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Abstract

Demonstration of embedded systems is a good way to motivate and recruit students to a
future career in electronics. For Department of Electronics and Telecommunication at the
Norwegian University of Science and Technology (NTNU), it is thus desirable to have an
embedded demonstrator that gives the pupils an insight in what is actually possible when
studying electronics at the university, a system that the department may present at different
occasions. A good embedded demonstrator provides an interesting presentation of one or
more topics related to electronics, and should be presented together with relevant theory in
order to provide a level of education to the user.

This report covers the implementation of an embedded demonstrator for audio manipulation
on Altera’s DE2 development and education board. The system is specified to demonstrate
signal processing subjects like sampling and filtering through manipulation of analog audio
signals. The main modules in the system are the Cyclone II 2C35 FPGA from Altera, running
a Nios II soft-CPU, and a Wolfson WM8731 audio-codec. The specification of their operation
is made with background in pedagogics theory in order to make the most interesting demon-
stration. To realize this specification, the system incorporates several design features for both
activation and motivation of the user.

The audio manipulator provides possibilities for comparison between different sample rates
and filter characteristics in real-time operation. This makes the system well suited for practical
demonstration of signal processing theory. Due to the presentation of perceivable results, in
addition to the implementation of a user interface for interaction, the implemented audio
demonstrator is considered to be a well suited platform for demonstration of topics related
to electronics.
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Preface

I started my electronics career in lower secondary school about a decade ago, based on a
rather genuine interest in hi-fi and audio systems. Since then, I have been following this
path of electronics through a number of different courses at the upper secondary school, and
now also at the university. This master thesis represents the finish line of my five years as
a student at NTNU in Trondheim. These years have without doubt been the best and most
exciting years of my life, and although the time has brought me through an unknown number
topics in both the analog and digital domain, I am pleased to close this era with an in-depth
study of an audio manipulator and its characteristics, the subjects that once started it all.

The goal with this project has been to implement a demonstrator for recruitment of future
students to Department of Electronics and Telecommunication at NTNU. To design a system
in order to motivate younger pupils to a future career in electronics seemed like a mean-
ingful and important task. This, together with the possibility to work with and study the
functionality of audio systems, was my main motivation-factor through out the process.

The last six months have been both exciting and challenging, providing a great deal of prac-
tical work through system implementation on Altera’s DE2 board. It has been motivating
to get some hands-on with electronics, using knowledge from five years at the university to
implement a system based on my own specifications. Due to time constraints, the system
never got any filter functionality in software as stated in the specification. However, due to
the different system functionalities implemented in hardware, the final system was considered
to present important signal processing subjects in a good way, also without software filters.

Several people contributed to the work presented in this report. I want to thank my supervisor
Per Gunnar Kjeldsberg at the department for his advices and guidelines through the whole
process. I am also thankful to my good friends Cato M. Jonassen and Kai André Venjum
for their contribution and support, and to Cato for helping me with LATEX related problems
and the implementation of an LCD-display in the system. I would also like to thank Ingunn
Amdal at the department for her contribution to theory regarding listening tests, and Kai
André, Eivind Tjelde, Kjell Tutvedt and Ingrid Tøgersen for their time and effort as a test
panel during an informal listening test performed on the system. Ingulf Helland should also
be mentioned for his time and help on practical issues related to Altera’s DE2 board.

Jarle Larsen
NTNU, Trondheim
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Definitions

ADC : Analog-to-Digital Converter - Converts analog signals to the digital do-
main

ASIC : Application-Specific Integrated Circuit - A hardware circuit of the ap-
plication in silicone

BSP : Board Support Packages - A Nios II BSP project is a specialized library
containing system-specific support code

CPU : Central Processing Unit - Primary element for performing operations in
a computer

DAC : Digital-to-Analog Converter - Converts digital signals to the analog do-
main

DSP : Digital Signal Processor - Processor specialized for signal processing
tasks

FDATOOL : Filter Design and Analysis Tool - User interface in MATLAB for speci-
fication of digital filters and generation of filter coefficients

FIFO : First-In First-Out - Refers to a way of queuing and organizing data

FIR : Finite Impulse Repsonse - Digital filter classification

FPGA : Field-Programmable Gate Array - Re-programmable logic device for im-
plementation of hardware

HAL : Hardware Abstraction Layer - A software abstraction layer between the
physical hardware and the software on a computer
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HDL : Hardware Descriptive Language - Language for description of hardware

I2C : Inter-Integrated Circuit - Communication standard with a two-wired,
bidirectional bus

IIR : Infinte Impulse Repsonse - Digital filter classification

LE : Logic Element - Logic building block in an FPGA

LUT : Look-up Table - Function generator that implements logical functions
in an LE

MATLAB : Matrix Laboratory - An advanced numerical programming environment
with its own language based on C

OSR : Oversampling Rate - Defines the oversampling rate in an ADC or DAC

PLL : Phase-Locked Loop - Generates an output signal with equal or different
phase and frequency based on a reference signal

RAM : Random Access Memory - Volatile computer memory. Looses informa-
tion when the power is turned off

RISC : Reduced Instruction-Set Computer - A processor architecture with a
reduced number of instructions

RMS : Root Mean Square - Defines the effective voltage or current in an AC
wave

ROM : Read Only Memory - Computer memory that can not be modified

SQNR : Signal-to-Quantization Noise Ratio - The ratio between the preferred
signal and the quantization noise in an ADC



Chapter 1

Introduction

In many situations, like education exhibitions and school visits at the NTNU, it is important
for the electronics department to promote for its courses to get the attention from future
students. To achieve this, it is desirable to have a good demonstration of what is actually
possible when you study electronics at NTNU. A demonstration might consists of just talking
to pupils and presenting posters of relevant topics, but in this project it is desirable to make
a demonstrator that presents concrete examples of practical use of electronics.

The main goal with a demonstrator is to get people’s attention, and to demonstrate a system
that makes them interested in the presented topics. The demonstration should thus include an
interesting application, and also provide some education on the subjects that the demonstrator
presents.

This report describes the implementation of an embedded demonstrator based on the spec-
ification specified in [29]. This specification is made with background in theory related to
pedagogics, and specifies an audio system for demonstration of subjects related to digital
signal processing and embedded system design.

In order to present the implementation of the specified system, this report covers the following
main topics:

• Presentation of the system specification used for implementation.

• Discussion of pedagogical aspects related to demonstrator implementation.

• Discussions related to the implementation of the system on Altera’s DE2.

• Description of how the system should be presented to obtain a good demonstration.

1.1 Preliminary Work

The motivation for the mentioned specification was to specify a system, that through demon-
stration of subjects related to cources provided by Department of Electronics and Telecom-
munication at NTNU, could be used to recruit future students to the university. In order to
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2 CHAPTER 1. INTRODUCTION

achieve this, the specification presents a system for implementation on Altera’s DE2 devel-
opment and education board, called an embedded audio demonstrator. This system performs
domain conversion on the audio signal between the analog and digital domain, and filters
the digital representation in both hardware- and software-implemented FIR filters as seen in
figure 1.1.

Figure 1.1: Embedded audio demonstrator - basic block diagram.

To make a good demonstration of sampling in both analog-to-digital- and digital-to-analog
converters, ADCs and DACs, the system is specified with an adjustable sample rate. This
makes it possible to present perceivable results of topics related to sampling to the listeners.
Here they will get a real-time demonstration of how sampling at different rates, both above
and below the Nyquist rate for audieble signals, affects the perceived sound quality. In
addition, it is possible to present the relation between sample frequency and audio bit rate,
and demonstrate how an increase or decrease in bit rate affects the perception of the sound.

For signal manipulation in the digital domain, the embedded audio demonstrator is specified
with a high-pass and a low-pass filter for implementation in both hardware and software.
Filtering is a well known application, and might be common to most people through the
use of sound equalizers in home stereo systems and TVs. Digital filtering demonstrates the
implementation of this operation in the digital domain, and provides knowledge to the lis-
tener about the effect of high-pass and low-pass filtering. In addition, since the system is
specified with FIR filters implemented in both hardware and software, an interesting com-
parison between the filter performance in these two domains could be included as a part of
the demonstration.

The specified system is considered to be an interesting and usefull demonstrator for demon-
stration of topics related to digital signal processing. However, the presentation of such an
embedded system should not be done without considering some pedagogic aspects related to
demonstration. The next two sections highlights some of the advantages related to the use
of embedded systems as demonstrators, and presents a level of pedagogics that should be
considered in order to provide a good demonstration of such embedded systems.
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1.2 Embedded Systems

Embedded systems can be found everywhere - in consumer electronics, home appliances,
business equipments, automobiles and so on [16]. The design is based on computer technol-
ogy, but focuses on specific applications instead of general processing as central processing
units (CPUs). These systems are well suited as demonstrators because the combination of
hardware and software gives both flexibility and wide possibilities for optimization. This de-
sign methodology, called hardware/software co-design, means meeting system level objectives
by exploiting the synergism of hardware and software through their concurrent design [13].
While hardware circuits like application-specific integrated circuit (ASICs) are configured at
manufacturing time, the introduction of field-programmable gate arrays (FPGAs) increases
the flexibility of an embedded system through its ability to handle configuration after the
manufacturing process. This reconfigurability makes the system very versatile, and thus well
suited for implementation of embedded demonstrators.

The flexibility of the FPGA enables the implementation of a soft-core embedded processor
in the reconfigurable logic. A soft-core processor is a hardware description language (HDL)
model of a specific processor that can be customized for a given application and synthesized
for an ASIC or FPGA target [26]. The use of soft-core processors holds many advantages
for the designer of an embedded system. First, soft-core processors are flexible and can be
customized for a specific application with relative ease. Second, since soft-core processors
are technology-independent and can be synthesized for any given target ASIC or FPGA
technology, they are more immune to becoming old-fashioned when compared with circuit-
or logic level descriptions of a processor [26].

For embedded demonstrators, the use of soft-core processors provides the designer with the
opportunity to allocate the different modules in the system to either hardware or software,
based on an understanding of which of the two domains that provides the best performance
for the actual module. In addition, the versatility of the FPGA makes it possible to replace
multiple components with one single chip. The reduction in the number of components will
again reduce the board size, both of which will save development time and costs. This will
also make the demonstrator more flexible, due to the increased portability.

The use of embedded processors has many advantages as presented above. However, embed-
ding a processor inside an FPGA is not without disadvantages [20]. First of all, and unlike
an of-the-shelf processor, the hardware platform for the embedded processor must be de-
signed. Thus, the embedded designer becomes the hardware processor system designer when
an FPGA solution is selected. Secondly, the device cost must be considered. If a standard,
of-the-shelf processor can do the job, it will be more sensible and less expensive to use this
than to implement an FPGA embedded processor. However, if there already exists a large
FPGA in the system with unused gates, it might be economical, both in terms of develop-
ment time and area cost, to implement a soft CPU on this one rather than using a separate
processor [20].
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1.2.1 Soft vs. Hard Processors

Originally, the embedded processor cores are soft core IPs, for example the Xilinx 32-bit
MicroBlaze and Altera’s 32-bit Nios II [16]. However, both Xilinx and Altera produce FPGA
families that embed a physical processor core into the FPGA silicon [20]. A processor built
from dedicated silicon is referred to as a hard processor, in contrast to soft processors that runs
on the FPGA’s general logic. For comparision, Table 1.1 and 1.2 presents the difference in
performance for hard-core and soft-core processors on Altera and Xilinx FPGAs respectively.

Table 1.1: Altera Embedded Processors and Performance, [20].
Processor Processor Type Device Family Speed(MHz) DMIPSs
ARM922T Hard Excalibur 200 210
Nios II Soft Cyclone II Not reported 100

Table 1.2: Xilinx Embedded Processors and Performance, [20].
Processor Processor Type Device Family Speed(MHz) DMIPSs
PowerPC 405 Hard Virtex-4 450 680
Microblaze Soft Virtex-II Pro 150 123

As shown in these tables, hard processors have a clear performance advantage over soft-core
processors. However, the key issue is whether a need for a hard structure appears often enough
in the set of target applications, and, in the case where the architect seeks enhanced speed,
if that structure appears on the critical path of designs when implemented as part of the soft
fabric [35]. In addition, some of the performance differences between hard-core and soft-core
processors can be made up due to the reconfigurability of the soft core processors, allowing a
trade-off between performance and area by changing the architecture. Also, a programmable
quantity of processors can be instantiated as needed, each tuned to the required area and
performance specifications [35].

So, an alternative to add hard structures to an FPGA is to find ways to improve the per-
formance of the soft logic fabric. If this can be done, it more easily makes all systems and
applications both faster and cheaper, in addition to less power consuming [35].

1.3 Presentation of Embedded Systems

Demonstration of embedded systems is a good way to give the pupils or students who at-
tends the presentation an insight in what is actually possible when you study electronics at
NTNU. When presenting an embedded system, different topics related to pedagogics should
be considered, in order to make the best and most interesting demonstration.

Learning is based on different pedagogical aspects that the teacher, or the person who demon-
strates a subject, will have to consider. Motivation is one of them [24]. Motivation helps the
pupils to understand the usefulness of the theory presented, and also to relate the presentation
to something that they are familiar with. The person who demonstrates the audio demon-
strator should thus motivate the pupils before the demonstration starts, in order to increase
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the quality of the presentation. When the person or group is motivated, the best educational
setting is achieved if the presentation contains a level of activation [23]. This should motivate
an adjustment of the subjects presented so that people who attends the demonstration are
able to take part in the presentation. In an embedded demonstrator, an example of activation
is the implementation of a user interface that the user can operate, in addition to the use of
multimedia content like audio and video in the demonstration.

