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Abstract-The paper discusses aspects of a novel impedance matrix compressing technique and applies the technique to 

a coil-loaded monopole. The technique can reduce the number of variables required for modeling of structures with 

curvatures and structures with electrically small features. The reduction in the number of unknowns is accomplished by a 

logical aggregation / grouping of the individual wire segments into equivalent continuous wires. A single composite basis 

function is applied over several wire segments. This decouples the number of unknowns from the number of geometrical 

segments. Aggregation of small features aims a reduction in the impedance matrix’s condition number. The example of 

coil-loaded antenna has shown that the proposed novel algorithm achieves better accuracy with fewer unknowns than the 

traditional formulation of the method of moments.  
 

1. INTRODUCTION 

This work discusses aspects of and applies a novel impedance matrix compressing technique [1] to model a 

coil-loaded monopole antenna. The technique helps to reduce the number of variables required for modeling of 

structures with curvatures and structures with electrically small features. The presented realization of the 

technique assumes usage of piece-wise linear approximation of geometry. This approximation is seen as the core 

to inefficiency in modeling of the above-mentioned types of geometrical structures with a traditional method of 

moments (MoM). The reduction in the number of variables is accomplished by a logical aggregation / grouping 

of the individual straight wire segments into equivalent continuous wires with bends. This permits to apply a 

single basis function over several wire segments, and to decouple the number of unknowns from the number of 

geometrical segments. Aggregation of individual electrically small features also aims a reduction in the 

impedance matrix condition number [2]. Following the idea of aggregating domains of multiple segments, the 

basis functions used in the technique are herein referred to as multiple domain basis functions (MDBF). This 

name is also consistent with the terminology used in [11], and is an extension to it. 

The technique is applied to the method of moments, under the thin wire approximation. The method used in 

this paper borrows the matrix form of expressions from [3] and develops it further, as to use a Galerkin approach 

[1, 10]. The method has many similarities with the macro and characteristic basis functions and related methods 

[4-6]. However, unlike this work, none of the references uses piecewise-linearly interpolated piecewise 

sinusoidal basis functions as the macro basis functions. In addition, in the main proposed domain of application, 

i.e. for smoothly bent structures, the technique proposed here requires fewer computations in comparison to the 

characteristic basis function, as the maximum electrical size covered by a single MDBF can usually be predicted 

and no solution of the localized systems is required to compose the set of new basis functions. 

Section 2 of the paper describes the theoretical basis for the method. In the next section, the model of the 

coil-loaded monopole is analyzed. The validation of this numerical model is also presented there. Section 4 

compares the developed approach to the traditional method of moments and provides a discussion on the results.  

 



2. THEORY OF THE MULTIPLE-DOMAIN BASIS FUNCTIONS 

The approach discussed in this paper involves the multiple domain basis functions (MDBF) [1], where a 

composite basis function aggregates one to several traditional basis functions. The technique is applied under the 

Galerkin procedure of the method of moments (MoM) as per [1]. This enhances robustness compared to the 

procedure derived in [3], where rooftop and pulse functions were used for both expansion and testing. The thin 

wire approximation [11] is used in the modeling. It may however be noted that the method is seen as equally 

applicable to the flat triangles [8], quadrilaterals or volumetric elements.  

Mathematically, the procedure of obtaining the solution is as follows. It is assumed that the MoM procedure 

results in the set of linear algebraic equations Z⋅I=V, where Z is the square impedance matrix, I is the column 

vector of unknowns, and V is the column vector describing excitations. 

In applying the MDBFs, it is assumed that a relationship between a longer vector of original (old) unknowns 

I  and the shorter vector with new unknowns Iɶ  exists, and may be written in a matrix form as =I MIɶ . 
Herein, M  denotes a matrix grouping/aggregating basis functions. Each row of this matrix contains weights 

defining which new basis functions are involved in the formation of the respective old basis functions, and with 

what weights.  

