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Abstract- A novel method has been devised where one setgfehiorder polynomial-based basis
functions can be applied over several wire segméehts permitting to decouple the number of unknewn
from the number of segments, and so from the getorakapproximation accuracy. The method extends th
current state of art from using the composite pigse uniform, linear and sinusoidal basis and nesti
functions onto polynomials. The method has beeivel@érwithin the framework of a method of moments
(MoM) with higher-order polynomial basis functiorend applied to a surface form of the electricaldfi
integral equation, under thin wire approximatiorheTmain advantage of the proposed method is in
permitting to reduce the required number of unkn®when modeling curved structures and structures
including electrically small features. Derivatiof the computational complexity in terms of floatipgint
operations (FLOP) showed a possible speed gaimyrezaprder of the number of unknowns of direct MoM

1. INTRODUCTION

The process of numerical electromagnetic modeliag be split into several stages [1], including getmyn
representation/modeling, representation/modelinghef current distribution, solution of the equasipand
computation of the radiation and other paramet&m@ominant majority of existing theoretical framenk® and
available codes are based on approximating the gprin a piecewise linear manner. This is suffitiéor
many practical geometrical structures having sfoallized curvatures but may be inefficient foustures with
a large quantity of curved surfaces, like reflea@atennas, fuselage of aircrafts and cars etc.ifféféiciency
usually manifests itself in the number of unknowssd by a method per unit of length or area. Ifrtliaber of
unknowns per unit of length/area is much highenthauld have been otherwise required for a strélght
surface, this is usually because an accurate geicaletipproximation demanded a higher number of
geometrical segments and associated basis fundtianst is necessary to approximate the curresitidution.

One possible way to improve efficiency is to useved geometrical segments [2-4, 10]. This is atilarely
used technique and requires a substantial investmamalytical work. In addition, it cannot be ds&ith or on
top of existing codes directly or easily.

This paper presents a new higher-order method gterghto decouple the number of unknowns (i.e. entrr
approximation accuracy) from the number of geomalrisegments, and thus also from the geometrical
approximation accuracy for curved structures. Tle¢haod enables aggregation of multiple geometriegirents
under the same set of basis/expansion functions. gdrmits to decouple the number of unknowns amceat
approximation accuracy from the number of geomaltrisegments and from the required accuracy of
geometrical approximation accuracy. Aggregatiomdividual electrically small features also aimgeduction
in the impedance matrix condition number discussg8, 6]. The grounds for this assumption are giire[7].

The method proposed extends the prior art basdbeopiecewise uniform [8], linear [5] and sinusdiff]
basis and testing functions onto usage of polynbtésis functions [1]. The idea of aggregating and/



re-arranging the basis functions has been refldotedveral different types of basis functions iaggrom the
use of splines [10], composite basis functions [Bhcro basis functions and characteristic basistifums
[11-13], to the initial steps into multiple domdiasis functions [5, 9 and 6].

The work introduces a method permitting to appbhler order basis functions [1] over multiple geamat
segments. The reason to develop this approachiietease the efficiency of numerical modeling bglucing
the number of basis functions required per uniteofith or area. This follows an accepted underatgnadf
higher efficiency of higher order polynomial basisictions [1, 10] compared to more traditional puénd
piecewise linear (low order) basis functions.

A special note needs to be made with regards tgarison of the method proposed, to the charatiteri
basis functions [13]. The characteristic basis fions require to solve a set of subdomain/locablams, thus
permitting to find the problem-specific shape o$isdunctions first. This is then followed by usitige obtained
profiles of basis functions to obtain the globdusion under the usual MoM framework. This techrdgghows
high degree of efficiency and accuracy in solvimgbtems. However, it is assumed that on simply-sdap
geometries like large smoothly bent structures,nsed to apply full MoM solution to each local plexa will
exceed the amount of resources required to aggrélgatbasis functions and determine the higher aalation.
In addition, the characteristic basis functionsexpeected to require more work in integrating theith existing
numerical MoM codes, compared to the approach egm this paper.

Another note needs to be made concerning the ajjlltly of any “macro” type of techniques, includin
MDBF. Presence of geometrical elements near theadomf an MDBF which can couple to the elements
described by this domain, may disturb the currésttidution and fields described by the assumeg@eiud basis
function and lead to incorrect results [14]. Thisai task of setting a correct mesh and needs takea into
account during the geometrical modeling stage, wiaitional basis functions and/or MDBF are apghlie

This paper is organized as follows. Section 2 @ traper provides the theoretical basis for thehoubt
proposed. It also includes some suggestions regabtimizing the computations. The next sectiofersfa
discussion on the computational complexity of thethnd and gives a measure for selecting betweemditieod
proposed and a direct MoM solution.