In addition to motivation and activation of the pupils or students, the person who presents
the demonstrator should also consider the age level of the group that is involved in the pre-
sentation. Differentiation is the process of providing different levels of education to different
groups of people [23]. To divide people into groups based on their age is the most common
example of differentiation in the school system today, and this assumes that people at the
same age level are more or less able to work with the same subjects and challenges [24]. In
the demonstration situation this demonstrator is intended for, the differentiation into groups
is most likely done beforehand. Thus, the person who demonstrates the system will have to
adjust the presentation according to the person or group that attends the demonstration. A
group of high school students that study electronics may be both interested in and capable
of understanding an in-depth description of both sample rates and filtering. Here, the person
who demonstrates the system should be able to provide the group with a detailed description
of how the system works. However, for younger persons, for instance a group of primary school
pupils, the demonstration should not focus on the system level specifications, but rather on
the aspects of the demonstration that are easy to perceive.

1.4 Structure of Report

In order to cover the presented topics, this report is organized in the following way: Chap-
ter 2 presents theory on subjective quality measures related to sound. In Chapter 3, 4 and
5 the theory needed to understand the functionality of the system is described, including
Inter-Integrated Circuit I2C-communication, A/D- and D/A-conversion and digital filtering.
Chapter 6 introduces the main modules on the Altera DE2 platform, while Chapter 7 de-
scribes the development softwares used for implementation of the demonstrator. Chapter 8
provides an in-depth description of the system implementation and discussions related to
this implementation, followed by a description of how the implemented system should be
demonstrated in Chapter 9. Chapter 10 presents the main conclusions related to the system
implementation.
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Chapter 2

Subjective Quality Measures

When designing an embedded system intended for manipulation of analog audio signals,
subjective quality measures of the sound could be used to evaluate the performance of the
design. This chapter presents some theory on the frequency range of the human ear, as well as
an introduction to the term sound quality, and a presentation of how a subjective evaluation
of an audio system may be performed.

2.1 Frequency Range of the Human Ear

The human hearing system is usually quoted as having an average frequency range of 20 -
20.000 Hz [21]. However, there can be a considerable variation between individuals. The
frequency range changes as a part of the human ageing process, particularly in terms of the
upper limit which tends to reduce. Healthy young children may have a full hearing range
up to 20 kHz, but by the age of 20, the upper limit may have dropped to about 16 kHz.
From this age, the frequency range continues to reduce gradually. The reduction in the upper
frequency limit of the hearing range is accompanied by a reduction in hearing sensitivity at
all frequencies, although this sensitivity loss is less present for lower frequencies [21].

2.2 What is Sound Quality?

It is possible to talk about sound quality in both physical or technical and perceptual terms
[36]. In physical terms it generally relates to certain desirable measured characteristics of
audio devices, transmission channels or signals. Bitrate on a digital audio stream and the
frequency response of a speaker are two examples of measurable characteristics used to deter-
mine the quality of an audio system. In perceptual terms, the sound quality relates to what
is heard and how it is judged by the human listeners. Listening tests are used to determine
the perceptual quality, where the listeners evaluates the quality of the perceived sound signal
based on a predefined scale. The scale consists of either words or numbers, and describes the
sound quality in terms that are meaningful to the listeners, like ”excellent”, ”good”, ”poor” or
”bad”. In an ideal world, the technical and the perceptual terms could be related or mapped

7
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directly to each other. However, there may be aspects of sound quality that can be perceived,
even though they can not be measured, and some that can be measured and not perceived
[36].

2.3 Evaluation of Sound Quality

To be able to decide the perceptual quality of an audio system, a formal listening test could
be employed [36]. A number of different tests exist, and common to nearly all of them is the
need to define exactly what is to be evaluated, whether it is an overall quality judgement
supposed to include all aspects of sound quality, or if one or more specific attributes of the
sound quality, like brightness or spaciousness, are to be tested. It is also very common to
employ a reference of some sort. This might be a quality level to which others are compared,
since human listeners tend to be quite poor at judging sound quality when they have nothing
to compare with. When a reference quality is defined, the judgement can be quite reliable
[36].

An example of a scenario where subjective testing of the audio quality could be used, is to
evaluate whether the sound from a particular coder at a certain bitrate is perceptually trans-
parent [19]. One way to perform this evaluation is through a forced-choice discrimination
test. Here the listeners are presented with the reference signal and a lower bitrate represen-
tation in a random order. Then they will have to explain in which order the signals where
presented. The idea is that if the listeners cannot distinguish the difference between a sound
signal from an accepted quality standard such as a CD, compared to the same audio signal at
a lower bitrate, then the two signals are perceptually equivalent, and the lower bitrate signal
is defined as perceptually transparent [19].



Chapter 3

I2C Communication

Many solutions for communication between modules in an embedded system exists. In this
chapter a serial interface for peripheral connection, namely the Inter-Integrated Circuit (I2C)
communication standard, will be presented, due to its presence as a communication protocol
for register configuration in the audio-codec on the DE2 board.

The I2C bus is a cheap, but effective network used in small-scale embedded systems to
interconnect peripheral devices [12]. The two-wired multi-master bus is bidirectional, low-
speed and synchronous to a common clock. The two wires are named SDIN and SCLK, as
seen in Figure 3.1, and are connected to a positive supply via a pull-up resistor. This sets
both wires to logic high when not in use. Each device connected to the I2C bus has a unique
address and may work as either a transmitter (bus master), a receiver (bus slave) or both. The
transmission begins with the address bits, followed by the data. The address byte consists of
seven address bits and one direction bit. If the direction bit is 0, the master will send data
to a slave. If instead the direction bit is 1, the master requests data from the slave.

Figure 3.1: I2C communication, [41].

A device using the I2C bus to communicate drives the lines low or leaves them high as
appropriate [12]. When idle, as seen in Figure 3.1, both SDIN and SCLK are high. A
transmission starts with SDIN going low, followed by SCLK. This is a signal to the receivers
on the bus that a packet is on its way. While SCLK is low, SDIN puts the first valid data
bit on the line. The data bit is sampled on the rising edge of SCLK and must remain valid
until SCLK goes low again. Then SDIN puts another bit on the line to be sampled by SCLK.
A data transaction ends and the communication enters ”stop condition” when SCLK is set
to high followed by SDIN. Data is transferred with the most significant bit first, and if the
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receiver is unable to receive more bytes at a given moment, it can abort the transmission by
holding SCLK low. This forces the transmitter to wait for SCLK to be released.

When a byte is transmitted, the receiver will have to acknowledge the transmission. This
happens when the transmitter releases the SDIN line, and then generates an additional clock
pulse on SCLK. This tells the receiver to acknowledge the byte by pulling SDIN low. If the
receiver fails to do this, the transmitter must start an error handling operation [12].

The process of error handling is described in the I2C-standard [32]. If the receiver fails to
acknowledge the address- or data byte, it will leave the SDIN line high, telling the transmitter
that the data transfer failed. The transmitter will then generate either a stop condition to
abort the transfer, or repeat the start condition to initialize a new transmission. In addition,
if the receiver is unable to receive another byte from the transmitter due to other operations
like internal interrupts, it can hold SCLK low and force the transmitter to wait with the next
transmission. The transfer continues when the receiver is ready and thus releases the SCLK
line [32].



Chapter 4

Domain Conversion

Most signals of practical interest, such as speech, biological signals, seismic signals, radar
signals, and various communication signals used for audio and video, are analog [33]. In order
for the audio demonstrator to process analog signals in the digital domain, it is first necessary
to convert them into digital form, that is, to convert them to a sequence of numbers with a
finite precision. This procedure is called A/D-conversion, and the process is performed by an
analog-to-digital converter (ADC).

After manipulation in the digital domain, it desirable to convert the processed digital audio
signals back to the analog domain, thus perform a D/A-conversion. In this chapter, topics
related to conversion between these two domains are presented. Some theory on sample rates
and quantization will be given, and also an introduction to the sigma-delta ADC and the
Sigma-Delta digital-to-analog converter (DAC).

4.1 A/D Conversion

The process of converting an analog signal to the digital domain is known as sampling and
quantization [12]. Sample rate is expressed as samples per second, and defines the frequency
at which the analog signal is converted to a digital code. The resolution of an ADC, expressed
in bits, determines the accuracy of each sample. As an example, an 8 bit ADC will be able
to quantize the analog input signal to 28 = 256 discrete values. More bits per sample gives
a more accurate signal representation, but this will again make the ADC more expensive in
terms of area use and power consumption. The designer must thus decide how many bits
that is necessary for his or her application, and a high resolution ADC might not always be
required.

Bit rate, expressed as thousands of bits per second, or kbps., is often used as a quality measure
for digital audio systems [15]. To calculate the bit-rate of the sampled audio signal, the sample
rate of the ADC is multiplied by the ADC resolution, as seen in Equation (4.1).

Bitrate = Sample rate · resolution. (4.1)

11
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Lower bit rates results in less required storage space for the audio data, but at the same time
a poorer sound quality. For higher bit rates the sound quality is increased, but this again
increases the storage space needed for the digital audio representation. Bit rate is thus a
trade-off between system complexity and sound quality [15].

Different approaches to the conversion between the analog and digital domain exists, and a
popular A/D-converter is the oversampled Sigma-Delta ADC. Oversampling means using a
sample rate which is greater, often substantially greater, than the Nyquist rate [38]. The
Nyquist rate is defined as two times the maximum signal frequency. A measure of this
oversampling is the oversampling ratio, OSR, defined in Equation (4.2), [11].

OSR =
Fs

FN
(4.2)

In this equation, Fs is the sample rate and FN is the Nyquist rate for the input signal.
Usually, the value of OSR is taken to be a power of 2. If the OSR is between 2 and 16, it is
characterized as mild oversampling, whereas heavy oversampling occurs if the OSR is between
16 and 256.

Whether the sampling is done at or above the Nyquist frequency of the input signal, it is
possible to recover the original analog signal exactly. Sampling below the Nyquist rate gives
an overlap in the frequency domain called aliasing [33], seen in Figure 4.1. This occurs because
the frequency spectrum is modulated around multiples of the sampling frequency [25], thus
creating an overlap in the frequency domain if the sample rate is too low. Aliasing leads to a
degraded representation of the analog signal when the digital representation is converted in
a DAC. Sampling at rates high above the Nyquist rate is thus not required to obtain a given
signal quality, but sampling at two times the signal frequency puts extreme high demands on
component accuracy when a converter is implemented. The use of sample rates high above the
Nyquist rate allows the anti-aliasing and reconstruction filters to be constructed with much
more gentle cut-off slopes, as seen in Figure 4.2. This makes it possible to use components
without very close tolerances, making the component cost less expensive [33].

Figure 4.1: Aliasing due to undersampling, [25].

Another advantage with oversampling is the fact that the quantization noise energy is spread
over a much wider frequency range, thus reducing the level of noise in the frequency band of
interest [22]. Equation (4.3) describes the theoretical maximum signal-to-quantization noise
ratio (SQNR) for a linear ADC, expressed in decibels (dB).

SQNR = 6.02B + 1.7dB (4.3)
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Figure 4.2: Oversampling gives simpler aliasing filter characteristics, [25].

In this equation, B states the number of bits per sample. The SQNR is thus only dependent on
the resolution of the sampled signal, so an increase in the sample rate with a fixed resolution
will not change the SQNR, only spread the noise energy over a wider frequency spectrum.

After the input signal is sampled and quantized to a finite number of discrete values, a
decimator is used to convert the oversampled output words of the quantizer at a sample rate
of Fs to a data word of lower rate [17]. If the oversampled input signal is reduced by a
downsampling factor D, without any other operation, the result will be an aliased version of
this signal [33]. Aliasing occurs because the frequency spectrum is repeated for every f = fs

2D .
It is thus possible to get an overlap between the repetitive frequency spectrums if the signal
is downsampled too much. To avoid this effect, the bandwidth of the signal is reduced to
f = fs

2D by a digital filter before the decimation occurs. The signal is then, without the risk of
aliasing, downsampled to the desired sample frequency using decimation. The downsampled
representation from the decimator defines the output signal from the ADC. It should be noted
that the decimation process does not introduce any loss of information, since the digital filter
removed all components that could be aliased into the frequency band of interest [17].

4.2 D/A Conversion

D/A-conversion is a process used to convert the digital signal into an analog form after it
has been digitally processed, transmitted or stored [22]. In general, a DAC takes the digital
samples at the input and returns an analog signal at the output. A popular approach is to
perform D/A-conversion at a much higher rate than specified by the Nyquist theorem. The
motivation for the use of oversampled Sigma-Delta DACs is similar to that for ADCs. An
oversampling DAC uses interpolation and inserts zeros at a high rate between the already
existing ”low rate” samples in the data stream [37]. The oversampling makes it possible
to implement analog filters with less strict constraints than necessary without interpolation.
Another advantage is the fact that the quantization noise is spread over the total frequency
band, and thus reduced due to the increased width of the spectrum [22]. This makes it
possible to achieve high quality D/A conversion with a low resolution DAC.

Oversampling on its own is not enough to receive the desired DAC resolution [22]. Because
of this, a practical oversampling DAC typically consist of four main parts: An oversampling
digital filter, a noise shaper, for instance a Sigma-Delta modulator, a low resolution DAC and
a simple analog anti-aliasing filter as seen in Figure 4.3. The oversampling filter is used to
increase the sample rate and to reduce the aliasing components. The noise shaper serves to
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push the quantization noise towards the high frequency end, thus making it easy to remove
these components. After oversampling and noise shaping, the low resolution DAC converts
the digital samples to a ”staircase” shaped representation of the analog output signal due to
a given hold time for each sample. At the end, a simple anti-aliasing filter is used to smooth
out the ”stairs” and recover the analog audio signal [22].

Figure 4.3: DAC blockdiagram, [22].