The expression relating the old unknowns to the new ones may be substituted into the original system of 

linear equations =ZI V . The resultant system =ZMI Vɶ  is then left-multiplied by the transposed 

transformation matrix M to obtain the new system of linear equations: �
T T=

VZ

M ZM I M V
ɶɶ

ɶ
����� . This system may be 

rewritten in a short form as =ZI Vɶ ɶ ɶ . Once this new system is solved and the new unknowns Iɶ  obtained, the 

original unknowns may be computed from =I MIɶ . 
The results of a MDBF based approach may be made equal to the results of a traditional MoM with the 

same original expansion functions, if the matrix M is an identity matrix. 

The validity of the technique may be limited when there is a strong feature present in a nearby current 

distribution which cannot be modeled with the chosen shape of the aggregating basis functions (such as 

piecewise linear or sinusoidal), like in [7]. This restriction is also characteristic for the global basis functions, 

where it leads to a poor convergence rate. A possible remedy to this problem within the proposed technique is to 

estimate the strength of the interactions from the values of the elements of the original impedance matrix in 

advance, and use this information to form/adjust the boundaries of the new MDBF basis functions. Such a 

solution can also apply to the macro and characteristic basis functions. 

 
3. NUMERICAL MODEL DESCRIPTION 

This paper discusses one of the examples considered in [9]. The choice was based on the complexity of the 

structure, and availability of measured reference data. 

The geometry of the antenna is shown in Figure 1. The drawing shows the two straight wire segments joined 

by a helical coil. Both straight segments as well as the coil are modeled by straight thin wire sub-segments. The 

monopole is fed with a 1-Volt delta gap generator described in detail in [10, 11]. The generator was attached to 

the zero-radius end of a short wire, as seen in Figure 1. This aims to reduce the fringe capacitance problem [11] 

and improves accuracy of modeling. 

The geometrical parameters for this example are as follows: number of turns=8, length of the lower straight 



            

segment La1=15.02 cm, length of the upper straight segment La2=6.68 cm, length of the coil Lc=3.3 cm, wire 

radius for all wires a=0.15 cm, inner radius of the coil ac=0.8 cm. Unless stated otherwise, the frequency is 300 

MHz. The modeled antenna includes two straight wire segments and a coil placed between them. The coil was 

modeled using from 3 up to 128 piecewise linear straight wire segments per turn.  

Figure 1b shows a loaded dipole that was used to investigate some of the properties of the method. This 

dipole is equivalent to the monopole shown in Figure 1a and is made up of two such monopoles. It must be noted 

that the reason for using the dipole instead of monopole was of purely practical manner related to the easiest and 

quickest way of obtaining the impedance matrix’s elements. 

The numerical model was first verified using a traditional MoM with low and higher-order polynomial basis 

functions [10], where the low order functions are piecewise linear basis functions. This stage included a 

comparison of the frequency dependence and current distribution profiles against the experimental data from [9]. 

Figure 2 illustrates a part of the validation and displays and an excellent match between the measurements and 

the numerical model built. The model validation procedures have confirmed quality of the numerical meshes and 

resultant models. The validation has also indicated the correctness of the original impedance matrix, critical for 

applying the method used in this paper. 
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Figure 1: Geometry of the monopole loaded with coil (a), and (b) an equivalent dipole-like structure. Note: (i) The 

scales for the drawings in (a) and (b) are not the same. (ii) The radius of wire ends touching the feed point is zero 

for both monopole and dipole (may be especially difficult to see in Fig. 1b due to the scale).  

