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Abstract 
This thesis is a feasibility study, with regards to aerodynamic stability, about the possibility of 

constructing a suspension bridge with a main span of 3700m over the Sogne Fjord in 

Norway. The design wind velocity for the Sogne Bridge is 64.2 m/s. 

A preliminary design is conducted to find the approximate dimensions for the bridge models 

with different cross sections. These bridges are then modeled in Abaqus in order to find the 

natural frequencies, vibration modes and mass properties.  

The key to calculating the critical velocity of the models is to include the aerodynamic 

derivatives of the cross sections. A Matlab program has the aerodynamic derivatives, natural 

frequencies, vibration modes and mass properties as input. With this information the 

program is able to calculate the multimode flutter velocity of the models. 

Also, a response calculation is executed in order to see how the different models behave 

under serviceability wind velocity. This gives a better picture of which models are most 

applicable. 

The results show that to apply a slotted box girder improves the flutter velocity, and all the 

models with this type of cross-section have a stability limit above the design velocity. For a 

single box girder, the structural measure of using a mono-cable instead of the traditional 

two-cable bridge geometry increases the critical wind velocity to above the design velocity. 

All the models satisfy the serviceability response requirements. 
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Sammendrag 
Denne masteroppgaven er en mulighetsstudie rundt aerodynamisk stabilitet i sammenheng 

med å bygge en hengebru med et hovedspenn på 3700m for å krysse Sognefjorden. 

Dimensjonerende vindhastighet for Sognebrua er 64.2 m/s. 

En overslagsdimensjonering er utført for å finne dimensjonene for brumodellene med ulike 

kassetverrsnitt. Disse modellene er modellert i Abaqus for å finne egenfrekvenser, 

svingemoder og massestørrelser.  

Nøkkelen for å beregne kritisk vindhastighet for modellene av Sognebrua er å inkludere de 

aerodynamiske deriverte tilhørende de ulike kassetverrsnittene. Et Matlab program som kan 

regne ut ved hvilken vindhastighet et instabilitetsfenomen kalt flutter oppstår, har de 

aerodynamiske deriverte, egenfrekvensene, svingemodene og massestørrelsene som 

inndata. Med denne informasjonen er programmet i stand til å regne seg fram til den kritiske 

vindhastigheten på grunn av multimode flutterinstabilitet. 

Det er også utført responsberegninger på de ulike brumodellene. Disse resultatene gir et 

bedre bilde på hvilke modeller som er mest anvendbare til videre arbeid. 

Resultatene viser at å anvende et delt kassetverrsnitt for brubanen forbedrer den kritiske 

flutterhastigheten, og alle modellene med denne type tverrsnitt har en stabilitetsgrense over 

den dimensjonerende vindhastigheten. For et enkelt kassetverrsnitt kan det bygnings-

messige tiltaket ved å konstruere en monokabel istedenfor den tradisjonelle to-kabel 

utformingen øke den kritiske vindhastigheten til over den dimensjonerende. Alle modellene 

tilfredsstiller bruksgrensekravene for respons.  
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1 Introduction 
Statens Veivesen is conducting a feasibility study regarding the possibility of crossing the 

Sogne Fjord without ferries. This thesis focuses on the alternative of constructing a 

suspension bridge with a main span of 3700m. Because of the depth of the fjord the pylons 

supporting the bridge have to be placed ashore. The longest suspension bridge built today is 

the Akashi Kaikyo Bridge in Japan, with a main span of 1991m. If the Sogne Bridge is built, it 

would represent an increase of span length by a factor of 1.86. 

One of the main structural challenges for a super slender suspension bridge is the 

aerodynamic stability, and one of the biggest fears for bridge engineers is the dynamic 

instability phenomenon called flutter that can occur at high wind velocities. Flutter happens 

because of coupling between vibration-modes. Coupling occurs due to the motion-induced 

effects caused by the motion of the structure when it is subjected to strong wind. The 

famous collapse of Tacoma Bridge happened because of flutter. The consequence of 

structural failure of a super structure like a long-spanned suspension bridge represents an 

economic catastrophe, so flutter has been one of the main research topics in relation to 

increasing the span of suspension bridges. There are two main ways to improve the 

aerodynamic stability of a suspension bridge; structural improvements and aerodynamic 

improvements. For the latter, the aerodynamic characteristics of the bridge girder play a 

significant role. 

The approach used to find the dynamic design forces and the serviceability of a structure is 

calculating the response with buffeting theory. For the design forces, the displacements 

need to be found, and for the serviceability both displacements and acceleration of the 

structure is needed. The buffeting theory is based on a handful of simplifications that make 

the calculation of response easier. Vortex shedding is not included. 

The objective of this thesis is to find the wind-induced dynamic response and the aeroelastic 

stability of a suspension bridge crossing the Sogne Fjord. 

The first stage of this thesis is to conduct a literary study to find an appropriate type of cross 

section with aerodynamic derivatives. The bridge is then modeled in Abaqus in order to 

obtain the vibration modes, natural frequencies and mass properties of the structure. Six 

different bridge models are then created. A Matlab program is made to help make these 

models. The program generates the layout of the bridge with a few input parameters. The 

structural properties obtained from Abaqus are used in other Matlab programs that 

calculate the critical velocity and the response in frequency domain for the models. The 

Matlab programs use the aerodynamic derivatives of the cross-sections. A Matlab program 

provided by Ole Øiseth is used to calculate multimode flutter. A two-mode flutter program is 

also made to understand the solving of flutter equations and verify the results from the 

multimode flutter program. A response program is made to calculate the dynamic response 

of the models in frequency domain. The static wind response from the mean wind velocity is 
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calculated in Abacus. The responses from the different cross-sections are tested against 

serviceability requirements.  

This report starts with an introduction of the theory used throughout this thesis. The theory 

in the second chapter involves aerodynamic derivatives, aerodynamic instabilities and 

buffeting response. In chapter three the preliminary design of the bridge alternatives are 

carried out and the chosen cross-sections for the models are presented. These cross- 

sections include a single box section and three different slotted box sections. The 

aerodynamic measures applied to the models include using a slotted box girder, adding 

guide vanes to the cross-section and having a vertical plate in between the two box girders. 

For structural improvements a mono cable is applied to two of the models. The aerodynamic 

derivatives and the static force coefficients for the different girder sections are put forth at 

the end of the chapter. In the fourth chapter the modeling choices for the Abaqus models 

are described. Here, the way to describe the mass and stiffness properties are presented, 

and the simplifications of the models are mentioned. How information is transferred 

between Abaqus and Matlab is also made known in the fourth chapter. The fifth chapter 

gives a description of the Matlab programs used to calculate critical wind velocity and 

response. In the sixth chapter the results of the critical velocities and response for all the 

models are presented and discussed. The last chapter, the seventh, contains a conclusion 

and suggestions about further work. 
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2 Theory 
All dynamic calculations start with the equation of motion. This is an equilibrium equation 

according to Newton’s second law. For a structure with one degree of freedom the equation 

of motion is given by equation (2.1).  

 
( ) ( ) ( ) ( )mr t cr t kr t p t    

 
(2.1)  

 
Here m is the mass, c the damping and k the stiffness property, r is the displacement as a 

function of time and the dots represent time derivatives; one dot gives the velocity and two 

dots the acceleration. p(t) is the external force on the system (Chopra, 2007). By assuming 

r=are
iωt , p=apeiωt  and dividing on k (k=ωn

2*m), equation (2.1) is transformed to (2.2). 

 2
1

ˆ2
ˆ( 2 1) ( )r r p

n n

i a H a a
 

 
 

      

ˆ
ˆ ( )r pa H a

 
 

 
(2.2)  

 
 

Here ωn is the natural frequency of the system, ω is the varying circular frequency 

dependent on the load and ζ is the damping ratio. From equation (2.2) it is clear that when 

ω=ωn , ˆ ( )H   is only limited by the damping term from growing to infinity. When ˆ ( )H  ,  the 

frequency-response-function, grows to infinity the response will get very large and the 

phenomenon known as resonance occurs. 

The buffeting theory is applied to describe the wind forces on the structure. The wind load 

equals the p(t) term in equation (2.1). The general assumptions are that the bridge can be 

considered a line-like structure, the wind field is stationary and homogenous and it is 

possible to divide the wind load in a mean part and a fluctuating part. The fluctuating part of 

the wind is considered small compared to the mean wind; the same goes for the structural 

displacements and rotations. It is assumed that the wind load on the structure can be 

calculated from the instantaneous velocity pressure, giving the equations in (2.3). 

 21
( , ) ( )

2
D rel Dq x t V D C   

  
21

( , ) ( )
2

L rel Lq x t V B C   
 

2 21
( , ) ( )

2
M rel Mq x t V B C   

 
 

 
(2.3)  

 

Here q is the total drag, lift and moment forces in y, z and θ direction, respectively, see 

figure 2.1. x gives the location in the longitudinal direction of the structure,  is the air 

density, and D and B the height and width of the girder section. 2 2 2( ) ( )relV V u y w z      

is the felt wind on the structure where V is the mean wind velocity, u and w is the fluctuating 

wind velocity (see figure 2.1), and y  and z  are the velocity of the structure. Ci are the static 
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load coefficients given by the outline of the cross section; these are a function of the attack 

angle of the oncoming flow,   (Strømmen, 2010).  

 

Figure 2.1. The oncoming wind direction and orientation of the cross section. 

 

There are two linearization assumptions for the load: 

1. Since it is assumed that the fluctuating components and the structures velocity are 

small compared to the mean wind velocity, all the second order terms with a 

combination of these values are considered negligible.  

2. The static load coefficients can be describes in a linearized manner: 

  

( ) ( ) ( )i i f iC C C       where i=D,L or M 

 

 
(2.4)  

 

 is the angle of incidence,   is the mean value of angle of incidence, and 

/ /f w V z V     is the fluctuating part of the angle of incidence.  

From the assumptions above the load can be divided into a mean (static) load and a dynamic 

load. The dynamic load consists of a part associated with turbulence and a motion-induced 

part associated with the displacement and velocity of the structure itself, see equation (2.5) 

(Strømmen, 2010). 

 ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )

y y

tot z z q ae ae

q q x t y x t y x t
u x t

q q x t z x t z x t
w x t

q q x t x t x t   

       
        

                
               

q q B C K  

'

2
'

2 2 2 '

2
( , )

2
( , )2 2

2

D D D L

L L L D

M M M

DC DC DC BC
u x tV V

BC BC BC DC
w x t

B C B C B C

 
   

   
      

   
   

 

' '

2
' '

2 2 ' 2 '

2 0 ( , ) 0 0 ( , )

2 0 ( , ) 0 0 ( , )
2 2

2 0 ( , ) 0 0 ( , )

D D L D

L L D L

M M M

DC DC BC y x t DC y x t
V V

BC BC dC z x t BC z x t

B C B C x t B C x t

 

 

       
      

        
            

 

 
(2.5)  

 

 



 
 

5 
 

If a person rides a bicycle in a mean wind velocity of 10 m/s and he rides the bike at 10 m/s, 

the person would not feel any wind. This phenomenon is taken into account with the 

aerodynamic damping and stiffness. 

When calculating the response of the structure, all the force components in equation (2.5) 

must be taken into account, but when calculating the critical velocity for the structure, only 

the motion induced variables need to be considered. In the buffeting theory quasi-static 

values may be used, these are functions of the static load coefficients, but as will be seen 

later in this chapter, a better approximation for the motion induced loads are needed at high 

velocities. 

2.1 Aeroelastic stability 

The change in static and dynamic response will normally be fairly proportional with 

increasing mean wind velocity, but at some critical wind velocity, the change in response will 

increase rapidly for small changes in the mean wind velocity. This may be identified as an 

instability limit.   

The motion induced instabilities can be described mathematically by the impedance matrix, 

see equation (2.6). When the determinant of the impedance matrix becomes zero, the 

response goes towards infinity. The impedance matrix is derived from the equation of 

motion. It is the same principle as shown in equation (2.2), but with more degrees of 

freedom and with the aerodynamic forces included in the load term.  

 2

1 1ˆ ( , ) 2 ( )ae ae

i i

V diag i diag   
 

     
                   

E I κ ζ ζ  

 
(2.6)  

 
 

Here aeκ  is the aerodynamic stiffness matrix divided by the structural stiffness matrix and ζae 

is the aerodynamic damping ratio matrix. In order to explain the different stability limits it is 

necessary to look into the motion induced contribution that must be included in the 

equation of motion when the structural system is subjected to strong wind.  

2.1.1 Motion induced effects 

When a slender structure is subjected to strong wind, it will be set in motion. This motion 

will interact with the wind flow and alter the load on the structure.  A challenge with 

dynamic calculations of structures subjected to wind load is that there is no perfect formula 

for describing the motion induced forces. Dissimilar cross sections will behave differently to 

the same wind load due to different outlines. This is because the air flow around the cross 

section is influenced by the outline and the movement of the structure. The aerodynamic 

derivatives are used to describe the dynamic behavior of different cross sections subjected 

to wind. These parameters are described below. 
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2.1.2 Aerodynamic derivatives 

The theory of aerodynamic derivatives (AD) is developed through the study of the behavior 

of a thin airfoil subjected to wind (Scanland RH, 1971).The structural properties, stiffness (K-

Kae) and damping (C-Cae), will change as a function of the wind velocity. The change in mass 

properties is considered negligible. This gives a change to the natural frequencies 

(ω(V)2=Ktot/M) and the mode shapes. As a consequence the response of a structure 

subjected to wind cannot be calculated correctly with the still air structural properties. The 

content of the aerodynamic stiffness matrix and damping matrix are given by the 

aerodynamic derivatives. There are 18 ADs, Pi*, Hi* and Ai*, i=1,2…6. P* is related to the 

equilibrium equation in horizontal direction, H* to the vertical direction and A* to the 

rotation. 
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(2.8)  

 

 

The theory developed to calculate the ADs is based on a specific section, a thin airfoil, and 

this theory does not directly apply to other cross sections with different shapes. To obtain 

better results for calculations of critical wind velocity, a better approximation is needed. This 

is possible through wind tunnel tests of relevant cross-section models. 