Chapter 5

Digital Filters

An electrical filter, analog or digital, is a device or network that separates waves on the basis
of their frequency [10]. While the analog filters are defined by their respons in the frequency
domain, digital filters operates on digital data in the time domain, performing numerical
calculations on discrete samples to implement the filter’s equation. In this chapter, theory
regarding specification and implementation of digital filters are presented. There will also be
given an introduction to how this operation is performed on an FPGA, and also on a CPU or
digital signal processor (DSP). In addition, an introduction to fixed-point and floating-point
representation of numbers will be provided.

5.1 Filter Specification

Digital filters are becoming more and more widespread, and are replacing analog filters in
many systems today [39]. These digital filters are classified according to their impulse re-
sponses, and two categories exists: The finite impulse respons (FIR) filters, which are also
known as non-recursive, and the infinite impulse respons (IIR) filters that are considered
recursive due to their feedback functionality. There are some important differences between
FIR and IIR filters that must be considered when designing a filter system. FIR filters may
have an exact linear phase respons [33]. This implies that no phase distortion is introduced
into the signal that is filtered due to a constant delay for each frequency component, making
FIR filters well suited for audio applications. Phase distortion occurs on the other hand in
IIR filters, due to a non-linear phase respons. FIR filters are also stable because of their non-
feedback design. This stability can not be guaranteed in IIR filters due to the use of feedback.
On the other hand, FIR filters require more coefficients for sharp cut-off slopes than the same
filter type implemented as an IIR. An FIR filter will thus require more storage space and
processing time for a given amplitude respons specification than the same specification in an
IIR filter implementation.

In the design process of the filter, the designer must determine the cut-off frequency (or
frequencies) and the stopband attenuation [39]. It must also be decided whether a low-pass,
high-pass, band-pass or band-stop filter is required. The passband of a filter defines the
range of frequencies that are allowed to pass through, with little or no change in signal level.

15
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The stopband is defined as the range of signal frequencies that are reduced in amplitude
by an amount specified in the design, and that effectively is prevented from passing. As an
example, Figure 5.1 shows a filter characteristic with passband and stopband for an ideal low-
pass filter. The frequency range between the passband and the stopband changes rapidly in
signal amplitude due to attenuation performed by the filter [39]. There is a trade-off between
the level of stopband attenuation and the width of the frequency range between the passband
and the stopband. Also, high levels of attenuation generally require more filter taps, which
again increases both time delay and filter complexity. This should thus be considered by the
designer.

Figure 5.1: Ideal low-pass filter characteristic, [18].

The passband cut-off frequency is the passband edge where there is a 3 dB reduction in the
signal amplitude. In a digital FIR filter, this cut-off frequency is directly proportional to
the data sampling clock frequency. Using a single set of filter coefficients, described in more
detail in Section 5.2, this cut-off frequency can thus be doubled by doubling the sampling
clock frequency [39].

5.2 Filter Implementation

An FIR filter of length M with input signal x(n) and output signal y(n) is described in
Equation (5.1). Here, h(k) is the set of filter coefficients [33].

y(n) =
M−1∑
k=0

h(k)x(n− k) (5.1)

To realize an FIR filter function, an array of delay elements, usually implemented as D flip-
flops clocked by a master clock, is connected in series. The number of delay elements represents
the filter order. The longer the delay, the closer the filter gets to the ideal frequency respons.
Non-ideal filters, limited by the number of delays, may thus lead to rounding of the passband
edges and ripple in the stopband. This motivates the use of many delay elements when
designing a filter, but this again increases the filter’s complexity.

After each delay element, a tap is taken and the value is multiplied by a filter coefficient. Since
digital filters processes signals in the time domain [39], the frequency response of the desired
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filter characteristic must be converted to a time domain impulse response representation using
Inverse Fourier Transform (IFT) before implementation. The multiplied coefficient represents
the impulse respons at a given moment in the time domain. It is thus the coefficients in the
filter implementation that defines the filter characteristic. As an example, an ideal low-pass
filter has a brick wall frequency respons, providing a flat passband with unity gain, and
zero gain beyond cut-off. A time domain representation of this filter is a sinc(x) impulse
respons [39], illustrated in Figure 5.2. In a sampled data system, such as a digital filter,
this time domain respons is represented with discrete values. To obtain the filter coefficients
that represents the characteristics of the filter, these discrete time domain samples must be
multiplied with a selected window function. Windows are designed to truncate the time
domain function to a certain number of taps, where the number of taps defines the length
of the window. The simplest window function is the rectangular window seen in Figure 5.3.
Here, the value of the window is unity over its whole length. For the ideal low-pass filter, the
sinc(x) function is thus used as filter coefficients inside the window, while the sinc(x) samples
outside are set to zero. By using the rectangular window, the first side lobe in the stop band
of the frequency respons, as seen to the left in Figure 5.4, is limited to 13.2 dB, increasing
with 6 dB per octave as the frequency increases [39].

Figure 5.2: Sinc(x)-function.

Figure 5.3: Rectangular window, [14].
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If more attenuation is needed, other windows, like the Hamming window seen in Figure 5.5,
could be used to achieve the given specification [39]. This window has a more complex
representation, but provides a significant improvement in stop-band attenuation with up to
43 dB for the first side lobe in the frequency respons, seen to the right in figure 5.4. At higher
frequencies this attenuation increases with 6 dB per octave. In the frequency domain, the
amplitude of the main lobe is about twice as wide as that of the rectangular window [22]
as seen to the right in Figure 5.4, but again, since the side lobes are smaller relative to the
main lobe, the attenuation is more present. The result of this is that the Hamming window,
compared with the rectangular window, will lead to a filter with a wider transition width,
because of a wider main lobe, but also a higher attenuation of unwanted frequencies due to
the smaller side lobes.

Figure 5.4: Frequency respons of rectangular window (left), and Hamming window (right), [27].

Figure 5.5: Hamming window, [14].

As earlier noted, the output from each delay element is multiplied by a filter coefficient. Since
this multiplication is performed in the digital domain, results from binary multiplication must
be taken into consideration. As an example, multiplying two 16-bit numbers produces a 32-
bit result, so truncation may be required to remove the least significant bits [39]. This is
necessary if the output resolution is equal to the input resolution of a system.

When the input signal has passed through the delay chain, and each output from the delay
elements are multiplied by a given filter coefficient, the results of these multiplications are
added together to form the output signal of the filter, thus realizing the filter’s functionality.
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5.3 Filtering in Hardware

FPGA architectures includes resources capable of more advanced, higher-performance signal
processing operations with each new FPGA device family on the market [34], and is thus
getting more and more suited for computation of complex mathematics and signal processing
implementations such as FIR filters and Fast Fourier Transform (FFT). Figure 5.6 illustrates
an example of a parallel implementation of an FIR filter within an FPGA. As seen, the
function includes several multiplication and addition operations, also referred to as multipli-
cation and accumulation (MAC) blocks [34]. Three popular implementations for the MAC
operational groups within an FPGA are listed below:

• Both the multiplier and the accumulator may be implemented within the logic fabric
of the FPGA, taking advantage of FPGA structures such as dedicated high-speed carry
chains.

• The multiplier may be implemented in an optimized multiplier block, avoiding use of
FPGA fabric for this operation. The accumulator is implemented in the logic fabric of
the FPGA.

• Both the multiplier and the accumulator may be implemented within an advanced
multiplier block requiring no use of FPGA logic.

Figure 5.6: Parallel FPGA FIR filter implementation, [34].

The level of different digital signal processing blocks within an FPGA varies with the device
families. As an example, the Altera Cyclone II family includes a set of embedded multi-
pliers [3], dedicated for multiplication-intensive applications. The multiplication part of the
functions may thus be implemented in this optimized multiplier block to prevent the use of
the FPGA’s logic for this operation [34]. The use of dedicated modules for specific opera-
tions should be considered in the design process due to their ability to increase the system
performance.

5.4 Filtering in Software

The implementation of FIR filters in hardware, discussed in Section 5.3, may also be performed
in software. Based on Equation (5.1) on page 16 it is possible to program and implement these
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filters using a software language like C and execute the code on a processor. Most general
purpose processors available today are based on the von Neumann concepts, where operations
are performed sequentially [22]. When an instruction is processed in such a processor, the
parts of the CPU not involved in the execution of the instructions waits in idle state until
the control is passed on to them. Most digital signal processing algorithms, such as filtering
and FFT, involves repetitive arithmetic operations such as multiply, add, memory access and
heavy data flow through the CPU. The architecture of a general purpose microprocessor is
thus not suited to perform this kind of activity. However, an advantage of using a CPU for
digital signal processing is the fact that the C language is an efficient high level language,
providing a compact code which reduces the need of space in memory. In addition, general
purpose processors may also be optimized for digital signal processing through different tech-
niques. The Harvard architecture uses the concept of parallelism and provides a full overlap
in instruction fetch and execution [22]. Parallelism is also present in pipelining, where two
or more operations are able to be executed at the same time. Both of these features helps to
optimize a general purpose processor for digital signal processing.

As seen in Equation (5.1) on page 16, the numerical operations in an FIR filter realization
are multiplication, addition and subtraction. To realize this function in software it is thus
necessary to implement a number of basic components [22]. First of all, Random Access
Memory (RAM) to store the present and past input samples, x(n) and x(n - k) respectively,
is needed. It is also necessary to implement either RAM or Read Only Memory (ROM) for
storing of the filter coefficients h(k). Finally the system needs an Arithmetic Logic Unit
(ALU) to perform the mathematical operations.

5.5 Representation of Numbers

In the realization of FIR filters in hardware or in software on a general purpose computer,
the accuracy with which filter coefficients can be specified is limited to the word length of the
computer or the word length of the register provided to store the coefficients [33]. Since the
coefficients used to implement a given filter are not exact due to quantization, the frequency
respons of the system function will, in general, be different from the desired frequency respons.

In this section, fixed-point- and floating-point representation of numbers are presented, pro-
viding two different ways to represent filter coefficients in FIR filter implementation.

5.5.1 Fixed-point Representation of Numbers

Fixed-point arithmetic is most used in digital signal processing work because it leads to fast
a implementation, but it is limited in the range of numbers that can be represented, and is
sensitive to problems of overflow which may occur when the result of an addition exceeds the
permissible number range [22]. To prevent overflow, the operands are scaled. Such scaling
degrades the performance of the digital signal processing system, due to a reduced achievable
signal-to-noise ratio.

The representation of numbers in a fixed point format is a generalization of the familiar
decimal representation of a number as a string of digits with a decimal point [33]. In this
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notation, the digits to the left of the decimal point represents the integer part of the number,
while the digits on the right side of the decimal point represents the fractional part. The
decimal point is not stored in any register, but is understood to be in a fixed position between
the k most significant digits and the m least sigificant digits [28]. For this reason we call such
representations fixed-point representations.

5.5.2 Floating-point Representation of Numbers

Floating point arithmetic is preferred where magnitudes of variables or system coefficients
vary widely [22]. It allows a much wider dynamic range, and virtually eliminates overflow
problems. However, floating-point arithmetic is often slower, although high speed digital
signal processors (DSPs) with a build-in floating-point processor are becomming widely avali-
able.

Floating-point is often used to represent very large or very small numbers [31]. When writing
numbers of such magnitude, it is often convenient to use a notation called an e- or floating-
point notation, seen in Equation (5.2).

X = M · 2E (5.2)

Here, M is the mantissa or base value, while E is the exponent or scaling factor that moves
the decimal point of the base value to the right or the left, thus making the decimal point
”float” [31].

In comparing a fixed-point representation with a floating-point representation, each with
the same number of total bits, it is apparent that the floating-point representation allows
us to cover a larger dynamic range by varying the resolution across the range [33]. The
resolution decreases with an increase in the size of successive numbers. In other words, the
distance between two successive floating-point numbers increases as the numbers increase
in size. It is this variable resolution that gives the floating point results a larger dynamic
range. Alternatively, if it is desirable to cover the same dynamic range with both fixed-point
and floating-point representations, the floating-point representation provides finer resolution
for small numbers but coarser resolution for larger numbers. In contrast, the fixed-point
representation provides a uniform resolution throughout the complete range of numbers [33].
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Chapter 6

Altera DE2

In this chapter, the platform of the audio demonstrator, namely the Altera DE2 development
board, is introduced. First, an overall introduction to the board’s main features will be
given, before a more detailed description of the Altera Cyclone II FPGA, the Nios II and
the on-board audio-codec are presented. Further, an introduction to polling and interrupt is
provided, in addition to an overall description of the WM8731 audio-codec and its on-board
modules.

6.1 Features

The Altera DE2 development and education board is seen in Figure 6.1. This board includes
an Altera Cyclone II 2C35 FPGA which is connected to all the important components on
the board, and makes it possible to control every aspect of the board’s operation [1]. The
board offers a set of switches, 27 LEDs and a 7-segment display. There is also implemented
SRAM, SDRAM, flash memory and a 16 x 2 LCD-display. The board is ready for audio- and
video-application development, and includes both line-in, line-out and a microphone input,
all connected to a 24-bits Wolfson WM8731 audio-codec. For picture, the DE2 includes a TV
decoder connected to the board’s video input and a 10-bits DAC for VGA conversion. The
board also offers USB 2.0 connection, 10/100 Ethernet, infrared (Ir-DA)-port and memory
slot with SD-card support.

6.2 Altera Cyclone II 2C35 FPGA

The Altera Cyclone II 2C35 is the FPGA implemented on the DE2 board. This FPGA features
33216 logical elements (LEs), 105 M4K embedded memory blocks, 35 multipliers and a total
of 475 I/O pins [3]. A logical element, as seen in Figure 6.2, is a small unit of logic, providing
an efficient way to implement logical functions. The LEs in Altera Cyclone II features a four-
input, 16 bit ”look-up table” (LUT) which is a function generator that may implement any
logical function of four variables. The logical element also includes a programmable register
that can be configured as either a D, T, JK or SR flip-flop. Each of these registers includes

23
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Figure 6.1: Altera DE2 development board, [1].

data-, clock-, clock enable- and clear inputs. If the LE is to implement a pure combinational
function, this register will be bypassed, and the output of the LUT drives directly to the
output of the logical element.

