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Abstract

In this dissertation, we explore the issues related to opportunistic and
cooperative communications in a multiuser environment. In the first part
of the dissertation, we consider opportunistic scheduling for delay limited
systems. Multiuser communication over fading channels is a challenging
problem due to fast varying channel conditions. On the other hand, it pro-
vides opportunities to exploit the varying nature of the channel and maxi-
mize the throughput by scheduling the user (or users) with good channel.
This gain is termed as multiuser diversity. The larger the number of users,
the greater is the multiuser diversity gain. However, there is an inherent
scheduling delay in exploiting multiuser diversity. The objective of this
work is to design the scheduling schemes which use multiuser diversity
to minimize the system transmit energy. We analyze the schemes in large
system limit and characterize the energy–delay tradeoff. We show that de-
lay tolerance in data transmission helps us to exploit multiuser diversity
and results in an energy efficient use of the system resources. We assume a
general multiuser environment but the proposed scheduling schemes are
specifically suitable for the wireless sensor network applications where
saving of transmit energy at the cost of delay in transmission is extremely
useful to increase the life of battery for the sensor node.

In the first part of the thesis, we propose scheduling schemes with the
objective of minimizing transmit energy for a given fixed tolerable trans-
mission delay. The fixed delay is termed as hard deadline. A group of
users have channels better than a transmission threshold are scheduled for
transmission simultaneously using superposition coding. The transmis-
sion thresholds depend on the fading statistics of the underlying channel
and hard deadline of the data to be scheduled. As deadline is approached,
the thresholds decrease monotonically to reflect the scheduling priority for
the user.

We analyze the proposed schedulers in the large system limit. We com-
pute the optimized transmission thresholds for the proposed scheduling
schemes. We analyze the proposed schemes for practically relevant sce-
narios when the randomly arriving packets have individual, non–identical
deadlines. We analyze the case when loss tolerance of the application is
exploited to further decrease the system energy. The transmitted energy is
not a convex function of transmission thresholds. Therefore, we propose
heuristic optimization procedures to compute the transmission thresholds
and evaluate the performance of the schemes. Finally, we study the effect
of outer cell interference on the proposed scheduling schemes.
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The second part of the thesis investigates the problem of cooperative
communication between the nodes which relay the data of other sources
multiplex with their own data towards a common destination, i.e. a relay
node performs as a relay and data source at the same time. This prob-
lem setting is very useful in case of some wireless sensor network (WSN)
applications where all the nodes relay sensed data towards a common des-
tination sink node. The capacity region of a relay region is still an open
problem. We use deterministic network model to study the problem. We
characterize the capacity region for a cooperative deterministic network
with single source, multiple relays and single destination. We also char-
acterize the capacity region when communicating nodes have correlated
information to be sent to the destination.
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Chapter 1

Introduction

1.1 Motivation

Wireless communication has gone through a revolutionary phase in recent
times. There is a lot of interest in exploiting the communication opportu-
nities provided by the multiuser systems. Cooperative and opportunistic
communication provides us new degrees of freedom. The multiuser diver-
sity concept is already integrated into the downlink design of IS-856. With
the introduction of new applications, demand for efficient use of resources
has increased. These applications have widely contrasting requirements in
terms of delay, throughput and loss tolerance. The task of efficient trans-
mission and scheduling of data gets tougher if these requirements are to
be fulfilled and practically, it becomes hard to meet all the requirements
in a scheduling algorithm. A good communication scheme exploits every
degree of freedom available to maximize the use of expensive resources.

The goal of this dissertation is to exploit delay tolerance and channel
variations of the user channels to design the scheduling schemes which
fulfill the hard deadline delay guarantees and minimize system energy re-
sources. We consider a general multiuser system but the results are specif-
ically useful for wireless sensor network applications where energy saving
enhances the life time of sensor battery. We address the practically relevant
scenarios and analyze the results for the proposed scheduling schemes. We
integrate these practical consideration into our schemes such that the task
of the scheduler remains simple and complexity is handled through pre-
processing of data. We use large system analysis to investigate our schemes
but numerical results provide evidence that the schemes work well for
small number of users as well.

1



1. INTRODUCTION

1.2 Outline of the Thesis

The rest of the dissertation is organized as follows. It comprises of two
main parts. The first (main) part (Chapter 3 to Chapter 6) deals with dead-
line constrained opportunistic scheduling while the second part (Chapter
7) addresses cooperative relaying.

Chapter 2: We discuss background of this work and review the related lit-
erature briefly in Chapter 2.

Chapter 3: In Chapter 3, we propose an opportunistic scheduling scheme
for a hard deadline constrained multiuser system. We assume con-
stant arrival of a single packet in each time slot. The scheduler emp-
ties the buffer when a user is scheduled for transmission. The aim
is to minimize the system energy while obeying hard deadline con-
straint. We analyze the scheme in asymptotically large user limit. As
the energy function is a non-convex function, we use Simulated An-
nealing algorithm to optimize the transmission thresholds.

Chapter 4: In Chapter 4, we extend the results in Chapter 3 and propose a
scheduling scheme which schedules data in small chunks depending
on the instantaneous channel conditions of the user. The results are
extended for random arrival case. Numerical results show the energy
efficiency of the scheme as compared to emptying buffer scheme.

Chapter 5: In Chapter 5, we address the practical considerations for the
proposed scheduling scheme in Chapter 4. We propose a scheduling
scheme which gives comparable results to the scheme discussed in
Chapter 4 at lower complexity. We propose a heuristic algorithm to
compute the transmission thresholds and compare the numerical re-
sults with the optimal scheme. We extend our results to more practi-
cally relevant scenarios when all the arriving packets have individual
non–identical deadlines. Also, we consider the system where all the
users cannot be provided absolute deadline guarantees and a certain
predefined allowed proportion of the packets are dropped to save the
system energy.

Chapter 6: The work from Chapter 3 to Chapter 5 considers a single cell
case. In Chapter 6, we consider the multicell case of the opportunis-
tic schedulers proposed in previous work. We model the inter–cell
interference and analyze the scheduling schemes in large user limit.

Chapter 7: Chapter 7 contains the second part of the thesis. We address
the issue of cooperative communication between sensor nodes. We

2



OUTLINE OF THE THESIS

consider a system where network nodes operate as source and relays
at the same time and send data to a common node. We consider de-
terministic network model and characterize the capacity region for
certain topologies of such networks. Then, we generalize our results
and prove achievability for a general deterministic network. We also
extend our results to the case when data from the sources is corre-
lated.

Chapter 8: We conclude with the main contributions of this work in Chap-
ter 8. We summarize the important results and their impact on the
state of the art communication networks. Also, we discuss some of
the open problems and their impact on the improvement of schedul-
ing schemes proposed.

Appendix A: Appendix A introduces the channel model used in this work
and we derive channel distributions for the proposed schemes and
Rayleigh fading.

Appendix B: Appendix B contains proof of the properties for the oppor-
tunistic scheduling scheme proposed in Chapter 4.

Appendix C: Appendix C presents the relation between transmission thresh-
olds and transition probabilities used to model the proposed schedul-
ing schemes.

Appendix D: In Appendix D, we prove the equivalence of channel distri-
butions of the scheduled packets for the case of non–identical dead-
lines (discussed in Chapter 5).

Appendix E: In Appendix E, we prove Theorem 7.1 and Theorem 7.2 in-
troduced in Chapter 7 for the deterministic cooperative network.

3





Chapter 2

Background of the Work

In this chapter, we discuss the fundamental aspects of opportunistic and
cooperative communication in wireless networks. First, we review the ra-
dio resource management (RRM) problem briefly and focus on the issues
related to scheduling and its applications in wireless networks.

2.1 Radio Resource Management (RRM)

With rapid increase in demand for resources in wireless applications, it
is important to use the available radio resources efficiently. The task of
efficient spectrum management is termed as radio resource management
(RRM) [Zander, 1997]. However, radio resource is not limited to radio spec-
trum. It includes management of access rights for the individual users, the
time period a user is active, transmission power, admission control for the
user and policies for user mobility, etc. [Zhang, Hu, and Fujise, 2007]. Ref-
erence [Berry and Yeh, 2004] reviews resource allocation problem for multi
access channels in detail and discusses cross layer approaches by consider-
ing physical and networking layer together.

In the following, we discuss some of the radio resource allocation mech-
anisms briefly.

2.1.1 Power Control

Power control is the intelligent use of transmit power to effectively use a
communication system. Power control is important mechanism for wire-
less systems. Without employing power control, near far effects may arise
and affect the system performance. To achieve the same signal to noise ra-
tio (SNR), the mobile stations (MS) near the base station (BS) transmit at
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less power as compared to the MSs at the cell border. In a multicell en-
vironment, this kind of power control has adverse effects on the inter–cell
interference [Goldsmith, 2005]. In literature, there are several methods of
power control, termed as open-loop power control and closed loop power
control [Rappaport, 2001]. Closed loop power control requires that the re-
ceiver compares the estimated signal to interference ratio (SIR) with target
SIR and instructs the transmitter to increase or decrease transmit power ac-
cordingly. The target SIR is controlled by outer loop power control. The
outer loop measures the link quality in terms of frame and bit error rate
and adjusts the target SIR accordingly.

2.1.2 Admission Control

The system capacity evaluated in terms of available radio resources reduces
after admission of a new user. Specifically, it increases the interference to
other users in a heavily loaded system and may cause system instability
[Zhang et al., 2007]. It results in call dropping which is considered more an-
noying effect than denying a channel (call) by user point of view. For exam-
ple, in a Code Division Multiple Access (CDMA) system , the cell coverage
reduces as a result of increase in interference. Therefore, admission control
is required to ensure the cell coverage. However, admission control can
have different controlling parameters like service level, load, user profile
etc. in order to optimize the system performance. In a cellular system, the
admission controller keeps track of the radio resources for all the ongoing
calls in the current cell as well as in the adjacent cells. This is essential to
keep the call going in the case when the mobile user moves into an adjacent
cell and requires resources for handoff. Therefore, it is important to keep
some resources reserved for handoffs from the neighbouring cells.

2.1.3 Mobility Management

The task of keeping track of the location of MS in a large wireless network
is termed as mobility management [Zander, 1997]. Mobility can further
be classified as discrete and continuous. Discrete terminal mobility is the
ability of a terminal to move to a new location, connect to the network and
continue to access the service again [Chen and Zhang, 2004]. It is often
referred to as portability. Continuous mobility is the ability of a terminal to
remain connected with the network and service while on the move. There
are certain trade offs involved in determining the whereabouts of the user.
It involves the functions of location management, packet delivery to the
mobile, handoff, roaming and network access control. The details of these
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functions and their operations are omitted here. The interested reader is
referred to [Chen and Zhang, 2004] for the details.

2.1.4 Scheduling

Scheduling is the fundamental function of wireless communication sys-
tems which divides and allocates available radio resources to different MSs.
Based on different matrices, the scheduler decides to allocate resources to
the users. These matrices include individual quality of service (QoS) re-
quirements from the users. QoS can be defined in terms of delay require-
ment or throughput requirement. Furthermore, these parameters can be
guaranteed on long term or short term basis depending on the requirement
of the target application. One of the simplest schedulers used in Time Divi-
sion Multiple Access (TDMA) systems is round robin (RR) scheduler which
schedules users periodically. Every user is scheduled for a fixed number of
time slots and then waits for her turn. The disadvantage with this type of
schedulers is that users with different QoS requirements cannot be satis-
fied. Also, if a user has no data to schedule, still she gets the channel for
fixed number of time slots and wastes system resources that can be used by
other users.

First In First Out (FIFO) is another simple scheduler that schedules the
users according to their waiting times. The user k whose head of line (HOL)
packet has spent the largest time at the base station is selected for transmis-
sion.

j = arg max Wk(t)
k (2.1)

where Wk(t) is the waiting time of the HOL packet. In [Stolyar and Ra-
manan, 2001] a similar scheduler, Largest Weighed Delay First (LWDF), is
proposed which provides QoS guarantees in the form of a deadline nk and
an allowed violation probability δk for user k. For stationary delay Wk of
the kth user, this scheduler always chooses for service the longest waiting
customer for which the current weighted delay λkWk(t) is maximal.

j = arg max λkWk(t)
k (2.2)

where λ is a weighting factor. If all the elements in the vector of weight-
ing factors �λ are unity, LWDF scheduler becomes FIFO scheduler. The
authors in [Stolyar and Ramanan, 2001] show that for large delays and
small allowed violation probabilities, the LWDF scheduler with weights
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λk = −logδk/nk is nearly optimal in order to satisfy the QoS constraints.
These policies do not take channel conditions into account and performs
poorly as compared to the scheduling algorithms which exploit channel
conditions [Shakkottai and Stolyar, 2001].

On the other hand, we have an other class of schedulers which exploits
the opportunities provided by the wireless channel to improve the system
performance. This work specifically deals with such scheduling algorithms
in a multiuser communication system. Highly unpredictable channel con-
ditions of wireless system adds an other dimension to the scheduling prob-
lem. Before going into the details of scheduling problem, we review some
important characteristics of the wireless channel in the next section.

2.2 Wireless Channel Characteristics

Strength of a typical wireless channel varies over frequency and time. We
can characterize this variation as two effects.

2.2.1 Large scale fading

The channel varies in terms of path loss and shadowing from the large
objects. Path loss is a function of the distance between a transmitter and
the receiver and modeled as a path loss exponent. It is independent of the
frequency.

2.2.2 Small scale fading

This effect arises due to constructive and destructive interference of the
multiple signal paths between the transmitter and receiver and can further
be divided into two parts.

Flat Fading

If the bandwidth of the input is considerably less than the coherence band-
width, the channel is usually referred to as flat fading.

Frequency Selective Fading

When the bandwidth is much larger than the coherence bandwidth of the
channel, the channel is said to be frequency selective.
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2.3 Diversity

In the presence of a single signal path, the reliable communication depends
heavily on signal to noise ratio (SNR) at that path. When the path is in deep
fade, any communication scheme will suffer from errors. This is a natural
motivation for using more than one signal paths for reliable communica-
tion between a source-destination pair. If all the paths fade independently,
there is a high probability that at least one of them would be strong enough
to make the reliable communication. The idea of providing multiple paths
for the reliable communication between two nodes is termed as diversity
[Tse and Viswanath, 2005].

Diversity can be provided by using degrees of freedom in time, fre-
quency or space. The idea of transmitting a coded symbol on indepen-
dently fading coherence periods is called time diversity. Interleaving can
further exploit the temporal diversity to improve the performance. For a
frequency selective channel, degrees of freedom in frequency domain can
be exploited by transmitting coded symbol on multiple frequency channels.
Similarly, for a system with sufficiently spaced multiple transmit and/or re-
ceive antennas, spatial diversity can also improve the performance. Specif-
ically, in case of cellular network, macro-diversity exploits the fact that
a signal from a mobile can be received from two base stations [Tse and
Viswanath, 2005]. Any combination of these diversity schemes typically
improves the performance of a communication system.

All of these schemes require use of certain system resources to combat
the fading effect. As resources such as frequency, time, antennas are always
expensive and using resources with effective communication schemes is
complex, there is always a tradeoff involved in enhancing the diversity
paths.

2.4 Multiuser Diversity and Maximum Rate

Scheduler

In a large multiuser environment, every user experiences an independent
channel. If we allow, only a single user to transmit at a given time, we can
achieve another form of diversity. In [Knopp and Humblet, 1995], the au-
thors propose a scheduling scheme which schedules a user with the best
channel gain for transmission. This concept is known as multiuser diver-
sity and the scheduler is known as Maximum-Rate Scheduler as it maxi-
mizes the rate supported by the channel. Multiuser diversity is inherent in
the system and we do not need to create it in contrast to all the diversity
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schemes mentioned in Section 2.3. The multiuser diversity gain arises due
to improvement in the channel gain from g[t] to maxk gk[t] in a time slot t
with K users in the system. The larger the number of users K in the system,
the greater the multiuser gain would be. By allowing the user with the
strongest channel, the shared channel resources are used most efficiently
and throughput is maximized. To exploit the multiuser diversity, channel
state information (CSI) at the transmitter side needs to be known and we
make this assumption throughout this work.

It is interesting to note that conventional diversity techniques are de-
signed to counteract fading while multiuser diversity gain exploits the vari-
ation in channel gain. More fluctuations in channel gains ensure that there
is a high probability of finding a user with greater channel gain than the
mean level. Contrast to the schedulers discussed in Section 2.1.4, by allocat-
ing all the system resources to the stronger user, the benefit of the stronger
channel is fully exploited. This fact can also be verified from the fact that
multiuser gain is significantly smaller in case of Rician fading as compared
to Rayleigh fading [Tse and Viswanath, 2005]. In Rician fading, there is a
strong line of sight (LOS) path between the transmitter and receiver in ad-
dition to multiple small reflected paths. The parameter Rician factor κ is
defined as the ratio of energy in direct path to the energy in reflected paths.
The presence of LOS component in Rician fading distribution makes the
channel less random as compared to Rayleigh channel. Equivalently, for
asymptotically large user limit, the mean of the equivalent channel gain
approaches to 1

1+κ for Rician channel as compared to one for Rayleigh chan-
nel.

2.5 Variants of Maximum Rate Scheduler

In literature [Shakkottai and Stolyar, 2000], [Shakkottai and Stolyar, 2001],
[Andrews, Kumaran, Ramanan, Stolyar, Vijayakumar, and Whiting, 2000],
[Chaponniere, Black, Holtzman, and Tsc, 2002] different modified versions
of [Knopp and Humblet, 1995] have been discussed. In [Andrews et al.,
2000] a modified version of LWDF is proposed which takes channel vari-
ations of the users into account. This is called Modified Largest Weighted
Delay First (MLWDF) scheduler. The scheduler schedules a user which
maximizes

j = max γkWk(t)Rk(t)
k (2.3)
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where γk > 0, k = 1, . . . , K is an arbitrary set of constants and Rk(t) is the
actual rate supported by user k at time t. The following choice of γk has
been shown to exhibit good QoS results.

γk =
λk

Tk
(2.4)

where Tk is measured short term average throughput for user k and λk is
parameterized similarly as in LWDF in Section 2.1.4.

In [Shakkottai and Stolyar, 2000, 2001], the authors propose a scheduler
based on the following exponential weighting factor.

j = arg max γkRk(t) exp
(λkWk(t) − λW

1 +
√

λW

)
(2.5)

where γ and λ are same as in MLWDF scheme and

λW =
1
K ∑

k
λkWk (2.6)

This scheme tries to equalize the weighted delays of all the users when
their differences are large. If one of the user has large weighted delay than
others, the exponent term becomes very large and overrides the channel
conditions. This makes the user get selected for transmission. However, if
weighted delay difference is small, the exponential term becomes equal to
one and no priority is given to the user [Andrews et al., 2000], [Shakkottai
and Stolyar, 2000].

For both of the M-LWDF and exponential rule schedulers, the authors
prove that both of the schedulers are throughput optimal in the sense that
they make the queues stable in any system for which stability is feasible at
all with any other rule.

2.6 Proportional Fair Scheduling

The solution proposed in [Knopp and Humblet, 1995] has an inherent draw-
back for the real time or hard delay constrained systems. In the large multi-
user environment, many users will never get the opportunity for transmis-
sion in the maximum allowed time slots and data has to be dropped. Sim-
ilarly, due to different distances from the base station, the channel of the
user closer to BS will always be better than the user at the edge of the cell.
To address the issues of fairness and delay, Proportional Fair Scheduling
(PFS) algorithm was proposed in [Chaponniere et al., 2002],[Kelly, Maulloo,
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and Tan, 1998]. This scheduler has been used in downlink standardization
IS-856 as a base scheduler.

The task of the scheduler is to select a user for transmission in each time
slot based on the requested rates received from the users. A simple round
robin scheduler can do the job but in a dynamic wireless environment, it
results in wastage of energy resources. PFS scheduler exploits the channel
variations to schedule the users in an energy efficient manner. It keeps track
of average throughput Tk[t] of each user in an exponentially weighed win-
dow of length tc [Viswanath, Tse, and Laroia, 2002]. In a time slot t, the base
station receives the requested rates Rk(t) from all the users and schedules
the user k∗ with the largest Rk [t]

Tk [t]
. For each user k, the average throughput

Tk[t] is updated with an exponentially weighted factor and given by

Tk[t + 1] =

{
(1 − 1/tc)Tk[t] + 1/tcRk[t] k = k∗

(1 − 1/tc)Tk[t] k �= k∗
(2.7)

PFS schedules a user when its instantaneous channel quality is rela-
tively higher than its own average channel quality over the time scale tc. In
other words, data is transmitted to a user when her channel is near to her
own peak. The users compete for resources not directly based on the re-
quested rates but based on the rates normalized by their average through-
put. It has been observed that the total throughput increases with the num-
ber of users because greater the number of users, greater is the probability
that a users will find a channel near her peak [Viswanath et al., 2002].

2.6.1 The Role of Mobility

Total throughput is also affected by the mobility of the users. In a high
mobility environment, the rate of channel variations is much greater than
the low mobility case. This implies that over the latency time scale, the
peaks of channel fluctuations are likely to be much higher in the mobile
environment and inherent multiuser diversity is more pronounced in high
mobility environment. It seems as if multiuser diversity will increase the
throughput but there is a certain limitation on that. At very high speed,
the users have troubles in measuring and tracking channel variations and
the predicted channel is a low pass smoothed version of the actual fading
process [Tse and Viswanath, 2005]. Therefore, in spite of highly dynamic
environment, opportunistic communication can only be used when chan-
nel estimation can be done with a reasonable accuracy.
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2.6.2 Opportunistic Beamforming

In [Viswanath et al., 2002] a scheme has been proposed that induces a ran-
dom fading when the environment has little scattering or fading is slow.
For a downlink, multiple antennas are used at the base station to transmit
the same signal from each antenna modulated by a gain whose phase and
magnitude is changing in time in a pseudo random fashion. The gain in
different antennas are independent and channel variation is created due
to constructive and destructive addition of the signals from the different
transmit antennas. The overall signal to interference plus noise ratio (SINR)
is tracked by each user and is fed back to the base station [Viswanath et al.,
2002].