It is feasible to obtain eight ADs through wind tunnel tests, Ai* and Hi*, i=1,2,3,4. These are 

associated with the vertical and torsional degrees of freedom.  A1* and A4* give the 

contribution from the vertical movement to the torsional response, while H2* and H3* give 

the contribution from torsional movement to vertical response, see equation (2.9) and (2.10) 

(Matsumoto, 2004). 
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(2.10)  

 
 

Here L represents the lift force in the vertical direction while M is the moment force in 

torsion. z is the vertical displacement and θ the torsional rotation. The dots symbolize time 
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derivatives. ω is the circular frequency, ρ is the air density, B is the girder width, k is the 

reduced frequency (= Bω/V) and V is the mean wind velocity.  

To test a girder section in a wind tunnel, the sections being tested are scaled down. To apply 

the test results to a for a full size bridge, the aerodynamic derivatives are obtained as a 

function of the reduced velocity, Vred=V/(ωB). With the reduced velocity the aerodynamic 

derivatives for a specific section can be applied to a sized up mode,l using the velocity, 

frequency and width for that particular model. 

The reason only eight of the eighteen aerodynamic derivatives are found through wind 

tunnel tests, is because of the difficulty of simulating the horizontal vibration in the wind 

tunnel.  All the P*s are related to the dynamic force equilibrium in horizontal direction, and 

H5, 6* and A5, 6* give the contribution from horizontal movement to vertical and torsional 

response, respectively. The usual approach for including the P*s, H5, 6* and A5, 6* is to 

calculate them with quasi static theory, that means they are expressed with static force 

coefficients. The quasi-static aerodynamic stiffness and damping matrixes are given in 

equation (2.5). 

Several studies have been carried out to find out how much the different aerodynamic 

derivatives influence the flutter velocity. It is now agreement on that H1*, A1*, A2*, A3* and 

H3* are the most influential (Ole Øiseth, 2011), (Matsumoto, 2008). One study concludes 

that A1 is the most important aerodynamic derivative to stabilize the coupled flutter 

instability (Matsumoto, 2008). The role of the different aerodynamic derivatives according to 

a Step-by-Step analysis developed by Matsumoto is shown in (Trein, 2011). 

Table 2.1. Role of the aerodynamic derivatives in coupled flutter, according to step-by-step 
analysis. 

Derivative Stabilization Destabilization 

A1* Low absolute values High absolute values 
A2* Negative values Positive values 
A3* Low absolute values High absolute values 
H1* Negative values Positive values, low absolute values 
H3* Low absolute values High absolute values 
A1*×H3* Negative values Positive values 

 

Since the use of aerodynamic derivatives is developed through the airfoil theory, the same 

theory applied on a slotted box section can give uncertain results. There will be more 

turbulence around a slotted box section than a thin airfoil or a streamlined single box 

because of the slot. It is therefore not given that the same approach on this type of cross-

sections will render as good results as for a single streamlined cross-section. 



 
 

8 
 

2.1.3 Flutter 

Flutter is an aeroelastic instability phenomenon at high wind velocities where coupling 

effects between two or more vibration modes makes them interact and the structure starts 

to oscillate. The two main modes that interact are usually the lowest symmetrical vertical 

mode and the lowest torsional mode. The critical velocity is found by setting the 

determinant of the impedance matrix, equation (2.6), equal to zero. The coupling occurs via 

the off diagonal terms in aeκ , se equation (2.11). Shape-wise similarity and the separation of 

the natural frequencies are important for the modes to couple (Øiseth R. S., Volume 98, 

Issue 12, December 2010,). Equation (2.11) shows that the off diagonal terms will be zero for 

no shape-wise similarity, giving no coupling between the modes. The aerodynamic 

contribution to the impedance matrix comes from the motion induced load given in 

equation (2.9) and (2.10). The terms multiplied with displacement and rotation give the 

aerodynamic stiffness matrix, while the terms multiplied with the time derivatives of the 

displacement and rotation give the aerodynamic damping matrix. 
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(2.11)  

 

 

The aerodynamic derivatives in the damping- and stiffness matrixes are functions of the 

mean wind velocity, this gives that also the natural frequency is a function of the mean wind 

velocity and the flutter calculation will need iterations. This gives a new equation system for 

every step in the velocity. The solution of this equation system will give new modes and 

natural frequencies from the updated eigenvalue solution. The flutter velocity is reached 

when the solution of the equation system includes a mode that has zero damping. From the 

coupling terms, interaction effects between the vertical mode and torsional mode will 

influence this new mode that is mainly torsional movement, but also have some vertical 

movement contribution. The more shape-wise similar the starting modes are, the more they 

will interact. 

Bi-modal flutter 

The bi-modal flutter calculation uses the assumption of pure one-directional mode shapes. 

Since the impedance matrix in general contains complex values, setting the determinant of 

the impedance matrix to zero implies setting the real part and the imaginary part of the 

determinant equal to zero: 
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ˆdet( ( , )) 0V  E  

 
(2.12)  

 
 

ˆRe(det( )) 0 E  and ˆIm(det( )) 0 E  
 

(2.13)  

 
After the assumption of bi-modal flutter with one-directional mode-shapes the solution is 

greatly simplified, making it possible to calculate the imaginary and real roots of the 

determinant directly. The roots will vary with both mean wind and eigenfrequencies so 

iterations are needed. The simplifications of bi-modal flutter enable the roots to be plotted 

in a 2D diagram dependent on eigenfrequency and mean wind. The imaginary roots and real 

roots have the same value when they intersect, making the determinant of the impedance 

matrix zero. The intersection at the lowest mean wind velocity gives the critical flutter 

velocity. All the other intersections are only theoretical and will never occur in real life.  

Multimode flutter 

For multimode flutter calculation, the flutter velocity is reached when the real part of S goes 

to zero, that means when the total damping of a mode is zero, see equation (2.14). S is the 

eigenvalue for a mode, found from the homogenous solution to the equation of motion 

when assuming the solution can be written as r(t)=eSt (Chopra, 2007). Since the motion-

induced forces are associated with the vibration of the structure, they are included in the 

homogenous solution. The particular solution from the wind-flow will only give a small 

contribution to the total response compared to the motion induced response close to an 

instability limit, and is not necessary to include when finding the critical velocity.  

 
21n n n nS i       , n S  ,  

Re( )
n

S

S
 

 

 
(2.14)  

 
 

Here ωn is the natural frequency of the n-th vibration mode dependent on the aerodynamic 

derivatives and wind velocity, ζn is the damping ratio of the n-th mode including both 

structural and aerodynamic damping and i is the imaginary unit. When the real part of S is 

zero, the total damping of the mode is zero, and there is nothing to dissipate the energy 

given to the structure from the load. Since the wind specter contains values for all 

frequencies a mode with zero damping will always experience resonanse.   

The solution of a two mode eigenvalue problem, equation (2.14), for a 1000 m bridge for 

increasing wind velocities is plotted in figure 2.2 and figure 2.3 with a Matlab program that 

can calculate multimode flutter by the eigenvalue solution. The still air mode shapes are 

assumed as two perfect half sinusoidal shapes, pure torsional and pure vertical. This means 

they are completely shape-wise similar. The torsional still air natural frequency is 2 rad/s and 

the vertical 1 rad/s. The aerodynamic derivatives are taken from the cross section of the 

Hardanger Bridge. The imaginary part of the eigenvalue shows how the eigenfrequencies 
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changes, the “torsional” mode loses stiffness with increasing velocities and as a result the 

frequency decreases. The vertical mode has a quite constant value, but since the imaginary 

part of the eigenvalues includes the square root term with the damping properties of the 

mode, the imaginary part decreases when the damping increases as shown in figure 2.3. The 

damping of the “torsional” mode goes to zero at a velocity of 74 m/s. This gives no 

resistance in the structure to the load matching the eigenfrequency of this mode, and the 

bridge will eventually collapse from the forces in the bridge given by the big displacements. 

The critical flutter frequency can be found in figure 2.2, the value at the end of the red graph 

will only represent the circular frequency since the damping is zero, see equation (2.14). If 

altering the torsional natural frequency to 1.5 rad/s, the same example as above gives a 

critical velocity of 54 m/s. This shows the influence of the natural frequency separation for 

the flutter velocity. 

 

 

Figure 2.2 The imaginary parts of the eigenvalues (frequencies) 
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Figure 2.3 The real parts of the eigenvalues (damping) 

From the study of the critical flutter velocity of the Hardanger Bridge, it is shown that the 

lowest flutter velocity is found with a combination of three modes (Ole Øiseth, 2011). With 

the bimodal flutter-routine derived from the impedance matrix, it is only possible to 

calculate for two modes and the critical velocity found would not be correct.  

 

2.1.4 Other motion induced instabilities 

 

Static divergence 

Static divergence is, as the name states, a static instability limit making the critical frequency 

zero, ωr = ωθ(Vcr) = 0. This is an instability limit that uses a vibrational mode predominantly in 

torsion. What happens is that the structure loses its torsional stiffness due to interaction 

with the wind. From the expression for the circular frequency, ωr
2=Ktot/M, the circular 

frequency is zero with no stiffness Ktot. Ktot includes both structural and aerodynamic 

stiffness. This reduces the impedance matrix (2.6) to equation (2.15). 

 
ˆ ( 0, )r cr aeV    E I κ  

 
(2.15)  

 

The critical velocity is found when equation (2.15) goes to zero. aeκ is Kae given in equation 

(2.8) divided by the structural stiffness matrix. The value for A3
* has to be positive for static 

divergence to occur. The aerodynamic derivatives from quasi-static theory are applicable 

since it is a purely static instability problem (Strømmen, 2010), that means that the 

aerodynamic stiffness matrix from equation (2.5) applies.  
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Galloping 

In galloping the mode shape of interest is predominantly in the vertical direction. Galloping 

can be described as a type of single-vertical-mode flutter. 

The critical frequency is the same as the eigenfrequency for the lowest vibrational mode 

shape in vertical direction. It is important to remember that this eigenfrequency is not 

constant any more, it is a function of the velocity. ( )r z crV  , where r  is the critical 

frequency. When only considering a vertical vibration mode, the impedance matrix is 

reduced to equation (2.16). 

 2
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(2.16)  

 
 

Setting the real and imaginary parts of the impedance matrix equal to zero and making the 

wind exposed part the same as the entire span gives the resonance frequency in equation 

(2.17). 
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(2.17)  

 
 

The critical frequency is reached when the damping properties are as shown in equation 

(2.18), giving zero total damping. 
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(2.18)  

 
 

The total damping must be zero for galloping to occur, this means that galloping can only 

happen for *

1H  grater that zero. For streamlined cross sections, *

1H  is negative and galloping 

will not occur (Strømmen, 2010). 

 

Dynamic stability limit in torsion 

The dynamic stability limit in torsion is similar to galloping; the only difference is that the 

mode shape is in torsion. This can be considered as a type of single-torsional-mode flutter. 

The impedance matrix is then reduced to equation (2.19). 
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(2.19)  

 
 

As with galloping, the critical velocity is found when the total damping is zero. The critical 

frequency is given in equation (2.20) and the damping at the stability limit is given in 

equation (2.21). 
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(2.20)  
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(2.21)  

 
 

This means that *

2A has to be positive to give motion induced instability in torsion. With the 

quasi static theory *

2A  is zero and it is not possible to obtain a stability limit for torsional 

flutter. For streamlined cross sections *

2A  is negative (Strømmen, 2010). 
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2.2 Response 

Response calculations play an important role in the design of long span bridges. Both 

ultimate limit state and serviceability limit state uses results from response calculations. The 

response calculation derived in this chapter uses buffeting theory with aerodynamic 

derivatives and still-air natural frequencies.  Vortex shedding is not included. Since vortex 

shedding normally dominates the response at low velocities, the response for low wind 

loads is not accurate.  

The aerodynamic derivatives are functions of the reduced velocity, Vred=V/(ωB). V is the 

mean wind velocity, B the width of the girder and ω is the eigenfrequency of the modes. The 

aerodynamic derivatives are dependent on ω and change the ω at the same time, implying 

that iterations are needed. By assuming that the changes in the aerodynamic derivatives for 

small changes in ω are negligible, no iterations are necessary. This assumption holds for 

wind velocities up to about half the critical wind velocity. 

The fact that the structures experience a small rotation when subjected to the mean wind 

force is neglected when calculating the response. This gives the assumption that the attack 

angle of the mean wind is zero degrees.  

Max deflections are a tool for designing in ultimate limit state, but will not be considered any 

further. Deflections and accelerations are important parameters for the serviceability limit 

state. High accelerations and deflections make the bridge feel unsafe and may make it 

unusable.  

The modal frequency domain approach is used to calculate the deflections. In time domain 

the response plot looks random, and it is difficult to obtain any information about the 

structure, like which frequencies dominate the response. When calculating the response in 

frequency domain the result is more structured and easy to understand. The time domain 

response can be obtained as a Fourier array of harmonic functions with different 

frequencies, these functions are added together with a random phase angle which gives the 

randomness of the time domain plot. The amplitudes of the harmonic functions say how 

much each piece contributes to the response. It is these pieces that are identified in the 

frequency domain; the pieces are connected to the different egen-modes and 

eigenfrequencies of the structure. 

The solution in frequency domain is separated in three different calculation procedures, 

depending on the complexity of the problem (Strømmen, 2010): 

1. Single mode single component response. This uses vibrational modes that have 

one component only, and eigenfrequencies well separated from each other. 

2. Single mode three component response. This uses general vibrational modes, but 

still well separated eigenfrequencies.  

