1.10-1.40 0.05 7 45.17 48.27
0.85-1.30 0.05 10 18.87 55.62
0.85-1.40 0.05 12 19.95 52.86

Table 9.4 shows the result of using the TIMIT training set several times
with multiple warp factors, and tested against both adult and child data.
These results show a fairly clear tradeoff between the range of warp factors
and the recognition rate against each set. One thing to note is that the
set with factors between 0.85 and 1.30 shows a 9% increase in the WER
compared to the results using an unwarped recognizer, while giving a 32%
reduction in WER for the child speech.
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Figure 9.5: Comparison of word error rates of different CMU and TIMIT
training sets against both child and adult speech. The different sets used are:
Child, the CMU training set; Adult, the TIMIT training set; Adult+Child,
the TIMIT and CMU training sets; and multi, the set using 7 warp factors
between 1.00 and 1.30 with piecewise linear warping made from the TIMIT
training set.

A comparison of different sets from the TIMIT and CMU corpora are
shown in Figure 9.5. Training sets from both corpora perform very bad on
the testing set from the other corpus when unaltered. Again the combined
set performs better than the multi set, and even outperforms the adult set
against adult speech. The multi set performs slightly worse than the com-
bined set against the adult data, but performs significantly worse against the
child speech, also when compared to the connected digits task.
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Chapter 10

Discussion

10.1 Warping methods

The results obtained in this study show that the piecewise linear warping
method provided by HTK outperformed the bilinear warping method. As
mentioned, because of the way piecewise linear VTLN is implemented in
HTK, some warp factors will result in a completely linear warping, removing
upper parts of the spectrum.

From Table B.6, we see there is very little difference between 1
αpw

= 1.14

and 1
αpw

= 1.15, where the jump between piecewise linear and linear is made.

This indicates that the frequencies above 7000 Hz have almost no effect.
Because of this lack of influence of the upper part of the spectrum, it is
unlikely that this is the cause of the lower WER from piecewise linear warping
that bilinear warping.

10.2 Phonetic class warping

The use of separate warp factors for different phonetic classes only gave a
marginal reduction in WER compared to the use of a global warp factor, and
performed marginally worse than the best multi set. Although this in line
with previous results of using phoneme-specific warp factors [Elenius, 2010,
Potamianos and Narayanan, 2003], in [Potamianos and Narayanan, 2003] it
was suggested that this might be due to the trouble of estimating good warp
factors in such a large search space. Here, the search space was reduced by
using separate warp factors for phonetic classes instead of each phoneme, and
an exhaustive search was performed, but no significant performance increase
could be found.
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That the best recognition rates are gained by all the factors being close
to each other may indicate that the resolution of the timing details in the
phoneme transcriptions is not high enough. If the timing is not detailed
enough, the end points of phonemes would be affected by the warp factors of
other phonemes. If the accuracy is too low, too much of the phonemes will
be affected by other classes and each phoneme class will contain a mixture
of several phoneme class warp factors. This could be solved by performing
the adaptation on the models instead of the features used for training.

10.3 Robustness

For every test of recognition rate for children, applying VTLN did reduce the
WER for a significant area of warp factors. However, within this area, there
was always a certain amount of ripple. This indicates, unsurprisingly, that
there is variability in child speech.

By training a system on adult speech warped with several different warp
factors, the recognition rate towards child speech has been maintained, but
the recognition rate for adult speech has been increased significantly, com-
pared to the single warp factor recognizers. This seems to indicate an in-
creased robustness for the system, and it is likely that these systems will
retain their recognition rates better for a larger amount of children as well.

10.4 Large vocabulary recognition

The large vocabulary recognition still suffers from a very high WER. While
a reduction of 48.5% is significant, the WER of 46.70 is still far too high
to be useful in an ASR. The very high increase gained from applying CMN
and the large discrepancy between the results of the combined training set
compared to the multi training set compared to the connected digits task
indicates a large difference between the databases.