Consider a system with L transmit antennas at the base station. Let
glk(t) be the complex channel gain from antenna l to the kth user in time
slot t. In time slot t, the same block of symbols x(t) is transmitted from all
the antennas except that it is multiplied by a complex number

√
al(t)ejθn(t)

at antenna l such that ∑L
l=1 al(t) = 1. The received signal at user k is given

by

yk(t) =
( L

∑
l=1

√
al(t)ejθl(t)glk(t)

)
x(t) + zk(t) (2.8)

where x(t) is the vector of Ts transmitted symbols in time slot t, yk(t) is
the vector of Ts received symbols of user k and zk(t) is an independent and
identically distributed (i.i.d.) sequence of zero mean circularly symmetric
Gaussian random vectors. The symbols al(t) and θl(t) denote the fractions
of power allocated to each of the transmit antennas and phase shift applied
at each antenna to the signal, respectively. Variation of these parameters
introduce fluctuations in the physical channel even if the original channel
glk(t) have very little fluctuations [Viswanath et al., 2002]. Each receiver k
feedbacks the overall SNR of its channel to the base station (and not the
individual channel gain glk(t)) and therefore requires a single pilot signal
for the channel measurement.

We consider the case of slow fading and fast fading separately.

Slow Fading

We consider the case when the channel gain of each user glk(t) = glk re-
mains constant during the latency time t. Without using additional anten-
nas, the received SNR for this user would have remained constant. If all the
users in the system experience a slow fading, multiuser diversity cannot be
exploited. However, using multiple antennas on the transmit side, fluctua-
tions in the channel gain gk(t) are introduced and opportunistic scheduling
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can now exploit multiuser diversity. It should be noticed that to be able to
beamform a user, amplitude and phase of all the antennas must be known
at the base station. As the proposed scheme keeps track of SNR only, at any
time, the transmission is scheduled to a user which is closest to its beam-
forming configuration. This type of beamforming is called opportunistic
beamforming [Viswanath et al., 2002].

Fast Fading

In a fast fading environment, rate of fluctuations is already fast enough.
Here, the impact of opportunistic beamforming depends on the fact that
how the stationary distributions of the over all gains can be modified by
a power and phase randomization. In case of independent Rayleigh fad-
ing glk(t) has the same distributions as gk(t) and overall gains are inde-
pendent across the users. Therefore, in a fast fading environment, oppor-
tunistic beamforming does not provide any performance gain. However,
in case of Rician fading, a non time varying line of sight (LOS) component
is also present. When the ratio of energy in the LOS component to the dif-
fused components is large, opportunistic beamforming can largely increase
the dynamic range of fluctuations and thus multiuser diversity can be ex-
ploited by the opportunistic scheduling [Viswanath et al., 2002].

2.7 Delay-Energy Tradeoff

In [Tse and Hanly, 1998; Hanly and Tse, 1998] the notion of throughput
capacity region and delay limited capacity region has been introduced. The
first term refers to the application of Shanon capacity on fading channels.
The channel statistics are assumed to be fixed and the code word length can
be chosen arbitrarily large to average over all the fading of the channel. To
achieve these rates, the users will experience long delays as long term rates
are achieved averaged over the fading process [Tse and Hanly, 1998].

On the other hand, we have some situations where users cannot be
allowed to wait for long time to achieve the rates. Delay limited capac-
ity refers to the situation where the time requirement of the application is
shorter than the time scale of the channel variations. Therefore, it is not
possible to average over all the fading states and it is necessary to maintain
the desired rate at all the fading states. It has been shown that successive
decoding is the optimal solution and optimal decoding order and resource
allocation can be found explicitly as a function of fading states [Hanly and
Tse, 1998].
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2.7.1 Scheduling For Hard Deadline Delay Constrained
Applications

A lot of applications require data to be transmitted before a fixed deadline
called hard deadline [Hajek and Seri, 1998; Agarwal and Puri, 2002]. For
example, many applications in wireless sensor networks (WSN) and mul-
timedia belong to this class of applications. At the same time, it is impor-
tant to use resources like energy and spectrum efficiently. The idea behind
deadline constrained energy efficient scheduling is to schedule transmis-
sion of data such that both of the requirements are fulfilled.

In [Tarello, Sun, Zafar, and Modiano, 2008], the authors consider energy
minimization problem for the deadline constrained applications. They con-
sider a system with a single transmitter and K users. The channel for each
user is discretized and can be in one of the finite sets of states. In each
scheduling operation, a single user is scheduled for transmission. They
consider two cases of rate-power curves. For both the cases, they obtain
dynamic programming based optimal solutions. When the rate power re-
lation is linear, they obtain a threshold based scheduler which follows the
optimal stopping theory formulation in [Bertsekas, 2007]. For the convex
case of rate-power curve, a heuristic algorithm is proposed which gives a
solution quite close to the optimal. Similar approach is used in [Fu, Modi-
ano, and Tsitsiklis, 2006] to maximize expected data throughput for a single
transmitter and single receiver in presence of deadline delay constrained.

A similar approach is applied in [Lee and Jindal, 2009] where the au-
thors consider the same problem for a point to point network. They con-
sider a packet of B bits which has to be transmitted within hard deadline
of n time slots. During the transmission of the packet, no other packets
are scheduled. The authors obtain close form expressions for the optimal
policy only for the case n = 2 using dynamic programming solution. For
n > 2, the optimal policy is numerically determined. Based on optimal
policy for the case when n = 2, heuristic sub optimal scheduling policies
are considered. As a variant of the problem they consider the scheduling of
the complete packet in one time slot and propose optimal channel thresh-
old based scheduling scheme. It should be noted that optimal solution is
obtained only when either the rate-power curve is linear [Tarello et al., 2008]
or scheduling of a single packet is considered following the frame work of
optimal stopping theory.

Following the work in [Tarello et al., 2008; Lee and Jindal, 2009], we con-
sider the problem of scheduling data before a hard deadline n. However,
we do not limit ourselves to the constraint of transmission of single packet
during the whole transmission period as it is too impractical assumption.
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The focus of this work is to generalize the problem. We analyze the prob-
lem asymptotically for large number of users. Then, we propose heuristic
scheduling schemes which provide comparable results to the optimal solu-
tion.

2.8 Literature Survey

In this section we review some further work relating opportunistic schedul-
ing. In literature, a lot of work deals with average delay parameterizations
and opportunistic scheduling. For example, reference [Berry and Gallager,
2002] deals with the tradeoffs between average delay and average power
for a single user case. Average delay-energy relation is analyzed asymptot-
ically when delay approaches to infinity. Similar work in [Rajan, Sabhar-
wal, and Aazhang, 2004] addresses average delay-energy tradeoff for the
case of bursty traffic. A suboptimal scheduler called log-linear scheduler is
proposed which provides performance close to the optimal scheduler.

In [Liu, Chong, and Shroff, 2003], the authors discuss the performance
of opportunistic scheduling under different fairness and minimum perfor-
mance requirement constraints. Optimal solutions, implementation con-
siderations and parameter estimation procedures are discussed as well. In
reference [Wu and Negi, 2005], the authors use multiuser diversity to pro-
vide statistical quality of service (QoS) in terms of data rate, delay bound,
and delay bound violation probability. In [Phan and Kim, 2007], threshold–
dependent opportunistic transmission is discussed for WSNs using the IEEE
802.11 standard. Significant improvement is reported as compared to the
non–opportunistic version.

In [Coleman and Medard, 2004] a similar work to [Tarello et al., 2008]
considers a scheduling policy without a centralized scheduler and discusses
the energy delay trade–off with full and partially shared information about
the queue lengths of all the users. In [Chan, Neely, and Mitra, 2007], an ex-
act solution for the average packet delay under the optimal offline sched-
uler is presented when an asymmetry property of packet inter–arrival times
and packet inter–transmission times holds. Online scheduling algorithms
that assume no future packet arrival information are discussed as well.
Their performances are comparable to those of the offline schedulers which
assume identically and independently distributed inter-arrival times. The
results of [Berry and Gallager, 2002] have been extended to the multiuser
context in [Neely, 2007]. It is found that to achieve an average power within
the O(1/n) of the minimum power required for network stability, there
must be an average queuing delay greater or equal to Ω(

√
n). Recently, ref-
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erence [Neely, 2009] shows that fractional packet dropping changes energy-
delay square root law to a logarithmic law. In [Neely, 2010], an algorithm
is provided that ensures a worst case delay guarantee and maximizes a
throughput utility. Reference [Biyikoglu and Gamal, 2004] proposes an it-
erative algorithm for finding the optimal offline scheduler. Moreover, an
energy saving online scheduler is discussed which adapts to both the chan-
nel fading and the backlog.

In [Kabamba, Meerkov, and Tang, 2005], the authors show that for any
modulation and coding schemes and under general assumptions on chan-
nel model, the optimal policy is always of threshold nature. They discuss
the tradeoffs between long and short term power efficiency, long term av-
erage throughput and short term performance. To improve the fairness
among the users at the cell border, they propose an adaptive threshold pol-
icy and prove that it is both power efficient and location fair. Reference
[Kim and Hwang, 2009] discusses a threshold based scheduling scheme
for downlink which fulfills the ergodic rate requirements of the users. The
authors discuss feasibility of the given rate requirements and propose fea-
sible thresholds that maximize the ergodic sum rate while guaranteeing
the ergodic rate requirements. The work in [Chen and Jordan, 2009] ad-
dresses the problem of scheduling multiple transmissions on the downlink
with performance guarantees in terms of probabilities that the short term
throughput exceeds user specified throughput. The authors consider the
case when the channel does not vary during the time slot and provide op-
timality conditions. An online scheduling algorithm is proposed which
aims to maximize the time when short term throughput of the user exceeds
a target throughput. Reference [Hassel, Øien, and Gesbert, 2007] provides
approximate expressions for the minimum throughput guarantee violation
probability. Closed form expressions for the violation probability are eval-
uated for some of the existing schedulers and the result show that approxi-
mations are quite useful for the practical networks with correlated channels
for the users and realistic throughput guarantees.

The role of opportunistic scheduling in a network has been a well in-
vestigated topic. Opportunistic scheduling has been addressed in differ-
ent type of networks and problem settings. For example, the ideas of op-
portunistic scheduling for adhoc networks have been discussed in [Zheng,
Pun, Ge, Zhang, and Poor, 2008]. The authors propose a threshold based
scheduling scheme for the case when the transmitter has perfect knowledge
of channel. In [Zheng, Ge, and Zhang, 2009], the proposed scheme is gen-
eralized for imperfect channel state information and shown that optimal
scheme is still threshold based but thresholds depend on the variance of
estimation error. [Urgaonkar and Neely, 2009], [Rashid, Hossain, Hossain,
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and Bhargava, 2009] discuss opportunistic scheduling in cognitive radio
networks. [Cui, Chen, and Ho, 2008] and [Chen, Letaief, and Cao, 2007]
address network coding issues for opportunistic networks.

2.9 Background For the Deterministic Cooperative

Network

In the second part of the dissertation, we discuss deterministic cooperative
network. In this section, we review the main concepts and the related work
briefly.

Wireless channels differ from their wired line counterpart in two fun-
damental aspects [Avestimehr, Diggavi, and Tse, 2007a]. First, the wireless
channel is a broadcast (shared) medium and the signal from any transmit-
ter is received by potentially many receivers. This is called broadcast con-
straint. On the other hand, any receiver observes the superposition (linear
combination) of signals from possibly many transmitters. This is called in-
terference constraint. The simultaneous presence of these two constraints
makes a general wireless network quite difficult to analyze.

The multiuser Gaussian channel that models a relay network, unfor-
tunately, has so far escaped a sharp general characterization, even in the
simplest case of a Gaussian relay network with a single source, single des-
tination and a single relay [Meulen, 1977]. The capacities of Gaussian relay
channel and certain discrete relay channels are evaluated in [Cover and
Gamal, 1979] and a lower bound to the capacity of general relay channel
is presented. In [Gastpar and Vetterli, 2005], capacity is determined for a
Gaussian relay network when the number of relays is asymptotically large.
Reference [Gamal and Zahedi, 2005] shows that capacity of a class of dis-
crete memoryless relay channels with orthogonal channels from sender to
relay and from the sender and relay to the receiver is equal to max-flow
min-cut. The authors of [Bölcski, Nabar, Özgür Oyman, and Paulraj, 2006]
discuss a setup in which a single source-destination pair equipped with
M antennas communicates with the help of K intermediate nodes having
single or multiple antennas. For an asymptotically large K, it is shown
that with perfect channel state information at the relays, the capacity of the
network scales as (M/2) log(K) + O(1). In [Kramer, Gastpar, and Gupta,
2005], decode-and-forward and compress and forward strategies are stud-
ied for the relay network and it is shown that decode-and-forward achieves
the ergodic capacity with phase fading if phase information is available lo-
cally and the relays are near the source node.
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Recently a simple deterministic channel is proposed which is still able
to capture the key aspects, broadcast and interference, of the wireless chan-
nel [Avestimehr et al., 2007a; Avestimehr, Diggavi, and Tse, 2007b]. This
model, referred to as the linear finite-field deterministic model, determines
the capacity for a general relay network with one source and one destina-
tion, as well as the multicast capacity with one source, multiple destina-
tions and common information only. This model is used in this work and
will be presented briefly in Section 7.1. In [Aref, 1980], a similar determin-
istic network has been used to model the broadcast effect but it does not
model the interference effect. The authors of [Gamal and Aref, 1982] de-
termined the capacity of a semi-deterministic network with a single relay.
Similarly, an achievable rate region is presented for a general deterministic
relay network in [Avestimehr, Diggavi, and Tse, 2007c; Avestimehr et al.,
2007b]. It is shown that capacity for such a network follows the same inter-
pretation as max-flow min-cut solution for a wire line network.

In this work, we extend the ideas of [Avestimehr et al., 2007a,c,b] and
discuss the achievable rate region of a relay network in a setup that is very
relevant for WSN. We consider the “sensor reachback problem” [Barros and
Servetto, 2006] for a linear finite-field deterministic network with arbitrary
topology, a single destination node and independent information at the
source nodes. We show that the capacity region for this network is given
by the cut-set bound and takes on a very simple and appealing closed-form
expression. Also, for a specific sources correlation model, we find neces-
sary and sufficient conditions for the sources transmissibility. This result
reminds closely Theorem 1 of [Barros and Servetto, 2006], with the follow-
ing main differences: on one hand, the result of [Barros and Servetto, 2006]
is more general since it applies to general correlated discrete sources ob-
served at the sensor nodes and general noisy channels. On the other hand,
our result applies to networks with broadcast and interference constraints
while the result of [Barros and Servetto, 2006] requires “orthogonal” chan-
nels, i.e., with neither broadcast nor interference constraints.
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Part I

Opportunistic Multiuser
Communications
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Chapter 3

Deadline Dependent
Opportunistic Scheduling

Energy saving and delay constraints are one of the most demanding re-
quirements for the state of the art wireless communication networks. Specif-
ically, wireless sensor networks (WSN) put an emphasis on the energy sav-
ing aspect of the system. WSN consists of a large number of nodes with
sensing, computation and communication capabilities merged together. One
of the fundamental and most important tasks in designing protocols for
WSN is minimization of energy expenditure to increase the life time of the
communicating nodes. Sensor nodes can save the measured data locally for
some duration and wait in sleep mode before transmitting it to the data col-
lecting node, called fusion node. When they find good channel conditions,
they wake up and empty the buffer by transmitting all of the data. Some ap-
plications explicitly require the transmission of sensed data before a hard
deadline and therefore, often an upper delay bound for each node needs
to be provided. Reference [Miao, Himayat, Li, and Swami, 2009] is an ex-
cellent survey on the topic of energy minimization techniques in wireless
communications.

This work deals with the dual task of minimizing the energy of the sys-
tem while providing an upper delay bound for each node. Similar task
has been discussed in [Yao and Giannakis, 2005] where the authors ad-
dress the problem of minimizing the energy in a sensor network by vary-
ing the transmission times assigned to different sensor nodes and propose
a scheduling scheme that achieves near optimal energy efficiency.

In this work, multi-user scheduling is performed by extending the idea
of a single user scheduling in the large system limit. We use the new modal-
ities provided by the physical layer for opportunistic communication and
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3. DEADLINE DEPENDENT OPPORTUNISTIC SCHEDULING

the scheduling parameters at MAC layer are tuned according to the chan-
nel distributions at the physical layer. This tuning of parameters across dif-
ferent layers can be regarded as vertical calibration in a cross layer design
approach [Srivastava and Motani, 2005].

3.1 System Model

We consider a multiple–access system with K users randomly placed within
a certain geographical area. Each user is provided a certain fraction of the
total data rate available to the system. The required average rate R for
each user is Γ

K where Γ denotes the spectral efficiency of the system. We
consider a time–slotted system. The arrival rate is constant for all users.
Arrivals are queued in a finite buffer of size τmax before transmission. In
each time slot Γ

K bits arrive in the buffer of each user. We consider an up-
link (reverse link) scenario but the results can be generalized to a downlink
(forward link) scenario in a straightforward manner using the multiple–
access broadcast duality of the Gaussian channel [Jindal, Vishwanath, and
Goldsmisth, 2004].

The fading environment of the multi-band multi-access system is de-
scribed as follows. Fading is termed as short–term fading if the coherence
time of the channel is much shorter than the delay requirement of the ap-
plication. If the coherence time is greater than the delay requirements, it is
called long–term fading [Tse and Viswanath, 2005]. Therefore, the nature of
the fading is associated with the variability of the channel as well as with
the delay requirements of the application. Each user k experiences a chan-
nel gain1 gk(t) in slot t. The channel gain gk(t) is the product of path gain
sk and short–term fading fk(t) i.e. gk(t) = sk fk(t). Path loss and short–
term fading are assumed to be independent. The path gain is a function
of the distance between the transmitter and the receiver and we assume
it not to change within the time-scales considered in this work. Short–
term fading depends on the scattering environment. It changes from slot
to slot for every user and is independent and identically distributed across
both users and slots but remains constant within each single transmission.
This model is often referred to as block fading. For a multi-band system
of M channels, short–term fading over the best channel is represented by,
fk(t) = max( f (1)

k (t), f (2)
k (t), . . . , f (M)

k (t)).

1For mathematical convenience the propagation loss is introduced as a gain which, of
course, is a number smaller than 1 and, therefore, actually a loss.
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BACKGROUND: OPPORTUNISTIC SUPERPOSITIONING(OSP)

ER
k (t) and Ek(t) represent the received and the transmitted energy for

each user k such that
ER

k (t) = gk(t)Ek(t). (3.1)

Note that the distribution of gk(t) differs from user to user. Let N0 de-
notes the noise power spectral density. The channel state information is
assumed to be known at the both transmitter and the receiver side. This
can be accomplished by channel measurement on opposite link (downlink)
in time-division duplex systems or obtaining explicit information from the
receiver within the same time slot.

We allow multiple users to be scheduled simultaneously in the same
frequency band. The scheme follows the results for the asymptotic user
case analysis and therefore, there is no limit on the number of users sched-
uled simultaneously. Those scheduled users are separated by superposi-
tion coding. Let Km be the set of users to be scheduled in frequency band
m. Let ψ

(m)
k be the permutation of the scheduled user indices for frequency

band m that sorts the channel gains in increasing order, i.e. g(m)
ψ1

≤ · · · ≤
g(m)

ψk
≤ · · · ≤ g(m)

ψ|Km |
. Then, the energy of the user ψ

(m)
k with rate R(m)

ψk
, as

scheduled by the scheduler to guarantee an error free communication, is
given by [Tse and Hanly, 1998; Caire, Müller, and Knopp, 2007]

E(m)
ψk

=
N0

g(m)
ψk

[
2∑i≤k R(m)

ψi − 2∑i<k R(m)
ψi

]
. (3.2)

This energy assignment results in the minimum total transmit energy
for the scheduled users. Collisions between simultaneous transmissions
are avoided because in a multiuser environment, superposition coding and
successive decoding ensure that data from multiple users are decoded suc-
cessfully without error on the receiver side2.

3.2 Background: Opportunistic

Superpositioning(OSP)

For delay limited systems, it is necessary to provide QoS in terms of av-
erage or deadline delay. In [Chaporkar, Kansanen, and Müller, 2009] an
opportunistic superpositioning (OSP) scheduling scheme is proposed for
an asymptotically large multiuser system. A block fading model is consid-
ered where channel gain is a product of distance dependent path loss and

2The problem of error propagation in successive decoding can easily be overcome by
means of iterative (soft) multiuser decoding [Caire, Müller, and Tanaka, 2004].
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3. DEADLINE DEPENDENT OPPORTUNISTIC SCHEDULING

environment dependent short term fading. Contrast to single user schedul-
ing in PFS, OSP schedules a group of users having instantaneous short term
fading better than an opportunistic threshold. The scheduling is performed
on short term fading to maintain the fairness among the users3. When the
users are uniformly distributed in a geographical area, the users far from
the base station have greater path loss as compared to the users located near
the base station. If scheduling is performed on the basis of channel gain,
better path loss gives an advantage to the users located near the base sta-
tion. To eliminate this advantage, scheduling decisions are made on short
term fading and fairness is guaranteed among all the users.

The opportunistic threshold depends on the average delay of the users.
If the users can tolerate more average delay, the opportunistic threshold
will be higher and less number of users will be transmitted in every time
slot. OSP eliminates the users with bad channels and makes the system
more energy efficient. At the same time, all the users are provided with the
average delay guarantees. In OSP, when a user is scheduled for transmis-
sion, she empties her buffer by transmitting all the packets queued in the
buffer. The buffer size is assumed to be infinite.