3. General multi-mode response. This uses general vibrational modes and coupling 

effects between the different modes. 
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The response theory in this chapter is derived using the second solution procedure. Because 

of the uncoupling of the system the superposition principle applies and the variances from 

each mode can be summed together: 

 
2 2

N

n in

in

  , where n=y,z,θ and i=mode nr.  
 

(2.22)  

 
For a given mode shape i, the contribution in time and space is split into 2 parts.  

 
( , ) ( ) ( )i i ix t x t r φ  

 
(2.23)  
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(2.24)  

ni is the shape function in n-direction for mode i and ( )i t is the modal time dependent 

variable.  

The derivation continues with the Fourier transform of the equation of motion. The modal 

frequency-response-function connects the Fourier amplitude of the time variant part and 

the Fourier amplitude of the load.  
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(2.25)  

 
 

It is further assumed that the motion induced loads are proportional and in phase with the 

displacement, velocity and acceleration. The loads are named aerodynamic damping, 

stiffness and mass. Neglecting the aerodynamic mass term and sorting the equations gives 

the non-dimensional modal frequency-response-function: 
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aeiC  and aeiK  can be found in section 2.1.2. i ,
iM  and 

iK  are the eigenfrequency, modal 

mass and modal stiffness of mode i. i is the modal damping. ( ), ( )y zm x m x and ( )m x are the 

distributed masses in y-, z-, and θ-direction.  

The spectral density of the response from mode i at x=xr is given by, 
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(2.34)  

 
 

where ( )
iQ

S   is the spectral density of the load and ( )i rx  is the mode shape in horizontal, 

torsional or vertical direction for mode i at point x=xr.  

The Fourier transform of the fluctuating wind loads in the equation of motion is carried out 

to find the spectral density of the load. Multiplying the Fourier amplitudes and making the 

time period, T, go to infinity, using buffeting theory for the wind load and neglecting all cross 

spectral terms gives: 
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 *1
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i i iQ Q QT
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   

(2.37)  

Here au and aw are the amplitudes of the fluctuating parts and *

iQ
a is the complex conjugated 

Fourier amplitude of the modal load.  
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Where, 
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2 2

1 1 2 2 1 2
ˆˆ ˆ( ) ( ) ( ) ( , ) ( ) ( )T T

i i q v v q i

L

J x x x x x dx dx         φ B I S Β φ  

 
(2.39)  

 
 

 [ , ]v u wdiag I II  (2.40)  

1

2ˆ ( )q x
VB

 
q

B B , 
q

B  can be found in equation (2.5). Ji is the joint acceptance function for 

mode i. 

 
2 2ˆ ( , ) [ / , / ]v uu u ww wx diag S S   S  

 
(2.41)  

 
Where, 

 
ˆ( , ) ( ) ( , )nn n uuS x S Co x      , n=u or w. 

 
(2.42)  

 
ˆ ( , )uuCo x  is the normalized co-spectrum and ( )nS  is the spectral density in n direction. 

To get the variance from the spectral density function, integration over the frequencies is 

carried out. This gives the final equation for the variance (2.43). 

 
2

0

( , )i ri rS x d  


   
 

(2.43)  

 
 

The development of these equations and assignment of different coefficients can be found 

in (Strømmen, 2010). Components of the response calculation is discussed below.  

2.2.1 Modal frequency-response-function 

To simplify the explanation of the frequency-response-function, aerodynamic stiffness and 

damping are assumed to be zero.  

From equation (2.25), (2.26) and (2.34), it is seen that the modal frequency-response-

function says something about how much each mode contributes to the final response. If a 

harmonic load with only one frequency excites a one degree of freedom system, the 

frequency-response-function as a function of the load’s frequency gives a multiplication 

factor for the value of the response. If a single harmonic load has a frequency of 2 rad/s and 

is applied to a structure that has the frequency-response-function shown in figure 2.4, the 

response will be a harmonic wave with 10 times the amplitude of the load amplitude. 

Abs ( ˆ ( )iH  ) is plotted in figure 2.4 for a mode shape with eigenfrequency of 2 rad/s and 

damping of 0.05. From the figure, the phenomenon of resonance can be seen. At loads with 
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frequencies close to the eigenfrequency the function becomes large, only limited by the 

damping. It can be seen from equation (2.26) that if the system is un-damped, the resonant 

response would go to infinity and the structure collapse. For figure 2.4 it is also seen that 

loads with higher frequencies than the eigenfrequency of the mode will give small 

contributions to the modal response, the higher the frequency the smaller the contribution. 

If the frequency of the load is smaller than the eigenfrequency the function goes to 1. This is 

called a quasi-static load.  

 

Figure 2.4 Normalized modal frequency-response-function for ω=2 and damping = 0.05 

In figure 2.5, the
2

ˆ ( )i

i

H  is plotted for a three-modal system with eigenfrequencies 1, 3 

and 6, with damping 0.05, 0.1, and 0.15. The peaks correspond to the eigenfrequencies, and 

the height of the peaks clearly depends on the amount of damping.  

 

Figure 2.5 Normalized modal frequency-response-function 

2.2.2 Spectral density function 

The auto spectral density function, Sx(ω), of a process describes the distribution of the 

variance contribution at different frequencies (Strømmen, 2010).  
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(2.45)  

 

( )xa  is the Fourier amplitude of x.  

The time domain transformation is shown under:  
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(2.46)  
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N
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x t x


  and cos( )k k k kx c t    
 

(2.47)  

 
Equation (2.46) shows that spectral density intervals with high values give a high ck. The 

spectral density can be split into different sections with width  and mean value S(ωk). The 

smaller the frequency interval,  , the more accurate the response. In equation (2.47) it is 

shown that the response in time domain is the sum of harmonic functions with amplitudes 

ck. From this it is possible to see the connection between the spectral densities of the 

response in frequency domain with the response in time domain. To find the maximum 

variance of a process, equations (2.48) and (2.49) applies. 

  
2 2 / 2xk kc   

 
(2.48)  

 
 2 2

x xk

k

 
 

 

(2.49)  

 

Equation (2.48) applies for a narrow banded process (Strømmen, 2010). It gives that the 

total variance of the response is the sum of the amplitudes for the harmonic contributions 

divided by the square root of two. The total variance is found by an integral over the spectral 

density function with respect to the frequency. 

It is seen from equation (2.34) that the spectral density of the load is proportional to the 

spectral density of the response, which gives that also the variance of the response is 

proportional to the spectral densities of the load.   

Figure 2.6 shows the spectral density for a mean wind velocity of 30 m/s on the Hardanger 

Bridge. The directions of the fluctuating wind components, u and w, are shown in figure 2.1. 
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Figure 2.6 Spectral densities for the wind loads on Hardanger Bridge 

2.2.3 Aerodynamic stiffness and damping in response calculation 

How the aerodynamic stiffness and damping affect the system can be seen from the modal 

frequency-response-function (2.26). Positive aerodynamic stiffness gives higher response at 

lower frequencies. Positive aerodynamic stiffness moves the peak of the modal-frequency-

response function towards lower frequencies. Positive aerodynamic damping makes the 

total damping of the system go down. The consequence of lower damping of the system is 

higher response because of less energy dissipated.  

Since the response procedure used is supposed to be uncoupled, the aerodynamic damping 

matrix aeiC  and stiffness matrix 
aeiK  have to be diagonal. This is a simplification compared to 

the full multimodal approach.  

2.2.4 Joint acceptance function and normalized co-spectrum 

Under developing of the spectral density of the load, the Fourier amplitudes of the load are 

multiplied together in equation (2.44). This gives a double integral over the span called the 

joint acceptance function (J). After assuming that the cross-spectra between the flow 

components are zero, the spectral density of the load is given by equations (2.38) - (2.42).  

Physical explanations of the joint acceptance function are given under: 

 ˆ ( )q xB
 
is a matrix with the static force coefficients that says something about how 

much the fluctuating wind affects the cross-section, or how much energy from the 

wind load is transferred to the cross-section. 

 The normalized co-spectrum distributes the spectral densities of the fluctuating wind 

over the span. In other words, how much wind is felt a distant x from the point 

evaluated. The shape functions are weighting these distributions. 

Figure 2.7 shows the normalized Co-spectrum and illustrates how this spectrum distributes 

the spectral densities over the span length.  
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Figure 2.7 Normalized co-spectrum relative from zero 

The normalized co-spectrum can have many forms. In this thesis the distribution shown in 

equation (2.50) is used. 

 
ˆ ( , ) exp( / )nn nxCo x C x V      , where n=u,w 

 
(2.50)  

 
Cnx is a constant that normally has a value between 1.0 and 1.4. 

2.2.5 Variance  

Wind loads on structures cannot be exactly described by known mathematics. The wind 

varies randomly and is too complex. This is why statistics is useful for describing the wind 

field. The wind is assumed stationary over a period of 10 minutes, implying that the mean 

value of the wind is constant over 10 minutes. In these 10 minutes, the fluctuating part is 

assumed normally distributed. The way to describe the “wideness” of the normal 

distribution is by variance. Figure 2.8 shows three normal distributed probability density 

functions with different variances and mean values.   

 

Figure 2.8 Normally distributed probability functions with different variances and mean values. 
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Note that the areas under the three curves are the same (areas =1). Curve A has relatively 

small variance which gives a high probability for occurrences of wind velocities near the 

mean wind velocity. This would imply smaller wind oscillations because the probability of 

occurrences of high absolute values for the fluctuating wind component (u) is low. 

Curve B shows that there is a larger probability for higher values for the fluctuating wind 

component (u). Curve C has the same variance but a higher mean, this shows that the 

oscillations are expected to be the same for both curve B and C, the only different is the 

mean wind, V. 

The curve with the biggest variance has more values longer from the mean value. This 

means that fluctuating wind (with higher variance) will have bigger oscillations.  

The load is describes statistically which leads to that the structural displacement also is 

described statistically. The response of a structure that is loaded with a mean and a 

fluctuating part will have a mean displacement and a fluctuating displacement. The mean 

part of the response is the static part and the fluctuating part is the dynamic part.  

2.2.6 How many modes to include 

In solution procedure 2, the modal response is summed up over all modes, but in practical 

calculations it is not necessary to include all the modes. This comes from two contributions:  

1. The fluctuating wind load has mainly contributions at lower frequencies; this can be 

seen from figure 2.6 where the spectral densities from the wind have its main 

contribution up to 0.15 rad/s.  

 

2. For loads (spectral densities) with overweight in relative low frequency range: 

From the expression, 
2

2

2

( ) ˆ ( )i r
i

i

x
H

K


  in equation (2.34), it is shown that these 

factors influence the relationship between the load specter and response specter. 

Maximum value of the mode shapes are 1 for all modes independent of mode 

number. The normalized modal frequency-response-function will be 1 for modes 

with much higher eigenfrequencies than the load (high modes has high 

eigenfrequencies and the function goes to quasi-static load). The modal stiffness will 

in general increase for higher modes and reduce the response.  

 

For loads (spectral densities) with overweight in relative high frequency range:  

The normalized modal frequency-response-function will go towards zero for a load 

that has a frequency larger than the eigenfrequency of the system.  

If contribution 1 and 2 are put together, it is seen that a load specter with low frequencies 

put together with the high modal stiffness of the higher modes will give low response 

contributions compared to the lower modes.  This is why higher modes can be neglected.  
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It is important to note that a load with high frequency can give an error in the response 

calculation when neglecting the modes. This is because a high frequency load can be 

multiplied by a high normalized modal frequency-response-function making a large 

contribution to the response. If the high mode shape is poorly damped, the response can 

become very large. 

Example of increasing modal stiffness 

To illustrate the increased modal stiffness for higher eigenfrequencies a uniform simply 

supported beam is evaluated with a modal approach (evenly distributed mass and stiffness). 

If the boundary condition is put into the equation of motion for the system and taking 

advantage of the modal orthogonallity; the eigenfrequencies, mode-shapes, modal stiffness 

and modal masses becomes: 

 2 2
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(2.51)  

 

 

Here n is the mode nr, I is the second moment of area, E is the modulus of elasticity, m(x) is 

the distributed mass, nM  is the modal mass, nK is the modal stiffness, n  is the modal 

eigenfrequency and ( )n x is the mode shape (Chopra, 2007).  

The equations in (2.51) show that the modal stiffness increases for higher modes. This effect 

should in general be expected for line-like structures. This can be explained by the amount 

of energy needed to deflect a system in different modes. There is less energy needed to 

deflect a beam like half a sinus-wave than four whole sinus-waves. This is because the 

curvature needed is grater for the four sinus wave example. 

Modal stiffness can be substituted with modal mass and eigenfrequencies (k=ω2M). For a 

rigid body movement, the eigenfrequency is zero, giving zero modal stiffness for this mode. 

A rigid body movement demands zero energy to be displaced, that fact supports the 

argument above. 
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2.2.7 Parameters that influence the dynamic response 

Mean wind velocity 

Equations (2.38) and (2.43) express that the variance is proportional to the mean wind 

velocity squared. This should give a perfect quadratic mean wind vs. variance plot, but there 

are some components that disturb this relation.  

Normalized co-spectrum grows for increasing wind velocities. The relative distribution length 

goes up; this means that it is more likely that two points with distance Δx are experiencing 

the same wind load when the mean wind velocity is higher.  

The aerodynamic derivatives vary with the mean wind velocities, making the response 

increase or decrease as explained in the aerodynamic derivatives chapter 2.2.3. This effect 

makes the structure experience motion induced instabilities. 

Shape-wise similarity 

Variances for the response will in general vary over the structure. This is obvious when the 

first mode shape is taken into consideration for a simply-supported beam, the variance will 

be distributed the same way as the mode-shape. This can be seen from equation (2.34). The 

variance of the displacement will be zero over the supports and maximum at mid-span 

(assumed a half sinus wave as the first mode shape).  

