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i 

Summary 
 
 
 
 
 
 
 
 
The objective of this thesis is the design and simulation of new 
electromagnetic traps and guides for ultra-cold matter. The traps and guides 
are intended for future experiments with small amounts of alkali atoms to 
study the quantum-mechanical effects of condensation and coupling 
between trapped drops of cold matter. 
 The main results are with the development and simulation of new wire 
traps and guides based on the dressing effect realised in strong DC 
magnetic and RF fields of certain frequencies. Some designs are proposed 
using only trapping by the DC magnetic field. 
 The principal methodology used in the thesis is to first develop the 
necessary theory and design formulas to make an initial design, followed 
by analytical and numerical simulation of the effective trapping potential. 
This may be followed by optimization of the geometry and the DC driving 
currents to enhance the trapping performance of the structure. 
 A wire carrying both DC and RF currents is surrounded by a cylindrical 
minimum potential manifold and can be used as a guide for cold atoms. 
Bias rings are necessary around the wire to avoid a potential minimum of 
zero and to move the resulting circular potential minimum up and down 
along the wire. The minimum potential surfaces around two crossed or two 
parallel wires touch each other for certain critical values of the DC currents 
in the two wires. The DC currents must be in opposite directions in two 
parallel wires. Equations are derived in Chapter 2 for the distance to the 
circular minimum potential manifold for a single wire, for two crossed 
wires and for two parallel wires. It is then explained how prospective cold 
atom transfer between two crossed wires can be achieved by changing the 
magnitudes of the RF currents in the bias rings around the wires. 
Electrically controlled atom transfer between two parallel wires does not 
seem to be practical. 
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 A four-wire cell trap made from two crossing pairs of parallel wires has 
been designed and optimized using a simple Matlab script. It can be used to 
trap both strong- and weak-field-seeking atoms and may possibly be used 
to study collision and entanglement between the two types of atoms. With 
only DC excitation the trap becomes a trap for weak-field-seeking atoms. It 
then unfortunately has a potential minimum of zero at its centre. A similar 
3 x 3 wire dual-well trap has also been designed and optimized in Matlab. 
It is prospective for the study of entanglement of BEC matter placed in the 
two wells. A quite low potential barrier in the direction normal to the wire-
planes when the two wells are merged could however entail that the trap is 
inadequate for this purpose or that additional bias fields are necessary. 
 Several multi-wire cell-grids that may find use as part of a quantum 
register are also described. The cell-grids can be stacked in three-
dimensions and can trap both strong- and weak-field-seeking atoms. The 
optimization, also here performed in Matlab, showed weaknesses due to a 
lack of complexity. A different and better optimization technique is most 
likely necessary to improve the optimization further. 
 Scaling to micrometre and nanometre size is demonstrated in Chapter 3. 
When scaling to micrometre size thermally induced spin-flip transitions 
should be considered. Scaling to nanometre size demands that both 
thermally induced spin-flips and the effect of the Casimir-Polder force 
must be taken into account. The effect of the Casimir-Polder force is 
minimized by the use of carbon nanotubes as conductors. The minimum 
feasible trapping distance is expected to be no less than 100 nm from the 
surface of a carbon nanotube. 
 A four micro-wire cell and a 3 x 3 micro-wire structure, both adapted 
for future realization on a micro-machined substrate, are given as examples 
of micrometre size structures. Several nanometre size structures are also 
demonstrated. It is shown that prospective atom transfer between two 
crossed nanotubes can be done essentially in the same way as for two 
crossed wires.  
 A four-nanotube cell and several nanotube cell-grids are also 
exemplified. The depth of the trapping potential is found to be proportional 
to the RF frequency. If the RF frequency is increased then the DC current 
level must also increase to maintain the same DC current to angular 
frequency ratio. The depth of the trap is accordingly also proportional to 
the DC current level in the conductors. The depth of the trap is thus 
ultimately limited by the maximum conductor current. 
 A quadrupolar trap similar to the well known Ioffe-Pritchard trap is 
studied in Chapter 4 with combined DC and RF current excitation of the 
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bias rings. A non-uniform potential minimum is found around the local 
maximum at the centre of the trap, but this does not prevent the trap from 
being used to trap weak-field-seeking atoms. The potential maximum at the 
centre of the quadrupolar trap is more than sufficient for trapping strong-
field-seeking atoms. The quadrupolar trap can therefore be used to trap 
both strong- and weak-field-seeking atoms if the DC bar currents are large 
enough. Simulations also indicate that the bias rings can be placed 
relatively closely together to compress clouds of cold atoms into 
successively smaller traps. As the gap distances become very small the     
B-field becomes very strong between the bias rings and there is a risk of 
dielectric breakdown. 
 A metallic cylinder atom guide consisting of a cylinder with a small 
hole and an external wire is described analytically in Chapter 5 and 
simulation results from Amperes are compared favourably with the results 
of calculations in Matlab. It is found that there can only be a B-field zero at 
the centre of the hole in the cylinder when there is a second field zero 
further inside the cylinder. The barrier between the two field zeros typically 
increases in width with increasing cylinder radius and in height with 
decreasing cylinder radius for a given cylinder current (DC). The smallest 
cylinder had the highest barrier between the field zeros, but also required 
the highest DC current in the external wire. Bias rings around the guide 
must be centred on the hole in the cylinder and the DC ring currents and the 
spacing between the bias rings must be scaled by the same factor as the 
ring radius to maintain the same shape and height of the trapping potential 
along the centre of the hole. The cylinder guide looks promising as a 
hermetic guide for cold matter. Bias rings are required both to pump atoms 
along the guide and to remove the zero in the B-field inside the hole. 
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Chapter 1          
                 
An Introduction to Atom Traps and 
Quantum Effects 
 
 

1.1  Introduction and Chapter outline 
 
This thesis is on the design and simulation of magnetic atom traps and 
guides for ultra-cold matter. The main objective has been to develop atom 
guides and traps based on one single or a few straight conductors in the RF 
dressing regime. Atom traps with combined DC and RF current excitation 
are known as dynamical traps. Such traps can be used to trap strong-field-
seeking atoms including ground state atoms, which are atoms in the lowest 
energy atomic state, as well as weak-field-seeking atoms. The multi-
conductor traps presented can also be used to trap only weak-field-seeking 
atoms if only DC currents are applied. 
 A quadrupolar trap which is similar to the Ioffe-Pritchard trap except for 
ring currents in opposite directions has been investigated with both DC and 
RF currents in the rings with the aim of studying the effective potential 
shapes for trapping strong- and weak-field-seeking atoms. A new cylinder 
guide for weak-field-seeking atoms has additionally been developed. It can 
be made hermetically sealed, which is an advantage compared to other 
magnetic atom guides. 
 This first Chapter continues with a brief history of magnetic and optical 
atom traps in Section 1.3 and a review of miniaturized magnetic atom traps 
in Section 1.4. These sections are intended to put the work of this thesis in 
perspective and to present the current state of research. Two important 
fields of research within which atom traps find application are cold matter 
physics and quantum computing. These research areas are introduced in 
some depth in Section 1.5 and 1.6. Section 1.5 begins by explaining several 
important quantum mechanical concepts such as the particle-wave duality 
of matter, the Schrödinger equation, particle tunnelling through potential 
barriers, quantum numbers and Bose and Fermi particles. The Section 
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continues by describing the conditions for Bose-Einstein condensation and 
certain quantum mechanical phenomena that can be observed in Bose 
condensates. Section 1.6 addresses the questions of why we are interested 
in quantum computing and what quantum computing is. The present state 
of research is also indicated. Section 1.7 lists the equations for the magnetic 
field of a conductor and an infinitesimally thin ring. Much of this section 
can be considered to be part of the research work of this thesis. 
 Wire structures for cold atom handling are presented in Chapter 2. One 
way of transporting cold atoms is along the minimum potential manifold 
around a wire or conductor carrying both DC and RF currents. This is quite 
different from atom transport through sealed capillaries. It is explained how 
weak-field-seeking atoms may be transferred between two crossed wires or 
conductors. This makes addressed transportation of cold matter to a 
collision area possible. Multiple wires or conductors can also be placed in a 
two- or three-dimensional grid to form cells that can be used to trap both 
strong- and weak-field-seeking atoms. Such structures can be used to study 
Bose-Einstein condensates or used as part of a register for a quantum 
computer. Cold atoms may be loaded into the cells using hollow optical 
fibres placed between the wires or conductors. 
 Chapter 3 concerns the downscaling of the wire structures in Chapter 2 
to micrometre and nanometre size. Although the scaling is straightforward 
in principle, different conductors must be used and the influence of 
decoherence mechanisms such as thermally-induced spin-flips and the 
Casimir-Polder force must be taken into account. Examples are given of 
both micrometre and nanometre sized structures designed for micro-wires 
and nanotubes respectively. 
 In Chapter 4 simulation results from Amperes are presented and 
compared for millimetre-sized quadrupolar traps. The quadrupolar trap 
consists of two current loops around a 4 wire magnetic guide. It is similar 
to the Ioffe-Pritchard trap except for currents in opposite directions in the 
two loops. The trap is here studied with combined DC and RF excitation of 
the bias loops. The effect of changing the spacing between the bias loops is 
also explored. This is done to find out whether successively smaller traps 
can be made that can be used to compress clouds of BECs for experimental 
study. The Amperes software program is presented in Appendix A. 
 Chapter 5 contains calculated and simulated results for a new cylinder 
atom guide. The atom guide consists of a metallic cylinder with a small 
hole and a parallel external wire. Analytical equations are presented for the 
guide together with calculated results and data from Amperes simulations. 
The cylinder atom guide is hermetically sealed not considering the ends. 
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1.2  Thesis contributions 
 
Most of the material in Chapter 2 to Chapter 5 is original in the sense that 
similar research work is not known to have been published previously. The 
equations for the magnetic field of an infinitesimally thin wire or ring and 
equation (2.1) for the effective potential have however been taken from the 
literature. Much research related to magnetic fields has also been done to 
this day. Some aspects may thus be already known to researchers from 
unrelated work.  
 The main contributions of this thesis are the equations for the distance 
to the circular potential minimum for a single conductor, for two crossed 
conductors and for two parallel conductors, the demonstration of 
prospective atom transfer between two crossed conductors and the design 
and optimization of the four-wire cell and different multi-cell grids. The 
four-wire cell and the 3 x 3 wire (dual-well potential) structure are the most 
important cell-grid structures from the viewpoint of realizing experiments 
with ultracold matter. The cell-grid structures in this thesis represent a 
departure from the single layer planar wire-patterns that have been the 
focus of recent atom chip implementations. 
 Emphasis has been placed on providing a complete description of atom 
transfer between two crossed wires. This has included a study of the effect 
of the amplitude of the RF currents in the wires as well as a study of 
different RF current phase combinations in the bias ring. The possible use 
of the four-wire cell to replace the bias rings of a quadrupolar trap has also 
been explored in another section. These parts may be seen as minor 
contributions that give a deeper understanding of the conditions for cold 
atom transfer and the potential of the four-wire cell. The downscaling of 
many of the structures and related considerations is another important 
contribution, although the scaling itself is quite straightforward.  
 A quadrupolar trap similar to the well known Ioffe-Pritchard trap is here 
studied with combined DC and RF excitations in the bias rings. The 
quadrupolar trap is also studied for different gap sizes between the bias 
rings. The simulation results may be seen as supplementary information 
intended to give further insight.  
 The cylinder atom guide is one of the main contributions of this thesis. 
The rigid construction of the guide clearly limits its applicability to more or 
less permanent setups. 
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1.3  A brief history of magnetic and optical atom traps  
 
The trapping of atoms within a small volume is a fundamental physical 
problem that concerns both the physical investigation of quantum effects 
involving small amounts of atoms and the development of new 
technologies based on the localization of the spatial motion of atoms.  
 The physical applications of the methods of trapping atoms in 3D spatial 
regions include studies into matter-wave interference and the spectral 
properties of trapped atoms, improvement of the accuracy and sensitivity of 
spectral measurements and studies of quantum statistical effects in atomic 
ensembles at low temperatures such as Bose-Einstein condensates (BEC) 
[1]. Several interesting quantum phenomena can be observed in BECs 
including Rabi oscillations, the influence of the coupling to an external 
environment or decoherence effects and the atomic Josephson effect when 
a BEC is divided by a movable barrier. 
 The technological applications include the use of trapped atoms in 
atomic frequency and time standards, high precision matter-wave 
interference based sensors for applications such as inertial and gravitational 
field sensing [2], and system components for controlling and engineering 
quantum states for use in the implementation of scalable quantum 
information processing.  
 The practically developed methods for trapping atoms in one, two or 
three dimensions in space are in essence based on the use of the forces of 
electric dipole interaction of atoms with off-resonance laser fields and/or 
magnetic dipole interaction of atoms with static magnetic fields. The basic 
methods are optical trapping using the forces of electric dipole interaction 
between atoms and laser fields, magnetic trapping based on the forces of 
magnetic dipole interaction, mixed magneto-optical trapping drawing on 
the simultaneous interaction between atoms and magnetic and laser fields 
and mixed gravito-optical and gravito-magnetic trapping. The last two 
methods make use of the gravitational force in part to control the trapped 
atoms.  
 The historic account of the evolution of magnetic and optical traps given 
below follows the main points in the introduction in “Electromagnetic 
trapping of cold atoms” by Balykin et al. [1], and is accordingly not a result 
of independent background research. 
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Magnetic trapping of atoms was the method to be developed first. The first 
suggestions on the possibility of electromagnetic trapping of atoms were 
made already in 1921 when experiments were conducted on the deflection 
of atomic beams by a nonuniform magnetic field [3]. The idea of magnetic 
deflection of atoms and molecules eventually lead to the development of 
hexapole magnetic lenses and magnetic traps for particles with a permanent 
magnetic moment [4], [5]. These traps were later successfully used to trap 
ultracold neutrons [6] – [8].    
 In the mean time many types of traps for particles with a permanent 
magnetic moment, starting with the most simple quadrupole trap and 
ending with the Ioffe trap, had been proposed in works on plasma physics 
[9] – [11]. Concrete magnetic traps for atoms started to be discussed from 
the 1960s onwards [12] – [17]. 
 The use of magnetic traps to trap cold atoms could not be 
experimentally confirmed for a long time mainly because of an absence of 
methods to obtain cold atoms. The potential well depth eff B DCU Bμ= Δ of 
an inhomogeneous magnetic field varying in the interval DCBΔ  is usually 
very small compared with the thermal energy of atoms at room 
temperature. Magnetic traps can accordingly only be used to trap very cold 
atoms whose temperature T does not exceed the potential well depth 

,B DC BT B kμ< Δ  where Bk  is Boltzmann’s constant and Bμ is the Bohr 
magneton. 
 
The method of optical trapping originated in the late 1960s, when it was 
suggested that atoms might be trapped in the nodes or loops of an off-
resonance standing laser wave [18]. The idea was based on the use of the 
electric dipole interaction between atoms and a standing laser wave to form 
a periodic lattice of potential wells whose minima coincided with the nodes 
or antinodes of the standing laser wave. Optical trapping using an off-
resonance standing laser wave was subsequently developed in several 
works [19], [20].  
 At the time interesting proposals were also published on the laser 
trapping and levitation of dielectric micro-particles [21], [22], which later 
lead to the development of ‘optical tweezers’. These have become an 
important tool in biological investigations [23]. From the mid 1960s three 
important Doppler-free laser spectroscopy techniques had been developed. 
These were standing-wave saturated absorption spectroscopy [24] – [29], 
standing-wave two-photon spectroscopy suggested by Chebotayev and co-
workers [30], and particle trapping spectroscopy [31]. Particle trapping 
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spectroscopy is completely free from the transit broadening effect resulting 
from the finite particle-field interaction time. 
 Optical atom traps based on off-resonance laser fields could at first not 
be realized experimentally because the methods for obtaining sufficiently 
cold atoms were still not available. The depth of the potential well 
produced by the dipole interaction of an atom with an off-resonance 
standing laser wave is 2

0 ,effU Eα=  where � is the off-resonance detuning 
dependent atomic polarizability, and 0E  is the amplitude of the laser wave. 
Off-resonance optical trapping can accordingly only be used to trap very 
cold atoms whose temperature T is below 2

0 ,BT E kα<  where Bk  is 
Boltzmann’s constant [18]. For a typical intensity of the counter-
propagating travelling laser waves of ( ) 2 2

0/ 8 500I c E kW cmπ −= ≅  and a 
typical atomic polarizability of 23 33 10 cmα −≈ ⋅ , the maximum temperature 
T < 0.91 mK. This value for the temperature T is significantly lower than 
for most magnetic traps. A good reference on optical traps is found in [32]. 
 
In the mid 1970s it was first proposed that atoms might be deep cooled by a 
resonance optical radiation red-detuned with respect to the atomic 
transition [33]. Concrete schemes were then put forward for cooling atoms 
by standing laser waves [34], [35]. From the quantum mechanical point of 
view the idea of optical cooling lies in the reduction of atomic velocities by 
the photon recoil associated with the absorption by the moving atoms of 
counter-propagating laser photons. Owing to the Doppler effect an atom is 
known to predominantly absorb the laser photons when the laser field is 
red-detuned with respect to the atomic transition. From the semiclassical 
point of view the mechanism of optical cooling consists in the retardation 
of atoms by the radiation pressure force which is directed opposite to the 
atomic velocity for a red-detuned laser light. 
 In the following years two different experimental schemes were 
developed for the laser cooling of atoms. One is the simultaneous 
deceleration and longitudinal cooling of an atomic beam by a counter-
propagating red-detuned laser beam [36] – [42]. The other is the cooling of 
atoms in counter-propagating red-detuned laser beams [34], [35]. This 
scheme effects the cooling of atoms with a zero average velocity. If an 
atomic gas is irradiated by three pairs of counter-propagating laser waves 
3D cooling of atoms is possible [43], [44].  
 
Theoretical analysis of a most simple model of interaction of a two-level 
atom with counter-propagating laser beams has shown that the cooling 
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mechanism is based on single-photon absorption (emission) processes and 
that the minimum temperature of atoms is reached at a red-detuning equal 
to the natural half-width of the atomic transition line � = -�. The minimum 
temperature is determined by the atomic transition natural half width [35], 
and is defined as .D BT kγ= �  The temperature TD is known as the Doppler 
cooling limit. It is defined by the natural line width and not by the Doppler 
width. For a typical value of the natural line width of 2 2 10 MHzγ πΓ = ⋅  
the temperature TD is of the order of 100 μK. 
 Multi-level atoms are in practise frequently cooled by counter-
propagating laser beams down to temperatures of the order of 10 μK [45] – 
[48]. The deeper cooling of multi-level atoms compared to the idealized 
two-level atoms is possible because of the contribution from the two-
photon friction mechanism specific to multilevel atoms [49] – [57]. In 
multilevel dipole interaction schemes, the laser field excites the atoms from 
many magnetic sublevels of the ground electronic state. Accordingly, in 
multilevel cooling schemes the two-photon and higher order multi-photon 
processes produce an additional friction that lowers the atomic temperature 
below TD. 
 The fundamental lower temperature limit for laser cooling processes 
based on the photon recoil has been shown to be determined by the 
quantum fluctuations of the atomic momentum and accordingly can not be 
lower than the value defined by the recoil energy. The recoil temperature is 
given as ( )2 2 ,r BT k M k= �  where 0k cω=  is the wave-vector 
corresponding to the frequency 0ω  of the atomic transition excited by the 
laser light. For atoms of moderate mass whose resonance transitions are in 
the visible spectrum the recoil temperature is typically a few micro-Kelvin. 
 In addition to the laser cooling methods based on the photon recoil, laser 
methods have been developed for the optical pumping of the velocity 
selective translational atomic states described by the effective temperatures 
below the recoil temperature Tr [58] – [61]. One of these methods is based 
on the velocity-selective coherent trapping of atomic population in the 
superpositional state composed of the ground state substates [58], [60]. 
Another method is based on the use of the narrow two-photon Raman 
transitions between two hyperfine levels in the ground state to select a 
narrow velocity group of atoms and push it towards zero velocity [59].  
 
After the development of the laser cooling techniques the first successful 
experiment on the trapping of cold atoms was done using a quadrupole 
magnetic trap [62]. Numerous experiments on magnetic trapping of neutral 
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atoms have since been conducted [63] – [66]. The magnetic traps in these 
first experiments were quite large with typical features on a centimetre 
scale. In the mid 1990s focus shifted to the development of miniaturized 
magnetic traps, especially traps suitable for photolithographic patterning on 
integrated circuits. Some of the recently proposed miniaturized atom traps 
are introduced in Section 1.4.  
 
The development of purely optical atom traps ran into some difficulty at 
this time. All proposals for purely optical traps were affected by the 
problem that the trapped atoms had a limited lifetime due to the momentum 
diffusion in laser fields [67] – [69]. A solution was suggested of using two 
laser fields separated in time, one for cooling the atoms and the other for 
trapping them [70], [71]. Similar approaches based on time-varying fields 
were also considered [72] – [74].   
 It had at first been presumed that a central-symmetric light field 
composed of several divergent red-detuned laser beams could be used to 
make a potential well for cold atoms due to the coordinate-dependent 
radiation force [75]. The idea was that the red-detuned laser beams could 
simultaneously cool and trap the atoms. It was however shown that such 
laser fields could not produce stable potential wells for atoms [76]. The 
limitations formulated by Ashkin and Gordon on the structures of the 
trapping laser fields came to be known as the optical Earnshaw theorems.  
 On this background Dalibard proposed a magneto-optical trap (MOT) 
[77], which was soon realized experimentally [78], and later gained wide 
recognition. In the MOT a nonuniform magnetic field produces the Zeeman 
shifts of atomic magnetic sublevels, so that the counter-propagating laser 
beams not only cool the atoms but also trap them in the central region of 
the trap. 
 
In 1982 the atom mirror was proposed by Cook and Hill [79]. The idea is to 
use an evanescent laser wave propagating along a dielectric-vacuum 
interface as a reflecting mirror for cold atoms. The evanescent light wave 
penetrates into the vacuum to a distance of the order of the optical 
wavelength and the high gradient of the evanescent wave field produces a 
substantial dipole gradient force on the atom. At a large blue detuning of 
the evanescent wave with respect to the atomic transition the radiation 
force is very weak and the dipole gradient force dominates completely. The 
gradient force produces a repulsive barrier which reflects atoms in the 
vacuum region. The barrier is not very high but sufficient for its purpose. 
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 The atom mirror was continually improved and this has led to the 
development of hollow-core atom waveguides similar to optical 
waveguides [80] – [82]. Optical atom waveguides have since been 
successively verified [83] – [85] and improved [86]. 
 The atom mirror also led to the development of gravito-optical atom 
traps. An atom trap based on a horizontally arranged concave atom mirror 
was theoretically demonstrated [87] and experimentally verified [88]. Half-
open gravito-optical traps have also been proposed and realized [89], [90]. 
3D atomic cavities based on evanescent waves have been suggested and 
analyzed [91]. 
 

1.4  Miniaturized magnetic atom traps 
 
The observation of Bose-Einstein condensation in a magnetic trap in 1995 
caused increased interest in miniaturized magnetic traps from the mid 
1990s. It is well known that the magnetic field from current carrying wires 
typically scales as I/S, where I is the wire current and S is the characteristic 
size of the system. The magnetic field gradients and curvatures similarly 
scale as I/S2 and I/S3 respectively [92]. The practical limits to attainable 
wire currents in larger traps and the possibility of producing much larger 
field gradients and curvatures, as well as improvements in micro-
fabrication techniques, has been the driving force behind efforts toward 
miniaturization. Another incentive is of course to keep the physical 
equipment as small as possible when observing or manipulating very small 
clouds of cold atoms, particles or molecules.  
 
Some of the first micrometre sized atom traps to be proposed were planar 
versions of macroscopic traps. Several magnetostatic traps including a 
planar two-coil trap, a planar one-coil trap with an external bias field, a 
planar hexapole trap and four different planar and pseudoplanar Ioffe-
Pritchard trap configurations were discussed and briefly analyzed in [92]. 
The article also described a dynamic two-coaxial ring trap capable of 
trapping atoms in either weak- or strong-field-seeking states.  
 The depths of the trapping potentials of the planar Ioffe-Pritchard trap 
geometries were found to be relatively shallow enabling the trapping of 
only very cold atoms. The depth of the dynamic two-coil trap with RF ring 
currents and a static axial bias field was also found to be quite shallow but 
sufficiently deep to be used. The proposed use of very small 
superconducting loops with a minimum radius of 10 μm required to realize 
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the geometries can however be seen as an impediment to easy and cost-
effective implementation. 
 
Magnetic waveguides on a chip were first proposed by Mara Prentiss and 
co-workers in 1999 [93], [94]. By making the waveguide circular a storage 
ring for cold atoms can be constructed. A magnetic storage ring of this type 
for neutral atoms was later described and experimentally analyzed in [95]. 
The storage ring consisted of a two-wire magnetic guide forming a ring 2 
cm in diameter. The distance between the copper wires, each 280 μm in 
diameter, was 0.84 mm. The wire currents were 8A in the same direction in 
both wires. This produces a 2D quadrupole field minimum between the 
wires. Cold atoms were loaded into the magnetic ring from a magneto-
optical trap (MOT) through a tapered two-wire magnetic guide section. 
Seven revolutions of 87Rb atoms were observed in the ring corresponding 
to a 1/e lifetime of 180 ms for the atoms.  
 The applications of the magnetic storage ring include large area single-
mode guided atom interferometers and continuous wave monochromatic 
beam generation. The ring can be multiply or continuously loaded to 
increase the number of atoms in the ring and both the longitudinal and 
transverse velocity distributions of the atoms can be manipulated and 
cooled in the ring. Highly directional output beams can be created using a 
coherent variable output coupler. 
 
Miniaturized atom traps micro-patterned on integrated circuits were first 
implemented by the research group of Jakob Reichel in 1999 [96].This 
group was also the first to observe BEC on a chip [97]. Around the same 
time a BEC was also produced in a micro-trap by Claus Zimmermann and 
co-workers [98]. Integrated circuits containing traps or guides for cold 
atoms have become known as atom chips. Several other miniaturized atom 
traps were proposed and experimentally demonstrated within a few years 
[99] – [103].  
 The use of adiabatic potentials dressed by a RF field in an 
inhomogeneous magnetic field was first proposed by Zobay and Garraway 
in 2001 [104]. The same potentials are also implied in RF-induced cooling 
[105], where they are used to limit the depth of the trap. The theory of 
dressed potentials was originally developed by Claude N. Cohen-Tannoudji 
in the 1970’s. A first attempt at demonstrating a trap based on the RF 
dressing effect was regrettably hampered by technical noise during the 
loading process, which caused heating and prevented 2D BECs from being 
observed [106]. 
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 The first coherent or phase-preserving matter-wave beam splitter 
constructed on an atom chip was demonstrated experimentally in 2005 
[107]. An RF induced adiabatic two-well potential was used to split a BEC 
into two clouds separated by distances in the range of 3 – 80 μm, which 
enabled both the tunnelling and isolated regimes to be studied.  
 The beam splitter consisted of a straight 50 μm wide DC wire placed 80 
μm from a 10 μm wide RF wire on the surface of an atom chip mounted 
upside-down, as shown in Fig. 1.1. The DC wire current was ~1 A and the 
RF current ~60 mA at 500 kHz. The BEC was trapped in a position 80 μm 
beneath the RF wire which allowed for symmetric splitting of the BEC. 
 

 
Fig. 1.1.  The basic geometry of the matter-wave beam splitter in Schumm et al. 
Adapted by permission from Macmillan Publishers Ltd: nature physics [107], copyright 2005. 

 
During the experiments the atoms were detected by resonant absorption 
imaging along the weak trapping direction, which amounts to integrating 
over the long axis of the one-dimensional clouds. The images were taken in 
situ or after time of flight expansion. The splitting distances were measured 
using in situ images. The coherence of the splitting was studied by 
recombination of the split clouds in time of flight expansion after a non-
adiabatically fast (< 50 μs) extinction of the double well potential. The 
experiments showed an interference pattern with a fixed phase so long as 
the two wells were not completely separated, i.e. so long as the chemical 
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potential exceeded the potential barrier. Once the wells were completely 
separated, so that tunnelling was fully inhibited (d >3.4 μm), the phase 
distribution remained non-random and its centre started to evolve 
deterministically.  
 The matter-wave beam splitter in [107] was constructed as part of an 
interferometer for applications such as inertial and gravitational field 
sensing. The beam splitter also allows numerous experiments exploring the 
phase dynamics in complex interacting quantum systems, for example 
Josephson oscillations [108], or the influence of the coupling to an external 
environment (decoherence). Atom-Chip beam splitters may also constitute 
building blocks for quantum information processing. 
 
Two similar but more elaborate wire geometries on atom chips that offer 
even greater flexibility have since been proposed [109]. The first of these 
uses four straight wires carrying counter-propagating DC currents to set up 
a quadrupole field. A broad RF wire passes through in the middle between 
the two DC wire pairs. Sufficiently close to this wire the RF field can be 
considered to be homogeneous. By varying the strength of the RF field a 
single-well or a double-well potential can be created underneath the RF 
wire. The use of an RF field enables a smooth transition between the 
single-well and double-well potentials. Additional wires are used to 
generate the Ioffe-field in the longitudinal direction. A longitudinal 
variation of the RF amplitude is obtained by modifying the cross-sectional 
size of the RF wire according to the authors. This makes the single- or 
double-well potentials three-dimensionally confining and may also allow a 
Mach-Zehnder interferometer to be realized.  
 The second geometry in [109] consists of a three straight wires on the 
surface of an atom chip mounted upside-down. The centre wire carries a 
DC current and the two wires on the sides carry DC currents in the opposite 
direction in addition to RF currents. The RF currents are used to generate 
two phase shifted and orthogonally polarized oscillating homogeneous 
fields near the centre of the quadrupole field set up by the DC currents. 
Depending on the phase shift � between the RF currents either a singe well, 
a double-well or a ring-shaped potential is formed, something which makes 
the proposed geometry very versatile. The ring-shaped potential is 
promising for making a ring interferometer (Sagnac-interferometer) for 
matter waves. 3D confining potentials can also here be created by making 
the RF amplitude spatially dependent in the longitudinal direction. A ring 
trap with RF currents was also proposed in [110] at about the same time.   
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The use of multiple RF frequencies has been proposed for implementing 
radio frequency combs, which give rise to periodic potentials that act as 
gratings for cold atoms [111]. The combination of static magnetic fields 
with multimode RF radiation can be used to make almost arbitrary 3D 
potential geometries. A one dimensional RF comb is described with the 
approximation that the frequency components are not too closely spaced. 
The RF comb forms a periodic grating that propagates in space and its main 
application is for accelerating cold atoms in Bragg-scattering experiments. 
Bragg scattering is briefly explained in Section 1.5. 
 Radio frequency lattices have certain advantages over optical lattices 
and micro structured gratings. It is possible to make local variations or 
disorder with the aim of studying for example Bose and Anderson glasses 
[112], [113]. Potential applications of time- or position-dependent RF 
combs include Bragg velocity filters, Bragg interferometers, quasi-random 
potentials with disorder on a very small length scale and other atom optical 
elements. 
 
Theoretical considerations on the creation and modification of 
magnetostatic traps and electrostatic traps with rotation and divergence free 
fields have been presented in [114]. It is shown that Ioffe-Pritchard traps 
(IP-traps) and other stationary points of B (non-zero minima and saddle 
points) are confined to a two-dimensional curved surface or manifold M, 
defined by det(�Bi /�xj) = 0. An expression is given that describes how 
stationary points can be moved over the manifold under the influence of an 
external uniform field. It is shown how IP-traps can be created or moved on 
the manifold. The relationship between the manifold and points of zero 
field is investigated. Field zeros of two different types occur in pairs in 
separate regions of space divided by the manifold. Pairs of zeros of 
opposite type can be created or annihilated on the manifold. When two 
zeros of opposite type annihilate on the manifold an IP-trap is created. 
 The conceptual tool of the manifold M, which allows IP-traps and 
stationary points to be moved, finds application in situations where the 
magnetic field configuration is fixed, e.g. by permanent magnets, and 
control over the field is limited to the application of uniform external fields. 
This is frequently the case in atom chip experiments. Precise control over 
the magnetic field is important in loading procedures, during transport or 
dynamical splitting of atom clouds and during movement of qubits on atom 
chips in quantum information processing experiments. 
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A novel class of trapping potentials which has recently been proposed is 
time-averaged adiabatic potentials (TAAP) [115]. The behaviour of atoms 
relative to the frequency of the modulation falls into three different 
regimes: the quasi-static, the time-averaging and the RF-dressing regimes. 
In the quasi-static regime the modulation is so slow that the atoms follow 
adiabatically. In the time-averaging regime the atoms are confined to a trap 
that is the time average of the modulated potential [64]. The modulation 
frequency �m is in this case much larger than the trap frequency � so that 
the atoms do not follow the modulation, but much slower than the Larmor 
frequency. In the RF-dressing regime the modulation creates and RF field 
which resonantly couples the atomic Zeeman levels of the static magnetic 
trap. The coupled states are here described by dressed atomic potentials. 
For the coupling to take place the frequency �RF of the RF field has to be 
close to the Larmor frequency | ( ) |L F Bg μΩ = ⋅� r �  that is associated with 
the difference in energy between the Zeeman levels. gF is here the Landé 
factor of the considered hyperfine manifold and μB is the Bohr magneton. 
 TAAPs combine the RF-dressing and the time-averaging regimes to 
produce trapping potentials of high complexity and flexibility. TAAPs can 
be made by starting with any static magnetic field B(r), for example an 
Ioffe-Pritchard or quadrupole field. A TAAP is made by modulating an 
existing RF-dressed effective potential by a frequency �m. The modulation 
frequency must be fast compared to the trap frequency of the static trap but 
much smaller than the Larmor frequency so that the atoms experience the 
time-average of the modulated dressed potential. The conditions on the 
frequencies are that m Lω ω Ω� � . When the dressed adiabatic potential 
V(r) is modulated it becomes a time dependent potential V(r,t) from which 
the TAAP can be calculated by time-averaging over one period 12 mτ πω −=  
of the modulation. 
 Both a ring-shaped and a double-well TAAP are exemplified in [115] 
starting with a magnetic quadrupole field. The ring trap requires that both 
the modulation field Bm(t) and �RF be modulated to ensure that the dressed 
potential has its minimum on the ring min min 00,z ρ ρ= =  at all times. The 
diameter of the ring can be tuned over a wide range by changing the RF 
frequency. The double-well trap has two wells, each created by a 
modulation sideband, that can be merged into a single minimum for a 
modulation index of � = 1. The trap is pancake shaped for modulation 
indices of � < 1 and cigar shaped for � > 1. Multiple TAAP traps can be 
made simply by using multiple RF frequencies instead of just one. The 
different traps can be fully separated or have tunable tunnelling barriers 
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between them. Multiple traps can be adiabatically merged into a single one, 
or a single trap be split. 
 A clear advantage of TAAP traps and waveguides is that they can be 
much smaller than the field generating coils. This virtually eliminates 
corrugations in the guiding potential caused by imperfections in the field 
generating structures. As a result decoherence is greatly reduced leading to 
increased lifetimes for the trapped atoms. TAAP traps have recently been 
demonstrated in practise [116]. 
 
In the last few years the possibility of trapping cold atoms close to 
magnetic nanowires [117] and carbon nanotubes [118] has been examined 
theoretically. In [117] it is proposed to trap cold atoms above movable 
domain walls in planar magnetic nanowires. The position of domain walls 
in 2D magnetic nanowire circuits can be controlled by moderate in-plane 
magnetic fields. Cold atoms in a low-field-seeking state are repelled from a 
domain wall and trapped on a surface above it if a uniform out-of-plane 
magnetic field BDC is applied. A point does however exists on this surface 
where |B|min = 0. Majorana spin flip transitions can be avoided by 
additionally applying a rotating magnetic field of amplitude BAC, as in a 
conventional time-orbiting potential trap. A single bias field plus a rotating 
field can create the necessary trap conditions throughout a 2D nanowire 
network. Additional in-plane fields are required to propagate the domain 
walls through the nanowires for the implementation of quantum 
information processing. 
 Cold atoms trapped near the outside of a carbon nanotube are subject to 
two principal mechanisms leading to trapping losses: thermally induced 
spin-flip transitions [119] and tunnelling brought on by the Casimir-Polder 
force. Both these mechanisms were studied mathematically in [118] and 
graphs were produced for the spin flip lifetime and the sum of the Casimir-
Polder potential and the magnetic trapping potential as a function of the 
trapping distance from a nanotube. A (9, 0) carbon nanotube of radius    
RCN = 3.52 Å carrying a current of 20 μA was considered for f0 = 70 kHz 
and T = 380 K. The Casimir-Polder force was found to dominate and a 
conclusion was reached that the minimal feasible trapping distance 
appeared to be at least 100 nm. The proposed use of nanotubes to 
implement many of the trapping structures in this thesis is treated in 
Chapter 3. 
 The idea of using metallic carbon nanotubes as current-carrying wires in 
miniaturized magnetic traps seems attractive for several reasons. Nanotubes 
contain very little dielectric material which minimizes the Casimir-Polder 
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force. They also possess very homogeneous surfaces which limits 
electromagnetic field fluctuations which can drive spin transitions and lead 
to trapping losses. The current carrying ability of nanotubes is also very 
good relative to their small cross-sectional size. 
 

1.5  An introduction to quantum effects and BEC condensates 
 
Physical experiments have shown that light possesses both wavelike and 
particlelike properties [120]. Photons, which give rise to light, can be 
considered to be particles of zero mass. At the same time a ray of photons 
produces an interference pattern where the probability distribution which 
governs the paths taken by the individual photons is in agreement with 
wave theory. It was first proposed by de Broglie that the wave-particle 
duality may be characteristic not only of light but may also apply to matter. 
Experiments with electron and neutron diffraction have since gone a long 
way toward proving this by yielding results analogous to those obtained 
using x-rays. 
 X-ray diffraction can be examined by considering a monochromatic x-
ray beam of wavelength � impinging at an angle � with respect to a set of 
atomic planes of spacing d in a crystal. Constructive interference happens 
when the waves reflected from the various planes in the crystal are in 
phase. This requires that the difference in path length between the waves 
reflected from the different planes be an integral number n of wavelengths. 
The angle of reflection is in this case equal to the angle of incidence. This 
leads to the Bragg condition n� = 2d sin � for constructive interference 
between the reflected waves. 
 The wavelength of an x-ray beam is related to the photon energy Εp by 
Εp = h	 = hc/�, where h is Planck’s constant, 	 is the frequency and c is the 
propagation velocity. The wavelength of a beam of particles is also energy 
dependent and is found from the de Broglie relation to be ,dB h pλ =  where 
h is Planck’s constant and p = mv is the momentum of the individual 
particles, m is the particle mass and v is the particle velocity. Particle 
energy Ε is related to the rest mass energy Ε0 and the momentum p through 

2 2 2 2
0E E p c= + , so that zero rest mass particles such as photons and 

neutrinos have particle energy Ε = pc. For free particles with energy Ε and 
momentum p the energy can also be found as Ε = ω� = 2 / 2p m = 2 2 / 2 ,k m�  
where / 2 ,h π=� 2 /ω π λ= v  and 2 / .k π λ=  
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Atoms are Bragg-reflected at a lattice if their de Broglie wavelength is 
roughly the same as the lattice constant. Their velocity is then given by 

( ),h md=v  where h is Planck’s constant, m is the atomic mass and d is the 
lattice constant [111]. Bragg-reflection may be observed if resting atoms 
are accelerated using RF gratings propagating at the Bragg velocity. RF 
gratings have however not been used for diffraction experiments to date. 
Optical standing waves have instead been used to observe Compton 
scattering, which corresponds to the diffraction of matter waves from a 
light grating [121]. 
 
The wave-particle duality forms the basis for the development of a wave 
equation for matter, best known as the Schrödinger equation. The three-
dimensional time-dependent form of the Schrödinger equation is as follows  

2 ( ) ,
2

V i
m t

ψψ ψ ∂− ∇ + =
∂

r� �    (1.1) 

where 2∇ is the Laplacian operator and V(r) is the potential energy of the 
particles. Plane waves of the form ( , ) exp[( / )( )]t A i E tψ = ⋅ −r p r�  are 
solutions to the Schrödinger equation so long as the potential energy V is 
not a function of position or time (V = const). The vector  

ˆ ˆ ˆx y zx y zp p p= + +p k =�  is here a momentum vector parallel to the wave 
vector k of magnitude (2�/�) which points in the direction of propagation 
of the plane wave. ˆ ˆ ˆx y zx y z= + +r  is the position vector. 
 Because the time-dependent Schrödinger equation is linear any linear 
combination of plane waves will also be a solution. This makes it possible 
to superimpose or combine a group of plane waves of different 
wavelengths to form a wave packet. A wave packet is the physical 
analogue of the mathematical superposition of wave components in a 
Fourier series or Fourier integral to represent more complex waveforms. 
Wave packets for matter waves have been found to disperse with time in 
contrast to packets of electromagnetic waves propagating in free space. The 
spreading of the packet with time reflects that there is uncertainty in initial 
momentum of the particle corresponding to the spread in k values. This 
results with time in greater uncertainty in the position of the particle. 
 The probability of finding a particle described by the wave function 
 in 
a small (differential) region surrounding the position x is proportional to 
|
|2 = 
* 
, the square of the magnitude of the wave function evaluated in 
the position x. This is known as Born’s postulate [120]. A surprising effect 
concerning the use of the probability density |
|2 is that an increase in the 
spread in the wave number �k, corresponding to uncertainty in our 
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statistical knowledge of the wavelength and accordingly also the 
momentum of the particle, results in a reduction in the uncertainty �x in the 
position of the particle. This leads to the position-momentum form of the 
Heisenberg uncertainty relation, which states that an increase in our 
knowledge of the position of the particle requires a corresponding decrease 
in our knowledge of the momentum of the particle, and vice versa.  
 