2. THEORY OF THE MULTIPLE-DOMAIN BASISFUNCTIONS
The technique is based on the following approxintagquation [8, 5, and 6]

|1=M'|2

relating the unknowns in a traditional (originadyrulation of the MoM to the unknowns in the newnfialation [5, 6,
9]. In this equation|; is the column vector with\; original unknowns, which are the unknowns usethandirect
solution with the traditional method of moments.eTéblumn vectot, is the vector withN, new unknowns. The
compression of the impedance matrix is basebldreing smaller thaN;. The matrixM of sizeN; by N,, relates the
two sets of unknowns, and is herein referred ta@smpression matrix

The method discussed in this work focuses on eskafd) the matrixM, when both the original (sub-domain) and
new (composite) sets of basis functions are hibieat polynomials. For simplicity, the derivatioase done for a
single continuous wire represented by a multipliaf shorter wire segments. The derivations canrdmlily
expanded onto an arbitrary combination of the wireguadrilaterals.

It is assumed that each original basis functionriten asak-(x—xcj)k, wherex; andx.; are in a coordinate system



common for all the wire segments composing the wir€omposite basis function (MDBF) is supposeddver
several wire segments. It is also assumed that BHBF coversK wire segments (which is also the ratio of the

number of wires to the number of chains). A simitam of A,- (x-x)* is assumed for the new compressed set of basis

functions over the wire. The new co-ordinate systam be related to the original local co-ordinatstems by a
simple shift in the coordinate.

The work shows that the matfi# can be written in the form
M=X-G-X™

Here, the matrixX relates the set of original basis functio®s;q, and their decomposition into terms of a
polynomial,P,4 as

BFoid = X-Po,

while the matrixG defines a conversion from the hierarchical polyrasndefined in the original local coordinate
systemPyq, into the new local co-ordinate systdPqe, (i.€. the relationship between the coefficieagandAy):

Poid = G- Prew
The elements of the matrices have been derivedeiriallowing manner described in detail in [6]. Asgng the

relationship §]=GI[A, the elements of the matrix G can be found@s= G';'A*", where the factorC¥ is the

I
binomial coefficient defined [15] ag* z(k] = k! . The matrixG is lower triangular.

n)” ni(k=n)!

of polynomial basis function represented as a coluattor [BF}x; may be written in a matrix form as

[BF]=[X] IP].
Specific entries of the matriX depend on the choice of basis functions. Expantlirgynotation for nodal and

sa-x) [+]-3{0 0 0 0 ][¥

i) |3 10000

x* -1 -1, 011 0 0 0 -||x
xX-x[=[0-110 1 0 0 |X
x* -1 -1 050010 4
X — X 0/ -1{0 0 0 1 5
BF X P

The matrixesX andX™ do not need to be computed and can be storedéterate computations.

3. COMPUTATIONAL COMPLEXITY
The computational cost of the process has beemastil in terms of the floating point operations@Hs). This was



done by adding up all the FLOPs required to esthliihe compression matrix, compress the systeme $pland
compute the original unknowns. The result was @idithy the number of FLOPs required to obtain atewslwia a
direct MoM (assuming that the impedance matrixtfar direct MoM had been filled in). Consideringioptzations
like storing the pre-computed matricksand X, the method proposed may provide a relative pewdoice gain
(speed up) of up to

K3(1-3/y) — 4&KIN, N oo,

that is relative to the traditional MoM. Here thgmbol n, stands for the number of polynomial basis funaion
assigned per each geometrical segmentNaisdhe number of unknowns in the original uncorspeel system due to
the direct MoM.

From the last expression, it is clear that the nemdf basis functions assigned per each segmenidsiie
maximized in order to improve the efficiency of thethod (i.e. use the highest possible order dslfasctions).

Also, assuming that, andN are large, and analyzing the performance gainesgpsn for a maximum gain, it is
possible to show that the maximum relative perfaroeagain with respect to a direct MoM is

0.107N** (1-3hy)™ (1)

This means that the method proposed can offerynaarbrder of magnitud€(N**), advantage in performance,

when large problems needs to be solved. A set mesuor the performance gain is shown in Figur@He figure
indicates that the performance gain can be lessuhiy, making the method slower than the direcMMs.
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Figure 1. Maximum performance (relative acceleratidth respect to the direct MoM) gain versus nundjfe

unknowns in the direct MoMy, stands for the number of basis functions assigeedeometrical segment.