The response calculations are the sum of variances from different modes. If all the mode-

shapes for a type of structure have its maximum value at mid-span, the variance at mid-span 

would be the biggest. For line like structures, this is not the case. Mode-shape two in the 

horizontal direction is usually one whole sinus wave (anti symmetric mode shape), where 

the maximum is in the quarter-points, not the midpoint (Chopra, 2007). The variance 

contribution from this mode in the midpoint is zero.  

Eigenfrequencies 

The values of the eigenfrequencies influence the response of the structure. If the load 

applied to a structure contains frequencies close to the egenfrequencies of the structure, the 

response gets high. An example of this is resonance where a small harmonic load can excite 

a single mode shape giving the structure high response, even failure. This phenomenon is 

described in section 2.2.1. 

Modal stiffness 

As discussed in subsection 2.2.6, higher modal stiffness gives less dynamic response.  

Static force coefficients and aerodynamic derivatives 

The aerodynamic stiffness and mass alters the modal frequency-response-function as 

explained in subsection 2.2.3. The values of the static force coefficients influence the 

response as well. Higher values of the mean static coefficients make the displacements 

bigger. This can be explained by how much the different turbulence wind components can 

affect the cross- section. A higher drag coefficient means that the wind that hits the cross-
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section will give the structure a higher drag force. With a more streamlined shape, the wind 

flow will pass more smoothly around the cross-section and the values for the static force 

coefficients will decrease. As a consequence the fluctuating forces on the cross-section will 

decrease. This effect is shown in the 
q

B  matrix in equation (2.5). 

2.2.8 Displacement and acceleration limits 

Since this thesis focuses on the serviceability wind velocity, serviceability requirements is 

tested.  

1. Max displacement: There are not found any specific standard value for max 

displacements on bridges, but for different construction materials (wood, steel and 

concrete) the value varies between L/100 – L/300. ( (Standard1995-1-1, 2009) table 

7.2)  

2. In (Iso6897, 1984) two curves of maximum acceleration for a given frequency are 

considered the comfort-limit for humans. Curve one is for general purpose buildings, 

curve two is for fixed offshore structures. Bridges are considered type two structures. 

Maximum accelerations are calculated by taking the response spectrum and multiplying it by 

the frequency to the power of four. This is derived under: 
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(2.52)  

 

 

It is seen from the derivation in (2.52) that the spectral acceleration is found by dividing the 

spectral response by the frequency to the power of four. The maximum accelerations are 

found by finding the max values of the spectral density functions for the response.  

2.2.9 Extreme values 

Combining static and dynamic response when the dynamic response is represented by a 

variance is not straight forward. The theory is developed in (Strømmen, 2010). The result is 

equation (2.53). 

 
Xmax=xmean+kp*σx 

 
(2.53)  
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Here Xmax is the extreme value, xmean is the value from the static load, kp is the peak factor 

and σx is the variance of the dynamic part. The peak factor varies from 2-5 in fairly broad 

banded processes, but goes to √2 for ultra-narrow banded processes.  

2.2.10 Mono-cable and duo-cable consideration 

The mode-shapes from a mono-cable model and a duo-cable model differ because of the 

different behavior of the systems when the girders are displaced. Figure 2.9 shows the 

modal coupling effect between horizontal and torsional mode-shapes because of the 

horizontal displacement of the girder. For a mono-cable model, horizontal displacement of 

the girder gives a rotation of the girder. It also shows that this is not the case for a bridge 

with two cables. This is why mono-cables have more coupling between horizontal and 

torsional mode shapes.  

 

 

Figure 2.9. Static horizontal displacement of girder for a model with mono cable compared to a 
two cable model.  

For the mono-cable bridge to have a pure torsional mode-shape, the cable has to twist. The 

duo-cable bridge handle a pure torsional mode-shape by lifting one of the cables and making 

the other one go down.  

Hanger height 

The force needed to displace the cables compared to the girder is higher for the cables 

because higher geometric stiffness. At mid-span the cable and girder are closer together, 

and with low hanger height the cable and girder will have approximately the same 

displacement. The stiffness of the cables will contribute to the girder stiffness. This increased 

stiffness would imply a smoothening of the mode-shapes towards mid-span.  
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The hanger height will also affect the modal coupling. If the mono-cable is fixed to the girder 

at mid-span there will be no relative displacement between cable and girder. As can be seen 

from figure 2.9, it is the relative displacement between cable and girder that gives the 

rotation of the girder for horizontal displacements.  

2.2.11 Multimodal response 

The multimodal response is physically more correct than the response calculations described 

earlier in this chapter. This is because the multimodal approach takes into account all cross-

terms that are neglected. This makes the calculations more demanding, but is important if 

calculating response for higher wind velocities than used in this thesis. This thesis focuses on 

the serviceability limit state and the procedure used is justified by this: 

“The buffeting response is assessed using a multimode and a mode-by-mode approach. The 
results indicate that the difference between a multimode and a mode-by-mode calculation is 
negligible when the mean wind velocity is lower than roughly half the stability limit, and that 
the difference increases with increasing mean wind velocity. The cross-spectral density of 
the horizontal and vertical component has negligible influence on the torsional response, 
while the response in the vertical direction is underestimated by 10% at the design mean 
wind velocity, if this cross-spectral density is not included.” (Øiseth S. , 2011, 330)  
 

2.2.12 Turbulence intensity 

The turbulence intensity can be explained as the amount of turbulence for a mean wind. The 

equation for the turbulence intensity is given under: 

 
i

iI
V


    where i=u, v or w 

 
(2.54)  

 

2.2.13 Static loads 

The static wind loads from the buffeting theory are given in equation (2.55). 
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(2.55)  

 

 

These loads are given per meter, to get the total load the values are multiplied with the 

length of the bridge exposed to the wind. The static displacements for a structure with many 

degrees of freedom are normally calculated with an element method program like Abaqus. 
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3 Models of the Sogne Bridge 
To be able to cross the fjord, the Sogne Bridge will have a 3700m main span, see figure 3.1.  

 

Figure 3.1 Sketch of the Sogne Bridge 

Six different bridges are modeled to investigate different solutions and the aerodynamic 

stability and response of these. The aerodynamic derivatives of the cross-sections have to be 

known to be able to compute the critical velocity for the bridge models. These can only be 

obtained through wind tunnel tests, so the cross-sections used in this thesis are limited to 

those found in the literature with aerodynamic derivatives.  

3.1 Choosing cross-sections 

The amount of vehicles crossing the Sogne Fjord requires only one lane in each direction, so 

for practical purposes the girder of the Hardanger Bridge has the optimal size. It is therefore 

investigated what the stability limit is for that section (H), and if a mono cable can increase 

the stability limit, see figure 3.2 a). 

From studies of aerodynamic stability of suspension bridges, it is found that the traditional 

suspension bridges with a single box girder seem to be limited to a span of 2000 m. To 

increase the span for the traditional two-cable suspension bridge, an alternative cross-

section with better aerodynamic stability has to be found. With longer span, the torsional 

stiffness is reduced. A solution with a slotted box girder is proven to give better aerodynamic 

performance and higher torsional stiffness. These results are obtained through numerical 

simulations and wind-tunnel testing (Xiang Haifan, 2007). The TF (triangle faring) section has 

proven good aerodynamic behavior in previous studies (Matsumoto, 2007), and is here 

applied to the span of the Sogne bridge, see figure 3.2 b). The size of the girder gives three 

lanes in each direction. Also here the effect of having a mono cable instead of the traditional 

two cables is tested.  

Statens Veivesen has conducted several wind tunnel tests of a slotted box section planned to 

use on the bridge called Brusymfonien. Two of the alternatives are applied to the Sogne 

Bridge, one with 20m between the centers of the girders (B20), and one with 30m (B30), see 

figure 3.2 c) and d).  
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Figure 3.2 a) H and HM Figure 3.2 b) TF and TFM 

 

 
 

 

 

Figure 3.2 c) B20 Figure 3.2 d) B30 
 

Figure 3.2 The different cross sections of the chosen bridge girders. 

3.2 Preliminary design 

In the preliminary design the dimensions of the different bridge alternatives are calculated. 

The design is superficial. That is because the information and the authors time available is 

limited, and to dwell on details that may be incorrect serves no purpose in a preliminary 

phase like this. Only the static load is considered when finding the dimensions of the bridge. 

The next phase will be to investigate to best solutions from this thesis further, and then look 

more into the details.   

The stiffness properties and yield strengths used for the different components are given in 

table 3.1, (Vegdirektoratet B. i., 2008): 

Table 3.1 Material properties 

 E [GPa] fy [MPa] 

Cable  200 1570 
Hanger 160 1570 
Girder 210 355 
Connector beam 210 355 
Pylons  40  45 

 

3.2.1 Cross-section 

For the models with the box section used on the Hardanger Bridge, all the properties 

concerning the girder are taken from the computational report of the Hardanger Bridge 

(Vegdirektoratet B. i., 2008).  



 
 

31 
 

For the models TF and TFM, the outline of the slotted box girder from the article, “On the 

flutter characteristics of separated two box girders” is chosen (Matsumoto, 2007). Then the 

program Cross X is used to calculate the cross-sectional properties of the slotted box girder, 

see figure 3.3 (CrossX Version 1.1, 2003). Inside stiffeners are included to prevent buckling of 

the steel plates. The spacing and shape of the stiffeners are chosen from the design of the 

Hardanger Bridge girder (Vegdirektoratet B. i., 2011). Values from Cross X give the dead 

weight of the cross-section that is used for calculation of the hangers and main cables. 

Additional masses from asphalt, railings and other masses are taken from the computational 

report of the Hanrdanger Bridge (Vegdirektoratet B. i., 2008). The girder size of the 

Hardanger Bridge approximately equals the girder size of half of the TF slotted box girder. 

The loads taken from the Hardanger Bridge is therefore doubled.  

 

Figure 3.3 Right girder box for the TF section. 

For the slotted box girder from Brusymfonien, the same approach as for the TF section is 

used. The outline of the girder is drawn in CrossX, and stiffeners are applied, see figure 3.4. 

From this, the sectional properties are calculated. The additional masses are determined 

from looking at the Hardanger report. The value of the deck mass is reduced due to half the 

girder with, while the same values are used for railings and similar properties. 

 

Figure 3.4. Right girder box for the B20 and B30 sections. 

The dimensions of the cross beams for the slotted box girders are calculated by assuming 

that the girder sections connected by the cross-beams are simply supported beams with 

evenly distributed loads, see figure 3.5. This is conservative since the main parts of the loads 

are on the girders at the ends. The calculation is given in appendix A2. The cross-section of 
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the beam has a closed rectangular shape which gives both good resistance against bending 

and rotation. 

 

Figure 3.5 Assumed load-distribution on the cross beam. 

3.2.2 Cables and hangers 

The preliminary design calculations of hangers and cables are done with the equations found 

in the book, Cable Supported Bridges (Gimsing, 1998), chapter 3.1. The areas of cables and 

hangers are found from the Matlab script, predesignofcablesandhangers.m, given in the 

attachment. Since the calculated hanger area needed is much smaller than the area used in 

the Hardanger Bridge, the values from Hardanger Bridge are used for all the models. That is 

because the length interval between the hangers is the same in both cases; the only 

difference in load on the hangers comes from the girder size. The needed cable area is 

multiplied with a factor of 1.5 to give an extra safety margin. The cable area of the 

Hardanger Bridge has larger safety margin, but with the dimensions of the Sogne Bridge, this 

would give very big cable dimensions. Change in the cable area when coming up to a certain 

size will have small influence on the natural frequencies. That is because both the stiffness 

and the mass will increase, and the two will cancel each other out (Xiang Haifan, 2007). A 

table with the structural properties for the different models is given in the appendix A3.  

The sag of the cables is chosen as L/10. This is an often used sag ratio (Gimsing, 1998). A 

higher sag ratio will give lower cable forces, but this requires higher pylons. 

It is preferable to fix the cable to the girder at mid span for long suspension bridges. The 

fixed connection will reduce deflections in the case of unsymmetrical load on the bridge. It 

will also prevent longitudinal displacements between the cable and the girder, this will be an 

issue when one side of the girder is fixed at one anchor and the other side has a movable 

bearing (Gimsing, 1998). In this thesis the case with unsymmetrical load is not investigated 

and the fixed connection is not included in the models of the bridge. For a design with mono 

cable this fixed connection is not possible to build the traditional way, due to the hanger’s 

interference with the roadway. An alternative way to fix the cable at mid span has to be 

figured out (Miguel, 1998 August). An alternative is to have vertical hangers at the middle of 

the bridge where the inclined hangers would have interfered with the roadway. 

With a long span, the cable area grows quite large. Because the cable consists of many 

circular wires there will be open spaces in the cable cross-section. From this the actual cable 

area is larger than the effective area, and the drag forces on the cables may have a big 
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influence on the response of the bridge. When applying a mono-cable, the diameter of the 

mono-cable is smaller than the sum of the diameters of the traditional two cable solution, so 

to apply a mono-cable gives less drag forces on the cables.  The drag effect on the critical 

velocity is not investigated in this thesis.   

3.2.3 Pylons 

Pylons are designed to make the dynamic system more accurate. It is stated in (Xiang Haifan, 

2007) that pylons can be neglected for horizontal and torsional vibrational modes, but 

should be taken into account for vertical modes. Since all the vibrational modes are used to 

calculate the critical flutter velocity and the response of the models, the pylons are 

designed. In the design, the constructive period is not evaluated. 

The pylons from the Hardangerbridge are used as a starting estimate, and then the 

dimensions are scaled up with a factor equal to the increase in span length. An additional 

multiplication factor is used to ensure that all the estimates are on the safe side. 

The pylons are checked with Euler load, with critical length of L=2*H. This means that any 

possible horizontal stiffness contributions from the cables are neglected. This is a 

conservative estimation. Horizontal forces on the pylons are not considered at all, this is 

taken into account with the multiplication factor on top of all the other conservative 

estimations. General concrete properties are taken from the Hardangerbridge, see table 3.1. 