The scheme has been analyzed in large system limit but behaves nicely
in finite user case as well. In [Butt, Kansanen, and Müller, 2007], the fi-
nite user convergence results of OSP have been discussed as shown in Fig.
3.1. The results show that at small spectral efficiencies, a finite user sys-
tem behaves similar to asymptotic case for number of users K = 500 and
K = 1000. For larger spectral efficiency values, it requires more number
of users to converge to the asymptotic results. Similarly, the convergence
is faster at small average delay values as compared to large values. For fi-
nite number of users, the number of simultaneously scheduled users and
their buffer sizes vary from slot to slot. This variation increases at larger
values of spectral efficiency. Similarly, scheduled users’ buffer size grows
for larger average delay constraint. To minimize these slot to slot energy
variations, the system size should be large enough so that a large number
of users are scheduled in every time slot and amount of data scheduled
becomes nearly constant in each time slot.

3.3 Deadline Dependent Opportunistic Scheduler

Opportunistic Superpositioning (OSP) has been proposed to exploit the
channel diversities of the users. We have generalized the framework of

3For the same reason, we perform all the scheduling decisions based on short term
fading of the users in the rest of this work.
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FIGURE 3.1: Convergence results for OSP for a multichannel system
with number of channels M equals 10.

OSP and proposed Deadline Dependent Opportunistic Scheduling (DDOS)
in this work [Butt, Kansanen, and Müller, 2008c, b].

It should be noted that computation of transmission thresholds for all
the users depending on their respective backlog–states is usually not feasi-
ble in a multiuser environment because of a large state space. We consider
an asymptotically large user system in this work. Therefore, the backlog–
states of the users decouple and we can formulate the problem of energy
efficient transmission in a multiuser system as an equivalent single user
scheduling problem [Guo and Verdu, 2005]. A similar decoupling princi-
ple is applied in [Benaim and Le Boudec, 2008] and called a mean field limit
principle.

In DDOS, individual queues of the users are observed in addition to the
short term fading fk(t) for the scheduling purpose. The proposed scheme
schedules a set of users experiencing high short term fading gains. If back-
log of a user is equal to the maximum delay parameter, called deadline, the
user is scheduled and channel is assigned regardless of its instantaneous
fading state. We are using the approach of emptying the queue to keep the
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3. DEADLINE DEPENDENT OPPORTUNISTIC SCHEDULING

scheduling operation simple.
DDOS provides the energy efficient solution by scheduling the users

experiencing high short term fading gains as compared to an opportunistic
threshold which depends on the backlog state of the user. As long as the
backlog of the user is less than the deadline, the scheduler attempts to ex-
ploit the multiuser gain. When the deadline is reached for the oldest packet
in the buffer, it provides the required data rate to the user regardless of its
fading state. The users are scheduled in an energy efficient way as long as
they do not reach the deadline. Opportunistic threshold is set to zero to
ensure the scheduling of the user reaching the deadline.

Pseudo code for DDOS has been shown below.
�

�

�

�

Algorithm 3.3.1: DDOS(Backlog,Deadline)

comment: User k knows Backlog and Deadline

i← Backlog

n← Deadline

comment: Current Buffer contains i Γ
K data

Bu f f er← i Γ
K

comment: Rate R is provided by the scheduler

if ( fk > κi)

then

⎧⎨
⎩R← Bu f f er

i← 1

else

then

⎧⎨
⎩R← 0

i← i + 1

3.3.1 Modified Deadline Dependent Opportunistic Scheduling
(MDDOS)

Instead of emptying the buffer on reaching maximum buffer length, a more
suitable approach would be to transmit only the data that has reached the
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TABLE 3.1: Comparison of the Scheduling schemes

Scheme Threshhold Threshhold Deadline

in state i �= n in state i = n Rate Allocation

OSP κ NA NA

DDOS κi 0 Full Buffer

MDDOS κi κn−1 Full Buffer if fk > κn−1

Γ
K if fk ≤ κn−1

deadline and this scheme is referred to as Modified Deadline Dependent
Opportunistic Scheduling (MDDOS). The queue is emptied at the deadline
only if short term fading gain fk of the user is greater than the opportunistic
threshold in the time slot before the deadline i.e. κn−1 for the case τmax = n.
This scheme schedules the user opportunistically even in deadline state
and transmits the oldest data unit Γ

K if deadline is reached but fk < κn−1,
resulting in further energy saving. The comparison of the characteristics of
OSP, DDOS and MDDOS has been summarized in table 3.1.

3.4 Asymptotic Analysis of DDOS

We define some terms used in this work.

Definition 3.1 (Waiting Time) The waiting time W of a packet is defined as the
number of time slots a packet has spent in the buffer waiting to be scheduled.

We use a Markov chain description to model the scheduling process.

Definition 3.2 (Backlog State) The backlog state in a Markov chain is the maxi-
mum of waiting times of all of the packets in the buffer.

i = max(W1, W2...Wj) (3.3)

For a constant arrival and identical deadline case, backlog state represents the
number of packets buffered in the queue.4

4However, this is not true when arriving packets have individual non-identical dead-
lines.
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FIGURE 3.2: State diagram for the transition states of a single user for
DDOS. Due to constant arrival rate, user moves into next adjacent state if
not scheduled.

Definition 3.3 (Opportunistic Threshold For DDOS) An opportunistic threshold
κi for DDOS is defined as the minimum short–term fading value allowing for the
transition Ti→1 from backlog state i to backlog state 1.

In the Markov state description of DDOS, the deadline constraint τmax is
reflected by the maximum number of states5 n. Forward state transition
Ti→j from a state i to the next higher state j occurs if no data is transmitted.
Due to constant arrival of one packet in a time slot and identical deadline
for all the arrived packets, j is always equal to i + 1 for a forward tran-
sition. Due to emptying buffer property, the backward state transition oc-
curs always from state i to state 1 and the scheduler schedules i packets for
transmission.

In a Markov process if a user is in state i, then the next state j is de-
termined according to transition probabilities αij [Rose, 2003]. Let St be
the state of the process at time t. In order to ease notation, introduce a
dummy state i = 0 and make it impossible to be reached by the definition
κi→0 = ∞∀i. Then, the transition probabilities are

αij = Pr{St+1 = j|St = i} (3.4)

=

⎧⎪⎨⎪⎩
Pr( f > κi) j = 1
Pr( f ≤ κi) j = i + 1
0 else

(3.5)

Transition probabilities for the next state St+1 depend on the current state
St and are independent of all the past states S0, . . . , St−1. The current state

5In this work, we use the term state and backlog state interchangeably.
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i represents the backlog of the user of interest and the next state j depends
on the short–term fading. The fading randomizes the state transitions.

Let the fading be an ergodic process. Then the limiting probability that
the process will be in state j is denoted by

πj = lim
t→∞

Pr{St = j} ∀j. (3.6)

The limiting probability πj is independent of state i and can be expressed
as

πj = ∑
i

πiαij ∀j. (3.7)

The sum of the limiting probabilities of all the states must obey

∑
j

πj = 1. (3.8)

These n + 1 linear equations determine the limiting probabilities for all n
states.
The state transition diagram is shown in Fig. 3.2 and the transition proba-
bility matrix is given by

PDDOS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11 α12 0 · · · 0

α21 0 α23 · · · 0
...

...
...

...
...

α(n−1)1 0 0 · · · α(n−1)(n)

αn1 0 0 · · · αnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.9)

where the state transitions represented by zero implies impossible state
transition for DDOS scheduling scheme. The limiting probabilities for state
i are given by

πi =
n

∑
b=i−1

αbiπb. (3.10)

Let

Pj
i = lim

t→∞
Pr(St = i, St+1 = j) (3.11)
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denote the joint probability that the buffer is in state i and moves to state j.
Then, we have asymptotically

Pj
i = lim

t→∞
Pr(St+1 = j|St = i) Pr(St = i) (3.12)

= αijπi (3.13)

= αij

n

∑
b=i−1

αbiπb. (3.14)

We assume that the users exhibit independent fading processes. Fur-
thermore, the proposed scheduler is independent of the other users’ fad-
ing. Therefore, the law of large numbers drives the proportion of users in
state i at time t to be identical to Pr(St = i) in the large user limit. If a user
is scheduled in a small queue state, it utilizes a good channel and allocates
comparatively more rate. If the channel is not good, the user may decide to
wait for the next slot due to the following dilemma: On the one hand, the
user is hoping that the next channel will be better than the current channel
and energy will be saved. But on the other hand, the user is coming closer
to the deadline for transmission. If the deadline will be reached and the
channel has gotten worse, energy will be wasted by transmitting data on a
bad channel. The task of the optimizer is to find the optimal threshold val-
ues such that the transmitted energy in the system is minimized by smart
scheduling decisions.

3.4.1 Optimization of Thresholds

Next we would like to optimize the opportunistic thresholds. Our objective
is to minimize the average transmitted energy. We would like to apply the
large-system results of [Caire et al., 2007], in particular Theorem 2. How-
ever, Theorem 2 is restricted to cases where the rate is independent of the
channel realization which does not hold for our scheduler. In order to cir-
cumvent this limitation, we model a user that sends L packets at a time as
L virtual users with identical fading that send single packets. The average
energy consumption of the system per transmitted information bit at the
large system limit K → ∞ is then given by [Caire et al., 2007](

Eb

N0

)
sys

= log(2)
∞∫

0

2R Pg,SVU(x)

x
dPg,SVU(x) (3.15)

where Pg,SVU(·) denotes the cumulative distribution function (cdf) of the
fading of the scheduled virtual users (SVU). It is composed of the short-
term fading of the SVUs and the long-term fading of the SVUs. Note that
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in the large system limit, the long-term fading of the SVUs follows the same
distribution as the long-term fading of all users because long-term and
short-term fading are mutually statistically independent and state transi-
tions depend only on the short-term fading.

The probability density function (pdf) of the short-term fading of the
SVUs is given by

p f ,SVU(y) =
n

∑
i=1

πi p f ,SVU(y|i) (3.16)

where the channel distribution of the users in state i is given by

p f ,SVU(y|i) = cii pmax{ f }(y) (3.17)

with pmax{ f }(y) and ci denoting the short–term fading of the best of the
channels for a multi-channel system and a constant to normalize the condi-
tional pdf. The cumulative distribution function (cdf) of the SVUs is given
by

P f ,SVU(y) =
n

∑
i=1

πi

y∫
κi

p f ,SVU(ξ|i)dξ, (3.18)

since for y < κi no users are scheduled. Using Eq. (3.17), Eq. (3.18) can be
written as sum of integrals

P f ,SVU(y) =
n

∑
i=1

ciπii

y∫
κi

pmax{ f }(ξ)dξ (3.19)

=
n

∑
i=1

ciπii
(

Pmax{ f }(y) − Pmax{ f }(κi)
)

. (3.20)

Using standard methods for calculating the distribution of the product of
two independent random variables, Pg,SVU(y) is calculated out of Eq. (3.20)
and the CDF of the path loss in Appendix A.

3.4.2 Optimization by Simulated Annealing

The energy in Eq. (3.15) is not a convex function of the transmission thresh-
olds. Therefore, we choose to use the Simulated Annealing (SA) algorithm
to optimize the energy function for the transmission thresholds that result
in a minimum energy for a given maximum delay parameter. The simu-
lated annealing algorithm was proposed in [Kirkpatrick, Gelatt, and Vec-
chi, 1983] and [Cerny, 1985] separately. It uses the ideas from statistical
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mechanics to solve combinational problems. It is believed to provide near
optimal solutions (even optimal) in many combinatorial problems.

The main components of the simulated annealing algorithm are de-
scribed briefly here.

1. Objective Function
In this work, objective function is the system energy as given in Eq.
(3.15).

2. Description of the configuration of the system
It is essential to provide a clear description of the configuration of
the system. In our case, the transmission thresholds are the parame-
ters which represent the configuration of the system at a particular
instant. The transmission thresholds are related with the transition
probabilities for a given deadline and short–term fading. Therefore,
determining an optimal vector of thresholds�κopt is equivalent to de-
termine an optimal state transition probability matrix Popt.

3. A random generator for the new configuration
At the start of the algorithm, any configuration can be provided. In
the next step, there must be a suitable method to provide a random
change in the configuration. In this work, transition probabilities are
varied in each step to provide a new configuration to evaluate Eq.
(3.15).

4. A cooling temperature schedule
The system is ”heated” at high temperature T at the start of the al-
gorithm. Afterwards, the temperature is decreased slowly up to the
point where the system ”freezes”. The terms heating and cooling
come from statistical thermodynamics where freezing of the system
represents a situation where the system reaches a near optimal solu-
tion and no more state6 transitions occur for further lowering of the
temperature parameter. The cooling schedule depends on the spe-
cific problem and can be developed after certain experiments. In our
simulations, we tested both Boltzmann annealing (BA) and Fast an-
nealing (FA) temperature cooling schedules which have been proven
to provide global minimum solutions for a wide range of problems
[Geman and Geman, 1984; H.Szu and Hartley, 1987]. In FA, it is suf-
ficient to decrease the temperature linearly in each step b such that,

6The state in SA refers to the configuration of the system, i.e. the current transmission
thresholds. It has no relation with the state of the Markov process given by the backlog of
the user.
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FIGURE 3.3: Flow chart for SA algorithm.
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Tb =
T0

b + 1
(3.21)

where T0 is a suitable starting temperature. Similarly in BA, global
minima can be found sufficiently (in many problems) if temperature
decreases logarithmically such that,

Tb =
T0

ln(b + 1)
(3.22)

5. Acceptance Probability
Any new configuration in SA is accepted if it results in a lower system
energy with probability 1. A change in energy in each step is denoted
by ΔE. Any new state is accepted with probability ΔE/T if it results
in a higher energy state and it is referred to as muting. Muting occurs
frequently at the start of the algorithm and vanishes to happen as the
temperature T approaches zero.

Block diagram for SA algorithm has been shown in Fig. 3.3.
Using the SA algorithm, an optimal set of transmission thresholds is

obtained for a given deadline τmax. The muting step makes it likely that lo-
cal minima are avoided in the optimization process by moving into higher
energy solutions with some temperature dependent probability. Numeri-
cal results relating the optimization process using the SA are discussed in
Section 3.6.

3.5 Minimum Throughput Guarantees

We formulate the problem in terms of providing throughput guarantees to
the individual users instead of deadline delay guarantees. Throughput for
a user k is defined over a rectangular window of length tc such that

Tk =
1
tc

tc

∑
b=1

δ(t− b)Rsch
k (t− b) (3.23)

where Rsch
k (t) is the rate requirement of user k in time slot t to empty the

buffer and

δ(t) =

{
1 if user scheduled
0 otherwise

(3.24)

Each user is provided a minimum throughput guarantee and the task is
to achieve the throughput at minimum transmit energy. We adapt DDOS
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algorithm such that it achieves minimum throughput guarantee for each
user.

We assume infinite buffer size for this case. The rate allocation scheme
follows emptying buffer property as in DDOS. Instead of a fixed deadline
τmax, we have a virtual deadline that depends on the difference between in-
stantaneous throughput T (t) in slot t and minimum throughput Tmin. A
virtual deadline is defined as the number of time slots an unscheduled
user tolerates before her instantaneous throughput T (t) falls below Tmin.
Virtual deadline needs to be computed at the start of time slot before the
scheduling operation.

It should be noted that τvr
max needs not to be computed in every time

slot. The routine of computation of τvr
max is invoked only when a user is

scheduled to empty the buffer.
Virtual deadline is computed in the following steps.

1. Initialize virtual deadline τvr
max by one.

2. Replace rate Rsch
k (t− tc − τvr

max + 1) with zero and compute T .

3. If T > Tmin, increment τvr
max by one.

4. Repeat step 2 and step 3 until T ≤ Tmin .

τvr
max is virtual deadline at the end of the routine.

Once τvr
max is computed, DDOS scheduler computes transmission thresh-

olds by treating the system as deadline constrained system with deadline
τvr
max .

3.6 Numerical Results

We have considered amulti-access channel with M bands and it is assumed
that fading on these channels is statically independent. It implies that every
user senses M channels instead of a single channel and selects its best chan-
nel as a candidate channel for the transmission scheduling. This is the op-
timal multi-band allocation for the asymptotic case [Caire et al., 2007]. We
consider a system where users are placed uniformly at random in a cell ex-
cept for a forbidden region around the access point of radius δ = 0.01. The
path loss is exponential with exponent 2. All users experience fast fading
with exponential distribution with mean one on each of the M channels.
The details of path loss model can be found in Appendix A. The spectral
efficiency values used in the results are divided by M to get spectral effi-
ciency/channel C.
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TABLE 3.2: Threshold Computation by SA

τmax κ1 κ2 κ3 κ4 (Eb/No)

2 0.16 0 NA NA -0.76dB

3 0.36 0.17 0 NA -2.24dB

4 0.55 0.38 0.19 0 -3.23dB
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FIGURE 3.4: Comparison of OSP and DDOS for τmax = 3, M=10 and
same average delay.

We compute the vector of optimal thresholds using Simulated Anneal-
ing algorithm as explained in Section 3.4.2. We set the value of spectral
efficiency per channel equals to 0.5 and M = 1. We use FA cooling sched-
ule with 50 temperature iterations. For each temperature value, 10 random
configuration (transition probabilities) are produced. Table 3.2 shows the
vector of transmission thresholds for n = 2, n = 3 and n = 4, and the
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corresponding average system energy.
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FIGURE 3.5: Energy efficiency of DDOS and MDDOS for τmax = 3,
M=10.

We evaluate the results for the finite user case. All the numerical re-
sults have been obtained by simulating a multiuser environment where
5000 users have simultaneous access to 10 channels. For each operation,
100 path loss environments have been simulated to remove the effect of
variation in path loss on the system energy. For a single path loss environ-
ment, 200 scheduling operations have been performed for the convergence
of the sum energy of the system. We consider the constant arrivals for all
the users.

Fig. 3.4 demonstrates the comparison of OSP with DDOS for τmax = 3
and K = 5000. For a fair comparison with OSP, average delay has been kept
same for the evaluation of both of the scheduling schemes. A small loss in
system energy is observed for DDOS as compared to OSP but it provides
the deadline delay guarantees to the users as well.

Fig. 3.5 shows the comparison of energy efficiency between DDOS and
MDDOS schemes for τmax = 3. As described in Section 3.3.1, MDDOS
behaves similarly when scheduling the users opportunistically but opera-
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FIGURE 3.6: Comparison of DDOS scheme for different values of τmax
and M=10.

tion is modified in deadline state only. This modification results in further
improvement in energy efficiency while fulfilling the same deadline delay
constraint as shown in Fig. 3.5.

Fig. 3.6 shows the numerical example of energy-delay tradeoff exhib-
ited by DDOS. It is observed that an increase in deadline delay constraint
results in an energy efficient system. If application is delay tolerant, delay
provides another degree of freedom to achieve energy efficiency. However,
gain in system energy diminishes for large deadline delays.
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Chapter 4

Opportunistic Partial Buffer
Scheduling

In this chapter, we extend the work in Chapter 3 and propose a more generic
scheduler as compared to the emptying buffer scheduler in DDOS. We use
the system model introduced in Section 3.1 for DDOS.

In the proposed scheme, the problem of optimization of the transmis-
sion thresholds for energy efficient data transmission is formulated anal-
ogously to the dynamic programming concept where a complicated prob-
lem is broken into a set of smaller, less complicated problems. Our goal is to
compute transmission thresholds for all the backlog states such that system
energy is minimized. We break the problem of energy optimal transmis-
sion of data packets (before the deadline) into a less complicated problem
of transmitting the data in the current time slot or waiting for the next slot.
For the current backlog state, transmission threshold is computed in such a
way that outcome of the decision (waiting or transmission) in current time
slot results in a minimum energy. Based upon the decision in the current
time slot, backlog–state is modified and we ask the same question again in
the next time slot. In this way, by solving the less complicated problem of
determination of optimal threshold for the current time slot (with a given
backlog), we compute the energy optimal thresholds for all the backlog–
states (Markov process).

We consider an asymptotically large user system as in Chapter 3 and
formulate the problem of energy efficient transmission in a multiuser sys-
tem as an equivalent single user scheduling problem.
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4.1 Deadline Dependent Partial Buffer Scheduling

(DDPS)

In this work, we discuss a scheduling scheme in which data can be trans-
mitted in discrete steps (packets) [Butt, Kansanen, and Müller, 2008b, a].
We define some basic terms for the DDPS scheduler.

Definition 4.1 (Transmission threshold For DDPS:) A transmission threshold κi→j
is defined as the minimum short–term fading value allowing for the transition Ti→j
from state i to state j.

The state represents the size of current buffer occupancy. If we assume that
p packets arrive, i − j + p packets are scheduled when the state transition
Ti→j takes place.

In the sequel, we use the following proposition.

Proposition 4.1 Given a fixed backlog state, transmit more for the better fading
channel [Viswanath, Tse, and Anantharam, 2001]. This is known as water–filling
principle .

We impose a few restrictions on the transmission thresholds called prop-
erties of the transmission thresholds.

Property 4.1 κi→j = 0 ∀i < j. The transition from a lower to the higher state
requires no minimum channel quality. Note that no packets are scheduled for this
event to happen.

Property 4.2 κi→j ≤ κi→j−1 ∀i, j. Scheduling more packets requires better chan-
nel conditions. Equality is only allowed for sake of consistency with Property 4.1.

Proof: See Appendix B.

Property 4.3 κi→j ≤ κi−1→j−1 ∀i, j. Both transitions schedule the same number
of packets. The inequality ensures that scheduling from longer queues is preferred
over scheduling from shorter queues.

Proof: See Appendix B.

Property 4.4 κn→n = 0 for the highest state n. This ensures that the hard deadline
is kept and, in fact, that the number of states is finite. If the buffer is full, a packet
is scheduled regardless of the channel quality.
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FIGURE 4.1: State diagram for the transition states of DDPS scheduler.