10.5 Computational cost

Performing adaptation during training reduces the computational costs of
adaptation during testing. It was suggested that using a multi set would
reduce the computational time to a fraction of normal VTLN [Elenius, 2010],
however, in the large vocabulary task the recognition time of the best multi
set compared to the best single warp factor when recognizing children was
only reduced by a marginal amount of 6%.
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Chapter 11

Conclusion

It has been shown that a combination of VTLN and CMN can significantly
reduce the WER for children on systems trained on adult speech, with a
reduction of over 70% for a connected-digits task, and almost 50% for a large
vocabulary task. By using the same training data, but with multiple warp
factors, WER was slightly reduced, but more significantly, it retained a much
lower WER for adult speech than using only one warp factor. While this is
unlikely to be sufficient to create a recognizer that is satisfactory for both
children and adults, it does show that the system is less speaker specific. The
better recognition rate for adults indicates a that the system is more robust,
and it is likely it will retain a better recognition rate for more children.

This increase in recognition rate and robustness comes as a very low cost.
The same training data is used several times, so no extra training data needs
to be gathered. The multiplication of the existing training data, CMN and
VTLN does increase the computational power needed during training, but
power during training is very cheap and it only has to be done once. CMN
does require some extra computational power during recognition, but not a
significant amount.

It was also shown that a linear frequency warping is a better approxima-
tion of the differences between adult and child speech than bilinear warping.
It is also likely that, when using a sampling rate of 16 kHz, the frequencies
above 7 kHz in the adult speech has little effect on the recognition of child
speech.
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Appendix A

Confidence intervals
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Figure A.1: 99% and 95% confidence intervals for TIDigits child testing set
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Figure A.2: 99% and 95% confidence intervals for TIDigits adult testing set
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Appendix B

Results

B.1 TIDigits

B.1.1 Variable-state models

45



Table B.1: WER using piecewise linear VTLN with variable-state models,
with and without CMN. Trained on the TIDigits adult training set and tested
against the TIDigits child testing set

Warping factor ( 1
αpw

) WER with CMN WER without CMN

1.00 11.02 12.37
1.01 10.16 11.35
1.02 9.26 10.37
1.03 8.48 9.92
1.04 7.66 9.09
1.05 7.28 8.71
1.06 6.90 8.06
1.07 6.37 7.90
1.08 5.87 7.60
1.09 5.70 7.19
1.10 5.55 7.00
1.11 5.18 7.15
1.12 5.15 6.52
1.13 4.99 6.31
1.14 5.37 6.73
1.15 5.17 6.11
1.16 5.18 5.87
1.17 5.21 5.74
1.18 5.11 6.08
1.19 4.95 6.09
1.20 4.91 6.29
1.21 4.70 6.17
1.22 4.95 6.22
1.23 4.99 6.19
1.24 5.06 6.45
1.25 5.29 6.73
1.26 5.18 6.55
1.27 5.22 6.45
1.28 5.44 6.92
1.29 5.93 7.13
1.30 6.11 7.36
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Table B.2: WER using bilinear VTLN with variable-state models, with and
without CMN. Trained on the TIDigits adult training set and tested against
the TIDigits child testing set

Warping factor (αb) WER with CMN WER without CMN
0.00 11.02 12.37
-0.01 9.17 10.82
-0.02 7.87 9.52
-0.03 7.19 8.15
-0.04 6.24 7.48
-0.05 6.00 6.89
-0.06 5.70 6.77
-0.07 5.12 6.47
-0.08 5.29 6.16
-0.09 5.36 5.87
-0.10 5.18 6.07
-0.11 5.34 5.97
-0.12 5.77 6.16
-0.13 5.49 6.44
-0.14 6.42 7.06
-0.15 6.75 7.34
-0.16 7.30 8.35
-0.17 8.84 9.73
-0.18 10.83 11.37
-0.19 12.76 13.25
-0.20 16.04 15.60
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B.1.2 10-state models

Table B.3: WER using piecewise linear VTLN with 10-state models, with
and without CMN. Trained on the TIDigits adult training set and tested
against the TIDigits child testing set

Warping factor ( 1
αpw

) WER with CMN WER without CMN

1.00 5.09 5.52
1.01 4.34 5.14
1.02 4.09 4.46
1.03 3.27 4.38
1.04 3.09 3.83
1.05 2.90 3.62
1.06 2.72 3.39
1.07 2.56 3.20
1.08 2.35 2.99
1.09 2.26 2.90
1.10 2.24 2.93
1.11 2.22 2.91
1.12 1.88 2.73
1.13 1.94 2.74
1.14 1.84 2.76
1.15 1.97 2.61
1.16 1.90 2.52
1.17 1.90 2.56
1.18 1.79 2.64
1.19 1.86 2.56
1.20 1.90 2.51
1.21 1.84 2.32
1.22 1.81 2.31
1.23 1.81 2.33
1.24 1.70 2.31
1.25 1.90 2.45
1.26 1.73 2.54
1.27 1.79 2.52
1.28 1.82 2.59
1.29 1.95 2.61
1.30 2.13 2.72
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Table B.4: WER using bilinear VTLN with 10-state models, with and with-
out CMN. Trained on the TIDigits adult training set and tested against the
TIDigits child testing set