The cross section is considered un-cracked. This means that the pylons do not experience 

tension. This assumption is not conservative and will therefore contribute to the added 

multiplication factor.  

The multiplication factor is chosen as 1.5 for the pylons. All the Abaqus models have the 

same pylons, except for the mono cable models where the angle of the legs are adjusted so 

the legs meet at the top, see figure 3.6. The design is conducted with the loads from the TF 

cross section. This means that the dimensions are larger than necessary for the other models 

since they have smaller girders. This gives a higher stiffness to the system than required and 

may increase the natural frequencies of the bridge. The calculation of the pylons can be 

found in the attached files (filename:columnsdesign.xlsx).  
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Figure 3.6 Pylon for a mono-cable suspension bridge. 

 

3.3 Guide vanes and vertical plate at center air-gap 

The cross sections chosen from Brusymfonien and the Hardanger Bridge have guide vanes. 

The application of guide vanes has proven to increase the flutter stability with approximately 

30 percent (Xiang, 2007). This is also shown in the Brusymfonien report (Statens Veivesen, 

2005). For the TF section, there are no guide vanes, but a vertical plate at the center air-gap. 

From the article “On flutter characteristics of separated two box girders” (Matsumoto, 2007) 

it is shown that the plate improves the flutter stability.  
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3.4 Aerodynamic derivatives for the chosen models 

For cross-section TF, a slotted girder with vertical plate in the middle, the values for the 

aerodynamic derivatives are taken from the article, “On flutter characteristics of separated 

two box girders” (Matsumoto, 2004). There are plots in the article of the values for Ai and Hi 

(i=1,2,3,4). From these plots the curves for the aerodynamic derivatives as a function of 

reduced critical velocity are approximated by linear and quadratic equations. 

For the models with a single bridge girder, H, the aerodynamic derivatives are obtained from 

wind tunnel tests of the cross-section for the Hardanger Bridge (Ole Øyseth, 2012).  

For the slotted box section, Brusymfonien, the values for the aerodynamic derivatives 

obtained through wind tunnel tests are scattered and few, see figure 3.7. This means that it 

is not given what kind of curve is best to fit to the data, and the results are uncertain. The 

reason for these less reliable wind tunnel results may be because the theory around 

aerodynamic derivatives are developed for an airfoil and not optimized to slotted girders, as 

mentioned in section 2.1.2. 

 

Figure 3.7 Curve fitting for the aerodynamic derivative, A*
1, for the model B20. 

The aerodynamic derivatives are obtained with an attack angle of zero degrees. This is 

acceptable for a streamlined girder, where the attack angle does not influence the critical 

velocity significantly (Hansen, 1999). The aerodynamic derivatives of the different cross 

sections are plotted in figure 3.8, the functions can be found in appendix A4. 



 
 

36 
 

 

Figure 3.8. Plot of the Aerodynamic derivatives as a function of the reduced velocity for the chosen 
cross sections. 

 

3.5 Static force coefficients for the models 

The static force coefficients of the different models are presented in table 3.2. The values 

are given at an attack angle of 0 degrees. CD’, CL’ and CM’ are derivatives of the attack angle 

at 0 degrees. 

Table 3.2 Static force coefficients for an attack angle of 0 degrees.  

Cross 
section 

DC  'DC  
LC  'LC  

MC  'MC  

H 0.794 0 -0.254 2.502 0.004 0.859 
TF 1.20 0 -0.02 0.05 -0.01 0.006 
B20 1.754 0 0.118 6.37 0.185 -0.8 
B30 1.819 0 -0.2 6.96 0.194 -3.24 

 

The values for the H model are obtained from the computational report of Hardangerbrua. 

For the B30 and B20 sections the values are gotten from the Brusymfoni report (Vegvesen, 

2005). There is an uncertainty about the sign for the LC  value for the B20 section. Of 12 

different variations of the section, it was only this alternative that had a positive LC . It is 

possible that it is a writing error in the report and the value should have been negative. The 

article with the TF section did not include the static force coefficients. To get an 
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approximation for these values an article with a similar cross section is used (Sato, 2002). 

This slotted box section has a vertical plate in the middle as the TF section, but it has also 

guide vanes which the TF section does not have. 
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4 Abaqus  
Abaqus is a finite element program that, among other things, can calculate the natural 

frequencies and mode shapes of a structure (SIMULA, 2010). To calculate natural 

frequencies and modes, Abaqus can use Lanczos eigensolver. This is a method that by the 

eigenvalue problem iterates until the solution is obtained, see equation (4.1). 

 
     

        
 

(4.1)  

 
 

Here K is the stiffness matrix, M is the mass matrix, ωj is the j-th natural frequency and ϕj the 

associated eigenvector. Abaqus can calculate as many natural frequencies as there are 

degrees of freedom in the model. It is possible to specify the number of desired natural 

frequencies to calculate. The mode shapes at high frequencies are not interesting (see 

section 2.2.6) so it is normal to only look at the 30-50 first frequencies. Equation (4.1) shows 

that it is the stiffness matrix and mass matrix that determine the natural frequencies and 

modes. The important thing when modeling a bridge in Abaqus is therefore to represent the 

mass and stiffness properties correct. 

4.1 Making models of the Sogne Bridge in Abaqus 

The models of the Sogne Bridge are modeled with two parts, one for the towers and another 

for the cable system and girders. Figure 4.1 shows an Abaqus model of the bridge.  

 

Figure 4.1. Abaqus model of the Sogne Bridge.  

 

All the connections in the same part are fixed against rotation. This is not the case with a real 

suspension bridge, where the connections are somewhere between fixed and free to rotate 

for the cable system. This error is disregarded since it has a negligible influence on the 
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results. The increased stiffness given by the fixed connection can be neglected due to the 

slenderness of the parts, if subjected to compression the hangers will buckle. 

4.1.1 Elements 

The bridges are modeled with B33 elements. These are beam elements that represent 

bending. In the cables and hangers there are only axial forces, but the bending forces 

included by the beam elements are very small compared to the axial forces and will have an 

insignificant influence on the result. 

4.1.2 Girder, hangers and cables 

The bridge girders are modeled as generalized sections in Abaqus. That means that only the 

structural parameters are specified, not the geometry. To get the correct eccentricities, 

massless bars with high stiffness are modeled between hangers and girders, and between 

girders and cross-beams, see figure 4.2. The stiffness of the massless bars is thousand times 

as high as for the girder. To represent the mass and mass moment of inertia for the bridge 

girder, point masses every 20m are applied. Here all the mass from girder and additional 

masses from deck, railings and similar are located. The value per meter is multiplied by 20m. 

The mass moment of inertia around the longitudinal direction of the bridge is also specified 

in the same point as the masses. For the hangers and the cables the density is specified 

higher than the steel density. This is to include all the extra masses in connection with the 

hangers and cables. The values of the extra masses are taken from the computational report 

of the Hardanger Bridge (Vegdirektoratet B. i., 2008). 

 

Figure 4.2. Massless bars to give the correct eccentricities for the slotted TF girder. 

The hangers are modeled with one element per hanger. This will prevent vibration modes 

represented by the hangers, which is uninteresting since resonance in the hangers is not a 

problem.   

The curving upwards of the bridge girder has a much smaller curve/span rate than there is in 

the Hardanger Bridge. For the Hardanger Bridge the ratio is 10m/1310m=0.0076, for the 

Sogne Bridge the ratio is 9m/3700m=0.0024. The reason the bridges is not modeled with the 
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same ratio is because this means that the towers would have to be about 20m higher than 

they are modeled now. The reason for curving the girder is to have enough space for big 

ships to sail under the bridge. 

4.1.3 Pylons 

The pylons have a height of 440m, see figure 4.3. This means that even though they are 

made of concrete and are massive, they will have displacements at the top. The pylon legs 

are fixed at the bottom and connected to the cables at the top. To model the bridge with 

pylons gives a case where the cables are more fixed than when having slide bearings instead 

of pylons. This gives higher stiffness to the structure, which in turn gives higher natural 

frequencies. There is no movement between the pylon top and cables, but the connection is 

free to rotate. For the real bridge, the cable will probably be allowed to slide at the pylon 

top. How much they will slide is questionable since the axial forces from the cables down in 

the pylon legs are enormous. The girders are connected to the pylons at a height of 60m 

above water level. The connection is free to rotate for the slotted box girder models, for the 

single box girder models the connection is fixed against torsional rotation. 

 

Figure 4.3. Pylon of the Sogne Bridge modeled in Abaqus. 

4.1.4 Steps 

To include the geometric stiffness when calculating the natural frequencies of the bridge, 

the first step accounts for the self-weight of the structure. Ngeom, non-linear geometry is 

switched on in this step. This gives a deflection of 30-60m depending on which of the models 

are submitted. To reverse this deflection the cables are specified with a temperature 

expansion coefficient, and tightened with a decrease in temperature in the next step. See 

figure 4.4. In the last step the fifty first natural frequencies and corresponding vibration 

modes are calculated. 
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Figure 4.4. Vertical displacement of the center of the bridge for the first and second step. 

 

4.2 Matlab program to generate the geometry 

It is possible to create an Abaqus model from a written input file. It is the same that happens 

when the model is drawn in Abaqus; the information is converted to a written file. It is 

possible to make this input file with a Matlab program. For the models of the Sogne Bridge 

the geometry is generated with a self-made Matlab program. This program specifies node 

numbers with coordinates and then elements are specified between the nodes and assigned 

a number. These numbers are generated with loops that write out the information to a file.  

Element sets are created by taking the numbers of the wanted elements and write them to 

the file. It is not possible to mesh the Matlab generated models inside Abaqus, the mesh has 

one element between each node. The only input parameters for the Matlab program are the 

basic geometry and how many elements wanted for every 20 m. The sections, material 

properties and boundary conditions are made manually in Abaqus. There are three different 

Matlab programs. The setup is a bit different when making a mono cable model and when 

applying a slotted box girder instead of a single box girder. One of the programs is found in 

the attachment with computer programs (filename: BridgegeometryAbaqusinput.m). 

4.3 Static wind load in Abaqus 

To calculate the static response of the bridge models due to the mean wind velocity, the 

wind forces are applied to the models in Abaqus, se figure 4.5. It is assumed that the entire 

span of the bridge is subjected to the wind load. The drag and lift loads on the girder are 

applied as concentrated forces to a node at the center of the girder for every 20 m. For the 

models with two box girders the loads are applied on the cross-beams in order to have 

symmetry. The moment load is applied as a concentrated moment in the middle of the 

girder every 20 m. The drag load on the cables is applied as concentrated forces where the 

hangers are fixed to the cables. 
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Figure 4.5. Static wind forces applied as concentrated forces in Abaqus. 

 

4.4 Getting data from the Abaqus model 

To extract information from Abaqus a set with nodes is created. The node set consists of 

nodes every 20 m along the center of the bridge girder. For the slotted box sections the 

node is the middle point of the cross beam. When carrying out the calculations of the 

frequencies and mode shapes of the model, the program writes the results out as a data file. 

To get the mode-shapes of the girder it is possible to specify in the keywords that the 

coordinates and the displacements of the node set shall be written out to the data file. To 

get the relevant information out from the data file, a Matlab script provided by Ole Øiseth is 

used. This Matlab program searches through the data file until it finds the name of the table 

it is looking for, and then starts to gather the wanted information from the tables and 

arranges the values into Matlab matrixes.    
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5 Matlab programs 
The calculations done in this thesis are carried out in Matlab. The authors have made a 

simple two mode flutter program, a static divergence program and a response calculation 

program. The multimode flutter calculations are done with a Matlab program provided by 

Ole Øiseth. 

The structural damping is impossible to determine mathematically. This is because the 

damping comes from friction in all the thousand connections in the structure, opening and 

closing of microcracks in the concrete pylons and repeated elastic straining of the steel 

among other things (Chopra, 2007). For all the Matlab calculations the structural damping 

ratio of the modes is assumed to be ζ=0.005. This damping ratio corresponds satisfactory 

with the damping ratios given for the modes from the Hardanger Bridge (Ole Øiseth, 2011). 

5.1 Multimode flutter calculation 

This program uses modes, eigenfrequencies and mass properties from the Abaqus models 

and functions for the aerodynamic derivatives for the different cross sections given in 

appendix A4. The mass, modes and natural frequencies are obtained from Abaqus as 

described in section 4.4. There is no limit for how many modes possible to include in the 

flutter calculations.   

The critical flutter velocity is calculated by the eigenvalue problem described in section 2.1.3. 

The routine considers the fact that each mode can have displacements in three directions; 

horizontal, vertical and rotation. The contribution from the horizontal displacement is 

included with the aerodynamic derivatives P*, A*5,6 and H*5,6. For the two mode flutter 

program those aerodynamic derivatives are zero. 

5.2 Bi-modal flutter program 

The bi-modal flutter program uses the assumption of pure one-directional mode shapes. The 

mode shapes are still taken from the Abaqus models, but the unused directions are simply 

neglected.    

The solution procedure is partly described in section 2.1.3. The algorithm for writing the 

program is taken from the book, Wind Loads on Structures (Hansen, 1999).  

Since the final eigenfrequency of the flutter mode is unknown, this frequency was made 

symbolic by a “syms” command in Matlab. The roots are then solved by a “solve” command 

that solves the roots with respect to the symbolic variable r . The “solve” command is a 

symbolic solver in Matlab that gives an exact solution for a given symbol. If the solver cannot 

find the solution, it uses a numerical toolbox to estimate the solution (Mathworks, 2012). 

Note that the parts of the roots that have imaginary values are not plotted; it is only the real 

part of the roots that can give the actual flutter velocity. Note that the critical frequency has 

to have a positive value. Intersection of the roots at a negative frequency is neglected. The 

bi-modal flutter script can be found in the attached files (filename: Bimodalflutter.m). 
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5.3 Static divergence program 

The program used to calculate the critical velocity due to static divergence is given in the 

attached files (filename: Staticdivergens.m). The program is based on the theory given in 

section 2.1.4. The quasi static coefficients used are given in table 3.2. 