For particles in free space the energy eigenvalue Ε = ω�  and the 
momentum eigenvalue h=p k  corresponding to a given plane wave 

exp[( / )( )]kA i E t⋅ −p r�  are related by Ε = p2 / 2m, and there is no 
restriction on the values of E  or p. This leads to an energy spectrum which 
is a continuum. For negative energy eigenvalues, representing particles 
trapped in a potential V(r), the boundary conditions effectively restrict the 
eigenvalues to discrete values leading to a discrete energy spectrum. 
 Particles generally interact with external energy potentials U. Particles 
encountering a potential step U0 are either transmitted or reflected when the 
kinetic energy of each particle Ε is greater than U0. If E >> U0 the 
transmission coefficient approaches one. When the particle energy is not 
much greater than the step height the reflection coefficient is close to one 
and the wavelength of the transmitted particles becomes long 
corresponding to particles with small momentum and kinetic energy. 
 When the particle energy E is less than U0 all particles are reflected. The 
particle density is however nonzero inside the potential step. Instead it 
decays exponentially away from the step with a fall-off length that is 
inversely proportional to U0 - E. This makes is possible for particles to 
tunnel through a potential barrier of limited width even though the particle 
energy E is less than the barrier height. Electron tunnelling in 
semiconductors is the principle behind several quantum electronic devises 
such as Esaki and Zener diodes. 
 Particles trapped in potential wells delineated by the surrounding energy 
barriers move inside the well with a continuous interchange of kinetic and 
potential energies. The total energy of the particles is conserved. It is also 
confined to a discrete set of levels. The details of the energy level spectrum 
depend upon the shape of the potential well. 
 
The Coulomb attraction between two point charges of opposite sign gives 
rise to a potential energy U(r) = q1q2/4�ε0r, where r � |r| is the separation 
distance between the charges and ε0 is the permittivity of free space. If one 
assumes that q1 is a proton (q1 = Ze) and q2 an electron (q2 = -e) this 
corresponds to the hydrogen atom (Z = 1 and e = 1.602e-19 C). Solution of 
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the Schrödinger equation for this case yields three different quantum 
numbers, the principal quantum number n, the angular momentum or 
orbital quantum number l and the magnetic quantum number ml. The 
electron spin ms = ±½ can be regarded as a fourth quantum number. The 
quantized energy levels depend in this case only on the principal quantum 
number n. The energy eigenvalues are 2 2 2

0 00.5 4nE Z e a nπε= − ⋅  for (n = 
1, 2, 3, …), where 2 2

0 04a meπε= � is the Bohr radius. A finite amount of 
energy is required to promote an electron from a given quantum state to a 
higher energy quantum state. Similarly, when an electron decays from a 
quantum state to a lower energy quantum state energy is given off, for 
example in the form of a photon. The lowest energy state (n = 1, l = 0, m = 
0) is called the ground state. The Pauli Exclusion Principle states that no 
two electrons can have the same set of quantum numbers. 
 In the case of atoms with multiple electrons the angular momentum, 
magnetic and electron spin quantum numbers are the same as for the 
hydrogen atom. The principal quantum number is replaced by a generalized 
total quantum number n. One important difference is that both the total 
quantum number n and the orbital angular momentum quantum number l 
generally correspond to different energy eigenvalues, where states of lower 
l value lie at a lower energy for a given value of n. 
 An atomic shell is specified by a given value of n. The shells are 
labelled K, L, M, N, O, P, Q in standard spectroscopic notation. A given set 
of values for both n and l specifies an atomic subshell, each of which 
contains 2(2l+1) unique electronic states. In spectroscopic notation the n 
value of a shell is often given as a number and the l value is assigned a 
lowercase letter from the set s, p, d, f, g. 
 The ground state of a many-electron atom is the one in which a 
sufficient number of electrons populate the lowest energy states in 
accordance with the Pauli Exclusion Principle to give a neutral entity. At 
temperatures above 0°K atoms are often not in the ground state. The degree 
to which the uppermost shell is occupied by electrons determines the 
chemical properties of the atoms by defining how easily they form 
chemical bonds in molecules and solids. Atoms where the uppermost shell 
is full tend to be chemically inert. 
 
If one considers a system of N identical and distinguishable particles which 
do not interact with one another one possible wave function for the total 
system is the product of the single-particle eigenfunctions 

1 2... Ni i iΦ = 

1 2
(1) (2)... ( ),

Ni i i Nφ φ φ  where the subscript i1 is the index for the first particle 
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corresponding to one of the possible single-particle wave functions and the 
�i are stationary states of energy Ei (i = 0, 1, 2, …) which are available for 
occupation by the particle. Because the particles are identical they are in 
practise only distinguishable if they are spatially separated, which requires 
that the wave functions must be completely nonoverlapping. 
 In the case of a system of N identical indistinguishable particles which 
do not interact with one another the wave functions for the individual 
particles overlap. The property of indistinguishability is characteristic of 
the quantum nature of particles. Because one cannot tell the particles apart 
the wave function must be invariant to any permutation of the particles. 
One possible wave function for the system of N particles is a gigantic 
function made up of the sum of all possible permutations of the N particle 
wave function consisting of the product of the individual single particle 
eigenfunctions. For a given set of N different eigenstates there are at most 
N! terms in this sum. 
 The requirement that the wave function must be invariant to all possible 
interchanges of identical particles in the system is accommodated by 
introducing an exchange operator or permutation operator Pjk which 
interchanges any pair of particles j and k in any function involving their 
coordinates. The only possible eigenvalues of the permutation operator Pjk 
can be shown to be either +1 or -1. The eigenvalue of +1 requires that the 
wave function must be symmetric under the exchange of any two particles 
in the system of N particles. The eigenvalue of -1 requires that the wave 
function must be antisymmetric under the exchange of any two particles. 
The anti-symmetric wave function is zero, in which case there can be no 
particles, unless every particle in the system of N noninteracting particles is 
in a different single-particle eigenstate. This is a remarkable situation 
considering that all N particles in the system are noninteracting. 
 The Pauli Exclusion Principle for particles with an antisymmetric many-
particle wave function postulates that no two half-odd-integer spin particles 
in a system can have the same set of quantum numbers. The wave function 
for a system of half-odd-integer particles must accordingly always be 
totally antisymmetric. Particles with an antisymmetric many-particle wave 
function are known as Fermi particles or fermions. The statistical 
distribution function for the occupation of the energy levels in a system of 
such particles is known as the Fermi-Dirac distribution function. Examples 
of fermions are electrons, protons, neutrons and μ mesons, which all have 
spin ½. Fermi particles exhibit a quantum-mechanical repulsion for one 
another and accordingly do not tend to be found spatially near each other. 
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 Particles with a symmetric many-particle wave function have no 
restriction on the occupation of the various quantum states, and any number 
of the N particles can be in a given single-particle eigenstate. Particles of 
this type are known as Bose particles or bosons. The statistical distribution 
function for the occupation of the energy levels in a system of such 
particles is known as the Bose-Einstein distribution function. Photons (spin 
1), neutral helium atoms in the ground state (spin 0) and alpha particles 
(spin 0) are examples of Bose particles. Bosons exhibit a quantum-
mechanical attraction for one another and tend to be found spatially near 
each other. They also tend to occupy the same low-energy quantum states, 
something which is allowed since they do not obey the Pauli Exclusion 
Principle. 
 
When a dilute gas of Bose particles is cooled to below a critical 
temperature, of the order of a fraction of a micro Kelvin, the conditions for 
Bose-Einstein condensation are met. Below the critical temperature the 
population of the lowest energy state becomes macroscopic and this 
corresponds to the onset of Bose-Einstein condensation. The fraction of 
particles in the lowest state N0(T)/N is called the condensate fraction. The 
gases used are very dilute. The average distance between atoms is typically 
more than ten times the range of interatomic forces. For an atomic gas BEC 
occurs when the density of atoms n and the de Broglie wavelength 

dB h pλ =  are related by the relation 3 2.62dBnλ ≥  [1]. 
 For a gas the equilibrium configuration of the system is normally the 
solid phase at temperatures close to absolute zero. In order to observe BEC 
the system must be preserved in a metastable gas phase for a sufficiently 
long time. This is possible because three-body collisions are rare events in 
dilute and cold gases and their lifetime is hence long enough to carry out 
experiments [122]. 
 Bose gases are usually both inhomogeneous and finite sized systems 
owing to the use of harmonic trapping potentials. Because the systems are 
inhomogeneous two-body interactions between atoms play an important 
role, is spite of the diluteness of the gases. The effects of two-body 
interactions are taken into account by the Gross-Pitaevskii theory for 
weakly interacting bosons. This is a mean-field approach for the order 
parameter or wave function associated with the condensate. It provides 
closed and relatively simple equations that describe most relevant 
phenomena associated with BECs. 
 Bose-Einstein condensation manifests itself as a sharp peak both in the 
velocity distribution and in coordinate space. Two-body interactions mean 
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that the central density at very low temperature can be one or two orders of 
magnitude smaller than the density predicted for an ideal non-interacting 
gas in the same trap. In a BEC the wave functions of the condensed 
particles overlap as they occupy the same single-particle state. The BEC 
exhibits quantum behaviour as a macroscopic trapped drop and resembles a 
micron-sized quantum particle. 
 The development of RF evaporative cooling allowed the first 
observations of BECs trapped in magnetic traps to be made in 1995 [63], 
[65], [66]. Most experiments with BECs that have been conducted since 
have used cold alkali metal atoms, but also hydrogen atoms and meta-
stable helium atoms have been used. Alkali metals are any element other 
than hydrogen found in the first column of the periodic table. Alkali atoms 
are well suited to laser-based cooling methods because their optical 
transitions can be excited by available lasers and because they have a 
favourable internal energy level structure for cooling to very low 
temperatures. The study of BECs in atomic samples is these days one of the 
fastest developing areas in atomic physics [123], [124]. 
 
The Josephson Effect was discovered by Brian Josephson in 1962 and 
concerns the tunnelling of electrons through a thin insulator placed between 
two superconducting plates [125], [108]. In a superconductor the current 
can flow without resistance and the quantum state of the electrons is highly 
correlated so that the tunnelling becomes coherent. Josephson’s 
breakthrough was to realize that this meant that interference could be 
observed since the tunnelling wave function from one electrode combines 
with that from the other in a way that depends on their relative phases. This 
interference gives rise to two main effects. First, a steady current can flow 
through the junction when no voltage is applied. This is known as the DC 
Josephson effect. Second, when a steady voltage is applied the current 
oscillates. This is known as the AC Josephson effect. 
 In [126] BECs of Rb atoms are used instead of superconducting plates 
to trigger the Josephson effects in a system of quantum gases. Condensates 
are a kind of super-fluid in which the atoms share a quantum wave function 
just as electrons do in a superconductor. A narrow laser beam was sent 
through the centre of the BEC thus forming a barrier for the atoms 
analogous to the insulating layer in the original Josephson junction. 
 By moving the beam from the centre of the condensate towards one side 
the AC Josephson effect was observed as the atoms became compressed on 
one side. The compression caused an increase in the energy of the atoms 
since atoms in a condensate normally repel each other. This increase in 
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interaction energy, also known as the chemical potential, served as the 
equivalent of voltage applied to an electrical circuit. The compressed atoms 
consequently wanted to tunnel through the laser barrier. It was however 
observed that the number of atoms on the compressed side did not simply 
decrease, instead it oscillated in time. This is because the tunnelling rate 
depends on the interference of the two quantum waves representing the two 
separated condensates, and the sign of this interference oscillates in time 
when the condensates have different energies. 
 When the laser barrier was moved towards one side much more slowly 
(v < ~ 40 μm/s) atoms continued to flow through the barrier, but the 
densities of the atoms, and therefore the chemical potentials of the two 
condensates, remained precisely equal. This is the analogue of a 
supercurrent, a flow without a voltage to drive it, and represents a 
manifestation of the DC Josephson effect. These observations of the 
Josephson effects demonstrate the underlying unity of solid and gaseous 
systems. 
 
Aside from spectroscopic measurements and the study of quantum effects 
in BECs, magnetic traps have a variety of other applications in different 
areas of physics. These include the making of atom lasers and sources of 
incoherent but intense atomic beams, the production of atomic 
antihydrogen and its spectroscopic investigation, ultrasensitive isotope 
trace analysis and the study of collision and entanglement between 
different samples of cold atoms [1]. Magnetic traps are also used in 
techniques for formation of cold molecules [1], although optical traps are 
usually preferred. 
 Quantum entanglement is a strange property of quantum mechanics for 
which there is not yet a complete theory. In recent years some progress has 
been made in trying to understand the properties of entanglement [127]. 
The state of a composite system is said to be entangled when it can not be 
written as a product of states of its component systems. Entangled states 
play a key role in many of the most interesting applications of quantum 
computation and quantum information [127]. This brings us to the topic of 
the next section. 
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1.6  A short introduction to quantum computing 
 
From around the year 1990 the field of quantum computation has seen fast 
development. There are several reasons behind this recent interest from the 
research community. One reason is that electronic devices in conventional 
computers have already been scaled down to the point where quantum 
effects are beginning to interfere with how they function. The reason for 
this is that the energy bands of solid state physics assume crystalline 
materials made up of a large number of atoms. When very few atoms are 
involved the energy bands go over to become discrete energy levels 
governed by the theory of quantum mechanics. 
 At this point one may turn the problem around and ask how many atoms 
are needed to do the computation rather than to ask how many atoms are 
needed to make the electronic devices of the traditional computer circuit 
work. It may in fact be easier to make a quantum computer based on single 
atoms or particles than to make conventional electronic devices work 
outside of the validity range of their theoretical foundation. Quantum 
computing can thus be seen as a natural way forward for computer science. 
 Additional incentives to pursue quantum computing were provided by 
Peter Shors demonstration in 1994 that the problem of finding the prime 
factors of an integer and the ‘discrete logarithm’ problem could be solved 
efficiently on a quantum computer [128]. In 1995 Lov Grover showed that 
also the problem of conducting a search through an unstructured search 
space could be sped up on a quantum computer [129]. Research teams have 
also found that quantum computers can simulate quantum mechanical 
systems efficiently, something which is often difficult on a classical 
computer. The efficient simulation of large quantum mechanical systems is 
a problem of profound scientific and technological implications in the 
future. It is suspected that the mentioned problems can not be solved 
efficiently on a classical computer, although this has not been proved. 
 Shors quantum algorithms are useful in cryptanalysis for inverting the 
encryption stage of RSA and other public key cryptosystems. Quantum 
computing is also interesting to the field of cryptography for other reasons. 
By exploiting the quantum mechanical principle that observation in general 
disturbs the system being observed it appears possible to always detect an 
eavesdropper on a quantum channel. If somebody tries to intercept a key 
sequence being transmitted this will be visible as a disturbance in the 
communication channel. The compromised key bits can then be thrown out 
and a new attempt at transferring a key sequence be made. This procedure 
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is known as quantum cryptography or quantum key distribution. The first 
practical systems of this type are already commercially available. 
 
In the same way that classical computing is based on information theory a 
parallel field of quantum information has arisen to provide support for 
quantum computing. In contrast to classical computing where bits are used 
to represent information quantum computing uses quantum bits, or qubits 
for short, for this purpose [127]. 
 A classical bit has two states 0 and 1. A quantum bit can also be in the 
two states |0> and |1>, which correspond to the states 0 and 1 for a classical 
bit. Notation like ‘|  >’ is called Dirac notation and it is the standard 
notation for states in quantum mechanics. Unlike a classical bit a qubit can 
also be in a linear combination or superposition of the two states |0> and 
|1> so that |
> = � |0> + � |1>, where � and � are complex numbers. 
Because the probabilities must sum to one |�|2 + |�|2 = 1. A qubit’s state is a 
unit vector in a two-dimensional complex vector space. The special states 
|0> and |1> are known as computational basis states and form an 
orthonormal basis for the vector space. 
 When a qubit is measured one will either get the result 0 with 
probability |�|2 or the result 1 with probability |�|2. The measurement 
collapses the state of the qubit from the superposition state to the specific 
state consistent with the measured result. It is not known why this collapse 
happens. It is therefore in general not possible to determine the values of � 
and �. The laws of quantum mechanics dictate that one can only acquire 
much more restricted information about the quantum state. Measurements 
on multiple identically prepared qubits combined with the use of different 
sets of computational basis states can nevertheless be used to acquire more 
information about a given quantum state, but this is far from easy to do in 
practise. This lack of observability of quantum states does not affect the 
possibility to realize quantum computing however. 
 A system of two qubits has four computational basis states denoted 
|00>, |01>, |10> and |11>. A pair of qubits can also be in superpositions of 
these four states. The quantum state of two qubits has a complex coefficient 
– sometimes called an amplitude – associated with it so that the state vector 
describing the two qubits is |
> = �00 |00> + �01 |01> + �10 |10> + �11 |11>. 
 An important two qubit state is the Bell state ( )| 00 |11 2> + > . It is 
also known as an EPR pair after Einstein, Podolsky and Rosen, who wrote 
a paper that first pointed out the strange properties of this state. The 
measurement of the first qubit of a Bell state gives the result 0 or 1 with 
probability ½. The post measurement state will be |
> = |00> or |
> = |11> 
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respectively. A measurement of the second qubit will consequently always 
give the same result as the measurement of the first qubit. This correlation 
of the measurement outcomes forms the prototype for many other 
interesting quantum states and constitutes the key ingredient in quantum 
teleportation and super dense coding.  
 Quantum teleportation is a technique for sending a qubit from A to B by 
sending only two classical data bits. It requires one qubit of an EPR pair to 
be at A and the other one at B. A system of n qubits has computational 
basis states of the form |x1x2 … xn> and a quantum state of such a system is 
specified by 2n amplitudes. For n = 500 this number is larger than the 
estimated number of atoms in the universe. This gives quantum computers 
enormous potential computational power if it can be exploited. 
 
Classical computers are built using logic gates such as the NOT, AND, OR, 
NAND, NOR and XOR gates in addition to shift-registers and buffers. 
Several quantum logic gates that operate on qubits have similarly been 
developed. The most important single qubit gates are the NOT, Z and 
Hadamard gates and the most important multiple qubit gate is the 
controlled-NOT (CNOT) gate. The CNOT gate flips the target qubit if the 
control qubit is set to 1 and leaves the target qubit unchanged if the control 
qubit is set to 0. The operation of these gates is summarized in Fig. 1.2 and 
will not be explained in more detail here. 
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Fig. 1.2.  A summary of operation of the most important quantum gates.  

 



 
1.6  A short introduction to quantum computing 27 

 

A remarkable universality result is that any multiple qubit logic gate may 
be composed from CNOT and single qubit gates. These gates are therefore 
the prototypes for all other logic gates. This result is the quantum parallel 
of the universality of the classical NAND gate. 
 The normalization condition with requires that |�|2 + |�|2 = 1 for a 
quantum state places the constraint on a matrix U representing a quantum 
gate that it must be unitary so that U †U = I. U † is the adjoint of U obtained 
by transposing and then complex conjugating U and I is the two by two 
identity matrix. This unitarity condition is the only constraint on quantum 
gates and any unitary matrix hence represents a valid quantum gate. 
 Unitary quantum logic gates are inherently reversible whereas many 
classical logic gates such as the NAND gate are inherently irreversible. 
This means that quantum circuits can not be used to simulate classical 
circuits directly. By using a reversible quantum logic gate known as a 
Toffoli gate to simulate irreversible classical logic gates, quantum 
computers become able to perform any computation that a classical 
computer may do. The Toffoli gate looks similar schematically to the 
CNOT gate, but has two control inputs instead of one. It flips the target 
qubit only when both the control qubits are set. The Toffoli gate has itself 
as its inverse. 
 
The task of building a quantum computer in real life has turned out to be 
extremely challenging. Four basic requirements have been outlined for the 
design of a successful quantum computer. These are the robust 
representation of quantum information, the ability to perform a universal 
family of unitary transformations, the ability to prepare a specific initial 
qubit state and successful measurement of the output result. 
 The qubit states should be chosen from a finite set of accessible states. It 
is also generally desirable for the state space to have some aspect of 
symmetry. The position x of a particle along a one-dimensional line is for 
example a poor choice even though the particle may be in a quantum state 
or superposition state. This is because x has a continuous range of 
possibilities where the information capacity is limited by quantum noise, 
also known as decoherence. Spin-½ particles are nearly ideal qubits. A 
poor qubit representation generally leads to problems with decoherence.  
 Quantum computing requires the implementation of single spin 
operations and CNOT gates, which can be used to realize any unitary 
transform. The ability to address individual qubits and to apply the 
quantum gates to select qubits or pairs of qubits is implicitly also required. 
This is not simple to accomplish in many physical systems. Unrecorded 
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imperfections in unitary transforms lead to decoherence. The cumulative 
effect of systematic errors is also decoherence. The length of the longest 
possible quantum computation is roughly given by the ratio of �Q, the time 
for which a system remains quantum-mechanically coherent, to �op, the 
time it takes to perform elementary unitary transformations which involve 
at least two qubits. These two times are in fact related in many systems 
since they are both determined by the strength of the system’s coupling to 
the external world. The preservation of coherence is both a critical and a 
challenging aspect in the design of any quantum mechanical circuit. 
 It is necessary to be able to repeatedly produce one specific quantum 
state with high fidelity to prepare the desired input states. A unitary 
transform can then be used to turn this specific quantum state into any other 
desired input state. Ions may for example be cooled into their ground state, 
but this is a challenging procedure. 
 Projective measurements or strong measurements collapse the wave 
function leading to the detection of one of the basis states. The output from 
a good quantum algorithm is a superposition state which gives a useful 
answer with high probability when it is measured. One step in Shors 
quantum factoring algorithm is for example to find an integer r close to 
qc/r from the measurement result, where q is the dimension of a Hilbert 
space. The output state is in a nearly uniform superposition of all possible 
values of c, but a measurement collapses this into a single random integer, 
thus allowing r to be determined with high probability using a continued 
fraction expansion technique. Things like inefficient photon counters and 
thermal amplifier noise can reduce the information obtained about 
measured qubit states in such schemes. 
 Projective measurements are often difficult to implement and require a 
large and switchable coupling between the quantum and classical systems. 
Measurements can be a decoherence process and should not occur when 
not desired. Weak measurements, which are performed continuously, are 
possible if the computation is completed in a short time compared with the 
measurement coupling and if large ensembles of quantum computers are 
used. Weak measurements are for instance relevant in physical 
implementations based on nuclear magnetic resonance, as described briefly 
in the following. 
  
A number of physical quantum computer implementations have been 
proposed. Three of the more promising systems which have been 
extensively investigated are based on optical cavity quantum 
electrodynamics (QED) [130], ion traps [131] and nuclear magnetic 
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resonance (NMR). In cavity QED qubits are represented by the locations of 
single photons between two modes |01> and |10>, or polarizations. Well 
isolated single atoms are used as a medium to allow the photons to interact 
with each other. The single atoms are placed within optical cavities of very 
high Q, something which results in very high atom-field dipole coupling 
due to the high electric field strength of the one or two electromagnetic 
modes in the cavity. Because the coupling of two photons is mediated by 
an atom it is desirable to increase the atom-field coupling. This 
unfortunately limits cascadability since coupling of a photon into and out of 
the cavity then becomes difficult. 
 In the ion trap scheme qubits are represented by the hyperfine state of an 
atom and the lowest level vibrational modes (phonons) of trapped atoms. 
Fine and hyperfine transitions of a trapped atom correspond to electron and 
nuclear spin flips respectively. Because the energy difference between 
different spin states is very small compared with for example the kinetic 
energy of atoms at room temperature the spin states of an atom are usually 
difficult to observe and control. By isolating and trapping small numbers of 
charged atoms in electromagnetic traps and cooling them down until their 
kinetic energy is much lower than the spin energy contribution it becomes 
possible to tune incident monochromatic (laser) light to selectively cause 
transitions between different spin states. The magnetic trapping structures 
in Chapter 3 of this thesis may be of use for trapping ions with this 
approach. The problems with ion traps are that phonon lifetimes are short 
and that ions are difficult to prepare in their motional ground state. 
 In quantum computers based on NMR qubits are represented by the 
spins of atomic nuclei. To circumvent the weakness of the phonon 
mediated spin-spin coupling technique of ion traps and its susceptibility to 
decoherence molecules are used instead of atoms thus allowing the 
chemical bonds between neighbouring atoms to provide the coupling 
between spins. Because of the smallness of the nuclear magnetic moment a 
large number (more than 108) of molecules are needed to produce a 
measurable induction signal. The use of ensembles of quantum computers 
and difficulties in producing pure input states creates a new set of 
problems, nearly all of which can be solved by applying the techniques of 
refocusing and temporal and logical labelling. Since only weak 
measurements of an ensemble average is possible, quantum algorithm 
which assume a strong projective measurement must be modified to run on 
an NMR computer. Quantum algorithm based on the hidden subgroup 
problem can be executed by appending a classical post-processing step to 
the quantum computation. This involves checking the answer of each 
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individual quantum computer (molecule) by plugging the result into the 
original problem. Only the computers which succeed in the verification 
give an output to the final ensemble average which is then measured. 
 
Laboratory implementations of quantum computation schemes like the 
ones mentioned have allowed small quantum computers capable of doing 
dozens of operations on a few qubits to be realized. This represents the 
state of the art in quantum computing. Unfortunately none of the above 
mentioned techniques allow a large-scale quantum computer to be realized 
in the near future. Other physical implementations of quantum computers 
have recently been proposed based on representing qubits by magnetic-flux 
[132] and on the use of neutral atoms trapped in optical lattices [133]. The 
latter implementation relies on the ability to dynamically change the lattice 
geometry, something which is possible only with optical lattices. It is not 
clear whether a similar implementation which combines the use of a 
magnetic grid and laser excited dipole-dipole interactions to manipulate 
drops of condensed neutral atoms could be feasible. 
 There is tremendous motivation to envision some kind of a solid state 
quantum computer to take advantage of the enormous investments in 
silicon technology worldwide to date. It may eventually become possible to 
place, control and measure single nuclear spins on semiconductor chips 
[134], [135]. Such possibilities depend however on future advances 
particularly in nanotechnology and in fabrication techniques. 
 

1.7  B-field equations for a conductor and an infinitesimally thin 
ring 

 
The equations for the magnetic field from a straight wire or conductor and 
from an infinitesimally thin current loop have been made use of in the 
investigation of the geometries studied throughout the thesis. The relevant 
equations are presented here as supplementary information to the four 
following chapters. The equations for the magnetic field from an 
infinitesimally thin conductor in the z-direction and an infinitesimally thin 
ring around the origin in the xy-plane are known from the literature. These 
equations have been transformed to describe conductors and rings in the 
orthogonal directions and include the displacement from the origin of the 
plane. The case of a finite conductor radius is also considered. A realistic 
wire radius is then calculated as an example. This wire radius will be used 
frequently in the subsequent chapters. 



 
1.7  B-field equations for a conductor and an infinitesimally thin ring 31 
 

 

1.7.1  B-field equations for an infinitesimally thin conductor 
 
The static magnetic field BDC(r) or the RF magnetic field BRF(r) of an 
infinitesimally thin bar or conductor in the z-direction is computed as the 
sum of two field components [136] – [138] 
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where 7
0 4 10 H m,μ π −= ⋅  (bar, )iI  is either the DC or RF current of bar i 

and ( ) ( )2 2( ) ( )x y
i i ir x y= − Δ + − Δ . ( )x
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from the coordinate system centre ( )0 .x y= =  The same equations can be 
used for both the DC and RF magnetic fields by invoking the quasi-static 
approximation for the RF field. The quasi-static approximation is valid so 
long as the characteristic size of the geometry is small compared to the 
wavelength of the RF current.  
 
The corresponding equations for the field components of an infinitesimally 
thin bar or conductor in the x-direction or y-direction can be found from 
direct inspection. For a bar or conductor in the x-direction 
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where 7
0 4 10 H m,μ π −= ⋅ (bar, )iI  is either the DC or RF current of bar i and 
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direction 
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where 7
0 4 10 H m,μ π −= ⋅ (bar, )iI  is either the DC or RF current of bar i and 

( ) ( )2 2( ) ( )x z
i i ir x z= − Δ + − Δ . ( )x

iΔ and ( )z
iΔ  are the shifts of the bars from 

the coordinate system centre ( )0 .x z= =   
 The overall static magnetic field BDC or RF magnetic field BRF from 
multiple bars or conductors is given as 

� �(bar) (bar, ) (bar, ) (bar, ) ,DC or RF
i i i

x y zi i iB x B y B z= ⋅ + ⋅ + ⋅� � �B �  (1.8) 

where � �,x y  and z�  are unit vectors. 
 

1.7.2  The introduction of a finite conductor radius 
 
An equation for the magnetic field ( )DC ρB  from an infinitesimally thin 
line or conductor expressed in cylindrical coordinates is found in (7.25) in 
[139] as 
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 A wire or conductor with a finite radius r can also be seen as a solid 
cylinder. In equation (7.33) in [139] expressions are given for the magnetic 
field ( )DC ρB  of a solid cylinder of current in cylindrical coordinates. This 
equation is as follows: 
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where a is the radius of the cylinder and � is the distance from the centre of 
the cylinder. It is seen that the expression for � > a is identical to equation 
(1.9) for an infinitesimally thin line of current. The introduction of a finite 
conductor radius does not in other words change the expression for the 
magnetic field outside of the wire, a point that was also made in [139]. 
 It is here useful to convert also the expression for the B-field for � < a to 
Cartesian coordinates. This is done with the help of unit vector 
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transformations that are found in the literature, for example in Table B-3 in 
[139]. The relevant transformations are 

sin ,ˆ ˆ ˆx yϕ ϕϕ ρ= − = −a a a   (1.11) 
cos .ˆ ˆ ˆy xϕ ϕϕ ρ= =a a a   (1.12) 

 This yields the following equations for the magnetic field inside a 
conductor in the z-direction: 
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where a is the radius of the conductor and ( )xΔ and ( )yΔ define the 
displacement of the centre of the conductor in the x- and y-directions 
respectively.  
 The equations for the field components in (1.13) and (1.14) are seen to 
be identical to the equations for the corresponding field components 
outside of the conductors in (1.2) and (1.3), except that 2

ir  has been 
replaced by 2a in the denominators.  
 This facilitates a very simple implementation of conductors with a finite 
radius in Matlab. It is first checked whether a field point lies inside of or 
outside of the conductor radius for the conductor in question. If the point 
lies inside of the conductor radius then 2

ir is simply replaced with 2a . To be 
specific a new variable is defined which is set equal to 2a  whenever the 
field point lies inside of or on the conductor radius. Otherwise the variable 
is set equal to 2

ir . This enables a single set of equations to be used for 
conductors with a finite radius by substituting the new variable for 2

ir in the 
equations for infinitesimally thin conductors. 
 
An appropriate conductor radius should now be decided on. In the case of 
free-standing wires the maximum current density is limited by practical 
fabrication and heat dissipation issues to less than 105 A/cm2. Wires on a 
chip can however sustain currents of up to 108 A/cm2 because of the ability 
of the substrate to dissipate power [93], [140]. For the millimetre sized 
structures in Chapter 2 it turns out that it is not necessary to use particularly 
large wire currents to achieve sufficiently deep trapping potentials. A 
current density of 1000 A/cm2 will therefore be used here. This value 
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corresponds to the maximum current density used in today’s computers 
[141]. The current density can be used to calculate a minimum wire radius. 
For a DC current of 92.5 mA and an RF current of 10 mA, the minimum 
wire radius becomes 
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 The DC and RF currents and the wire radius in this example have been 
used for many of the millimetre-sized geometries in this thesis. When the 
geometries are scaled, by changing the ratio of the DC current I to the 
cyclic RF frequency RFω , the radius of the conductors should be adjusted 
to keep the current density within a reasonable range. 
 In the case of the micrometre-sized geometries in Chapter 3 a much 
higher wire current density of around 22 kA/cm2 will be used. The 
proposed geometries are here intended to be patterned on a chip. Much of 
the substrate should however be removed and this will strongly limit the 
ability of the chip to dissipate additional power. 
 

1.7.3  B-field equations for an infinitesimally thin current ring 
 
The equations for the field components of an infinitesimally thin current 
ring in a plane normal to the z-direction are [17], [137], [138]: 
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where K and E are the elliptic integrals with the argument 
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In (1.16) - (1.18), (ring, )jI  is the DC or RF current in the jth ring, R is the 
radius of this infinitely thin ring( )0rd = , r j

z  is the position of the centre of 

the jth ring on the z-axis, and ( ) ( )2 2( ) ( )x y
j jx yρ = − Δ + − Δ . ( )x

jΔ  and ( )y
jΔ  

are the shifts of the rings from the coordinate system centre ( )0x y= = .  
 Just as was the case for the straight conductors the same equations can 
be used for both the static and RF magnetic fields by invoking the quasi-
static approximation for the RF field. The quasi-static approximation is 
valid so long as the characteristic size of the geometry is smaller than about 
one tenth of the RF wavelength. Since the RF frequencies used in the atom 
traps of this thesis are relatively low and the wavelengths several hundred 
metres long, the atom traps are small enough by a good margin. The 
validity of the quasi-static approximation, under which the RF field is 
equivalent to the static magnetic field, has been confirmed through 
simulations of millimetre-size traps with the software tool AMPERES, 
which is described in Appendix A. 
 
The equations for the field components of a similar current ring in a plane 
normal to the x-direction are obtained by tilting the coordinate system on 
the side through the use of Euler angle transformations. The rotation of the 
field vectors is described in [142]. The Euler angles that have been used are 
� = 0º, 	 = 90º and 
 = 0º. The new field components � �,x yB B  and � zB  are 
found from the original field components ,x yB B and zB for rings in a plane 

normal to the z-direction as � � ,x zB x B z⋅ = ⋅  � �y yB y B y⋅ = ⋅  and 
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� .z xB z B x⋅ = − ⋅ −�  � �,x y  and z�  are here the unit vectors of the new axes and 
x, y and z the unit vectors of the original axes. The minus sign for the field 
component � zB disappears because the original x-axis points in the negative 
z-axis direction after the rotation. This is accounted for by the unit vectors. 
It is intuitively correct that all three field components become positive for 
rings in a plane normal to the x-direction, just as they were for rings in a 
plane normal to the z-direction.  
 The resulting B-field components are as follows: 
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where K and E are the elliptic integrals with the argument 
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In (1.20) - (1.22), (ring, )jI  is the current in the jth ring, R is the radius of this 
infinitely thin ring( )0rd = , r j

x  is the position of the centre of the jth ring 

on the x-axis, and ( ) ( )2 2( ) ( )y z
j jy zρ = − Δ + − Δ . ( )y

jΔ  and ( )z
jΔ  are the 

shifts of the rings from the coordinate system centre ( )0y z= = .  
The equations for the field components of an infinitesimally thin current 
ring in a plane normal to the y-direction are found in a similar way. The 
Euler angles in this case are � = 90º, 	 = 90º and 
 = -90º. The new field 
components are found from the original field components for rings in a 
plane normal to the z-direction as � � ,x xB x B x⋅ = ⋅  � �y zB y B z⋅ = ⋅  and 
� .z yB z B y⋅ = − ⋅ −�  � �,x y  and z�  are the unit vectors of the new axes and x, y 
and z the unit vectors of the original axes. The minus sign for the field 
component � zB disappears because the original y-axis points in the negative 
z-axis direction after the rotation. It again makes sense that all field 
components are positive for rings in a plane normal to the y-direction in the 
same way as for rings in a plane normal to the x-direction or the z-direction. 
 The resulting B-field components are as follows: 
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where K and E are the elliptic integrals with the argument 
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In (1.24) - (1.26), (ring, )jI  is the current in the jth ring, R is the radius of this 
infinitely thin ring( )0rd = , r j

y  is the position of the centre of the jth ring 

on the y-axis, and ( ) ( )2 2( ) ( )x z
j jx zρ = − Δ + − Δ . ( )x

jΔ  and ( )z
jΔ  are the 

shifts of the rings from the coordinate system centre ( )0x z= = .  
 
The overall static magnetic BDC and RF magnetic BRF fields are computed 
by vectorial summation of the corresponding fields from the bars or straight 
conductors and infinitesimally thin rings as 

( ) � ( ) �(total) (bar, ) (ring, ) (bar, ) (ring, )
DC or RF

i j i j
x x y yi j i jB B x B B y= + + +� � � �B  

( )(bar, ) (ring, ) ,i j
z zi jB B z+ +� � �  (1.28) 

where � �,x y  and z�  are unit vectors. The magnitude of the field is given as 
the square root of the sum of the three field components squared.  
 
In later chapters of this thesis very large currents of up to three and a half 
amperes have occasionally been used in bias rings, in part for the purpose 
of illustration. If very high currents are to be realized experimentally the 
radius of the infinitesimally thin rings must be made large enough to take 
into account that the real rings must have a cross-section large enough to 
support the currents. It should be possible to greatly reduce the need for the 
highest currents by placing the rings closer together and by accepting a 
smaller field gradient between the bias rings. 
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Chapter 2          
              
Wire Structures for Cold Atom Handling 
 
 
 
 
 

2.1  Introduction 
 
Cold atoms interact with the effective potential because of their magnetic 
polarization. By shaping the effective potential clouds of cold atoms can be 
transported along and between wires as well as held in magnetic traps. This 
Chapter begins with a look at the effective potential around a single wire, 
first without and then with external bias. Then a system of two crossed 
wires is considered and it is shown how cold atoms may be transferred 
between the wires. A system of two parallel wires is subsequently 
described in an analogous fashion. The Chapter continues with a look at the 
effective potential in a cell consisting of two pairs of crossing parallel 
wires. The cell can be used to trap both weak- and strong-field-seeking 
atoms. A double-well potential formed in a three-by-three wire structure is 
then considered. The two wells can be merged electrically by reducing the 
DC currents in the two centre wires. Finally cell-grids consisting of parallel 
wires in two orthogonal layers are examined. The cell-grids can also be 
stacked to form an elaborate 3D effective potential pattern.  
 

2.2  The effective potential around a single wire 
 
The effective potential Ueff(�), which is induced by a combination of the 
DC and the RF fields, is computed according to a formula in [104], [143], 
[107], [138] and [144] 
 

( ) ( ) ( ) 22 ( )
eff DC RF RF 2F B F B FU m g g Bμ ω μ ⊥� �� �= − +� � � �� B � �� , (2.1) 
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where 2Fm =  is the magnetic quantum number of the atomic state,  Bμ  is 
the Bohr magneton, Fg  is the Landè factor, ( )DCB �  is the static magnetic 
trap field,  �  is the reduced Planck constant, RFω  is the cyclic frequency 
of the RF field, and ( )

RFB ⊥  is the RF magnetic field normal to the local DC 
magnetic vector. The validity of this equation, which is specific for linear 
polarization of the RF field, has been experimentally verified [106], [107]. 
 The effective potential around a single wire has a minimum of zero at a 
constant radius d. The second term in the square root of (2.1) is always zero 
for a single wire. The reason for this will be explained later in this section. 
For also the first term to be zero   

( ) RFDCB Fgμ ω=B � � . (2.2) 
A simple expression for the magnetic field ( )DC ρB  is found in (7.25) in 
[139], 

( ) 0
DC ˆ .

2
I

ϕ
μρ
πρ

=� a  (2.3) 

This expression is for the B-field of an infinitesimally thin line. By 
substituting equation (2.3) into equation (2.2) it is clear that the radius d is 
a function of the ratio of the DC current I to the cyclic RF frequency RFω . 
The expression for the radius d where the effective potential around a 
single wire becomes zero is found to be 

0

2
B F

RF

g Id μ μ
π ω


 �
� �
� �

=
�

. (2.4) 

This expression is plotted in Fig. 2.22 as a function of the ratio RFI ω . The 
range of DC current to cyclic frequency ratios in the figure applies to 
millimetre sized structures, which are relatively large. The purpose of the 
figure is however just to illustrate the linear relation between the distance d 
and the DC current to cyclic frequency ratio RFI ω . This sort of figure 
should not be used as a design graph since high accuracy in the variables d, 
I and �RF is critical to obtain a good result.  
 
As a numeric example, the following data can be entered into (2.4): 

( )
( )

24 2

7 34
0

9.2741 10 J T =Am , 2, 0.66,

4 10 Vs Am = H , 1.05459 10 Js,
0.0925 A, 2 800000 rad s.

B F F

RF

m g

m
I

μ

μ π
ω π

−

− −

= ⋅ = =

= ⋅ = ⋅
= = ⋅

�  

The radius is in this case found to be d = 0.2136 mm for a single wire.
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It was explained above that the second term in the square root of (2.1) is 
zero for a single wire. This can be seen by examining the expression for 

( )( )
RF ,B ⊥ �  given by equation (2) in [138] 

( ) ( )( ) ( ) ( )
( )

2
2 RF DC( )

RFRF
DC

B ⊥

 �
� �
� �
� �

= −
B � B �

� B �
B �

.    (2.5) 

( )RFB �  is of the same form as ( )DCB �  given in (2.3). The second term 
under the root sign in (2.5) is the squared product of ( )RFB �  multiplied by 

( ) ( )DC DCB � B � . The factor ( ) ( )DC DCB � B �  is in this case either 1 or -1 
depending on the sign of the DC current. The sign is however of no 
consequence since the product is squared. 
 The expression for d in (2.4) is only useful in the case of a single wire 
when there are no crossing wires or other wires that come close to it. The 
cases of two crossed wires and two parallel wires will be treated later in 
this Chapter. 
 
The effective potential around a wire of radius 57.2 μm, which carries a DC 
current of -92.5 mA and an RF current of -10 mA at 800 kHz, is shown in 
Fig. 2.1. In the figure the potential peak around the centre of the wire has 
been cut to better show the circular potential minimum further out from the 
wire. The full height of the peak is actually about 2.88e-27 J.  
 

 
Fig. 2.1.  Ueff for a single wire without external bias for z = 0 mm. 

x = 0.2136 mm 
y = 0 mm 
Ueff = 0 J 
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A circular minimum of Ueff = 0 J is found at a radius of 0.2136 mm from 
the centre of the wire. There is also another circular minimum of Ueff � 
2.326e-29 J inside the wire, at a radius of about 0.015 mm from the centre 
of the wire. Inside this minimum the effective potential begins to increase 
again toward the centre of the wire due to the RF current in the wire. If the 
frequency is reduced toward zero the radius of the circular minimum inside 
the wire becomes smaller and the circular minimum eventually becomes a 
point at the centre of the wire at zero frequency. 
 The depth of the trapping potential is most conveniently measured in 
Kelvin. The potential in Kelvin is calculated simply by dividing the 
effective potential Ueff [J] by Boltzmann’s constant k = 1.3807·10-23 [J/K]. 
As can be seen in Fig. 2.1 the effective potential increases to approach a 
certain level some distance away from the conductor. For the wire in Fig. 
2.1 this level is at about 76 μK, which is taken to be the depth of the 
trapping potential. The potential barrier for stable trapping should typically 
be no less than 15 μK from private communication between G. A. Kouzaev 
and W. A. van Wijngaarden, depending on the temperature of the trapped 
atoms. 