 

The original fine mesh was aggregated using three different high level meshing approaches, namely 

algorithms A, B, and C, first published in [12]. The algorithm A iteratively, segment by segment, tries to 

aggregate the wire segments into new larger domains. This algorithm maximizes the size of each new domain, 

which sometimes may lead to undesirably small non-aggregated segments. The algorithm B improves on this by 

considering two segments at a time. It reduces the probability of generating small non-aggregated segments but 

Feed point 



does not eliminate it fully. The algorithm C uses the global knowledge and tries to generate maximally equal 

new domains. The results are shown in the next section. 
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Figure 2: Input impedance of the coil loaded monopole antenna versus frequency, as computed by WIPL-D and 

measured in [9]. WIPL-D simulation was set to have a basis function based on a 2nd degree polynomial applied to 

each individual segment. WIPL-D model used eight straight wire segments per one turn of the coil. 

 
4. RESULTS 

A set of simulations with various values of the meshing parameters and meshing algorithms were performed in 

order to generate the convergence curves (of error versus the total number of unknowns).  

An example is shown in Figure 3. Each curve denoted with PWL or PWS was obtained by repeating the 

same simulation scenario, and permitting a different number of unknowns at each simulation. The error in the 

current at the feed point was taken as the measure of accuracy. The results of a direct MoM solution at the finest 

mesh were used as the reference. The convergence plots show that the proposed novel algorithm converges 

quicker than the traditional MoM based on the piecewise linear basis functions (denoted with δ(Ymono) and 

δ(Ydip) for monopole and dipole models, respectively), especially if only few unknowns are available or 

permitted for modeling. When the number of unknowns is small, an order of magnitude improvement in the 

accuracy of the solution has been observed.  

The plot shown in Figure 3 corresponds to a mesh obtained by the chain-splitting algorithm propagating its 

solution from the feed point towards the free ends. The curves (especially ones marked with dots) experience 

multiple dips as the number of unknowns is increased, in the region with the number of unknowns greater than 

10. This phenomenon is not present (the curve is much smoother) for the chain-splitting algorithm propagating 

its solution from the free ends towards the feed point (this plot is not shown but may be found in [13]). 

In addition, it was observed from Figure 4 that the condition number of the compressed solution for a dipole 

are ten-fold lower than that of the traditional solution “d1” for the same dipole, although it closely matches the 

condition number observed for a monopole model (except for the very high number of unknowns).  
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Figure 3: Convergence of error with growth in the total number of used variables (defined by the maximum 

permitted electrical length of a grouped chain of wire segments). The plot corresponds to the chain-splitting 

algorithm propagating its solution from the feed point towards the free ends. The notations PWL and PWS stand 

for piecewise linear and sinusoidal basis functions. The letters A, B or C following, denote the type of splitting 

algorithm applied [12]. The legend entries “δ” denote the convergence rate for the antennas modeled with a 

traditional direct MoM [10]. 
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Figure 4: Condition number of the impedance matrix versus the number of unknowns when modeling a 

coil-loaded monopole and dipole. The notations PWL and PWS stand for piecewise linear and sinusoidal (basis 

functions used). The letters A, B and C denote the chain-splitting algorithm applied. The first six entries in the 

legend describe condition number of the new compressed impedance matrix for the respective meshing 

scenarios. The last three entries in the legend describe the condition number for direct solutions by the MoM. 

The first symbol in the notations mN or dN stand for monopole/dipole and the second symbol (digit) stands for 

the WIPL-D’s “current expansion” option. There is a slight monotonic increase in the condition number for d8, 

which is not readily visible due to the scale of the plot. 

 

5. CONCLUSIONS 

A novel method for effective modeling of curved structures and structures with electrically small features has 

been described. The method aggregates several basis functions into a composite basis function based on a linear 



interpolation between the original basis functions, and can thus permit a reduction in the number of unknowns 

with no sacrifice in accuracy. The method has been implemented over the framework of the method of moments 

The method has been applied to an example of a coil-loaded antenna. Both piecewise-linear and 

piecewise-sinusoidal linearly-interpolated profiles of composite basis functions have been applied. The results 

confirm that the proposed method achieves better accuracy with fewer unknowns than the traditional method of 

moments. 
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