In addition to the short–term fading fk(t), the backlog states of the users
are considered to make a decision that which of the users are to be sched-
uled. Similar to DDOS, DDPS schedules a set of users experiencing favor-
able short–term fading. The short–term fading of the users is compared
against a set of transmission thresholds. The rate Rk is, then, allocated in dis-
crete steps according to the number of transmission thresholds that are ex-
ceeded. If the backlog of a user is equal to the hard deadline, the user is
scheduled for at least a single packet regardless of its instantaneous fading
state. The scheduler performs an energy efficient opportunistic scheduling
as long as the backlog of the user is less than the hard deadline. When the
hard deadline is reached, a deadline guarantee is provided via Property
4.4 by scheduling the user for at least a single packet. This may be costly,
but the deadline is to be respected by all means. To avoid these potentially
costly events happening too frequently, the algorithm gives preference to
older packets as compared to newer packets by proper choice of the trans-
mission thresholds. This is the idea behind Property 4.3 of the transmission
thresholds.

In each time slot only integer multiples of rate Γ
K (packet size) are trans-

mitted. We consider a constant arrival rate of one packet per time slot. For
this special case, the delay of the oldest packet in a buffer is represented
by the user’s state and the hard deadline is equal to his buffer size. The
assumption of constant arrival makes the analysis simpler and readily un-
derstandable. Later, in the next section, we will consider random arrivals.
The deadline constraint τmax is reflected by the maximum number of states
n. State transition Ti→j from state i to the next higher state j occurs if no
data is transmitted (Property 4.1). Similarly, state transition Ti→j from a
state i to a lower or equal state j occurs by transmitting i − j + 1 packets of
size Γ

K depending upon the transmission thresholds.

43



4. OPPORTUNISTIC PARTIAL BUFFER SCHEDULING

We can represent the state transition model for each user as a Markov
chain as shown in Fig. 4.1 and the corresponding transition probability
matrix is given by

PDDPS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11 α12 0 · · · 0

α21 α22 α23 · · · 0
...

...
...

...
...

α(n−1)1 α(n−1)2 α(n−1)3 · · · α(n−1)(n)

αn1 αn2 αn3 · · · αnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.1)

where the state transitions represented by zero implies impossible state
transition for DDPS scheduling scheme. If a Markov process is in state
i, then the next state j is determined according to transition probabilities
αij. Similar to DDOS, forward transition is still limited to adjacent higher
state due to identical deadline for all the arriving packets. However, the
backward transition probabilities for DDPS result from the scheduling op-
eration and differ from DDOS. The relation between transition probabilities
and transmission thresholds have been shown in Appendix C.
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Pseudo code of DDPS is shown in Algorithm 4.1.1.

�

�

�

�

Algorithm 4.1.1: DDPS(Backlog, Threshold)

comment: User k knows backlog and transmission thresholds

i ← Backlog

�κ ← Threshold

comment: Buffer contains i Γ
K and rate R is provided by the scheduler

R ← 0

comment: Find maximum allowed rate

for j ← 1 to Backlog

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if fk > κi→j

then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R ← (i − j + 1) Γ

K

i ← j

break

if (R = 0)

i ← i + 1

Backlog ← i

4.1.1 Modeling Random Arrivals

We consider a random arrival process such that the arrival of a random
number of packets in each time slot is modeled by the arrival of a single
packet with random content size N [Butt, Kansanen, and Müller, c].

Lemma 4.1 Random arrivals with fixed packet size are identical to constant ar-
rivals with random packet size.

In our arrival model, we denote the number of packets arriving within a single
time slot by the random variable X and the size of the arriving packets by the ran-
dom variable N. Denoting Pr(X = x) shortly by pX(x), constant arrival of a single
packet per time slot with random packets size Nrand is then represented by the
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probability distributions pXconst(1) = 1 and pNrand(μ) where μ ∈ {[0, 1, 2 . . . ] Γ
K}.

Thus, for a fixed packet size Nconst, we have

pXrand(x) = pNrand(xNconst). (4.2)

Following Lemma 4.1, we consider the random arrivals as constant ar-
rivals with random size in this work. This will be useful in the sequel as
in the large system limit, the packet size distribution has no effect onto the
spectral efficiency of the system [Caire et al., 2007]. In Section 4.2, we ana-
lyze the effect of Lemma 4.1 to the DDPS scheduler.

4.1.2 Asymptotic Analysis of DDPS

We perform asymptotic analysis of DDPS analogous to the analysis of DDOS
in Section 3.4. The distribution of short term fading for SVUs differs for
DDPS as compared to DDOS.

In case of DDPS, the probability density function (pdf) of the short-term
fading of the SVUs is given by

p f ,SVU(y) =
n

∑
i=1

πi p f ,SVU(y|i) (4.3)

where the channel distribution of the users in state i is given by

p f ,SVU(y|i) = ci(i − j(y, i) + 1) pmax{ f }(y) (4.4)

with pmax{ f }(y), j(y, i) and ci denoting the short–term fading of the best of
the channels for a multi-channel system, the end state of the system after
scheduling and a constant to normalize the conditional pdf. Note that the
function j(y, i) is uniquely defined by Definition 4.1 given all transmission
thresholds {κi→j}. The cumulative distribution function (cdf) of the SVUs
is given by

P f ,SVU(y) =
n

∑
i=1

πi

y∫
κi→i

p f ,SVU(ξ|i)dξ, (4.5)

since for y < κi→i no users are scheduled. Using Eq. (4.4), Eq. (4.5) can be
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written as sum of integrals

P f ,SVU(y) =
n

∑
i=1

ciπi

[
(i − j(y, i) + 1)

y∫
κi→j(y,i)

pmax{ f }(ξ)dξ

+
i−j(y,i)

∑
b=1

b
κi→i−b∫

κi→i−b+1

pmax{ f }(ξ)dξ
]

(4.6)

=
n

∑
i=1

ciπi

[
(i − j(y, i) + 1)Pmax{ f }(y) −

i−j(y,i)

∑
b=0

Pmax{ f }(κi→i−b)
]

. (4.7)

Pg,SVU(y) is calculated in Appendix A out of Eq. (4.7) and the CDF of
the path loss.

Note that P f ,SVU(y) is piecewise constant due to the constraining of the
transmitted rate to a discrete set of rates. The case where real valued alloca-
tion is allowed corresponds to the current case with infinitely granularity of
allocation and infinitely many thresholds being applied. In this asymptotic
limit, P f ,SVU(y) would be continuous, and the backlog state described by
a continuous state Markov chain. Since increasing the number of possible
backlog states and transmit rates corresponds to relaxing the constraints
on allocated rate, increasing the number of allowed states and admissible
transmit rates implies a decreasing optimum system energy, with the min-
imum system energy achievable by the asymptotic system with infinitely
many backlog states.

4.2 Equivalence of User Distribution For Constant

and Random Arrivals

We claim in Lemma 4.1 that a random arrival distribution can be expressed
as a constant arrival distribution with random packet size. In this section,
we explore the consequences of Lemma 4.1 to the DDPS scheduler. We
evaluate Eq. (4.4) for random and constant arrivals and prove equivalence
of the channel distributions of the scheduled users for both cases in the
limit when K → ∞.

We define a subset of users having backlog state io as

A{i=io} = {k : ik = io}. (4.8)
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Then,

lim
K→∞

|A{i=io}|
K

= Pr(i = io) ∀ i, io. (4.9)

Thus, at the large user limit, the probability of a user to be in backlog state i
represents the proportion of the users in that state. Also, the buffered data
with backlog state io can be expressed as

lim
K→∞

ca
Γ
K
|A{i=io}| = caΓPr(i = io). (4.10)

where the constant ca represents the content size and depends on the dis-
tribution of the arrival process.

Similarly, we denote the number of arrivals in time t by X(t) and define
a set of users as

A{X(t)=x} = {k : X(t) = x}. (4.11)

Then, we have

lim
K→∞

|A{X(t)=μ}|
K

= Pr(X(t) = x) ∀ X(t), x (4.12)

Asymptotically, the probability that a user transmits x arrived packets is
equal to the proportion of the users transmitting x packets in a time slot.

Eq. (4.8) to Eq. (4.12) show that we can analyze an asymptotically large
user system with the help of the state space representation in Eq. (4.1). The
scheduling function depends upon the number of backlog states L(y, i) that
have to be scheduled for the current fading fk and the number of packets
having arrived in these scheduled states. These numbers are independent
of each other. The arrival process is ergodic and X(t) packets are assumed
to arrive in every time slot. Following Lemma 4.1, we express random
arrival distribution as random size distribution. For any packet size distri-
bution pN(t)(μ), the channel distribution of virtual users can be written as

p f ,SVU(y|i) = ca
i pmax{ f }(y)L(y, i) ∑

μ

μpN(t)(μ) (4.13)

where the summation represents the actual number of packets to be trans-
mitted due to the random arrival process. ca

i is a constant normalizing the
conditional probability distribution and the content size of the random ar-
rival. The summation in Eq. (4.13) can be expressed as the expectation
E(μt) of the arrival process.

p f ,SVU(y|i) = ca
i E(μt)L(y, i)pmax{ f }(y) (4.14)
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Corresponding channel distribution for constant arrivals is given by

p f ,SVU(y|i) = cconstL(y, i) pmax{ f }(y) (4.15)

where cconst is a normalizing constant. A comparison of the channel dis-
tributions of the scheduled virtual users in Eq. (4.14) and Eq. (4.15) for
random and constant packet arrivals show that they differ only in the con-
stant. The two channel distributions are therefore equivalent. Furthermore,
the thresholds optimized for the constant arrivals are equally valid for the
systems with randomly arriving packets.

4.2.1 Special Cases

We consider examples of two commonly used arrival processes.

Bernoulli Process

In a Bernoulli process, a single data packet arrives with probability ε in
a time slot and has a Bernoulli distribution. Therefore, Eq. (4.14) can be
written as

p f ,SVU(y|i) = ca
i εL(y, i)pmax{ f }(y) (4.16)

where ε is the probability of arrival in a time slot.

Poisson Process

We discuss Poisson arrival process which is commonly used in network
analysis. For Poisson arrival process with arrival rate ϑ , Eq. (4.14) can be
written as

p f ,SVU(y|i) = ca
i ϑL(y, i)pmax{ f }(y) (4.17)

4.3 Implementation Considerations

The proposed scheme solves the optimization problem offline as a function
of the channel statistics and backlog of the user. The offline optimization
task can be performed locally by the users and needs no centralized control,
since it only involves the fading statistics, but not the fading realizations.
However, a centralized optimization would save complexity, since the out-
come of the optimization is identical for all users. Similarly, the scheduling
decisions can fully be taken by each user individually. However, the pow-
ers required by the users to transmit their packets depend on the ordering
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TABLE 4.1: DDPS with Thresholds Computed via SA For M = 1, C =
0.5 bits/s/Hz

n κ1→1 κ2→1 κ3→1 κ2→2 κ3→2 κ3→3 (Eb/N0)sys

2 0.24 0.24 - 0 - - −1.42 dB

3 0.52 0.51 0.52 0.24 0.23 0 −3.06 dB

of the successive decoding. For a finite user system, it is not possible for the
users to get the exact knowledge of the required transmit power to provide
the rate. Therefore, the users need to transmit at slightly extra power. The
excess power from all the users should vanish at the large system limit for
the system to follow the result of Eq.(3.15) which does not happen when
successive decoding is used. However, joint decoding does not suffer from
this problem as all the users are decoded at the same time (without a spe-
cific order). Thus, for successive decoding, there is a need for a centralized
assignment of the transmit powers. If the number of scheduled users, how-
ever, is very large and joint decoding is employed, the users can calculate
their transmit powers individually by closely approximating the empirical
fading and rate distributions of the other scheduled users by their statis-
tical averages following the ideas of [Viswanath et al., 2001]. With the ap-
plication of joint decoding, the proposed schemes have the potential to be
implemented in a distributed manner.

The simple nature of DDPS makes our scheduling scheme well-suited
for wireless sensor networks. By using the parameter τmax, we can control
the energy-delay tradeoff. A higher value of τmax implies that the applica-
tion data is more delay tolerant and the energy consumption will be closer
to the energy consumption of the schemes without deadline delay guaran-
tees.

4.4 Numerical Results

To evaluate numerical results for DDPS, we consider the same simulation
model and parameters as used in Section 3.6 for DDOS.

The thresholds optimized by SA algorithm for DDPS are shown in Ta-
ble 4.1. For all the numerical results, the SA algorithm used 50 random
configurations per temperature iteration. For n = 2 and n = 3, we observe
insignificant difference in the thresholds corresponding to the transitions
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ule.
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Tr→j where r ≥ j. Comparing system energy resulting from DDPS sched-
uler with the system energy of DDOS for the same hard deadline τmax, we
observe that DDPS scheduler is significantly energy efficient as compared
to DDOS.
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FIGURE 4.3: Variance of system energy for random and constant arrival
distributions for M = 10, C = 0.5 and n = 2.

Fig. 4.2 shows the statistics for the SA algorithm for DDPS with FA
temperature cooling schedule. As explained in section 3.4.2, mutations are
100% at the start and then decrease with every iteration. Similarly, energy
updates are more frequent at the start. Once the system finds the minimum
energy solution, no more updates occur in spite of the occurrence of the
muting. It should be noted that statistics can differ a bit for different cooling
schedules like BA and different configuration schedules but the final results
remain identical.

Fig. 4.3 shows the convergence behaviour of system energy for both
constant and random packet arrival distributions. For the numerical re-
sults, 250 simulations with different fading values have been performed for
a single path loss. For a fixed number of users and iterations, we compute
and compare the variance of the system energy for the cases of constant
and random arrivals.
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For Bernoulli process with arrival probability Parr = 0.7, the variance of
the system energy for both constant and random arrivals converges to same
value for 5000 users. However, as arrival probability decreases, variance of
system energy with random arrivals requires more users to converge to the
variance of system energy with constant arrivals.

Fig. 4.4 shows effect of the number of users on DDPS for a system with
M = 10 frequency bands and n = 3. The results are obtained by vary-
ing the number of users in Eq. (3.2) which is a finite user approximation of
the asymptotic expression in Eq. (3.15). For each simulation point, 100 path
loss environments have been averaged and for each path loss environment,
200 scheduling operations have been performed to find the average sys-
tem energy. The performance of DDPS is invariant to the number of users
for small spectral efficiencies, but degrades for small numbers of users at
higher spectral efficiencies. A lot of applications like WSNs do not operate
on high spectral efficiencies and this allows the scheme to operate effec-
tively for small number of users as well. Furthermore, we find, though we
do not show in an explicit figure, that with fewer bands, the dependency of
the performance on the number of users is less pronounced.
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with M=10.
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Chapter 5

Partial Buffer Scheduling:
Practical Approach

In Chapter 4, we discussed and analyzed an energy efficient multiuser
scheduling scheme for asymptotically large multiuser system. The simula-
tion results show that DDPS scheduler converges for a few hundred users
and works well for the realistic scenarios.

In this chapter, we discuss the practical aspects of DDPS scheduler and
address the issues which are practically relevant for modern networks. One
of the drawbacks of DDPS scheduler is the computation of O(n2) transmis-
sion thresholds for the deadline of n time slots. For large n, it is compu-
tationally expensive to compute transmission thresholds using Simulated
Annealing algorithm. We propose a scheduler which gives comparable re-
sults to DDPS and its computational complexity is smaller than DDPS.

Another practically important situation is the concept of outage. In
practical systems, it is very difficult to provide strict deadline guarantee
for all the packets. Some applications are loss tolerant and it is advan-
tageous to drop certain proportion of the arriving packets if the quality of
the application remains acceptable, e.g. multimedia applications have hard
deadline limitation but can afford some data loss. It this case, it is impor-
tant to identify the packets which require large energy for transmission and
drop them. The tradeoff between system energy efficiency and packet drop
rate essentially depends on the loss and delay tolerance of the application.
Reference [Striegel and Manimaran, 2002] discusses a scheduler which dif-
ferentiates traffic based on loss and delay tolerance of the user in traditional
internet. In [Chen, Mitra, and Neely, 2006], the authors address the prob-
lem of optimal dropping of packets. They obtain optimal dropping scheme
when size of the packet grows asymptotically large. In this chapter, we con-
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sider scheduling with outage to provide energy-outage tradeoff in addition
to energy–delay tradeoff for a multiuser system.

Similarly, it is too ideal to consider identical deadlines for all the arriv-
ing packets. In a practical network, there is a huge difference in the delay
tolerance of the arriving packets depending on the corresponding appli-
cations. One way of solving problem is to assign different classes of QoS
to individual users and schedule them according to the delay tolerance as-
signed to the specific class. This solution has traditionally been discussed
for static and mobile ad-hoc networks [Blake, Black, Carlson, Davies, Wang,
and Weiss, 1998],[Xiao, Seah, Lo, and Chua, 2000]. At the boundary of the
network, traffic entering the network is differentiated and assigned a dif-
ferent behaviour. However, in this case, all the traffic from a specific user
should have identical QoS requirements for all the packets. In this chapter,
we propose a generic solution which treats individual packets according to
their own deadlines.

5.1 Sequential Deadline Dependent Partial Buffer

Scheduling (SDDPS)

In DDPS, the number of transmission thresholds to be computed grows
quadratically as the deadline increases. For a deadline of n time slots, it
becomes computationally costly to compute the n

2 (n + 1) − 1 thresholds.
In the following, we propose a sequential version of DDPS which reduces
the number of thresholds from O(n2) to O(n) at a negligible energy penalty
[Butt, Kansanen, and Müller, d].

In order to understand SDDPS, assume that we were only allowed to
decide whether one packet is scheduled or not, but not allowed to ask for
having multiple packets from the same user scheduled. Then, we could
base all scheduling decisions solely upon the n − 1 non-zero components
of the threshold vector�κ = [κ1→1, κ2→2, . . . , κn−1→n−1, 0]. In order to decide
whether more than one packet of a given user should be scheduled, we
repeat the threshold decisions sequentially within each time slot until no
packet is supposed to be scheduled anymore.

The sequential scheduling decisions are equivalent to setting

κi→j = max{κi→i, κi−1→i−1, . . . , κj→j} ∀i > j, (5.1)

since with any decision to schedule one packet the queue goes into the next
lower state. Due to Property 4.3, Eq. (5.1) is equivalent to

κi→j = κj→j ∀i > j. (5.2)
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The transmission thresholds for entering into a state j from all the higher
or equal states are identical, irrespective of i. In order to simplify notation,
we simply write κj to denote κj→j in the following.

Sequential deadline dependent partial buffer scheduling is not optimal,
in general. Note that scheduling multiple packets increases the aggregate
data rate. Therefore, we have

Property 5.1 κi→j ≥ κi−1→j ∀i, j since the required energy grows super-linearly
with aggregate data rate, state transitions that result in higher data rates must be
penalized compared to state transitions that result in lower data rates even if the
final states are identical.

5.1.1 Recursive Optimization

In the following, the threshold vector�κ = [κ1, κ2, . . . , κn−1, 0] is optimized to
minimize the power consumption for the SDDPS scheme. We use a simple
heuristic optimization approach which suits to SDDPS due to the constraint
applied in Eq. (5.2). This technique provides similar performance as SA
at reduced complexity. The optimized threshold vector is found using a
recursive procedure explained in the following:

1. Start the optimization procedure for a buffer length of n = 2 such
that the optimization is a scalar problem and we only need to find the
threshold κ1 since κn = 0 by Property 4.4.

2. Given the optimized threshold vector for a deadline n, i.e.�κ opt(n) =
[κopt

1 (n), κ
opt
2 (n), . . . , κ

opt
n−1(n), 0], we find the threshold vector for buffer

length n + 1 by the heuristic postulate�κ(n + 1) = [κ1(n + 1),�κopt(n)]
and optimize over κ1(n + 1). Again, this is a scalar optimization prob-
lem.

This heuristic optimization procedure is given here without theoretical
justification. However, Table 5.1 gives numerical evidence that thresholds
optimized for the smaller state space remain close to optimal for the higher
state space though. Recursively computed threshold values for SDDPS are
shown in Table 5.1. For n = 2 and n = 3, we compare the energy expen-
diture of SDDPS scheme with the energy expenditure of optimal DDPS as
shown in Table 4.1. We observe insignificant difference in the thresholds
corresponding to the transitions Ti→j∀i ≥ j. This is easily understood due
to the minor (and no) differences in the threshold assignments resulting
from DDPS and SDDPS. Although marginal energy saving is provided by
DDPS for n = 3, yet extra energy cost in computation of O(n2) thresholds
as compared to O(n) thresholds in SDDPS makes it practically useless.
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Though, our scheduling schemes have been designed at low spectral
efficiency due to linear energy-rate relationship, we observe negligible dif-
ference between energy efficiency of DDPS and SDDPS at high spectral ef-
ficiency values as well. Based upon our observations, we conjecture that

Conjecture 5.1 In large user limit, DDPS and SDDPS are equivalent scheduling
schemes at all spectral efficiencies.

System energy is not a linear function of spectral efficiency at high spectral
efficiency. However, we believe that presence of large (infinite) number of
users in the system makes per user rate linear and SDDPS behaves equiva-
lent to DDPS.

TABLE 5.1: SDDPS with Recursively Computed Thresholds

n κ1 κ2 κ3 κ4 (Eb/N0)sys

2 0.24 0 - - −1.44 dB

3 0.52 0.24 0 - −3.05 dB

4 0.75 0.52 0.24 0 −4.08 dB

We optimize transmission thresholds at low spectral efficiencies and
continue to use them at high spectral efficiencies. In practice, this is not
true and transmission thresholds need to be optimized at each spectral ef-
ficiency. However, numerical evidence shows that this assumption results
in a small energy loss. Table 5.2 shows exact optimized threshold and re-
sulting energy for each spectral efficiency for a single channel system with
n = 2.

In Fig. 5.1, the system energy is plotted versus the maximum tolerated
delay for a single channel system when scheduling is performed by SDDPS
scheduler. Obviously, a trade-off between delay tolerance and energy con-
sumption occurs which is more noticeable at smaller spectral efficiencies.
Moreover, savings in system energy are more pronounced when n varies
from 1 to 2 as compared to the case when n varies from 4 to 5. This ef-
fect is similar to time diversity where performance improvement is more
pronounced at the addition of a few initial degrees of diversity.