The embedded dual-port memory blocks of the device consist of 4Kbits each. These blocks
can implement various types of memory depending on the system’s requirements, including
RAM, ROM and first-in-first-out (FIFO) buffers, and supports a maximum speed performance
of 250 MHz. The device also includes a set of embedded multipliers, as seen in Figure 6.3,
optimized for multiplier-intensive digital signal processing functions such as FFT, FIR filters
and discrete cosine transform. Each embedded multiplier may operate as either one 18-bit
multiplier or up to two independent 9-bit multipliers [3].

The Cyclone II LE can operate in either normal or arithmetic mode. The normal mode is
suitable for general logic applications and combinational functions, while the arithmetic mode
is ideal for implementing adders, counters, accumulators and comparators [3]. The operation
mode for the logical elements should thus be chosen based on the functionality of the specified
application.

6.3 Nios II

The Nios II is Alteras version of a configurable, soft-core, general purpose processor [6].
Configurable means that you can add or remove features to adjust the processor to your
specified system and meet performance or price goals. Soft-core refers to the fact that the
processor core is not produced as a final CPU-chip. Instead, it is written in a hardware
description language like VHDL for implementation on a reconfigurable device. This makes
it very versatile, and the Nios II can be implemented on any of Altera’s FPGA families.
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Figure 6.2: Cyclone II logical element, [3].

Figure 6.3: Multiplier block architecture, [3].
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The Nios II core is available in three different versions, namely the ”economy”, the ”standard”
and the ”fast” soft processor [6]. These differs in performance, area and the number of pipeline
stages, as seen in Table 6.1. The CPU core clock frequency varies from 165 to 200 MHz
between the three models. 1, 5 or 6 pipeline stages are available to support different design
requirements, and the use of logical elements are less than 3000 for the largest implementation.
The ”standard” and the ”fast” CPU version also offers hardware multipliers and division
options, and is thus optimized for digital signal processing applications.

Table 6.1: Nios II Processor Cores, [6].
Feature Nios II/e Nios II/s Nios II/f
DMIPS/MHz: 0.15 0.74 1.16
Max. DMIPS: 31 127 218
Max. fmax: 200 MHz 165 MHz 185 MHz
Area: < 700 LEs < 1400 LEs < 3000 LEs
Pipeline: 1 stage 5 stages 6 stages

6.3.1 Interrupt and Polling

Interrupt is a technique of diverting the processor from the execution of the current program
so that it may deal with some event that has occurred [12]. Such an event may be an error
from a peripheral, or simply that an I/O device has finished the last task it was given, and is
now ready for another. Interrupts free the processor from having to continuously check the
I/O devices to determine whether they require service or not. Instead, the processor may
continue with other tasks. The I/O devices will notify it when they require any attention,
through an interrupt signal on one of the processor’s interrupt inputs.

Another technique used for this purpose is busy waiting or polling [12]. Here, the processor
continuously checks the status of the device until the device requires attention. This wastes
the processor’s processing time, but is also the easiest technique to implement. In addition,
for some time-critical applications, polling can reduce the time it takes for the processor to
respond to a change of state in the peripheral [12].

6.4 Wolfson WM8731 Audio-Codec

The DE2 board provides high-quality 24-bit audio through the Wolfson WM8731 audio-codec
[1]. Figure 6.4 shows a block diagram of this codec, with I/O-ports and internal modules.
The chip supports microphone-in, line-in and line-out connections, with an adjustable sample
rate from 8 to 96 kHz through oversampled Sigma-Delta ADCs and DACs, and supports I2C
communication for register configuration.

6.4.1 Line-in Circuit

To control the amplitude and frequency range of the analog input, a line-in circuit, seen
in Figure 6.5, is implemented in the audio-codec [41]. This circuit provides a passive low
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Figure 6.4: Wolfson WM8731 audio-codec, [41].

pass RC-filter to prevent high frequencies from aliasing into the audio band. In addition, a
programmable volume controller for each channel is provided, adjusting the gain of the input
signal between -34.5dB and +12dB before domain conversion to the digital domain.

Figure 6.5: Line-in circuit, [41].

The ADC in the audio-codec supports analog input signals of maximum 1V RMS when VDD
= 3.3V without causing distortion. Due to this, the DE2 board includes a 50/50 voltage
divider at the input of the line-in circuit, dividing the analog input signals by a factor of
2. This provides the system with support for standard 2V RMS line-out signals from audio
sources like CD- and MP3-players.

6.4.2 Digital Audio Interface

To be able to transmit and receive digital audio to and from other modules in the system, the
audio-codec contains a digital audio interface, as seen in Figure 6.6. The WM8731 supports
both slave mode and master mode for audio interface communication. In master mode the
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audio-codec provides all signals for synchronization of audio data with the FPGA in this
system, including BCLK, ADCLRC and DACLRC. In slave mode, the codec is depended on
both master clock, BCLK, ADCLRC and DACLRC from an external module, in this case the
FPGA.

Figure 6.6: Communication through the audio-interface, [41].

BCLK synchronizes the data flow, where one bit is transmitted for each clock cycle as seen
in Figure 6.7. LRCLK in this figure is used as a common description of both ADCLRC
and DACLRC, because their relation to BCLK and the data lines are the same. LRCLK
is an alignment clock that controls whether the left or the right channel is presented on
the DACDAT or ADCDAT line, which defines the data lines to and from the audio-codec
respectively.

Figure 6.7: DSP mode audio interface synchronization, [41].

6.4.3 ADC and DAC

The variable sample rates in the audio demonstrator are generated on-chip from the master
clock (MCLK), according to the division ratio seen in Equation (6.1), [40].

Divisionratio =
MCLK

Target sample rate
(6.1)

These sample rates are generated in two different modes, namely the ”Normal mode” and the
”USB mode” [41], and the selected mode is valid for both the ADC and DAC. In ”Normal
mode”, the user controls the sample rate by using an appropriate MCLK or crystal frequency
together with the settings in the sample rate register. ”Normal mode” provides six different
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sample rates at 8, 32, 44.1, 48, 88.2 and 96 kHz, and requires different frequencies on MCLK
to obtain all the different rates. Some of these are presented in Table 6.8. Here, the BOSR-bit
defines the ”Base Oversample Rate”. This is the rate at which the digital signal processing
in the audio-codec is carried out at, and the output sample rate will always be a sub-multiple
of this, making it possible to change the sample rate by changing the decimation factor. The
decimation factor is determined by Equation (6.1), and is set by the control bits BOSR and
SR0-SR seen in Table 6.8.

Figure 6.8: Normal mode sample rate table, [41].

The other operation mode, called ”USB mode”, provides the same selection of sample rates
between 8 and 96 kHz as the ”Normal mode”. However, in this case, only one MCLK at 12
MHz is needed to obtain all the different rates as seen in Table 6.9, removing the need of
more than one master clock or Phase Locked Loop (PLL) circuit for clock generation [41].

The length of the digital audio data is programmable at 16/20/24 or 32 bits [41]. Both the
ADC and DAC are fixed at the same data length, and the ADC and DAC digital filters
process data using 24 bits. If the ADC is programmed to output 16 or 20 bits of data, it
strips the LSBs from the 24 bits input. If the ADC however is programmed to output 32 bits,
then it packs the 24 LSBs with zeros. The same operation is performed in the DAC, where
bits are added or removed in order to support 24 bits signal processing.

6.4.4 Headphone Amplifier

The WM8731 includes a stereo headphone amplifier [41], as seen in Figure 6.10. The output
is designed specifically for driving 16 to 32 ohm headphones with maximum efficiency and low
power consumption. The headphone amplifier includes a high quality volume level adjustment
and an integrated mute function, and is configured through the configuration registers in the
audio-codec.
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Figure 6.9: USB mode sample rate table, [41].

Figure 6.10: Headphone amplifier schematic, [41].



Chapter 7

Development Software

When designing an embedded system, one or more development tools may be used to increase
the design speed and flexibility of the system design. This chapter presents a number of
design tools provided by Altera, designed to help FPGA designers to create their systems in
an effective way.

7.1 Quartus II and SOPC Builder

The Altera Quartus II is a design software that provides a complete, multiplatform design en-
vironment for designers to implement their specific system-on-a-programmable-chip (SOPC),
and includes solutions for all phases of FPGA circuit design [5]. Quartus II enables com-
piling, timing analysis, RTL diagrams and target device configuration among other features,
and supports Verilog, VHDL or Alteras own AHDL as hardware descriptive languages. A
Block Editor is implemented to support the creation of symbols that represents the hardware
descriptive design files and create circuit diagrams based on these blocks.

To help designers create systems based on the Nios II processor, SOPC Builder is included as
a part of the Quartus II software [8]. The SOPC Builder automates the work of integrating
hardware components in the design, and may also be used to create systems without the
Nios II. Traditionally the designer manually writes HDL code to describe the modules in a
system. With SOPC Builder one can specify the system components through a graphical
interface, and the program automatically generates the interconnected logic. SOPC Builder
generates HDL files for all modules in the system, including a top-level HDL file that connects
the components together. This dramatically simplifies the designers work in creating a high-
performance SOPC design [8].

7.2 MegaWizard Plug-In Manager

In addition to the SOPC builder, Altera also provides parameterizable megafunctions that are
optimized for Altera device architectures [9]. Using megafunctions instead of coding your own
logic saves valuable design time. Additionally, the Altera-provided megafunctions may offer
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more efficient logic synthesis and device implementation. The MegaWizard Plug-In Manager
provides a GUI to customize and parameterize megafunctions, and ensure that you set all
megafunction parameters properly. When the designer has finished the parameterization, it
is possible to select which files to be generated, and the MegaWizard automatically generates
all the files needed to use the module in the design [9].

An example of an IP Core available through the MegaWizard Plug-In Manager is the FIR
Compiler MegaCore function [4]. This core provides a fully integrated FIR filter function
optimized for use with Altera FPGA devices, including a coefficient generator. The designer
can specify the filter settings and coefficient options in the MegaWizard interface. When the
sample rate, the cut-off frequency and the number of filter coefficients among other settings
are specified, the MegaWizard creates a hardware FIR filter based on these specifications.
In addition, the FIR Compiler enables the designer to load and use predefined coefficients,
integers or floating-point number, from a file. If floating point coefficients are used, these
coefficients will be quantized by the tool since only integer-coefficient filters can be generated
with the FIR Compiler [30].

7.3 Nios II Embedded Design Suite

The Nios II Embedded Design Suite (EDS) provides a consistent software development envi-
ronment that works for all Nios II processor systems [7]. With a PC, an Altera FPGA, and
a JTAG download cable, you can write for, and communicate with, any Nios II processor
system. The Nios II EDS includes many proprietary and open-source tools for creating Nios
II programs, and automates the board support package (BSP) creation for Nios II processor-
based systems, eliminating the need to spend time manually creating BSPs. A Nios II BSP
project is a specialized library containing system-specific support code, and the BSP provides
a C/C++ runtime environment, insulating the designer from the hardware in the embedded
system.

Altera BSPs contain the Altera hardware abstraction layer (HAL) [7]. The HAL is a lightweight
runtime environment that provides a simple device driver interface for programs to commu-
nicate with the underlying hardware. The HAL serves as a device driver package for Nios II
processor systems, providing a consistent interface to the peripherals in the system.



Chapter 8

System Implementation and
Discussion

The embedded audio demonstrator is based on the idea of demonstrating how the quality
of an audio signal is reduced when the sample rates in data converters are set below the
Nyquist rate, compared with sample rates above. In addition, to provide a more interesting
demonstration of audio manipulation, two FIR filters are implemented to cover a wider range
of signal processing subjects. This chapter describes the development process of the system,
and discusses the different choices that were made during the implementation. In this case, the
main goal with each choice was always to achieve the best demonstration of signal processing
subjects. There were no other constraints to system performance beyond the limits of the
devices, although some studies of the trade-off between resource use and the quality of the
demonstration were made, in order to present some data on how the level of demonstration
effects relates to the use of resources in the system.

8.1 Overall System Functionality

The system is implemented on Altera’s DE2 development and education board, presented in
Chapter 6. The choice of platform was mainly based on this board’s availability at Department
of Electronics and Telecommunication at NTNU, and an evaluation of other platforms would
have been sensible if this board had not been available. However, due to the fact that this
platform includes both an audio-codec and an FPGA, in addition to different I/O ports and
an LCD-display, the DE2 board was considered to be a well suited solution for implementation
of an embedded system for audio manipulation. The main system specifications is presented
in Table 8.1.

A block diagram of the system is seen in Figure 8.1. Here, all the main modules in the
audio demonstrator and their interconnection are presented, making it easier to understand
the signal flow that will be presented. The system’s main functionality is provided by the
Wolfson WM8731 audio-codec, seen in more detail in Figure 6.4, and the Altera Cyclone
II FPGA presented in Chapter 6.2. A user interface with buttons is implemented for user
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Table 8.1: Main system specifications.
System platform: Altera DE2 education and development board.
Main modules: Altera Cyclone II FPGA and Wolfson WM8731 audio-codec.
Signal source: Any audio source with analog output of max. 2V RMS.
Sample rates: 8, 32, 48 and 96 kHz in both ADC and DAC.
Digital filters: High-pass and low-pass FIR-filters in hardware and software.
User interface: Control panel with buttons and an 16x2 LCD-display.

interaction, and an LCD-display provides information to the user about sample rates and
filters during the system’s operation.

Figure 8.1: Embedded audio demonstrator - block diagram.