The skin effect has been neglected in the computations of the effective 
potential in this thesis. A uniform RF current distribution is consequently 
assumed inside the wires corresponding to infinite conductivity. For copper 
wires the skin depth �s = 73.8 μm at 0.8 MHz. A wire radius of 57.2 μm 
thus amounts to 77.5 % of the skin depth. The skin-effect is accordingly of 
limited severity even at the centre of the wires in this case. For the 
microwires and nanotubes used in the next Chapter the skin-effect is much 
smaller still and can be safely ignored. 
 

2.3  The effective potential around a single wire with bias rings 
 
A minimum of zero of the effective potential is strongly unwanted because 
it will lead to Majorana spin-flip transitions. The minimum of zero can be 
removed by applying an additional magnetic field for biasing. Such a field 
can be created by placing a pair of current carrying loops or rings around 
the wire as shown in Fig. 2.2(a). When two rings are used a deeper 
minimum in the shape of a circular band is created between the rings. This 
minimum can be moved up and down along the wire by applying different 
bias currents in the two rings. This control over the position of the 
minimum can in turn be used to move clouds of cold atoms around in 
structures consisting of multiple wires. 
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      (a)             (b) 
Fig. 2.2.  The geometry of a single wire with bias rings (a) and two crossed wires 
with bias rings (b), which will be considered in Section 2.5. 

 
The bias currents used for moving clouds of cold atoms are RF currents of 
the same frequency as the RF currents in the wires. The use of RF ring 
currents enables the movement of cold atoms up and down along wires as 
well as the transfer of cold atoms between two crossed wires, a topic that 
will be considered later in Section 2.5. The possibility of using DC bias 
currents instead has also been examined. The conclusion is that DC bias 
currents have a very different effect on the minimum potential manifold 
associated with a wire. To be specific, DC bias currents, when large 
enough, lead to a bending of the minimum potential manifold out from 
around the wire so that it wraps around the outside of the bias rings. At the 
same time the depth of the minimum potential manifold stays relatively flat 
at the bottom. This makes the gradient of the minimum small in relation to 
the applied bias. Attempts to move the absolute minimum away from the 
centre between the bias rings by using different bias currents have 
additionally lead to new minima being formed in places where they should 
not be. Consequently DC bias currents are considered unsuitable for 
moving clouds of cold atoms along wires with DC + RF currents. There 
remains a possibility however of applying a small DC bias in addition to 
the RF bias if this is considered useful in terms of increasing the margin 
against Majorana spin-flip transitions. The use of RF currents for trapping 
of BECs in the time-averaging regime has been described in [64], [145]. 
 The use of DC bias currents is illustrated in Fig. 2.3. The wire currents 
are the same as in Fig. 2.1. The bias rings have a radius of 1 mm and are 
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spaced 6 mm apart on the z-axis. Fig. 2.3(a), where the DC bias currents 
are ±0.05 A, is directly comparable with Fig. 2.5, and Fig. 2.3(b), where the 
DC bias currents are ±1.5 A, can be compared with Fig. 2.8. From this 
point onwards all bias currents mentioned in Chapter 2 and Chapter 3 will 
be RF currents.  
 

   
     (a)      (b) 
Fig. 2.3.  Ueff for a single wire with bias rings with DC bias currents. (x = 0 mm). 
The DC bias currents are ± 0.05 A in (a) and ± 1.5 A in (b). 

 
Simulations have shown that the circular minimum around the wire is lifted 
slightly more up from the zero potential when the bias currents go in the 
same direction in the two rings, compared to the case when the bias 
currents go in opposite directions. When the currents go in opposite 
directions in the two rings, the bias field from the rings will be zero at the 
centre of the wire in the middle between the bias rings when the bias 
currents in the rings are of equal magnitude. Because the effective potential 
is a little higher than zero along the centre of the wire, due to the RF 
current in the wire, there will be no effective potential minimum of zero. In 
Section 2.5, it will be explained that the bias currents should preferably go 
in opposite directions, i.e. be of opposite sign, in the bias rings around both 
wires when atom transfer between two crossed wires is considered.  
 The effective potential around a wire with bias rings with currents in 
opposite directions is shown in the xy-plane in Fig. 2.4 and in the yz-plane 
in Fig. 2.5. The infinitely thin bias rings have a radius of 1 mm and are 
spaced 6 mm apart. The RF bias currents are -50 mA and 50 mA at 800 
kHz in the lower and upper ring respectively. The DC current in the wire is 
-92.5 mA, and the RF current -10 mA at 800 kHz. The plot for the xz-plane 
is identical to that of the yz-plane and is not shown. Notice that the circular 
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minimum around the wire is now no longer at zero potential. The depth of 
the trapping potential remains practically unchanged since the bias currents 
are relatively small. In Fig. 2.5 four potential spikes are seen next to the 
wire where the bias rings intersect the yz-plane. 
 

 
Fig. 2.4.  Ueff for a single wire with two bias rings with r = 1 mm. (z = 0 mm). 

 

 
Fig. 2.5.  Ueff for a single wire with two bias rings with r = 1 mm. (x = 0 mm). 

x = 0.2136 mm 
y = 0 mm 
Ueff = 1.158e-30 J 

 y = 0.2136 mm 
 z = 0 mm 
Ueff = 1.158e-30 J 
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The computations of the effective potential were first made with equations 
for infinitesimally thin wires. This meant that the narrow circular minima 
inside the wires were not seen. It seems however that the minima inside the 
wires are isolated and will not interfere with the operations of moving 
atoms along a wire or between wires. There seems to be a large potential 
barrier between the “internal” and “external” minima associated with a 
wire. The size of this barrier is linked to the current density in the wire, 
which should normally be extremely high. Strong external bias would be 
needed for atoms to overcome this barrier. The “internal” minimum in a 
wire can in a way be thought of as a parasitic storage area for cold atoms. 
 
Because parallel wires have to be placed relatively close to each other it is 
of interest find out what happens when the radius of the bias rings is made 
smaller. If the ring radius is reduced from 1 mm to 0.14 mm, and the RF 
ring currents are kept at -50 mA and 50 mA, the minimum effective 
potential falls to Ueff = 2.929e-32 J, but the shape of the potential otherwise 
looks just like in Fig. 2.4. If the RF ring currents are increased by a factor 
of 1.1581e-030 / 2.9287e-032 = 39.54 from 50 mA to 1.977 A, the 
effective potential in the xy-plane still looks identical to that in Fig. 2.4 and 
the minimum effective potential is back at Ueff = 1.158e-30 J. The effective 
potential in the yz-plane is now as shown in Fig. 2.6. The effective potential 
in the xz-plane is the same as that in the yz-plane. Notice that the four 
potential spikes next to the wire have been transformed into continuous 
surfaces because of the smaller ring radius and the much increased bias 
currents. 
 



 
2.3  The effective potential around a single wire with bias rings 47 

 

 
Fig. 2.6.  Ueff for a single wire with two bias rings with r = 0.14 mm. (x = 0 mm).  

 
This shows that the ring currents must be greatly increased to maintain the 
same minimum effective potential when the radius of the bias rings is 
reduced. There seems to be a linear dependence between the bias current 
magnitude and the minimum effective potential level. A bias ring with a 
small radius must therefore support much larger currents and hence have a 
bigger cross-section than a bias ring with a larger radius.  
 
It will now be shown how the circular potential minimum around a wire 
can be moved down along the wire by changing the bias currents. In Fig. 
2.7 the circular minimum is seen around the wire at the top of the figure. 
The wire has a radius of 57.2 μm and the currents in the wire are -92.5 mA 
DC and -10 mA RF. The frequency is 800 kHz. The infinitesimally thin 
bias rings have a radius of 1 mm and are placed at z = ± 3 mm. In Fig. 2.7 
the lower ring carries an RF current of -2.5 A and the upper ring an RF 
current of 0 A. In Fig. 2.8 the circular minimum has been moved to the 
centre of the wire. The RF current is here 1.5 A in opposite directions in the 
two bias rings. 

y = 0.2136 mm 
z = 0 mm 
Ueff = 1.158e-30 J 
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Fig. 2.7.  Shifting of the circular potential minimum, (here seen around the top). 

 

 
Fig. 2.8.  Shifting of the circular potential minimum, (here seen in the middle). 
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Fig. 2.9 shows the potential surface 10e-29 J for different RF ring currents. 
The wire currents are the same as for Fig. 2.7 and Fig. 2.8. The ring 
currents are as follows, where the isosurfaces are located from top to 
bottom and the lower and upper rings have the indices I and II respectively: 

[ ], 2.5 0 AI II
RF ringI + = −  (red), [ ], 2.8 0.4 AI II

RF ringI + = −  (yellow), 

[ ], 2.25 1.0 AI II
RF ringI + = −  (blue), [ ], 1.5 1.5 AI II

RF ringI + = −  (green), 

[ ], 1.0 2.25 AI II
RF ringI + = −  (blue), [ ], 0.4 2.8 AI II

RF ringI + = −  (yellow) and 

[ ], 0 2.5 AI II
RF ringI + =  (red). The bias rings are located outside of the plotted 

range at z = ± 3 mm. Note that the potential surface for 10e-29 J becomes 
progressively wider as it is moved away from the centre between the bias 
rings. The outermost potential surfaces in red actually extend out to the bias 
rings, but are shown truncated by the range of the plot. This happens in 
spite that the current in the bias ring on the opposite side has been greatly 
increased compared to the potential surface at the centre of the plot.  
 

 
Fig. 2.9.  The isosurface Ueff = 10e-29 J being moved up or down along a wire. 

 
For the illustrated bias ring spacing of 6 mm, it is clear that the current in 
the bias ring that the circular minimum is moved away from must be 
increased in an almost exponential way to maintain a constant steepness in 
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the potential walls as the potential minimum is moved away from the 
centre between the bias rings and towards the other ring. If it is acceptable 
to allow the steepness of the trapping potential to decrease away from the 
centre between the bias rings this helps to reduce the need for very large 
currents in the bias rings. 
 
If on the other hand it is desired to maintain a certain steepness of the 
potential walls of the circular minimum it may be necessary place bias 
rings at shorter intervals around the wire. If enough bias rings are present it 
becomes possible to use a pair of bias rings with one (or more) inactive 
bias ring(s) between them to pump the cloud of cold atoms along the wire. 
The inactive ring is used to gradually take over for the bias ring that the 
cold atoms are moved away from when the circular minimum has been 
moved past it. The RF current in the ring should be in-phase with the RF 
current in ring it takes over for. When the circular minimum then 
approaches the second active ring it is gradually turned off and superseded 
by the next ring along the wire. The RF current in the next ring should 
again be in-phase with the RF current in the ring it takes over for. This 
should eliminate the need for very large bias currents but requires that bias 
rings must be placed at relatively short intervals along the wire. 
 
The described approach avoids a phase change (reversal) of the RF currents 
on either side of the circular potential minimum. Although the directions of 
the bias currents seem to be unimportant for atom pumping along a single 
wire, the phase difference should be 180° between the RF currents in the 
two active rings for transfer of cold atoms between two crossed wires. This 
will be explained in detail in Section 2.5. The use of two bias rings on one 
side of the circular minimum containing the cold atoms will create a second 
empty circular minimum between the two rings. This minimum will be 
merged with the potential minimum containing the cold atoms on the side 
toward which the cold atoms are being pumped. It is not clear whether this 
could negatively affect the cold atom condensate. One other thing is that 
the extra inactive bias rings may come physically very close to or in the 
way of crossing wires for example. All this needs to be considered in a 
practical realization. Careful simulations of atom pumping along the wires 
should therefore be made once a specific design has been decided on. This 
will show whether the chosen bias ring radius and spacing can be used. 
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2.4  The effective potential around two crossed wires 
 
When two wires cross each other in two different planes close to each other 
the expression for the distance d, where the effective potential between the 
wires is zero, is changed. This is illustrated by the plot in Fig. 2.10 of the 
three dimensional surface Ueff = 5e-29 J for a geometry consisting of two 
crossed wires. The wires, each with a radius of 57.2 μm, are represented by 
a wireframe mesh. The figure illustrates essentially the same as Fig. 3(b) 
published in [146], which shows a slightly different effective potential. 
There is in fact a double surface around both wires and the circular 
effective potential minimum around the wires lies in between these two 
surfaces. The figure shows that the potential surfaces are pulled towards 
each other at the crossing point of the wires. 
 

 
Fig. 2.10.  Isosurface plot of the effective potential for Ueff = 5e-29 J. 

 
The distance d between the wires is also in this case constant for the same 
ratio of DC current to cyclic RF frequency. This can be easily checked by 
changing the DC current and cyclic RF frequency so that the ratio of the 
two is kept constant. It can be seen that the first term under the root sign in 
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equation (2.1) dominates strongly for IRF << IDC, except for input values 
close to resonance. The second term will therefore be neglected here 
initially. Its effect will be considered in Section 2.4.1. To find a new 
equation for the distance d one must start with the complete expression for 

( )DCB � , where the radius � is 2 2x y+  for a wire in the z-direction for 
example. It is here easiest to use the equations for the field components in 
Cartesian coordinates from [137] or [138] 
 

( )
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x
zρ ρΔ = − = , ( )

1 0yΔ = , ( )2 2
1 zr x yρ= − + , (2.6)
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The geometry of the two wires is shown in Fig. 2.11 in the xy-plane. 
 

 
Fig. 2.11.  Geometry of two crossed wires in the xy-plane. The wires are labelled 
1 and 2. The origin is placed in the middle between the wires. 
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It is here sufficient to find the B-field as a function of the distance x 
between the two wires where they come closest to each other. Along this 
line y = z = 0 and ( )(1 2) , , 0

DCxB x y z+ =  because the numerators become zero in 
both terms. The complete expression for |BDC| is therefore as follows: 
 

( ) ( )
( )

( )
( )

22
(1) (2)

0 0DC DC
2 2DC

2 2
, z y

z y

I x I x

x x
x
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π ρ π ρ
ρ

⋅ ⋅
 �
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B , (2.11) 
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It is reasonable to define the DC currents to be of the same magnitude in 
both wires. Hence

DC DC1 DC2
2 2 2I I I= = . Equation (2.13) can then be written 
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  (2.14) 
When y zρ ρ ρ= = −  is substituted into the equation above we get 
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  (2.16) 
The point where the effective potential is zero lies in the middle between 
the wires as shown in Fig. 2.10. By setting x = 0 an expression for ( )DC ρB  
is found 



 
54  Chapter 2: Wire Structures for Cold Atom Handling  

 

 

( ) DC DC0 02
2DC 2

2
I Iμ μ ρ

ρ
πρ

ρ = =B
22πρ
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2
Iμ
πρ

= . (2.17) 

 
This expression is seen to be the same as equation (2.3) for the single wire 
except for the factor 2 . 
 If the second term in (2.1) is neglected the expression for the radius d 
where the effective potential is zero between two crossing wires becomes 

0 2
2

DC

RF

B F Id g μ
π ω

μ 
 �
� �
� �

=
� . (2.18) 

The dependence of d on /DC RFI ω  computed according to (2.18) is shown in 
Fig. 2.22. 
 The magnetic field ( )DC ,x ρB  in (2.16) is plotted in Fig. 2.23 in Section 
2.6 for � = d = 0.302 mm, IDC = 92.5 mA and �RF = 2�·8e5 rad/s. Fig. 2.23 
also shows the magnetic field ( )DC ,y ρB  between two parallel wires, the 
expression for which will be derived in Section 2.6. The distance between 
the crossed or parallel wires is 2d, where d is different for the crossed and 
parallel wires. At the centre between the wires the magnetic field has the 
value 8.66e-5 T, which is equal to RF .B Fgω μ�  This assures that the 
effective potential is zero at the centre when only the first term under the 
root sign in equation (2.1) is taken into account. In sections 2.4.1 and 2.6.1 
it will be explained why this is a reasonable simplification. 
 The expression in equation (2.16) is for infinitesimally thin wires. For 
wires with a finite radius the magnetic field outside of the wires is still 
given by (2.16). Inside of the wires the magnetic field is different however, 
and the graphs in Fig. 2.23 are therefore physically incorrect in the regions 
around the peaks, which lie inside the physical wires. 
 The graphs for the effective potential are of the same form as those for 
|BDC|, but with a different number range on the vertical axis and a value of 
zero at the centre between the wires. A plot of the effective potential in the 
yz-plane located at the centre between the crossed wires for x = 0 is shown 
in Fig. 2.12. The effective potential at the centre is zero as expected.  
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Fig. 2.12.  The effective potential in the yz-plane for x = 0 for two crossed wires 
placed at the distance 2d = 0.604 mm. The wires are without external bias. 

 
The mesh plot in Fig. 2.12 gives only a 2D description of the effective 
potential. To make up for this a 3D slice plot is provided in Fig. 2.13. The 
highest potential levels are found just outside of the wire surfaces. The 
minimum of zero in the potential between the wires is also here evident. 
The depth of the trapping potential in this case is about 75.5 μK. This is 
just a trifle less than for the single wire.  
 An isosurface plot of the area where the wires cross is shown in Fig. 
2.14 for two effective potential levels. This plot clearly shows that the local 
potential minima inside the wires are completely isolated. The blue surface 
for Ueff = 1e-29 J can be seen to be a bit patchy in some places. This is 
because quite high data point resolution is necessary to display smooth 
isosurfaces around very small or narrow areas. 

y = 0 mm 
z = 0 mm 
Ueff = 0 J 
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Fig. 2.13.  Slice-plot of Ueff in the planes x = 0, y = 0 and z = 0. 

 

 
Fig. 2.14.  Isosurface plot of Ueff = 8.552e-29 J and Ueff = 1e-29 J. 

Ueff, J 
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The touching of two minimum potential manifolds around two crossed 
wires has later become known as the quasi-synaptic effect [147], [148]. By 
using bias rings placed around the two wires to pump clouds of cold atoms 
along the wires controlled atom transfer from one wire to the other can be 
achieved. This effect is reminiscent of the synaptic effect which describes 
the transmission of signals between nerve cells in the brain and nervous 
system. The prospective transfer of atoms between two crossed wires is 
explained in detail in Section 2.5. 
 

2.4.1  The effect of the RF current on Ueff for two crossed wires  
 
Simulations have indicated that the amplitude of the RF current has little or 
no effect on the effective potential topology around the wires when certain 
conditions are met. One condition is that the RF current amplitude must be 
the same in both wires. A second condition is that the RF currents must 
either both be of the same sign as the DC current in each wire, or both be of 
opposite sign relative to the DC current in each wire. Different RF current 
amplitudes in the two wires, or RF current of the same sign as the DC 
current in one wire and RF current of opposite sign to the DC current in the 
other wire, will in other words cause distortion of the effective potential. A 
third condition is of course that the amplitude of the RF current can not 
approach zero without the frequency also being set to zero in equation  
(2.1). This amounts to removing the RF current altogether. The equation 
will otherwise become invalid in this case. 
 This experimental outcome verifies qualitatively that the equations 
allow the RF currents to flow in opposite directions in each half cycle 
without changing the topology of the effective potential. This behaviour is 
indeed necessary for combined DC and RF excitation of the wire structures 
to work. The practical consequence of this is that the RF currents in the 
different wires must have the same amplitude and be phase synchronized 
either in-phase or in counter-phase depending on the direction of the DC 
current in each wire. For two crossed wires the directions of the DC 
currents in the wires can be chosen freely. The only difference is that the 
elliptic curvature around the touching point at the centre, seen in Fig. 2.10, 
may slant in the orthogonal direction. The frequency of the RF current is 
essential to forming the minimum potential manifolds around the wires. 
The RF current amplitude IRF must be chosen to be much smaller than the 
DC current amplitude, but not too small either. Otherwise the rotating wave 
approximation, on which equation (2.1) depends, is no longer applicable.  
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Computations based on the magnetic field equations have with this shown 
that there is a dependency between the phases of the RF currents and the 
directions of the DC currents when two crossed wires are viewed together 
as a system. This is complicated to prove mathematically because many 
different combinations of current signs would have to be considered 
separately. Instead, limited results will be derived for the case when the RF 
currents are of equal magnitude and have the same sign as the DC current 
in each wire. The DC currents are also taken to be of equal magnitude and 
it is assumed that the quasi-static approximation is valid. It will first be 
shown that ( )( )

RFB ⊥ �  is zero in the centre point between two crossed wires, 
resulting in equation (2.27). This means that the second term in equation 
(2.1) is zero for this point, regardless of the amplitude of the RF current for 
the conditions applied. This result is afterwards expanded to also apply 
along a line between the centres of the crossed wires, resulting in equation 
(2.33). The effective potential along that same line is given by equation 
(2.34). 
 
The mentioned equations for ( )( )

RFB ⊥ �  will now be derived. Because this 
derivation is mathematically detailed and falls outside of the interest of 
most readers, it is recommended that readers who are not very interested in 
it should at this point just take a quick look at the result in equations (2.27), 
(2.33) and (2.34), and then move on to the next section.  
 The RF current IRF is found in the second term under the root sign in 
equation (2.1). This term is ( )( )

RFB ⊥ �  multiplied by a constant. The equation 
for ( )( )

RFB ⊥ � , given by equation (2) in [138], has already been presented in 
Section 2.2. The RF field components can be calculated using the same 
formulas as the ones used for the DC field. A quasi-static approximation 
for the RF field is assumed. This means that equations (2.6)-(2.17) will also 
apply to the RF field components. We are now ready to evaluate the 
equation for ( )( )

RFB ⊥ � , which is repeated again for convenience. 

( ) ( )( ) ( ) ( )
( )

2
2 RF DC( )

RFRF
DC

B ⊥

 �
� �
� �
� �

= −
B � B �

� B �
B �

 (2.19) 

( )DC ρB  is given by equation (2.17). The same equation can be used for 
the RF field 

( ) RF0
RF

2
2
Iμ
πρ

ρ =B . (2.20) 
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From (2.9) and (2.10) it follows that 
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For x = 0 this simplifies to 
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where it is assumed that the DC and RF currents go in the same direction in 
each wire, i.e. that IRF�IDC is positive, and that 
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RFB ⊥ � can now be calculated for x = 0 as 
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The second term under the root sign in (2.1) is therefore zero at the 
midpoint between the wires for x = y = z = 0, and does not change the 
distance d found in (2.18). 
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An analytical expression for the potential function as a function of the 
distance between the crossed wires at the point were they come closest to 
each other is now derived. We make use of (2.16) for ( )DC ,x ρB . The same 
equation is used for ( )RF ,x ρB  with IRF substituted for IDC. Equation (2.24) 
is used for ( ) ( )RF DC, ,x xρ ρB B . 
 When y zρ ρ ρ= = −  is substituted into (2.24) we get: 
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The second term under the root sign in (2.1) for the effective potential is 
hence zero along a line between the centre points on two crossed wires. It 
has been assumed that the DC and RF currents go in the same direction in 
each wire, i.e. IRF�IDC is positive, and that 

DC DC RF RF

(1) (2) (1) (2)andI I I I= = . If the 
currents in the two wires are of different magnitude equation (2.29) is no 
longer valid and it becomes more difficult to determine what the RF 
magnetic field normal to the local DC magnetic vector ( )( )

RF ,B x ρ⊥ is.  
 In has nonetheless been shown that the equation for the distance d, 
where the minimum potential manifolds around the two wires touch, can be 
derived using only the first term under the root sign in (2.1) when certain 
conditions are placed on the currents in the crossing wires. 
 

2.5  Prospective atom transfer between two crossed wires with 
bias rings  

 
Two crossing wires placed at a distance of 2d, where d is given by (2.18),  
lead to an effective potential minimum of zero as already explained. This 
was illustrated in Fig. 2.12 where the parameters were as follows: d = 0.302 
mm, IDC | z-wire = IDC | y-wire = -92.5 mA, IRF | z-wire = IRF | y-wire = -10 mA and    
fRF = 800 kHz. The radius of the wires in Fig. 2.12 was 57.2 μm, which 
corresponds to a maximum current density in the wires of about 1000 
A/cm2.  
 As a practical matter the number of decimals used in the calculations 
must be controlled in Matlab to be able to see the minimum of zero, for 
example using the plot marker. This can be done by using all available 
decimals in the distance d and by blanking out all additional decimals to the 
number of decimals in d plus one in the following four terms in ( )effU � : 

( )DCB Fgμ� �� �B � , [ ]RFω� , ( )( )2
RF

� �
� �� �

B �  and ( ) ( )
( )

2

RF DC

DC

� �
 �
� �� �
� �� �
� �� �� �

B � B �
B �

. 

 The potential minimum of zero can be avoided by placing bias rings 
around the wires, as previously illustrated in Fig. 2.2(b). Simulations have 
shown that care must be taken when the signs of the currents in the rings 
are defined. For example the four current sign combinations in Table 2.1 do 
not remove the absolute zero in the effective potential for a given current I.  
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Table 2.1.  Four current sign combinations that do not remove the minimum of 
zero for a given current I. 

Combination 1 – 2 Combination 3 – 4 
( , )

| ,I II
RF z wire ringsI I I− = ± ±  
( , )

| ,I II
RF y wire ringsI I I− = ± ±  

( , )
| ,I II

RF z wire ringsI I I− = ±�  
( , )

| ,I II
RF y wire ringsI I I− = ±�  

 
This is illustrated in Fig. 2.15 for IRF | z-wire rings = [-0.1 0.1] A and IRF | y-wire 

rings = [-0.1 0.1] A. The simulated infinitesimally thin rings have a radius of 
1 mm and are placed 6 mm apart on each wire. The ring with a negative 
coordinate along the axis through the centre of the ring is indexed first. The 
wire currents and wire radii are the same as in Fig. 2.12. The four current 
combinations have that in common that the two element sign vectors for 
the currents in the rings around the z-wire and y-wire are identical.  
 Note that if one of the ring currents is changed slightly the absolute 
potential minimum of zero disappears. The ring current sign combinations 
can therefore be used so long as care is taken to avoid that the currents in 
all the four rings have the same amplitude at any one time. 
 The four remaining current sign combinations in Table 2.2 eliminate the 
absolute minimum of zero. The first two current combinations give the 
highest increase in the effective potential Ueff above zero, but the minimum 
potential channel between the crossed wires is also ruined at the same time.  
 
Table 2.2.  Four current sign combinations that remove the minimum of zero for 
a given current I. 

Combination 1 – 2 Combination 3 – 4 
( , )

| ,I II
RF z wire ringsI I I− = ± ±  
( , )

| ,I II
RF y wire ringsI I I− = � �  

( , )
| ,I II

RF z wire ringsI I I− = ±�  
( , )

| ,I II
RF y wire ringsI I I− = ± �  
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Fig. 2.15.  The effective potential for two crossed wires when a combination of 
ring currents from Table 2.1 is used. The figure is in the plane x = 0. 

 
The bias rings around the wires can also be used to transfer a cloud of cold 
atoms between the crossed wires. This is done by first creating a slope in 
the effective potential around the donor wire of cold atoms that extends 
down to a common minimum at the centre between the crossed wires. It 
appears that this downward slope can not be formed when bias current sign 
combinations from Table 2.2 are used. As already mentioned the first two 
combinations effectively ruin the minimum potential channel between the 
crossed wires by producing deeper minima along the wires on the sides 
facing away from the centre point between the wires. The possible current 
sign combinations, not detailed in the tables, where the currents in three of 
the bias rings are of the same sign and the current in the fourth ring is of the 
opposite sign are also not usable for transferring cold atoms between the 
crossed wires. Such asymmetric biasing would in any case pose a problem 
should the cold atoms be attempted transferred in the reverse direction.  
 The current sign combinations in Table 2.1 can all be used to create a 
downward slope around the donor wire of cold atoms. The first two 
combinations can produce a steep slope down to a common minimum at 
the centre point between the wires. However, the resulting minimum is 
strongly attached to the minimum potential manifolds around the wires. 

y = 0 mm 
z = 0 mm 
Ueff = 0 J 
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This means that cold atoms can not be pumped along either of the wires 
unless the DC current is turned off completely in the other wire. As a result 
the transfer of atoms is more complicated compared to the use of the other 
two current sign combinations in Table 2.1, the use of which will be treated 
in a moment. A video animation of the expected cold atom transfer is 
provided in Fig. 2.16. For readers with access to an electronic version of 
the thesis this animation and other animations in this thesis can be seen by 
double clicking on the figure. The animation can also be shown by playing 
the avi-file with the name shown in the field at the bottom of the figure 
using an appropriate media player.   
 The animation in Fig. 2.16 has 15 frames. The wires, each with a radius 
of 57.2 μm, are placed at a distance of 2d where d = 3.02e-4 mm. The DC 
current in the wires is 92.5 mA when fully on, and the RF current is 10 mA 
at 0.8 MHz. The currents have been defined with a negative sign in both 
wires. The bias currents in the rings around the two wires in each of the 15 
frames are: 
 

I+II
RF| z-wire rings

[2.5 0.5], [2 1], [1.5 1.45], [1.5 1.5], [1.5 1.5],
= [1.5 1.5], [1.5 1.5], [1.5 1.5], [2 2], [2.5 2.5], A,

[2.5 2.5], [2 2], [1.5 1.5], [1 1], [0.5 0.5]
I

	 �

 

� �

 

� �

 

I+II
RF| y-wire rings

[0.5 0.5], [1 1], [1.5 1.5], [2 2], [2.5 2.5],
= [2 2], [1.45 1.5], [0.5 0.5], [1.5 1.5], [1.5 1.5], A.

[1.5 1.5], [1.5 1.5], [1.5 1.45], [2 1], [2.5 0.5]
I

	 �

 

� �

 

� �

 

 
 In the first three frames the cold atoms are being pumped down the z-
wire to the centre of the wire. For this to be possible the DC current in the 
y-wire must be turned off. In frames 4 to 7 the DC current in the y-wire is 
gradually turned on in steps of 50%, 75%, 90% and 95% of its final value. 
Notice that the y-wire is relatively strongly biased while the DC current is 
being turned on. In frame 8 the DC current in the y-wire is fully on at 92.5 
mA, and the y-wire bias has been reduced to 0.5 A to empty a small pocket 
on the back side of the z-wire. The reduced y-wire bias causes the potential 
minimum next to the y-wire to divide into two and slide out a bit along the 
y-wire. This is shown in Fig. 2.17(a). It may not be necessary to reduce the 
y-wire bias quite so much.  
 The atom transfer takes place mostly in frame 8 and in frame 9, which is 
shown in Fig. 2.17(b). In frame 9 the y-wire bias has been increased and a 
single sharp minimum is again found next to the y-wire. The small pocket 
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on the back side of the z-wire has reappeared, but is now empty. In frame 9 
the DC current in the z-wire has been reduced to 95% of its original value. 
This has little effect, but may pull the pointed potential minimum a bit 
closer to the y-wire. In frames 10 to 12 the DC current in the z-wire is 
reduced in steps of 90%, 75% and 50% of its original value. In frames 13 to 
15 the DC current in the z-wire is off and the cold atoms are pumped along 
the y-wire. The RF currents in the wires may also be turned off when the 
DC currents are turned off, but this is not strictly necessary if the RF 
current amplitude is small.  
 

 
Fig. 2.16.  Animation of atom transfer using bias currents of positive sign only. 
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(a) 

 

 
(b) 

Fig. 2.17.  Atom pumping with only positive bias. Frame 8 (a), and frame 9 (b).  

 
The cold atom transfer example just described is included here only to give 
a complete account of the different possibilities and should be avoided if 
possible. The preferred way of transferring cold atoms between two crossed 
wires is with the use of the last two current sign combinations in Table 2.1. 
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These current sign combinations are, like the other combination pairs, the 
reverse of each other and yield the same result.  
 A video animation of the anticipated cold atom transfer is provided in 
Fig. 2.18. The video has 14 frames. The wire currents are -92.5 mA DC and 
-10 mA RF in both the wire in the z-direction and the wire in the                
y-direction. The frequency is also here 0.8 MHz. The bias currents in the 
rings in the 14 frames in the animation are: 
 

I+II
RF| z-wire rings

[ 2.5 0], [ 2.5 0.5], [ 2 1], [ 2 1.5], [ 2 2],
= [ 1.5 1.5], [ 1.5 1.5], [ 0.7 0.7], [ 0.5 0.5], A,

[0 0], [0 0], [0 0], [0 0], [0 0]
I

− − − − −	 �

 
− − − −� �

 

� �

 

I+II
RF| y-wire rings

[ 0.05 0.05], [ 0.05 0.05], [ 0.05 0.05], [ 0.05 0.05],
= [ 0.5 0.5], [ 0.75 0.75], [ 1.5 1.55], [ 2.1 2.1], [ 1.1 1.1], A.

[ 1.5 1.5], [ 1.5 1.5], [ 2 1], [ 2.5 0.5], [ 2.5 0]
I

− − − −	 �

 
− − − − −� �

 
− − − − −� �

 

 
 In the first five frames the cold atoms are being pumped down the z-
wire to the centre of the wire. In frames 6 and 7 a downward slope is 
created in the effective potential around the z-wire down to a common 
minimum at the centre between the crossed wires. This transfers the cold 
atoms from around the vertical wire to the common minimum between the 
wires. Plots of the effective potential in the xy-plane (z = 0) for frame 6 and 
frame 7 have been published as Fig. 7(a) and Fig. 7(b) in [146]. In the 
article it is described how two effective potential minima are first formed 
close to the centre between the wires in frame 6.  
 In frame 7 a common minimum is formed at the centre between the 
wires. At the same time a pair of low potential pockets is formed on the 
sides around the z-wire. This is not a problem since the cold atoms were 
first moved to the two potential minima in frame 6, which in frame 7 have 
merged to become the common minimum. Frame 7 from the animation in 
Fig. 2.18 is shown in Fig. 2.19(a).  
 The effective potential for frame 7 in the xz-plane for y = 0 is shown in 
Fig. 2.19(b). It is practically identical in shape to the effective potential in 
the xy-plane in Fig. 7(b) in [146]. This is not strange since the bias currents 
are about ±1.5 A in all bias rings. The current in one of the bias rings has in 
fact been increased to 1.55 A to avoid an absolute zero in the potential at 
the common minimum. 
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Fig. 2.18.  Animation of cold atom transfer using bias currents of different signs. 
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(a) 

 
(b) 

Fig. 2.19.  Frame 7 in the animation (a), and Ueff in the xz-plane for frame 7 (b). 

 
There are at this point two ways of completing the atom transfer. One 
possibility is to reduce the DC current in the donor wire, here the z-wire, 
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while keeping the cloud of cold atoms in the potential minimum around the 
acceptor wire, or y-wire in this case. The donor wire is then free to be used 
to transport a second cloud of cold atoms to a crossing wire somewhere 
else. The DC current should in that case also be reduced in the acceptor 
wire to increase the barrier between the cold atom streams. Alternatively 
the cold atoms can be pumped away along the acceptor wire right away 
without changing the DC current in the donor wire. This is more 
straightforward and, if tunnelling turns out to be a major problem, it may in 
fact be the only feasible way of completing the atom transfer.  
 In the animation in Fig. 2.18 the DC current is reduced in the donor wire 
in frames 8 to 11 in steps of 95 %, 90 %, 75 % and 50 % of its original 
value. In frame 8, which is shown in Fig. 2.20(a), the bias is reduced in the 
rings around the z-wire and increased in the rings around the y-wire. This 
creates potential minima on the sides around the acceptor wire without 
creating a competing potential minimum next to the centre point between 
the wires around the donor wire. As a result of this bias excitation two 
minima are formed along the side of the donor wire that faces toward the 
acceptor wire away from the crossing point of the wires. This is shown 
especially in Fig. 2.20(b) and can be seen in Fig. 2.20(a) as well. These 
minima along the donor wire are not a problem since the cold atoms are 
now in the minima around the acceptor wire and a barrier exists to prevent 
them from flowing back to the donor wire.  
 In frame 9 the DC current in the donor wire is reduced to 90 % of its 
original value. It is now difficult avoid two separate minimum potential 
manifolds, one associated with each wire. The bias has now instead been 
much reduced in the rings around the y-wire to maximize the height of the 
barrier between the minimum potential manifolds around the two wires. In 
frame 10 the DC current in the z-wire is reduced to 75 % of its original 
value. The minimum potential manifolds around the wires are now well 
separated and the barrier between them increases naturally without the need 
for careful adjustment of the bias currents.  
 In frame 11 the DC current in the z-wire has been reduced to 50 % of its 
original value. The barrier between the minimum potential manifolds 
around the wires is now so high that it is not necessary to turn down the DC 
current in the z-wire more. Graphs showing the barrier between the 
minimum potential manifolds along the x-axis between the crossed wires 
corresponding to frames 8 to 11 have been published in Fig. 8(a) in [146]. 
In the figure curve “1” is for frame 8 and curve “4” is for frame 11. The 
article [146] contains several figures that are complementary to the figures 
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shown here and provides an alternative introduction to atom transfer 
between two crossed wires.  
 

 
(a) 

 
(b) 

Fig. 2.20.  Frame 8 in the animation (a), and Ueff in the xz-plane for frame 8 (b). 
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The cold atoms can alternatively be pumped away along the acceptor wire 
at once without turning down the DC current in the donor wire. To do this 
frame 8 – 14 in the animation in Fig. 2.18 can be replaced by four 
alternative frames with the following bias currents in the rings:  

 
{ }I+II, (8-11)

RF| z-wire rings = [ 0.8 0.8], [ 0.5 0.5], [ 0.05 0.05], [ 0.05 0.05] A,I − − − −  

{ }I+II, (8-11)
RF| y-wire rings = [ 2 1.5], [ 2 1], [ 2.5 0.5], [ 2.5 0] A.I − − − −  

 
The DC current in the z-wire is kept at -92.5 mA. The DC current in the y-
wire and the RF currents in both wires are the same as before. The atom 
transfer takes place essentially in frames 6 and 7, which are not changed. 
The bias currents in the four frames have a lot in common with the bias 
currents in the frames they replace in Fig. 2.18. The last two frames are for 
example practically identical. Because there is little new to see the 
alternative completion of the atom transfer will not be given additional 
illustration here. 
 A question that can be asked is whether the barrier height in frame 9 is 
adequate to prevent cold atoms from tunnelling back into the slightly 
shallower minimum around the donor wire. The conditions for such 
tunnelling are present temporarily in frame 9 and partly in frame 10. See 
e.g. Fig. 8(a) in [146]. It is not clear to what extent this may be a problem. 
The situation is in any case avoided by pumping the cold atoms away from 
the wire junction without first reducing the DC current in the donor wire. 
This is more straightforward but a bit of flexibility is lost. The donor wire 
is tied up for longer and it becomes less convenient to temporarily store the 
cold atoms around the acceptor wire. However, unless the wires are busy 
buses for cold atoms in a quantum computer, this will not make much 
difference.  
 It may at the end be worth mentioning that the account given above of 
current sign combinations that can or can not be used to transfer cold atoms 
between two crossed wires is very sensitive to the signs of the field 
components for the bias rings around the horizontal y-wire. In the course of 
exploring inter-wire atom transfer sign errors were at first made in the 
rotation of the field components for rings around a wire in the y-direction. 
This led to some wrong conclusions initially about which combinations of 
current signs that could be used. The rotation of the field components for 
the bias rings was described in Section 1.7.3.  
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2.6  The effective potential around two parallel wires 
 
We begin by once again seeking a new equation for the distance d that 
makes the effective potential zero at the centre point between the wires. 
Although it is possible to use the equation for B
 in cylindrical coordinates 
for the two wires, the equations for the field components in Cartesian 
coordinates from [137] or [138] will be used here. This will make the 
derivation comparable to the previous case of two crossed wires. 
 
The field components are as follows: 
 

( )
1 0xΔ = , ( )

1 1
y ρ ρΔ = − = , ( )22

1 1r x y ρ= + −  , (2.35) 
 

( )
2 0xΔ = , ( )

2 2
z ρ ρΔ = = , ( )22

2 2r x y ρ= + − , (2.36) 

 

( ) ( )
( )

( )
( )

DC DC

(1) (2)
0 1 0 2(1 2)

2 22 2
1 2

,
2 2DCx

I y I y
B x y

x y x y

μ ρ μ ρ

π ρ π ρ
+ ⋅ − ⋅ −

= − −
� � � �+ − + −� � � �

, (2.37) 

( )
( ) ( )
DC DC

(1) (2)
0 0(1 2)

2 22 2
1 2

,
2 2DCy

I x I x
B x y

x y x y

μ μ

π ρ π ρ
+ ⋅ ⋅

= +
� � � �+ − + −� � � �

, (2.38) 

 
(1 2) 0
DCzB + = . (2.39) 

 
The geometry of two parallel wires is shown in Fig. 2.21 in the yz-plane. 
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Fig. 2.21.  Geometry of two parallel wires in the yz-plane. The wires are labelled 
1 and 2. The origin is placed between the wires. 

 
The line between the centres of the two wires lies in the y-direction. One 
can therefore set x = 0 in the equations above, since the fields in the x or z 
directions are of no interest in the following derivation. When x = 0 the 
field components in ( )(1 2) ,

DCyB x y+  disappear since x appears as a factor in the 

numerator of both terms. The equation for ( )DC ,y ρB  thus becomes 
 

( ) ( )
DC

(1)
0 1

DC ,
I y

y
μ ρ

ρ
− ⋅ −

=B
( ) 2

12 yπ ρ−

( )
DC

(2)
0 2I yμ ρ⋅ −

−
( ) 2

22 yπ ρ−

2

 �
� �
� �
� �

, (2.40) 

 

( ) ( ) ( )
( )( )

DC DC

2(1) (2)
0 2 0 1

1 2
DC 2

,
I y I y

y y
y

μ ρ μ ρ
π ρ ρ

ρ

 �− ⋅ − − ⋅ −
� �=
� �− −� �

B , (2.41)  

 

( ) ( ) ( ) ( )( )
( ) ( )

1 2DC1 DC2

2 22 2 2 2 2
0 2 0 1 0 1 2

2 22
1 2

DC
2

4
, DC DCI y I y I I y y

y y
y

μ ρ μ ρ μ ρ ρ

π ρ ρ
ρ

− + − + − −
=

− −
B . 

  (2.42) 
We substitute 1 2ρ ρ ρ= − = −  and rewrite the expression for ( )DC ,y ρB .   
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( ) ( ) ( ) ( )( )
( ) ( )

1 2DC1 DC2

2 22 2 2 2 2
0 0 0

2 22DC
2

4
, DC DCI y I y I I y y

y y
y

μ ρ μ ρ μ ρ ρ

π ρ ρ
ρ

− + + + + −
=

+ −
B , (2.43) 

 

( ) ( )1 2 1 2DC1 DC1 DC1 DC2 DC2 DC2

2 2 2 2 2 2 2 2 2 2 2 2 2
0

2 4 3DC
2 2 2 2

4 2
, DC DC DC DCI y I y I I y I y I I I y I I

y y
y

μ ρ ρ ρ ρ ρ

π ρ
ρ

− + + + + + −
=

−
B

2 2y ρ+ 32y ρ+ 4− 2 2 32 2y yρ ρ+ 2 2y ρ+ 32yρ−( )4ρ+
, 

  (2.44) 

( ) ( ) ( ) ( )
( )

1 2 1 2DC1 DC2 DC2 DC1 DC1 DC2

2 2 2 2 2 2 2 2

0 22 2 2DC
2 2 2

4
, DC DC DC DCI I I I y I I y I I I I

y
y

ρ ρ
μ

π ρ
ρ

+ + + − + + −
=

−
B . 