5.4  Response calculations 

The mean wind velocity used for the response calculations is chosen as 30 m/s. This is 

because the value is around the serviceability limit and low enough that the assumption 

given in section 2.2.11 holds. 

The response calculations are done in Matlab using vibrational modes and eigenfrequencies 

from Abaqus. Aerodynamic derivatives for the different bridges are given in appendix A4. 

The wind parameters used are the same as for the Hardanger Bridge report (Vegdirektoratet 

B. i., 2008). The Matlab script for response calculation can be found in the attached files 

(filename: Response.m). 

The Matlab script should be fairly easy to understand. It contains only algebraic operations, 

and no special functions are used.  

5.4.1 Static load 

The static load applied in Abaqus is calculated according to equation (2.55) given in section 

2.2.13. The static load coefficients are given in table 3.2. The drag coefficients for the cables 

are taken from the computational report of the Hardanger Bridge (Vegdirektoratet B. i., 

2008). The drag forces on the hangers are included by multiplying the drag coefficients with 

a factor of 1.6, for both girder and cables.   
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6 Results 
 

6.1 Vibration modes and natural frequencies 

The mode shapes are a combination of horizontal displacement, vertical displacement and 

rotation. The vertical mode shapes are approximately pure vertical movement, while the 

mode shapes dominated by torsion and horizontal movement usually are a combination of 

both types. For the mono cable models this tendency is more evident, even the first 

horizontal mode shape has a significant torsional rotation. With a long span like 3700m, the 

mode shapes are behaving differently than for a suspension bridge with one third of the 

span. The mode shapes in torsion tend to twists a different way at the ends compared to the 

middle, see figure 6.1.  

 

Figure 6.1 First torsional mode for the B20 model. 

The first symmetrical natural frequency for the vertically dominated mode shape has a 

circular frequency of about 0.45-0.47 rad/s. The first one in torsion has a frequency of 0.64-

0.82 rad/s, see table 6.1. This seems correct when compared with other models tested. For 

the 5000m bridge in the article “Aerodynamic challenges in span length of suspension 

bridges” the first symmetrical vertical mode shape has a frequency of 0.39 rad/s and the 

torsional a frequency of 0.54 rad/s (Xiang, 2007). For the Hardanger Bridge with a main span 

of 1310m the vertical frequency is 0.675 rad/s and the torsional frequency is 2.225 rad/s. It 

is therefore reasonable that the results from the Sogne Bridge models with a main span of 

3700m lie between the other two, and closer to the 5000m bridge’s frequencies. 

Table 6.1. Natural frequencies for the first symmetrical mode shape in horizontal, vertical and 
torsional direction. 

Model 1. horizontal ω 
[rad/s] 

Sym 1. vertical 
ω [rad/s] 

1. torsional ω 
[rad/s] 

H 0.17059 0.46251 0.82035 
HM 0.16938 0.46137 0.80155 
TF 0.19518 0.45789 0.73435 
TFM 0.19289 0.45636 0.74381 
B20 0.18436 0.46844 0.74544 
B30 0.18567 0.46503 0.64072 
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The B30 section has a significantly lower torsional frequency than the other slotted sections. 

This may be explained by the length of the cross beam, it is 10 m longer than for the B20 

section. This beam might not have been designed stiff enough; the dynamic forces are not 

considered when designing the beam. As a result the torsional stiffness is lower than for the 

B20 section.  

 

 

 

 

 
H a) horizontal 1 b) vertical 6 c) torsional 19 

 

 

 
 

 

HM a) horizontal 1 b) vertical 6 c) torsional 11 

 

 
 

 

 

 

B20 a) horizontal 1 b) vertical 5 c) torsional 11 
 

Figure 6.2 Vibration modes in horizontal, vertical and torsional direction for models H, HM and B20 

Figure 6.2 shows that the first horizontal mode-shape looks the same for all the models, 

except for the HM model where there is a rotation of the girder, see figure 2.9. The first 

symmetrical vertical mode-shape is the same shape for all the models. The torsional mode-

shape varies between the models. For rotation to occur, the mono-cable must be rotated as 

a contrast to the two cable system where one cable is raised and the other lowered. 
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6.2 Critical wind velocity 

The design velocity for the Sogne Bridge is 64.2 m/s, the calculation can be found in 

appendix A1. 

6.2.1 Flutter 

The values for the critical velocity in table 6.2 are obtained from Matlab, where multimode 

flutter analysis is carried out with the fifty first vibration modes. There is no difference in 

critical velocity between calculations with the thirty first modes and the fifty first modes. 

Table 6.2. Critical flutter velocity and critical circular frequency. 

Model Vcr  [m/s] ωcr  [rad/s] 

H 50 0.76 
HM 72 0.75 
TF >110 - 
TFM >110 - 
B20 108 0.63 
B30 >110 - 

 

The range for Vred=V/(ω*b) which the aerodynamic derivatives are found for, are limited. 

This means that for models TF, TFM and B30 the information output from the flutter routine 

when the velocity gets high and the frequencies goes to zero are no longer reliable, see 

figure 6.3. As a result the assumption is that the models will not start to flutter for a wind 

velocity under 110 m/s, but to say anything about what happens for higher velocities is not 

possible with the available information in this thesis. 

 

Figure 6.3 The imaginary part of the eigenvalues (frequencies) for the TF model. 



 
 

50 
 

It is usually the first symmetrical vertical mode and the first torsional mode that control the 

bridge flutter with only minor contributions from other modes (Trein, 2011). Figure 6.4 

shows that two-mode flutter with mode 6 and 11 for the HM model gives a critical velocity 

of 82 m/s, and by adding mode nr 13, 18, 19 and 26 the critical velocity is reduced with 

about 8 m/s. 

 

Figure 6.4. Plot that shows which modes contribute to reduce the critical velocity for multimode 
flutter, model HM. 

The shape wise similarity between the vertical and torsional vibration modes has proven to 

be important for the initiation of flutter and the value for the critical velocity, see section 

2.1.3. For two mode flutter of the H model, the shape-wise similarity between mode 6 and 

19 is 0.93, see equation (6.1), and gives a critical velocity of 76 m/s. The first torsional mode 

shape for the H model is number 11, but because of a higher shape wise similarity, it is the 

next torsional mode that causes the lowest two-mode flutter velocity for the H model. For 

the HM model the shape-wise similarity between mode 6 and 11 is 0.86, see equation (6.2), 

and gives a critical velocity of 82 m/s. Only the torsional part of the mode shape is 

considered for mode 19 (H) and 11 (HM).  
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Perfect shape wise similarity would give the answer 1 to equations (6.1) and (6.2). The 

difference in shape-wise similarity contributes to the difference in critical flutter velocity 

between the H model and the HM model. Figure 6.5 shows that to add mode number 19 to 

the multimode flutter calculation for the H model reduces the critical velocity with 20 m/s, 

which is a significant contribution. 

For the Hardanger Bridge it was not the first symmetrical vertical mode that gave the lowest 

flutter velocity, it was the second symmetrical vertical mode together with the first torsional 

mode (Ole Øiseth, 2011). This was also explained with higher shape-wise similarity for the 

two modes that gave the lowest flutter velocity. 

 

Figure 6.5 Plot that shows which modes contribute to reduce the critical velocity for multimode 
flutter, model H. 

For the H and HM models the contribution from horizontal movement is included with 

aerodynamic derivatives, P*s, H5, 6* and A5, 6*, calculated with quasi static theory. The 

critical velocity for HM is higher than the design velocity, 72 m/s > 64 m/s, in contrast to the 

H model that has a critical velocity of 50 m/s. The critical velocity for the HM model without 

horizontal contribution is 62 m/s and for the H model 49 m/s. This indicates that for a mono 

cable model the horizontal contribution is considerable, but for the traditional two cable 

system the horizontal contribution is negligible.  

The critical velocity for B20 is 1m/s higher with the P*s. For the TF sections the P*s are not 

included. The article with the aerodynamic derivatives for the TF section does not include 

the static load coefficients for the cross section that are used to calculate the aerodynamic 

derivatives with quasi static theory. To include the P*s, the static force coefficients from a 

similar cross-sections has to be used. This will be inaccurate. To neglect the P*s for the TF 

section is justified by the fact that the difference in critical velocity is small, and to neglect 
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them is on the conservative side. For TFM, to neglect the contribution form the horizontal 

movement is very conservative and gives a lower critical velocity. 

With the aerodynamic derivatives obtained for the H section applied to the B20 model, the 

critical velocity for B20 is reduced to 64 m/s. This shows that it is mainly the aerodynamic 

characteristics with a slotted section that improves the aerodynamic stability limit, not the 

increase in stiffness. The same is the case for the TF model, the critical velocity with the H 

aerodynamic derivatives is reduced to 62 m/s. For the TFM model with H aerodynamic 

derivatives, the critical velocity is 95 m/s. This shows again that the structural measure of 

applying a mono-cable increases the critical flutter velocity. 

With the aerodynamic derivatives of B20, the stability limit is lower for B30 than for B20. The 

frequency separation between the lowest torsional mode and vertical mode for B30 is lower 

than for B20. This indicates that there is no structural advantage to increase the width of the 

sloth; it only improves the aerodynamic ability.  

The damping ratio is plotted to see if any of the modes have low damping for velocities 

before the flutter velocity is reached. In figure 6.6 the damping ratio for model H is shown. 

The damping of the vertical mode increases with increasing wind velocity and has values 

outside the shown axis-range. Only the modes that contributed to the reduction of the 

critical velocity according to figure 6.5 are included. The plotting of the damping is done for 

all the models. None showed modes with damping close to zero prior to the flutter velocity. 

Low damping of modes would have resulted in high response-contribution from those 

modes, and may have made the model unusable for a lower velocity than the critical.  

 

Figure 6.6. Plot of the damping ratio as a function of the wind velocity for the H model.  

There was no difference in critical velocity between the boundary conditions with the girder 

connected to the pylon fixed against torsional rotation and the girder connected free to 
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rotate for the H and HM models. With a 3700 m span the effect of the boundary condition 

for the girder ends will have minor influence on the mode-shape properties along the bridge. 

It is the cable system and girder stiffness that are important.   

 

6.2.2 Result from the two-mode flutter program 

The multimode flutter program gives a critical velocity of 76 m/s for two mode flutter with 

mode 6 and 19 for the H-model. The self-made two-mode flutter program gives a critical 

velocity of 75 m/s for the same two modes. The small difference of 1m/s comes probably 

from neglecting the P*s for the two-mode flutter program. For the HM model the two mode 

flutter program gives a critical velocity of 70 m/s for mode 6 and 11. With the multimode 

flutter program the critical velocity is calculated to be 82 m/s. This is a significant difference, 

but as mentioned earlier in this chapter the contribution from the horizontal movement is 

considerable for the mono-cable model, and it is assumed that it gives the difference in the 

results from the two programs. When calculating the critical two-mode flutter velocity 

without the horizontal contribution the velocity is 70 m/s. These results verify the 

multimode flutter program.  
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6.2.3 Static divergence 

A Matlab program, see section 5.3, uses a dominant torsional mode to calculate the critical 

velocity for the occurrence of static divergence. 

Table 6.3. Critical velocity by static divergence of a torsional mode. 

Model Torsional mode Vcr  [m/s] ωcr  [rad/s] 

H 19 120 1.21 
HM 11 230 0.80 
TF 8 - - 
TFM 8 - - 
B20 11 - - 
B30 8 - - 

 

It appears that the slotted girder sections do not converge to a critical velocity for static 

divergence, see table 6.3. This has to do with the value of the static force coefficients, CM’ 

and CL’. For the B sections, CM’ is negative, this gives no solution for Vcr. The values for CM’ 

and CL’ for the TF sections are very small, this gives a very high critical velocity (>500m/s). 

The slotted girders have higher torsional stiffness than a single girder; higher stiffness 

increases the critical velocity.  

The static force coefficients obtained for the TF section are taken from another article with a 

different section, this gives very uncertain results. For better test results, static force 

coefficients should be obtained through tests of the TF section.  

These results show that static divergence does not give the stability limit for the bridge 

models. The values for the TF section is obtained from a cross section with guide vanes, see 

section 3.5. The H and B sections do also have guide vanes. These results may imply that 

guide vanes reduce the chance of static divergence. However, there is no calculation for 

static divergence without guide vanes, so this hypothesis is not confirmed.  
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6.3 Response results 

6.3.1 Accuracy of the solutions 

To make the script as accurate as possible, small increments in the frequency vector and 

length vector is needed. The length vector is governed by the nodes in Abaqus, and cannot 

be changed in the Matlab program. Appendix B6 shows four plots of abs(H) for the first 

mode in horizontal  direction for bridge H with frequency steps 0.001, 0.005, 0.05 and 0.5. 

These plots show the influence the size of the frequency steps have on the functions. In 

table 6.4 the variance in horizontal direction is compared with the different types of steps 

and the calculation time of the scripts (Bridge H, V=30m/s at mid-point). From these results, 

a step of 0.005 rad/s is used and considered accurate enough. The scripts where the mean 

wind velocity is varied from 5-30 m/s will take about 6 days to complete if the 0.001 

frequency step is used. Note that the 0.001 frequency step is set to be the basis for the error 

estimation.  

Table 6.4 Frequency step table 

Frequency 
step (rad/s) 

Calculation time 
(t) 

Horizontal 
variance(m) 

Error 
(%) 

0.5          114 (2 min) 3,2192 590 % 

0.05        1003 (16 min) 1,0488 125 % 

0.005        9995 (2,7 t) 0,5048 8 % 

0.001      86121 (24 t) 0,4668 0 % 

 

6.3.2 Number of modes 

The number of modes to include is important for the accuracy of the solution. The downside 

of including too many modes is increased calculation time. Note that these results are 

calculated at mid-span, the modal contribution will be different on other points along the 

span as explain in section 2.2.7. In figure 6.7, figure 6.8 and figure 6.9, plots of how much 

each mode contributes to the total variance is shown (mid-span, H bridge, V=30m/s).  