The ADC in the system provides an adjustable sample rate, and samples the analog input
signal with 8, 32, 48 or 96 kHz. The operation of the ADC is configured by a module on
the FPGA, setting different configurations based on inputs from the user interface. After
conversion, the digital datastream is sent through the digital audio interface to the FPGA
for further manipulation. A module at the input of the FPGA selects whether the signal is
to be filtered or not, based on inputs from the user interface on the DE2 board. If the digital
filters are deactivated, the datastream is sent directly back to the audio-codec. If not, the
datastream is converted to 24-bit packages in the input buffer and sent to the filter module
for digital filtering. The filter module includes both high-pass and low-pass possibilities,
controlled by inputs from the implemented user interface. When filtered, the data packages
are converted to a serial datastream in the output buffer. From here, the datastream enters
the digital audio interface in the audio-codec, ready for conversion back to the analog domain.
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This operation is performed by the DAC, providing the same set of sample rates as the ADC
at the input. When converted, the analog signal is amplified in the headphone amplifier and
then sent to a stereo 3,5mm jack-connection at the output. Here, the listener can listen to the
results of various sample rates and filtering, performed on the original, analog audio signal.

In addition to the implemented modules in the signal path for the audio signal, a Nios II
soft-CPU and an LCD-display are used in order to increase the usability of the system. The
Nios II implements a driver for the LCD-display, making it possible to print out customizable
text strings of up to 2 x 16 characters. This possibility is used to provide the user with
information about sample rates and filters during the system’s operation.

8.2 I2C-Controller

The audio manipulator supports a set of configurations that changes the operation of the
system based on inputs from the user interface. The choice of communication protocol for
communication between the audio-codec and the FPGA was based on the protocol supported
by the audio-codec. For the WM8731, the designers have implemented the I2C communica-
tion standard for configuration, a well suited protocol for interconnection of peripheral devices
in small-scale embedded system. This communication protocol is described in more detail in
Chapter 3.

In the beginning of the design process, three different approaches were evaluated in order to
implement an I2C controller on the FPGA. The controller could be...:

1. ...implemented from scratch using VHDL.

2. ...based on a laboratory exercise provided by the department.

3. ...based on an example design developed by Altera.

The first idea was based on creating a VHDL module of the controller that adapts to the
I2C standard. A basic module was designed, supporting the fundamental communication
properties of the I2C protocol, although without any error handling at this stage in the design
process. After verifying the basic functionality through simulation, the I2C standard was
studied in more detail to complete the implementation. However, since the implementation
of the rest of the protocol seemed to be a time consuming process, it was decided to take a
closer look at the two existing designs, in order to get the communication up and running.

The second idea was based on a functional audio system used in a laboratory exercise at the
department, since this design included a functional I2C controller. The design was rather
complex, and there was no easy way to extract the I2C controller from the system in order
to use its functionality in the audio demonstrator. It was thus decided to take a close look
at the example design from Altera, since this system was less complex and thus easier to
understand than the laboratory exercise design.

The example design from Altera includes two modules, providing both generation of config-
uration packages and a controller for I2C communication, described in more detail in Ap-
pendix A. In these modules, the configuration data for the audio-codec was described directly
in hardware. This means that the FPGA will have to be re-programmed if the system for
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some reason should implement a different set of configurations, beyond the once specified for
the system. A solution to this could be to implement the I2C controller on a soft-CPU like
the Nios II. Here, different configurations for the audio-codec could be written in software and
executed on the CPU, without changing the hardware description on the FPGA. However,
since this embedded system is designed to perform a dedicated task, this is not considered to
be an important feature, although configurability could increase the flexibility of the system.
Thus, since the I2C modules available through the example design from Altera provided the
desired functionality, it was decided to base the I2C controller on Altera’s example design.
This implementation was also easy to configure, making it possible to adapt the design to
this specific implementation, saving time and effort compared with designing a completely
new controller in VHDL.

8.3 Audio Signal Path

The audio signal path defines the path that the audio signal travels from the input jack-
connection on the DE2 board to the headphone output that provides the result. The block
diagram in Figure 8.1 on page 34 shows the main blocks in the audio manipulator and the
connection between them, and this section follows the signal from input to output through
the system. The path includes both A/D- and D/A-conversion, FPGA data-manipulation
and signal amplification for the headphone output.

8.3.1 Line-in

As described in Section 6.4.1, the system supports standard line-out voltages for audio sources
like CD- and MP3-players of 2V RMS. The line-in circuit contains a programmable volume
controller with an adjustable gain between -34.5dB and +12dB. For the audio demonstrator,
this gain was configured to be 0dB, making it possible to feed the system with a standard
line-out signal without causing any distortion.

8.3.2 Analog-to-Digital Converter

Operation Modes

The audio-codec contains an oversampled Sigma-Delta ADC for domain conversion of the
analog input signals. The resolution of the ADC can be set to either 16, 20, 24 or 32 bits
as described in Section 6.4.3. The ADC process data using 24 bits, thus, if 16, 20 or 32
bits resolution at the output is selected, the sample width is either reduced or increased to
obtain a 24 bits data width. For the functionality of the audio demonstrator, the ADC is
programmed to output 24 bits data samples. This choice was made mainly because this is
the resolution that the ADC, and also the DAC, uses for signal processing, in addition to the
increased resolution obtained compared to the 16 bits representation.

The audio-codec provides two different modes of operation, as discussed in Section 6.4.3. For
this design, the ”USB mode” was selected, based on the flexibility of changing the output
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sample rate without any change in the MCLK. First of all, this simplifies the implementation
of the circuit, because it is only necessary to use one PLL, implemented on the FPGA, to
realize the functionality of the ADC. In addition, in a system like this, where one of the main
functions is to change the sample rate, it was decided that a constant MCLK would ease the
implementation of more sample rates in the future, without considering the clock frequency
of the MCLK.

Sample- and Bit-rates

For the audio demonstrator, four different sample rates at 8, 32, 48 and 96 kHz were imple-
mented as a part of the system’s functionality, providing two sample rates above and two
sample rates below the Nyquist rate for audible signals. The oversample rate, as discussed
in Section 4.1 and 6.4.3, was configured to be 250fs, in order to provide the system with the
desired sample rates, using a single MCLK at 12MHz. Since the audio-codec only provides
two sample rates below 40 kHz, which is the Nyquist rate for audible signals according to
the Nyquist theorem presented in Section 4.1, both of them were implemented in order to
give a good demonstration. Sampling at 8 kHz limits the frequency band to 4 kHz according
to the Nyquist theorem, and removes much of the content of the music. The bitrate at this
sample rate, considering a resolution of 24 bits per sample, is 384 kbps. of un-coded audio
data. The bitrates for the other sample frequencies are shown in Table 8.2, calculated using
Equation (4.1) on page 11.

Table 8.2: Bitrate of the output signal from the ADC.
Sample rate (kHz) Bitrate (kbps)
8 384
32 1536
48 2304
96 4608

The two upper sample frequencies, 48 and 96 kHz respectively, are chosen in order to demon-
strate the difference between sample rates above the Nyquist limit and those below, but also
to compare them to each other. The analog output signal from a CD-player contains 1411
kbps. of audio data, where the digital data on the CD is originally sampled at 44.1 kHz. In
the audio demonstrator, this analog audio signal is sampled again, also with sample rates that
exceeds the sample rate of the original input signal at 44.1 kHz. Although it is not possible
to create a representation that is better than the source signal provided by the CD-player by
re-sampling it, a higher sample rate will produce a better reproduction of this signal compared
with a lower sample rate. Thus, a higher sample rate in the ADC takes us closer to the source
signal from the CD-player when the signal once again is converted to the analog domain.
Because of this, the sample rates at 48 and 96 kHz in the audio demonstrator demonstrates
how sampling above the Nyquist level retains the frequency content of the audio signal, in
addition to a demonstration of how these two differs in sound quality due to the difference in
representation of the original source signal.
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Listening Test

An informal forced-choice discrimination test, described in Section 2.3, was arranged to see if
it was possible to determine the difference between the two sample rates above the Nyquist
frequency for audible. Four subjects participated, listening to Mark Knopfler’s ”Our Shangri-
la” sampled at either 48 or 96 kHz through the audio demonstrator. It should be mentioned
that the ADC and the DAC uses the same sample rate during operation, thus the DAC sample
rate in this case is also 48 or 96 kHz.

Two of the subjects reported that they preferred the 96 kHz sample rate above the one at 48
kHz, claiming that Mark’s voice became clearer and that the general detail level in the music
increased. The two other subjects claimed the opposite, reporting that the sample rate at 48
kHz gave the most preferable sound. Although this test was not performed under the right
conditions, the results are interesting. Three of the subjects are students at Department of
Electronics and Telecommunication, while the last studies at Department of Electric Power
Engineering. As a result of this, all subjects knew, although at different levels, something
about sampling and sample rates. This may have affected the results, due to the subjects
understanding on how this may influence the quality of the result. In addition, the listening
test was not performed under ideal conditions, with some level of background noise interfering
the subjects during testing. However, although the subjects may have been affected by the
fact that they expected a variation, the test results show that all subjects reported that they
heard some level of difference between 48 and 96 kHz sampling on the analog input signal.
The implementation of two sample rates above the Nyquist rate was thus considered to add
an interesting demonstration to the sample rate functionality, making it possible to test the
difference on the group or person who attends the demonstration.

8.3.3 Digital Audio Interface

As described in Section 6.4.2, the digital audio interface is used to transmit audio data to
and from the audio-codec. This interface supports both master and slave mode, and is used
to synchronize the data transmission between the audio-codec and the FPGA, as seen in
Figure 6.6 on page 28. For the audio demonstrator, master mode was selected. When the
audio-codec is in master mode, the FPGA only needs to provide the audio-codec with a master
clock, and the codec returns the other signals necessary for audio data synchronization. This
simplifies the implementation, and insures that the transmission is correct.

The signal flow diagram in Figure 6.7 on page 28 presents the timing for data transmission
between the audio-codec and the FPGA. In addition to control the presence of either the left or
the right channel on the ADCDAT line, ADCLRC is also used in the audio demonstrator as an
enable signal, telling the FPGA input buffer presented in the next section that a data package
with samples is on its way. In the same way, for data transmission from the FPGA output
buffer to the DAC through the DACDAT line, DACLRC is used to initialize the transmission.
ADCLRC and DACLRC may thus be used as synchronization signals in the design of the
audio input- and output buffers, since these signals initializes the data transmission both to
and from the audio-codec.
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8.3.4 Audio Input Buffer

The digital audio interface implemented in the audio-codec controls the data flow between
the codec and the FPGA. To support the synchronization of the data transmission, an input
buffer was implemented on the FPGA, providing the digital filters with the right audio data
at the right time.

This module receives serial audio data in packages of 48 bits from the digital audio interface
in the audio-codec. Each packet contains 2 x 24 bits of audio samples, where the first 24 bits
represents the left channel sample, and the last 24 bits represents the right channel sample.
The main functionality of the input audio buffer is to receive this data package, convert it
to a parallel representation, and transmit the audio data in two packages of 24 bits each in
parallel to the digital filter module presented in the next section.

The implementation of the input audio buffer was performed in VHDL using Quartus II,
described in Section 7.1. A more detailed description is presented in Appendix B. To make
it possible for the user to select whether the audio signal should be filtered or not, some logic
were implemented at the input, making it possible to connect the ADCDAT directly to the
DACDAT output, by-passing the digital signal processing functionality of the FPGA. This
makes it easier to demonstrate how the filtering affects the input signal, by turning the filters
on and off while the system operates.

8.3.5 Hardware FIR Filters

One of the main features of the embedded audio demonstrator is digital filtering, described
in Chapter 5. The goal is to demonstrate how different filter characteristics affects the per-
ception of the sound, and introduce the possibility of filtering in the digital domain. For the
filters implemented in this system, the most important feature is the demonstration effect.
The trade-off between filter performance and resource use was thus not considered to be an
important factor, although a test was performed to study the correlation between the number
of filter coefficients and the use of resources on the FPGA.

Overall Design

The low-pass filter in the system is seen in Figure 8.2. This module, and the corresponding
high-pass filter, were designed using the Altera MegaWizard Plug-In Manager FIR Compiler
described in Chapter 7.2. Compared to designing the filters in VHDL or Verilog, this graphical
interface simplified the filter design considerably, by providing different configuration options
and generation of the specified filter to a functional VHDL module ready for implementation.
As seen in the figure, two tri-state buffers are connected to the ”ast source ready” and the
”ast source valid” outputs, due to the use of two different modules for high-pass and low-pass
filtering, since these outputs will drive the same output buffer. The tri-state buffers enable
signals are connected to the reset signal of the filter module, and the filter module that is not
used when the filters are active will be held in a reset state, setting the tri-state buffers to a
high impedance.
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Figure 8.2: Hardware low-pass filter on the FPGA.

Coefficient Generation

Figure 8.3 shows a screenshot of the coefficient generator in the FIR Compiler. This generator
contains a set of configuration possibilities that specifies the filter’s operation, and creates a set
of coefficients that implements this functionality. Filter type makes it possible for the designer
to select the desired filter characteristic for his or her design. For the audio demonstrator, two
different characteristics were implemented, namely a low-pass and a high-pass filter. These
two characteristics were considered to give a good and effective demonstration of filters,
with results that should be easy to perceive. However, the effect of the filtering is not only
dependent on whether the characteristic is high-pass or low-pass, but also on the filter’s
specification. For the low pass filter, the cut-off frequency was set to 100 Hz, ideally removing
all but the lowest frequencies from the input signal. It was decided through listening tests,
discussed in Chapter 2, that the cut-off frequency should be as low as possible, due to the fact
that this filter-implementation is far from ideal, including frequencies above the cut-off point
in the resulting output signal. For the other filter, the goal was to find a cut-off frequency
that removed most of the low frequencies, but at the same time preserved the sound level
and the characteristics in the music. This is necessary because it is desirable that the listener
recognizes the song, but at the same time perceives the results of the filtering. Through
listening tests, a cut-off frequency of 2 kHz was selected. In the same way as for the low-
pass filter, the output signal from the high-pass filter will include frequencies below the given
cut-off point due to the non-ideal filter characteristics. However, a cut-off frequency at 2 kHz
seemed to provide a good demonstration of low frequency removal, and at the same time
maintain a decent level of the signal strength. Higher cut-off frequencies were considered,
but discarded through listening tests because of the gradually decrease in signal level at the
output as the cut-off frequency increased, due to the energy removal of the input signal.