  (2.45) 
At this point we set y = 0 to obtain the eventual expression for ( )DC ρB  

( ) 0
DC 0,y

μ ρ
ρ ==B

( )1 2DC1 DC2

2 2

2

2

2

DC DCI I I I

πρ

+ − ( )1 2DC1 DC2

2 2
0 2

2
DC DCI I I Iμ

πρ

+ −
= . 

  (2.46) 
This leads to the following equation for d  

( )1 2DC1 DC2

2 2
0

2

2
DC DCB F

RF

I I I Igd μ μ
π ω


 �+ −� �= � �
� �
� �

�
. (2.47) 

 It may seem a bit cumbersome to put in specific values for the two DC 
currents in (2.47) to find d. In this case it is relevant to choose IDC2 = IDC1 or 
IDC2 = -IDC1, since different currents in the two wires most certainly will 
move a zero in the effective potential away from the centre point between 
the wires. If we choose IDC2 = IDC1 the term in the root sign becomes 

( )1 2DC1 DC2

2 2 2 2 2 0DC DC DCI I I I I+ − = − = . (2.48) 
It is clear that |BDC| = 0 for two parallel wires at the centre point between 
the wires (x = y = 0) independent of d when IDC2 = IDC1. In this case Ueff � 0. 
To be precise Ueff becomes ( )eff RFFU m ω=� �  if only the first term under 
the root sign in (2.1) is considered. The use of different currents in the two 
wires may cause the effective potential to become zero at the centre 
between the wires, but this leads to asymmetry and is not expected to be a 
viable solution. 
 If one chooses IDC2 = -IDC1 this problem is avoided. The term under the 
root sign becomes 

( ) ( )1 2DC1 DC2

2 2 22 2 2( 1) 2DC DC DC DCI I I I I I+ − = − − = , (2.49) 
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and the expression for d becomes 

0 DCB F

RF

Igd μ μ
π ω


 �
= � �

� �� . (2.50) 

The currents in two parallel wires should therefore be equal and of opposite 
sign. The dependence of d on / RFI ω  computed according to (2.50) is 
plotted in Fig. 2.22.  
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Fig. 2.22.  Distance d for which the effective potential is zero for a single wire 
and for two crossed and two parallel wires. A mark has been placed at 

( )0.0925 2 0.8 0.0184./ RFI πω = ⋅ =  

 
Equation (2.45) for ( )DC ,y ρB  is plotted in Fig. 2.23 for � = d = 0.427 mm, 
IDC = 92.5 mA and �RF = 2��8e5 rad/s (blue curve). The total distance 
between the parallel wires is 2d. It is seen that |BDC| falls to  

( ) ( )1.055 34 2 8 5 9.274 24 0.66 8.66 5 TRF B Fg e e e eω μ π= − ⋅ ⋅ − ⋅ = −� at 
the centre between the wires for both graphs. This corresponds to Ueff = 0 J.  
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Fig. 2.23.  BDC(x, � = 3.02e-4) calculated from (2.16) (solid red graph), and 
BDC(y, � = 4.27e-4) calculated from (2.45) (dashed blue graph). 

 
The effective potential around two parallel wires is shown in Fig. 2.24. The 
slice-plot in (a) shows the two planes x = 0 and z = 0, and the plot in (b) 
shows the isosurface Ueff = 3.5e-29 J. In Fig. 2.24 d = 0.427 mm, IDC | z-wire1 
= -IDC | z-wire2 = -92.5 mA, IRF | z-wire1 = -IRF | z-wire2 = -10 mA, and fRF = 800 
kHz. The wire with index 1 is at y = -d and the wire with index 2 is at y = d. 
The radius of each wire is 57.2 μm. The isosurface for Ueff = 0 J clearly 
forms a figure of eight manifold around the two parallel wires. To plot this 
isosurface is however problematic. This is because isosurfaces calculated in 
Matlab require increased data point resolution when the volume that they 
enclose becomes smaller. The isosurface for Ueff = 0 J is a single manifold 
around the two wires that does not enclose a volume in the same way. Very 
high data point resolution would therefore be required if it is possible to 
plot this isosurface at all. 
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        (a)        (b) 
Fig. 2.24.  Effective potential plots for two parallel wires. Slice-plot where the 
dark blue colour represents the effective potential minimum (a), and isosurface-
plot for Ueff = 3.5e-29 J (b). 

 
The depth of the trapping potential for the parallel wires in Fig. 2.24 is 76.7 
μK, which is about the same as for a single wire. 
 

2.6.1  The effect of the RF current on Ueff for two parallel wires   
 
In the case of two parallel wires simulations suggest that the situation is 
similar to how it is for two crossed wires. Again the RF current amplitude 
must be the same in both wires and the RF currents must either both be of 
the same sign as the DC current in each wire, or both be of opposite sign 
relative to the DC current in each wire, to not have distortion of the 
effective potential. As already explained the DC currents must be in 
opposite directions in two parallel wires. The RF currents must 
consequently always be in counter-phase in the two wires. This result can 
be generalized for an array of parallel wires. In this case DC currents must 
be in alternating directions in neighbouring wires and RF currents must be 
in counter-phase in neighbouring wires. 
 This behaviour is again awkward to prove mathematically. A limited 
result will be derived for the case when the RF currents are of equal 
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magnitude and have the same sign as the DC current in each wire. The DC 
currents are also taken to be of equal magnitude in each wire. It will first be 
shown that ( )( )

RFB ⊥ �  is zero in the centre point between two parallel wires, 
resulting in equation (2.58). This result is then expanded to apply along a 
line between the centres of the parallel wires, resulting in equation (2.69). 
The effective potential along that same line is given by equation (2.70).  
 As was the case of two crossed wires, this derivation may be too 
detailed and tedious for many readers. In this case it is recommended to 
here just take a quick look at the result in equations (2.58), (2.69) and 
(2.70), and then move on to the next section.  
 
The mentioned equations for ( )( )

RFB ⊥ �  will now be derived. The RF field 
components are also for this case calculated using the same formulas as the 
ones used for the DC field. A quasi-static approximation for the RF field is 
assumed. This means that equations (2.35)-(2.50) also apply to the RF field 
components.  
 We begin by finding an expression for ( )( )

RFB ⊥ � and assume that IDC2 = -
IDC1. ( )( )

RFB ⊥ �  is defined in equation (2.19). ( )DC ρB  is now given by 
equation (2.46) and (2.49). The same equation can also be used for the RF 
field so that 

( ) 0
RF

RFIμ
πρ

ρ =B . (2.51) 

 
From equation (2.37) for x = 0.  
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  (2.52) 
Note that �1 = - �2. Equation (2.38) is not used since the terms in 

( )(1 2) ,
DCyB x y+

 disappear for x = 0. The sign of � is important in the numerators 
in (2.52). Setting �1 = �2 = � leads to the erroneous result that 
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  (2.54) 
We now set y = 0 analogous to the derivation of (2.46). (By assuming that 
both the RF currents and DC currents in the two wires are anti-symmetric, 
only the result for y = 0 is of interest in the calculation of �.) 
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With IDC = IDC2 = -IDC1 and IRF = IRF2 = -IRF1  
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( )( )
RFB ⊥ �  can now be found as 
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The second term under the root sign in (2.1) is also in this case zero at the 
midpoint between the wires and the expression for d in equation (2.50) 
remains unchanged.  
 An analytical expression for the potential function as a function of 
distance between the parallel wires is now derived. We make use of 
equation (2.45) for ( )DC ,y ρB . The same equation is used for ( )RF ,y ρB with 
IRF substituted for IDC. Equation (2.54) is used for ( ) ( )RF DC, ,y yρ ρB B . 
With IDC = IDC2 = -IDC1 and IRF = IRF2 = -IRF1 equation (2.45) becomes 
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and equation (2.54) becomes 
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When this result is substituted into the equation for ( )( )

RF ,B y ρ⊥  we get 
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The second term under the root sign in (2.1) for the effective potential is 
zero along a line between two parallel wires when IDC = IDC2 = -IDC1 and IRF 
= IRF2 = -IRF1. If the currents in the two wires are of different magnitude 
equation (2.59) is no longer valid and the RF magnetic field normal to the 
local DC magnetic vector ( )( )

RF ,B y ρ⊥  is most likely no longer zero.  
 

2.7  Prospective atom transfer between two parallel wires with 
bias rings  

 
The possibility of pumping cold atoms between two parallel wires using 
bias rings has been briefly explored. This has turned out to be more 
difficult than in the case of two crossed wires. Because the proposed 
technique appears somewhat inconvenient, the description given here will 
be kept short.  
 A common minimum can be created at the centre between the parallel 
wires using bias rings placed around pairs of parallel wires. However, low 
potential regions begin to appear to the side of the wires unless a pair of 
perpendicularly placed bias rings is used in addition to the pair of bias rings 
around the parallel wires. This extra pair of bias rings may be placed 
around a second pair of parallel wires pointing in the orthogonal direction. 
This is the geometry of a four-wire cell, which will be described in Section 
2.8. Here however, only the additional bias rings are of interest.  
 The obtainable common minimum is illustrated in Fig. 2.25. The figure 
shows a pair of parallel wires like the ones in Fig. 2.24, but with the centre 
of the wires moved to x = -0.302 mm. A pair of bias rings of radius r = 1.0 
mm and with RF currents IRF | z-wire rings = [-1.5 1.5] A have been placed 
around both wires at z = ± 3 mm. A pair of perpendicular bias rings, also of 
radius r = 1.0 mm, with RF currents IRF | y-axis rings = [-0.3 0.3] A have been 
placed at y = ± 3 mm, with the centres of the rings offset to x = 0.302 mm. 
The wire currents are the same as in Fig. 2.24. 
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 The creation of such a common minimum may be useful in some 
situations and cold atoms can be transported along the wires in the common 
minimum. It appears however that bias rings centred between the parallel 
wires can not be used to transfer atoms from around one wire to around the 
other wire. The extra pair of perpendicularly placed bias rings does not 
change this. The root of the problem seems to be that one pair of bias rings 
is centred on the common minimum and prevent it from being moved 
sideways towards one of the parallel wires. If the DC current in one of the 
wires is subsequently reduced, the cloud of cold atoms in the common 
minimum will be divided into two and practically no transfer of cold atoms 
will take place between the wires. It can therefore be put in question 
whether the creation of a common minimum between the wires is useful 
enough to justify the presence of the two pairs of bias rings. 
 

 
Fig. 2.25.  Ueff around two parallel wires with a pair of bias rings placed around 
both wires as well as a pair of perpendicularly placed bias rings. The potential 
slice is for z = 0 mm. 

 
If one is prepared to use a pair of bias rings around each of the two parallel 
wires, which may be spaced differently along each of the wires, it seems to 
be possible to transfer cold atoms from around one wire to the other wire.  
 The anticipated cold atom transfer is illustrated by the video animation 
in Fig. 2.26. In the figure, bias rings with a radius of 0.65 mm have been 
placed around each of the two parallel wires in Fig. 2.24. The bias rings are 
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centred at z = ± 3 mm along the wire with a negative y-coordinate and at z 
= ± 3.5 mm along the wire with a positive y-coordinate. The wire currents 
are the same as in Fig. 2.24. The video consists of 18 frames. The bias 
currents in the rings in the 18 animated frames are: 
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where k = 1.546. The constant k is a factor found by optimization which is 
used to increase the current in the pair of bias rings that are spaced 7 mm 
apart so that the strength of the field at the centre between the bias rings is 
equivalent to the field from the bias rings that are spaced 6 mm apart. The 
bias rings at the lower end of the figure have the indices I and III. 
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Fig. 2.26.  Animation of cold atom transfer between two parallel wires. 

 
In the first four frames the cold atoms are being moved down within the 
common minimum between the parallel wires toward the centre of the 
figure. In frame 5 a slope is created around the wire with a negative y-
coordinate toward the common minimum between the wires. The effective 
potential in frame 5 is shown in Fig. 2.27 for z = 0. In frames 6 – 8 bias 
current transitions are done. The common minimum between the wires is 
kept, but the downward slope around the wire with a negative y-coordinate 
is impaired.  
 In frames 9 and 10 the common minimum is pulled toward the wire with 
a positive y-coordinate. This is shown by the graphs for the respective 
frames in Fig. 2.28. The graph for frame 5 is included but it lies underneath 
the graph for frame 8 for the most part. The same is the case for the graphs 
for frame 6 and 7 and they have therefore been left out. In frame 11 – 14 
the DC current in the wire with a negative y-coordinate is reduced to 95 %, 
90 %, 75 % and 50 % respectively of its original value. This splits the 
potential surfaces around the two wires but retains the cold atoms in the 
minimum around the wire with a positive y-coordinate. In frames 15 – 18 
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the cold atoms are moved down along the same wire. The minimum would 
have been moved all the way down if the bias current had been completely 
turned off in the lower bias ring around the other wire. 

 

 
Fig. 2.27.  The effective potential around two parallel wires corresponding to 
frame 5 in the animation in Fig. 2.26.  
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Fig. 2.28.  The effective potential between two parallel wires for several of the 
frames in the animation in Fig. 2.26. 
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Although is seems feasible to transfer atoms directly between two parallel 
wires this requires a pair of relatively small bias rings around each of the 
two wires. Small bias rings have been found to be less efficient than larger 
bias rings as explained in Section 2.3, and the currents in the bias rings 
must therefore be relatively much larger. It may therefore be just as 
practical to place a crossing wire next to the parallel wires and transfer 
atoms from around one parallel wire to the other by doing two atom 
transfers between crossed wires.  
 

2.8  The four-wire cell 
 
If two pairs of parallel wires are placed so that they cross in two different 
planes a four-wire cell is created. The geometry of the four-wire cell is 
shown in Fig. 2.29. To a first approximation dx can be taken to be the 
distance d for two crossed wires from equation (2.18), and dy the distance d 
for two parallel wires from equation (2.50). 
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Fig. 2.29.  The four-wire cell viewed from the side and from above.  

 
The nature of the effective potential is however so that any change in 
geometry or currents affects the overall potential, at least for wires that are 
relatively close to each other. Therefore the equations derived for two 
crossed wires in Section 2.4, or for two parallel wires in Section 2.6, are no 
longer accurate in the case of the four-wire cell. This is illustrated by the 
plot of the isosurface Ueff = 8e-29 J in Fig. 2.30, where one of the wires in 
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the four-wire cell has been removed by setting the DC and RF currents to 
zero. The figure shows that just by adding a crossing wire the effective 
potential between two parallel wires is influenced considerably, even at 
some distance from the crossing wire. 
 

 
Fig. 2.30.  The potential surface Ueff = 8e-29 J for two parallel wires and a third 
crossing wire. The currents in the two vertical wires are: 

( ) [ ]1,2
DC 92.5,  92.5  mA,z wireI − = −  and ( ) [ ]1,2

RF 10,  10  mA.z wireI − = −  The currents in the 

horizontal wire are: ( )2
DC 92.5 mA,y wireI − =  and ( )2

RF 10 mA.y wireI − =  The frequency 

is RF 0.8 MHz.f =  The distance dx = 0.302 mm and the distance dy = 0.427 mm. 
The radius of the wires is 57.2 μm. 

 
To adjust for the dependence of the effective potential on the contributions 
from each wire in the design, the most practical solution is to resort to 
optimization. The four-wire cell and the multi-wire structures described 
later in this Chapter have therefore all been optimized to better bring to 
light what their realizable potential is. It may still be possible to find 
analytical equations for a limited number of wires, but this approach has 
not been pursued. This is because the math becomes complicated while the 
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result is of limited benefit. New equations will have to be found for every 
variant of the geometry and the equations may not become practical to use.  
 Optimizations have instead been done by running simple scripts in 
Matlab. The optimization scripts are mostly based on the use of the built in 
function “fminbnd”, which accepts a function argument. The function 
searches for the value of a specified variable of the argument function that 
minimizes the overall function value. A starting value and upper and lower 
bounds for the variable that is solved for are supplied beforehand. The 
argument function, which in this case is the potential function Ueff for the 
relevant geometry, is evaluated only in a single geometric point, which is 
either at the centre between two crossed wires or at the centre between two 
parallel wires. The function “fminbnd” is called for every variable that is 
optimized from within a while-loop. The while-loop is repeated a certain 
number of times to allow each variable to be determined with the 
remaining variables that are being optimized updated. This allows the 
optimized variables to converge on a consistent solution. The number of 
iterations of the while-loop has been set high to make absolutely sure that 
the solutions for the different optimized variables have converged. Running 
the optimization scripts is in fact done in minutes, but checking the result 
by computing the potential in 3D for the complete structure may take an 
hour or more depending on the number of wires, the resolution and the 
necessary plot range.  
 
The optimization script for the four-wire cell is for example as follows: 
 
options = optimset('TolX',1e-18,'FunValCheck','off'); 
x1z=-3.020987525871509e-4; 
dy1=-4.272321530847429e-4;  
 
% Set upper and lower bounds on the controller 
lb_x1z = -5e-4;  
ub_x1z = -0.2e-4; 
lb_dy1 = -7e-4;  
ub_dy1 = -0.5e-4; 
  
wire_geom=0; 
k=1; 
while k <= 20 
    Ueff_fun=@(x1z) abs(Total_U_eff(wire_geom,dy1,x1z,0,dy1,dy1)); 
    x1z = fminbnd(@(x1z) abs(Total_U_eff(wire_geom,dy1,x1z,0,dy1,dy1)),lb_x1z,ub_x1z,options); 
    Ueff_fun=@(dy1) abs(Total_U_eff(wire_geom,dy1,x1z,x1z,0,dy1)); 
    dy1 = fminbnd(@(dy1) abs(Total_U_eff(wire_geom,dy1,x1z,x1z,0,dy1)),lb_dy1,ub_dy1,options); 
    k=k+1; 
end 
fprintf('x1z =%0.15e \n\n',x1z) 
fprintf('dy1 =%0.15e \n\n',dy1) 
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x1z is here the distance -dx and dy1 the distance -dy in Fig. 2.29. Upper and 
lower bounds are first defined for the two variables. The argument 
function, which is here named “Total_U_eff”, returns the value of the 
effective potential. The wire geometry is specified as an input argument 
where “wire_geom = 0” corresponds to the four-wire cell. The next two 
input arguments are the two variables being optimized. The last three input 
arguments are the x- y- and z-coordinates of the point where the argument 
function is minimized. Finally the optimized variables are printed out. The 
negative sign for both x1z and dy1 is a result of the position of the 
geometric origin. 
 The isosurface Ueff = 8e-29 J for the optimized four-wire cell is shown 
in Fig. 2.31. The minimum potential manifold is close to the shown 
isosurface. Closer to the wires and in the middle between the crossing wires 
the potential is higher. The wire currents are ( ) [ ]1,2

DC 92.5,  92.5  mAz wireI − = −   

and ( ) [ ]1,2
DC 92.5,  92.5  mA.y wireI − = −  The RF currents are 10 mA, and have 

the same sign as the DC current in each wire. The frequency is 0.8 MHz as 
before. The optimized distances are dx = -x1z = 0.267 mm and dy = -dy1 = 
0.370 mm. The effective potential has been minimized in the point (x, y, z) 
= (0, dy1, dy1) for x1z and in the point (x, y, z) = (x1z, 0, dy1) for dy1. As 
previously explained the RF currents must be of equal magnitude and either 
all be of the same sign as the DC current in each wire, or all be of opposite 
sign with respect to the DC current in each wire.  
 The described optimization approach has been successful especially for 
smaller geometries involving a limited number of optimized variables. If 
the intention is to fabricate the four-wire cell using conductors on top of 
and under a micro machined substrate, the distance between the crossed 
wires should be fixed at the chosen substrate thickness plus one conductor 
height. In this case the two variables to optimize are the distance dy and the 
DC wire current. This optimization has been done for the four micro-wire 
cell which is described in the next Chapter.  
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Fig. 2.31.  The potential surface Ueff = 8e-29 J for four crossing wires. The 
distances between the crossing and parallel wires have been optimized.  

 
The optimized four-wire cell is shown in a complementary slice-plot in Fig. 
2.32. The purpose of the optimization has been to obtain minima in the 
effective potential between the crossed wires in the four wire-crossing-
points and between the parallel wires behind the crossing wires. In Fig. 
2.32 a near circular potential minimum can be seen in the yz-plane around 
the centre of the cell. This 2D potential minimum is of practically uniform 
depth for the optimized cell. The minimum also has additional small loops 
outwards between the parallel wires on each side.  
 The footprint of the potential minimum can be discerned from the 
darkest blue regions in Fig. 2.32. Without optimization the 2D potential 
minimum is not of perfectly uniform depth. Instead eight slightly deeper 
minima are found along the periphery on both sides of the four wire-
crossing-points. Thus the 2D potential minimum in the yz-plane can be 
used to check the quality of the optimization. 
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Fig. 2.32.  Animation showing the frequency being reduced in the four-wire cell. 

 
Fig. 2.32 is also a video animation showing the transformation of the 
effective potential as the RF frequency is reduced from 0.8 MHz to zero in 
steps of 0.1 MHz. The video shows that as the frequency is reduced the 
local potential maximum at the centre remains isolated in 3D while the 
surrounding minimum around the wires implodes into the centre. This 
effect may allow the study of collision and entanglement between strong- 
and weak-field-seeking atoms. But this is a bit speculative. 
 When the four-wire cell is excited by only the DC currents it becomes a 
trap for weak-field-seeking atoms. The effective potential is now as shown 
in Fig. 2.33. Unfortunately there is an absolute zero in the effective 
potential at the centre of the trap as a result of the symmetry of the 
geometry. This will lead to Majorana spin-flip transitions. One solution is 
to place bias rings around either single wires or pairs of parallel wires 
outside the cell. If one can live with a slight degradation of the trapping 
potential is should also be possible to alter the DC or RF currents very 
slightly in the wires to avoid the zero in the B-field.  
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Fig. 2.33.  Slice-plot showing the four-wire cell excited by only the DC currents. 

 
To quantify precisely the depth of the four-wire cell trap, graphs have been 
calculated of the effective potential along the x-axis in Fig. 2.34 and along 
the z-axis in Fig. 2.35. The x-axis goes through the centre of the cell and 
extends out between the parallel wires on both sides. The z-axis goes 
through the centre of the cell vertically. The axes are identical to those 
shown in Fig. 2.33. The temperature has been calculated as ,eff BT U k=  
where kB = 1.3807e-23 J/K is Boltzmann’s constant.  
 In the two figures the red graph are for 0.8 MHz,RFf =  the green graphs 
for 0.6 MHz,RFf =  the blue graphs for 0.4 MHz,RFf =  the magenta 
graphs for 0.2 MHz,RFf =  and the black graphs are for zero frequency. 
The potential along the y-axis is identical to the potential along the z-axis in 
Fig. 2.35, as dictated by the geometric symmetry of the cell. Note that in 
the calculation of the effective potential the magnetic quantum number has 
been set to mF = 2 for all graphs. If the potential maximum at the centre of 
the cell is used to catch and hold ground state atoms with mF = 1, the 
effective potential shown by the graphs must be divided by two according 
to equation (2.1), when the ground state atoms are considered. 
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 In the case of DC + RF excitation no absolute zero in the effective 
potential has been found. However, the graphs of the potential in Fig. 2.34 
and Fig. 2.35 suggest that a somewhat deformed spherical minimum exists 
around the centre of the cell at least for frequencies below 0.6 MHz. This 
minimum could well lie at zero potential for the four-wire cell. To be able 
to see a minimum of zero directly, a point on the zero minimum manifolds 
would have to coincide exactly with a mesh point with full numeric 
precision. It is therefore in this case difficult to establish whether the 
minimum is exactly zero or a small value except by painstaking equation 
analysis. This has not been pursued further. 
 One other matter to consider is that as the RF frequency becomes low 
the RF current will at some point begin to behave more like a DC current. 
Unfortunately the DC currents can not be allowed to change much at all. It 
may be possible to gradually reduce the RF current amplitude for low 
frequencies so that the RF current amplitude becomes zero as the frequency 
approaches zero. This transition is difficult to explore analytically 
especially since equation (2.1) is not sensitive to the amplitude of the RF 
current.  
 

 
Fig. 2.34.  The potential along the x-axis through the centre of the four-wire cell. 
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Fig. 2.35.  The potential along the z-axis through the centre of the four-wire cell. 

 
Loading of the four-wire cell can be contemplated in several different 
ways. One possibility is to load the four-wire cell trap with weak-field-
seeking atoms by pumping the atoms in along one of the four wires with 
the other wires inactive. Wires can be made inactive by reducing their DC 
currents to for example 50 % of their critical values. This will retract the 
minimum potential manifolds around the wires so much that they don’t 
come anywhere near the minimum potential manifolds around wires that 
carry DC currents at their critical levels.  
 When the cold atoms have been moved to one of the four sides in the 
cell, the DC currents can be slowly increased back to their critical values 
again in the other three wires. The potential minimum either at the centre or 
around the centre of the cell should then have been loaded with the low-
field-seeking atoms. This technique is most realistic for geometries 
consisting of a single cell or only a pair of cells since it is difficult to 
transport atoms to more than one cell at a time along any one of the wires. 
In practise all the cells in the geometry must be turned on at the same time 
since they share some of the wires. 
 A different technique would be to load the four-wire cell with strong-
field-seeking atoms by filling the volume containing the trap with a cold 
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atom condensate. Then the DC and RF currents in the wires can then be 
slowly turned on and some ground state atoms would then presumably be 
trapped in the local potential maximum at the centre of the cell. It is not 
clear whether this technique of loading the cell with ground state atoms can 
be combined with loading of the cell with weak-field-seeking atoms along 
one of the wires. The weak-field-seeking atoms would in this case have to 
be pumped toward a corner of the cell with all four wires carrying DC 
currents at their critical levels.  
 Loading of the cell structures has not been explored in simulations 
because the procedure will be more elaborate than in the case of 
transferring atoms between crossed wires for example. Eventual results 
would also be less suitable for easy illustration here. Before more effort is 
invested in exploring different loading techniques it would be best to have 
experimental confirmation of especially the four-wire cell’s ability to trap 
different sorts of cold atoms. 
 Another way of loading cells with cold atoms would be to send the 
atoms into the centre of the cell through a hollow core optical fibre. Atom 
transport through hollow core optical fibres has already been demonstrated 
in [86]. The optical fibres should not affect the magnetic field generated 
potential, and the fibres could be inserted between the parallel wires, (along 
the x-axis in Fig. 2.33), or from any direction between the layers of parallel 
wires. This loading technique would be suitable for geometries with an 
arbitrary number of cells. Several multi-cell geometries will be described in 
the following sections of this Chapter. This method of loading the trap can 
be implemented experimentally without further theoretical consideration. 
 

2.8.1  The four-wire cell and a quadrupolar trap 
 
One possible use of the four-wire cell, which has been described already, is 
in the exploration of collision and entanglement between strong- and weak-
field-seeking atoms. Another possible application, which has been briefly 
looked at, is to use the four-wire cell in place of a pair of closely spaced 
bias loops in a quadrupolar trap.  
 However, because there is an absolute zero in the magnetic field at the 
centre of the four-wire cell when it is excited by only DC currents, the 
problem of Majorana spin-flip transitions persists also for the quadrupolar 
trap when it is combined with the four-wire cell. This makes the use of the 
four-wire cell less attractive compared to a pair of bias rings, since the bias 
rings may be used to eliminate the minimum of zero. Because the four-wire 
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cell is a new concept in combination with a quadrupolar trap, the possible 
use of the four-wire cell will nevertheless be given a short introduction 
here.  
 
The four-wire cell can be placed either on the outside or on the inside of the 
four Ioffe-bars in a quadrupolar trap. The effective potential for the four-
wire cell placed on the outside of the Ioffe-bars is shown in Fig. 2.36, 
where only DC excitation has been used. Because the opening between the 
wires in the four-wire cell described above is very small, a scaled variant of 
the four-wire cell has been used.  
 The scaling of the four-wire cell has been done provisionally in the 
following way. First the distance between the four Ioffe-bars, each with a 
radius of 0.1 mm, has been set to 0.6 mm. The DC current in the Ioffe-bars 
has been set to 150 mA. To keep the wires away from the Ioffe-bars the 
distance dy, which is half the distance between two parallel wires, has been 
set to dy = 0.65 mm. The distance d between two parallel wires is given by 
equation (2.50) for the case of IDC2 = -IDC1. This equation can be used to 
find the necessary DC current in the wires of the four-wire cell as follows: 
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   (2.71) 
where the frequency has been kept at 0.8 MHz. The distance dx can be 
found as 2 0.65 mm 2 0.46 mm.x yd d= = =  The radius of the wires in 
the four-wire cell has been increased to 0.1 mm. To obtain the best possible 
result two of the three variables dx, dy, or |IDC| should be optimized. 
Optimization has not been done in this case since this is not necessary to 
obtain an overview. 
 Two additional minima are located on both sides of the potential 
minimum at the centre in Fig. 2.36(a). An Isosurface plot of the potential 
levels Ueff = 2e-28 J and Ueff = 8e-28 J is provided in Fig. 2.36(b). The 
channel between the Ioffe-bars through the four-wire cell can be seen in the 
middle. Just outside of the bars a red lump can be seen on the right side. It 
contains one of the two additional minima on the inside. 
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(a) 

 

 
(b) 

Fig. 2.36.  The four-wire cell placed on the outside of the Ioffe-bars. (a) A slice-
plot view, and (b) the isosurfaces Ueff = 2e-28 J (blue) and Ueff = 8e-28 J (red). 
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The effective potential for the four-wire cell placed on the inside of the 
Ioffe-bars is shown in Fig. 2.37. The same four-wire cell as in Fig. 2.31 has 
here been used. The DC currents in the wires are also the same and only 
DC excitation has been applied. The only difference is that the wire radius 
has been increased to 0.1 mm. The four Ioffe-bars, each with a radius of 0.1 
mm, have been placed 1.6 mm apart. The DC current in the Ioffe-bars has 
been increased to 500 mA in the figure. A branching out of the minimum 
potential is seen along the channel to the right of the minimum at the 
centre. The current has therefore been increased in the bars in an attempt to 
isolate the end points on the branches from the minimum potential channel 
through the cell.  
 Graphs of effective potential through the length of the quadrupolar trap, 
i.e. along the x-axis, for the simulated geometries in Fig. 2.36 and Fig. 2.37 
are shown in Fig. 2.38. Note that the graphs are not directly comparable 
due to the different geometries and DC currents in the four-wire cells. The 
current in the Ioffe-bars has no effect on the graphs in Fig. 2.38 since the 
field is zero in the middle between the bars. 

 

 
Fig. 2.37.  The four-wire cell placed on the inside of the Ioffe-bars.  
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Fig. 2.38.  Potential graphs along the x-axis for the geometries in Fig. 2.36 (blue), 
and Fig. 2.37 (red). 

 
As one might expect the quadrupolar trap becomes tighter with the four-
wire cell on the inside of the Ioffe-bars. This follows from that the four-
wire cell is physically smaller in this case. An absolute zero in the potential 
is seen at the centre of the trap. Majorana spin-flip transitions must 
therefore be prevented either by changing one or more of the currents 
slightly or by applying an external bias field. 
 The branching out of the minimum potential in the channel for the four-
wire cell on the inside of the Ioffe-bars happens in the orthogonal plane on 
the opposite side if the DC currents in the Ioffe-bars are reversed. For 
Ioffe-bar currents of 150 mA the branching of the minimum is illustrated 
by the blue isosurface in Fig. 2.39. This feature is a serious drawback with 
placing the four-wire cell on the inside of the bars. 
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Fig. 2.39.  Ueff for the geometry in Fig. 2.37 with reduced Ioffe-bar currents. The 
isosurfaces are Ueff = 2e-28 J (blue) and Ueff = 8e-28 J (red). 

 
Another way of looking at these results is that it should be possible to load 
the four-wire cell with weak-field-seeking atom condensate by pumping it 
along the minimum between four Ioffe-bars placed either on the inside or 
on the outside of the four-wire cell. This is however probably not the most 
practical way of loading the four-wire cell. 
 The combined DC and RF excitation of the four-wire cell with Ioffe-
bars present has also been briefly explored. As an example the effective 
potential for the geometry in Fig. 2.36, where the four-wire cell is on the 
outside of the Ioffe-bars, is shown in Fig. 2.40. The DC currents in the 
four-wire cell are the same as in Fig. 2.36. The RF current amplitude is 20 
mA and the frequency is 0.8 MHz. The DC current in the four Ioffe-bars is 
150 mA. The topology of the effective potential exhibits a complicated 
pattern in three dimensions in this case. The effective potential pattern 
through the centre of the trap nevertheless shows some similarity to that of 
an ordinary Ioffe-Pritchard trap excited by both DC and RF currents.  
 It is interesting to note that only DC currents have been used in the 
Ioffe-bars in Fig. 2.40. Separate simulations have shown that there is no 
visible difference to the figure if small RF currents are added in the Ioffe-
bars. 
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Fig. 2.40.  Ueff for the geometry in Fig. 2.36 with both DC and RF excitation. 

 
To sum up it should be possible to use the four-wire cell as an alternative to 
a pair of closely spaced bias rings in a quadrupolar trap. The four-wire cell 
can be placed either on the outside or on the inside of the Ioffe-bars. The 
trap becomes tighter when the four-wire cell is placed on the inside of the 
Ioffe-bars, but a branching of the potential minimum on one side is a major 
drawback. If the four-wire cell is used with only DC excitation steps must 
be taken to prevent Majorana spin-flip transitions. 
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2.9  Single-layered cell-grids 
 
Arrays of multiple cells can be created by adding more parallel wires in 
both wire-planes. The simplest multi-cell geometry, which consists of 3 x 3 
crossed wires, is shown in Fig. 2.41. 
 

 
Fig. 2.41.  3 x 3 crossed wires viewed from the side and from above. 

 
The 3 x 3 wire geometry exhibits either two local potential maxima or two 
potential minima diagonally depending on whether DC + RF excitation or 
just DC excitation is applied to the wires. The two potential maxima or two 
potential minima represent potential wells for strong-field-seeking or weak-
field-seeking atoms respectively. The two potential wells can subsequently 
be merged to form a single potential well at the centre of the geometry by 
reducing the DC currents in the two centre wires. This particular geometry 
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is therefore interesting for the study of entanglement of BEC matter placed 
in the two potential wells. If such entanglement of BEC matter takes place, 
the structure may be used as a matter-wave beam splitter as part of an 
interferometer [107]. However, a closer study or practical experiments will 
be needed to properly assess the usefulness of the structure for this purpose. 
 The 3 x 3 wire geometry also requires optimization to maximize the 
height of the trapping barrier. In this case three out of the four variables dx 
= h/2, dy = d/2, |IDC, c-w| or |IDC, p-w| should be optimized. Here |IDC, c-w| is the 
current in the two centre wires and |IDC, p-w| is the current in the four 
peripheral wires. The DC currents must be in opposite directions in 
adjacent parallel wires in each wire-plane.   
 A 3 x 3 wire geometry of comparable size to the four-wire cell 
described in Section 2.8 has been studied as an example. The variables x1z 
= -dx, dy1 = -dy, and IZ2 = |IDC, p-w| have been optimized. The DC current in 
the centre wires |IZ1| = |IDC, c-w| has been kept at 92.5 mA. The optimization 
technique is otherwise the same as in the case of the four-wire cell. The 
optimized variables are shown in Table 2.3 together with their values. The 
table also lists the point where the function for the effective potential has 
been minimized. 
 
Table 2.3.  Defining variables for the three-by-three wire geometry. Three 
variables have been optimized. The variable IZ1 is also listed.  

Variable Value Ueff minimized in point (x, y, z) 
IZ1 -92.5 mA  Not optimized 
IZ2 82.1 mA 0, 2*dy1, 2*dy1 
dy1 -0.346 mm x1z, dy1, 0 
x1z -0.243 mm 0, 0, 0 

 
The remaining variables used in the simulation are found from the variables 
in Table 2.3 from symmetry. They become as follows:  
IZ3 = IZ2, IYn = IZn for n = 1 – 3, dz1 = dy1 and x1y = -x1z. In the case of 
the DC currents the numbers in the variable names refer to the wires 
numbered in the positive y-direction or from bottom to top in the following 
order {3 1 2}. 
 
When combined DC and RF excitation is used two local maxima or peaks 
in the effective potential appear in one of the two diagonal directions. The 
signs of the DC currents in the wires in one of the wire-planes determine 
along which diagonal the peaks appear. A plot of the effective potential in 
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the yz-plane, which is located at the centre between the two wire-planes at  
x = 0, is shown in Fig. 2.42. The DC wire currents in the figure are 

( ) [ ]1 3
DC 82.1, 92.5, 82.1  mAz wireI −

− = −  and 
( ) [ ]1 3
DC 82.1, 92.5, 82.1  mA.y wireI −

− = −  

The RF currents are ( ) [ ]1 3
RF 10, 10,10  mAz wireI −

− = −  and 
( ) [ ]1 3
RF 10, 10, 10  mA.y wireI −

− = −   RF 0.8 MHz.f =   The distance  d = -2�dy1 =  
-2�dz1 = 0.692 mm and the distance h = -2�x1z = 0.486 mm. The radius of 
the wires is 57.2 μm. 
 

 
Fig. 2.42.  Animation showing merger of two potential maxima. 

 
Fig. 2.42 is also an animation which shows the merger of the two peaks 
into a single maximum at the centre of the geometry. This is accomplished 
by reducing the DC current in the centre wires. The DC currents in the 
centre wires in the nine frames in the animation are: 

( ) [ ]2
DC, 92.5,  69.4,  46.3,  23.1,  9.25,  23.1,  46.3,  69.4,  92.5  mA.c wI − =  The DC 

current is negative in the centre wire in both the z-direction and the            
y-direction.  
 The mid-frame in the animation is shown in Fig. 2.43. The effective 
potential here forms a single maximum at the centre. What this 2D plot 
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does not reveal is the shape of the potential in the perpendicular x-direction. 
A 3D figure of the effective potential is therefore provided in Fig. 2.44. 
This figure shows that the effective potential is much higher around the 
centre wires in the x-direction. This greatly reduces the height of the 
potential barrier in this direction. 

 
Fig. 2.43.  The merged potential maximum in the yz-plane. 

 
Fig. 2.44.  The merged potential maximum in a 3D perspective. 
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In order to quantify the magnitude of the trapping potential, graphs of the 
effective potential have been calculated along the lines labelled u and v in 
Fig. 2.41 as well as in the x-direction through the point where the lines u 
and v intersect and in the x-direction through the mid-point of the 
geometry. These graphs are shown in Fig. 2.45 to Fig. 2.48.  
 The graphs show the temperature potential in Kelvin, which is simply 
the effective potential divided by Boltzmann’s constant. The red graphs 
correspond to the initial situation in Fig. 2.42 with two peaks diagonally 
and the black graphs correspond to a single maximum at the centre of the 
geometry. The dotted blue graphs, the dashed green graphs and the dash-
dotted magenta graphs correspond to frames 2 – 4 in the animation in Fig. 
2.42, and indicate the transition in going from the red to the black graphs. 
 

 
Fig. 2.45.  The effective potential along the line u in Fig. 2.41 for x = 0. 

 
Because the peaks in the effective potential in Fig. 2.45 – Fig. 2.48 attract 
strong-field-seeking atoms, the graphs have been calculated using the 
magnetic quantum number for strong-field-seeking atoms, i.e. mF = 1 in 
equation (2.1). Note that the positions of the peaks of the red graph are 
minutely displaced from the centres of the two diagonal cells. This is 
thought to be caused by the diagonal symmetry of the effective potential 
pattern for the geometry as a whole. The structure has been optimized for 
the initial situation of two peaks in the effective potential. When the DC 
currents in the centre wires are reduced the match in the minima next to the 
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merging peaks at the centre gets progressively worse. This explains the 
small lobes next to the single maximum in Fig. 2.45. 
 The potential along the line v in Fig. 2.41 is shown in Fig. 2.46. For the 
red graph a small maximum can be seen in the cells without the peaks. 
These small maxima are not thought to pose a problem. In any case there is 
little that can be done to minimize them since they are part of the overall 
effective potential pattern. The black graph only slices through the single 
central maximum near the edge and is therefore of limited interest.  
 Fig. 2.47 shows that the potential barrier is smaller in the x-direction for 
the red graph than it was in the v- and u-directions. The difference here is 
about 10 μK. Again the black graph slices through the single central 
maximum in the periphery and provides little extra information. 
 

 
Fig. 2.46.  The effective potential along the line v in Fig. 2.41 for x = 0. 
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Fig. 2.47.  The effective potential in the x-direction through the point where the 
lines u and v intersect in Fig. 2.41. 

 
The main weakness of this design can be seen in the plot of the potential in 
the x-direction through the point where the centre wires intersect in Fig. 
2.48. Because the DC current has been reduced to 10 % of its value before 
the merger of the two peaks started, the potential does not drop very much 
around and outside of the centre wires. The potential barrier for the black 
graph measured from the centre-point to the dips around the wires is only 
about 9.6 μK. One should in fact instead look at the potential to the side of 
the centre wires as shown in Fig. 2.44. Here the potential appears to be 
higher than in the minimum around the centre wires, and so the potential 
barrier would be even lower. This makes it difficult to trap strong-field-
seeking atoms in the merged potential maximum at the centre unless 
something is done to make the potential barrier larger. It may for example 
not be necessary to reduce the DC current quite down to 10 % for the two 
peaks to have merged completely. 
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Fig. 2.48.  The effective potential in the x-direction through the point where the 
centre wires intersect in Fig. 2.41. 

 
In the next Chapter a micrometre-sized 3 x 3 wire structure will be shown. 
Here the potential barrier is considerably higher. The height of the barrier 
depends it seems on the distance from the wire surfaces to the atom 
condensates that is chosen when the scaling of the trap is done. The current 
magnitude in the wires may also be very important in this context. 
 
When the 3 x 3 wire geometry in Fig. 2.41 is excited only by DC currents 
two potential minima appear along one of the diagonals instead of the 
peaks. This is illustrated in Fig. 2.49. The small potential maxima along the 
other diagonal in Fig. 2.42 are still there however, and have not been turned 
into shallow minima. So the potential landscape is not exactly inverted. 
Since the potential minima attract weak-field-seeking atoms mF = 2 must 
now be used in equation (2.1). 
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Fig. 2.49.  Potential minima in the yz-plane with only DC excitation. 