 

Figure 6.7 Horizontal variance contribution from each mode, mid-span and V=30 m/s, H 
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Figure 6.8. Vertical variance contribution from each mode, mid-span and V=30 m/s, H 

 

Figure 6.9. Torsional variance contribution from each mode, mid-span and V=30 m/s, H 

Figure 6.7 shows the modal contribution to horizontal variance. All of the cross-sections 

share similar distributions, making individual comparisons unnecessary. There is no need for 

more than the first 10 mode-shapes for a complete horizontal representation. Mode-shape 

1, 3 and 7 has a dominating horizontal component and has high values at midpoint. Since the 

spectral density of the load has an extreme overweight in the smallest frequency range and 

the modal stiffness generally increases for higher modes it is no surprise that these modes 

dominate the response.  

The results given in figure 6.8 show vertical variance contribution that is typical for all the 

bridge models. By the same argument as in the section over, the first 22 modes are 

considered enough for the vertical variance. There is need for more modes in vertical 

direction than horizontal direction because the mode-shapes with predominantly vertical 

deflection have higher eigenfrequencies.  
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From figure 6.9 a big spread in torsional modal variance distribution is shown. This is typical 

for all the duo-cable models evaluated. The mode-shapes with predominantly torsional 

components have higher eigenfrequencies compared to the other directions, but there are 

small torsional components in some of the “horizontal” mode shapes. An example of this is 

mode shape 1.  

One other consideration regarding mode-shapes in torsional direction is that mode-shape 

number 30 has an eigenfrequency of only 1.62 rad/s. This is low compared to the 

Hardangerbridge (Øiseth S. , 2011, 330). Why this is important is explained thoroughly in 

chapter 2.2.  

The modal variance distribution for the mono-cable models is different from the duo-cable 

models. Figure 6.10 shows the variance contribution in torsional direction for the HM model. 

The difference for the mono-cable is explained by the horizontal and torsional coupling of 

mode shapes and the increased stiffness from having to twist the cable to get pure torsional 

mode-shapes. Both effects are described in subsection 2.2.10. The increased stiffness makes 

pure torsional mode-shapes absent. 

In appendix B2 the rest of the plots are shown.  

 

Figure 6.10 Torsional modal distribution at mid-span for V=30m/s, HM bridge 

The first thirty modes of a mono-cable bridge are enough to obtain good results in torsion. 

For the duo-cable models more mode-shapes are probably needed. In figure 6.11, the 

distribution in torsion from the first 50 modes is shown for the TF model. The total mid-span 

torsional variance ended up being the same for 30 modes and 50 modes. It is recommended 

to include the 40 first mode-shapes when calculating the torsional response for long- 

spanned duo-cable bridges.  
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Figure 6.11 Torsional modal distribution at mid-span for V=30m/s, TF first 50 modes 

A trend that more mode-shapes are needed to calculate accurate response for long-spanned 

bridges is evident and can be explained by the low eigenfrequencies.  

6.3.3 Variance vs. mean wind velocity 

The variances vary with mean wind velocity. Figure 6.12 shows horizontal variance at mid-

span with mean wind velocities between 5 and 30 m/s (bridge H). As expected, the variance 

increases with increasing mean wind. The variation between the bridges is expected to be 

small, therefore no comparison is made. The rest of the thesis focuses on a mean wind 

velocity of 30 m/s. Note that this is buffeting theory variances, vortex shedding is not 

included. Vortex shedding usually makes the variances at low mean wind velocities bigger.   

 

Figure 6.12 Plot of horizontal variance vs. mean wind velocity at mid-span, H 
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6.3.4 Variances over the span length 

The variances are function of the longitudinal coordinate along the girder, xr, because the 

mode-shapes are functions of xr as explained in section 2.2. This gives the possibility of 

showing the variance over the span length. Figure 6.13 show horizontal variance at different 

locations on the bridge for a mean wind velocity of 30 m/s (bridge H). Figure 6.14 shows 

torsional and figure 6.15 shows vertical variance distribution. Note that the bridge is 3700m 

long.  

 

 Figure 6.13 Plot of horizontal variance over the span of the bridge a V=30 m/s for bridge H.  

 

 

Figure 6.14  Plot of vertical variance over the span of the bridge a V=30 m/s for bridge H. 
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Figure 6.15  Plot of rotational variance over the span of the bridge V=30 m/s for bridge H. 

The variances have one or more drops over the span length. This has to do with how the 

modes are shaped. An unsymmetrical mode-shape has zero displacement at mid-span, 

making the variance at mid-span zero for this mode.  

The choice of using midpoint as a measure for the variance, with the intent to find the 

largest variance, is not always good. The biggest difference is for the vertical direction with a 

35% difference in max variance vs. midpoint variance.  

In figure 6.16 the torsional variance for TF is shown, it is seen that a mode-shape with high 

eigenfrequency is influential because of the many peaks. It is mode-shape 30 that stands out 

in the modal variance distribution. This can be seen from the total value of the variances.  

 

Figure 6.16 Plot of rotational variance over span of the bridge at V=30m/s, for bridge TF 

HM has a bigger drop in torsional variance at mid-point than H. The modal coupling between 

horizontal and torsional direction is one of the factors contributing here. The increased 

torsional stiffness of the mono-cables at mid-span because the cable has to twist contributes 
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as well. The increased torsional stiffness favors the unsymmetrical modes, which have zero 

value at mid-span, making the drop bigger.  

 

Figure 6.17 Torsional variance over the span for bridge HM at V=30 m/s 

The effect described in the section above would probably be expected in TFM also, but the 

distance between the girder and the cable in the TFM model is 12 m higher than for the HM 

model. This is because the girder is 37m wide for the TFM model and need a larger distance 

between the girder and the cable to avoid interference of the inclined hangers with the 

roadway.  

For bridges with mono-cable it is recommended that the cable-girder distance at mid-span is 

made as small as possible. How this is done practically is not looked into, but this will 

decrease the torsional rotation at mid-span.  

All the plots of span-vise variance can be found in appendix B3. 
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6.3.5 Spectral density of the response 

 

Figure 6.18 Spectral density for the response in horizontal direction, at mid-span for mean wind 
velocity at 30 m/s, for bridge H HM and B20  

Figure 6.18 shows the spectral density for the response in horizontal direction at mid-span 

for models H, HM and B20. The spectral density of the load in figure 2.6 is recognized by the 

increased values at low frequencies. A combination of modal variance contribution and the 

modal frequency-response-function is also recognized by the peaks at the eigenfrequencies 

that contribute to the variance. From figure 6.18, it is seen that the B20 model has a higher 

overall spectral density; this will contribute to a larger variance in the horizontal direction for 

B20 compared to H and HM. 

The spectral density function shows the variance contribution as a function of the 

frequencies. The frequency range with big contributions to the variance varies little between 

the different models. The total amount of variance for the different models is discussed in 

section 6.3.7.  All the spectral densities can be found in appendix B1.  
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6.3.6 Static response from the mean wind velocity 

 

Table 6.5 Static displacement at midpoint for mean wind velocity, V = 30 m/s 

Model H HM TF TFM B20 B30 

Uz [m] -0.8 -0.8 -0.07 -0.07 0.2 -0.2 
Uy [m]  6.1  5.5 3.8  3.6  9.2  8.9 
θ [rad]  0.009 0.018 0.004  0.014  0.005 0.0012 

 

Table 6.6. Static displacements in horizontal direction without drag force on the cables. 

Model H HM TF TFM B20 B30 

Uy [m] 3.9 4.1 2.5 2.7 7.0 6.9 

 

Table 6.5 shows the static displacement at midpoint for mean wind velocity, V=30 m/s.  

When comparing the results from table 6.6 with the horizontal displacement in table 6.5 it is 

seen that the drag-force on the cables contributes more to the response for the models with 

two cables than for the mono-cable models. 

The static forces depend on the static force coefficients found in table 3.2. Note that the 

bridges use different widths and depths (B and D), making a direct comparison of the 

coefficients wrong.  

For H vs. HM:  

The rotation is much bigger for HM than H, this can be explained by the coupling effect 

between horizontal displacement and rotation for the mono-cable model, see section 

2.2.10.  

For TF and TFM: 

The rotational effect seen in HM vs. H model is also seen here.  

B20 and B30: 

The increased distance between the girders gives an increased horizontal stiffness of the 

girder for B30. The increased stiffness gives little effect on the static displacement implying 

that the horizontal stiffness of the bridge comes mainly from the cable. As mentioned in 

section 3.5, a writing error in the lift coefficients for the B20 model is suspected, this would 

explain the difference in vertical displacement.  

6.3.7 Variances at mid-span 

Table 6.7 shows the different variances for the different models at mid-span for a mean 

wind velocity at 30 m/s.    
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Table 6.7 Variances of the different models at mid-span for V=30 m/s 

Model Variance-y 

(m) 

Variance-z 

(m) 

Variance-θ 

(rad) H 0,51 0,35 0,0052 
HM 0,50 0,36 0,0026 

TF 0,28 0,02 0,0024 
TFM 0,37 0,02 0,0049 

B20 0,73 0,22 0,0027 
B30 1,04 0,24 0,0033 

 

The variances from the models H, HM and B20 are compared in detail. Bridge H is included 

to get a comparison between the mono-cable and the two-cable system. The vertical 

variance is not evaluated. 

Table 6.8 Comparison table of 3 bridges, in horizontal direction, 2 most important modes, V=30m/s 
at mid-span 

 

In figure 6.8, the two most important mode-shapes in horizontal direction are compared. 

Omegaae is defined as the frequency where the modal frequency-response-function has its 

maximum (with aerodynamic damping and stiffness). The int JJ is the joint acceptance 

function integrated over the frequency, and Int H is the modal frequency-response-function 

integrated over the frequency. Int of H and JJ are the integral that appears in the equation of 

variance, see equation (2.34). Phih is the value of the mode-shape at midpoint compared 

with the max value, PhiH(max). 

Bridge H and HM has similar numbers and will not be compared further. It is noted that Kae 

for the bridges is not zero, but the values are so small that the round of makes them zero.  

When comparing the H and B20 one thing that stands out is the Int JJ. It is much higher for  

B20, making the response higher for B20 than for H. If equation (2.39) is analyzed further, it 

is seen that 2 ˆ,v vI S  is the same for both cross sections. The ˆ
qB matrix has to be one of the 

B20

Mode omega K omegaae Kae Cae PhiH(max) Int of H and JJ Int H Int JJ Phih(midpoint) Var contrib. % of total

1     0.1851 882400     0.1844     0.0000    -0.0374     1.0000     0.0638     0.8241     0.0168 99 % 0,6361 87 %

3     0.4151 2102500     0.4148    -0.0001    -0.0232     0.9999     0.0426     1.9706     0.0146 54 % 0,0632 9 %

HM

Mode omega K omegaae Kae Cae PhiH(max) Int of H and JJ Int H Int JJ Phih(midpoint) Var contrib. % of total

1     0.1701 952200     0.1694 0    -0.0209     1.0000     0.0143     0.8419     0.0037 98 % 0,4093 82 %

3     0.3001 1189000     0.3007 0    -0.0144     0.9998     0.0102     1.5594     0.0034 52 % 0,0601 12 %

H

Mode omega K omegaae Kae Cae PhiH(max) Int of H and JJ Int H Int JJ Phih(midpoint) Var contrib. % of total

1     0.1701 982100     0.1706 0    -0.0203     1.0000     0.0145     0.8520     0.0038 100 % 0,4027 80 %

3     0.3051 1210700     0.3051 0    -0.0143     0.9996     0.0106     1.5835     0.0036 53 % 0,0581 12 %
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deciding factors. If ˆ
qB  is studied, it is seen that it is the static force coefficients that 

determine the matrix. Mode-shapes, φ , also affect the joint acceptance function.  

Figure 6.19 shows a plot of the joint acceptance function for mode shape number 1 for both 

B20 and H. It is clear that the B20 bridge has overall higher values of the joint acceptance 

function.  

 

Figure 6.19 Joint acceptance function of B20 and H bridges, mode 1, V=30m/s 

Table 6.9 Torsional comparison, V=30m/s, mid-point, H and HM bridge 

 

In table 6.9, the three most important torsional mode shapes for HM and H is evaluated. If 

mode 1 for both models is compared, the separating factor for the difference in variance 

contribution is definitely the size of the mode-shape at midpoint. The reason for the mode 

shape difference is explained by the modal coupling described in section 2.2.10.  

The increased eigenfrequencies for mode-shape 19 and 23 of model H is compensated with 

purer torsional mode-shapes giving fairly low stiffness and a high PhiT. This contributes to 

higher variance. 

The HM model lacks the pure torsional mode-shapes the H model has. This means that to 

rotate the cable as mentioned in section 2.2.10 demands high energy, indicating increased 

stiffness.  

HM

Mode omega K omegaae Kae Cae PhiT(max) Int of H and JJ Int H Int JJ Phit(midpoint) % of max Var contrib. % of total

1     0.1694 9500000     0.1701 0    -0.0209 0,0031     0.0143     0.8419     0.0037 0,0030 97 % 0,0013 50 %

3     0.3007 1,2E+08     0.3001 0    -0.0144 0,0050     0.0102     1.5594     0.0034 0,0028 56 % 0,0003 12 %

11     0.8015 6,7E+08     0.8001 0    -0.0013 0,0227     0.0505     4.8403     0.0173 0,0227 100 % 0,0004 15 %

H

Mode omega K omegaae Kae Cae PhiT(max) Int of H and JJ Int H Int JJ Phit(midpoint) %of max Var contrib. % of total

1     0.1706 9820000     0.1701 0    -0.0203 0,0018     0.0145     0.8520     0.0038 0,0018 100 % 0,0007 13 %

19     1.2138 5,4E+07     1.2151 0    -0.0004 0,136     0.1376     7.1774     0.0579 0,136 100 % 0,0014 27 %

23     1.2848 4,2E+08     1.2851 0    -0.0016 0,1286     0.0383     7.2454     0.0173 0,1286 100 % 0,0015 29 %
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6.3.8 Combined response 

Table 6.10 gives the total displacement in the different directions. The peak factor combining 

the dynamic and static response is set to be 3.5. 