Warping factor (αb) WER with CMN WER without CMN
0.00 5.08 5.52
-0.01 4.05 4.66
-0.02 3.38 3.97
-0.03 2.97 3.53
-0.04 2.53 3.16
-0.05 2.27 2.88
-0.06 2.25 2.75
-0.07 2.21 2.63
-0.08 2.13 2.57
-0.09 2.03 2.52
-0.10 2.17 2.52
-0.11 2.17 2.75
-0.12 2.04 2.45
-0.13 2.33 2.71
-0.14 2.45 2.77
-0.15 2.73 3.27
-0.16 3.19 3.42
-0.17 3.92 4.08
-0.18 4.68 4.91
-0.19 5.81 5.76
-0.20 7.53 7.26
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B.1.3 Phone model

Table B.5: WER using bilinear VTLN with phoneme models, with and with-
out CMN. Trained on the TIDigits adult training set and tested against the
TIDigits child testing set

Warping factor (αb) WER with CMN WER without CMN
0.00 7.75 9.04
-0.01 6.26 7.79
-0.02 5.04 6.49
-0.03 4.58 5.90
-0.04 4.04 5.56
-0.05 3.74 5.28
-0.06 3.32 4.16
-0.07 3.30 4.11
-0.08 3.20 3.81
-0.09 3.29 3.88
-0.10 3.25 3.86
-0.11 3.16 3.90
-0.12 3.42 4.12
-0.13 3.43 4.19
-0.14 4.08 4.60
-0.15 4.41 5.25
-0.16 5.02 5.56
-0.17 5.69 6.43
-0.18 6.72 7.37
-0.19 8.17 9.33
-0.20 10.38 11.43
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Table B.6: WER using piecewise linear VTLN with phoneme models, with
and without CMN. Trained on the TIDigits adult training set and tested
against the TIDigits child testing set

Warping Factor ( 1
αpw

) WER with CMN WER without CMN

1.00 7.75 9.04
1.01 6.82 8.65
1.02 5.94 8.11
1.03 5.54 7.10
1.04 5.03 6.66
1.05 4.61 5.86
1.06 4.11 5.52
1.07 3.99 5.49
1.08 3.61 5.15
1.09 3.39 4.72
1.10 3.26 4.64
1.11 3.34 4.34
1.12 3.22 4.18
1.13 3.23 4.00
1.14 3.24 4.12
1.15 3.29 3.77
1.16 3.02 3.83
1.17 2.95 3.64
1.18 2.77 3.56
1.19 2.69 3.59
1.20 2.92 3.56
1.21 2.85 3.65
1.22 3.17 3.66
1.23 3.14 3.55
1.24 3.09 3.81
1.25 2.94 4.19
1.26 3.24 3.83
1.27 3.47 4.05
1.28 3.66 4.57
1.29 3.78 4.65
1.30 3.83 4.65
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Table B.7: WER using piecewise linear VTLN with phoneme models Trained
on the TIDigits adult training set and tested against the TIDigits adult
testing set

Warping Factor ( 1
αpw

) WER

1.00 1.56
1.02 1.60
1.04 1.52
1.06 1.69
1.08 2.04
1.10 2.26
1.12 2.67
1.14 3.20
1.16 3.61
1.18 4.67
1.20 5.73
1.22 7.19
1.24 9.59
1.26 12.78
1.28 15.90
1.30 19.68
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B.2 CMU

Table B.8: WER against CMU Testing set using piecewise linear VTLN and
CMN on a recognizer trained on TIMIT Training set

Training set WER
1.00 81.91
1.02 75.30
1.04 70.13
1.06 65.02
1.08 59.62
1.10 58.24
1.12 52.72
1.14 53.49
1.16 50.56
1.18 47.69
1.20 47.73
1.22 46.98
1.24 46.70
1.26 47.55
1.28 48.58
1.30 46.98
1.32 48.63
1.34 51.27
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