 
Graphs of the effective potential have also in this case been calculated 
along the lines u and v and in the x-direction through the points where the 
lines u and v intersect and where the centre wires intersect. The graphs 
have been calculated using the magnetic quantum number for weak-field-
seeking atoms (mF = 2). The blue graph along the line u in Fig. 2.50 shows 
the two potential wells. The two minima are also here minutely offset from 
the centres of the two diagonal cells. The reason for this may be the 
diagonal symmetry seen in the overall effective potential. The two minima 
have so far not been seen to be absolute zeros in the potential. However, 
because the exact positions of the minima are not known it is difficult to 
confirm this definitely.  
 The dotted red graphs, the dashed green graphs and the dash-dotted 
magenta graphs indicate the potential when the DC current in the two 
centre wires has been reduced to 75 %, 50 % and 25 % respectively of its 
original value, just as in the figures for combined DC and RF excitation. 
Note that the potential barrier in Fig. 2.50 – Fig. 2.53 is twice as high as in 
the case of combined DC and RF excitation. This is for the most part due to 
the use of different magnetic quantum numbers. In Fig. 2.53 the height of 
the potential barrier measured between the mid-point on the black graph 
and one of the small peaks next to the wires is about 21.2 μK. This is much 
better than in the case of combined DC and RF excitation in Fig. 2.48. 
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Fig. 2.50.  The effective potential with only DC excitation along the line u shown 
in Fig. 2.41 for x = 0. 

 

 
Fig. 2.51.  The effective potential with only DC excitation along the line v shown 
in Fig. 2.41 for x = 0. 
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Fig. 2.52.  The effective potential with only DC excitation in the x-direction 
through the point where the lines u and v intersect in Fig. 2.41. 

 

 
Fig. 2.53.  The effective potential with only DC excitation in the x-direction 
through the point where the centre wires intersect in Fig. 2.41. 
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Another geometry that has been studied is that of 6 x 6 intersecting wires. 
The geometry, which is shown in Fig. 2.54, is obtained by simply adding 
three extra parallel wires in each of the two wire-planes in Fig. 2.41.  

 

y

z

3

21 3

4

4

2

1

5

5

6

6

( )
12

yd

( )
23

yd

( )
34

yd

( )
12

zd

( )
23

zd

( )
34

zd

 
Fig. 2.54.  Cell-grid consisting of 6 x 6 wires. Local potential maxima are 
indicated with circles. 

 
The effective potential for the 6 x 6 wire structure is shown in the yz-plane 
in Fig. 2.55. The yz-plane in the figure lies at the centre between the two 
wire-planes. The effective potential is seen to have peaks in a chequered 
pattern, with a peak in every other cell position. A reversed pattern with 
peaks in the cell positions without peaks in Fig. 2.55 can also be created if 
the directions of the DC currents in the wires in one of the wire-planes are 
reversed.  
 A different perspective on the pattern of peaks is given by the plot of the 
effective potential level 9e-29 J in Fig. 2.56. The peaks in the effective 
potential are here located in the openings between the wires. It is also clear 
that the potential surfaces close around pairs of wires where they emerge 
from the grid in an extension of the potential pattern seen within the grid. 
 Altogether six variables have been optimized for the 6 x 6 wire cell-grid 
in Fig. 2.55 and Fig. 2.56. The variables are listed in Table 2.4 along with 
their values and the point where the effective potential function has been 
minimized. The optimization technique is the same as for the four-wire cell 
and the 3 x 3 wire geometry. The variables IZ3 and IZ5 are the DC current 
magnitudes in the second outermost and the outermost wires in each wire-
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plane. The variables dy1, dy3 and dy5 are the distances from the symmetry 
line of each wire-plane to the innermost, second outermost and outermost 
wire pairs respectively. x1z = h/2 sets the distance between the wire-planes.  
 
Table 2.4.  Optimized variables for the cell-grid in Fig. 2.54. A total of six 
variables have been optimized. The variable IZ1 is also shown.  

Variable Value Ueff minimized in point (x, y, z) 
(IZ1) -92.5 mA Not optimized 
IZ3 93.0 mA 0, dy3, dy1 
IZ5 -82.6 mA 0, dy5, dy1 
dy1 -0.343 mm x1z, 0, dy1 
dy3 -1.03 mm x1z, (dy3-0.5*(dy3-dy1)), dy1 
dy5 -1.73 mm x1z, (dy5-0.5*(dy5-dy3)), dy1 
x1z -0.247 mm 0, dy1, dy1 

 
All of the other DC currents and distances used in the simulation can be 
found from the variables in Table 2.4. The remaining DC currents become 
IZn = -IZ(n-1) for n = {2, 4, 6} and IYn = IZn for n = 1 – 6. The remaining 
distances are found as dyn = -dy(n-1) for n = {2, 4, 6} and dzn = dyn for    
n = 1 – 6. x1y = -x1z. The wires have here been numbered in the positive      
y-direction or from bottom to top in the order {5 3 1 2 4 6}. 
 
In Fig. 2.54 the wires are numbered sequentially from left to right and from 
bottom to top. Relative to this figure the DC currents in the six wires in 
each wire-plane become as follows: 

( ) [ ]1 6
DC -82.6,  93.0,  -92.5, 92.5, -93.0,  82.6  mAz wireI −

− =  and 
( ) [ ]1 6
DC -82.6,  93.0,  -92.5, 92.5, -93.0,  82.6  mA.y wireI −

− =   

The RF currents are ( ) [ ]1 6
RF -10,  10,  -10, 10, -10,  10  mAz wireI −

− =  and 
( ) [ ]1 6
RF -10,  10,  -10, 10, -10,  10  mA.y wireI −

− = RF 0.8 MHz.f =   

The distances shown in Fig. 2.54 are found as d12 = |dy5|-|dy3| = 0.701 mm, 
d23 = |dy3|-|dy1| = 0.684 mm and d34 = 2·|dy1| = 0.687 mm. The distance 
between the two wire-planes becomes h = 2·|x1z| = 0.493 mm. 
 
The inter-wire spacing resulting from the optimization is seen to differ by 
less than 2.5 %. It is therefore a good question whether uniform inter-wire 
spacing could work just as well. With the simple optimization technique 
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used the best result is however obtained by including all three distances 
dy1, dy3 and dy5 in the optimization instead of just the distance dy1. The 
optimization of both the inter-wire distances and the currents in the two 
outermost wires in each wire-plane thus appears to guide the optimization 
script toward a better solution.  
 In a practical realization it may be convenient to use a substrate with a 
specific thickness. In this case the DC current magnitude in the innermost 
wires in each wire-plane IZ1 should be optimized instead of x1z. 
 

 
Fig. 2.55.  The effective potential generated by DC and RF currents in a 6 x 6 
wire structure. In the figure x = 0.  
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Fig. 2.56.  The isosurface Ueff = 9e-29 J for the 6 x 6 wire structure with DC and 
RF excitation. 

 
If only the DC currents are applied to the 6 x 6 wire structure in Fig. 2.55 
and Fig. 2.56, the effective potential in the yz-plane becomes as shown in 
Fig. 2.57. The figure shows as expected a larger pattern of the same kind as 
previously shown in Fig. 2.49 for the 3 x 3 wire geometry. There are not 
thought to be any absolute zeros in the effective potential in Fig. 2.57. 
Cross-interference between the cells and a not quite perfect optimization 
seems to raise the potential minima above zero and thus limit the 
possibility of Majorana spin-flip transitions. It is however difficult to be 
absolutely certain of this since the effective potential is close to zero 
especially in the cell at the centre. 
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Fig. 2.57.  The effective potential generated by DC currents in the 6 x 6 wire 
structure. 

 
The 6 x 6 wire structure forms a multi-cell grid that could find use in the 
making of a quantum register with increased noise immunity. As seen in 
Fig. 2.55 and in Fig. 2.57 only half the cell positions have a peak or 
minimum in the effective potential which makes them usable. This cell-grid 
and the multi-layered cell-grids in Section 2.10 have an effective potential 
pattern that should be made use of as it is in an eventual application. For 
example, the 6 x 6 wire structure is not well suited for merging BEC 
condensates in adjacent potential peaks or minima. This is because each 
wire is shared between several cells. Attempts to merge two peaks or 
minima distort the effective potential in other cells so that only a few of the 
cells become usable. The only operation that can be controlled electrically 
for all cells is to turn the potential maxima into potential minima by 
reducing the frequency and turning down the RF currents. 



 
2.10  Multi-layered cell-grids  119 

 

2.10  Multi-layered cell-grids 
 
Cell-grids such as those described in the previous section can be stacked in 
multiple layers. This may find application in the making of volume 
compact quantum registers. The stacking of cell-grids is straightforward in 
principle. The only thing to keep in mind is that the DC current should be 
reversed in corresponding parallel wires in neighbouring layers just like in 
the case of adjacent parallel wires in each wire-plane. This was at first not 
thought to be necessary but is in fact important to keep the layers from 
interfering with each other.  
 As an example, the effective potential surface Ueff = 9e-29 J for two 
stacked 6 x 6 wire cell-grids is depicted in Fig. 2.58. The difficulty here lies 
in the optimization of inter-wire distances and the DC wire currents. This 
two-layer geometry requires that both cell-grid layers be considered 
together for the optimization to be successful. The complete geometry 
consists of two inner wire rows and two outer wire rows which are 
significantly different in terms of surrounding topology.  
 The variables that have been optimized for this geometry are shown in 
Table 2.5. The table also lists their values and the point where the effective 
potential function has been minimized. The variables IZ3, IZ5, dy1, dy3 and 
dy5 pertain to the inner wire rows and the variables IY3, IY5, dz1, dz3 and 
dz5 are associated with the outer wire rows. The distances between the wire 
rows have been optimized through the variables x1z, x2z and x3z. 2·|x1z| is 
here the distance between the outer wire rows and the closest of the inner 
wire rows and x3z - x1z is the distance between the two inner wire rows. 
The variable x2z has also been optimized but it is not independent and 
could equally well have been calculated as x2z = 2·x1z - x3z.  
 Similar to the case of the 6 x 6 wire geometry the distance from the 
symmetry line of each wire row to the innermost wires is dy1 or dz1. The 
distance from the symmetry line to the second outermost wires is dy3 or 
dz3 and the distance from the symmetry line to the outermost wires is dy5 
or dz5. The distances dy1, dy3 and dy5 here apply to the two inner wire-
planes and the distances dz1, dz3 and dz5 apply to the outer wire-planes. 
 The DC current magnitude in the innermost wires in each wire plane is 
similarly |IZ1| or |IY1|. The DC current magnitudes in the second outermost 
and outermost wires are |IZ3| or |IY3| and |IZ5| or |IY5| respectively. The 
variables IZ1, IZ3 and IZ5 here apply to the two inner wire-planes and the 
variables IY1, IY3 and IY5 apply to the two outer wire-planes. 
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Table 2.5.  Optimized variables for the cell-grid structure in Fig. 2.58. A total of 
fourteen variables have been optimized. The variable IZ1 is also listed. 

Variable Value Ueff minimized in point (x, y, z) 
(IZ1) -92.5 mA Not optimized 
IZ3 94.4 mA (-x3z-0.5*(-x3z-x1z)), dy3, dz1 
IZ5 -76.7 mA (-x3z-0.5*(-x3z-x1z)), dy5, dz1 
IY1 -98.1 mA Scaled only with IY3 and IY5 
IY3 99.6 mA 0, dy1, dz3 
IY5 -82.4 mA 0, dy1, dz5 
dy1 -0.354 mm x1z, 0, dy1 
dy3 -1.08 mm x1z, (dy3-0.5*(dy3-dy1)), dy1 
dy5 -1.78 mm x1z, (dy5-0.5*(dy5-dy3)), dy1 
dz1 -0.357 mm -x1z, dy1, 0 
dz3 -1.07 mm -x1z, dy1, (dz3-0.5*(dz3-dz1)) 
dz5 -1.78 mm -x1z, dy1, (dz5-0.5*(dz5-dz3)) 
x1z -0.262 mm 0, dy1, dy1 
x2z -1.32 mm (-x3z+0.5*(x2z+x3z)), dy1, dz1 
x3z 0.795 mm -(-x1z+0.5*(x3z+x1z)), dy1, dz1 

 
The other DC currents and distances used in the simulation are found from 
symmetry from the variables in Table 2.5. The remaining DC currents 
become IZn = -IZ(n-1) for n = {2, 4, 6} and IYn = -IY(n-1) for n = {2, 4, 6} 
for the cell-grid in front in Fig. 2.58 (g1). IZn = -IY(n-6) for n = 7 – 12 and 
IYn = -IZ(n-6) for n = 7 – 12 for the cell-grid to the rear in Fig. 2.58 (g2).  
 The remaining distances are found as dyn = -dy(n-1) for n = {2, 4, 6} 
and dzn = -dz(n-1) for n = {2, 4, 6} for the cell-grid in front in Fig. 2.58 
(g1). dyn = dz(n-6) for n = 7 – 12 and dzn = dy(n-6) for n = 7 – 12 for the 
cell-grid to the rear in Fig. 2.58 (g2). x1y = -x1z. The variable x3z is used to 
find x2y, which is equal to -x3z. The wires have here been numbered in the 
positive y-direction or from bottom to top in the order {5 3 1 2 4 6} for 
cell-grid one (g1) and in the order {11 9 7 8 10 12} for cell-grid two (g2). 
 
The wire currents in the four wire-planes can be summed up as follows: 

( ) [ ]1 6
DC , 1 -76.7,  94.4,  -92.5, 92.5, -94.4,  76.7  mA,z wire gI −

− =  

( ) [ ]1 6
DC , 1 -82.4,  99.6,  -98.1, 98.1, -99.6,  82.4  mA,y wire gI −

− =  

( ) [ ]1 6
DC , 2 82.4,  -99.6,  98.1, -98.1, 99.6,  -82.4  mA,z wire gI −

− =   



 
2.10  Multi-layered cell-grids  121 

 

( ) [ ]1 6
DC , 2 76.7,  -94.4,  92.5, -92.5, 94.4,  -76.7  mA,y wire gI −

− =  

where g1 refers to the cell-grid in front in Fig. 2.58 and g2 refers to the 
cell-grid to the rear. The wires are here numbered from left to right and 
from bottom to top. The RF currents are 10 mA of the same sign as the DC 
current in each wire. The frequency is RF 0.8 MHz.f =   
 

 
Fig. 2.58.  The isosurface Ueff = 9e-29 J for a 24 wire structure with DC and RF 
excitation. 

 
The distances dz5 and dy5 have become as good as identical. This is an 
intended result of a modification to the optimization script. Inside the 
while-loop, after the calls to the function “fminbnd” for all variables, the 
optimized currents IY1, IY3 and IY5 have been scaled up or down with each 
iteration of the while-loop depending on whether dz5 is greater than or 
equal to dy5 or smaller than dy5 respectively. The scaling factor is 1.02 or 
0.98 to begin with. With the onset of toggling between up-scaling and 
down-scaling the increment or decrement is halved every time a toggle 
occurs until the scaling factor becomes less than 1±1e-10, after which the 
scaling is stopped. The Matlab code for current scaling in the optimization 
script is as follows: 
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Definitions before the while-loop: 
 
increase_factor=1.02; 
decrease_factor=0.98; 
prev_factor=increase_factor; 

 
Code appended inside the while-loop: 
 
if dz5>=dy5    % Note that dz5 and dy5 are both negative 
   if prev_factor==decrease_factor 
      increase_factor=increase_factor-0.5*(increase_factor-1); 
   end 
   if increase_factor>=(1+1e-10) 
      IY1=IY1*increase_factor; 
      IY3=IY3*increase_factor; 
      IY5=IY5*increase_factor; 
      prev_factor=increase_factor; 
   else 
      disp('Currents have converged'); 
   end 
else 
   if prev_factor==increase_factor 
      decrease_factor=decrease_factor+0.5*(1-decrease_factor); 
   end 
   if decrease_factor<=(1-1e-10) 
      IY1=IY1*decrease_factor; 
      IY3=IY3*decrease_factor; 
      IY5=IY5*decrease_factor; 
      prev_factor=decrease_factor; 
   else 
      disp('Currents have converged'); 
   end 
end 

 
The while-loop has here been repeated 200 times compared to just 20 times 
for the four-wire cell because of the greater number of variables. It is 
possible to scale either IY1, IY3 and IY5 or IZ1, IZ3 and IZ5 in this way but 
not both. The while-loop should be iterated enough times for the scaling of 
the currents to converge on its specified accuracy. This modification helps 
to stabilize the optimization script and prevents the spacing between wires 
in the outer and inner wire rows from differing more than necessary.   
 It is seen that the distances dyn and dzn for n = {1, 3, 5} differ by at 
most just over one percent, which is very little. Furthermore the difference 
between dy3 and dz3 calculated as dy3 = dz3 = 3·dy1 or dy5 and dz5 
calculated as dy5 = dz5 = 5·dy1 and the optimized values for the same 
variables is at most about one and a half percent. It therefore looks as if the 
same inter-wire spacing can be used for both the inner and outer wire rows. 
A uniform inter-wire spacing based on the optimization of just one distance 
should also be possible.  
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Unfortunately, because of the rather simple optimization technique used, 
the best solution is not found by optimizing only the currents IZ3, IZ5, IY1, 
IY3, IY5, the distance dy1 or dz1 and the distances x1z and x3z. The 
optimization script must be allowed to adjust both the distances between 
the wires and the currents in most of the wires to converge on a good 
solution. Otherwise it is not able to detect, for example, if the current 
magnitude for the variables IY1, IY3 and IY5 has become too high or too 
low relative to the current magnitude for the variables IZ3 and IZ5. It thus 
becomes more difficult to take into account dependencies between 
variables when uniform inter-wire spacing is used.  
 
Three cell grids can also be stacked as shown in Fig. 2.59 and Fig. 2.60. 
Fig. 2.59 shows the effective potential surface Ueff = 9e-29 J and Fig. 2.60 
the effective potential in slices placed at x = 0, x = -x2z, y = 0, y =- dy5, z = 
dy5 and z = 0. 
 For the cell grid in the middle the wire rows lie symmetrically inside the 
geometry and can therefore share one set of optimized variables. In Fig. 
2.59 and Fig. 2.60 the variables IZ3, IZ5, dy1, dy3 and dy5, have been 
optimized for these wire rows. The DC current magnitude in the innermost 
wires has been kept at |IZ1| = 92.5 mA. The distance variables dy1, dy3 and 
dy5 have the same definition as in the case of the two stacked wire grids in 
Fig. 2.58. The letters y or Z and the numbers in the variable names may be 
interpreted as follows. For distance variables “y” refers to y-axis 
displacement and for current variables “Z” is the pointing direction of the 
wire for which the current is defined. The numbers refer to the wires in 
each row numbered in the positive y-direction or from bottom to top in the 
following order {5 3 1 2 4 6}.  
 A separate set of variables has been optimized for the two outermost 
wire rows in the geometry. These are IZ7, IZ9, IZ11, dy7, dy9 and dy11. 
The numbers 7-12 here relate to the wires in the cell-grid (g2) seen in the 
foreground in Fig. 2.59. The wires in the cell-grid in the middle (g1) have 
the numbers 1-6 and the wires in the cell-grid at the back (g3) have the 
numbers 13-18. However, for this cell-grid (g3) the variables are found 
from the cell-grid in front (g2) from symmetry.  
 In the same manner as for the two stacked wire grids in Fig. 2.58, the 
currents IZ7, IZ9 and IZ11 have been scaled up or down with each iteration 
of the while-loop depending on whether dy11 is greater than or equal to dy5 
or smaller than dy5 respectively. (The expression “if dz5 >= dy5” in the 
code excerpt on page 167 is simply replaced with “if dy11 >= dy5” and the 
variables IY1, IY3 and IY5 are replaced with IZ7, IZ9 and IZ11 respectively. 
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Since dy11 and dy5 are also here both negative numbers no other changes 
are necessary.) As already mentioned only one set of currents may be 
scaled in this way. Otherwise the optimization will not converge. 
 The relevant variables for the two second outermost wire rows in the 
geometry have been optimized only in part. The DC currents in the second 
outermost (IY9) and outermost (IY11) wires have been optimized, while the 
DC current in the innermost wires (IY7) has been set equal to IZ1. The 
distance variables have been set equal to those for the cell-grid at the 
centre, i.e. dz7 = dy1, dz9 = dy3 and dz11 = dy5. Attempts to include dz7, 
dz9, dz11 and IY7 among the optimized variables have caused the 
optimization script to latch on to a bad solution for some of the variables, 
and this effectively ruins the entire optimization.  
 The distances between the wire rows have been optimized through the 
variables x1z, x2z and x3z. The variable x1z is the distance from the 
symmetry plane (x = 0) through the centre of the geometry to the wire row 
pointing in the z-direction in cell-grid one (g1). x2z and x3z are the 
distances from the symmetry plane to the wire rows pointing in the z-
direction in cell-grids two and three respectively. All the variables that 
have been optimized are listed in Table 2.6 together with their values and 
the point where the effective potential function has been minimized. 
 
Table 2.6.  Defining variables for the cell-grid structure in Fig. 2.59. Altogether 
16 variables have been optimized. The variables IZ1, IY7, dz7, dz9 and dz11 have 
also been listed to give a more complete picture.  

Variable Value Ueff minimized in point (x, y, z) 
(IZ1) -92.5 mA Not optimized 
IZ3 93.0 mA 0, dy3, dy1 
IZ5 -79.3 mA 0, dy5, dy1 
IZ7 96.1 mA Scaled only with IZ9 and IZ11 
IZ9 -95.9 mA (-x3z+0.5*(x2z+x3z)), dy9, dz7 
IZ11 83.7 mA (-x3z+0.5*(x2z+x3z)), dy11, dz7 
(IY7) Set equal to -IZ1 Not optimized 
IY9 -93.3 mA (-x3z+0.5*(x2z+x3z)), dy7, dz9 
IY11 85.4 mA (-x3z+0.5*(x2z+x3z)), dy7, dz11 
dy1 -0.348 mm x1z, 0, dy1 
dy3 -1.04 mm x1z, (dy3-0.5*(dy3-dy1)), dy1 
dy5 -1.73 mm x1z, (dy5-0.5*(dy5-dy3)), dy1 
dy7 -0.348 mm x2z, 0, dz7 
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dy9 -1.05 mm x2z, (dy9-0.5*(dy9-dy7)), dz7 
dy11 -1.73 mm  x2z, (dy11-0.5*(dy11-dy9)), dz7 
(dz7) Set equal to dy1 Not optimized 
(dz9) Set equal to dy3 Not optimized 
(dz11) Set equal to dy5 Not optimized 

x1z -0.261 mm 0, dy1, dy1 
x2z -1.30 mm (-x3z+0.5*(x2z+x3z)), dy7, dz7 
x3z 0.784 mm -(-x1z+0.5*(x3z+x1z)), dy7, dz7 

 
The remaining DC currents and distances are found from the optimized 
variables in Table 2.6 by making use of symmetry. The remaining DC 
currents are found as follows: IZn = -IZ(n-1) for n = {2, 4, 6, 8, 10, 12}, 
IYn = IZn for n = 1 – 6.  IY8 = -IY7, IY10 = -IY9 and IY12 = -IY11.  IZn = 
IY(n-6) for n = 13 – 18 and IYn = IZ(n-6) for n = 13 – 18. 
 The remaining distances are found as: dyn = -dy(n-1) for n = {2, 4, 6, 8, 
10, 12}  and  dzn = dyn for n = 1 – 6.  dz8 = -dz7, dz10 = -dz9  and  dz12 = 
-dz11. dyn = dz(n-6) for n = 13 – 18 and dzn = dy(n-6) for n = 13 – 18. The 
distances from the symmetry plane (x = 0) to the wire rows pointing in the 
y-direction are found from symmetry to be x1y = -x1z, x2y = -x3z and x3y = 
-x2z. 
 
The wire currents in the six wire-planes can be summarized as follows: 

( ) [ ]1 6
DC , 1 -79.3,  93.0,  -92.5, 92.5, -93.0,  79.3  mA,z wire gI −

− =  

( ) [ ]1 6
DC , 1 -79.3,  93.0,  -92.5, 92.5, -93.0,  79.3  mA,y wire gI −

− =  

( ) [ ]1 6
DC , 2 83.7,  -95.9,  96.1, -96.1, 95.9,  -83.7  mA,z wire gI −

− =  

( ) [ ]1 6
DC , 2 85.4,  -93.3,  92.5, -92.5, 93.3,  -85.4  mA,y wire gI −

− =  

( ) [ ]1 6
DC , 3 85.4,  -93.3,  92.5, -92.5, 93.3,  -85.4  mA,z wire gI −

− =  

( ) [ ]1 6
DC , 3 83.7,  -95.9,  96.1, -96.1, 95.9,  -83.7  mA,y wire gI −

− =  

where g1 refers to the cell-grid in the middle in Fig. 2.59, g2 refers to the 
cell-grid seen in front (where the x-values are negative) and g3 to the cell-
grid at the back. The wires are here numbered sequentially in the positive 
y-direction or from bottom to top. The RF currents are 10 mA of the same 
sign as the DC current in each wire. The frequency is RF 0.8 MHz.f =  
 



 
126  Chapter 2: Wire Structures for Cold Atom Handling  

 

 

 
Fig. 2.59.  The isosurface Ueff = 9e-29 J for a 36 wire structure with DC and RF 
excitation. 

 
Fig. 2.60.  The effective potential generated by DC and RF currents in the 36 
wire structure. 
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The slice of the effective potential for y = 0 in Fig. 2.60 is shown separately 
in Fig. 2.61. In this figure it can be seen that the potential barrier is 
increased in the x-direction between the parallel wires for cells surrounded 
by other cells within the geometry. For cells along the periphery the depth 
of the minimum is reduced in the outward facing direction.   
 

 
Fig. 2.61.  The effective potential slice for y = 0 in Fig. 2.60 shown by itself. 

 
Within the potential minimum meandering down between the two rows of 
wires in the y-direction on the right side of Fig. 2.61 several lighter blue 
patches are visible. This may suggest that the optimization is not as good as 
it could have been. One may suspect that x2z and the variables for the outer 
wire layers have ended up with sub-optimal values. For the time being it is 
difficult to see what can be done about this, if the optimized pattern can be 
improved at all. The lighter blue bumps appear away from the points where 
the effective potential function is minimized and can not be seen in graphs 
along the axes either. The same lighter patches are also present in the slice 
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of the effective potential for z = 0, which is a mirror image of Fig. 2.61 
with the y-axis replacing the z-axis. 
 
In the case of especially the multi-layered cell-grids the optimization 
scheme based on the function “fminbnd” has been found to be simplistic 
and consequently unstable. If too many variables are optimized or a wrong 
combination of variables is chosen for optimization the optimization script 
will give a bad solution for one or more of the variables. If a variable fails 
to converge this is simply overlooked and the optimization continues for 
the other variables. In this case the upper or lower bound is often returned 
for the variable that has not converged. It is therefore necessary to visually 
check the solution for the optimized variables afterwards by computing the 
effective potential for the whole structure. 
 The major limitations of the optimization scheme used are that all 
variables are optimized one at a time (mostly) and that the optimization is 
done by only considering a single geometric point for each variable. In 
addition there is no mechanism for restarting or correcting the optimization 
for a variable if it has first come away from an optimal solution.  
 To allow the optimization script to adjust for the inter-dependence of the 
DC current level in the wires between different wire-rows it has been 
necessary to optimize both the distances between parallel wires and the DC 
currents in the wires to obtain a consistently good solution. Extra variables 
have in this way been introduced to stabilize the optimization and to 
improve the solution for the optimized variables. The disadvantage of this 
is that the geometric complexity increases needlessly. A better and more 
powerful optimization technique can hopefully be found later. The main 
goal has here been to explore the possibilities of the different wire 
geometries. The efforts made within the topic of optimization have 
therefore been limited.  
 
The stacked layers of cell grids can also display potential minima in the 
cells when the wires are excited by only the DC currents, just as in the case 
of a single cell grid. This is illustrated in Fig. 2.62 for the geometry in Fig. 
2.59 – Fig. 2.61. If only cell grids with potential minima are needed it is 
expected that optimization of the geometry is less important. The potential 
minima should then form for a wide range of currents similar to the 
potential minimum between the Ioffe-bars in an Ioffe-Pritchard trap.  
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Fig. 2.62.  The effective potential generated by just the DC currents in the 36 
wire structure. 

 
The possibility of transferring atoms between two crossed wires near the 
centre of the 36 wire geometry in Fig. 2.59 has been looked at briefly. For 
this the DC current magnitude in all other wires was reduced to 50 %. 
Although atom transfer between the crossed wires seems to be possible the 
fact that the crossing point of the wires is no longer right at the centre 
between the bias rings causes much trouble. To compensate for the 
displacement (dy1 or dz1) of the crossed wires from the mid-point between 
the bias rings the bias currents must be increased many-fold in the bias 
rings that are farthest away. Such very high currents are not possible in 
practise.  
 The very high bias-currents also distort the effective potential topology 
elsewhere within the geometry so that trapped atoms can not be held in 
cells located anywhere near the bias rings. This makes the practical 
utilization of the structure as a whole very low. In the case of atom transfer 
between crossed wires that are displaced even further from the mid-point 
between the bias rings, the currents in the bias rings would become 
hopelessly large. Atom transfer between crossed wires inside large cell-
grids is accordingly not practical in any sense. 
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2.11  Conclusion 
 
In this Chapter a one-wire atom guide and several traps for cold matter 
consisting of parallel and crossing wires have been developed. The traps 
include a four-wire cell with a potential peak or well at its centre, a 3 x 3 
wire structure with a double peak or well potential and cell-grids containing 
multiple traps.  
 Analytical equations have been derived for the distance d to the 
cylindrical minimum-potential manifold around a single wire and between 
two crossed and two parallel wires. These equations define the one-wire 
guide and the systems of two crossed and two parallel wires. The equations 
have in addition been used to find initial values for the distances between 
the wires in the optimization routine for the traps and cell-grids. It has also 
been shown analytically that the RF current amplitude does not change the 
effective potential along a line between two crossed or two parallel wires if 
the DC and RF current magnitudes are the same in both wires. The 
equations for the distance d, where the minimum potential manifolds 
around the wires touch, can in this case be derived using only the first term 
under the root sign in equation (2.1). 
 Computations of the effective potential in Matlab have yielded a series 
of interesting results. For the one-wire guide it has been shown that there 
exists a cylindrical minimum-potential manifold around a wire excited by 
DC and RF currents. A minimum of zero of the effective potential is 
removed by placing a pair of bias rings around the wire. The currents in the 
bias rings should be RF currents, at least predominantly. Small DC current 
offsets may be used in addition. The bias rings can also be used to move 
the resulting circular potential minimum up or down along the wire by 
changing the magnitudes of the RF currents in the bias rings. 
 For a system of two crossed wires it has been shown the minimum 
potential surfaces around the wires touch for certain critical values of the 
DC currents in the two wires. It is often most convenient to use the same 
DC current magnitude in the two wires, but different combinations are 
possible. The RF currents should be of the same magnitude and frequency 
to avoid distortion. RF currents of different frequencies can not be studied 
at present because equation (2.1) is no longer valid. Simulations have been 
performed in Matlab which indicate that clouds of cold atoms can be 
transferred between the wires at the touching point of the minimum 
potential surfaces by changing the magnitudes of the RF currents in the 
bias rings around the wires.  
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 In a system of two parallel wires the minimum potential surfaces around 
the wires also touch for certain critical values of the DC currents. The DC 
currents should in this case be in opposite directions in the two wires. It 
may be possible to transfer clouds of cold atoms directly between two 
parallel wires, but because this appears to requires a pair of bias rings 
around each of the wires it is most likely not worthwhile to do in practise. 
 A four-wire cell trap made from two pairs of parallel wires which cross 
in different planes has been designed and simulated. The structure has been 
optimized using a Matlab routine based on the function ‘fminbnd’. The 
four-wire cell can be used to trap both weak- and strong-field-seeking 
atoms and may also allow a study of collision and entanglement between 
the two types of atoms. If only DC excitation is applied the four-wire cell 
becomes a trap for weak-field-seeking atoms. In this case a zero potential 
minimum is known to exist at the centre. The four-wire cell trap as 
presented here is not quite complete and ready to use. Measures must be 
taken to mask the sharp minimum potential regions. Otherwise weak-field-
seeking atoms will be lost to Majorana transitions there. The sharp minima 
are in part supported by perfect accuracy in distances and currents as well 
as a precise optimization. To raise the minimum potential level different 
steps may be taken. One can reduce the accuracy in currents and wire 
positions (which will certainly happen in practice to some extent), 
introduce distortion in the form of a small RF phase shift in the wires or use 
bias rings around the wires. The relative advantages of the different options 
have so far not been studied. 
 A geometry consisting of three-by-three crossed wires forms a two-peak 
or two-well potential that is prospective for the study of entanglement of 
BEC matter placed in the potential peaks or wells. The structure could be 
used as a matter-wave beam splitter, but further work and experiments are 
necessary to determine the applicability of the structure for this purpose.  
 Multiple parallel wires that cross in two wire-planes make a grid of cells 
that can trap either strong- or weak-field-seeking atoms. Potential minima 
are found at the centre of the cells when the wires carry only DC currents. 
Cell-grids of this kind may find use as part of a quantum register. Multiple 
cell-grids can be stacked which enables them to be 3D integrated. Several 
distances and currents must be optimized in the cell-grids so that potential 
minima form in the right places in between the different cells. The 
optimization of stacked cell-grids poses a challenge. The optimization 
technique that has been applied has shown itself to be too simple and this 
limits the quality of the solution for the optimized variables. The emphasis 
has however here been on determining the realizable potential of the 
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different wire structures and not on the development of different 
optimization techniques. 
 The wire grids will most likely also require steps to be taken to raise the 
level of the potential minimum. Reduced accuracy in currents and 
distances, the introduction of small RF phase shifts and the use of a small 
external bias are again possible options. The external bias should in this 
case be applied in the direction perpendicular to the wire-planes. The bias 
field should preferably also be made uniform. 
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Chapter 3          
           
Micrometre and Nanometre Scale 
Structures 
 
 
 
 

3.1  Introduction 
 
In this Chapter many of the wire geometries described in Chapter 2 will be 
scaled down to micrometre and nanometre sizes. The downscaling can be 
done with little effort using the equations derived in Chapter 2. When the 
dimensions become very small wires must however be replaced by micro-
wires or carbon nanotubes (CN’s). Each reference to a wire in Chapter 2 
may thus be extended to apply to a conductor of any type.  
 The Chapter begins by showing how scaling to micrometre size may be 
done. Two examples of micron sized structures are then provided, a four-
micro-wire cell and a three-by-three micro-wire structure. The two 
structures have been optimized to come close to a future practical 
realization on a micro-machined substrate. To make a final design either 
analytical equations for the magnetic field for a conductor with a 
rectangular cross-section or a suitable simulation program is needed. It may 
also be necessary to consider substrate effects. 
 The Chapter continues by describing scaling to nanometre size. When 
the dimensions become very small physical effects, such as the Casimir-
Polder force, must be taken into account. The Casimir-Polder force limits 
how close to the conductors the cold atom clouds can be placed. This in 
turn reduces the depth of the atom trap unless currents can be increased 
through the use of bundled nanotubes.  
 Many of the structures from Chapter 2 are subsequently demonstrated 
on a nanometre scale. First the anticipated cold atom transfer between two 
crossed nanotubes is detailed. An optimized four-nanotube cell is then 
described. It can be compared with the micrometre- and millimetre-sized
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four-wire cells described earlier. Nanotubes can also be used to make cell-
grids, and an optimized nanotube cell-grid is defined. Finally it is shown 
how nanotube cell-grids can be stacked, just as in the case of millimetre 
sized wire-grids. 
 

3.2  Scaling to micrometre size 
 
When structures are scaled down to micrometre size it becomes important 
to keep cold atom condensates at a certain minimum distance from the 
conductor surfaces to avoid thermally-induced spin-flip transitions. 
Resistive noise in the conductors, caused by a finite conductivity, leads to 
electromagnetic-field fluctuations that can be strong enough to drive spin 
transitions, which in turn lead to trapping losses [118], [149], [150].  
 In the case of a micrometre sized structure the cold atoms should be 
kept at least 30 – 40 μm away from the conductor surfaces at all times. This 
minimum distance depends to some extent on the quality of the micro-
wires. It is important that the surfaces of the micro-wires are smooth and 
that the conductivity is good to reduce the problem of thermally-induced 
spin transitions. 
 The minimum distance from the centre of the conductor to the (circular) 
potential minimum around it is the distance given above plus one conductor 
radius. The effective potential minimum comes closest to the surface of a 
single conductor with no other current carrying conductors nearby. The 
presence of additional crossing or parallel current carrying conductors has 
the effect of pulling the potential minimum away from the conductors in 
the area between the conductors. 
 We begin the scaling of the geometry by estimating the DC current in a 
single conductor for a distance d = 35 μm from the effective potential 
minimum to the centre of the conductor and for a RF frequency of 0.8 
MHz. The RF frequency of 0.8 MHz is chosen as a starting point since it is 
expected to lead to sensible conductor currents. It is principally the size of 
the geometry and the currents that are scaled, although the RF frequency 
may also have to be changed to adjust the DC currents and the trapping 
distance from the conductors.  
 The depth of the trap increases with increasing DC currents and RF 
frequency. The trap can consequently be made deeper by increasing the DC 
currents. The correct relation between the RF frequency and the Larmor 
frequency is taken into account by equation (2.1) for the effective potential. 
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 We assume to begin with that the necessary radius of the micro-wires is 
close to the 5 μm margin in the distance and skip a detailed consideration 
of the conductor radius for now. We use (2.4) and get 
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By comparing equations (2.4) and (2.18) we see that the distance d is 2  
times greater for two crossed conductors. This gives the minimum distance 
between two crossed conductors of 2 2 2 2 35 �m 99.0 �m.d⋅ = ⋅ =  In an 
integrated realization this distance is equal to the substrate thickness plus 
one conductor thickness. 
 To make a design using circular conductors that lies close up to an 
integrated realization the substrate thickness is set to 100 μm, a common 
dimension, and the thickness of conductors with a quadratic cross-section is 
set to 10 μm. This gives a new distance 110 �m 2 2 38.89 �md = =  for a 
single conductor. The new DC current is 

-6 6 -34

-24 -70

rad38.89 10 m 2 0.8 10 2 1.05 10 Js 2 s 16.84 mA .J H9.27 10 0.66 4 10
T m

DC
RF

B F

dI
g

π πω π
μ πμ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ = =
⋅ ⋅ ⋅ ⋅

= �

  (3.2)   
 We now estimate the necessary circular conductor radius. The 
maximum current density is defined to be 1 MA/cm2 in the conductors. The 
amplitude of the RF current, which can be adjusted freely to some extent, is 
set to 5 mA. This gives a minimum circular conductor radius of 
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 If a maximum current density of 1 kA/cm2 had been used instead, as in 
the case of the millimetre sized geometry, the conductor radius would be 
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Since this conductor radius is more than a quarter of the substrate thickness 
this is unrealistic in practise. The conductor cross-section has already been 
chosen to be 100 μm2 above. This is equivalent to a circular conductor 
radius of 5.64 μm. This radius is acceptable since the distance d permits a 
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maximum conductor radius of 8.89 μm before the effective potential 
minimum comes closer than 30 μm to the conductor surface.  
 The maximum current density in the conductors becomes 

( )
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  (3.5) 
This current density is well below what the conductors are expected to 
withstand. The current density is nevertheless increased from the very safe 
levels in the millimetre-sized structures in Chapter 2.  
 To finish the scaling we calculate the half-distance d between two 
parallel conductors using equation (2.50) to be 

-24 -7
-3

0
-34 6

J H9.27 10 0.66 4 10 16.84 10 AT m 77.78 �m.rad1.05 10 Js 2 0.8 10
s

DC

RF

B F I
d g πμ

π ω π π

μ
� �⋅ ⋅ ⋅ ⋅ � �� � ⋅= =� �� � ⋅ ⋅� � � �⋅ ⋅
� �

=
�

 

  (3.6)
 

The distance 2d between two crossed conductors stays fixed at 110 μm. We 
are now ready to look at two examples of micron sized structures. 
 

3.3  A four micro-wire cell 
 
The geometry of the cell is the same as previously shown in Fig. 2.29. 
Micro-wires are here used instead of wires and distances will be given in 
micrometres. Just as in the case of the four-wire cell in Chapter 2 the four 
micro-wire cell should be optimized. The DC current and the half-distances 
d between two crossed and two parallel conductors found in Section 3.2 are 
used as initial values in the optimization routine. The optimization routine 
used is the same as for the four-wire cell in Chapter 2, except that the 
current IZ1 is optimized instead of x1z. The variable IZ1 is the DC current 
in the conductor labelled “1” that is parallel with the z-axis in Fig. 2.29. 
The remaining DC currents are defined as IZ2 = -IZ1 and IYn = IZn, for     
n = 1 – 2. 
 The variable dy1, which is the y-axis displacement of conductor “1” 
parallel with the z-axis, is also optimized.   The optimized values are IZ1 = 
-19.0 mA and dy1 = -76.2 μm. The effective potential has been minimized 
in the point (x, y, z) = (0, dy1, dy1) for IZ1 and in the point (x, y, z) = (x1z, 
0, dy1) for dy1. The variable x1z = -55 μm is the x-axis displacement of the 
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(row of) conductors parallel with the z-axis. The remaining variables are 
defined as dy2 = -dy1, dzn = dyn for n = 1 – 2 and x1y = -x1z. In Fig. 2.29 
2dx = -x1z + x1y and 2dy = -dy1 + dy2. The RF currents are 5 mA of the 
same sign as the DC current in each conductor. The RF frequency is 0.8 
MHz and the radius of the micro-wires is 5.64 μm. 
 The plot in Fig. 3.1 shows three slices through the four micro-wire cell 
where the effective potential minimum around the micro-wires can be seen 
clearly. The dark blue figure-of-eight pattern around the micro-wires 
pointing in the y-direction suggests that the optimization has been 
successful. The potential maximum at the centre of the cell is not shown in 
the figure. Instead the yz-plane slice through the centre of the cell is shown 
in a mesh-plot in Fig. 3.2. The dark blue pattern around the peak at the 
centre is of practically uniform depth if the optimization has been 
successful. The minimum also makes small loops out between the parallel 
wires as explained previously for the four-wire cell in Chapter 2. 
 When only DC currents are used the four micro-wire cell has a potential 
minimum at the centre as shown in Fig. 3.3. The figure is very similar to 
Fig. 2.33 for the four-wire cell. 
 