The coefficient generator also provides a possibility of selecting the number of coefficients used
in the filter to be implemented. The number of coefficients determines the performance of the
filter, due to the filter order specified as the ((number of filter coefficients) - 1). An increase in
the number of coefficients takes the frequency respons of the filter closer to the ideal case, but
increases at the same time the filter’s complexity. For the audio demonstrator, the system’s
complexity is restricted by the number of LEs available in the FPGA. In this case, before
the implementation of the FIR filters, the system used about 6% of a total of 33216 LEs on
the FPGA. The FIR filters could thus occupy up to 94% of the FPGA’s resources in order
to implement a filter demonstration that seemed good enough. The complexity of the filter
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is more or less proportional with the number of filter coefficients as seen in Table 8.3, which
shows the relation between the number of coefficients in the low-pass filter and use of logical
elements on the FPGA.

Figure 8.3: Screenshot of coefficient generator in Altera FIR Compiler.

Table 8.3: Filter coefficients for low-pass filter and the usage of logical elements.
Number of coefficients Number of logical elements
10 1034 (3%)
20 1571 (5%)
30 2070 (6%)
40 2627 (8%)
50 3144 (9%)
60 3643 (11%)
70 4282 (13%)
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The number of coefficients were increased in steps of ten in order to find a reasonable trade-off
between resource use and the effect of the filter demonstration. The goal for the low-pass
filter was to reach a sufficient level of attenuation of high frequencies in order to obtain a
good demonstration. Figure 8.4 shows the frequency response of the low-pass FIR filter with
10 filter coefficients. This frequency responses is normalized for a sample rate of 96 kHz,
and shows a considerable level of attenuation of all frequencies, although the attenuation
increases, as expected, with the frequency. This respons was not considered to give a sufficient
demonstration effect through listening tests, and because of the moderate resource use of only
1034 (3%) of the LEs, it was decided to increase the number of filter coefficients to a higher
level.

Figure 8.4: Low-pass frequency respons using 10 coefficients and rectangular window.

To get a better representation of the low-pass filter with a cut-off at 100 Hz, 70 filter coefficients
were selected, providing the FIR filter with a filter order of 69 at 13% of the LEs on the FPGA
according to Table 8.3. The frequency respons of this filter is seen in Figure 8.5. Here, the
main lobe of the respons is more narrow and less attenuated than the same filter characteristic
with 10 coefficients, seen in Figure 8.4.

Although the FIR filters could use up to over 90% of the resources on the FPGA, there was
no need to do this in order to get a demonstration of the FIR filter that seemed good enough.
It was also considered to be practical to allow some level of free space for future work and
implementations on the FPGA. In addition, the system seemed to get some hold time viola-
tions during compilation when the number of filter coefficients reached a certain level. These
violations were often related to the BCLK provided by the audio-codec, clocking the different
modules in the path of the audio signal. As a result of this, the sound through one or both
of the filter modules could be distorted during operation, thus removing their functionality
completely. The hold time violations were improved through configurations in the Quartus
II software, optimizing the synthesis operation for speed, and removing the optimization for
power consumption. However, a certain level of complexity in the filter resulted in hold time
violations for the system, and although further work could have resolved the problem, 70 co-
efficients were selected, making a good trade-off between system functionality, demonstration
effects and system resources.
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Figure 8.5: Low-pass frequency respons using 70 coefficients and rectangular window.

In the case of the high-pass filter, it was noticed that the number of coefficients needed to
make a good demonstration of the filter effect was less than for the low-pass filter. Figure 8.6
shows the frequency respons of the high-pass filter with 40 coefficients and a cut-off at 2
kHz, normalized for a sample frequency of 96 kHz. As seen in the figure, the high-pass
filter attenuates some of the lowest frequencies to below -40dB, and reaches the -3dB level
at approximately 2.5 kHz. The effect of this respons was easy to perceive, and gave a good
demonstration of high-pass filtering. Although higher cut-off frequencies were considered, the
signal strength became weaker as more of the total input energy was removed, making it more
difficult to perceive the effects through a pair of stereo headphones. This could have been
solved by an increase in amplification in the headphone amplifier at the output when the high-
pass filter is active, but since the demonstration effect seemed to be good enough at the given
specifications, it was decided to keep the configuration and save the system’s development
time. However, for future work, the implementation of additional FIR filters with different
coefficient lengths at the same characteristics could provide an interesting demonstration on
how the number of coefficients affects the performance of the filter.

It should be noted that the cut-off frequency of the FIR filters are proportional to the sample
rate used in the audio-codec, as described in Section 5.1. The coefficients specified for the
two filters in this system are generated using a sample rate of 96 kHz in the FIR Compiler
interface. However, since the cut-off frequency is reduced when the sample rate decreases,
it is possible to achieve an even better demonstration of the filter effects, at least for the
low-pass filter, since the reduced sample rate reduces the frequency spectrum of the audio
signal. As a demonstration effect, this could thus be used to increase the perception of the
filter’s characteristic, without changing the filter coefficients. However, since the variations in
sample rates also increases the number of parameters that the listener will have to relate to,
it is recommended that the sample rate is kept constant at 96 kHz when the demonstrations
of the filters are performed, at least for the youngest audience.
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Figure 8.6: High-pass frequency respons using 40 coefficients and rectangular window.

Window Functions

The coefficient generator provides the designer with different window functions used to deter-
mine the filter coefficients as described in Section 5.1. Four different windows are provided,
namely the rectangular, Hanning, Hamming and Blackman windows, which are used to adjust
the filter respons to different applications. For the high-pass filter, a rectangular window was
selected. This window is the least complex of the four windows provided, and gives a stop
band attenuation of 13.2dB for the first side lobe in the in the frequency response. However,
although the Hamming window provides more attenuation in the stop band, the main lobe of
the rectangular window is more narrow, providing a faster attenuation of unwanted frequen-
cies for a given number of coefficients. In this case, with 40 coefficients, the main lobe of the
frequency respons using the Hamming window got to wide, pushing the first side lobe below
the 0 Hz limit, as seen in Figure 8.7. With an increase in the number of filter coefficients,
the main lobe got steeper, increasing the performance of the attenuation. However, since the
rectangular window was considered to work good enough with 40 coefficients and a cut-off
frequency at 2 kHz, attenuating frequencies at about 1.2 kHz with more than 40dB as seen
in Figure 8.6 , this solution was selected for implementation.

For the low-pass filter, where the main part of the signal spectrum is to be attenuated, a
Hamming window was chosen. This window gives a stop band attenuation of 43dB for the first
side lobe in the frequency respons, with an increase in attenuation of 6dB per octave. For the
high-pass filter, where the main part of the frequency spectrum passes without attenuation,
it seemed important to get a fast attenuation of the frequencies that should be suppressed.
For the low-pass filter however, where most of the energy is removed in the filter process,
an overall attenuation at a higher level was considered to be more important than a narrow
main lobe. Because of this, the Hamming window was selected, providing a good frequency
respons for a low-pass filter with a cut-off point at 100 Hz, as seen in Figure 8.5.
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Figure 8.7: High-pass frequency respons using 40 coefficients and Hamming window.

Bit Depth of Coefficients

Another important factor for the performance of the FIR filters, in addition to the number
of coefficients, is the coefficient resolution. The filter coefficients for these filters are decimal
numbers between -1 and 1, represented by a selectable number of bits. Figure 8.8 shows
a screenshot of Altera’s Fir Compiler, presented in Section 7.2. This interface provides a
number of specifications, making it possible to control many aspects of the filter’s operation.

The coefficients in the coefficient generator described in Section 8.3.5 are generated as a
floating-point set. However, due to the fact that the FIR Compiler only generates integer-
coefficient FIR filters, the coefficient set will have to be transformed in an float-to-fixed-point
operation. The FIR Compiler provides a selectable bit width of the filter coefficients from 2
to 32 bits. The resolution of these coefficients determines the precision of the transformation,
due to an increased range of integer-coefficients as the bit width increases. As an example, 4
bit coefficients provides an integer range from -8 to 7, thus a maximum of 16 different values
to represent the integer-coefficients. As a demonstration, Figure 8.9 shows the frequency
respons of the filter for both the original floating-point coefficients, and the fixed-point integer
coefficients calculated using 4 bits resolution. As the resolution increases, the fixed-point
representation of the frequency response gets closer to the original floating-point respons,
although this again increases the filter’s complexity. Due to this, the number of bits used
in the coefficients for internal signal processing were increased until there was little or no
difference in the two frequency responses presented in the FIR Compiler. In this case, for
both the high-pass and the low-pass filter, a sufficient fixed-point integer representation was
found when the bit width was 16 bits. An additional listening test could have been performed
in order to support the selection of this bit width. However, since the increase in bit width
made little change in the area use on the FPGA, in addition to the fact that a listening
test would have been a time consuming process, it was decided to base the selection of the
bit-width on the data provided by the FIR Compiler.

The FIR filter uses 45 bits for internal calculations when the audio samples at the input
contains 24 bits, and the resolution of the coefficients are set to 16 bits. Since the audio-codec
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Figure 8.8: Screenshot of Altera’s FIR Compiler

Figure 8.9: Frequency respons of the low-pass filter with float-coefficients(blue) and fixed-
coefficients(green).
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only supports an input of 24 bits to the digital audio interface and the DAC, the output from
the two FIR filters must be truncated and rounded in order to support this specification. The
FIR Compiler provides a custom resolution of the output data, making it possible to decide
which part of the total data width that should be put on the FIR filter’s output, and if the
rest of the bits should be rounded or truncated. In this case, it was decided to keep the 24
MSBs of the audio data, since this is where the most decisive parts of each sample is kept.
The 21 LSBs were truncated by the FIR Compiler, creating a 24 bits representation of the
filtered audio data at the output, ready for transmission back to the audio-codec and domain
conversion to the analog domain.

As an additional demonstration, it was considered to implement a possibility to select be-
tween different bit widths in the system. The audio-codec supports 16, 20, 24 and 32 bits of
audio data through register configuration, and a selection between these could add an inter-
esting demonstration of bit depth versus sound quality. However, the FIR filters implemented
through the MegaWizard FIR Compiler must be generated with a defined bit width. Due
to this, it is not possible to get a functional selection between different bit-depths in the
FIR filters without implementing one filter module for each bit-width. This could have been
performed, but since the lowest available bit-rate in the audio-codec is 16 bits, the same res-
olution as used in audio CDs, it was assumed that the demonstration effect would be difficult
to perceive, due to the high resolution. This functionality was thus not implemented.

Filter Architecture

The FIR Compiler provides four different options of filter structures that can be selected
for implementation. These are fully serial, multi-bit serial, fully parallel or multi-cycle filter
structures, each with different specifications related to area and speed. In the case of the
audio demonstrator, area use on the FPGA was not an initial consideration, although it was
not considered to be unessential. When it comes to speed, the minimum requirements of the
FIR filters are related to the maximum sample rate provided by the audio-codec. This is thus
an important factor for the system to operate properly.

With the highest sample rate of 96 kHz, the audio-codec feeds the input buffer and the FIR
filter with 192.000 audio samples per second, due to the sampling of both left and right
channel. The FIR filters in the system are clocked with a clock frequency of 12 MHz, the
same clock that drives the other modules in the signal path of the audio data. In the fully
serial case, these filters requires 25 clock cycles to process one audio sample from input to
output. This gives the filter a throughput of 480.000 samples per second, more than twice as
much as required for this application, calculated as clockfrequency

processtime . Throughput calculations
and use of area for all architectures for the low-pass filter with 70 coefficients are seen in
TSable 8.4.

The initial idea for the filter implementation was to use the embedded multipliers implemented
in the FPGA to increase the system’s performance. However, it turned out that only one
of the four architectures provided by the FIR Compiler, namely the multi-cycle structure,
uses these multipliers for the filter implementation. The three other structures, including the
fully serial filter, uses the logical elements in the FPGA to realize the multiplier blocks. The
multi-cycle structure has a maximum throughput of one audio sample per clock cycle, and is
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Table 8.4: Filter architectures, throughput and use of resources for a LP-filter with 70 coefficients.
Filter architecture Throughput Number of logical elements
Fully serial 480000 samples/sek 4221 (13%)
Multi-bit serial 923076 samples/sek 4634 (14%)
Fully parallel 12000000 samples/sek 9588 (29%)
Multi-cycle 12000000 samples/sek 7867 (24%)

thus 25 times faster than the fully serial version. Due to this, the multi-cycle filter gives the
best processing performance at the lowest possible use of logical elements. However, since the
performance of the fully serial filter provided a sufficient level of performance at a small use
of resources, the embedded multipliers in the FPGA remained unused in this system.

8.3.6 Software FIR Filters

The initial idea with the filter implementation was to perform the operation in both hard-
ware and software in order to provide a demonstration of the performance in both of these
domains. Hardware/software co-design can be used to meet the system-level objectives in
a system, through allocation of modules to the domain that provides the best performance,
as discussed in Section 1.2. For the audio demonstrator, an implementation of FIR filters
in both hardware and software could make it possible to study the performance difference
between these domains, thus increase the system’s usability as a demonstrator.

A Nios II soft CPU was implemented on the FPGA as a platform for the software filters in
the system. This core is available in three different versions, each specified with different
values related to area use and speed performance as described in Section 6.3. For the audio
demonstrator, implementing two FIR filters in hardware with 40 and 70 filter coefficients, it
was decided to use the fastest Nios core available using a maximum of 3000 logical elements
and a maximum clock frequency of 185 MHz, in order to keep up with the hardware filters.