Table 6.10 Combined static and dynamic displacement at mid-span for V=30 m/s 

Model Total displ y 
(m) 

Total displ z 
(m) 

Total rotation 
(rad) H 7,9 -2,0 0,027 

HM 7,3 -2,0 0,027 

TF 4,8 -0,1 0,012 

TFM 4,9 -0,1 0,031 

B20 11,7 1,0 0,014 

B30 12,5 -1,0 0,013 

 

6.3.9 Serviceability 

Max displacement: Since the span length is 3700m, maximum allowed displacement with 

L/200 is 18.5 m. In table 6.11, the static and dynamic response contributions are combined 

again, but now with a 30 % increase in the dynamic parts. This increase takes into account 

the span-vise maximum, together with a decrease in maximum static displacement.  

Table 6.11 Static displacement with 30 % increase in the dynamic parts 

Model Total displ y (m) Total displ z (m) 

H 8,4 -2,4 

HM 7,8 -2,4 

TF 5,1 -0,2 

TFM 5,3 -0,2 

B20 12,5  1,2 

B30 13,6 -1,3 

 

To find the total displacement the values in table 6.11 are added together with pythagoras. 

This gives 13.7 m as total displacement for the B30 model. From this it is shown that the max 

displacement is lower than the requirement for all the bridge models.  

Acceleration comfort: Table 6.12Feil! Ugyldig selvreferanse for bokmerke. shows the 

maximum acceleration in vertical and horizontal direction after a RMS sum. This is checked 

against the requirements of (Iso6897, 1984).  
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Table 6.12 Acceleration table for check against comfort limit 

Cross-section 
Acceleration 
(m/s2)2/s 

Frequency 
(Hz) 

Requirements 
met? 

H 0,0466 0,0748 Ok 

HM 0,0614 0,07323 Ok 

TF 0,0000597 0,03 Ok 

TFM 0,0000445 0,03 Ok 

B20 0,0175 0,077 Ok 

B30 0,0322 0,068 Ok 

 

The requirement for the acceleration is dependent on the frequency. The acceleration 

specters usually have more than one peak, so this causes a problem when comparing the 

results to the requirement. The peaks in vertical and horizontal directions are not at the 

same frequency, so the RMS sum is taken at least twice for each bridge. Figure 6.20 shows 

an example of an acceleration specter for H.  

 

Figure 6.20 Spectral acceleration density for vertical direction, at mid-span for V=30 m/s, HM 

 

6.3.10 Verification of the model  

The script made in Matlab is tested on different examples in the book, Theory of Bridge 

Aerodynamics (Strømmen, 2010), with good results. The script is built up from simple one 

mode one component response, to what it is now. By this way of writing the script, the 

authors have better control over the final results.  
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7 Conclusion 
The traditional streamlined box section, H, does not have sufficient aerodynamic stability to 

be used in a 3700m long suspension bridge with the usual design. With use of a mono-cable 

instead of the traditional geometry with two cables, the critical velocity increases to above 

the stability limit for the single girder. All the slotted box section models have stability limits 

above the design velocity. The slotted models have been tested with the aerodynamic 

derivatives from the Hardanger Bridge and from these results it can be concluded that the 

increase in critical velocity for the slotted models manly comes from aerodynamic 

improvements. The increase in structural stiffness has minor influence on the flutter 

velocity.  

The contribution from the horizontal movement is considerable for the HM model due to 

coupling effects between horizontal movement and torsional rotation; it increases this 

model’s critical velocity by 10 m/s. This means using quasi static values for the aerodynamic 

derivatives related to the horizontal movement is not accurate enough. Therefore 

conducting new wind tunnel tests to obtain these values is recommended. 

The results from tests on the TF section proved its stability satisfactory, but there would not 

be enough traffic across the Sogne Fjord to necessitate the construction of three lanes in 

each direction. Designing the bridge to be this wide would produce a more expensive 

structure, requiring needless amounts of steel. Since more slender girders show adequate 

results, these girders should be implemented, despite the TF section having a higher Vcr.  

All the models satisfy the serviceability requirements of max displacement and max 

acceleration. The B20 and B30 models generate the biggest horizontal displacement, while 

the H and HM models generate the biggest vertical displacement.  

The number of modes necessary to include in response calculations are higher for long-

spanned bridges compared to bridges with shorter spans. This is true on account of the fact 

that long-span bridges have lower eigenfrequencies.  

To find maximum displacements along the bridge a span-vise variance calculation should be 

executed. The maximum displacements are not located at mid-span because of 

contributions from asymmetrical mode-shapes. 

The joint acceptance function containing the static force coefficients has the biggest 

influence on variations in the response between the models in horizontal and vertical 

directions. The difference in mode-shapes contributes to the variation in torsional rotation 

for the mono-cable models and two-cable models.  

If the mono-cable is not fixed to the girder at mid-span there will be a relative displacement 

in the horizontal direction which leads to a rotation of the girder. Thus, a fixed connection at 

mid-span is recommended: it gives increased torsional stiffness to the girder and decreased 

torsional response. 
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The results indicate that the models HM and B20 give the best overall solutions. They show 

satisfactory results for both critical velocity and response, and would be more economic and 

elegant alternatives to a wider, more costly bridge.  

In conclusion, crossing the Sogne Fjord with a suspension bridge is a feasible option, and 

would make Norway the owner of the longest bridge-span in the world. 

 

7.1 Further work 

The HM and B20 models should be investigated further. In regards to the HM model, 

structural improvements like tuned mass dampers and how to fix the connection between 

cable and girder at mid-span should be looked into.  

There is no walking/cycling path for B20. An alternative might be to expand the box sections 

with a few meters for a cycling path on one girder and a walking path on the other. If further 

aerodynamic measures like a vertical plate in the middle are applied to the B20 section, the 

critical velocity could be increased further. On the B20 model, the girder should be enlarged 

and new wind tunnel tests with both guide vanes and a vertical plate should be conducted. 

For the design of the bridges based on ultimate limit state, a multimode response calculation 

should be used. Vortex shedding should be investigated to find the correct response at low 

mean wind velocities. 
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Appendix A 

A1 The design velocity for the Sogne Bridge 

 

The critical velocity of the area where the Sogne Bridge is being build is calculated according 

to Euro Code 1-2. 

Vcr > 1.5 V10    EC 1-2, 6.4.3.2 

V10 = Vs(z)= Cr(z) *Vb  

Vb = cret*cårs*csan*VREF 

cret= cårs = csan =1 

The bridge is going to be built in Gulen kommune, here the reference velocity is VREF=28m/s. 

Vb=28m/s 

Cr(z) = kT*ln(z/z0)   z equals the height above ground. 

For terrain category 1: kT=0.17 and z0=0.01 

Assume that the bridge girder will be at a height around 80m above the water level of the 

fjord, z=80m. 

Cr(80m) = 0.17*ln(80/0.01) = 1.53 

V10 (80m) = 28m/s*1.53 = 43m/s 

Vcr > 1.5*43m/s = 64.2 m/s 
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A2 Design of crossbeam for slotted box girders 

 

Assume a simply supported beam between the hangers, contribution from 20 m of girder 

and two trucks on the girders. 

Calculation for the TF section: 

qg= 5928 kg/m*9.81 m/s2*2*1.2*20m/36.5m+0.112 m2*7.5 m*7850 kg/m3*9.81m/s2*1.2 

/36.5 m    =76 476 N/m +1 772 N/m = 78.3 kN/m 

qe=  2900kg/m*9.81 m/s2*2*1.6*20m/36.5m= 50 kN/m 

qt=210 kN*3*2*1.3/36.5 m= 45 kN/m 

qtot= 78.3+50+45= 173.3 kN/m 

Mmidt= 173.3 kN/m*36.52m2/8 = 28 860 kNm 

I=1/6*[1m*0.023m3+0.012*2.963m3]+0.02m*1m*1.492m2=0.14m4 

σ= 28 860 kNm*1.5m/0.14m4= 309 MPa 

σfy= 355>σ 

 

Calculation for the B30 section: 

qg = 2000 kg/m*9.81 m/s2*2*1.2*20m/36m+0.135 m2*25m*7850 kg/m3*9.81m/s2*1.2 /36 

m     =26 160 N/m +8 660 N/m = 34.8 kN/m 

qe = 1560kg/m*9.81 m/s2*2*1.6*20m/36m= 27 kN/m 

qt =210 kN*3*2*1.3/36 m= 45 kN/m 

qtot = 34.8+27+45= 106.8 kN/m 

Mmidt = 106.8 kN/m*362m2/8 = 17 300 kNm 

I=1/6*[1m*0.033m3+0.015*2.53m3]+0.03m*1m*1.252m2=0.133m4 

σ= 17 300 kNm*1.25m/0.133m4= 163 MPa 

σfy = 355>σ 

The same cross beam is applied for the B20 model  
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A3 Geometric data for the different models 

 

Model H HM TF TFM B20 B30 

Cable area [m2] 2*0.3 0.6 2*0.56 1.12 2*0.3 2*0.3 
Hanger area[m2] 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 
Girder area [m2] 0.5813 0.5813 1.52 1.52 2*0.253 2*0.253 
Im girder[kgm2/m] 222860 222860 2*222860 2*222860 2*21000 2*21000 
Mass girder [kg/m] 8825 8825 2*8825 2*8825 2*3560 2*3560 
Tower height [m] 440 460 440 460 440 460 
Sag cable [m] 370 370 370 370 370 370 
Girder height 1[m] 9 21 9 9 9 9 

 

1The girder height at the middle relative to the girder height at the towers. The height for 

HM is higher than for TFM because the TFM slotted box girder is much wider than the HM 

girder and does not need that big distance between girder and cable due to hangers 

interfering with the roadway. 

The margin for the cables is smaller than on the real Hardanger Bridge, here the factor is 1.5 

multiplied with the calculated area. 
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A4 Aerodynamic derivatives 

 

H section 
P1*=-0.2548*vred; 
P2*=0; 
P3*=0; 
P4*=0; 
P5*=-0.25*vred; 
P6*=0; 
H1*=0.1184*vred.^2-3.1629*vred; 
H2*=-0.3376*vred.^2+0.817*vred; 
H3*=2.3738*vred.^2-0.1944*vred; 
H4*=-0.1724*vred.^2-0.1315*vred; 
H5*=0.5*vred; 

H6*=0; 
A1*=-0.0778*vred.^2-0.5406*vred; 
A2*=-0.1375*vred.^2-0.0092*vred; 
A3*=0.8789*vred.^2-0.2887*vred; 
A4*=0.0595*vred.^2-0.3636*vred; 
A5*=-0.0200*vred; 
A6*=0; 

TF section 
P1*=0; 
P2*=0; 
P3*=0; 
P4*=0; 
P5*=0; 
P6*=0; 
H1*=-6/20*vred*pi*2; 
H2*=40/16*vred*pi*2; 
H3*=(0.11*vred^2*pi-0.42*vred)*pi*2; 
H4*=2.5/20*vred*pi*2; 
H5*=0; 
H6*=0; 
A1*=-9/30*vred*pi*4; 
A2*=(-0.0467*vred^2*pi-0.167*vred)*pi*4; 
A3*=(0.107*vred^2*pi+0.89*vred)*pi*4; 
A4*=-0.5/20*vred*pi*4; 
A5*=0; 
A6*=0; 

 

 

B20 Section 
P1=0; 
P2=0; 
P3=0; 
P4=0; 
P5=0; 
P6=0; 
H1=-5.729*vred+ 3.038; 
H2=-0.5045*vred^2+15.02*vred-9.846; 
H3=3.537*vred^2+30.52*vred-35.02; 
H4=(-3.702*vred + 1.872); 
H5=0; 
H6=0; 
A1=-0.04092*vred^2+0.5411*vred-1.309; 
A2=(-12.64*vred+ 13.12); 
A3=(1.549*vred^2 -20.19*vred + 12.16); 
A4=(-0.07704*vred^2+1.082*vred+1.14); 
A5=0; 
A6=0; 

 

B30 Section 
P1=0; 
P2=0; 
P3=0; 
P4=0; 
P5=0; 
P6=0; 
H1=(-5.202*vred+-12.25); 
H2=(2.508*vred^2-9.335*vred +3.974); 
H3=(4.326*vred^2+25.68*vred-0.6141); 
H4=(-0.3208*vred^2+0.8535*vred+7.211); 
H5=0; 
H6=0; 
A1=-0.02079*vred^2+1.846*vred+0.1454; 
A2=(-1.353*vred^2+1.583*vred-5.848); 
A3=(-2.956*vred^2+1.138*vred-1.383); 
A4=(1.689*vred+7.981); 
A5=0; 
A6=0; 

 

 

 

 
  



 
 

78 
 

Appendix B 

B1 Spectral densities 
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B2 Modal variance contribution 
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B3 Variance over span length 

H  

  

 

 

 

HM  

  



 
 

87 
 

 

 

 

TF  

  

 

 

 

  

 

 

 



 
 

88 
 

TFM  

  

 

 

 

B20  

  



 
 

89 
 

 

 

 

B30  

  

 

 

 

 

 

  



 
 

90 
 

B4 Modal frequency-response-function 
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B5 Spectral density for the first 5 modes in horizontal direction 
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B6 comparison of frequency step 
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