 
Fig. 3.1.  The effective potential in the planes x = x1z, y = dy2 and z = dz1.
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Fig. 3.2.  Plot of the effective potential in the yz-plane for x = 0 in Fig. 3.1.  

 

 
Fig. 3.3.  The four micro-wire cell when excited by only the DC currents. 
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Graphs showing the depth of the four micro-wire cell trap have been 
calculated along the x-axis in Fig. 3.4 and along the z-axis in Fig. 3.5, just 
as was done for the four wire cell in Chapter 2. The axes are the same as 
shown in Fig. 3.3. The temperature has been calculated as ,eff BT U k=  
where kB = 1.3807e-23 J/K is Boltzmann’s constant. In the two figures the 
red graphs are for 0.8 MHz,RFf =  the green graphs are for 0.6 MHz,RFf =  
the blue graphs are for 0.4 MHz,RFf =  the magenta graphs are for 

0.2 MHz,RFf =  and the black graphs are for zero frequency. The potential 
along the y-axis is identical to the potential along the z-axis in Fig. 3.5 as 
made necessary by symmetry. 
 A magnetic quantum number of mF = 2 has been used for all graphs. If 
the potential maximum at the centre of the cell is used to catch and hold 
ground state atoms with mF = 1, the effective potential shown by the graphs 
must be divided by two according to equation (2.1) when the ground state 
atoms are considered. The potential maximum at the centre is 
approximately equal to mF����RF / kB, and is entirely caused by the RF 
dressing effect. 
 The graphs in Fig. 3.4 and Fig. 3.5 are spot alike those for the four-wire 
cell in Fig. 2.34 and Fig. 2.35. The only difference is in the distance 
readings. The explanation for this is that the depth of the trap does not 
change unless the frequency is changed. The frequency is 0.8 MHz in both 
cases. 
 The effective potential is zero at the centre of the trap when it is excited 
by only the DC currents. For RF excitation it is difficult to establish 
whether the deformed spherical minimum around the centre of the cell lies 
at zero potential. The situation is thus exactly the same as for the four-wire 
cell.   
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Fig. 3.4.  Potential along the x-axis through the centre of the four micro-wire cell. 

 

 
Fig. 3.5.  Potential along the z-axis through the centre of the four micro-wire cell.
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3.4  A 3 x 3 micro-wire geometry 
 
The three-by-three micro-wire geometry is shown in Fig. 2.41. The usage 
of the structure does not change depending on whether wires, micro-wires 
or nanotubes are used as conductors. The big difference lies in the size of 
the atom clouds in the two wells and the distance between them. 
Downscaling generally leads to a study of fewer atoms in smaller wells 
placed closer together.  
 As an adaptation toward a future experimental realization of the 
structure on a micro-machined substrate, the distance x1z has been kept 
constant. With reference to Fig. 2.41 x1z = -h/2. The variables optimized 
are dy1, IZ1= -|IDC, c-w| and IZ2 = |IDC, p-w|. Here |IDC, c-w| is the current in the 
two micro-wires at the centre and |IDC, p-w| is the current in the four 
peripheral micro-wires. The DC currents must still be in opposite direction 
in adjacent parallel micro-wires in each wire-plane.  
 The optimized variables are detailed in Table 3.1. The table also lists the 
points where the function for the effective potential Ueff has been 
minimized. The geometric origin lies in the middle between the two micro-
wires at the centre for this structure. The remaining variables can be found 
as follows: IZ3 = IZ2, IYn = IZn for n = 1 – 3, dz1 = dy1 and x1y = -x1z.   
In the case of the DC currents the numbers in the variable names refer to 
the micro-wires numbered in the positive y-direction or from bottom to top 
in the sequence {3 1 2}. With reference to Fig. 2.41 d = -2·dy1 = -2·dz1. 
The RF currents are 5 mA of the same sign as the DC current in each 
micro-wire. The RF frequency is 0.8 MHz as before and the micro-wire 
radius is 5.64 μm. 
 
Table 3.1.  Defining variables for the three-by-three micro-wire geometry. Three 
variables have been optimized. The variable x1z is also listed.  

Variable Value Ueff minimized in point (x, y, z) 
x1z -55.0 μm Not optimized 
dy1 -78.2 μm x1z, dy1, 0 
IZ1 -20.9 mA 0, 0, 0 
IZ2 18.6 mA 0, 2*dy1, 2*dy1 

 
The merger of the two potential peaks into a single maximum at the centre 
of the 3 x 3 micro-wire geometry is illustrated by the animation in Fig. 3.6. 
The DC currents in the centre micro-wires in the nine frames are: 
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DC current is negative in the micro-wire at the centre in both the                
z-direction and the y-direction. The animation shows that the two potential 
maxima remain isolated in 3D as they are brought together to form a single 
maximum.  
 

 
Fig. 3.6.  Animation showing the merger of two potential maxima in 3D. 

 
The single maximum in frame 5 of the animation is lesser well defined in 
the x-direction between the two micro-wires at the centre. The reason for 
this is the low DC currents in the centre micro-wires that allow the two 
potential peaks to merge into a single maximum. The single maximum is 
shown in Fig. 3.7 for those who are unable to play the animation. The plot 
in Fig. 3.7 can be compared with Fig. 2.44 for the three-by-three wire 
structure. The most striking difference is that the relative thickness of the 
conductors is much smaller in the micro-wire version. The current density 
is accordingly also much higher as was pointed out when the scaling to 
micrometre size was done. 
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Fig. 3.7.  The merged potential maximum in frame 5 of the animation. 

 
Just as was done for the three-by-three wire geometry in Section 2.9 graphs 
of the effective potential have been calculated along the lines labelled u and 
v in Fig. 2.41 as well as in the x-direction through the point where the lines 
u and v intersect and in the x-direction through the centre of the geometry. 
The graphs are shown in Fig. 3.8 to Fig. 3.11. The temperature in degrees 
Kelvin is simply the effective potential divided by Boltzmann’s constant. 
 The red graphs correspond to the initial situation with two peaks in Fig. 
3.6. The black graphs show the single maximum at the centre (frame 5 in 
the animation). The dotted blue graphs, the dashed green graphs and the 
dash-dotted magenta graphs correspond to frames 2 – 4 in the animation in 
Fig. 3.6. The potential peaks in Fig. 3.8 – Fig. 3.11 attract strong-field-
seeking atoms and the graphs have therefore been scaled to correspond to 
the magnetic quantum number for strong-field-seeking atoms, i.e. the case 
where mF = 1 in equation (2.1). 
 The graphs in Fig. 3.8 – Fig. 3.11 can be seen to be almost identical to 
the corresponding graphs for the three-by-three wire structure in Fig. 2.45 –
Fig. 2.48. Small differences can however be found for some of the curves. 
The only graph that comes out significantly different is the black graph for 
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the single maximum in Fig. 3.11. This graph dips much further down next 
to the centre micro-wires when compared to the black graph in Fig. 2.48. 
The difference is a dip of 22.3 μK from the maximum at x = 0 in Fig. 3.11 
compared to a dip of 9.6 μK in Fig. 2.48. The maximum at x = 0 is 33.85 
μK in both cases. The explanation for this is thought to lie in the distance 
that the atom condensates are kept away from the conductors relative to the 
size of the conductors and the current density in the conductors.  
 
A nanometre sized version of the three-by-three conductor structure has 
previously been described in [151]. There the atom condensates must be 
kept relatively far away from the conductor surfaces on account of the 
Casimir-Polder force. At the same time the maximum current that can be 
sent through the nanotubes is limited. As a result the dip next to the 
nanotubes at the centre from the maximum at x = 0 of 11.2 μK is only 
about 6.9 μK. Since the potential barrier may be even lower to the side of 
the nanotubes, the three-by-three nanotube geometry will not be given 
further consideration in this thesis. The use of bundled nanotubes with 
increased currents may improve the situation, but this lies beyond the scope 
of this work.  
 

 
Fig. 3.8.  The effective potential along the line u in Fig. 2.41 for x = 0. 
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Fig. 3.9.  The effective potential along the line v in Fig. 2.41 for x = 0. 

 

 
Fig. 3.10.  The effective potential in the x-direction through the point where the 
lines u and v intersect in Fig. 2.41. 
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Fig. 3.11.  The effective potential in the x-direction through the point where the 
centre wires intersect in Fig. 2.41. 

 
When the three-by-three micro-wire structure is excited by only the DC 
currents it exhibits two potential wells along one of the diagonals. The 
diagonal that the potential wells appear along can be changed by reversing 
the DC currents in the micro-wires in one of the micro-wire rows. The two 
potential wells are depicted in 3D in Fig. 3.12.  
 By using the same DC currents as in the animation in Fig. 3.6 the two 
potential wells can be brought together to form a single well at the centre of 
the geometry. The resulting minimum in the effective potential is shown in 
Fig. 3.13. It is also here apparent that the potential barrier in the x-direction 
between the micro-wires at the centre is much lower than in other 
directions. However, as will be explained in a moment, the potential barrier 
is here in fact much higher than for the single maximum in Fig. 3.7. 
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Fig. 3.12.  The double-well effective potential with only DC excitation. 

 

 
Fig. 3.13.  The merged potential minimum with only DC excitation. 
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Graphs of the effective potential have once again been calculated along the 
lines u and v in Fig. 2.41 and in the x-direction through the points where the 
lines u and v intersect and where the centre micro-wires intersect. The 
graphs have all been calculated using the magnetic quantum number for 
weak-field-seeking atoms (mF = 2). 
 The blue graph along the line u in Fig. 3.14 shows the two initial 
potential wells. The dotted red graphs, the dashed green graphs and the 
dash-dotted magenta graphs indicate the potential when the DC current in 
the two centre micro-wires has been reduced to 75 %, 50 % and 25 % 
respectively of its starting value. The black graphs show the potential when 
the DC current in the centre micro-wires has been reduced to 10 % of its 
starting value, corresponding to frame 5 in the animation in Fig. 3.6 
without the RF currents.  
 
The graphs in Fig. 3.14 – Fig. 3.17 are almost identical to the graphs for the 
three-by-three wire geometry in Fig. 2.50 – Fig. 2.53. Only a few very 
small differences can be seen except for the magenta and black graphs in 
Fig. 3.17, which are significantly different. The two graphs pull up much 
further close to the centre micro-wires compared to in Fig. 2.53. 
 In Fig. 3.17 the height of the potential barrier measured between the 
mid-point on the black graph and one of the small peaks next to the wires is 
about 59.9 μK, which is much better than the barrier of 22.3 μK for 
combined DC and RF excitation in Fig. 3.11. Much of the difference can be 
explained by the use of different magnetic quantum numbers, but not all. 
The barriers appear to be higher in general in the case of potential wells for 
weak-field-seeking atoms.  
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Fig. 3.14.  The effective potential with only DC excitation along the line u shown 
in Fig. 2.41 for x = 0. 

 

 
Fig. 3.15.  The effective potential with only DC excitation along the line v shown 
in Fig. 2.41 for x = 0. 
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Fig. 3.16.  The effective potential with only DC excitation in the x-direction 
through the point where the lines u and v intersect in Fig. 2.41. 

 

 
Fig. 3.17.  The effective potential with only DC excitation in the x-direction 
through the point where the centre wires intersect in Fig. 2.41. 
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3.5  Scaling to nanometre size 
 
When structures are scaled down to nanometre size cold atom condensates 
must be kept at a minimum distance from the conductor surfaces to prevent 
atom-surface interaction. There are two mechanisms that play a part when 
the dimensions are on a nanometre scale. The first is thermally-induced 
spin-flip transitions. Thermal excitation of atoms generates noise currents 
that lead to fluctuating magnetic fields close to the body surface [118]. The 
magnetic field fluctuations can in turn drive atomic spin transitions that 
lead to trapping loss.  
 The second mechanism is the Casimir-Polder force. An atom in its 
ground state placed sufficiently close to a dielectric body experiences a 
(generally attractive) dispersion force due to the presence of the dielectric 
material [152] – [154]. The Casimir-Polder potential adds to the effective 
potential generated by the DC and RF currents in the conductors. Close to 
the conductor surface the effective potential is repulsive for ground state 
atoms. The combined potential, consisting of the Casimir-Polder potential 
and the effective potential, forms a potential barrier around the conductors. 
If this barrier becomes too narrow, atoms can tunnel through it and get 
stuck at the conductor surfaces. 
 The experimental study of carbon nanotubes has recently attracted a lot 
of research interest [155]. Carbon nanotubes (CN’s) appear to have several 
advantages as conductors in miniaturized magnetic traps. Because CN’s 
consist of only a small amount of dielectric matter the Casimir-Polder force 
is minimized. The noise currents should also be much reduced compared to 
in a dielectric bulk material because of the small amount of matter in the 
nanotubes. However, neither thermal spin-flips nor the Casimir-Polder 
force can be overlooked when the dimensions are very small. The Casimir-
Polder force is thought to play a bigger role than thermal spin-flips at short 
distances from the nanotube surface. Another attractive feature of CN’s is 
that they have extremely homogeneous surfaces, something which helps to 
prevent disturbances in the effective potential topology of the trap. 
 Numerical estimation of the Casimir-Polder force is a complex 
operation mathematically. It has been performed in [118] for a single 
nanotube assuming a relatively simple trap geometry. In [118] the 
minimum feasible trapping distance is found to be about 100 nm. This 
minimum distance, measured from the nanotube surface to the surrounding 
effective potential minimum, will be used in the following to demonstrate 
scaling to nanometre size. 
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 In the article conclusion in [118] it is suggested that multi-walled 
nanotubes will permit higher current densities that can create a magnetic 
trapping potential comparable to the Casimir-Polder potential even for 
smaller distances. It turns out that it is easy to make a deep potential 
minimum closer to the conductor surface for a fixed DC conductor current 
simply by increasing the RF frequency. As the RF frequency is increased, 
the depth of the trapping potential is increased and the trapping distance d 
is reduced by the same factor. However, as is evident from the first two 
figures in [118], the reduction in the spin-flip lifetime and the increase in 
the Casimir-Polder force are extremely steep close to a conductor surface. 
This makes it a risky business to try to reduce the minimum trapping 
distance by increasing the conductor currents and the RF frequency with it. 
A careful calculation of the Casimir-Polder force seems to be necessary to 
determine whether the trapping distance can be further reduced.  
 Ideally the Casimir-Polder potential should have been calculated for 
each of the nanometre sized structures in the remainder of this Chapter and 
then added to the effective potential. This would have resulted in a new 
total effective potential. This is a large undertaking that should be done 
before the eventual fabrication of nanometre sized prototypes. The graphs 
for the spin-flip lifetime and tunnelling time in [118] give little hope that 
the minimum feasible trapping distance can be set to much less than 100 
nm, independent of the Casimir-Polder potential. 
 To achieve the maximum trap depth a DC current should first be chosen 
so that the total current in the nanotubes is just below the maximum 
allowable current (e.g. 20 μA). The trapping potential can also be made 
deeper still through the use of multi-walled or bundled nanotubes, which 
permit even larger currents. If the trapping distance d continues to be below 
its minimum value, it must be increased by reducing the initial RF 
frequency. This simultaneously reduces the depth of the trap proportionally 
to the reduction in frequency. 
 In the following single-walled (9, 0) carbon nanotubes with a radius of 
3.52 Å (3.52·10 -10 m) will be assumed used. Carbon nanotubes of this type 
have been considered in [118], and it is convenient to use the same 
nanotubes here. The physical properties of a CN are determined by the way 
in which the graphite sheet is rolled. The winding angle with respect to the 
hexagonal carbon lattice is usually described by two integer numbers (a, b). 
When 2a + b = 3n, where n is again an integer, a CN shows metallic 
behaviour. Otherwise it is semi-conducting. (9, 0) carbon nanotubes (n = 6) 
accordingly show metallic behaviour. The choice of which nanotube to use 
is in any case not very critical for the atom traps in this Chapter. Because 
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the radius of a carbon nanotube is very small it will be neglected to begin 
with when the distance d from the centre of the nanotube to the surrounding 
potential minimum is estimated. 
 The largest sustainable current before saturation effects become 
important in the above mentioned nanotubes is 20 μA [118]. To keep the 
total current below 20 μA we choose a DC current of 15 μA and an RF 
current of 4 μA. With the distance d and the DC current IDC having been 
determined, the frequency can be calculated from the relation between d, 
IDC and �RF in equation (2.4) to be 
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For convenience, but also to obtain a small margin in the distance, the 
frequency is rounded down to 0.27 MHz. Equation (2.4) is then used to 
find the new distance d to the circular minimum around a single nanotube: 
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 The equation for the distance d for a single wire/conductor should 
always be used since the minimum potential surface comes closest to a 
wire/conductor on sides facing away from other crossing or parallel 
conductors. The distances d for two crossed or for two parallel conductors 
are always larger than the shortest distance from the centres of the 
conductors to the surrounding minimum potential manifold.  
 Examination of equations (2.4) and (2.18) shows that the distance d is 

2  times greater for two crossed conductors. This gives the distance d = 
2 ⋅ 102.6 nm = 145.15 nm for two crossed nanotubes. The total distance 

between two crossed nanotubes is accordingly 2d = 290.3 nm.  
 To complete the calculations we obtain the half-distance d between two 
parallel nanotubes using equation (2.50) to be 
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The half-distances d between two crossing or parallel nanotubes are only 
valid in the case of two crossing or two parallel nanotubes without any 
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other nearby conductors. When additional parallel or crossing conductors 
are present the currents and distances should be found by optimization. 
 
The frequency we have ended up with in this design of 0.27 MHz is 
roughly one third of the starting out frequency of 0.8 MHz. If the current 
carrying capacity of the conductors could be increased by a factor of about 
three, through the use of multi-walled or bundled nanotubes, the RF 
frequency could have been kept at 0.8 MHz. The minimum trapping 
distance d would then have been the same but the depth of the trapping 
potential would have increased almost threefold. The trapping distance d 
does not change so long as the ratio of the DC current to the angular 
frequency stays the same.  
 If the minimum trapping distance were to be increased to d = 150 nm 
for the single-walled nanotubes with DC currents of 15 μA, the new RF 
frequency would become 0.185 MHz. This would reduce the depth of the 
trapping potential by a factor of 0.684 compared to the design presented 
above with fRF = 0.27 MHz. Unless the DC currents can be increased an 
increase in the minimum trapping distance will thus severely reduce the 
depth of the trapping potential.  
 In the remaining sections of this Chapter several nanometre sized 
structures will be introduced. The expected atom transfer between two 
crossed nanotubes will be described first in Section 3.6. A four nanotube 
cell is then presented in Section 3.7. In sections 3.8 and 3.9 a nanotube cell-
grid and stacked nanotube cell-grids are exemplified. 
 

3.6  Atom transfer between two crossed CN’s with bias rings 
 
The scaling down to nanometre size of the wire structures in Chapter 2 has 
little effect on the shape of the effective potential. The biggest difference 
may be that minima in the effective potential are not seen inside the 
nanotubes. The cross-sectional area of the nanotubes is however very 
small. Since the data resolution is limited possible potential minima inside 
the nanotubes would most likely not be visible in any case.  
 The isosurface Ueff = 5e-29 J is shown for two crossed nanotubes 
without bias in Fig. 3.18. The currents in the nanotubes are -15 μA DC and 
-4 μA RF in both nanotubes. The frequency is 0.27 MHz and the distance 
between the nanotubes is 2d = 290.3 nm. The nanotube radius is 3.52 Å 
(3.52 ·10-10 m). The figure shows clearly that there is a double surface 
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around both nanotubes. The effective potential minimum of zero, i.e the 
isosurface Ueff = 0 J, is to be found in between these two surfaces. 
 

 
Fig. 3.18.  The potential manifold Ueff = 5e-29 J for two crossing nanotubes. 

 
To enable a transfer of cold atoms between the crossed nanotubes in Fig. 
3.18 a pair of bias rings is placed around each nanotube. The radius of the 
bias rings is 380 nm and they are centred at z = ±1 μm and at y = ±1 μm 
around the nanotube in the z-direction and y-direction respectively. Only 
the use of the last two current sign combinations in Table 2.1 for the 
currents in the bias rings will be shown. 
 A 14 frame video showing the anticipated transfer of cold atoms is 
supplied in Fig. 3.19. The nanotube currents are -15 μA DC and -4 μA RF 
just as in Fig. 3.18. The frequency is fRF = 0.27 MHz and radius of the 
nanotubes RCN = 3.52 Å. The currents in the bias rings in the 14 frames are: 
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RF| z-cond. rings

[ 350 0], [ 350 70], [ 280 140], [ 280 210],
[ 280 280], [ 210 210], [ 210 210], [ 150 150], A,
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In the first five frames of the animation cold atoms are being pumped down 
along the nanotube in the z-direction toward the centre of the nanotube. In 
frames 6 and 7 a downward slope is created in the effective potential 
around the nanotube in the z-direction down to a common minimum at the 
centre between the crossing nanotubes. This transfers the cold atoms from 
around the nanotube in the z-direction to the common minimum between 
the nanotubes. 
 

 
Fig. 3.19.  Animation of cold atom transfer using bias currents of different signs.  

 
Frame 6 in the animation is shown in Fig. 3.20(a). The effective potential 
in the xy-plane (z = 0) in frame 6 is shown in Fig. 3.20(b). The figure shows 
that two effective potential minima have formed close to the centre 
between the nanotubes. The cold atom condensate around the nanotube in 
the z-direction is expected to accumulate in the two minima. 
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(a) 

 
(b) 

Fig. 3.20.  Frame 6 in the animation (a), and Ueff in the xy-plane in frame 6 (b). 
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Fig. 3.21 shows the effective potential in the xy-plane (z = 0) in frame 7. 
The figure shows that a common minimum has formed at the centre 
between the nanotubes. At the same time a pair of low potential regions has 
formed on the sides around the nanotube in the z-direction. Since these 
regions are isolated from the two effective potential minima in frame 6 
during the transition from frame 6 to frame 7, all of the cold atom matter 
should end up in the common minimum at the centre. 
 

 
Fig. 3.21.  Ueff in the xy-plane in frame 7 in the animation. 

 
Fig. 3.22 gives additional information about the value of the effective 
potential along the x-axis (y = z = 0) for frame 6 in Fig. 3.20(b) and for 
frame 7 in Fig. 3.21. The red curve (*) corresponds to frame 6 and the blue 
curve (o) to frame 7. The low potential regions next to the nanotube in the 
z-direction do not show up along the x-axis and the graphs do not therefore 
give a complete picture. Note that the current in one of the bias rings has 
been increased to 220 μA in frame 7 to avoid an absolute zero in the 
potential at the common minimum. 
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Fig. 3.22.  The effective potential along the x-axis in frame 6 and frame 7. 

 
The RF bias currents that have been used are relatively high. The reason for 
this is in part to demonstrate the atom transfer more clearly. It may not be 
necessary to use quite so high bias currents in practise. The bias currents 
may also be reduced by bringing the bias rings closer together and perhaps 
by increasing the radius of the rings a bit. The equations for infinitesimally 
thin current rings have been used here for the simulation. The question of 
how to implement the bias rings has so far not been addressed. Hopefully it 
will be possible to use bundled nanotubes.   
 The atom transfer can henceforth be completed in two ways. The cloud 
of cold atoms can be kept in the potential minimum around the nanotube in 
the y-direction, (the nanotube that accepts cold atoms), while the DC 
current is reduced in the nanotube in the z-direction, (the nanotube that 
donates cold atoms). This amounts to splitting the common minimum in 
such a way as to keep most of the cold atoms in the minimum around the 
acceptor nanotube. The alternative is to pump the cloud of cold atoms away 
from the crossing point along the acceptor nanotube without attempting to 
split the common minimum between the nanotubes first. This is more 
straightforward but ties up the donor nanotube a bit longer. 
 In the animation in Fig. 3.19 the approach of splitting the common 
minimum has been taken. In frames 8 to 11 the DC current is reduced in 
the donor nanotube in steps of 95 %, 90 %, 75 % and 50 % of its original 
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value. The effective potential along the x-axis is illustrated by the four 
graphs in Fig. 3.23. In the figure the blue graph (1, ·) is for frame 8, the red 
graph (2, o) is for frame 9, the magenta graph (3, *) is for frame 10 and the 
black graph (4, �) is for frame 11. 
 

 
Fig. 3.23.  The effective potential along the x-axis in frames 8 – 11. 

 
In frame 8 the potential minimum has been deepened next to the acceptor 
nanotube while avoiding a split of the common minimum. The effective 
potential in the xy-plane in frame 8 is shown in Fig. 3.24. In frame 9 the 
DC current in the donor nanotube has been reduced to 90 % and a second 
minimum begins to appear, as shown in the insert in Fig. 3.24. Note that 
the insert only shows the effective potential in the area just around the 
common minimum.  
 In frames 10 and 11 the potential barrier between the two minima 
increases with the reduction of the DC current in the donor nanotube. 
Frame 11 of the animation is shown in Fig. 3.25. The cold atom cloud is 
now in the minimum around the nanotube in the y-direction. The nanotube 
in the z-direction can from this point onwards be considered to be inactive 
since the potential barrier between the potential minima around the two 
nanotubes is comfortably large.  
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Fig. 3.24.  Ueff in the xy-plane in frame 8 of the animation in Fig. 3.19. 

 

 
Fig. 3.25.  Frame 11 in the animation in Fig. 3.19. Here IDC, z-wire= 0.5�IZ1. 

frame 9 
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 The RF currents have not been altered in either nanotube in the 
sequence of frames. The cold atoms can finally be pumped along the 
acceptor nanotube and the atom transfer is complete. This was shown in 
frame 12 – 14 in Fig. 3.19. 
 The cold atoms can also be pumped away along the acceptor nanotube 
at once without turning down the DC current in the donor nanotube. This 
can be done by replacing frame 8 – 14 in the animation in Fig. 3.19 by four 
alternative frames with the following bias currents:  
 

{ }I+II
RF| z-cond. rings [ 110 110], [ 70 70], [ 10 10], [ 10 10] A,I μ= − − − −  

{ }I+II
RF| y-cond. rings [ 280 210], [ 280 140], [ 350 70], [ 350 0] A,I μ= − − − −  

 
 The DC current in the nanotube in the z-direction is kept at -15 μA. The 
DC current in the nanotube in the y-direction and the RF currents in both 
nanotubes are the same as before. Because the bias currents in the four new 
frames are similar to the bias currents in frames they replace in Fig. 3.19 
there is not much more to show. The four frames will therefore not be 
illustrated further.  
 The decision on how to complete the atom transfer depends on whether 
the barrier height in frame 9 of ~ 1 �K is adequate to prevent cold atoms 
from tunnelling back into the slightly shallower minimum around the donor 
nanotube. The height of the barrier between the potential minima around 
the nanotubes as the common minimum is split is shown in Fig. 3.23. The 
sequence of frames in Fig. 3.19 has been arrived at as a best effort and 
there is no guarantee that the result is good enough to be viable in practise.  
 The approach of splitting the common minimum may have advantages 
in a quantum computer [156], since it allows cold atoms to be stored 
around the acceptor nanotube temporarily. It would also free up the donor 
nanotube faster so that it can be used to transport a second cloud of cold 
atoms somewhere else. The key word here is faster, since it will otherwise 
take time to move the cold atoms sufficiently far from the crossing point to 
disconnect the minimum potential surfaces around the nanotubes. In the 
end one may not have a choice in this matter. The alternative of pumping 
away the cloud of cold atoms at once is both simpler and more robust 
against tunnelling and should work just as well in most cases. The easiest 
solution may here turn out to also be the best solution. 
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3.7  A four carbon nanotube cell 
 
The geometry of the cell is as shown in Fig. 2.29. The four nanotube cell 
should also be optimized. The optimization routine used is the same as for 
the four-wire cell in Chapter 2, and the variables x1z and dy1 are optimized. 
The DC current and the half-distances d between two crossed and two 
parallel conductors from Section 3.5 are used as initial values in the 
optimization routine. The DC currents in the nanotubes are IZ1 = -15 μA, 
IZ2 = 15 μA, IY1 = -15 μA and IY2 = 15 μA. 
 The optimized values are x1z = -128.4 nm and dy1 = -177.8 nm. The 
effective potential has been minimized in the point (x, y, z) = (0, dy1, dy1) 
for x1z and in the point (x, y, z) = (x1z, 0, dy1) for dy1. The variables x1z 
and dy1 are the x-axis displacement of the (row of) conductors pointing in 
the z-direction and the y-axis displacement of conductor “1”, which also 
points in the z-direction, respectively. The remaining variables are defined 
as dy2 = -dy1, dzn = dyn for n = 1 – 2 and x1y = -x1z. The RF currents are 
4 μA of the same sign as the DC current in each conductor. The RF 
frequency is 0.27 MHz and the radius of the nanotubes is 3.52 Å. 
 
The effective potential manifold Ueff = 5e-29 J is shown in Fig. 3.26. The 
figure clearly shows a double surface around the nanotubes. The potential 
minimum is located between the two surfaces. The shape of the potential 
appears a bit chubbier in Fig. 3.26 compared to in Fig. 2.31 for the four-
wire cell. This is because the potential level shown is higher relative to the 
depth of the trap. Fig. 3.27 shows the effective potential in three slices 
through the cell at x = 0, y = dy2 and z = dz1. The dark blue figure-of-eight 
pattern around the nanotubes in the y-direction indicates that the 
optimization has been successful. A 3D isolated potential maximum is 
again seen at the centre of the cell. 
 When only DC currents are used the four nanotube cell has a potential 
minimum at the centre as shown in Fig. 3.28. The figure is similar to Fig. 
3.3 for the four micro-wire cell. The effective potential is very high and 
increases sharply towards the nanotube walls inside the brown circles. The 
current density in the nanotubes is clearly very high for their small size.   
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Fig. 3.26.  The potential surface Ueff = 5e-29 J in a four carbon nanotube cell. 

 

 
Fig. 3.27.  Slice-plot showing the four-CN cell excited by DC and RF currents. 
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Fig. 3.28.  Slice-plot showing the four-CN cell excited by only the DC currents. 

 
The depth of the four nanotube cell trap is described by the graphs along 
the x-axis in Fig. 3.29 and along the z-axis in Fig. 3.30. The axes are the 
same as in Fig. 3.28. The temperature of the potential is eff BT U k= . The 
potential along the y-axis is identical to the potential along the z-axis in Fig. 
3.30. In the two figures the red graphs are for 0.27 MHz,RFf =  the green 
graphs for 0.18 MHz,RFf =  the blue graphs for 0.09 MHzRFf =  and the 
black graphs for zero frequency. 
 
A magnetic quantum number of mF = 2 has been used for all graphs. If the 
potential maximum at the centre of the cell is used to catch and hold 
ground state atoms with mF = 1, the effective potential shown by the graphs 
must be divided by two according to equation (2.1), when the ground state 
atoms are considered. The potential maximum at the centre, which is due to 
the RF dressing effect, is approximately equal to mF����RF / kB. The 
effective potential is zero at the centre of the trap when it is excited by only 
the DC currents. For DC + RF excitation it is difficult to establish whether 
or not the minimum around the centre of the cell is at zero potential.  
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Fig. 3.29.  Potential along the x-axis through the centre of the four nanotube cell. 

 

 
Fig. 3.30.  Potential along the z-axis through the centre of the four nanotube cell.
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The graphs in Fig. 3.29 and Fig. 3.30 show that the depth of the trap is 
proportional to the RF frequency. When the RF frequency is 0.27 MHz the 
depth of the trap is reduced to approximately one third of what it is when 
the RF frequency is 0.8 MHz. An early but mistaken attempt at scaling in 
which DC currents of 15 μA, RF currents of 4 μA and an RF frequency of 
0.8 MHz were used, resulted in a minimum distance d for a single nanotube 
of 34.6 nm. When optimized this design gave the same trap depth as the 
millimetre and micrometre sized cell traps. Such a small trapping distance 
d is clearly not feasible in practise. 
 

3.8  A single-layered CN cell-grid 
 
A 3 x 3 crossed nanotube design has been described in [151]. The trapping 
barrier has however turned out to be very low in the x-direction close to the 
centre conductors when the two effective potential peaks or wells have 
been merged. The 3 x 3 nanotube geometry is therefore not expected to be 
good enough to be worth implementing in practise unless multi-walled or 
bundled nanotubes can be used. The assessment of such nanotubes is 
however judged to be beyond the scope of this work. The 3 x 3 nanotube 
geometry will accordingly not be given further description here. 
 A 6 x 6 crossed nanotube cell-grid has been studied. The geometry is as 
shown for the wire version in Fig. 2.54. Fig. 3.31(a) shows the effective 
potential in five slices for x = 0, y = {dy2, 0.5�(dy6 – dy4)} and z = 
{0.5�(dz5 – dz3), dz1}. The figure gives a view of where the potential 
minimum and the potential maxima can be found inside the geometry.  
 A mesh-plot of the effective potential in the yz-plane has been published 
in Fig. 5 in [151]. Fig. 6 in [151] shows the effective potential in the same 
plane when the geometry is driven by only the DC currents. Apart from the 
different distance measurements, and that the height of the peaks or wells is 
reduced to about one third, the figures closely resemble the corresponding 
figures for the 6 x 6 wire geometry in Fig. 2.55 and Fig. 2.57. The 
chequered pattern of peaks can be reversed by changing the direction of the 
currents in one of the nanotube rows. 
 The effective potential in the slice for y = dy2 shown in Fig. 3.31(b) 
confirms visually that the optimization of the structure has been successful. 
Inspection of the resulting effective potential in this way seems to be the 
only way to check the quality of the optimized solution. 
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Six variables have been optimized for the 6 x 6 nanotube cell-grid. The 
variables are listed in Table 3.2 together with their values and the point 
where the effective potential function has been minimized. The 
optimization technique is the same as for the four-wire cell in Section 2.8. 
The variables IZ3 and IZ5 are the DC current magnitudes in the second 
outermost and outermost nanotubes in each conductor-plane. dy1, dy3, and 
dy5 are the distances from the symmetry line of each conductor-plane to 
the innermost, second outermost and outermost nanotubes respectively. 
The variable x1z = h/2 sets the distance between the two nanotube rows. 
 
Table 3.2.  Optimized variables for the nanotube cell-grid in Fig. 3.31. A total of 
six variables have been optimized. The variable IZ1 is listed in addition.  

Variable Value Ueff minimized in point (x, y, z) 
(IZ1) -15.0 μA Not optimized 
IZ3 15.1 μA 0, dy3, dy1 
IZ5 -13.4 μA 0, dy5, dy1 
dy1 -164.9 nm x1z, 0, dy1 
dy3 -493.5 nm x1z, (dy3-0.5*(dy3-dy1)), dy1 
dy5 -830.6 nm x1z, (dy5-0.5*(dy5-dy3)), dy1 
x1z -118.5 nm 0, dy1, dy1 

 
All other DC currents and distances used in the simulation are determined 
from the variables in Table 3.2. The DC currents in remaining nanotubes 
become IZn = -IZ(n-1) for n = {2, 4, 6} and IYn = IZn for n = 1 – 6. The 
remaining distances can be found as dyn = -dy(n-1) for n = {2, 4, 6} and 
dzn = dyn for n = 1 – 6. x1y = -x1z. The nanotubes have here been 
numbered in the positive y-direction or from bottom to top as {5 3 1 2 4 6}. 
 
In Fig. 2.54 the conductors are numbered from 1 – 6 in ascending order. 
Relative to Fig. 2.54 the currents in the nanotubes become as follows: 

( ) [ ]1 6
DC -13.4,  15.1,  -15.0, 15.0, -15.1,  13.4  �Az tubeI −

− =   and 
( ) [ ]1 6
DC -13.4,  15.1,  -15.0, 15.0, -15.1,  13.4  �A.y tubeI −

− =   

The RF currents are ( ) [ ]1 6
RF -4,  4,  -4, 4, -4,  4  �Az tubeI −

− =  and 
( ) [ ]1 6
RF -4,  4,  -4, 4, -4,  4  �A.y tubeI −

− =  The frequency is RF 0.27 MHzf = .  

 The distances shown in Fig. 2.54 become d12 = |dy5|-|dy3| = 337.0 nm, 
d23 = |dy3|-|dy1| = 328.6 nm and d34 = 2·|dy1| = 329.9 nm. h = 2·|x1z| = 
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237.0 nm. The inter-nanotube spacing differs by less than 2.6 %. This 
suggests that uniform inter-wire spacing could work if a more robust 
optimization scheme can be found. 
 

  
       (a)      (b) 

Fig. 3.31.  The DC + RF generated potential in a 6 x 6 CN grid (a), and the slice 
for y = dy2 shown by itself (b). 

 
The application of the nanotube cell-grid is similar to that of the 
corresponding wire structure in Chapter 2. That is as part of a quantum 
register with increased noise immunity. The downscaling changes primarily 
the size of the atom clouds that can be held for processing. The effective 
potential pattern in the nanotube cell-grid can be considered to be rigid and 
should be used as it is in an eventual application. It is however possible to 
turn the potential maxima into potential minima in all cells simultaneously 
by reducing the frequency and by turning down the RF currents.  
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3.9  Multi-layered CN cell-grids 
 
Nanotube cell-grids are stackable in the same way as the wire cell-grids in 
Chapter 2. To show this an example of two stacked cell-grids will be given 
first, followed by an example of three stacked cell-grids. 6 x 6 nanotube 
cell-grids similar to the one in Section 3.8 will be used. 
 The effective potential for two stacked 6 x 6 CN cell-grids is shown in 
five slices for x = -x3z, y = {dy2, 0.5�(dy6 – dy4)} and z = {dz5, 0} in Fig. 
3.32. This type of plot is useful to give an overview of the potential inside 
larger geometries. As explained in Chapter 2, the difficulty here lies in the 
optimization of the distances between the conductors and the critical DC 
currents. The two cell-grids must be considered together for the 
optimization to be successful. The geometry consists of two inner and two 
outer nanotube rows. These require separate sets of optimized variables. 
 

  
Fig. 3.32.  The effective potential generated by DC and RF currents in a 24 CN 
structure. 
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All variables that have been optimized are listed in Table 3.3 together with 
their values and the point where the effective potential function has been 
minimized. The variables dy1, dy3, dy5, IZ3 and IZ5 are connected with the 
inner conductor rows and the variables dz1, dz3, dz5, IY1, IY3 and IY5 
pertain to the outer conductor rows. The distances between the conductor 
rows have been optimized through the variables x1z, x2z and x3z. 2·|x1z| is 
the distance between the outer conductor rows and the closest of the inner 
conductor rows. The distance between the two inner conductor rows is x3z 
- x1z. The variable x2z has also been optimized but it is not independent for 
this geometry and can be found as x2z = 2·x1z - x3z. 
 
Table 3.3.  Optimized variables for the nanotube cell-grid structure in Fig. 3.32. 
A total of fourteen variables have been optimized. The variable IZ1 is also listed.   

Variable Value Ueff minimized in point (x, y, z) 
(IZ1) -15.0 μA Not optimized 
IZ3 15.1 μA (-x3z-0.5*(-x3z-x1z)), dy3, dz1 
IZ5 -12.2 μA (-x3z-0.5*(-x3z-x1z)), dy5, dz1 
IY1 -15.8 μA Scaled only with IY3 and IY5 
IY3 16.1 μA 0, dy1, dz3 
IY5 -13.3 μA 0, dy1, dz5 
dy1 -171.5 nm x1z, 0, dy1 
dy3 -514.4 nm x1z, (dy3-0.5*(dy3-dy1)), dy1 
dy5 -849.4 nm x1z, (dy5-0.5*(dy5-dy3)), dy1 
dz1 -169.5 nm -x1z, dy1, 0 
dz3 -509.4 nm -x1z, dy1, (dz3-0.5*(dz3-dz1)) 
dz5 -849.4 nm -x1z, dy1, (dz5-0.5*(dz5-dz3)) 
x1z -125.2 nm 0, dy1, dy1 
x2z -630.4 nm (-x3z+0.5*(x2z+x3z)), dy1, dz1 
x3z 380.0 nm -(-x1z+0.5*(x3z+x1z)), dy1, dz1 

 
The other DC currents and distances in the simulation are found from 
symmetry from the variables in Table 3.3. The remaining DC currents are 
IZn = -IZ(n-1) for n = {2, 4, 6} and IYn = -IY(n-1) for n = {2, 4, 6} for the 
cell-grid in front in Fig. 3.32 (g1). IZn = -IY(n-6) for n = 7 – 12 and IYn =  
-IZ(n-6) for n = 7 – 12 for the cell-grid to the rear in Fig. 3.32 (g2). 
 The remaining distances become dyn = -dy(n-1) for n = {2, 4, 6} and 
dzn = -dz(n-1) for n = {2, 4, 6} for the cell-grid in front in Fig. 3.32 (g1). 
dyn = dz(n-6) for n = 7 – 12 and dzn = dy(n-6) for n = 7 – 12 for the cell-
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grid to the rear in Fig. 3.32 (g2). The variable x1y = -x1z. The variable x3z 
has been optimized to find x2y, which is equal to -x3z.  
 
For the two inner nanotube rows dy1 is the distance from the symmetry line 
of each nanotube row to the innermost nanotubes, dy3 is the distance from 
the symmetry line to the second outermost nanotubes and dy5 is the 
distance from the symmetry line to the outermost nanotubes. For the two 
outer nanotube rows the corresponding distances are dz1, dz3 and dz5. 
 The distances dz5 and dy5 have again become as good as identical. The 
reason for this is that the currents IY1, IY3 and IY5 have been scaled in the 
optimization in the same way as described in Section 2.10 for the multi- 
layered wire grids. 
 The distances dyn and dzn for n = {1, 3, 5} can be seen to differ by at 
most 1.2 %. Furthermore the difference between dy3 and dz3 calculated as 
dy3 = dz3 = 3·dy1 or dy5 and dz5 calculated as dy5 = dz5 = 5·dy1 and the 
optimized values for the same variables is at most about one percent. It 
therefore seems that the same inter-conductor spacing can be used for both 
the inner and outer conductor rows. A uniform conductor spacing based on 
the optimization of just one distance should also be possible.  
 