The SOPC builder in Quartus II, described in Section 7.1, provides several IP modules ready
for implementation with the Nios II soft CPU. The audio core seen in Figure 8.10 is one of
them, providing an interface for audio data to and from the audio-codec. This module was
implemented in order to ease the audio data synchronization in the Nios II. The audio input
and audio output on the audio-core are connected directly to the serial data lines on the audio-
codec, thus by-passing the digital audio buffers implemented on the FPGA to support the
hardware filters discussed in Section 8.3.5. The FIFO buffers in the module have adjustable
widths, and are used as containers for the digital audio samples.

To see if it was possible to get the digital signal through the Nios II without any errors, a
read/write function was implemented as a test through the Altera IDE, presented in Sec-
tion 7.3. This function reads the audio samples from the input FIFOs and sends them back
through the output FIFOs without performing any kind of signal manipulation. This worked
without any problems, thus providing a good basis for further development.

The next step was to implement a direct form FIR filter to be executed on the Nios II, reading
audio samples from the FIFO buffers and performing filter manipulations before the samples
are returned. In the beginning, a first order low-pass FIR filter with only two coefficients
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Figure 8.10: Block diagram for audio core in the Nios II, [2].

was implemented in C, in order to test the functionality of the filter function. This function
performs multiplication, addition, subtraction and delay operations on the input signal, thus
putting demands on the CPU when it comes to arithmetic functionality.

The floating point filter coefficients for the software filter were generated using MatLab’s fda-
tool, providing a graphical interface for specification of FIR filters and coefficient generation
for further implementation. Due to the fact that Altera’s FIR Compiler only generates fixed-
point integer coefficients, the hardware filter performs its operations with coefficients that
are scaled with a scaling factor and rounded. In the software filter, a function for coefficient
scaling and rounding was not implemented, thus the software function of the FIR filter had
to perform floating point arithmetic in order to filter the input samples from the audio-codec.

To test the first order FIR filter, an audio signal was connected to the system. Although the
FIR function did its mathematical operations correctly in tests with single numbers as input,
the sound signal from the source was completely distorted after filtering. At first, the Nios
II processor’s performance was considered to be the problem. Thus, a performance counter
provided by the SOPC Builder was added to the design, in order to count the number of clock
cycles required to perform any function in the C code. However, based on a maximum required
throughput rate of 192.000 samples per second, the tests with the performance counter did
not reveal any errors related to speed performance. Thus, the problem was considered to be
related to the arithmetic operations performed by the FIR filter.

The arithmetic operations consists of performing mathematical operations on the input sam-
ples and filter coefficients. As mentioned above, the filter coefficients generated for these filters
are floating point coefficients. Floating point multiplication with the signed 2’s complement
samples delivered from the ADC in the audio-codec might have caused the output errors, and
a further study on this topic may have resolved the problem. One solution to this would have
been to perform the same float-to-fixed operation as the hardware filters perform, where the
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floating point coefficients are scaled and rounded to a set of fixed integer coefficients before
the multiplication operation. However, because of the limited time available on this project,
this function was not implemented in this system.

So, due to challenges and time constraints during the process, the implementation of software
filters was not completed. Unfortunately, this removed the systems ability to demonstrate the
performance differences between hardware and software FIR filters, and reduced the co-design
aspect in the design. However, due to the fact that the system performed the desired filter
operations, in addition to a functionality for adjusting the sample rates in both the ADC
and DAC, the value of the demonstrator without software filters was considered to be good
enough.

8.3.7 Audio Output Buffer

This output buffer works as an interface between the FIR filters and the audio-codec. When
the FIR filter has performed its operation, the output buffer receives the filtered audio samples
in parallel as 2 x 24 bit packages. The output buffer transforms these packages to a 48 bits
serial data stream, and sends the audio data to the audio-codec.

As for the input buffer described in Section 8.3.4, the output audio buffer was described in
VHDL using the Quartus II software. Its operation is specified for this system, and provides
support for both the FIR filters and the audio-codec’s communication protocols, at the input
and output respectively. In order to select which of the two hardware filters that should
feed the output buffer with data, a multiplexer is implemented as a selector between the FIR
filters and the buffer. This multiplexer is seen in Figure 8.11. A ”filter select” signal from the
user interface makes it possible to decide if the system should provide low-pass or high-pass
filtering. This signal is also connected to the filter modules, keeping the filter that is not
active in a reset state. More details on the audio-buffer are presented in Appendix C.

Figure 8.11: Module for selection between highpass and low-pass filtering.

8.3.8 Digital-to-Analog Converter

When the audio samples returns from the FPGA to the audio-codec, they are received by
the digital audio interface discussed in Section 8.3.3. This interface, together with the output
buffer on the FPGA, synchronizes the data transmission between the two modules. The audio
interface is connected to the oversampled Sigma-Delta DAC implemented in the audio-codec,
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making it possible to convert the manipulated audio data back to the analog domain, as
described in Section 4.2.

The DAC’s operation is controlled by the same registers as the ADC, and the two converters
shares the same selection of modes and oversampling ratios as discussed in Section 6.4. How-
ever, it is possible to achieve different output sample rates from the ADC and DAC, although
it was decided to use the same rates in both converters for this system. This was done in order
to decrease the number of variables in the demonstration, thus making it easier to describe
the effects that the listeners perceive. In addition, there were some limits in the audio-codec
regarding the possibility of combining different rates in the ADC and DAC. Thus, whether
the ADC has an output sample rate of 8, 32, 48 or 96 kHz, the DAC will have the same,
converting the digital signals to the analog domain through oversampling.

As described in Section 8.3.2, a listening test was performed in order to test the difference
between sampling at 48 and 96kHz. Since the ADC and DAC uses the same samples rates
in this system, this test was actually a comparison of sound quality as a result of both A/D-
and D/A-conversion. Due to the acceptable sound quality, and the fact that the number of
combinations of different sample rates in the ADC and DAC are limited, it was not consid-
ered to perform any other evaluation of the DAC. However, to increase the possibilities for
demonstration of A/D-conversion and D/A-conversion, an independent selection of sample
rates between the ADC and DAC could be implemented in the future.

8.3.9 Headphone Amplifier

The headphone amplifier seen in Figure 6.10 on page 30 defines the output module of the
system, and is used in the audio demonstrator to drive headphones that provides the results
of the audio manipulation. Although this module provides an adjustable volume level through
register configuration, as described in Section 6.4.4, it was decided to not use development
time to implement a function for this. The volume level was thus configured to a fixed level,
mainly because most sources that will be used with the audio demonstrator is considered to
have an integrated volume controller. However, as a possibility for future work, a function
for volume adjustment could increase the flexibility of the system.

8.4 User Interface

Since the system is intended for demonstration, a user interface was implemented in order to
let the user interact with the system’s functionality. The user interface consists of a control
panel with switches and an LCD-display for system feedback, all implemented on the Altera
DE2 development board.

8.4.1 Control Panel

The control panel is seen in figure 8.12. For the audio demonstrator, two of the pushbuttons
and four of the switches available on the DE2 board were used to control the functionality
of the system. During demonstration, the persons who listens to the results of the audio
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manipulation should be given the possibility to operate the control panel on their own. This
will increase the level of interactivity between the users and the system, and is considered to
increase the overall quality of the presentation.

Figure 8.12: Control panel with buttons and switches on the DE2 board.

In Table 8.5, the different switches and push buttons are listed together with their function-
ality in the audio demonstrator. Table 8.6 and 8.7 includes the different combinations for
sample rate and filter selections respectively, and shows how the system should be configured
in order to get the desired functionality. It should be noted that the sample rate is updated
first when the update-button, Key0, is pushed. Thus, the user will first have to select the
desired sample rate with SW0 and SW1, then push Key0 in order for the system to change
the configuration.

Table 8.5: Functionality of control panel.
Key0 Configuration update
Key3 System reset
SW0 Select sample rate
SW1 Select sample rate
SW16 High-pass/low-pass filter
SW17 Hardware filter on/off

Table 8.6: Switch combinations for selection of sample rate.
SW1 SW0 Functionality
0 0 8 kHz sample rate
0 1 32 kHz sample rate
1 0 48 kHz sample rate
1 1 96 kHz sample rate

Table 8.7: Switch combinations for selection of filter operation.
SW17 SW16 Functionality
0 0 Filter off
0 1 Filter off
1 0 Low-pass filter
1 1 High-pass filter
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8.4.2 LCD-Display

As mentioned in Chapter 6.1, the DE2 board includes a 16 x 2 LCD display as seen in
figure 8.13. This LCD-display was implemented in order to give the user some feedback from
the system regarding sample rates and filter operation. This is considered to increase the
demonstration effect, because it will make it easier for the listener to relate what he or she
hears to the actual configuration on the system. The LCD-display is updated when a change
is made on the control panel, and presents the actual sample rate in line one and the status
of the filters in line two.

Figure 8.13: LCD-display on the DE2 board.

The LCD display is controlled by an LCD-controller implemented on the Nios II soft-CPU
through the SOPC Builder. LCD-control is thus the only operation that the Nios II performs
in the system, due to the absence of software FIR filters. However, due to the fast implemen-
tation of an LCD-controller through Altera’s SOPC builder, it was decided to keep the Nios
II in the system for this operation, although an LCD-driver could also be written directly in
VHDL, possible saving area cost for the system. As mentioned in Chapter 6.3, the Nios II
is available in three different sizes regarding area and performance. The initial system used
the fastest and most area consuming soft-CPU version due to the performance requirements
of the FIR filters. However, since these filters were not implemented in the audio demonstra-
tor, the Nios II is only used for LCD-display configuration. Thus, the slowest and least area
consuming Nios II version was implemented, providing a speed performance of 31 DMIPS at
less than 700 logical elements.

To implement the functionality of the LCD-display, functions for writing to the two LCD-lines
were written in the Nios II EDS development software, described in Chapter 7.3. The Nios
II is connected directly to the control panel presented in the Section 8.4.1, and changes the
content of the display based on the inputs from the push buttons and switches. Since the LCD-
functionality is the only operation that the Nios II will perform, it was decided to implement
this operation through polling. Polling, as discussed in Section 6.3.1, means that the soft-CPU
will have to monitor the operation of the push-buttons and switches continuously, updating
the LCD-display whenever a change occurs. Although polling wastes CPU-time, this was not
considered to be a problem for the audio demonstrator, due to the fact that the soft-CPU
only performs operations related to the LCD display. However, for future development, if the
software FIR filters are to be implemented, the system should support interrupt handling in
order to increase the system’s performance.
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8.5 Summary - System Implementation

The system was implemented on Altera’s DE2 development and education board, based on
the specification presented in Section 1.1. Although the final system did not provide FIR
filter operation in software, the overall system functionality with variable sample rates and
filtering in hardware were implemented and verified, providing the audio demonstrator with
several functions for demonstration of signal processing topics. To illustrate the specifications
of the final implementation, Table 8.8 presents the different operation modes that the audio
demonstrator provides, together with information about the features available in each mode.

As described in Section 8.3.5, the cut off frequency is proportional to the sample rate. Both
filters were specified with a sample rate of 96 kHz, and although the cut-off frequencies where
specified to be 100 and 2000 Hz for low-pass and high-pass filters respectively, the cut-off
frequency will change when the sample rate is configured to something else than 96 kHz. Due
to this, the cut-off frequencies in Table 8.8 are calculated from a base sample rate of 96 kHz.

Table 8.8: Specification of the implemented system.
XXXXXXXXXXXFeatures

Mode
8 kHz 32 kHz 48 kHz 96 kHz

Audio bandwidth 4 kHz 16 kHz 24 kHz 48 kHz
Audio bitrate 24 bits 24 bits 24 bits 24 bits
Filter type High-

pass/low-
pass/off

High-
pass/low-
pass/off

High-
pass/low-
pass/off

High-
pass/low-
pass/off

Filter domain Hardware Hardware Hardware Hardware
Cut-off frequency
low-pass

8.33 Hz 33.3 Hz 50 Hz 100 Hz

Cut-off frequency
high-pass

166.7 Hz 666.7 Hz 1000 Hz 2000 Hz
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Demonstration

As described in Chapter 1.3, it is important to consider different topics related to pedagogics
when demonstrating an embedded system. This chapter presents a guideline to how the
system should be introduced in order to make the listeners motivated, and provides knowledge
to the demonstrators on how the system’s functionality should be used in the presentation.

The demonstration consists of the embedded audio demonstrator implemented on Altera’s
DE2 board, an audio source with an analog output and a set of headphones or active speakers.
In most cases, if more than one person attends the demonstration at once, a pair of active
speakers should be used in order to demonstrate the effects to more than one person at the
time. It is important that these speakers are active, thus contains an internal amplifier,
due to the low output power from the headphone output on the DE2 board. In addition,
whether active speakers or headphones are used, they should provide a good representation
of all frequencies in the audible spectrum in order to present the effects of different sample
rates and filter characteristics in a perceivable way. Headphones limits the perception of the
demonstrated effects to one person, but reduces at the same time the level of background
noise for the listener. This makes it easier to perceive the results, and headphones should
thus be considered if the group contains few people.

As mentioned earlier, the system supports any audio source with an analog line-out level
of maximum 2V RMS. If one of the persons who attends the demonstration has a portable
music device like an MP3-player or mobile phone with MP3 possibilities and jack-connection
available, this devices should be used as source, if possible, in order to demonstrate that the
audio manipulation might be performed on any audio source with an analog output.