By setting the expression (1) to unity and expresdl via the remaining coefficients and parametgrit is
possible to show that the number of unknowns cpareding to the unity gaimy, is

Ny =19.7 / (1-3f,) ™"
This expression can be used to determine whetligebétter to use a direct MoM or the method prepas this
paper (ifN; is smaller tham, then it is advantageous to apply the proposetonigt

5. CONCLUSIONS
A new higher-order method devised for efficient miotg of curved structures has been introduced. esom



practical considerations for acceleration of corapans related to the method are discussed. Amatifor the
computational complexity of the method in termstleé count of floating-point operations (FLOP) haetp
given. It has been shown that the speed up of @§NF*) is possible.

ACKNOWLEDGEMENT
This work was funded in part by the Department lecEonics and Telecommunications, Norwegian Ursigr
of Science and Technology (NTNU), Norway.

REFERENCES

1. Kolundzija, B. M. and A. R. Djordje¥j Electromagnetic Modeling of Composite Metallic abéelectric
StructuresArtech House, 2002.

2. Champagne, N. J., Williams J. T., and D. R. Wiltéfhe use of curved segments for numerically maodgethin
wire antennas and scatterei§EE Transactions on Antennas and Propagatidi. 40, No. 6, 682-689, 1992.

3. Khamas, S. K. and G. G. Cook, “Moment method amalgé printed eccentric spiral antennas using alirve
segmentation,’TEE Proceedings on Microwaves, Antennas and Propagavol. 146, No. 6, Dec 1999, 407 — 410.
4. Papakanellos P. J., "Alternative sub-domain mommeathods for analyzing thin-wire circular loopBfogress In
Electromagnetics ReseardRlER 71, 2007, 1-18.

5. Lysko, A. A., “On Grouping Individual Wire Segmeritio Equivalent Wires or Chains, and Multiple Dama
Basis Functions.” Irproc. of IEEE Int'l Symp. on Ant.& Propag. and USNRSI Nat. Radio Sci. Meetindlorth
Charleston, USA, Jun 2009, 4 p.

6. Lysko, A. A.,On Multiple Domain Basis Functions and Their Apalion to Wire RadiatorsPh.D. thesis, subm.
for eval. at the Norwegian University of Science dechnology (NTNU), Norway, Dec 2009, 304 p.

7. Chew, W. C., Jin J., Michielssen E. and J. SoRgst and Efficient Algorithms in Computational
ElectromagneticsArtech House, 2001.

8. Rogers S. D. and C. M. Butler, “An Efficient Curv@édre Integral Equation Solution TechniquéEEE Trans.
Ant. And Propag.Vol. 49, Jan 2001, 70-79.

9. Lysko A. A, “Using piecewise sinusoidal basis ftions to blanket multiple wire segment#EE Int'l Symp. on
Ant.& Propag. and USNC/URSI Nat. Radio Science Mggeiorth Charleston, USA, Jun 2009.

10. Z.-L. Liu and J. Yang, "Analysis of electromagnesicattering with higher-order moment method andbsiur
model,"Progress In Electromagnetics ReseaetER 96, 2009, 83-100.

11. Mosig, J. and E. Suter, “A Multilevel Divide and @uer Approach to Moment Method Computatioris,proc.
of Int'l Symp on Recent Advances in Microw Teclglélgla, Spain)ISRAMT'99, Dec 1999, 13-17.

12. Suter, E. and J. R. Mosig, “A Subdomain Multile¥gdproach for the Efficient Mom Analysis of LargeaRar
Antennas, Microw. Opt. Technol. LettVol. 26, No. 4, Aug. 2000, 270-277.

13. Yeo, J., Prakash V. V. S. and R. Mittra, “EfficieAhalysis of a Class of Microstrip Antennas Usirg t
Characteristic Basis Function Method (CBFMylicrow. Opt. Technol. Left\Vol. 39, Dec. 2003, 456—-464.

14. Gvozdey, V. |, Kouzaev, G. A. and E. |. Nefedodatanced slotted line. Theory and experimemaddio
Engineering and Electronics Physics (Radiotekhmikkektronika) Vol. 30, No 6, 1985, 1050-1057.

15. Rade L., and B. WestergreMathematics handbook for science and engineerBigkhauser Boston, Inc.,
Secaucus, NJ, 1995, 539 pages.