The currents in the four nanotube rows can be summed up as follows: 

( ) [ ]1 6
DC , 1 -12.2,  15.1,  -15.0, 15.0, -15.1,  12.2  �A,z tube gI −

− =  

( ) [ ]1 6
DC , 1 -13.3,  16.1,  -15.8, 15.8, -16.1,  13.3  �A,y tube gI −

− =  

( ) [ ]1 6
DC , 2 13.3,  -16.1,  15.8, -15.8, 16.1,  -13.3  �A,z tube gI −

− =  

( ) [ ]1 6
DC , 2 12.2,  -15.1,  15.0, -15.0, 15.1,  -12.2  �A,y tube gI −

− =  

where g1 refers to the cell-grid in front in Fig. 3.32 and g2 refers to the 
cell-grid to the rear. The nanotubes are here numbered in the positive y-
direction and from bottom to top. The RF currents are 4 μA of the same 
sign as the DC current in each nanotube. The frequency is RF 0.27 MHz.f =   
 
Fig. 3.33 shows the effective potential in the xz-plane in two slices for y = 0 
and y = dy2 separately. The slice for y = 0 in Fig. 3.33(a) shows that local 
potential maxima are found both within each grid and between the grids. 
The local maxima at the centre of the geometry are seen to be fully 
surrounded by a deep potential minimum.  
 The slice for y = dy2 in Fig. 3.33(b) can be used to assess the quality of 
the optimization. For the most part the effective potential minimum seems 



 
3.9  Multi-layered CN cell-grids  173 

 

to be exactly where it should be. Notice however that there is no strong 
potential minimum between the uppermost and lowermost nanotubes in the 
y-direction where x � -380 nm and the nanotube in the z-direction in the 
outer nanotube row. It is in this case difficult to point to any one variable as 
having been optimized badly. The simplicity of the optimization scheme 
itself seems to be the source of the problems as discussed in Chapter 2. It is 
thought that a different and better optimization approach is necessary to 
yield further improvement. 
 

   
     (a)      (b) 

Fig. 3.33.  The effective potential in slices for y = 0 (a) and y = dy2 (b). 

 
When three nanotube cell-grids are stacked the effective potential pattern 
becomes as shown in Fig. 3.34 and Fig. 3.35. Fig. 3.34 shows the potential 
surface Ueff = 5e-29 J and Fig. 3.35 shows the effective potential inside the 
structure in slices for x = {x2z, 0}, y = {0, dy6} and z = {dz5, 0}. The 
geometry of the nanotubes has been drawn in both figures. 
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Fig. 3.34.  The isosurface Ueff = 5e-29 J for a 36 CN structure with DC and RF 
excitation. 

 
Fig. 3.35.  The effective potential generated by DC and RF currents in the 36 
nanotube structure. 
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The nanotube rows in the cell-grid in the middle lie symmetrically inside 
the geometry and can consequently share one set of optimized variables. 
The optimized variables are IZ3, IZ5, dy1, dy3 and dy5. The letters y or Z 
and the numbers in the variable names have the following meaning. For 
distance variables “y” refers to y-axis displacement and for current 
variables “Z” is the pointing direction of the nanotube. The numbers refer 
to the nanotubes in each row numbered in the positive y-direction or from 
bottom to top in the order {5 3 1 2 4 6}. 
 The variables IZ7, IZ9, IZ11, dy7, dy9 and dy11 have been optimized for 
the two outermost nanotube rows in the geometry. The numbers 7 – 12 here 
relate to the nanotubes in the grid at the back (g2) in Fig. 3.34. The 
nanotubes in the grid in the middle (g1) have the numbers 1 – 6 and the 
nanotubes in the grid at the front (g3) have the numbers 13 – 18. But for 
this grid (g3) the variables are found from the grid in the back (g2) from 
symmetry. Just as for the multi-layered wire-grids in Section 2.10 the 
currents IZ7, IZ9 and IZ11 have been scaled up or down with each iteration 
of the while-loop depending on whether dy11 is greater than or equal to 
dy5, or smaller than dy5, respectively. 
 The relevant variables for the two second outermost wire rows in the 
geometry have only been optimized in part. The DC currents in the second 
outermost (IY9) and outermost nanotubes (IY11) have been optimized, 
while the DC current in the innermost nanotubes (IY7) has been set equal to 
IZ1. The distance variables have been set equal to those for the nanotube 
grid at the centre, i.e. dz7 = dy1, dz9 = dy3 and dz11 = dy5. Attempts to 
include dz7, dz9, dz11 and IY7 among the optimized variables have caused 
the optimization script to latch on to a bad solution for some of the 
variables, which causes the optimization to fail.  
 The distances between the nanotube rows have been optimized through 
the variables x1z, x2z and x3z. As before x1z is the distance from the 
symmetry plane (x = 0) through the centre of the geometry to the nanotube 
row pointing in the z-direction in cell-grid one. x2z and x3z are the 
distances from the symmetry plane to the nanotube rows pointing in the z-
direction in cell-grids two and three respectively. All the optimized 
variables are shown in Table 3.4 together with their values and the point 
where the effective potential function has been minimized.  
 



 
176   Chapter 3: Micrometre and Nanometre Scale Structures  

 

 

Table 3.4.  Defining variables for the nanotube cell-grid structure in Fig. 3.34. 
Altogether 16 variables have been optimized. The variables IZ1, IY7, dz7, dz9 
and dz11 have also been listed to give a clearer picture. 

Variable Value Ueff minimized in point (x, y, z) 
(IZ1) -15.0 μA Not optimized 
IZ3 15.1 μA 0, dy3, dy1 
IZ5 -12.9 μA 0, dy5, dy1 
IZ7 15.6 μA Scaled only with IZ9 and IZ11 
IZ9 -15.6 μA (-x3z+0.5*(x2z+x3z)), dy9, dz7 
IZ11 13.6 μA (-x3z+0.5*(x2z+x3z)), dy11, dz7 
(IY7) Set equal to -IZ1 Not optimized 
IY9 -15.1 μA (-x3z+0.5*(x2z+x3z)), dy7, dz9 
IY11 13.9 μA (-x3z+0.5*(x2z+x3z)), dy7, dz11 
dy1 -166.9 nm x1z, 0, dy1 
dy3 -500.8 nm x1z, (dy3-0.5*(dy3-dy1)), dy1 
dy5 -833.3 nm x1z, (dy5-0.5*(dy5-dy3)), dy1 
dy7 -167.4 nm x2z, 0, dz7 
dy9 -502.4 nm x2z, (dy9-0.5*(dy9-dy7)), dz7 
dy11 -833.3 nm  x2z, (dy11-0.5*(dy11-dy9)), dz7 
(dz7) Set equal to dy1 Not optimized 
(dz9) Set equal to dy3 Not optimized 
(dz11) Set equal to dy5 Not optimized 

x1z -125.2 nm 0, dy1, dy1 
x2z -624.6 nm (-x3z+0.5*(x2z+x3z)), dy7, dz7 
x3z 376.8 nm -(-x1z+0.5*(x3z+x1z)), dy7, dz7 

 
The remaining DC currents and distances used in the simulation are found 
from the optimized variables in Table 3.4 by exploiting symmetry. The DC 
currents become as follows:  IZn = -IZ(n-1) for n = {2, 4, 6, 8, 10, 12} and 
IYn = IZn for n = 1 – 6.  IY8 = -IY7, IY10 = -IY9 and IY12 = -IY11.  IZn = 
IY(n-6) for n = 13 – 18 and IYn = IZ(n-6) for n = 13 – 18. 
 The remaining distances can be found as: dyn = -dy(n-1) for n = {2, 4, 
6, 8, 10, 12} and dzn = dyn for n = 1 – 6. dz8 = -dz7, dz10 = -dz9 and dz12 
= -dz11. dyn = dz(n-6) for n = 13 – 18 and dzn = dy(n-6) for n = 13 – 18. 
The distances from the symmetry plane (x = 0) to the nanotube rows 
pointing in the y-direction are x1y = -x1z, x2y = -x3z and x3y = -x2z.  
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The wire currents in the six nanotube-planes can be summed up as follows: 
( ) [ ]1 6
DC , 1 -12.9,  15.1,  -15.0, 15.0, -15.1,  12.9  �A,z tube gI −

− =  

( ) [ ]1 6
DC , 1 -12.9,  15.1,  -15.0, 15.0, -15.1,  12.9  �A,y tube gI −

− =  

( ) [ ]1 6
DC , 2 13.6,  -15.6,  15.6, -15.6, 15.6,  -13.6  �A,z tube gI −

− =  

( ) [ ]1 6
DC , 2 13.9,  -15.1,  15.0, -15.0, 15.1,  -13.9  �A,y tube gI −

− =  

( ) [ ]1 6
DC , 3 13.9,  -15.1,  15.0, -15.0, 15.1,  -13.9  �A,z tube gI −

− =  

( ) [ ]1 6
DC , 3 13.6,  -15.6,  15.6, -15.6, 15.6,  -13.6  �A,y tube gI −

− =  

where g1 refers to the cell-grid in the middle in Fig. 3.34, g2 refers to the 
cell-grid at the back (where the x-values are negative) and g3 to the cell-
grid in front. The nanotubes are here numbered sequentially in the positive 
y-direction or from bottom to top. The RF currents are 4 μA of the same 
sign as the DC current in each nanotube. The frequency is RF 0.27 MHz.f =  
 
The success of the optimization can be judged by looking at the effective 
potential in the slice for y = dy2 in Fig. 3.36. The potential minimum can be 
seen to be just about right everywhere in the slice. Notice that the minimum 
comes closest to the surface of the nanotubes on the right hand corners. The 
effective potential slice for y = dy4 is essentially identical to the slice for y 
= dy2. In the slice for y = dy6, which is partly visible in Fig. 3.35, the 
pattern of the potential minimum begins to change because the cell 
structure is discontinued. There seems to be little that can be done about 
that considering how the structure is optimized.  
 The slice of the effective potential for y = 0 is shown again in Fig. 3.37. 
The figure shows that the potential barrier is increased in the x-direction 
between the parallel nanotubes for cells surrounded by other cells within 
the structure. For cells along the periphery the depth of the minimum is 
impaired in the outward facing direction. Fig. 3.37 is very similar to Fig. 
2.61 for the corresponding wire geometry.  
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Fig. 3.36.  The effective potential slice for y = dy2 in the 36 nanotube structure. 

 

 
Fig. 3.37.  The effective potential slice for y = 0 in Fig. 3.35 by itself. 
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When the nanotubes are excited by only the DC currents, potential minima 
are found at the centre of the cells (See e.g. Fig. 2.62). This will not be 
illustrated further here. In order to quantify the benefit of cells being 
surrounded by other cells in terms of increased height of the potential 
barrier between the cells, graphs of the effective potential have been 
calculated along the x-axis (y = z = 0) and along the z-axis (x = y = 0) 
through the 36 CN structure. The graphs are shown in Fig. 3.38(a) and (b) 
respectively. The red curves are for DC + RF excitation with 

RF 0.27 MHzf =  and the black curves are for DC excitation only. The 
dotted green and blue curves outline the effective potential for the in-
between frequencies of RF 0.18 MHzf =  and RF 0.09 MHzf =  respectively.  
 The red curves appear to show that the potential minimum is divided in 
two between the cells. In the nanotube crossing points there are however 
only single minima both for the x-positions where the peaks are and for x-
positions between the two minima between the cells in Fig. 3.38(a). The 
two minima between the cells are therefore part of the same minimum. 
There is thus a single minimum between the cells only in the points 
specified in the optimization. 
 Several limitations of the optimization technique were discussed in 
Section 2.10 in Chapter 2. Since the same optimization technique has been 
used throughout this Chapter the same things will apply also here. We 
therefore refer readers to the account given in Chapter 2 for additional 
information on this topic. 
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(a) 

 

 
(b) 

Fig. 3.38.  Graphs along the x-axis (a) and z-axis (b) through the 36 CN structure.
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3.10  Conclusion 
 
In this Chapter the down-scaling of some of the wire structures from 
Chapter 2 to micrometre and nanometre size has been described and 
exemplified. The effects of thermally induced spin-flip transitions and the 
Casimir-Polder force have also been explained. 
 When scaling to micrometre size, the cold atom clouds must be kept at a 
certain minimum distance from the conductors to minimize thermally 
induced spin-flip transitions. The conductors should also be dimensioned to 
avoid extreme current densities. If conductors become very hot because of 
high currents and a finite conductivity, the problem of thermally induced 
magnetic field fluctuations will get worse.  
 Two examples have been given of micron sized structures, a four micro-
wire cell and a 3 x 3 micro-wire geometry. Both geometries have been 
adapted toward a future realization on a micro-machined substrate for 
testing. The shape and depth of the trapping potentials have been found to 
be the same as for the corresponding wire structures in Chapter 2. The 
reduced dimensions make the atom traps suited for smaller atom clouds. 
 Scaling to nanometre size causes two loss mechanisms to play a part. In 
addition to thermally induced spin-flip transitions the effect of the Casimir-
Polder force must be taken into account. The Casimir-Polder force is a 
generally attractive dispersion force caused by the presence of a dielectric 
material. The Casimir-Polder force creates a potential which adds to the 
effective potential created by the DC and RF currents in the conductors. 
The effect of the Casimir-Polder force is minimized by the use of carbon 
nanotubes as conductors. The minimum feasible trapping distance is 
expected to be no less than 100 nm from the surface of a carbon nanotube. 
 The prospective transfer of cold atoms between two crossed nanotubes 
has been illustrated. The situation is here much the same as for atom 
transfer between two crossed wires, which was covered in Section 2.5. The 
atom transfer may be completed in two ways, by splitting the common 
minimum or by pumping the cold atoms away from the junction right 
away. It is an open question whether both of these options are feasible in 
practise. The bias currents used here have also been too high for the bias 
rings to be implemented with ordinary carbon nanotubes. It may be 
possible to use smaller bias currents in practise and the bias rings may then 
be implemented using multi-walled or bundled nanotubes. 
 A four carbon nanotube cell trap has been designed and studied. The 
depth of the trapping potential became only about one third of what it was 
for the millimetre and micrometre sized four-conductor cell traps 
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considered previously in Sections 2.8 and 3.3. The depth of the four-
nanotube cell trap is proportional to the RF frequency. For a given 
geometry size the RF frequency corresponds to a certain DC current level 
in the conductors. If the RF frequency is increased then the DC current 
level must also increase to maintain the same DC current to angular 
frequency ratio. The depth of the trap is accordingly also proportional to 
the DC current level in the conductors. It is the maximum conductor 
current that effectively limits the depth of the trap. The Larmor frequency 
is accounted for by the equation for the effective potential in (2.1) and does 
not have to be considered specifically for the traps and guides designed so 
far.  
 Several examples of grid structures composed of nanotubes have also 
been shown. Apart from the reduced trap depths the shape of the effective 
potential is practically identical to that of the corresponding wire-grids in 
Chapter 2. What is most noticeable is how narrow the nanotubes are 
relative to typical wires and micro-wires.  
 The optimization of the multi-layered cell-grids continues to pose a 
challenge in the same way as for the corresponding wire realizations in 
Chapter 2. The attained optimisation result is quite good for the most part, 
but there is still room for improvements. Further improvement of the 
optimization is expected to require the use of a better optimization scheme. 
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Chapter 4          
              
Millimetre Sized Quadrupolar Traps 
 
 
 
 
 

4.1  Introduction 
 
A quadrupolar trap, which is similar to the Ioffe-Pritchard trap except for 
ring currents in opposite directions, is in this Chapter investigated in the RF 
dressing regime through simulations. The RF dressed Ioffe-Pritchard trap 
has previously been studied experimentally in [106], [157], and been found 
capable of trapping both strong- and weak-field-seeking atoms. There is 
however little published literature on the subject and the simulations 
presented here are intended to provide additional information in the case of 
the quadrupolar trap with ring currents in opposite directions. 
    The effect of reducing the spacing between the bias rings of a trap 
excited by only DC currents is afterwards also considered. This has been 
done to explore the possibility of making successively smaller magnetic 
traps that can be used to compress clouds of BECs for experimental study. 
 The Chapter begins with a presentation of results for a quadrupolar trap 
with bias rings with a circular cross-section. In Section 4.2 results from 
simulations in Amperes are first compared with results computed in Matlab 
based on the field equations in Section 1.7. Several figures from the 
numeric simulations of the trap in Amperes have been published to date in 
[138], [158]. Additional figures and graph data from the Amperes 
simulations are presented here and compared with equivalent results from 
Matlab to confirm the validity of the results. 
 The magnetic fields computed in Matlab assume infinitesimally thin 
bias rings. However, analogously to the case of fields around bars with a 
finite radius in Section 1.7.2, it is expected that the computed fields are 
very similar if not identical outside of the volume of the physical rings. The 
Amperes software is described in appendix A. 
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 Section 4.2 continues by exploring the effect of different combinations 
of DC and RF currents in the Ioffe-bars and bias rings without making 
changes to the geometry. Several initial simulations indicated the presence 
of deeper potential minima within the circular potential minimum around 
the local maximum at the centre of the trap. In order to explore why these 
minima appear and to determine their relative depths, as well as to find out 
whether the trap is capable of exhibiting similar minima in other places 
around the central maximum, a number of additional simulations have been 
made. Because the possible current combinations are endless only a few 
current combinations which have led to significant changes in the effective 
potential pattern will be focused on.  
 In Section 4.3 a similar Ioffe-bar geometry with bias rings with a square 
cross-section is simulated in Amperes for different gap sizes between the 
rings. The results from Amperes are also here in part compared to results 
computed in Matlab by assuming infinitesimally thin bias rings. 
 

4.2  The effect of different excitations of a quadrupolar trap 
 
The geometry of the trap is shown in Fig. 4.1. The four Ioffe-bars, each 
with a diameter of d = 1 mm, are placed with a distance D = 4 mm between 
them. The bias rings, which have been simulated in Amperes, have a cross-
sectional radius of r = 0.5 mm, an average radius of R = 5 mm from the 
centre of the trap, and are spaced 10 mm apart.  

       
(a) (b) 

Fig. 4.1.  Quadrupolar trap geometry. (a) 3D view, (b) view from above. 
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Before looking at the magnetic field from the complete trap it is instructive 
to first look at the field generated by the Ioffe-bars alone. The B-field for 
the Ioffe-bars, which has been calculated in Matlab, is shown in Fig. 4.2. 
The unit of the B-field magnitude Bm in Fig. 4.2(b) is Tesla. 
 

      
(a) (b) 

Fig. 4.2.  Bm for Ioffe-bars. |IDC, bar| = 0.5 A. (a) 3D view, (b) contour plot. 

 
A second figure also computed in Matlab, which shows Bm for DC ring 
currents of |IDC, ring| = 0.5 A, is shown in Fig. 4.3. Note that the ring 
geometry, which is represented by a wireframe mesh in the figure, is the 
ring geometry simulated in Amperes. The calculated B-field surfaces in 
Fig. 4.3 are for infinitesimally thin rings. The difference is however quite 
small as will become clear in a moment. 
 



 
186   Chapter 4: Millimetre Sized Quadrupolar Traps  

 

 

 
Fig. 4.3.  Isosurface plot of Bm for |IDC, bar| = 0.5 A and |IDC, ring| = 0.5 A. The four 
surfaces are Bm = 3e-5 T (blue), Bm = 5e-5 T (green), Bm = 7e-5 T (yellow) and 
Bm = 1.3e-4 T (red). 

 
A more precise description of the magnetic field is given by contour plots. 
Three contour plots of the B-field from Amperes and Matlab are shown 
side by side in Fig. 4.4 for easy comparison. The currents in the bars and 
ring are the same as in Fig. 4.3, that is |IDC, bar| = 0.5 A and |IDC, ring| = 0.5 A. 
The ring currents are in opposite directions in the two rings.  
 The plot in Fig. 4.4(a) has the x-axis pointing downwards and is 
therefore rotated 90º compared to Fig. 4.4(b). It should be mentioned that 
the contour levels are not exactly identical. In the Matlab figures Fig. 4.4(b, 
f) and (d) the upper bound on the data for calculating the contour levels has 
been set to 2.5e-4 T and 3.2e-4 T respectively. This leads to white circles 
where the infinitesimally thin rings intersect the plane of the plot. Inside the 
white circles the calculated B-field magnitude increases sharply toward the 
infinitesimally thin rings. The correct form of the field inside the rings is 
seen in the plots from Amperes (Fig. 4.4(c) and (e)). Note that there are 35 
contour levels in Fig. 4.4(d, f) compared to 30 contour levels in Fig. 4.4(b) 
and in the Amperes figures. 
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(a)  (b) 

   
(c)  (d)  

   
(e)  (f) 

Fig. 4.4.  Contour plots of Bm [T]. (a, b) xy-plane for z = 0 mm, (c, d) xz-plane for 
y = 0 mm and (e, f) yz-plane for x = 0 mm. 
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The magnetic fields along the z-axis, x-axis and y-axis are shown compared 
in Fig. 4.5 – Fig. 4.7 for Amperes simulations and Matlab computations. 
Ioffe-bar currents (DC) of 0.5 A and 1 A have been used. The ring currents 
(DC) were 0.5 A in opposite directions in the two rings. As can be seen, the 
Matlab calculations and Amperes simulations give practically identical 
results for the B-field along the axes through the centre of the quadrupolar 
trap.  
 In Fig. 4.5 it is apparent that the magnitude of the bar currents does not 
affect the magnetic field along the centre of the trap in the direction of the 
bars. This is not surprising since the B-field from the bars does not have a 
Bz-component. Along the x- and y-axes the trapping field changes with the 
magnitude of the bar currents. The change is however by a different factor 
along the x- and y-axes. 
 

 
Fig. 4.5.  Comparison of z-axis trapping fields for calculated results from Matlab, 
(solid and dashed lines), and simulated results from Amperes, (graphs with 
symbols). 
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Fig. 4.6.  Comparison of x-axis trapping fields for calculated results from Matlab, 
(solid and dashed lines), and simulated results from Amperes, (graphs with 
symbols). 

 

 
Fig. 4.7.  Comparison of y-axis trapping fields for calculated results from Matlab, 
(solid and dashed lines), and simulated results from Amperes, (graphs with 
symbols). 
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When an RF current of 0.1 A at 0.6 MHz is added in the rings, the potential 
seen by the cold atoms becomes dressed. The shape of the dressed potential 
is shown in the yz-plane in Fig. 4.8. Amperes has in this case been used to 
compute the B-field components from the DC and RF excitations in two 
separate simulations. The resulting dressed potential has then been 
calculated in Matlab according to equation (2.1). A similar meshplot of the 
effective potential in the xz-plane can be found in Fig. 5 in [138]. 
 

 
Fig. 4.8.  The RF induced effective potential in the yz-plane from Amperes. 

 
Fig. 4.9 and Fig. 4.10 are both contour plots of the effective potential in the 
xz-plane. In Fig. 4.9 Ueff has been calculated from the field components 
from two Amperes simulations. In Fig. 4.10 the effective potential has been 
calculated in Matlab using the equations for infinitesimally thin rings. The 
contour levels are the same in the two figures. The two plots are very 
similar but there are some minor differences. The potential inside the rings 
is seen only in Fig. 4.9. A number of small shifts in the contour lines can 
also be seen. The smallest value of the potential from Matlab is for 
example 3.55e-30 J, compared to 2.24e-29 J for the figure based on the 
Amperes simulations. It seems that the maxima and minima in the 
potential become a bit sharper when infinitesimally thin bias rings are 
assumed. 
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Fig. 4.9.  Ueff in the xz-plane from field components computed by Amperes.  

 

 
Fig. 4.10.  Ueff in the xz-plane calculated in Matlab. Infinitesimally thin bias rings 
have been used. 
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The shape of the effective potential is shown in Fig. 4.11(a) for ring 
currents of |IDC, ring| = 0.5 A and |IRF, ring| = 0.1 A. (fRF = 0.6 MHz.) An 
increase in the bar currents has the effect of compressing the potential 
surfaces between the Ioffe-bars. This is illustrated in Fig. 4.11(b), where 
|IDC, bar| = 1 A. 
 

 
(a) (b) 

Fig. 4.11.  Ueff calculated in Matlab. (a) |IDC, bar| = 0.5 A, (b) |IDC, bar| = 1 A. The 
potential surfaces are Ueff = 3e-29 J (blue), Ueff = 1e-28 J (green), Ueff = 3e-28 J 
(yellow) and Ueff = 6e-28 J (red). 

 
It has become clear that there is no single circular minimum of uniform 
depth around the local maximum at the centre of the trap. The circular 
minimum typically contains four slightly deeper points, one on each side 
between the Ioffe-bars. This is illustrated in Fig. 4.12 for bar currents of 
|IDC, bar| = 0.5 A, and ring currents of |IDC, ring| = 0.5 A and |IRF, ring| = 0.1 A. 
The ripple in the effective potential around the circular minimum is 
approximately 1e-29 J in the figure. If the RF current amplitude in the rings 
is increased, the height of the ripple increases proportionally to the increase 
in the RF ring currents.  
 A potential barrier is also found to low potential manifolds just outside 
the Ioffe-bars. These low potential manifolds are much closer on two sides. 
This is seen clearly in Fig. 4.12. This barrier appears to be practically 
constant with the magnitude of the RF current in the rings. The barrier is 
approximately 2.6e-29 J for bar currents of |IDC, bar| = 0.5 A, and ring 
currents of |IDC, ring| = 0.5 A and |IRF, ring| = 0.1 A or 0.45 A. If the bar current 
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is increased to |IDC, bar| = 1.0 A the height of the barrier increases to about 
1e-27 J for the same ring currents. 
 

 
Fig. 4.12. Ueff below 3e-29 J near the centre of the quadrupolar trap. 

 
When the DC ring current is increased to 0.85 A, with |IDC, bar| = 0.5 A and 
|IRF, ring| = 0.1 A (fRF = 0.6 MHz), the shape of the effective potential is 
changed significantly as shown in Fig. 4.13(a). There are now only two 
minimum potential areas to the side of the local potential maximum at the 
centre of the trap. Two additional minimum potential areas also appear 
above and below the local maximum at the centre. This is illustrated in Fig. 
4.14, which shows the potential surface Ueff = 2e-29 J. This makes it 
difficult to directly compare the effective potential with the situation before 
the DC ring current was increased. 
 If the bar current is increased to |IDC, bar| = 1 A, with |IDC, ring| = 0.85 A 
and |IRF, ring| = 0.1 A, the shape of the effective potential again becomes 
similar to how it was for DC ring currents of 0.5 A. The height of the 
barrier to the low potential regions outside of the Ioffe-bars has however 
been reduced a little. The height of the potential ripple (0.5e-29 J) in the 
circular minimum around the central maximum stays about the same as for 
DC bar currents of 1 A and DC ring currents of 0.5 A. The height of the 
ripple thus appears to be determined by the combination of the DC bar 
currents and the RF ring currents, which are the same in both cases. It is 
accordingly insensitive to the DC ring currents. 
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(a) (b) 

Fig. 4.13.  Ueff calculated in Matlab. (a) |IDC, bar| = 0.5 A, |IDC, ring| = 0.85 A and 
|IRF, ring| = 0.1 A. (b) |IDC, bar| = 0.5 A and |IRF, ring| = 0.45 A (|IDC, ring| = 0). The 
potential surfaces are Ueff = 3e-29 J (blue), Ueff = 1e-28 J (green), Ueff = 3e-28 J 
(yellow) and Ueff = 6e-28 J (red). 

 

 
Fig. 4.14.  The surface Ueff = 2e-29 J for |IDC, ring| = 0.85 A, |IRF, ring| = 0.1 A and 
|IDC, bar| = 0.5 A. 
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If the bias rings are excited by only RF currents the shape of the effective 
potential becomes quite different. This is illustrated in Fig. 4.13(b), where 
|IRF, ring| = 0.45 A and fRF = 0.6 MHz. There are also in this case four slightly 
deeper points within the circular minimum around the local maximum at 
the centre of the trap. The minimum potential points are very similar to in 
the case where |IDC, ring| = 0.5 A and |IRF, ring| = 0.45 A. One difference is that 
the distance to the low potential regions outside of the Ioffe-bars has 
increased a little.  
 The main problems with only RF ring currents are that the four minima 
around the centre are unstable because of zero RF coupling and that the 
local maximum at the centre of the trap is not confined in the direction of 
the bars. This can be seen in Fig. 4.13(b). The potential maximum at the 
centre in fact increases a bit at the positions of the rings. Hence this 
maximum can not be used to trap ground state atoms for example. This 
potential topology is therefore of little interest in practise.  
 
To round off the examination of this geometry the effective potential is 
compared for the remaining so far mentioned current excitations along the 
z-axis in Fig. 4.15, and along the x-axis and y-axis in Fig. 4.16(a) and (b) 
respectively. The graphs for the effective potential in the z-direction show 
that the potential at the centre of the trap (7.95e-28 J) is independent of the 
current excitations in the bars and rings. This value is the constant 

( ) [ ]2 34 52 2 2 1.055 10 2 6 10F RF F RFm f m f Jπ π π−⋅ − ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅� � . 
 As can be seen in Fig. 4.11 and Fig. 4.13(a) there are usually relative 
minima in the effective potential along the z-axis at the positions of the 
rings. These relative minima are not quite as deep as on a manifold around 
the z-axis (See e.g. Fig. 4.9 and Fig. 4.10). However, curve (3) in Fig. 4.15 
shows that when the DC ring current is increased to 0.85 A, relative 
potential maxima appear instead at the positions of the rings. 
 Curve (2) shows that an increase in the RF ring current has the effect of 
reducing the depth of the relative minima at the positions of the rings. Just 
as for the B-field it makes no difference to the curves in Fig. 4.15 whether 
the DC bar currents are 0.5 A or 1 A. This is because the fields from the 
Ioffe-bars do not have a component in the direction of the bars. 
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Fig. 4.15.  Curves for Ueff in the z-direction. The bar and ring currents are:  
(1) , ,0.5 A or 1.0 A, 0.5 A, 0.1 A,bar DC ring RF ringI I I= = =   

(2) , ,0.5 A or 1.0 A, 0.5 A, 0.45 A,bar DC ring RF ringI I I= = =  

(3) , ,0.5 A or 1.0 A, 0.85 A, 0.1 A.bar DC ring RF ringI I I= = =  

 
In Fig. 4.16 it can be seen that the bar currents have a big impact on the 
graphs for the effective potential along the x- and y-axes. The magnitude of 
the RF ring current does not alter the potential since the RF coupling is 
zero along the x- and y-axes. An increase in the DC ring current from 0.5 A 
to 0.85 A typically increases the effective potential for distances inside the 
radius of the rings and decreases the potential for distances outside the 
radius of the rings. The exception to this is along the x-axis for bar currents 
of 1 A. An increase of the DC ring currents to 0.85 A here reduces the 
value of the effective potential both inside and outside of the radius of the 
rings, except for a narrow region just inside the radius of the rings. 
 



 
4.2  The effect of different excitations of a quadrupolar trap 197 

 

 
(a)  

 
(b)   

Fig. 4.16.  Curves for Ueff in the x-direction (a) and y-direction (b). The bar and 
ring currents are:  
(1) , ,0.5 A, 0.5 A, 0.1 A or 0.45 A,bar DC ring RF ringI I I= = =   

(2) , ,1.0 A, 0.5 A, 0.1 A or 0.45 A,bar DC ring RF ringI I I= = =   

(3) , ,0.5 A, 0.85 A, 0.1 A,bar DC ring RF ringI I I= = =  

(4) , ,1.0 A, 0.85 A, 0.1 A.bar DC ring RF ringI I I= = =  
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4.3  The effect of changing the bias ring spacing in a 
quadrupolar trap 

 
A millimetre sized quadrupolar trap with a rectangular ring cross-section 
has also been simulated in Amperes. The geometry is shown in Fig. 4.17. 
The rings have a height of h = 1 mm and a width of w = 1.5 mm as shown. 
The trap was simulated with gaps between the rings of 5 mm, 2 mm and 0.2 
mm. The currents used in the simulation were |IDC, bar| = |IDC, ring| = 1 A. 
Another simulation with |IDC, bar| = 0.1 A and |IDC, ring| = 0.2 A was done for 
the geometry with a gap size of 2 mm. 
 

         (a)        (b)            (c)  
Fig. 4.17.  The quadrupolar trap geometry. (a) 3D view with a gap of 2 mm,      
(b) 3D view with a gap of 0.2 mm, and (c) view from above. 

 
To illustrate what happens when the gap between the rings is reduced 
contour plots of the magnitude of the B-field from Amperes are provided 
on the next pages for a gap size of 5 mm in Fig. 4.18, for a gap size of 2 
mm in Fig. 4.19 and for a gap size of 0.2 mm in Fig. 4.20.  
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 (a)                             (b)   

 

 
                 (c) 

Fig. 4.18.  Contour plots of Bm for a gap size of 5 mm. (a) The xy-plane for z = 0 
mm, (b) the yz-plane for y = 0 mm, and (c) the xz-plane for x = 0 mm. 

 
In all of the contour plots two additional field minima are seen on either 
side in the xz-plane. These minima are a result of the field lines being 
pulled in on the sides as the ring currents are increased or as the gap size is 
reduced. The 1.0 A DC ring currents cause these minima to be formed 
already for a gap size of 5 mm. As the gap size is reduced it quickly 
becomes difficult to avoid the two additional minima by reducing the ring 
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currents. The two minima are however isolated and should not prevent the 
use of the trap. 
 In Fig. 4.19(d) and Fig. 4.20(d) contour plots in the xz-plane calculated 
in Matlab are shown for comparison. The data ranges for which contours 
are drawn have been adapted to give the contour plots a similar appearance 
and the contour levels are not exactly the same as in the plots from 
Amperes.  
 

     
      (a)                            (b)   

 

    
       (c)             (d) 

Fig. 4.19.  Contour plots of Bm for a gap size of 2 mm. (a) the xy-plane for z = 0 
mm, (b) the yz-plane for y = 0 mm, and (c, d) the xz-plane for x = 0 mm. The 
figure in (d) is calculated using Matlab. 
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Inside the white circles close to the infinitesimally thin rings the calculated 
B-field increases sharply. For the 2 mm gap the Matlab figure deviates both 
within and close to the rings. It is also slightly different in the gap between 
the rings. For the 0.2 mm gap the Matlab figure is obviously totally wrong 
at the centre of the gap between the rings. There are also some differences 
in the field further away from the rings.  
 

    
  (a)                                   (b)   

    
          (c)           (d) 

Fig. 4.20.  Contour plots of Bm [T] for a gap size of 0.2 mm. (a) The xy-plane for 
z = 0 mm, (b) the yz-plane for y = 0 mm, and (c, d) the xz-plane for x = 0 mm. 
The figure in (d) is calculated using Matlab. 

 
The magnitudes of the B-field in the z-direction are shown in Fig. 4.21. The 
three first curves come from simulations with |IDC, bar| = |IDC, ring| = 1.0 A and 
different gap sizes. The last curve is for a gap size of 2 mm with |IDC, bar| = 
0.1 A and |IDC, ring| = 0.2 A. Corresponding plots of the magnitude of the B-
field in the x-direction and y-direction through the centre of the trap (z = 0) 
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are shown in Fig. 4.22 and Fig. 4.23. In the figures “low I” refers to the 
simulation with |IDC, bar| = 0.1 A and |IDC, ring| = 0.2 A. As shown in Fig. 4.22 
and Fig. 4.23 the magnitude of the B-field increases to about 0.46 mT or 
0.52 mT between the rings for a gap size of 0.2 mm. 
 

 
Fig. 4.21.  Bm along the z-axis from Amperes for different gap sizes. 
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Fig. 4.22.  Bm along the x-axis from Amperes for different gap sizes. 

 

 
Fig. 4.23.  Bm along the y-axis from Amperes for different gap sizes. 
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The curves in Fig. 4.22 and Fig. 4.23 show that the strength of the magnetic 
field increases gradually between the rings as the gap is reduced from 5 
mm (blue curves), to 2 mm (green curves) and to 0.2 mm (red curves). The 
magnitude of the magnetic field changes very little on the inside and on the 
outside of the bias rings for different gap sizes so long as the currents in the 
trap remain the same. This is because the B-field gradient of the bias rings 
is reduced when they are brought closer together. The contribution of the 
bias rings to the overall B-field gradient is therefore masked by the much 
larger contribution of the bars.  
 The same curves have also been calculated in Matlab assuming 
infinitesimally thin rings for otherwise the same geometry. The resulting 
curves became as good as identical to those in Fig. 4.21 – Fig. 4.23 except 
for the curve segments between the rings along the x- and y-axes for gap 
sizes of 0.2 mm and 2 mm. The difference was here very large (over 30 %) 
for the 0.2 mm gap size and quite small (5 – 6 %) for the 2 mm gap size.  
 
Three additional simulations were initially done in Amperes with a 
micrometre-sized geometry that explored the use of very broad disc-shaped 
rings with only a narrow gap between them. This was done in an attempt to 
make an even smaller magnetic trap in the direction of the Ioffe-bars. The 
result was that the broad rings caused a sharp fall in the strength of the 
trapping magnetic field in the direction of the bars. When the average 
radius of the broad rings was subsequently increased to reduce the effect of 
opening up the physical rings to inject the currents, the strength of the 
trapping magnetic field fell much more. Increasing the ring currents finally 
had the effect of increasing the magnetic field again.  
 Because simulation results for the magnetic field scale with the size of 
the geometry and the magnitude of the currents they can be presumed to be 
relevant also for millimetre sized quadrupolar traps. It thus seems clear that 
the rings should go quite closely around the Ioffe-bars to maximize the 
trapping strength for a given ring current. If the rings are made relatively 
broad the ring currents must be increased to maintain the effectiveness of 
the rings. This would be practical only to a limited extent, especially if the 
gap is narrow between the rings. Otherwise the magnetic field would 
become too strong within the gap. 
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4.4  Conclusion 
 
In this Chapter the results of simulations of a quadrupolar trap have been 
presented. Simulation results from Amperes have been compared 
favourably with computations in Matlab. The quadrupolar trap has been 
studied with combined DC and RF excitation of the bias rings to explore 
the effective potential topologies for trapping strong-field-seeking atoms or 
a combination of strong- and weak-field-seeking atoms. The possibility of 
placing the bias rings relatively close together has additionally been 
examined.   
 A number of figures and graphs from simulations of the quadrupolar 
trap in Amperes have been compared to calculated results in Matlab 
assuming infinitesimally thin bias rings with good agreement between the 
results. The use of ideal current rings in Matlab resulted in some 
differences especially inside and close to the bias rings. 
 Computations have shown that several different effective potential 
patterns can be created in the quadrupolar trap by varying the DC currents 
in the Ioffe-bars and bias rings and the RF current in the bias rings. The 
circular potential minimum around the local maximum at the centre of the 
trap typically contains four slightly deeper points. The barrier between 
these points is however very low at ~ 0.36 μK for |IDC, bar| = 1 A, (~ 0.72 μK 
for |IDC, bar| = 0.5 A), and |IRF, ring| = 0.1 A. Although this ripple in the 
potential minimum is undesirable it does not preclude the trap from being 
used to trap weak-field-seeking atoms in the circular potential minimum.  
 DC bar currents of 1 A provide a barrier of 72.4 μK to the minimum 
potential manifolds just outside of the Ioffe-bars for |IDC, ring| = 0.5 A and 
|IRF, ring| = 0.1 A. This is more than sufficient for trapping of weak-field-
seeking atoms in the circular potential minimum around the centre of the 
trap. The smallest acceptable potential barrier is about 15 μK. An increase 
of the DC ring currents to 0.85 A was found to be disadvantageous in this 
case and an increase of the RF ring currents increases the ripple in the 
circular potential minimum. DC bar currents of 0.5 A are much too small to 
allow trapping of weak-field-seeking atoms since the potential barrier 
becomes only ~ 1.9 μK in this case. The potential maximum at the centre 
of the trap is at 28.8 μK (mF = 1). This is more than sufficient for trapping 
of strong-field-seeking atoms. The quadrupolar trap can thus be used to 
trap both strong-field-seeking atoms and weak-field-seeking atoms if the 
DC bar currents are sufficiently large.  
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 It has been found that bias rings can be placed relatively close together 
to compress clouds of cold atoms into successively smaller traps. As the 
gap distances become very small the B-field becomes very strong between 
the bias rings and there is a risk of dielectric breakdown. 
 If the rings are made very broad and flat this appears to reduce the 
trapping field along the centre of the trap so that the ring currents must be 
greatly increased for the rings to have the same effect. The width to height 
ratio of the ring cross-sections should be kept modest to allow the ring 
currents to go relatively tightly around the Ioffe-bars. This will keep the 
necessary current in the rings to a minimum. 
 The Ioffe-Pritchard trap with currents in the same direction in both bias 
loops eliminates the zero potential minimum at the centre of the trap. The 
quadrupolar traps discussed in this Chapter do not remove the zero 
potential minimum. The underlying problem seems to be the perfect 
symmetry between the bias loops. In our view a reversal of the current in 
one of the bias loops is just one of several ways of disrupting this 
symmetry. It comes at the cost of a smaller field gradient between the bias 
loops. The zero potential minimum may alternatively be removed by 
creating asymmetry between the practical bias loops. One loop could for 
example have a piece-wise-linear circumference, a rectangular cross-
section or a slightly different radius. Optical techniques for removing the 
field zero are also possible. The temperature of the cold atoms determines 
the lowest acceptable level of the potential minimum. 
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Chapter 5          
               
A Cylinder Guide for Cold Atoms 
 
 
 
 
 

5.1  Introduction 
 
The cylinder guide consists of a solid metal cylinder with a small hole 
inside it near the periphery. An external current carrying wire is placed 
close to the cylinder in line with the hole. DC currents are then sent through 
the cylinder and the wire to create a minimum in the magnetic field inside 
the hole.  
 The Chapter begins by describing the analytical equations for the 
magnetic field inside the cylinder with the hole. An equation is presented 
for placing a zero in the B-field inside the hole. A second zero in the B-
field appears inside the cylinder between the centre of the cylinder and the 
hole and its position can be found as one of the roots of a third order 
polynomial. The equations for a wire with a finite radius have already been 
presented in Chapter 1. 
 In Section 5.3 results from numeric simulations in Amperes for five 
different cylinder sizes are presented. The simulated cylinders have radii of 
2 mm, 3 mm, 5 mm, 7.5 mm and 10 mm. The B-field is also calculated 
using the analytical equations in Matlab for the same cylinder geometries 
and the results are compared.  
 In Section 5.4 bias rings are placed around the cylinder geometry. With 
the exception of a single Amperes simulation with rings with a finite 
circular cross-section, analytical equations for infinitesimally thin bias 
rings are used. It is also here expected that the computed fields are very 
similar if not identical outside of the volume of the corresponding practical 
rings with a finite cross-section. The bias rings are essential for pumping 
the cold atoms through the hole in the cylinder and also serve to remove the 
absolute zero in the B-field inside the hole. 
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5.2  Cylinder equations and expressions for zeros in the B-field 
 
The geometry of the cylinder atom guide is shown in Fig. 5.1 for a cylinder 
radius of 2 mm. The complete geometry is shown Fig. 5.1(a), and the 
modelled geometry is shown in Fig. 5.1(b, c), where a symmetry-plane has 
been defined at y = 0.  
 