Fig. 5.2 demonstrates the effect of frequency diversity on both DDPS
and SDDPS for n = 2. A unique set of thresholds need to be optimized for
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TABLE 5.2: Approximate and Exact Thresholds for every Spectral Effi-
ciency

Approximate�κ For n=2 Exact�κ For n=2

C κ1 (Eb/N0)sys κ1 (Eb/N0)sys

0.05 0.24 -1.42 dB 0.24 −1.42 dB
2 0.24 -0.35 dB 0.27 −0.36 dB
4 0.24 1.56 dB 0.34 1.49 dB

6 0.24 4.15 dB 0.46 3.96 dB

10 0.24 11.28 dB 0.78 10.8 dB

a specific number of channels as different number of channels have differ-
ent sets of optimal thresholds. DDPS and SDDPS show indistinguishable
performance when there is frequency diversity because marginal improve-
ment in DDPS is hard to observe in presence of frequency diversity. With-
out frequency diversity, DDPS slightly outperforms SDDPS.

5.2 Future Rate Prediction Based Scheduling

To compare our results for the SDDPS scheduler, we consider another schedul-
ing scheme which uses same algorithm for scheduling of users but com-
putes transmission thresholds differently.

We consider Future Rate Prediction based Scheduling (FRPS) for the
deadline constrainedmultiuser wireless systems [Butt, Kansanen, andMüller,
2008a]. Like SDDPS, fading of each user is comparedwith a set of transmis-
sion thresholds. These thresholds are computed using the fading statistics
and deadline delay constraint. For a deadline constraint of n time slots, if
a packet waits for W slots in the buffer, it still has n−W opportunities to
transmit the data before the deadline.

For a multi-band system with M channels, a packet with deadline of n
time slots is transmitted if,

fk(t−W) > E[max(Xk(t−W + 1),Xk(t−W + 2), ...Xk(t−W + n−W))]
(5.3)
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FIGURE 5.1: Energy-Delay tradeoff exhibited by SDDPS scheme.

where fk(t−W) is the fading in slot W while Xk(t−W + j) is the random
variable representing estimate of fading in the jth time slot in future. A
packet is transmitted only if channel gain in the current slot is greater than
the expectation of all the channel gains in the remaining slots before the
deadline. This idea resembles the car fueling problem where a car is fueled
if fuel price today is less than the expected cost of fueling in the coming
days unless the car completely runs out of the fuel. This idea is used to
compute the transmission thresholds on the basis of deadlines of individual
packets.

5.2.1 Threshold Computation in FRPS

From order statistics, the cumulative distribution function Fn(y) of themax-
imum of iid distributed n random variables X1,X2, ...Xn is given by [David
and Nagaraja, 2003],

Fn(y) = P[(X1 ≤ y)
⋂

(X2 ≤ y)
⋂

...
⋂

(Xn ≤ y)]

= [FX(y)]n (5.4)
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FIGURE 5.2: Comparison of DDPS and SDDPS schemes for different
number of channels M.

Corresponding probability density function (pdf) is obtained by differenti-
ating Eq. (5.4) and is given by,

fn(y) = n fx(y)(Fx(y))n−1 (5.5)

We have assumed exponential short–term fading in this work. For the
exponential short term fading distribution with mean 1, the threshold κW
of a packet with waiting time W is computed by finding the expectance
of maximum of M(n−W) exponential random variables with means �ν =
(ν1...νM(n−W)).

The bth moment Ln( 1�ν , b) of the maximum of n ≥ 1 independent, neg-
ative exponential random variables with means �ν = (ν1...νn) can be com-
puted recursively using the following equation [Harrison and Zertal, 2007],

Ln(
1
�ν
, b) =

b
∑n

j=1
1
νj

Ln(
1
�ν
, b− 1) +

∑n
j=1

1
νj
Ln−1( 1�ν , b)

∑n
j=1

1
νj

(5.6)

for n ≥ 1, L0(�γ, b) = 0 for all b ≥ 1 and Ln( 1�ν , 0) = 1 for all n ≥ 0. �γ
represents a null vector of zero components.
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FIGURE 5.3: Threshold function for the FRPS scheduler in each time slot
for M = 10 and different deadline constraints.

For the special case when the mean ν of all the distributions is equal,
the result can be simplified. We assume this case here for computing the
expectance of maximum of M(n −W) random variables for n −W slots
left before the deadline. The threshold κW of a packet with backlog W is
given by,

κW = ν
M(n−W)

∑
j=1

1
j

(5.7)

Fig. 5.3 shows the threshold function for FRPS for different deadlines.
Note, the function behaves similar to SDDPS but it is deterministic and
thresholds can be computed in closed form using order statistics.

In Fig. 5.4, we compare the energy delay tradeoff for SDDPS and FRPS.
We observe that SDDPS outperforms FRPS significantly. Note that the only
difference between two schemes is the computation of thresholds.

For SDDPS, the cost of transmission C(t−W) for a packet with waiting
time W in a time slot t−W is the minimum of transmit energy E(t−W)
in current time slot and the expectation of cost E(t −W + 1) in time slot
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FIGURE 5.4: Comparison of energy-delay tradeoff for a single channel
system at C=1.

t−W + 1.

C(t−W) = min
[
E(t−W),E

(
C(t−W + 1)

)]
(5.8)

For FRPS, the cost of transmission C(t −W) in a time slot t −W is the
minimum of current transmit energy and the expectation of minimum of
transmit energies in remaining n−W time slots.

C(t−W) = min
[
E(t−W),E

(
min(E(t−W + 1), . . . E(t−W + n−W)

)]
(5.9)

The expectation terms in Eq. (5.8) and Eq. (5.9) represent the transmis-
sion thresholds for the respective schemes. Eq. (5.9) can be computed in
closed form while Eq. (5.8) requires dynamic programming solution [Bert-
sekas, 2007].

Remark: Though, SDDPS outperforms FRPS for Rayleigh fading and our problem
settings, we do not have mathematical analysis to claim that SDDPS outperforms
FRPS in all conditions. However, based on our results, we use SDDPS in rest of
the work.
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5.3 Packet Dropping

In this section, we discuss the idea of scheduling with outage. In practical
delay constrained systems, it is impossible to fulfill the hard deadline de-
lay requirements without some kind of outage. We consider the case when
dropping of a certain fraction θd of packets is allowed. An individual drop-
ping probability θd is provided to each user and there is no system wide
dropping fraction. We specify an SDDPS scheduler is by a tuple (�κ, θd, n).

Packet dropping is a quite practical scenario in modern wireless net-
works as a lot of multimedia applications are loss tolerant and dropping of
certain fractions of packets still keeps the quality of the application within
acceptable limits. Moreover, providing rate R to schedule all the packets in
a bad channel state requires a lot of energy and is not always practical.

Without packet drop, the transmission threshold κn→n is set to zero to
transmit the packet in the deadline state n unconditionally. To model the
effect of packet drop, let the lowest transmission threshold in the deadline
state, i.e. κn→n be non-zero. When state transition Tn→n takes place, two dif-
ferent things may happen from the scheduling perspective: Either a single
packet is scheduled or a packet is dropped. The state transition probability
αnn is a sum of the two probabilities α̂nn and α̃nn where we define α̂nn and
α̃nn as

α̃nn = Pr(κn→n < f ≤ κn→n−1) (5.10)
α̂nn = Pr( f ≤ κn→n) (5.11)

The probabilities α̂nn and α̃nn correspond to the events when the sched-
uler drops a packet and schedules a single packet for transmission, respec-
tively.

The transmission threshold κn→n in the deadline state determines the
probabilities α̂nn and α̃nn. For a dropping probability of θd and a given
possible state transition matrix P, the probability α̃nn is computed such that
the following equality holds.

θd =
n

∏
i=1

(1− Pi) (5.12)

=
n

∏
i=1

(
1−

i

∑
l=1

αil

)
(5.13)

where Pi denotes the probability of scheduling a packet in state i. The equa-
tion states that a fraction θ of the packets enter the system and are not able
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to be scheduled in n time slots. From Eq. (5.13)

α̃nn = 1 −
n−1

∑
l=1

αnl −
θd

∏n−1
i=1

(
1 − ∑i

h=1 αih

) (5.14)

Due to additional constraint in terms of dropping probability, the heuris-
tic algorithm for optimization of transmission thresholds does not work
well. Therefore, we use SA when we have non-zero dropping probabil-
ity. For the SDDPS scheduler state space description in Section 5.1 with
packet drop capability and identical deadline, we use the following simpli-
fied state transition matrix Pd to vary the configuration in each step in SA.

Pd =

⎛⎜⎜⎜⎜⎜⎜⎝
α1 1 − α1 0 · · · 0

α1 α2 1 − α1 − α2 · · · 0
. . . . . . . . . . . . . . .

α1 α2 · · · · · · α̃n + α̂n

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.15)

Note that transition probabilities for entering a state from any of the higher
backlog states are equal and therefore, the scheduler requires the same
threshold to enter a specific backlog state (Property 5.1). This is due to
the reason that the scheduler (virtually) visits all the intermediate states
between the backlog states i and j and moves into the adjacent lower state
sequentially. Thus, the scheduler always enters into state j from state j + 1
and requires same transmission threshold.

Pseudo code of SDDPS scheme with packet dropping and random ar-
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rivals is shown in Algorithm 5.3.1.

�

�

�

�

Algorithm 5.3.1: SDDPS(Backlog,�κ, n)

comment: User k knows backlog, thresholds and deadline

i ← Backlog

comment: Rate R is provided by the scheduler

R ← 0

L ← 0

comment: Find rate R to be provided

for b ← Backlog to 1

comment: N(t − b + 1) packets arrived at time (t − b + 1)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if fk > κb

then

⎧⎨⎩L ← L + 1

R ← R + Γ
K N(t − b + 1)

else⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

if (b = n)

comment: Packet Dropping in deadline state

then
{

i ← i − 1

break

Rate ← R

Backlog ← i − L + 1

Table 5.3 shows the thresholds values for the SDDPS scheduler when
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we allow different dropping probabilities. As dropping probability in-
creases, transmission thresholds increase to demonstrate the fact that a
packet has more freedom to wait for the better channel as compared to
lossless delay constrained systems.

Fig. 5.5 shows the effect of dropping of packets in the deadline state for
a system with n = 2. At small values of C, the effect of packet dropping
is more pronounced and energy saving is not as large at higher values of
spectral efficiency. At C = 1, dropping probability of 0.1 saves more than
3 dB of system energy. Therefore, SDDPS scheduler allows the users to
have tradeoff between energy efficiency and quality of the application in
addition to providing energy-delay tradeoff.

TABLE 5.3: Thresholds Computation for SDDPS with M = 1

θd = 0% θd = 5%

n κ1 κ2 κ3 Eb/N0 κ1 κ2 κ3 Eb/N0

2 0.24 0 - −1.4 dB 0.44 0.15 - −3.4 dB

3 0.52 0.25 0 −3.0 dB 0.78 0.53 0.26 −4.7 dB

5.3.1 Fair Scheduling Unfair Dropping

In Section 3.2, we mentioned that the purpose of making scheduling deci-
sions based on fast fading (and not channel gain) is to provide fair chance
of scheduling to all the users. Throughout this work, we have followed
this practice. However, there are certain applications where introducing
some kind of unfairness does not hurt much and helps in saving the over-
all system energy. For example, some of the applications in wireless sensor
networks require location based transmission of data towards the fusion
node. The fusion node can be placed near the location where lossless (or
small loss tolerant) data transmission is the requirement.

We provide a solution where a cell can be divided into multiple circu-
lar areas around the fusion node. We still make the scheduling decisions
based on fast fading and keep delay requirements of the users identical.
However, we introduce a small unfairness by having non–uniform drop-
ping in these circular regions. For example, we divide the cellular region
of area A into two small equal regions of areas A/2. As users (sensors) are
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FIGURE 5.5: System energy as a function of packet dropping probabili-
ties.

assumed to be equally distributed, both of the regions have equal number
of users statistically. A schematic diagram for such a WSN has been shown
in Fig. 5.6.

We introduce non-uniform dropping probabilities. In the inner area
(close to the fusion node), we allow packet drop with probability θin. In the
outer area, we allow packet dropping with probability θout where θout > θin
as fusion node is placed close to the sensor nodes having strict requirement
on data loss. It should be noted that dropping rate is not user based any-
more. We have a system wide drop rate θs that is weighted (by area) sum
of θout and θin such that

Aθs = Ainθin + Aoutθout (5.16)

Due to mobility of the users, we do not know which user will be in the
outer cell when i = n. Therefore, we allow each user in the system to use
thresholds from the same tuple (�κ, θout, n) for n− 1 time slots. If a user is
in state n, only then she needs to figure out about her location. If she finds
herself in the inner cell, she simply uses κn corresponding to tuple (�κ, θin, n)
otherwise keeps on using κn corresponding to her original tuple.
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Fusion Node Node in inner cell

Node in outer cell

FIGURE 5.6: Schematic diagram for a WSN with inner and outer cells
defined with equal area.

Implementation of the scheme is explained with the help of an example
in the following.

Example 5.1 Assume that we want to have drop probability θout = 0.1 for the
users in the outer cell and lossless data transmission for the users in the inner cell
i.e. θin = 0 for the same deadline requirement n.

All the users follow the same set of thresholds which correspond to deadline
n and user based drop probability 0.1. In the last time slot, if a user finds herself in
the inner cell, she uses the thresholds corresponding to θin and deadline n (which
is zero in this case). If she finds herself into outer cell, she uses the threshold cor-
responding to θout and deadline n. As users are equally distributed in the whole
cell, half of the users drop the packets with rate 0.1 and half of them do not drop
any packet at all which results into system wide drop probability of 0.05. Extend-
ing this approach, we can divide geographical area into multiple areas and allow
different dropping probabilities according to the system requirement.

Fig 5.7 shows the effect of unfair dropping on system energy. We plot
two curves with uniform dropping probability θd of 0.05 and 0.1. We divide
the cell into two areas where inner area requires lossless data, i.e. θin =
0. The areas of outer regions are A/2 and A/4 for the simulations. We
observe an energy saving when we employ unfair dropping. For example,

69



5. PARTIAL BUFFER SCHEDULING: PRACTICAL APPROACH

−7 −6 −5 −4 −3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

(Eb/No)sys[dB]

C
(b

its
/s

/H
z)

θd = 0.05, Uniform Dropping

θout = 0.2, Quarter Area Dropping

θd = 0.1, Uniform Dropping

θout = 0.2, Half Area Dropping

FIGURE 5.7: System energy as a result of region based dropping proba-
bilities for a system with n = 2,M = 2.

unfair dropping with probability 0.2 and inner area A/2, is more energy
efficient to fair dropping with probability 0.1 though both of them result in
same aggregate data loss. Similarly, with the inner region area A/4, unfair
dropping with probability 0.2 is same as fair dropping with probability 0.05
but it provides a more energy efficient system.

5.4 SDDPS: Non–identical Packet Deadlines

We model this case as a special case of SDDPS scheduler [Butt, Kansanen,
and Müller, e]. We use Markov process as before. The maximum possible
deadline of an arriving packet in the buffer is denoted by n. Then, we define
the deadline of an arriving packet q < n with respect to n. i.e. the deadline
of a packet with deadline of 0 ≤ a < n time slots less than n is represented
by q = n− a where a is termed as deadline offset. We denote probability of
arrival of a packet with deadline q by pq. We assume infinite size buffer for
simplicity of analysis.

We model the arrival of a packet with deadline q = n− a by a packet
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that already has spent a time slots in the buffer. By this initial offsetting, we
model a system with non-identical packet deadlines equivalent to a system
with identical packet deadlines.

We define some terms used in the work.

Definition 5.1 (Deadline Distance) The deadline distance χ ∈ {1 . . . n} for a packet
is defined as the number of time slots remaining before it reaches its hard dead-
line.

In case of individual packet deadline, we redefine backlog state in terms of
deadline distance.

Definition 5.2 (Backlog State) Backlog state i in a Markov chain is defined as the
minimum of the deadline distance for the packets waiting to be scheduled in the
buffer.

i = min
(

χ1, χ2...χj

)
(5.17)

where χj represents the deadline distance of the jth packet in the buffer.

For better understanding, we enumerate the backlog states in descending
order such that a packet with deadline distance χj enters the buffer in state
j as shown in Fig. 5.8. As deadline distance of the HOL packet decreases,
backlog state i decreases1 as well.

The definition for transmission threshold holds for this case as well. SD-
DPS scheduler works in the similar way as explained in Section 4.1 and 5.1.
Due to change in the numbering scheme for the backlog states, we men-
tion the main changes briefly. As before, each user compares the current
short-term fading fk with the threshold κi→j for every backlog state j ≥ i
sequentially. If fk > κi→i, all the packet with deadline distance χj are sched-
uled for transmission and the threshold of the next higher backlog state is
compared with fk. Similarly, the thresholds of all the backlog states j ≥ i
are compared sequentially with fk until fk is less than the threshold κi→j+1
of a state. The last backlog state in which a packet is scheduled is termed as
ending state j(t). The scheduler moves to backlog state j(t) from a backlog
state i(t) by scheduling packets in the L intermediate states and therefore,
ending state j(t) is given by

j(t) = i(t) + L(y, i) − 1 (5.18)

The backlog state i(t + 1) is determined after the arrival of a new packet
at time t + 1. Depending on the deadline of the next arriving packet, the

1Note that contrast to the models discussed in previous chapters, states are numbered
in decreasing order now. Therefore, backlog state decreases for the unscheduled packets.

71



5. PARTIAL BUFFER SCHEDULING: PRACTICAL APPROACH

scheduler stays in backlog state j(t) or moves into backlog state q(t + 1)
such that

i(t + 1) =

{
j(t) i f q(t + 1) ≥ j(t)
q(t + 1) i f q(t + 1) < j(t)

(5.19)

where q(t + 1) denotes the deadline of the arriving packet at time t + 1. If
fk is less than the thresholds of all the states, no packet is scheduled. Then,
the scheduler moves into backlog state i(t + 1) according to the Eq. (5.19)
where j(t) = i(t) − 1. The deadline distance χ of all the remaining un–
scheduled packets in the buffer is decremented by one in each time slot.

We model the special case when no packet arrives in a time slot by con-
sidering arrival of a packet with zero size and deadline n. This assump-
tion keeps our state space description consistent for no arrival case as well.
When a packet with zero size is scheduled for transmission, no rate is allo-
cated.

State transition is a two step process. The scheduler schedules packets
in L(y, i) backlog states, allocates rate for the actual data and then moves
into backlog state i(t + 1) according to Eq. (5.19). Note that the scheduler
schedules packets in L(y, i) backlog states without the knowledge that ar-
riving packets have identical or non-identical deadlines. It is a packet based
scheduling algorithm and the transmission thresholds depend only on the
fading distribution and number of time slots left before the deadline.

State transition diagram of the SDDPS scheduler with packets having
non-identical deadlines is shown in Fig. 5.8 and corresponding state tran-
sition matrix (STM) is given by

Pnid
SDDPS =

⎛⎜⎜⎜⎜⎜⎜⎝
ά11 ά12 ά13 · · · ά1n

ά21 ά22 ά23 · · · ά2n

. . . . . . . . . . . . . . .

άn1 άn2 άn3 · · · άnn

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.20)

With our enumeration scheme for states, STM for identical deadline case is
given by [Butt et al., 2008b]

Pid
SDDPS =

⎛⎜⎜⎜⎜⎜⎜⎝
α11 α12 · · · α1n

. . . . . . . . . . . .

0 · · · α(n−1)(n−1) α(n−1)n

0 · · · αn(n−1) αnn

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.21)
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FIGURE 5.8: State diagram for the transition states for the SDDPS sched-
uler. Due to non-identical deadlines of arriving packets, the scheduler
moves into any of the next state if no packet is scheduled.

where αij is defined as

αij = Pr(κj < f ≤ κj+1). (5.22)

The termination condition κi→n+1 is defined as ∞. We set κ1→1 to zero
to ensure the transmission of the packet reaching its deadline.

Note that STM for identical deadline case is a triangular matrix while
STM for non-identical deadline case is a sparse matrix. To compute STM
for the non–identical deadline case, we evaluate the effect of non-identical
deadlines on state space representation. In the first step, we compute the
value of j as described in Eq. (5.22) for the identical deadline case and
remains the same for non–identical deadline case. However, STM for non-
identical case is modified by the deadline distribution as well. In the sec-
ond step, for a given pair of i, j, we compute the offset produced by this
distribution by evaluating the offset matrix Snid given by

Snid =

⎛⎜⎜⎜⎜⎜⎜⎝
∑n

μ=1 pμ 0 · · · 0

p1 ∑n
μ=2 pμ · · · 0

. . . . . . . . . . . .

p1 · · · pn−1 ∑n
μ=n pμ

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.23)
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where probability Snid(q, j) is defined as

Snid(q, j) =

⎧⎪⎨⎪⎩
0 i f q > j

∑n
μ=j pμ i f q = j

pq i f q < j
(5.24)

Diagonal elements in Eq. (5.23) represent the sum of probabilities of dead-
line distribution which keeps i(t + 1) = j(t) while non zero non diagonal
elements represent the probability when i(t + 1) = q(t + 1) as explained in
Eq. (5.19). We can represent STM for non identical case as a product of Eq.
(5.21) and Eq. (5.23) such that

Pnid
SDDPS = Pid

SDDPSSnid (5.25)

One obvious difference between the STMs for the systems having ar-
rived packets with identical deadlines and the systems having arrived pack-
ets with non–identical deadlines is in the transition probabilities when no
packet is scheduled. If all the arriving packets have identical deadline of n
time slots, the only possible state is i − 1. However, if the deadlines are non
identical, depending on the deadline of the arriving packet, the scheduler
moves into any of the states j < i.