    
      (a)       (b)             (c) 
Fig. 5.1.  Cylinder geometry. (a) 3D view, and (b, c) modelled geometry. 

 
The analytical equations for the magnetic field inside the cylinder are as 
follows. Inside the hole in the cylinder: 

0xB =  (5.1) 
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Inside the rest of the cylinder: 
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Outside of the cylinder: 
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In the equations ( )2 2 2

1 cyl hole cyl holeI I r r r= − ⋅ −  and ( )2 2 2
2 cyl cyl cyl holeI I r r r= ⋅ − . 

A set of equations for the magnetic field of a cylinder with a hole are found 
in the book “Problems & Solutions on Electromagnetism”, on p178 – 179 
[159], for a geometry where the circumference of the hole touches the 
centre of the cylinder and where the cylinder has a radius that is three times 
that of the hole. These equations were used by comparing terms to validate 
the equations in (5.1) – (5.6) for the case of the geometry in the book. The 
equations above are for a hole with an arbitrary radius and position along a 
line through the cylinder. Simulations made in Amperes have later proved 
to be in perfect agreement with the equations in (5.1) – (5.6). 
 
Amperes simulations have shown that for cylinder and wire currents that 
lead to a magnetic field minimum inside the hole, a second field minimum 
appears inside the cylinder not far from the hole. It is possible to have a 
single B-field minimum at the inner wall of the hole, but then the atom 
guide can not function. 
 To be able to use the atom guide one B-field minimum must first be 
placed inside the hole by careful adjustment of the currents in the cylinder 
and the wire. An equation will now be derived that can be solved for the 
wire current, the cylinder current or the position along the x-axis of the B-
field minimum inside the hole. The equation also shows that the B-field 
minimum inside the hole is in fact an absolute zero in the field. 
 
The equation for the field inside the hole in the cylinder along the x-axis is 

 

( ) ( )

2

02 0
2 2 22
cyl hole wire

DC y
wirecyl hole

I d IB b
x dr r

μ μ
ππ
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, (5.7) 

 
where wire cyl wire gapd r r d= + +  and ( ) ( )hole hole hole holed r x d r− ≤ ≤ + . 
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Here dgap is the gap between the cylinder wall and the surface of the 
external wire. For |BDC| to be zero inside the hole the following statement 
must be true  

 

( ) ( )2 2
0.cyl hole wire

wirecyl hole

I d I
x dr r

⋅
+ =

−−
 (5.8) 

 
This gives the following equation for the wire current given the position x 
of the field zero and Icyl. (The x-position must be inside the hole). 
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This equation can also be solved for the x-position of the field zero with 
Iwire and Icyl given, or for Icyl with x and Iwire given. The equations are then 
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As a numeric example, with Icyl and Iwire as given below for the geometry in 
Fig. 5.1: 
 

( ) ( )( )2 23.2 2 3 2 4
3 3 1.586 .

5.6 1.6 3

e e
x e mm

e

− − − −
= + − =

⋅ −
 1.4e-3 < x < 1.8e-3        

  (5.12) 
In this case the field zero is not exactly at the geometric centre of the hole 
at x = 1.6 mm. To get the field zero exactly at the centre of the hole the 
wire current should be Iwire = 3.1676 A instead of 3.2 A. 
 
An interesting question is now where the second field minimum inside the 
cylinder is to be found. Because the wire and cylinder currents have been 
chosen the solution must now be for the position of the second minimum 
along the x-axis. It is clear from the equations that this second minimum is 
also an absolute zero in the B-field. 
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 The equation for the B-field inside the rest of the cylinder along the x-
axis is 
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  (5.13) 
For |BDC| to be zero the terms in the expression for by must cancel out 
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Placed on a common denominator the expression becomes 
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Multiplying out terms yields 
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Collection of terms leads to the following fraction of two polynomials 
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The roots of the polynomials can be found numerically, for example by 
using the ‘roots’ function in Matlab. The third order numerator polynomial 
has a complex conjugate pair of roots and one real root. The real root is the 
sought x-position of the field zero inside the cylinder. The real part of the 
complex conjugate roots has an x-value that lies somewhere inside the hole, 
where the equation is not valid. The imaginary parts are relatively small. 
The second order denominator polynomial has roots for dhole and dwire, 
which both lie outside the validity range of the equation. 
 It can be of interest to find an analytical solution for the roots of the 
numerator polynomial. This is however easier said than done, especially 
since the analytical expression is not known for any of the roots. There is 
also a risk that the expressions become so cumbersome to use that they 
become impractical compared to a numeric solution. 
 

5.3  Numerical and calculated results for unbiased cylinder 
guides 

 
As mentioned in the introduction five cylinder atom guides with radii of r = 
2 mm, r = 3 mm, r = 5 mm, r = 7.5 mm and r = 10 mm have been 
simulated in Amperes. The material in the cylinder and wire was chosen to 
be solid copper. In all cases the wire radius was 0.5 mm and the gap 
between the wire and the cylinder wall 0.5 mm. The hole in the cylinder 
had a radius of 0.2 mm and was placed with its centre 0.4 mm from the 
outer wall of the cylinder for all five cylinders. 
 Before looking at results for the complete geometry it is instructive to 
look at the magnetic field for the cylinder alone. Fig. 5.2 shows the B-field 
for a cylinder of radius r = 2 mm in the xy-plane and along the x-axis for a 
cylinder current of Icyl = 5 A. In Fig. 5.2(a) the x- and y-axes range from -4 
mm to +4 mm, z = 0 and a symmetry plane has been defined at y = 0. In 
Fig. 5.2(b) the distance reading along the x-axis is relative to x = -5 mm. 
The figure shows that the magnetic field inside the hole is constant and that 
the field drops to zero at the centre of the cylinder. The slight field gradient 
seen inside the hole in Fig. 5.2(b) is a result of the positions of the two data 
points next to the hole not being exactly on the rim of the hole. 
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             (a)            (b) 
Fig. 5.2.  The B-field for a cylinder with a hole (without the wire). (a) A contour 
plot in the xy-plane and (b) a graph along the x-axis. 

 
Five cylinder atom guide geometries have been examined in a series of 
eight Amperes simulations. The simulations have afterwards been 
compared with computations in Matlab, where the equations for a cylinder 
with a hole from the previous section were used. The eight simulations are 
described in Table 5.1. In Amperes a symmetry plane was defined at y = 0 
and only half of the geometry was modelled. Consequently the currents 
used were also only half of those specified in Table 5.1. The last two 
columns in Table 5.1 quantify the height of the barrier and the calculated 
distance between the zeros in the B-field inside the cylinder and near the 
centre of the hole. The two zeros in the B-field and the barrier between 
them will be illustrated by figures shortly. 
 For the three largest cylinders there is a slight discrepancy between the 
results from Amperes and Matlab when it comes to the height of the 
barrier. The approximate barrier height from the Amperes simulation is 
shown denoted by an (A), and the calculated barrier height in Matlab is 
denoted by an (M). For the two smallest cylinders there is essentially no 
difference, as seen for example in Fig. 5.6, and the barrier height from 
Amperes has been used. The distances between the B-field zeros have all 
been calculated in Matlab, but show good agreement with the Amperes 
simulations. 
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Table 5.1.  Eight simulations in Amperes supported by calculations in Matlab. 

Cylinder 
radius 

Icyl Iwire Barrier height 
between zeros 

Distance between 
B-field zeros 

r = 2 mm 10 A 5.60 A 10.48e-5 T 0.5375 mm 
 7.72 A 4.34 A 7.879e-5 T 0.5239 mm 
 5.6 A 3.20 A 5.069e-5 T 0.4651 mm 
 1.6 A 0.90 A 1.626e-5 T 0.5219 mm 
r = 3 mm 3.6 A 1.42 A 3.169e-5 T 1.3807 mm 
r = 5 mm 5.0 A 1.256 A 4.008e-5 T (A) 

4.122e-5 T (M)
3.3065 mm 

r = 7.5 mm 5.4 A 0.93 A 4.116e-5 T (A) 
4.421e-5 T (M)

5.7903 mm 

r = 10 mm 6.0 A 0.754 A 4.210e-5 T (A) 
4.718e-5 T (M)

8.4028 mm 

 
In connection with trapping of cold atoms it is often convenient to measure 
the barrier height in micro-Kelvin. To do that one should first calculate the 
effective potential as [ ],eff F B F DCU m g B Jμ=  where mF = 2, μb = 
9.2741e-24 J/T and gF = 0.66. The barrier height is then found as 

[ ],eff BT U k K=  where kB = 1.3807e-23 J/K is Boltzmann’s constant. For 
the cylinder with r = 2 mm the potential barrier ranges from 92.9 – 14.4 μK 
depending on the cylinder and wire currents. For the cylinder with r = 3 
mm the potential barrier is 28.1 μK and for the three largest cylinders the 
potential barrier is in the range 35 – 42 μK. 
  
To visualize the shape of the magnetic field for the cylinder atom guides 
two figures from computations in Matlab have been included. In Fig. 5.3 a 
mesh-plot of the B-field is shown for the guide with r = 3 mm. The currents 
are as defined in Table 5.1. The B-field is strongest along the rim of the 
cylinder and around the wire. A minimum in the field is seen close to the 
centre of the wire. This minimum is in fact pulled closer to the cylinder by 
the DC current in the cylinder. The figure also shows that the zero in the 
magnetic field inside the hole is more pointed than the zero in the field 
inside the cylinder.  
 In Fig. 5.4 the four isosurfaces Bm = 2e-5 T (blue), Bm = 8e-5 T (green), 
Bm = 1.2e-4 T (yellow) and Bm = 2e-4 T (red) are shown for the guide with 
r = 5 mm. The figure shows the guide from a different perspective. 
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Fig. 5.3.  Bm in the xy-plane for the cylinder guide with r = 3 mm. z = 0. 

 

 
Fig. 5.4.  Isosurface plot of Bm for the cylinder guide with r = 5 mm. 
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The B-field along the x-axis is shown for all five cylinders in Table 5.1 in 
Fig. 5.5. The x-axis is oriented along the symmetry plane through the centre 
of the cylinder and the wire. For the smallest cylinder with r = 2 mm a 
cylinder current of 5.6 A, and a wire current of 3.2 A has been used, 
corresponding to line three in Table 5.1. The graphs in the figure have been 
calculated in Matlab and the dotted markers on the graphs correspond to 
the data points simulated in Amperes.  
 The data points from Amperes in general match the graphs calculated in 
Matlab well. A quite small but increasing difference can however be seen 
in the magnitude of the B-field toward the rim of the cylinders for the 
biggest cylinders. The centres of the holes in the different cylinders lie at x 
= 1.6, 2.6, 4.6, 7.1 and 9.6 mm respectively. 
 

 
Fig. 5.5.  Bm along x-axis for 5 cylinders. The data is from Amperes and Matlab. 

 
In the case of the smallest cylinder, with radius r = 2 mm, four different 
current levels were found in the cylinder and external wire that gave a 
minimum in the magnetic field inside the hole. These four simulations are 
listed first in Table 5.1. An enlarged view of the region of interest 
containing the zeros in the B-field is shown in Fig. 5.6. The hole in this 
cylinder has its centre at x = 1.6 mm and has a radius of 0.2 mm.  
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 A thing that is particular for this cylinder geometry is that the barrier 
between the two field zeros has its maximum at the inner rim of the hole in 
the cylinder. It has later become clear that the cylinder and wire currents 
that produce a zero in the magnetic field in the same point inside the hole 
scale linearly by the same factor. The resulting barrier height also scales by 
the same factor. Setting the barrier height to a specific level is therefore not 
very difficult if the accompanying currents are acceptable. 
 

 
Fig. 5.6.  The shape of the barrier for the cylinder atom guide with r = 2 mm. 

 
For the largest cylinder a set of similar graphs are shown in Fig. 5.7. The 
graphs have been calculated in Matlab and have not been simulated using 
Amperes. The barrier here has its maximum far away from the hole in the 
cylinder. Note that the cylinder currents are slightly higher for this cylinder 
compared to the cylinder with r = 2 mm in Fig. 5.6, and that the maximum 
barrier height is reduced. This is not surprising since the current density in 
the cylinder scales roughly with the cylinder’s cross-sectional area. The 
reason that the barrier height is not reduced even more may be the much 
longer distance between the two field zeros.  
 It is in any case apparent that the cylinder current must be increased 
significantly to maintain the same barrier height when the radius of the 
cylinder is increased. The reduced current in the external wire comes as a 
benefit however, since the current carrying ability of the cylinder is 
normally far greater than that of the wire.  
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Fig. 5.7.  The shape of the barrier for the cylinder atom guide with r = 10 mm. 

 
The original idea was to place a single minimum in the B-field inside the 
hole in the cylinder. The simulations in Amperes and the calculations in 
Matlab suggest however that this is not possible. It appears that a single 
field minimum inside the cylinder can only be moved outwards to the inner 
wall of the hole by adjustment of the cylinder and wire currents, but not 
inside the hole. A further reduction in the wire current leads to two field 
zeros, where the outer field zero can be moved to the centre of the hole. 
This is illustrated in Fig. 5.8 for the cylinder with r = 2 mm and in Fig. 5.9 
for the cylinder with r = 10 mm. In both cases the red graphs place a field 
zero close to the centre of the hole. The black graphs give a single field 
minimum inside the cylinder. 
 It may at this point seem to be a good idea to simply move the hole to 
where the single minimum is. This has been tried, but does not lead to any 
improvement. The single minimum can again only be moved to where the 
inner wall of the hole is. Instead the barrier between the two field zeros, 
where the outer field zero is at the centre of the hole, becomes smaller. For 
the cylinder with r = 10 mm the two field zeros in this case come very 
close together at x � 4.9 mm and x � 5.5 mm and the barrier between them 
becomes very low indeed. 
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Fig. 5.8.  Different wire currents for the cylinder atom guide with r = 2 mm. 

 

 
Fig. 5.9.  Different wire currents for the cylinder atom guide with r = 10 mm. 
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5.4  Trapping and pumping of cold atoms in cylinder guides 
 
To enable pumping of atoms in the weak-field-seeking state along the 
cylinder guide bias rings can be placed at regular intervals around the 
cylinder and wire. The rings also provide a small B-field component in the 
direction along the guide, which in turn prevents losses due to Majorana 
transitions between trapped and untrapped spin states as the atoms cross the 
B-field zero inside the hole. The situation is essentially analogous to the 
case of the side guide described in [136].  
 
Other ways of moving cold atoms through the guide than with the use of 
bias rings may also be considered. If the length of the atom guide is short it 
may for example be adequate to give the guide a slight downward tilt so 
that it functions as a slide for cold atoms. This has previously been reported 
done for a four wire magnetic guide in a laboratory setup [160]. The 
problem of Majorana losses due to non-adiabatic spin flips as the atoms 
cross the B-field zero inside the hole must however be handled in some 
other way. If the solution is to use an external bias field to remove the 
absolute zero in the B-field inside the hole this alternative way of moving 
the cold atoms becomes much less attractive. It seems that lasers are not 
practical for pumping cold atoms along the guide. The B-field zero inside 
the hole and possible bends in the guide make it impossible to use laser 
light in a straight line through the guide or even reflected off the sides of 
the hole. Alternatives to the use of bias rings for moving cold atoms 
through the guide will not be considered in the following. 
 
The cylinder with radius r = 5 mm was simulated in Amperes with two bias 
rings placed at a height of z = ± 5 mm. The rings had a cross-sectional 
radius of 0.75 mm and a radius of 8 mm from the centre of the xy-plane. 
The cylinder and the external wire were both moved 0.75 mm in the 
negative x-direction. This distance is half the gap between the cylinder and 
the wire plus half the diameter of the wire. The modelled geometry is 
shown in Fig. 5.10(a). The current in the cylinder was 5 A and the current 
in the external wire 1.256 A. The ring currents were 0.5 A in opposite 
directions in the two bias rings. The geometry in Fig. 5.10(b), which 
pertains to the computations of the B-field in Matlab, will be explained 
shortly. 
 Amperes is a relatively simple program and the B-field from the 
cylinder and external wire and the B-field from the bias rings must be 



 
5.4  Trapping and pumping of cold atoms in cylinder guides 221 

 

simulated separately and afterwards added together in a computational 
program such as Matlab. The reason for this is that the cylinder and 
external wire require symmetry about the plane y = 0, whereas the bias 
rings require angular periodicity about the z-axis. 
 In Amperes volume currents can only be assigned to six-sided volumes 
and a current entry surface must also be defined. The program does not 
allow the complete cylinder with the hole to be simulated, since the volume 
then contains “trimmed surfaces”, which is not allowed. The bias rings 
must in any case be defined to be angularly periodic about the z-axis. 
Otherwise there will not be a current entry surface. It is therefore most 
convenient to model the bias rings in two sections centred on the origin and 
to displace the cylinder and the external wire in the negative x-direction. 
 The simulation technique is made further cumbersome by the need to 
simulate the Bx, By and Bz components of the B-field separately for both 
simulations, so that the total magnetic field can be found by summation. 
For each field component a slice through the geometry is defined, and the 
plot ranges of the different slices must be defined to be identical in each 
case. Amperes is accordingly not very convenient to use in this case, but 
the final result for the B-field is reliable.  
 

       
         (a)            (b)  
Fig. 5.10.  Guide geometry with bias rings in (a) Amperes, and (b) Matlab. 

 
Simulations were made in Amperes of the xy-plane for z = 0 and the xz-
plane for y = 0. In the xz-plane the Bx and Bz field components for the 
simulation of the cylinder with the external wire were reported to be 
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constant scalars by Amperes, and files for them could not be saved. A 
closer examination of the equations for the B-field in the cylinder with the 
hole and the external wire has shown that Bx = Bz = 0 in this case.  
 The B-field in the xy-plane for the geometry in Fig. 5.10(a) is shown in 
Fig. 5.11. The figure clearly shows that the field minimum inside the hole 
in the cylinder has been moved downwards. If the currents in the bias rings 
had been reversed the field minimum would have been moved upwards 
instead. To avoid this distortion of the field the bias rings must be centred 
on the hole in the cylinder. Because the one month evaluation version of 
Amperes which had been used had long since been returned to Canada 
when this was discovered, additional simulations in Amperes were not 
practical to make.  
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Fig. 5.11.  The B-field in the xy-plane (z = 0) for the geometry in Fig. 5.10(a). 

 
After the B-field equations for the cylinder with the hole had been derived 
it became straightforward to calculate the magnetic field for the complete 
geometry in Matlab. The geometry for the Matlab computations is shown 
sliced in half in Fig. 5.10(b). The slicing in two has been done for easy 
comparison with the geometry in Amperes, but is also convenient for 
showing the field inside the cylinder. The bias rings in the figure have a 
cross-sectional radius of 0.75 mm for comparison with the Amperes 
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geometry, but the computations have been made using the equations for 
infinitesimally thin rings. The radius of the bias rings placed at z = ±15 mm 
is rring = dhole + rcyl + 2.25 mm = 11.85 mm. The ring currents are 0.8 A 
(DC), this time in the same direction in both rings. The radius of the 
cylinder is r = 5 mm.  
 The computed magnetic field is shown in the xy-plane in Fig. 5.12 and 
in the xz-plane in Fig. 5.13. Owing to the use of bias currents in the same 
direction in both rings there is now no sign of a twist in the B-field inside 
the cylinder in the xy-plane. If ring currents in opposite directions had been 
used instead one would have seen a sideways displacement of the field zero 
inside the cylinder and no sideways shift for the field zero inside the hole. 
Circular contours can also be seen around the centre of the hole, which is 
where the dotted lines intersect. In the xz-plane a closed contour is seen 
between the bias rings that encloses the centre of the hole at x = 4.6 mm, 
here marked with a dotted line.  
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Fig. 5.12.  The B-field in the xy-plane (z = 0) for the geometry in Fig. 5.10(b). 
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Fig. 5.13.  The B-field in the xz-plane (y = 0) for the geometry in Fig. 5.10(b). 

 
The magnetic field can also be illustrated in 3D by an isosurface plot such 
as shown in Fig. 5.14. The isosurfaces in the figure are Bm = 3e-5 T (blue), 
Bm = 7e-5 T (green), Bm = 1.5e-4 T (yellow) and Bm = 2e-4 T (red). The 
equations for infinitesimally thin rings have once again been used. It is 
possible that this could have shifted the red isosurface slightly where it is 
close to the bias rings, but the difference is not expected to be noticeable. 
In Fig. 5.14 there is a narrow blue isosurface inside the hole in the cylinder, 
although not quite at the centre of the hole, which is difficult to see. Those 
who are reading an electronic version of this text may be able to just see 
this isosurface by increasing the magnification.  
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Fig. 5.14.  Isosurfaces showing Bm for the cylinder with r = 5 mm. 

 
Similar figures to Fig. 5.12 – Fig. 5.14 can be made for the other cylinders 
in Section 5.3. A snag is that the amplitude of the DC ring currents must be 
adjusted in each case before one sees a closed contour around the centre of 
the hole, such as in Fig. 5.13. Alternatively the lowest contour levels can be 
adjusted. As a consequence the contour plots for the different cylinders can 
not be compared directly. The differences between the different cylinder 
guides have not been found to be sufficiently interesting to justify further 
coverage in this text. 
 The existence of a field minimum inside the hole in the cylinder is of 
course independent of the precise amplitude of the ring currents. A plot of 
the effective potential temperature in the z-direction along the centre of the 
hole in the different cylinders is shown in Fig. 5.15. The effective potential 
is in this case given by the magnitude of the B-field Bm scaled by the factor 
mF·μb�gF, where mF = 2, μb = 9.2741e-24 J/T, and gF = 0.66. The 
temperature of the potential is T = Ueff / kB [K], where kB = 1.3807e-23 J/K. 
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Fig. 5.15.  T = Ueff / kB along the centre of the hole for the five cylinder guides. 

 
Fig. 5.15 requires some further explanation. The ring currents are 0.8 A for 
all five graphs in the figure. The rings are placed at z = ±15 mm. The radii 
of the bias rings have been set so that a minimum distance of 2.25 mm is 
kept between the cylinder and the centre of the rings. If the bias rings have 
a cross-sectional radius of 0.75 mm the minimum gap between the cylinder 
and the rings is 1.5 mm. The ring radius is given by rring = dhole + rcyl + 
2.25e-3. The radius of the external wire is 0.5 mm as before. Because the 
wire currents in Table 5.1 for the five cylinders do not place a field zero 
exactly at the centre of the hole in each cylinder new wire currents have 
been calculated which do just that. The cylinder and wire currents, the 
distances from the centre of the cylinder to the centre of the hole, and the 
bias ring radii for the five cylinders are listed in Table 5.2. 
 
Table 5.2.  Parameters used in the calculation of the graphs in Fig. 5.15. 

Cylinder radius Icyl Iwire dhole Ring radius 
rcyl = 2 mm   5.6 A 3.1677 A 1.6 mm 5.85 mm 
rcyl = 3 mm 3.6 A 1.4625 A 2.6 mm 7.85 mm 
rcyl = 5 mm 5.0 A 1.2901 A 4.6 mm 11.85 mm 
rcyl = 7.5 mm 5.4 A 0.9549 A 7.1 mm 16.85 mm 
rcyl = 10 mm 6.0 A 0.8067 A 9.6 mm 21.85 mm 
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The x-position of the centre of the bias rings in Fig. 5.15 has been offset 
one micrometre from the centre of the hole to enable the graphs to be 
computed. The equations for the rings were found not to be numerically 
stable along a line exactly through the centre of the rings in this case. 
 
The height of the trapping barrier along the centre of the hole scales 
linearly with the amplitude of the DC ring currents when the ring currents 
are of equal magnitude. When the minimum is moved by using DC currents 
of different magnitude in the two rings, the larger cylinders show higher 
sensitivity to the difference in bias currents for a constant distance between 
the bias rings. The distance between the bias rings should therefore be 
increased by the same factor as the radius of the bias rings.   
 It is also seen in Fig. 5.15 that the bias rings become less effective as 
they become wider with increasing cylinder size. The DC ring currents 
should in fact also be increased by the same factor as the radius of the bias 
rings. If both the distance between the bias rings and the DC ring currents 
are scaled with the increase in the radius of the rings, the height of the 
trapping barrier along the z-axis stays unchanged. This is shown in Fig. 
5.16. It is not so clearly seen in Fig. 5.15 due to the bias currents being in 
the same direction in both rings.  
 The scaling factors for the radius of the rings, the DC ring currents and 
the distances between the bias rings in Fig. 5.16 are 7.85/5.85 = 1.342 for 
the cylinder with r = 3 mm, 11.85/5.85 = 2.026 for the cylinder with r = 5 
mm, 16.85/5.85 = 2.880 for the cylinder with r = 7.5 mm and 21.85/5.85 = 
3.735 for the cylinder with r = 10 mm. The graph for the cylinder with r = 
2 mm has a scaling factor of one. 
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Fig. 5.16.  T = Ueff / kB along the centre of the hole when the DC ring currents 
and the ring spacing have both been scaled by the same factor as the ring radius. 

 

5.5  Conclusion 
 
In this Chapter a new cylinder atom guide for cold matter has been 
presented. Pertinent analytical results have been derived including B-field 
equations for a cylinder with a hole and equations that can be solved for the 
positions of the B-field minima inside of the cylinder and the hole. 
Simulation results have been presented for five cylinder guides of different 
radii, and the shape of the trapping potential has been studied as a function 
of cylinder geometry. The effects of placing bias rings around the cylinder 
guide have also been examined and it is shown how the bias ring 
configuration should be scaled with cylinder size. 
 In Section 5.2 equations have been presented for the magnetic field of a 
cylinder with a hole. An equation has been derived that can be solved for 
either the cylinder current, the wire current or the position of the B-field 
zero inside the hole if the other two variables are known. The coefficients 
of a third order polynomial, whose only real root gives the position of a 
second B-field zero inside the cylinder, have also been obtained. The 
coefficients allow the position of the B-field zero inside the cylinder to be 
found numerically. 
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 The magnetic field has been simulated for five different cylinder guides 
in Amperes. The same cylinder guides have afterwards been studied with 
the use of the equations in Section 5.2 in Matlab. There is good agreement 
in general between the results from Amperes and Matlab. For the biggest 
cylinders a small difference has however been seen in the magnitude of the 
B-field toward the rim of the cylinders. 
 It has become apparent that it is only possible to place a field zero at the 
centre of the hole in the cylinder when a second field zero exists further 
inside the cylinder. The height of the barrier between the two field zeros 
scales linearly with the currents in the cylinder and wire, and the distance 
between the field zeros depends on the size of the cylinder and the position 
of the hole within it. The barrier is maximized by placing the hole close to 
the rim of the cylinder. The radius of the hole has here been kept at 0.2 
mm. Minor changes to the size of the hole are not expected to have a 
disproportionate effect on the main results. 
 The smallest cylinder guide with r = 2 mm had the highest barrier 
between the two B-field zeros for a given cylinder current. The required 
wire current in this case is more than 50 % of the cylinder current, although 
the gap between the cylinder and the wire also plays a part. If the radius of 
the cylinder is increased the required cylinder current for a given barrier 
height also increases, but the necessary wire current is reduced. The width 
of the barrier between the B-field zeros increases if the radius of the 
cylinder is increased and the hole is kept close to the cylinder rim. 
 The potential barrier between the B-field zeros inside the cylinder and 
hole is more than sufficient in all except one of the simulations for the 
cylinder to be used as a guide for cold matter. The potential barrier for the 
cylinder guide with r = 2 mm, Icyl = 1.6 A and Iwire = 0.9 A is only ~14.4 
μK, which is a little too low.  
 
A cylinder atom guide with bias rings has been simulated in Amperes. 
Because results must be saved for three field components in separate 
simulations for the cylinder with the external wire and for the bias rings, 
Amperes is in this case most impractical to use. Computations in Matlab 
have shown that the bias rings must be centred on the hole in the cylinder 
to prevent the B-field minimum from being moved outside of the hole.  
 When the radius of the cylinder is increased the radius of the bias rings 
must also increase to get around the cylinder with at least a minimum gap 
to spare. To maintain the same trapping barrier along the centre of the hole 
the DC ring currents as well as the distance between the rings must be 
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increased by the same factor as the radius of the bias rings. The necessary 
bias ring currents thus increase with increasing cylinder size.  
 The radius of the cylinder should be chosen so that the resulting barrier 
width between the two B-field zeros inside the cylinder and the hole 
becomes acceptable. The current in the external wire must also be 
acceptable for the desired barrier height. One option may be to increase the 
wire radius a bit if this is practical. Otherwise the cylinder radius has to be 
increased. The cylinder radius should not be made larger than necessary 
since this will increase the required ring currents. 
 The trapping barrier along the centre of the hole is high enough to trap 
cold atoms inside the hole in the cylinder in all cases discussed, except for 
ring currents of 0.8 A and a fixed bias ring spacing of 30 mm for the 
cylinders with radii’s of 7.5 mm and 10 mm. The cylinder guide hence 
seems promising as a hermetic guide for cold matter. Bias rings are 
however necessary, both to pump atoms along the guide and to remove the 
zero in the B-field inside the hole. 
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Chapter 6          
            
Conclusion 
 
 
In this thesis new hardware for trapping and handling of cold matter has 
been developed and simulated. This includes the one-wire guide, the four-
wire cell trap, the dual-well trap and the wire-grids developed in Chapter 2, 
and the cylinder guide in Chapter 5. The research has additionally led to the 
discovery of the quasi-synaptic effect between two crossed wires, which 
opened up the possibility of cold matter transfer between the wires. The 
traps in Chapter 2 have been scaled down to millimetre and nanometre size 
in Chapter 3. A quadrupolar trap which is similar to the Ioffe-Pritchard trap 
except for ring currents in opposite directions has been simulated in 
Chapter 4. 
  
A cylindrical minimum potential manifold exists around wires excited by 
DC and RF currents. Design formulas have been derived for the distance d 
to the minimum potential manifold around a single conductor, between two 
crossed conductors and between two parallel conductors. These formulas 
and the B-field equations for a straight conductor and an infinitesimally 
thin ring defined in Chapter 1 have been essential to the development of the 
one-wire guide and the study of prospective atom transfer between two 
crossed wires. It has furthermore been shown that the magnitude of the RF 
current does not change the effective potential along a line between two 
crossed or parallel wires for equal DC and RF current magnitudes in the 
two wires when the DC currents are of given signs and the RF currents are 
phase-synchronized. The equations for the distance d can accordingly be 
derived using only the first term under the root sign in equation (2.1) if the 
currents meet the given conditions. 
 The one-wire guide has been found to rely on bias rings placed around 
the wire to eliminate a potential minimum of zero and to move the circular 
potential minimum up or down along the wire. Strong RF bias currents 
have been found to be best suited to preserve the circular minimum 
potential and to give the highest potential gradient for a given bias current 
magnitude. 



 
232  Chapter 6: Conclusion 

 

 The minimum potential surfaces around two crossed wires have been 
found to touch for certain critical values of the DC currents in the two 
wires. The RF currents in the wires should be of the same magnitude and 
frequency to avoid distortion. By changing the RF current magnitudes in 
the bias rings around the wires the prospective transfer of cold matter 
between the wires has been demonstrated. The minimum potential surfaces 
around two parallel wires also touch for critical DC currents in opposite 
directions in the two wires. It is most likely not worthwhile to attempt 
electrically controlled transfer of cold atoms between two parallel wires 
since this requires the use of too many bias rings. 
 A novel four-wire cell trap made from two pairs of parallel wires which 
cross in different planes has been designed and developed. It has been 
optimized in Matlab, and the calculated distances between two free-
standing crossed or parallel wires have been used as initial values in the 
optimization routine. The four-wire cell can be used to trap both strong- 
and weak-field-seeking atoms and may possibly be used to study collision 
and entanglement between the two sorts of atoms. The trapping barriers 
have been found to be ample in all directions. With only DC excitation the 
four-wire cell becomes a trap for only weak-field-seeking atoms. It then 
has a minimum of zero at its centre and steps must be taken to avoid 
Majorana spin-flip transitions. 
 A 3 x 3 wire structure has been designed and optimized in Matlab. It 
forms a double-peak/well potential that is prospective for the study of 
entanglement of BEC matter placed in the two wells. The trapping barrier 
in the direction normal to the wire-planes has been found to be worryingly 
small (< 10 �K) for strong-field-seeking atoms when the peaks are merged. 
Additional biasing may thus be necessary for this wire structure to be 
useful in practise. 
 Cell-grids which are stackable in three dimensions have been designed 
and optimized in Matlab. The optimization technique used has shown 
weaknesses for the larger structures because of limited complexity. Further 
improvement of the optimization is likely to require a different and better 
optimization scheme.  
 
Scaling has been demonstrated to micrometre and nanometre size for a 
number of structures. Such scaling requires both thermally induced spin-
flip transitions and the effect of the Casimir-Polder force to be taken into 
account. The effect of the Casimir-Polder force is minimized with the use 
of carbon nanotubes as conductors and the minimum feasible trapping 
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distance is expected to be no less than 100 nm from the surface of the 
nanotubes. 
 A four micro-wire cell and a 3 x 3 micro-wire structure adapted for 
future realization on a micro-machined substrate have been designed and 
optimized. Prospective atom transfer between two crossed nanotubes, a 
four-nanotube cell and several nanotube cell-grids have also been 
demonstrated. The depth of the trapping potential has been found to be 
proportional to the RF frequency. For a given geometry size the RF 
frequency corresponds to a certain DC current level in the conductors. If 
the RF frequency is increased then the DC current level must also increase 
to maintain the same DC current to angular frequency ratio. The trapping 
depth is accordingly also proportional to the DC current level in the 
conductors. The trapping depth is thus ultimately limited by the maximum 
conductor current. 
 
A quadrupolar trap has been studied with combined DC and RF excitation 
of the bias rings. A circular potential minimum with four slightly deeper 
points has been seen to form around a local potential maximum at the 
centre of the trap. This ripple in the potential minimum is undesirable but 
does not preclude the trap from being used to trap weak-field-seeking 
atoms in the circular potential minimum. Trapping of weak-field-seeking 
atoms in the circular potential minimum requires that the DC currents in 
the Ioffe-bars are large enough to provide a sufficiently high potential 
barrier to minimum potential manifolds located just outside of the Ioffe-
bars. The potential maximum at the centre of the quadrupolar trap is more 
than sufficient for trapping of strong-field-seeking atoms. It has also been 
found that the bias rings of a quadrupolar trap can be placed relatively close 
together to compress clouds of cold atoms into successively smaller traps. 
As the gap distances become very small the B-field becomes very strong 
between the bias rings and there is a risk of dielectric breakdown. 
 
A new metallic cylinder atom guide has been developed and equations have 
been presented for the B-field inside the cylinder. Five cylinder guides of 
different sizes have been studied and simulations carried out in Amperes 
have generally been found to agree well with results computed in Matlab. It 
has been found that there can only be a B-field zero at the centre of the hole 
in the cylinder when a second field zero exists further inside the cylinder. 
The potential barrier between the B-field zeros is maximized by placing the 
hole close to the rim of the cylinder. The smallest cylinder with radius r = 2 
mm was found to have the tallest barrier between the B-field zeros for a 
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given cylinder current. The width of the barrier increases with increasing 
cylinder radius and the necessary current in the external wire is at the same 
time reduced. 
 Bias rings used to pump cold atoms along the guide and to remove the 
zero in the B-field inside the hole must be centred on the hole in the 
cylinder. The DC ring currents and the spacing between the bias rings must 
be increased by the same factor as the radius of the rings when the radius of 
the cylinder is increased to maintain the same trapping barrier along the 
centre of the hole.  
 
The single wire guide in this thesis may find application for short distance 
atom transport inside a vacuum chamber. Atoms may also be routed to a 
collision area along different crossing wires under electronic control. The 
four-wire cell and the quadrupolar trap with DC and RF currents are able to 
trap both strong- and weak-field-seeking atoms and are prospective for the 
study of collision and entanglement between the two types of atoms. The   
3 x 3 conductor structure could be used as a matter-wave beam splitter, but 
further work is necessary to determine whether the effective potential 
topology is good enough for this purpose. The various cell-grids described 
in this thesis may find use as part of a quantum register in a quantum 
computer based on interacting drops of BEC matter. The cylinder atom 
guide, which can be made hermetically sealed, is well suited for atom 
transport outside of a vacuum chamber in a laboratory. 
 

6.1  Suggestions for future work 
 
The single conductor and crossed conductor geometries are by and large 
ready for experimental realization if simulations indicate that the specific 
geometry and plans for pumping cold atoms along the conductors show 
promise.  
 In the case of the four-conductor cell there are one or two additional 
matters to consider. One is to explore specific methods of loading the cell 
through simulations. To enable a practical realization the four-wire cell 
should also be adapted to a design suitable for planar fabrication. This 
requires either equations for the magnetic field for conductors with a 
rectangular cross-section or the use of a suitable simulation program. One 
possibility is to use AMPERES. But because the program requires that the 
field components from the DC and RF excitations must be simulated 
separately, two simulations are necessary. This makes it difficult to
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optimize the final design except by trial and error, which becomes difficult 
when two variables are to be optimized simultaneously. A more suitable 
simulation program that can be used for both the field computations and the 
optimization may still be found. 
 The multi-cell structures may also require adaptation to a planar design 
in a similar way to the four-conductor cell. It may be possible to also find a 
better optimization technique that is more efficient and dependable 
especially for the larger structures. 
 When it comes to the nanometre-sized structures the use of a substrate 
and conductors with a rectangular cross-section is not so relevant. The 
work that remains here is to calculate the spin-flip lifetime and Casimir-
Polder potential for the specific nanotube structures. This will lead to a 
more accurate estimate of the minimum feasible trapping distance d. 
 The computations and simulations done for the quadrupolar trap and the 
cylinder atom guides in chapters four and five of this thesis are reasonably 
complete. Because of an infinite number of possible current excitations and 
geometric variations it has been practical only to seek to obtain quite 
general results. 
 A next step in the research would be to simulate the dynamics of cold 
atoms and Bose-Einstein condensates by solution of the linear and non-
linear Schrödinger equations for some of the guides and traps in this thesis. 
The linear Schrödinger equation describes the behaviour of a single cold 
atom in the effective potential. The non-linear Schrödinger equation is 
given by the Gross-Pitaevskii equation for interacting trapped cold 
particles. An innovative implementation of a numerical technique for 
solving these equations has recently been considered in [161]. 
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Appendix A: The AMPERES software 
tool 
 
 
The program AMPERES (Version 6.2) by Integrated Engineering Software 
has been used in this thesis to simulate different quadrupolar traps and the 
cylinder atom guide. This is a program that is not available through the 
university. A one month evaluation version of the program was ordered and 
paid for by my supervisor Professor Guennadi Kouzaev. The program 
fortunately continued to work until it was belatedly returned after almost 
six weeks. This made it possible to obtain some useful simulation results 
both for the cylinder atom guide and several quadrupolar trap geometries. 
The complete version of the program is quite expensive and would in 
general not be worthwhile to procure in order to simulate the geometries 
studied in this thesis. 
 
AMPERES uses the boundary element method to solve for the equivalent 
source [162]. The equivalent source is then used to calculate potentials and 
fields. The program is able to compute fields and inductance and 
capacitance. The boundary element method requires that boundaries in the 
model must be discretized into individual sections known as boundary 
elements. Elements are required on surfaces with an assigned surface 
charge or boundary condition and on surfaces that separate regions with 
different permeability, permittivity or conductivity depending on the solver 
settings. A direct or iterative matrix solver is used. The program is able to 
simulate RF currents, but not DC and RF currents together in the same 
simulation. 
 The creation of boundary elements is for the most part handled 
automatically when a model is drawn and materials and currents are 
specified. Three dimensional shapes are usually made by expanding a two 
dimensional surface [163]. As explained in Chapter 5 the requirements that 
volume currents can only be assigned to six-sided volumes, and that a 
current entry surface must be defined, have turned out to be serious 
limitations to the applicability of the program. Some form of symmetry 
must often be defined in the model to accommodate these requirements. 
This in turn restricts the complexity of the geometries that can be modelled. 
The simulation results are however both accurate and quickly obtained
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when the geometry can be modelled without breaking these rules. The field 
results are calculated only in a predefined window or plane through the 
geometry as shown in Fig. A.1. This means that three-dimensional field 
results are practically impossible to obtain, including 3D-data for use in 
other programs. 
 AMPERES has been used in this thesis to compute the total magnetic 
field Bm (or |B| ) or the Bx-, By-, and Bz-components of the magnetic field. 
In the latter case data files have been saved for the field components. The 
data in these files has afterwards been imported into Matlab through the use 
of specially written scripts to allow the effective potential to be calculated. 
Data from six files, the Bx-, By-, and Bz-components from both the DC 
simulation and the RF simulation, are usually required to calculate the 
effective potential. The exceptions are if certain field components happen 
to be zero or if there is no DC or RF excitation. Importing data into Matlab 
also gives access to Matlab’s better and more flexible plotting options, 
where contour levels and line thickness and line colour can be changed and 
contours can be labelled to give a few examples. 
 
 

 
 
Fig. A.1.  The AMPERES program window 
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The AMPERES program window features a drop-down menu bar at the top 
and different tool bars and scroll bars placed around the workspace in the 
middle [162]. Underneath the workspace there is a message area and a 
command line, which is used to input data when a model is being drawn or 
to specify a plot window. A status bar is found beneath the command line. 
 
To sum up AMPERES is a program where the geometry is modelled in 3D. 
Some form of symmetry or anti-symmetry is usually defined for the 
geometry. Field results are then computed in a 2D window or plane through 
the geometry. The program’s ability to model complex geometries is 
limited. It is not so clear to what extent the limitations stem from the 
boundary element method itself or from the specific implementation of it in 
the program.  
 To put things in perspective a Matlab based program called Comsol 
Multiphysics, which utilizes the finite element method, was at first 
attempted used to simulate a version of the Ioffe-Pritchard trap. It turned 
out that a relatively large volume with a fine mesh, (i.e. a large number of 
elements), was necessary to show the B-field around the conductors and to 
obtain a correct and reliable solution. As a consequence it became 
necessary to reduce the number of mesh points to avoid running out of 
computer memory. This in turn caused the solutions to become coarse and 
inaccurate. The simulations were in addition extremely time-consuming. 
This goes to show that not any computer program or simulation method is 
suitable for modelling the geometries described in this thesis. Other 
programs have not been tried for reasons of time and money. 
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