Example 5.2 We explain it with the help of an example when n = 2. If all the
packets have identical deadline, Pid

SDDPS is given by

Pid
SDDPS =

⎛⎝ α11 α12

α21 α22

⎞⎠ . (5.26)

If the packets have non-identical deadlines of n1 = 1 and n2 = 2, n equals 2 and
resulting Pnid

SDDPS is given by

Pnid
SDDPS =

⎛⎝ (pn + pn−1)α11 + pn−1α12 pnα12

(pn + pn−1)α21 + pn−1α22 pnα22

⎞⎠
=

⎛⎝ (p2 + p1)α11 + p1α12 p2α12

(p2 + p1)α21 + p1α22 p2α22

⎞⎠
=

⎛⎝ α11 + p1α12 p2α12

α21 + p1α22 p2α22

⎞⎠ . (5.27)

where pn and and pn−1 represent the probabilities of arrival of a packet with dead-
line n = 2 and n = 1, respectively. Note that Eq. (5.27) is reduced to Eq. (5.26) if
all the arriving packets have identical deadline of 2.
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5.5 Asymptotic Analysis of SDDPS For

Non–Identical Deadline Case

We analyze SDDPS in the large system limit. For the case of individual
packet deadlines, the channel distribution of the users in state i is given by

p f ,SVU(y|i) = cnid
i L(y, i) pmax{ f }(y) (5.28)

with pmax{ f }(y) and cnid
i denote the short–term fading of the best of the

channels for a multi-channel system and a constant to normalize the condi-
tional pdf.

In the following, we derive channel distributions of SVUs with two dif-
ferent methods and prove their equivalence.

First, we model two step state transition process as a single step sto-
chastic process and weight every possible state transition probability αij
according to Eq. (5.24). We represent the channel distribution of SVUs in
terms of weighted sum of rate allocation for probabilistic state transitions.
Note that scheduled rate is only a function of fading and state as shown
in Eq. (5.22), but deadline distribution of the arriving packets randomizes
the state transition and corresponding rate allocation function. For a given
fading f and state i, rate is probabilistically allocated to the states i ≤ r ≤ j
and weighted by the probability of ending up in state r. The probability of
ending in state r can directly be computed from Eq. (5.24) for given i, j. We
can write p f ,SVU(y|i) as

p f ,SVU(y|i) = cnid
i E(μt)

(
(j − i + 1)

n

∑
l=j

pl

+
j−1

∑
r=i

(r − i + 1)pr

)
pmax{ f }(y) (5.29)

where j is uniquely defined by Eq. (5.22) and rate of arrival in each sched-
uled state is E(μt).

In the second method of modeling, we give a more intuitive description
of the effect of non-identical deadlines on system behaviour. For a given
fading and state, we consider a fixed state transition (and rate allocation
function). However, the contents (number of packets in each state) of the
scheduled states depend on the deadline distribution. This method follows
directly from the two step process explained earlier.

Note that arrival of a new packet always takes place in state n for the
case when all the packets have identical deadlines. For a two state system

75



5. PARTIAL BUFFER SCHEDULING: PRACTICAL APPROACH

with n = 2, if a packet is not scheduled at time t, it moves into state 1 with
probability one. In non–identical deadline case, the probability of arrival
in state two is p2. If a packet is not scheduled in state 2, it moves into state
1 with probability p2, making rate of arrival p2 for state 1. However, there
is an additional direct source of arrival in state 1 with probability p1 at time
t + 1 (due to deadline offset). Therefore, cumulative buffer content of state
1 is summation of p1 and p2 while buffer content of state 2 is p2. Recall
that arrival with non–identical deadlines results in insertion of the arriving
packet with deadline less than n in state n − a. The resulting content size
for the states with small deadline distances is greater as compared to the
states with large deadline distances. For a state r, this effect is modeled in
Eq. (5.30) by considering an equivalent arrival process whose arrival rate
is a summation of the arrival probability pl over r ≤ l ≤ n. For a given
i, j pair, due to non-identical deadline of the arriving packets, the random
content size in L(y, i) scheduled states is given by

L(y, i) =
j

∑
r=i

n

∑
l=r

pl (5.30)

This situation has been depicted in Fig. 5.9. In a state r, pn−a is the rate
of arrival for the packets with deadline offset equal to a where r = n − a.
The second source of arrival originates from the previously un–scheduled
packets in the buffer who are left with deadline distance χr = n − a.

Consequently, using Eq. (5.30) in Eq. (5.28), the channel distribution
of the scheduled users for the non–identical deadline case can be written
in terms of rate allocation function for a fixed state transition and random
content, and given by

p f ,SVU(y|i) = cnid
i E(μt)

j

∑
r=i

n

∑
l=r

pl pmax{ f }(y) (5.31)

where cnid
i is a normalization constant.

Lemma 5.2 The representations of distribution of scheduled virtual users in Eq.
(5.29) and Eq. (5.31) are equivalent.

Proof: See Appendix D.

Note that there is an important difference between modeling of random
arrival as constant arrival with random size in Section 4.2 and modeling
packet arriving with non identical deadlines. For random arrival modeling,
in the limiting case, the content of every scheduled state converges to the
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FIGURE 5.9: Arrival process demonstration for a backlog state r.

rate of arrival process E(μt). However, contents of states are non uniform
for non-identical packet deadline case and increase for the states closer to
deadline. Random content size description helps in understanding the en-
ergy behaviour of the system when deadline constraints are non-identical
for individual packets.

Corresponding channel distribution of the SVUs for the identical dead-
line case is given by

p f ,SVU(y|i) = cidi E(μt)
(
j− i + 1

)
pmax{ f }(y) (5.32)

where cidi is a normalization constant.
Although, non–identical deadline case has been modeled as an exten-

sion of identical deadline case, state space description and channel dis-
tributions are not equivalent due to different STMs. However, as SDDPS
scheduler treats every packet individually based on its deadline distance,
transmission thresholds optimized for the systems with identical deadlines
remain valid for the systems with non-identical deadlines as well.

We show the convergence result of non-identical arrival case for the fi-
nite user population in Fig. 5.10. The figure shows the convergence of vari-
ance of the system energy for identical and non–identical deadline cases.
We use Eq. (3.2) to evaluate system energy for finite number of users K. To
compute the system energy for a specific number of users, 250 fading val-
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FIGURE 5.10: Convergence of System energy of scheduled users for
identical and non–identical deadline cases.

ues have been used for a single path loss. The arrival process is Bernoulli
with parr = 0.7. The curves with p1 = 0 and p1 = 1 represent the identical
deadline case when all the arriving packets have deadline 2 and 1, respec-
tively. p1 = 0.2 represents the case when 20% of the packets arrive with
n = 1 and 80%with n = 2. For all the cases, variance of the computed aver-
age system energy decreases as the number of users increases. The system
energy for the system with a smaller deadline delay constraint converges
faster as compared the distribution with a larger deadline delay. Hence, as
ratio of p1 decreases, it requires more number of users to converge.

Fig. 5.11 demonstrates the delay–energy trade off for a single channel
system when the arriving packets have non–identical deadlines. We evalu-
ate system performance at different spectral efficiencies. As the proportion
of the packets with tight deadline constraint increases, average system en-
ergy increases correspondingly. However, this effect is more pronounced
at small spectral efficiencies.
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ergy is plotted when p1 and p2 varies from 0 to 1.

5.5.1 Discussion on Implementation

In this work, we have derived the distribution of the scheduled users ana-
lytically and discussed the practical implementation of the SDDPS scheme
for random arrivals, non–identical deadline and fractional packet drop.
These characteristics are integral part of any practical scheduler and there-
fore, it is important to give practical implementation along with the theo-
retical details. In all the implementations, we try to keep the task of the
scheduler as simple as possible. We focus on pre-processing of the packet
in such a way that complexity arising due to random arrivals and non–
identical deadlines is handled at higher layers and the scheduler does sim-
ple scheduling decisions. The details of the packet deadlines, arrival sta-
tistics and the packet drop ratio are provided by the higher layers and the
media access layer uses this information to keep the scheduling operation
simple on the physical layer. This approach is quite in line with the cross
layer modeling approaches proposed in modern wireless networks.
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Chapter 6

Opportunistic
Multiuser-Multicell
Scheduling

We have discussed deadline constrained opportunistic scheduling schemes
in previous chapters for a single cell case. In this chapter, we consider the
schemes in a multicell environment. For multicell analysis of the schemes,
we use the system model and results in [Park and Caire, 2008],[Wyner,
1994]. In so called Wyner’s model, all users share the same bandwidth
and Base stations (BS) are arranged at a uniform distance on a line. The
path gain to the closest BS is 1, the path gain to the adjacent base stations is
α and zero elsewhere as shown in Fig. 6.1.

6.1 System Model

We consider a multiple–access system with K users randomly placed within
a multicell system. System model is similar to the model presented in Sec-
tion 3.1. For ease of understanding in the rest of the chapter, we describe
it briefly for a multicell system. The minimum distance between two base
stations is denoted by D = 2r where cell radius is r. Each user is provided
a certain fraction of the resources available to the system. The required av-
erage rate R for each user is Γ

K where Γ denotes the spectral efficiency of
the system. We consider a multiband system with M channels and spec-
tral efficiency is normalized by M to get spectral efficiency per channel.
We consider random arrivals in each time slot for all the users and model
them as constant arrivals with different content size. Arrivals are queued
in a finite buffer of length n before transmission. We consider an uplink

81



6. OPPORTUNISTIC MULTIUSER-MULTICELL SCHEDULING

Cell 0 Cell 1Cell -1

            r            r

                      D =2r

FIGURE 6.1: Infinite linear array cellular model [Park and Caire, 2008].

scenario but the results can be generalized to a downlink scenario as well.
We assume perfect channel state information (CSI) on both transmitter and
receiver sides. However, a user has no information of her channels to the
base stations in the neighboring cells.

The fading environment of the multi-band multi-access system is same
as for the single cell case. Each user k experiences a channel gain gk(ρ, j)[t]
at cell j to cell ρ in slot t. For a multi-band system of M channels, short–term
fading over the best channel is represented by,

fk(t) = max( f (1)
k (t), f (2)

k (t), . . . , f (M)
k (t)). (6.1)

The channel gain is the product of path loss sk(ρ, j) and short–term fading
fk(t), i.e. gk(ρ, j)[t] = sk(ρ, j) fk(t). The path loss is a function of the distance
between the transmitter and the receiver and we assume it to not change
within the time-scales considered in this work. In a multiple–cell system,
path loss equals to dk(ρ, j)−α where depending on the location of user k in
cell j, distance dk(ρ, j), ρ �= j is given by

dk(ρ, j) = |ρ − j|D ± dk(j, j) (6.2)

Path gain and short–term fading are assumed to be independent. Short–
term fading changes from slot to slot for every user and is independent
and identically distributed across both users and slots but remains constant
within each single transmission.

ER
k [t] and Ek[t] represent the received and the transmitted energy for

each user k such that
ER

k [t] = gk[t]Ek[t]. (6.3)

Let N0 denote the noise power spectral density. The scheduled users are
separated by superposition coding. Let Km be the set of users to be sched-
uled in frequency band m. Let ψ

(m)
k be the permutation of the scheduled

user indices for frequency band m that sorts the channel gains in increasing
order, i.e. g(m)

ψ1
≤ · · · ≤ g(m)

ψk
≤ · · · ≤ g(m)

ψ|Km |
. Then, the energy of the user
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ψ
(m)
k with rate R(m)

ψk
, as scheduled by the scheduler to guarantee an error

free communication, is given by [Park and Caire, 2008]

Eψk =
N0 + I(ρ)

gψk

[
2∑i≤k Rψi − 2∑i<k Rψi

]
. (6.4)

where I(ρ) denotes the outer cell interference represented as Gaussian noise
on cell ρ and is given by

I(ρ) = ∑
j �=ρ

K

∑
k=1

gk(ρ, j)Ek(j) (6.5)

This energy assignment results in the minimum total transmit energy
for the scheduled users.

6.2 Multicell Analysis

For the multicell system analysis, we use the large system results from
[Park and Caire, 2008]. The average energy consumption of the system per
transmitted information bit at the large system limit K → ∞ is then given
by

(
Eb

N0

)MC

sys
=

log(2)
∞∫
0

2C Pg,SVU(x)

x dPg,SVU(x)

1 − βC log(2)
∞∫
0

2C Pg,SVU (x)

x dPg,SVU(x)
(6.6)

where Pg,SVU(·) is the the cumulative distribution function (cdf) of the fad-
ing of the scheduled virtual users (SVU) and β is a constant commonly used
to model the effect of interference in multicell analysis [Park and Caire,
2008] and bounded by

2D−αζ(α, 1) ≤ β ≤ D−α
(

ζ(α,
1
2
) + ζ(α,

3
2
)
)

(6.7)

where ζ(.) denotes the standard zeta function. It has been observed that β
does not change much with spectral efficiency and any β within the bound
can be used effectively to model the inter–cell interference [Park and Caire,
2008]. We can rewrite average energy consumption of multicell case in Eq.
(6.6) in terms of average energy consumption of single cell as

(
Eb

N0

)MC

sys
=

(
Eb
N0

)SC

sys

1 − βC
(

Eb
N0

)SC

sys

(6.8)
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As compared to single cell case, performance of multicell case behaves dif-
ferently at large spectral efficiency. Performance degradation in multicell
case is dependent on the behaviour of multiple cell interference. Depend-
ing on on the multiple cell interference, we can distinguish the following
operating regions [Park and Caire, 2008].⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Eb
N0

)SC

sys
≤ 1

2βC noise dominated region

1
2βC <

(
Eb
N0

)SC

sys
< 1

βC interference dominated region(
Eb
N0

)SC

sys
≥ 1

βC forbidden region

(6.9)

Performance degradation as compared to single cell case is up to 3 dB in
the noise dominated region. When interference dominates the noises, per-
formance degrading is more than 3dB. Contrast to single cell cases, there
is a certain limit on spectral efficiency C beyond which it is not allowed to
operate and this region is termed as forbidden region.

6.2.1 Multiple-cell Wideband Slope

As our scheduling schemes are more suitable for operation at low spectral
efficiencies, we investigate low spectral efficiency behaviour of multicell
systems. It has been shown that systems with same (Eb/N0)min may have
very different behaviours in the wideband regime and this behaviour can
be expressed by evaluating wideband slope [Verdu, 2002]. We denote the
spectral efficiency as a function of Eb/N0 by C(Eb/N0). Then, derivative
of C with respect to Eb/N0 expressed in decibels, evaluated at (Eb/N0)min
and normalized to 3dB is called a wideband slope and denoted by S0[Caire
et al., 2007]. The low spectral efficiency behaviour is characterized by the
minimum system (Eb/N0)min and the wideband slope S0, such that [Verdu,
2002], [Caire et al., 2007]( Eb

N0

)
sys

∣∣∣
dB

=
( Eb

N0

)
min

∣∣∣
dB

+
C
S0

10 log10(2) + O(C) (6.10)

We evaluate S0 for the multiple cell case in this section. The reader is
referred to [Caire et al., 2007] for the detailed derivation of S0 for the single
cell case where S0 is derived in terms of Eb

N0
(C).

For the multicell case, S0 is given by

S0 = log 2
f (0)
f ′(0)

(6.11)
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where f (C) denotes Eq. (6.6) as a function of spectral efficiency C. Evalu-
ating Eq. (6.6) at C→ 0

f (0) = log(2)
∞∫
0

dPg,SVU(x)
x

(6.12)

where Pg,SVU(x) is the cdf of channel gain distribution.
Differentiating Eq. (6.6) as a function of C yields

f ′(C) = log(2)

[∞∫
0
2CPg,SVU(x) Pg,SVU(x)

x dPg,SVU(x)
(
d(c)

)
+

∞∫
0

2C Pg,SVU(x)dPg,SVU(x)
x d′(c)

]
[
d(c)

]2
(6.13)

where the term d(c) is given by

d(c) = 1− βC log(2)
∞∫
0

2C Pg,SVU(x)

x
dPg,SVU(x) (6.14)

Differentiating d(c), we get

d′(c) = −β log(2)
(
C
2C Pg,SVU(x)Pg,SVU(x)

x
dPg,SVU(x) +

∞∫
0

2C Pg,SVU(x)

x
dPg,SVU(x)

)
(6.15)

Now evaluating f ′(C) at C → 0

f ′(0) = log(2)
[ ∞∫
0

Pg,SVU(x)
x

dPg,SVU(x)+β
( ∞∫
0

dPg,SVU(x)
x

)2]
(6.16)

Using Eq. (6.12) and Eq. (6.16) in Eq. (6.11) wideband slope is given by

S0 =

∞∫
0

dPg,SVU(x)
x

∞∫
0

Pg,SVU(x)
x dPg,SVU(x)+β

(∞∫
0

dPg,SVU(x)
x

)2 (6.17)

Wideband slope of multicell system directly gives us information about the
performance loss as compared to a single cell case. A cell size dependent
term in denominator results in decrease in slope of the multicell system
which is an indicator that inter–cell interference reduces the energy effi-
ciency of the system as compared to a single cell case in low spectral effi-
ciency regime.
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6.2.2 SDDPS: Multicell Case

In this section we evaluate performance of SDDPS in a multiple cell en-
vironment and compare with the results with the single cell case. Fig. 6.2
compares the delay–energy trade off for the single andmulticell cases when
all the arriving packets have identical deadlines. As the deadline of trans-
mission increases, average system energy decreases for both the cases. The
loss in system energy efficiency due to multicell interference is similar for
different cell sizes.
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FIGURE 6.2: Delay–energy tradeoff comparison for the single and mul-
tiple cell cases at C = 3 bits/s/Hz for different cell size D where β is
chosen as in Eq. (6.7).

Fig 6.3 shows the behaviour of SDDPS scheme in a multicell system for
different spectral efficiencies. It is important to note that contrast to single
cell system, multicell system operates in the region where single cell energy
(Eb/N0)SCsys < 1

βC as explained in Section 6.2. The region beyond that is
termed as forbidden region for multicell system whereas there is no such
limitation for a single cell system. For a delay limited system with n = 1
and β = 1.1, C > 4.3 is a forbidden region. However, for a delay tolerant
system with n = 2, (Eb/N0)SCsys decreases and it allows system to operate
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at higher spectral efficiencies. This effect is quite evident in Fig. 6.3 as the
curve belonging to n = 1 saturates at lower spectral efficiency as compared
to the curve with n = 2. Consequently, for a multicell system, scheduling
with delay tolerance not only makes systemmore energy efficient, it allows
system to operate at higher spectral efficiencies as compared to single cell
case as well.
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FIGURE 6.3: Comparison of system energy for single and multicell sys-
tems for SDDPS scheme with M=1.
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Chapter 7

Cooperative Communication in
Deterministic Networks

This chapter deals with the second part of the dissertation. We consider a
cooperative network where we have multiple sources, multiple relays and
a single destination. The motivation behind the work is the need of cooper-
ation among the sensor nodes in a typical WSN. In a typical WSN configu-
ration, a large number of nodes measure the relevant data and transmit to
a single node for further processing. In many application of the WSN, the
amount of data to be transmitted at each node is very small but the physical
distance between a sensing node and a common sink (destination) makes
the transmission difficult or (energy wise) expensive. We investigate such
a scenario where communicating nodes cooperate with each other to trans-
port their own data along with the data from the other sensing nodes to
reduce the cost of communication.

7.1 Review of Deterministic Network Model

In this section we briefly review the deterministic channel model proposed
in [Avestimehr et al., 2007a] and used in this work. The received signal at
each node is a deterministic function of the transmitted signal. This model
focuses on the signals interaction rather than on the channel noise. In a
Gaussian (real) network, a single link from node i to node j with SNR snri,j

has capacity Ci,j = 1
2 log(1 + snri,j) ≈ log

√
snri,j. Therefore, approximately,

ni,j =
⌈

log√snri,j

⌉
bits per channel use can be sent reliably. In [Aves-

timehr et al., 2007a] (see also references therein), the Gaussian channel is
replaced by a finite-field deterministic model that reflects the above behav-
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ior. Namely, the transmitted signal amplitude is represented through its
binary1 expansion X = ∑∞

�=1 B�2−� where B� ∈ F2. At the receiver, all the
input bits such that √snri,j2−� > 1 (i.e., received “above the noise level”)
are perfectly decoded, while all those such that √snri,j2−� ≤ 1 (i.e., re-
ceived “below the noise level”) are completely lost. It follows that only the
most significant bits (MSBs) can be reliably decoded, such that the capacity
of the deterministic channel is given exactly by ni,j and it is achieved by
letting B1, . . . , Bni,j i.i.d. Bernoulli-1/2.

A linear finite-field deterministic relay network is defined as a directed
acyclic graph G = {V , E} such that the received signal at any node j ∈ V is
given by

yj = ∑
i∈V :(i,j)∈E

Sq−ni,j xi (7.1)

where yj, xi ∈ F
q
2, sum and products are defined over the vector space F

q
2,

and where

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is a “down-shift” matrix. Notice that ni,j ≤ q indicates the deterministic
channel capacity for the link (i, j) as described before. Without loss of gen-
erality, the integer q can be set equal to the maximum of all {ni,j : (i, j) ∈ E}.
The broadcast constraint is captured by the fact that the input xi for each
node i is common to all channels (i, j) ∈ E .

In the case of single source (denoted by s) single destination (denoted
by d), Theorem 4.3 of [Avestimehr et al., 2007a] yields the capacity of linear
finite-field deterministic relay networks in the form

C = min
(S ,S c)∈Λd

rank {GS ,S c} (7.2)

where Λd is the set of cuts S ⊂ V , S c = V − S such that s ∈ S and d ∈ S c,
and where GS ,S c is the transfer matrix for the cut (S ,S c), formally defined
as follows. Let N (i) denote the set of nodes j for which (i, j) ∈ E (this
is the “fan-out” of node i) and let P(j) denote the set of nodes i for which

1The generalization to p-ary expansion is trivial. Here we focus on the binary expansion
as in [Avestimehr et al., 2007a].
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(i, j) ∈ E (this is the “fan-in” of node j). The transfer matrix GS ,S c is defined
as the matrix of the linear transformation between the transmitted vectors
(channel inputs) of nodes βin(S) and the received vectors (channel outputs)
of nodes βout(S), where the inner and outer boundaries βin(S) and βout(S)
of S are defined as [Kramer, 2009]:

βin(S) = {i ∈ S : N (i) ∩ S c 	= ∅}

and
βout(S) = {j ∈ S c : P(j) ∩ S 	= ∅}

In words: βin(S) is the set of nodes of S with a direct link to nodes in S c,
and βout(S) is the set of nodes in S c with a direct link from nodes in S .

Going through the proof of Theorem 4.3 in [Avestimehr et al., 2007a] we
notice that the “down-shift” structure for the individual channels is irrele-
vant. In fact, this structure is useful in making the connection between the
linear finite-field model and the corresponding Gaussian case. As a matter
of fact, if the channel matrices Sq−ni,j in the above model are replaced by
general matrices Si,j ∈ F

q×q
2 , the result in Eq. (7.2) still holds.

7.2 Relay with one source

Tomotivate for the result in Section 7.4, we consider an example of a simple
network and show achievability of the capacity region. We use a determin-
istic channel model. The signal received at the receiver is a determinis-
tic function of the signal transmitted. This model helps us to concentrate
on the interaction between the signals transmitted from different sources
rather than the noise.

Fig. 7.1 shows a single relay network when a relay is acting as a data
source as well. We focus here on the constraints due to the broadcast na-
ture of the wireless network and interference of the signals coming from
different nodes. The relay R injects its own data in addition to the data
originated at the source S and relays the cumulative data to the common
destinationD. nSD, nSR, nRD represent the number of bits successfully trans-
mitted on the source-destination, source-relay and relay-destination links,
respectively and termed as link capacities. The rate region constrained by
the source rate RS and relay rate RR inequalities can be described as,

RS ≤ max(nSR, nSD) (7.3)
RR ≤ nRD (7.4)

RS + RR ≤ max(nSD, nRD) (7.5)
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R

S D

nSR nRD

nSD

FIGURE 7.1: Single Source, single Relay and single Destination.

R
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nSD

nRD

3 : nRD ≤ nSD ≤ nSR

1 : nRD ≤ nSR ≤ nSD

2 : nSR ≤ nRD ≤ nSD

nSD-nRD

A

FIGURE 7.2: Capacity region for the hypotheses when nSD ≥ nRD

.
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R
R

RS nSD

nRD

nRD-nSD

nSR ≤nSD ≤ nRD

A

FIGURE 7.3: Capacity region for the hypothesis nSD ≤ nSR ≤ nRD.

We prove that the capacity region bounded by these constraints can be
achieved. To show achievability of capacity region C, we show achievabil-
ity for every possible hypothesis of link capacity ordering.

The capacity region can be achieved by the following scheme. The
source transmits on the direct link SD only if nSD ≥ min(nSR, nRD), other-
wise it relays its data through the relay R. Depending on the link capacities
nSD, nRD, nSR, six different capacity regions can be defined and all of them
are achievable with the given scheme as shown in Fig. 7.2–7.5.

The capacity region has been plotted for 3 possible hypotheses2 in Fig.
7.2 when nSD ≥ nRD. To achieve the corner vertex A, the source sends nSD
bits directly to destination. The source sends nSD − nRD bits at MSB posi-
tions without interference from the relay while nRD bits are shared between
source and relay.

Fig. 7.3 represents the capacity region for the hypothesis nSR ≤ nSD ≤
nRD. Here, we achieve the corner vertex A by sending nSD bits on direct
link. Relay sends nRD − nSD bits without interference on MSB positions

2For three of the hypotheses, the resulting capacity region is identical, as shown in Fig.
7.2.
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R
R

RS nSR

nRD

nSD ≤ nSR ≤ nRD

nRD-nSR

A

FIGURE 7.4: Capacity region for the hypothesis nSR ≤ nSD ≤ nRD

while nSD bits are shared between relay and the source.
Fig. 7.4 shows the capacity region for the hypothesis nSD ≤ nSR ≤

nRD. The corner vertex A is achieved by letting source transmit nSR bits
to the relay. The relay decodes and forwards nSR to the destination. The
relay sends its own nRD − nSR bits to the relay at MSB positions without
interference from the source. However, nSR bits are shared between the
source and the relay.

Fig. 7.5 shows the capacity region for the hypothesis nSD ≤ nRD ≤ nSR.
This is the only hypothesis where sharing of rates RS and RR is the only
possible solution and no data can be transmitted from either of the source
or relay without interference from the other data source. the source sends
nSR bits to the relay. The relay decodes nSR bits and after multiplexing its
own nRD − nSR bits, forwards them to the destination node.

7.3 A specific example: diamond network

In this sectionwework out an other example and provide an explicit achiev-
ability strategy. Consider the “diamond” network shown in Fig. 7.6, with
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R
R

RS

nRD

nRD

      nSD ≤ nRD ≤ nSR

FIGURE 7.5: Capacity region for the hypothesis nSD ≤ nRD ≤ nSR.

nodes {1, 2, 3, d} and links of capacity n1,2, n1,3, n2,d and n3,d. In this case,
capacity region C is constrained by the following inequalities.

R1 + R2 + R3 ≤ max(n2,d, n3,d) (7.6)
R1 + R2 ≤ n2,d + n1,3 (7.7)
R1 + R3 ≤ n3,d + n1,2 (7.8)

R1 ≤ max(n1,2, n1,3) (7.9)
R2 ≤ n2,d (7.10)
R3 ≤ n3,d (7.11)

Next, we provide simple coding strategies that achieve all relevant ver-
tices of C. Any point R ∈ C can be obtained by suitable time-sharing of the
vertices-achieving strategies. There are 24 possible orderings of the indi-
vidual link capacities n1,2, n1,3, n2,d and n3,d. Due to symmetry, the regions
for the case n3,d > n2,d will be the mirror image of the regions for the case
n2,d ≥ n3,d. Therefore, we shall consider only the cases where n2,d ≥ n3,d.
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1

2

3

d

n1,2 n2,d

n1,3
n3,d

FIGURE 7.6: A diamond network with a source node 1, two relay nodes
2 and 3 and a common destination d.

The remaining 12 cases have to be discussed individually. For example,
let’s focus on the case n3,d ≤ n1,2 ≤ n1,3 ≤ n2,d. An example of the network
for the choice of the link capacities n3,d = 1, n1,2 = 2, n1,3 = 3, n2,d = 4
is given in Fig. 7.7. Fig. 7.8 shows qualitatively the shape of the capacity
region in the three possible sub-cases of the link-capacity ordering n3,d ≤
n1,2 ≤ n1,3 ≤ n2,d: case 1) for n1,2 + n3,d < n1,3; case 2) for n1,2 + n3,d ≥ n1,3,
and case 3) for n1,2 + n3,d ≥ n2,d. In all cases, the achievability of the vertices
B and C of the region of Fig. 7.8 is trivial, since these correspond to vertices
of the multi-access channel with node 2 and 3 as transmitters and node d
as receiver.

Case 1): Vertex A has coordinates (R1 = n1,2, R2 = n2,d −n1,2 −n3,d, R3 =
n3,d) and can be achieved by letting node 1 send n1,2 to node 2. Node 2 de-
codes and forwards these bits after multiplexing its own n2,d − n1,2 − n3,d >
0 bits in the MSB positions, such that node 3 can send n3,d bits without inter-
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d1

3

2

FIGURE 7.7: The configuration of the diamond network in the example
(Case (1) in Fig.7.8)

.

ference from node 2. Vertex D has coordinates (R1 = n1,2 + n3,d, R2 = n2,d −
n1,2 − n3,d, R3 = 0) and can be achieved by letting node 1 send n1,2 + n3,d
bits. These can be all decoded by node 3, then node 3 can forward the bot-
tom (least-significant) n3,d bits of node 1 to node d. Node 2 decodes the top
(most-significant) n1,2 bits from node 1, and forwards them after multiplex-
ing its own bits.

Case 2): Vertices A, D and E have coordinates (R1 = n1,2, R2 = n2,d −
n1,2 − n3,d, R3 = n3,d), (R1 = n1,3, R2 = n2,d − n1,3, R3 = 0) and (R1 =
n1,3, R2 = n2,d − n1,2 − n3,d, R3 = n1,2 + n3,d − n1,3), respectively. Vertex A
can be achieved in the same way as in Case 1). Vertex D can be achieved by
letting node 1 send n1,3 bits to node 3. Node 3 decodes and forwards the
bottom n3,d. Since in this case n1,2 ≥ n1,3 − n3,d, node 2 can decode the top
n1,3 − n3,d bits of node 1, and forwards them to node d after multiplexing its
own n2,d − n1,3 bits, using its n2,d − n3,d MSBs. Vertex E can be achieved by
letting node 1 transmit n1,3 bits, where the top n1,2 of which are received by
node 2. Node 3 forwards the bottom n1,3 − n1,2 bits of node 1, and multiplex
its own n3,d + n1,2 − n1,3 bits. Node 2 forwards the top n1,2 bits from node
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FIGURE 7.8: The capacity region of the diamond network for the hy-
pothesis n3,d ≤ n1,2 ≤ n1,3 ≤ n2,d.

1, by multiplexing its own n2,d − n1,2 − n3,d bits, transmitting over its n2,d −
n3,d MSBs.

Case 3): Vertices A, D and E have coordinates (R1 = n2,d − n3,d, R2 =
0, R3 = n3,d), (R1 = n1,3, R2 = n2,d − n1,3, R3 = 0) and (R1 = n1,3, R2 =
0, R3 = n2,d − n1,3), respectively. Vertex A can be achieved by letting node
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1 send n2,d − n3,d bits to node 2. Since n2,d − n3,d ≤ n1,2 these can be decoded
and forwarded to node d in the MSB positions. Node 3 simply sends n3,d
bits to node d without interfering with node 2. Vertex D is achieved by
letting node 1 send n1,3 bits. The top n1,3 − n3,d of these are decoded by
node 2 and forwarded together with n2,d − n1,3 own bits. The bottom n3,d
bits of node 1 are decoded and forwarded by node 3. Finally, vertex E is
achieved by letting node 1 sent n1,3 bits. The bottom n3,d − n2,d + n1,3 of
these are forwarded by node 3, after multiplexing its own n2,d − n1,3 bits.
Since n2,d − n3,d ≤ n1,2, node 2 can decode the top n2,d − n3,d bits from node
1 and forward them to node d using its MSB positions.

We consider another hypothesis n3,d ≤ n1,2 ≤ n2,d ≤ n1,3 and show
achievability of the capacity region in Fig. 7.9. This hypothesis has two
cases as well : case 1) for n1,2 + n3,d ≥ n2,d and case 2) for n1,2 + n3,d < n2,d.

Case 1): Vertices A and B have coordinates (0, n2,d −n3,d, n3,d) and (n2,d −
n3,d, 0, n3d), respectively. Vertex A is achieved by letting node node 3 trans-
mit n3,d bits to the destination at the MSB positions without interference
from node 2. Node 2 transmits n2,d − n3,d bits to the destination in the re-
maining positions. Similarly, vertex B is achieved by letting node 3 transmit
n3,d bits to the destination without interference from node 2. Node 1 sends
n2,d − n3,d bits to node 2. Node 2 decodes n2,d − n3,d bits and forwards them
to the destination to the top n2,d − n3,d positions.

Case 2): Vertices A, B and C have vertices (0, n2,d −n3,d, n3,d), (n1,2, n2,d −
n1,2 − n3,d, n3,d) and (n1,2 + n3,d, n2,d − n1,2 − n3,d, 0), respectively. Vertex A
has same coordinates as in case 1) and is achieved in the same way. To
achieve vertex B, node 1 sends n1,2 bits to node 2. Node 3 sends n3,d bits
to the destination at the MSB positions. As n2,d > n1,2 + n3,d, node 2 mul-
tiplexes its own n2,d − n1,2 − n3,d with n1,2 bits of node 1 and sends to the
destination at the top n2,d − n3,d positions. Vertex C is achieved by letting
node 1 transmit top n1,2 bits to node 1 and bottom n3,d bits to node 3. Node
3 decodes and forwards n3,d bits to the destination. Node 2 decodes n1,2
bits from the source. As n2,d > n1,2 + n3,d, node 2 multiplexes its own
n2,d − n1,2 − n3,d bits and sends to the destination at the top positions.

Other hypotheses follow similarly and the whole capacity region is achieved
by decode and forward.

7.4 Generalization: Main result

In a linear finite-field deterministic network defined as above, let V =
{1, . . . , N, d}, where node d denotes the common destination and all other
nodes {1, . . . , N} have independent information to send to node d. For any
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FIGURE 7.9: The capacity region of the diamond network for the hy-
pothesis n3,d ≤ n1,2 ≤ n2,d ≤ n1,3.

integer TW = 1, 2, . . . we let Wi = {1, . . . , �2TW Ri�} denote the message set
of node i = 1, . . . , N. A (TW , R1, . . . , RN) code for the network is defined
by a sequence of strictly causal encoding functions f [t]

i : Wi × F
q(t−1)
2 → F

q
2,
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for t = 1, . . . , TW and i = 1, . . . , N, such that the transmitted signal of node
i at (discrete) time t is given by xi[t] = f [t]

i (wi, yi[1], . . . , yi[t − 1]), and by a
decoding function g : F

TW q
2 → W1 × · · ·WN , such that the set of decoded

messages is given by (ŵ1, . . . , ŵN) = g(yd[1], . . . , yd[T]).
The average probability of error for such code is defined as Pn(e) =

P((W1, . . . , WN) �= (Ŵ1, . . . , ŴN), where the random variables Wi are in-
dependent and uniformly distributed on the corresponding message sets
Wi. The rate N-tuple (R1, . . . , RN) is achievable if there exists a sequence of
(TW , R1, . . . , RN)-codes with Pn(e) → 0 as TW → ∞. The capacity region C
of the network is the closure of the set of all achievable rates. With these
definitions, we have:

Theorem 7.1 The capacity region C of a linear finite-field deterministic network
(V , E) with independent information at the nodes {1, . . . , N} and a single destina-
tion d is given by

∑
i∈S

Ri ≤ rank {GS ,S c} , ∀ S ⊆ {1, . . . , N}. (7.12)

Proof: The proof of Theorem 7.1 is given in Appendix E.

7.5 Transmissibility for correlated sources

Consider the case of a sensor network where the nodes {1, . . . , N} observe
samples from a spatially-correlated, i.i.d. in time, discrete vector source
U = (U1, . . . , UN) (see the source model in [Barros and Servetto, 2006]).
The goal is to reproduce the source blocks u[1], . . . , u[TW ] at the common
destination node d. If the source blocks can be recovered at the destination
with vanishing probability of error as TW → ∞, the vector source is said to
be transmissible. In the case of a network of orthogonal links with capacities
Ci,j, this problem was solved in [Barros and Servetto, 2006] and yields the
necessary and sufficient transmissibility condition3

H(US |US c) ≤ ∑
(i,j)∈S×S c

Ci,j, ∀ S ⊆ {1, . . . , N}. (7.13)

From the system design viewpoint, the above result yields the optimality of
the “separation” approach consisting of the concatenation of Slepian-Wolf
coding for the source with routing and single-user channel coding for the
network [Barros and Servetto, 2006].

3The notation US = {Ui : i ∈ S} is standard.
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With the same assumptions and linear finite-field deterministic network
defined before, we consider a specific model for the vector source as de-
fined in [Mohammad Ali Maddah-Ali and David N. C. Tse, 2009]. Let n0 be
a non-negative integer, and let V ∈ Fn0

2 be a random vector of uniform i.i.d.
bits. For all i = 1, . . . , N, let Ui ⊆ {1, . . . , n0} and define Ui ∈ F

|Ui |
2 as the

restriction of V to the components {V� : � ∈ Ui} of V. Then, the correlation
model for the source (U1, . . . , UN) is reduced to the following “common
bits” case: sources Ui and Uj have common part {V� : � ∈ Ui ∩ Uj} while
the bits V� in Ui − Uj and in Uj − Ui are mutually independent. It follows
that H(Ui|Uj) = |Ui| − |Ui ∩ Uj|.

This source model is somehow “matched” to a correlated source de-
fined over the reals in the following intuitive sense. Consider N = 2 and
let U1 and U2 denote the binary quantization indices resulting from quan-
tizing two correlated random variables A1 ∈ R and A2 ∈ R using “em-
bedded” scalar uniform quantizers with n bits, such that their first m MSBs
are identical and their last n − m least significant bits (LSBs) are mutually
independent. If A1, A2 are marginally uniform and symmetric, U1 and U2
are exactly obtained by defining V as above, with n0 = 2n − m independent
bits, and letting U1 include the m MSBs and the first set of n − m LSBs of
V, and U2 include the same m MSBs and the second set of n − m LSBs of
V. This model trivially generalizes to the case of N correlated sources and
is related to the Gaussian sources with “tree” dependency considered in
[Mohammad Ali Maddah-Ali and David N. C. Tse, 2009]. For the source
model defined above we have the following simple result4:

Theorem 7.2 The vector source U = (U1, . . . , UN) is transmissible over the linear
finite-field deterministic network (V , E) if and only if

H(US |US c) ≤ rank {GS ,S c} , ∀ S ⊆ {1, . . . , N}. (7.14)

Proof: The proof of Theorem 7.2 is given in Appendix E.

4The results presented in Section 7.4 and Section 7.5 have been produced independent
of the recent similar parallel work in [Perron, Diggavi, and Telatar, 2009] and [Mohajer,
Tian, and Diggavi, 2010].
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Chapter 8

Conclusions

This dissertation comprises of two parts. In the first part, we discussed op-
portunistic scheduling for large multiuser systems. Efficient use of system
resources available in terms of spectral efficiency and transmit energy is the
need of hour in modern communication networks. On the other hand, QoS
constraints in terms of throughput, delay and loss tolerance requirements
have a large variation depending on the application requirements. For ex-
ample, multimedia applications are loss tolerant but have certain strict data
and delay requirement. Many applications in WSNs do not have high re-
quirements for throughput but they do not tolerate data loss and delay.
Similarly, by operator point of view, considerations like fairness and mini-
mal use of available energy resources is more important.

This work deals with energy efficient radio resource allocation for het-
erogenous network where all the applications have different types of con-
straints. Main task of the work is to develop scheduling algorithms that
maximize information capacity in a fading environment for a hard dead-
line constrained system. Then, we accommodate other practically relevant
features in our scheduler and analyze the effects on our scheduling scheme.
The motivation behind the work is to model these effects such that core
complexity of the scheduler does not increase and new tasks are accommo-
dated in existing framework.

The second part of the dissertation addresses the information theoretic
aspect of a cooperative relay network. We characterize the capacity region
for some simple network topologies of wireless networks and prove the
general results.
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8.1 Main Contributions of the Work

8.1.1 Part I

Chapter 3: In chapter 3, we propose a scheduling scheme, called DDOS,
which makes use of good channel and schedules a group of users
having better channel than a transmission threshold. Our objective
is to minimize transmit energy while each user has a deadline delay
constrained for each packet. Each backlog state has a correspond-
ing state dependent transmission threshold. It is an emptying buffer
policy which implies that a scheduled user transmits all the packets
buffered. The scheduling scheme is analyzed in large system limit.
We provide a framework to adapt the proposed scheme with the ob-
jective of minimizing transit energy constrained by minimum through-
put guarantee for each user. We use Simulated Annealing algorithm
for optimization of transmission thresholds because energy function
is not a convex function of transmission thresholds. Numerical re-
sults show the energy delay tradeoff exhibited by the scheme. This
scheme is specially suited to applications like WSN where nodes en-
ter into a sleep mode if they sense a bad channel. In this way, only
sensing part of the circuitry is invoked in each time slot and rest of
the parts consume no power. On sensing a good channel, the sensor
nodes wake up and empty the buffer.

Chapter 4: Chapter 4 discusses a more generalized scheduler as compared
to DDOS. We propose DDPS scheduling scheme which allows trans-
mission of data in discrete steps. In DDOS, we have a single backlog
state dependent transmission threshold. In DDPS, for each backlog
state i, we have i buffered packets and corresponding i transmission
thresholds. This certainly increase complexity of the scheme but nu-
merical results provide evidence that it is more energy efficient as
compared to DDOS. One of the main contribution of this chapter is
proof of equivalence of channel distributions for random and con-
stant arrivals in large system limit. This results allows us to use same
analysis and transmission threshold for DDPS as for more idealistic
case of constant arrivals.

Chapter 5: In this chapter, we analyze DDPS for more practically relevant
scenarios. The main drawback of DDPS is its large computational
complexity. We assume that transmission thresholds ending in the
same backlog state can be coupled and call this scheme SDDPS. This
assumption reduces complexity of DDPS from O(n)2 to O(n). Nu-
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merical results show that there is negligible energy loss as a result
of this assumption. For SDDPS, we propose a recursive algorithm to
compute transmission thresholds which is much simpler than Simu-
lated Annealing algorithm.

We model SDDPS scheme for the case of individual, non-identical
packet deadlines. This case is practically very relevant as real sys-
tems can have such users who would like to transmit data with dif-
ferent deadlines. In literature, this problem is usually solved by as-
signing a different priority class to different deadline packets but we
model this scenario without making such class differentiation. We
model state transition matrix for non–identical case as a product of
state transition matrix for identical case and a deadline offset matrix.
In the large system limit, we prove that the packets with identical
and non–identical deadlines have same transmission thresholds but
resulting energy depends on the deadline distribution of the packets.

We extend our results to the case when we allow outage in packet
transmission. In practice, it is costly (impossible sometimes) to pro-
vide deadline guarantee to all the users. Therefore, we allow a prede-
fined proportion of packets to be dropped if they do not meet dead-
line. We model the system with packet outage probabilities. The
transmission thresholds needs to be re–optimize for every deadline
and dropping probability. We also consider the system when we al-
low packet dropping from the users at the outer edge of the cell at
higher rate as compared to the users in the inner cell. Though, it re-
sults in unfair data loss but results in saving of transmit energy.

Chapter 6: This chapter addresses the effect of inter–cell interference in a
multicell environment on SDDPS scheduler. In the large system limit,
we show that energy efficiency reduces by a intercell interference lim-
ited term β as compared to a single cell system. Therefore, multicell
systems cannot operate beyond a certain spectral efficiency. For de-
lay tolerant systems, we show that reduction in system energy due to
delay tolerance allows us to operate at higher spectral efficiencies as
compared to delay limited systems.

8.1.2 Part II

Chapter 7: This chapter addresses a different concept as compared to rest
of the dissertation. We consider a deterministic cooperative network
where relay nodes relay the data from the source but multiplex their
own data to a common destination. We characterize capacity region
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of single source, single relay, single destination and single source, two
relays, single destination networks, and provide achievability results.

We have generalized our results and characterized the capacity re-
gion for a linear finite-field deterministic network with independent
information at all nodes and a single destination node. In our setup,
all nodes may relay information from other nodes as well as inject
their own information into the network. This may serve as a sim-
plified model for a large WSN where sensing nodes cooperate with
each other to send the collective data towards a single collector node.
For a specific model of discrete binary source correlation at the nodes,
we have also found necessary and sufficient conditions for the source
transmissibility. Albeit restrictive, this correlation model may be use-
ful (e.g., see [Mohammad Ali Maddah-Ali and David N. C. Tse, 2009])
as a simple discrete “equivalent” (up to some bounded mean-square
distortion penalty) for a spatially-correlated real sources whose com-
ponents are observed and encoded separately at the network nodes.

8.2 Further Research Directions

In this section we discuss some of the problems demanding further re-
search.

• Throughout this work, we have assumed perfect channel state infor-
mation (CSI) on transmitter and receiver sides. Practically, it is very
hard to have perfect CSI on transmitter side in a fast fading envi-
ronment. It would be challenging to investigate the proposed sched-
ulers when perfect CSI is not available on transmitter side. Refer-
ence [Bertsekas, 2007] provides a few techniques to reduce a problem
with imperfect CSI to a problem with perfect CSI using dynamic pro-
gramming approach. In general, the solution gets more complicated
because perfect CSI solution prompts us to specify a rule for trans-
mission for each state i at time t while solution with imperfect CSI re-
quires us to compute a vector of controls applied for every sequence
of observations received and controls applied by time t.

• We have characterized energy-delay tradeoff in this work. The results
can easily be extended to throughput-delay tradeoff.

• Our objective in this work is to minimize transmit energy for a given
deadline. A trivial extension is to maximize system throughput while
maintaining a minimum user throughput. A dual of this problem is to
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minimize system transmit energy for a given minimum user through-
put. We have considered this topic briefly in Section 3.5 for large sys-
tem limit. However, this problem gets complicated in real scenario
and providing strict guarantee without outage is impossible. Work
in [Min, Kim, Woo, and Kim, 2005], [Zorba, Pérez-Neira, Foglar, and
Verikoukis, 2009], [Chen and Jordan, 2009], [Zorba and Verikoukis,
2010], [Pitic and Capone, 2008] discuss the problem in different set-
tings and propose some scheduling schemes but none of them pro-
vides any guarantee. Up to best of our knowledge, characterization
of a scheduler which maximizes system throughput for a given out-
age probability (in terms of number of slots, a user’s throughput falls
below minimum throughput) is still an open problem.

• We have assumed uncorrelated channels from slot to slot. An inter-
esting extension is the characterization of the schemes when channels
are correlated.

• In the multicell case, we assumed that a user has information of her
channel to the base station in her own cell but no information to
the channels in the neighbouring cells. This assumption helps us to
model interference from other cells as Gaussian noise. It is a challeng-
ing problem to investigate the problem when a user has information
of her channels to other base stations as well. In this case, it would not
be straight forward to schedule a user who has good channel to her
base station. If she has good channel to other base stations as well, it
means she will cause a lot of intercell interference. Minimum energy
solution requires that a user is scheduled when she has a good chan-
nel to her base station and bad channels to neighboring base stations.
As a result, task of scheduling becomes complicated.

• We mainly have discussed problem for a single hop system. The work
can be extended to multihop systems where end to end delay de-
pends on multiple transmission and single deadline. It will be inter-
esting to investigate how energy-delay tradeoff can be characterized
in this scenario.
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Appendix A

Channel Characteristics:

In this work the channel model of [Caire et al., 2007] is used. Signal prop-
agation is characterized by a distance dependent path loss factor and a
frequency-selective short-term fading that depend on the scattering envi-
ronment around the user terminal. As described in Section 3.1, these two
effects are taken into account by letting gm

k = sk f m
k where s denotes the path

loss of user k and f m
k is the short term fading of user k in channel m.

As in [Caire et al., 2007], we assume that users are uniformly distributed
in a geographical area but for a forbidden circular region of radius δ cen-
tered around the base station where 0 < δ ≤ 1 is a fixed system constant.
Using this model, the cdf of path loss is given by

Fs(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x < 1

1 − x−2/α−δ2

1−δ2 1 ≤ x < δ−α

1 x ≥ δ−α

. (A.1)

where the path loss at the cell border is normalized to one.
Frequency selective short–term block fading is modeled by M paral-

lel channel which are i.i.d. For a Rayleigh channel, the distribution of
max{ f 1

k , . . . , f M
k } is given by

Pmax{ f }(y) = (1 − exp(−y))M (A.2)

Pmax{g}(x) is defined as the cdf of the random variable max{g1
k , . . . , gM

k } =
sk max{ f 1

k , . . . , f M
k }. Recall from Eq. (4.7), the cdf P f ,SVU(y) of SVUs for

DDPS is a weighted function of the cdf of actual fading Pmax{ f }(y) given
by Eq. (A.2). Using Eq. (4.7) and Eq. (A.1), we compute a convenient
expression for the cdf Pg,SVU(x) of the SVUs for this product channel. As
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path loss and Rayleigh fading occur simultaneously and independently, the
cdf of the channel gain is given by

Pg,SVU(x) =
∫

Fs(x/y)dP f ,SVU(y). (A.3)

A.1 Case I: DDPS

Using Property 4.4 and the path loss distribution in Eq. (A.1), Eq. (A.3) is
computed as follows

Pg,SVU(x) =
∫ xδα

0
p f ,SVU(y)dy +

∫ x

xδα
Fs(x/y)dP f ,SVU(y) (A.4)

= P f ,SVU(xδα) +
∫ x

xδα

(
1 − (y/x)2/α − δ2

1 − δ2

)
dP f ,SVU(y).(A.5)

Changing variables and integrating by parts yields,

Pg,SVU(x) =
1

x2/α(1 − δ2)

∫ x2/α

x2/αδ2
P f ,SVU(yα/2)dy. (A.6)

For α = 2, Eq. (A.6) can be written in closed form.
For DDPS scheduler, using Eq. (4.7) and the Rayleigh fading model, Eq.

(A.6) is given by

Pg,SVU(x) =
1

x(1 − δ2)

∫ x

xδ2

n

∑
i=1

ciπi

[
(i − j(y, i) + 1)(1 − exp(−y))M

−
i−j(y,i)

∑
b=0

(1 − exp(−κi→i−b))M
]
dy. (A.7)

Using geometric series expansion, the closed form expression is given
by

Pg,SVU(x) =
n

∑
i=1

ciπi

[
(i − j(y, i) + 1)

(
1 − 1

x(1 − δ2)

M

∑
m=1

1
m
[(

1 − exp(−x)
)m

−
(
1 − exp(−xδ2)

)m])− i−j(y,i)

∑
b=0

(
1 − exp(−κi→i−b)

)M
]
. (A.8)

where j(y, i) is defined by Definition 4.1.
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A.2 Case II: DDOS

For DDOS scheduler, using Eq. (3.20), α = 2 and the Rayleigh fading
model, Eq. (A.6) is given by

Pg,SVU(x) =
1

x(1 − δ2)

∫ x

xδ2

n

∑
i=1

ciπi

[
i(1 − exp(−y))M

− (1 − exp(−κi))M
]
dy. (A.9)

Again, using geometric series expansion, the closed form expression is
given by

Pg,SVU(x) =
n

∑
i=1

ciπii
[(

1 − 1
x(1 − δ2)

M

∑
m=1

1
m
[(

1 − exp(−x)
)m

−
(
1 − exp(−xδ2)

)m])− (
1 − exp(−κi)

)M
]
. (A.10)
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Appendix B

Proof of Properties For DDPS
Scheduling Scheme

B.1 Proof of Property 4.2

Proof follows directly from Proposition 4.1.
The system energy Esys(�R,�y) is a function of a allocated rate vector �R

and fading vector �y. We denote the required rate for transmission of a sin-
gle packet by R′ = Γ

K . To schedule a packet for transmission, we have a
discrete (quantized) vector of transmission thresholds �κi over the fading
state y. From Definition 4.1, it is clear that�κ should necessarily be ordered
(increasing or decreasing). Proposition 4.1 states that more rate should be
allocated at good channels. Thus, given a backlog state i, �κi should be or-
dered in such a way that the lowest assigned rate R = R′ and the high-
est rate Ri = iR′ correspond to the lowest threshold κi→i and the highest
threshold κi→1, respectively.

Following Proposition 4.1, for the buffer state i, we can order the vector
�κi only in increasing order such that

�κi = [κi→i, κi→i−1 . . . κi→1] (B.1)

which implies
κi→j ≤ κi→j−1∀i, j (B.2)

and proves Property 4.2

B.2 Proof of Property 4.3

The allocated rate R is equal in both of the state transitions Ti→j and Ti−1→j−1.
However, in state i, the user is closer to the deadline as compared to state
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i − 1. The user’s decision to transmit is analogous to dynamic program-
ming formulation where data is transmitted if cost of transmission in state
i is less than the expected future cost. Equivalently, the cost of transmission
in a state i − 1 can be represented as

Ei−1 = min
(

E(R, yi−1), E
[
Ei
])

(B.3)

where E[Ei] is the expected future cost in state i. The future expected
cost of transmission is only the function of quantized fading vector (�κ).
The problem belongs to a class of monotone optimal stopping problems
where it has been shown that if the one step look ahead optimal stopping rule
prompts to wait, then it is optimal to wait. In a monotone optimal stop-
ping problem, there is always a certain ordering (decreasing or increasing)
of costs (energy) in every state i. As future expected cost of transmission
is a function of quantized fading vector (transmission thresholds), to prove
κi→j ≤ κi−1→j−1, it is sufficient to prove that vector of future expected costs
�C is ordered in increasing order.

�C =
(

E[E1] ≤ E[E2] ≤ · · · ≤ E[Ei] ≤ · · · ≤ E[En]
)

(B.4)

We need to prove,

E[Ei−1] ≤ E[Ei] ∀i (B.5)

By monotonicity property of dynamic programming, it is sufficient to show
that

E[En−1] ≤ E[En] (B.6)

By Property 4.4, κn→n = 0. In a dynamic programming problem, this condi-
tion is represented by allowing an infinity energy expenditure for a future
termination state n + 1. For the state n, Eq. (B.3) can be written as,

En = min
(

E(R, yn), ∞
)

= E(R, yn) (B.7)

In state n − 1, Eq. B.3 can be written as

En−1 = min
(

E(R, yn−1), E
[
En
])

(B.8)

However, it always holds that

E[En] ≥ min
(
E(R, yn−1), E[En]

)
(B.9)
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Taking expectation on both sides and using Eq. (B.8)

E
[
E[En]

]
≥ E

[
min

(
E(R, yn−1), E[En]

)]
(B.10)

E[En] ≥ E[En−1] (B.11)

which confirms that �C has been ordered in an increasing order of future
cost. Equivalently, transmission threshold vector�κ is ordered in decreasing
order and therefore κi→j ≤ κi−1→j−1.
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Appendix C

Relationship between
Transmission Thresholds and
Transition Probabilities

For a given deadline delay and short–term fading distribution Pmax{ f }(y),
the transmission thresholds are a function of the transition probabilities.
Therefore, the procedure of computing a set of optimal thresholds is equiv-
alent to the computation of a set of optimal transition probabilities. For a
deadline of n time slots, the transition probability matrix for DDPS, PDDPS
in Eq. (3.6) is expressed as,

PDDPS =

⎛⎜⎜⎜⎜⎜⎜⎝
Pr(y ≥ κ1→1) Pr(y < κ1→1) · · · 0

Pr(y ≥ κ2→1) Pr(κ2→2 ≤ y < κ2→1) · · · 0

· · · · · · · · · · · ·
Pr(y ≥ κn→1) Pr(κn→2 ≤ y < κn→1) · · · Pr(y < κn→n−1)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Corresponding state transition matrix for DDOS, PDDOS is given by

PDDOS =

⎛⎜⎜⎜⎜⎜⎜⎝
Pr(y ≥ κ1) Pr(y < κ1) 0 · · · 0

Pr(y ≥ κ2) 0 Pr(y < κ2) · · · 0

· · · · · · · · · · · · · · ·
Pr(y ≥ κn) 0 0 · · · Pr(y < κn)

⎞⎟⎟⎟⎟⎟⎟⎠ .

where zero transition probability represents the impossible transition.
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C. RELATIONSHIP BETWEEN TRANSMISSION THRESHOLDS AND TRANSITION
PROBABILITIES

For Rayleigh fading the transition probability matrix P can be written
in terms of transmission thresholds as,

PDDPS =

(
1−(1−e−κ1→1 )M (1−e−κ1→1 )M ... 0
1−(1−e−κ2→1 )M (1−e−κ2→1 )M−(1−e−κ2→2 )M ··· 0

··· ··· ··· ···
1−(1−e−κn→1 )M (1−e−κn→1 )M−(1−e−κn→2 )M ··· (1−e−κn→n−1 )M

)
.(C.1)

PDDOS =

⎛⎜⎜⎜⎜⎜⎜⎝
1 − (1 − e−κ1)M (1 − e−κ1→1)M . . . 0

1 − (1 − e−κ2)M 0 · · · 0

· · · · · · · · · · · ·
1 − (1 − e−κn)M 0 · · · (1 − e−κn)M

⎞⎟⎟⎟⎟⎟⎟⎠ .(C.2)

It is convenient to vary the configuration in the SA algorithm by using
transition probabilities as compared to varying transmission thresholds be-
cause the range of variation (from 0 to 1) is known. Using these relations,
corresponding optimal thresholds can always be computed.
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Appendix D

Equivalence of Channel
Distribution of SVUs For
SDDPS: Non–identical
Deadline Case

We prove equivalence of p f ,SVU(y|i) for two two descriptions represented
in Eq. (5.29) and Eq. (5.31) for individual non–identical deadline case. We
evaluate equation Eq. (5.31) and prove equals to Eq. (5.29).

p f ,SVU(y|i) = cnid
i E(μt)

j

∑
r=i

n

∑
l=r

pl pmax{ f }(y) (D.1)

= cnid
i E(μt)

[ n

∑
l=i

pl +
n

∑
l=i+1

pl +
n

∑
l=i+2

pl + · · ·
n

∑
l=j

pl

]
pmax{ f }(y)

= cnid
i E(μt)

[
pi + 2

n

∑
l=i+1

pl +
n

∑
l=i+2

pl + · · ·
n

∑
l=j

pl

]
pmax{ f }(y)

= cnid
i E(μt)

[
pi + 2pi+1 + 3

n

∑
l=i+2

pl + · · ·
n

∑
l=j

pl

]
pmax{ f }(y)

= cnid
i E(μt)

[
pi + · · · + (j − i)pj−1 + (j − i + 1)

n

∑
l=j

pl

]
pmax{ f }(y)

= cnid
i E(μt)

[j−1

∑
r=i

(r − i + 1)pr + (j − i + 1)
n

∑
l=j

pl

]
pmax{ f }(y) (D.2)
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Appendix E

Proof of Capacity Region in a
Cooperative Relay Network

E.1 Proof of Theorem 7.1

The converse of Eq. (7.12) follows directly from the general cut-set bound
and by the fact that, for the linear deterministic network model, uniform
i.i.d. inputs maximize all cut-set values at once [Cover and Thomas, 2006;
Avestimehr et al., 2007a; Kramer, 2009].

For the direct part, we build an augmented network by introducing a
virtual source node 0 and by expanding the channel output alphabet of
each node i = {1, . . . , N}. Let {n0,i : i = 1, . . . , N} be arbitrary non-
negative integers. The channel output alphabet of node i in the augmented
network is given by F

q+n0,i
2 . The virtual source node 0 has n0 = ∑N

i=1 n0,i
input bits, partitioned into N disjoint sets Ui of cardinality n0,i for i =
1, . . . , N, respectively, such that the bits of subset Ui are sent directly to node
i and are received at the top n0,i MSB positions of the expanded channel out-
put alphabet. Fig. E.1 shows an example of such network augmentation for
a “diamond” network [Avestimehr et al., 2007a].

After introducing the virtual source node, the augmented linear finite-
field deterministic network belongs to the class studied in [Avestimehr
et al., 2007a] with the minor difference that the channel linear transforma-
tions are not necessarily limited to “down-shifts”. Nevertheless, as we ob-
served before, Theorem 4.3 of [Avestimehr et al., 2007a] still applies. Letting
R0 denote the rate from the virtual source node 0 to the destination node d,
we have that all rates R0 satisfying

R0 ≤ min
(Ω0,Ωc

0)∈Λd

rank
{

GΩ0,Ωc
0

}
(E.1)
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1

2

3

d

n1,2 n2,d

n1,3
n3,d

0

n0,3

n0,2

n0,1

FIGURE E.1: A diamond network with a source node 1, two relay nodes
2 and 3 and a common destination d is augmented by adding node 0 and
virtual links to nodes 1, 2 and 3.

are achievable, where Λd is the set of all cuts (Ω0, Ωc
0) of the augmented

network such that 0 ∈ Ω0 and d ∈ Ωc
0.

For any such set Ω0 we have that Ω0 = S ∪{0}, for some S ⊆ {1, . . . , N}.
Consequently, we have that Ωc

0 = S c, where S ,S c are subsets as defined
in the statement of Theorem 7.1. Since the links from 0 to any nodes i ∈
{1, . . . , N} are orthogonal by construction (not subject to any broadcast or
interference constraint), we have that GΩ0,Ωc

0
has a block-diagonal form

where a block is given by GS ,S c (the links of the original network, cor-
responding to the cut (Ω0, Ωc

0) via the correspondence Ω0 ↔ S defined
above) and other blocks, denoted by G0,j for all j ∈ S c, have rank n0,j,
respectively. By construction, there is no direct link between 0 and d so,
without loss of generality, we can assume n0,d = 0. The general form for
GΩ0,Ωc

0
is

GΩ0,Ωc
0
=

⎡⎢⎢⎢⎢⎢⎢⎣
GS ,S c 0 · · · 0

0 G0,i1
...

...
. . . 0

0 · · · 0 G0,i|Sc |

⎤⎥⎥⎥⎥⎥⎥⎦
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where we have indicated S c = {i1, . . . , i|S c|}. Therefore, we have

rank
{

GΩ0,Ωc
0

}
= rank {GS ,S c} + ∑

j∈S c

n0,j (E.2)

In particular, the cut Ω0 = {0} yields

R0 ≤
N

∑
j=1

n0,j (E.3)

By letting this inequality hold with equality, and by replacing this into all
other inequalities, we obtain the set of inequalities

∑
i∈S

n0,i ≤ rank {GS ,S c} , ∀ S ⊆ {1, . . . , N} (E.4)

where we used the fact that ∑N
j=1 n0,j − ∑j∈S c n0,j = ∑i∈S n0,i.

Consider now the ensemble of augmented networks for which there
exist integers {n0,i : i = 1, . . . , N} that satisfy (E.4). For such networks,
the rate R0 = ∑N

j=1 n0,j is achievable (by [Avestimehr et al., 2007a]) and
therefore the individual rates Ri = n0,i are achievable by the argument
above. Finally, the closure of the convex hull of all individual rate vectors
R = (n0,1, . . . , n0,N) of such networks is achievable by time-sharing. It is
immediate to see that this convex hull is provided by the inequalities in Eq.
(7.12).1

E.2 Proof For Theorem 7.2

Again, we consider an augmented network with a single source node de-
noted by 0, with n0 output bits that we denote by V. As before, subsets Ui
of cardinalities n0,i of these bits are sent to nodes i, respectively. However,
differently from before we choose the subsets Ui to overlap in accordance
with the vector source model. For the augmented network, the rate R0
from the virtual source to the destination d must satisfy (E.1). In particular,
choosing Ω0 = {0} we get R0 ≤ n0. Generalizing the proof of Theorem
7.1 to the case of overlapping sets {Ui}, we find that for any cut (Ω0, Ωc

0)
of the augmented network such that Ω0 = S ∪ {0} and Ωc

0 = S c, with
S ⊆ {1, . . . , N} we have

rank
{

GΩ0,Ωc
0

}
= rank {GS ,S c} + rank {G0,S c}

1Indeed, the inequalities Eq. (7.12) represent the convex relaxation of the integer con-
straints (E.3).
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where G0,S c is the linear transformation between the inputs V and the (aug-
mented) channel outputs of nodes j ∈ S c. By construction, the matrix G0,S c

is formed by linear independent columns for all bits V� with � ∈ ⋃
j∈S c Uj.

Therefore,

rank {G0,S c} =

∣∣∣∣∣∣ ⋃j∈S c

Uj

∣∣∣∣∣∣ = H(US c)

Since V is uniform i.i.d., we have R0 = n0 = H(V) = H(U). Replacing
these equalities into the set of inequalities (E.1) and using the chain rule of
entropy H(U) = H(US |US c) + H(US c) we obtain that the conditions (7.14)
are sufficient for transmissibility. On the other hand, if a source as defined
in our model was transmissible, then the set of conditions (7.14) must hold,
otherwise the rate R0 of the corresponding single-source single destination
augmented network would violate Eq. (E.1). Hence, necessity also holds.
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