The demonstration is based on an oral presentation of the topics that the demonstrator
presents. In addition, a poster with a block diagram and an illustration of the signal flow,
together with some motivation for use of the demonstrator, is included to complete the demon-
stration. This poster is presented in Appendix D on page 73. However, the main focus in
the demonstration should be on the presentation provided by the person who demonstrates
the system, and the effects presented by the demonstrator. Table 9.1 describes how different
motivation- and demonstration-techniques could be used in order to adjust the presentation to
different age- and education-levels. It is important that the demonstrators who demonstrates
the system takes these factors into consideration before the presentation starts.
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Table 9.1: Motivation and Presentation of the Audio Demonstrator.
Target group Motivation Demonstration
Primary school
pupils

The possibility to change
the sound through the DE2
board.

Give a short demonstration
on how the different config-
urations changes appearance
of the sound, but focus on
providing the pupils with a
chance to configure the sys-
tem on their own. Answer
questions.

Secondary school
pupils

Present trade-off between
sound quality and sample
rate(bit rate), and relate
this to portable sound sys-
tems. Describe equalizers
in home stereo systems and
MP3-players in relation to
filters.

Demonstrate the system with
different sample rates without
filtering. Then, set the sample
rate to 96 kHz and change be-
tween the low-pass and high-
pass filters. At the end, al-
low the listeners to change the
configuration of the system on
their own. Answer questions.

High school/uni-
versity students

If the group study electron-
ics, the motivation could be
related to theoretical courses
that they have had. Since
both FIR filters and sampling
might be familiar, the motiva-
tion should focus on the fact
that this system is a prac-
tical example of how to im-
plement this theory in a de-
sign. For students without
any background in electron-
ics, the motivation should be
the same as for the secondary
school pupils.

Demonstrate the system with
different sample rates with-
out filtering. Then, set the
sample rate to 96 kHz and
change between the low-pass
and high-pass filters. In addi-
tion, present the fact that the
cut-off frequency changes with
the sample rate, and demon-
strate how the high-pass and
low-pass filters sound differ-
ently with a lower sample rate
than 96 kHz. At the end, al-
low the target group to change
the configuration of the sys-
tem on their own. Answer
questions.
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Conclusions

Embedded systems provides a wide range of possibilities for the system designer when design-
ing an embedded demonstrator for demonstration of topics related to electronics. The use of
configurable hardware like FPGAs leads to shorter development time as well as an increased
flexibility in the design process of such systems.

In this master thesis, and embedded system for audio manipulation was implemented in order
to demonstrate topics related to digital signal processing. Through the use of a Cyclone
II FPGA and a Wolfson WM8731 audio-codec, both implemented on Altera’s DE2 board,
the system performs real-time demonstration of adjustable sample rates and different filter
characteristics.

A good demonstration of embedded systems requires both motivation and activation of the
attending audience. For motivation, the person who presents the design should relate the
systems functionality to something that the people who attends the demonstration are familiar
with. In this case, sampling and filtering could be related to bitrates of MP3-files and sound
equalizers in CD- and MP3-players in order to provide a better understanding of the system’s
functionality. To activate, interactive design features should be added to the system in order
to let the user be a part of the demonstration. For the embedded audio demonstrator, a user
friendly control panel and an LCD-display for system feedback are implemented in order to
provide the listener with control of the system’s operation. These factors, together with the
multimedia content that the system provides through manipulation of audio, creates a good
basis for a successful demonstration.

Further development could increase the demonstration quality of the implemented system,
and extend the number of demonstration effects in the audio demonstrator. In addition to
adjustable sample rates and high-pass and low-pass FIR filtering in hardware, the implemen-
tation of software FIR filters could provide the system with an interesting demonstration of
the performance difference between filtering in these two domains. There could also have
been performed a more in-depth study of which filter characteristics that are best suited for
demonstration of filters in general. Additional listening tests could be used as a tool in this
research. In addition, due to the wide possibilities of the Altera DE2 system platform, several
new features could be implemented in the future to increase the number of topics covered by
the audio demonstrator.
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Appendix A

I2C-controller - Details

The Verilog modules for configuration based on Altera’s example design, as described in
Section 8.2, are seen in Figure A.1. These modules are modified versions of those provided
by Altera’s example design, adjusted to support the functionality of the audio demonstrator.
The ”codec config” module in the figure contains a set of configurations specified for the
WM8731 audio-codec. This codec includes a number of registers, providing the designer with
a wide range of possibilities for customization of the audio-codec for his or her design. For
this implementation, four different configuration sets were made. These configurations relates
to the operation of the ADC and DAC, and are described in more detail in Section 8.3.2. A
configuration set consists of ten packages of 24 bits, where each packet contains a device
address, a register address and the configuration data. The 8 MSBs are the address byte
to the audio-codec. Each device connected to the I2C bus has a unique address, making
it possible for the transmitter to send the data packages to one specified receiver, in this
case the audio-codec. The address bits for the device must be the MSBs of each packet
transmission. The next 8 bits are the register address bits. These bits specifies which register
in the audio-codec that is to be configured, making it possible to re-configure only parts of
the codec’s functionality. The 8 LSBs contains the data bits. It is these 8 bits that configures
the audio-codec and determines the functionality of the device.

Figure A.1: Verilog modules for audio-codec configuration.

The ”codec config” module seen in Figure A.1 is connected to the user interface, and selects
one of the four configuration sets that applies to the user’s specification. This configuration set
contains 10 x 24 bits, and provides information to the audio-codec about sample rates, volume
level and input source. When selected, the configuration set that supports the user’s selection
is transmitted to the I2C-module seen to the right in Figure A.1, 24 bits at the time. The
I2C module provides the functionality described in the I2C standard, and transmits the data
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package as 3 x 8 bits to the audio-codec. The transmission of these three bytes are separated
by an acknowledge state controlled by the transmitter, where the receiver confirms that the
packet is received. In the design provided by Altera, the transmitter holds its operation for one
clock cycle after each packet of 8 bits is transmitted, waiting for the receiver to acknowledge
the transmission. However, there is not implemented any functionality in the transmitter to
handle the situation where the receiver fails to acknowledge the address or data byte. The I2C
module will just continue the transmission of the next byte after the mentioned acknowledge
state, until both addresses and the data byte are transferred. The I2C standard specifies
that if an error occurs in the data transmission, the transmitter will either generate a stop
condition to abort the transfer, or repeat the start condition to initialize a new transmission.
In this case, if the audio-codec fails to acknowledge the transmission, it returns to an idle
state, waiting for the I2C controller on the FPGA to initialize a new data transfer. Since this
controller not includes any functionality to support errors in the data transmission, it will
just continue its transfer until all of the 24 bits are transferred, causing loss of configuration
data. In the meantime, the audio-codec waits in its idle state, ready for transmission of a
new data package.

When configuring the I2C modules provided by Altera, adjusting them to support the func-
tionality of the audio demonstrator, it was decided to accept the fact that the I2C controller
does not support the error handling stated in the I2C standard. First of all, the Altera pro-
vided modules worked as expected in the demonstration design, configuring the audio-codec
with different configurations without errors during testing. Secondly, although the I2C con-
troller does not support automatic initialization of the transmission after an error, manual
re-configuration is supported, an operation which is considered to work well for the current
system. Thus, although the I2C controller could have been better at error handling, it was
considered to use it as it was designed, saving time and effort by not changing a module that
already worked.



Appendix B

Audio Input Buffer - Details

This appendix describes the functionality of the audio input buffer presented in Section 8.3.4.
Here, a presentation of the signals and the data transmission is provided, together with the
VHDL code written to implement the functionality.

As seen in Figure B.1, the input audio buffer receives BCLK, ADCDAT and ADCLRC from
the digital audio interface. In addition, a signal from the hardware filter, called ”ast sink ready”,
provides information to the input buffer on whether the FIR filter is ready to receive new
audio data or not. Each time the audio-codec transmits a pulse on the ADCLRC line, as
seen in Figure 6.7 on page 28, the input audio buffer prepares to receive the first data bit in
the next clock cycle on BCLK. The input buffer is now in receive mode, receiving all the 48
bits of audio data and saving them internally. When the package is received, the data is sent
to the FIR filter as 24 bit packages through the FIR DATA[23..0] bus, whenever the filter is
ready to receive.

Figure B.1: Input audio buffer on FPGA.

The input buffer follows a communication protocol specified for the FIR filter. When data for
the left channel is ready at the output of the input buffer, ”ast sink valid” and ”ast sink sop”
are set to ’1’, telling the FIR filter that the data on the input is valid, and that these 24
bits represents the start of the package. In the next clock cycle on BCLK, ”ast sink valid” is
unchanged, while ”ast sink sop” is set to ’0’. Since the data package in the transmission only
contains two parts, namely the left and the right channel sample, the next 24 bits represents
the last part of the package. The input buffer indicates this by setting ”ast sink eop” to ’1’,
telling the FIR filter that this is the end of the data packet. The FIR filter reads the valid
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data on the input, before ”ast sink valid” and ”ast sink eop” returns to ’0’. The input audio
buffer is now ready to receive a new data package from the ADC, and waits in an idle state
until a new transmission is initialized.

B.1 VHDL Implementation of Input Buffer

1 -------------------------------------------------------------------------

2 -- Audio -buffer. Receives seriel data from ADC , 48 bits including both --

3 -- channels , and transmitts 2x24 bit packages , left channel --

4 -- first , in parallel at the output. --

5 -------------------------------------------------------------------------

6
7 library ieee;

8 use ieee.std_logic_1164.all;

9
10 entity audio_buffer is

11 port(

12 clk ,adc_data ,lrc ,reset ,ast_sink_ready : in std_logic;

13 filter_data : out std_logic_vector (23 downto 0);

14 ast_sink_eop ,ast_sink_sop ,ast_sink_valid : out std_logic

15 );

16 end entity audio_buffer;

17
18 architecture structure of audio_buffer is

19 type state is (IDLE ,RECEIVE ,TRANSFER_LEFT ,TRANSFER_RIGHT );

20 signal next_state : state;

21 signal audio_data : std_logic_vector (47 downto 0); --Audio -data storage

22 signal counter : integer range 47 downto 0 := 47;

23 begin

24 FSM : process(clk ,reset)

25 begin

26 --Initial configuration of buffer

27 if(reset = ’0’) then

28 next_state <= IDLE;

29 filter_data <= (OTHERS => ’0’);

30 audio_data <= (OTHERS => ’0’);

31 ast_sink_valid <= ’0’;

32 ast_sink_eop <= ’0’;

33 ast_sink_sop <= ’0’;

34
35 elsif(rising_edge(clk)) then

36 case next_state is

37 --IDLE state

38 when IDLE =>

39 if(lrc = ’1’) then --Codec transfers data from ADC

40 ast_sink_eop <= ’0’;

41 ast_sink_sop <= ’0’;

42 ast_sink_valid <= ’0’;

43 next_state <= RECEIVE;

44 elsif(lrc = ’0’) then

45 ast_sink_eop <= ’0’;

46 ast_sink_sop <= ’0’;

47 ast_sink_valid <= ’0’;

48 next_state <= IDLE;

49 end if;
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50
51 --Receive data from both channels , left channel first

52 when RECEIVE =>

53 if(counter > 0) then

54 audio_data(counter) <= adc_data; --Saves audio data

55 counter <= counter - 1;

56 next_state <= RECEIVE;

57 else

58 audio_data(counter) <= adc_data;

59 counter <= 47;

60 next_state <= TRANSFER_LEFT;

61 end if;

62
63 --Puts left channel data on the parallel output

64 when TRANSFER_LEFT =>

65 if(ast_sink_ready = ’1’) then --FIR filter ready for data

66 ast_sink_sop <= ’1’; --Start of data package

67 filter_data (23 downto 0) <= audio_data (47 downto 24);

68 ast_sink_valid <= ’1’;

69 next_state <= TRANSFER_RIGHT;

70 else --Wait until FIR filter is ready to accept data

71 next_state <= TRANSFER_LEFT;

72 end if;

73
74 --Puts right channel data on the parallel output

75 when TRANSFER_RIGHT =>

76 ast_sink_sop <= ’0’;

77 ast_sink_eop <= ’1’; --End of data package

78 filter_data (23 downto 0) <= audio_data (23 downto 0);

79 next_state <= IDLE;

80 end case;

81 end if;

82 end process;

83 end architecture;

Listing B.1: Audio input buffer
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Appendix C

Audio Output Buffer - Details

In this appendix, the audio output buffer is presented. A description of its functionality is
provided, together with the VHDL code that describes the buffers functionality on the FPGA.

The output buffer is seen in Figure C.1. When the filter that is active is ready with its signal
processing on a data package, the filter module sets the ”ast source valid” input on the audio
buffer high. This tells the audio buffer to save the current and the next data package at the
input, containing a filtered sample for each of the two audio channels. When this is done, the
audio buffer waits for a pulse on the ”DACLRC” input before it transforms the two stored
audio samples to a serial bit stream of 48 bits. This data stream is then sent to the DAC in
the audio-codec through the ”DACDAT” channel, ready for conversion to the analog domain.

Figure C.1: Output audio buffer on the FPGA.

C.1 VHDL Implementation of Output Buffer

1 ---------------------------------------------------------------------

2 -- Audio output buffer. Receives 2 x 24 bit parallel data packages --

3 -- from filter , and puts 48 bits of serial data to the output when --

4 -- audio -codec is ready to receive. --

5 ---------------------------------------------------------------------

6
7 library ieee;

8 use ieee.std_logic_1164.all;

9
10 entity audio_buffer_out is

11 port(
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12 clk ,lrc ,reset ,ast_source_valid : in std_logic;

13 audio_data_in : in std_logic_vector (23 downto 0);

14 dac_data : out std_logic --Output to the audio -codec

15 );

16 end entity audio_buffer_out;

17
18 architecture structure of audio_buffer_out is

19 type state is (IDLE ,RECEIVE_RIGHT ,START_TRANSFER ,CONT_TRANSFER );

20 signal next_state : state;

21 signal audio_data : std_logic_vector (47 downto 0);

22 signal counter : integer range 47 downto 0 := 47;

23 begin

24
25 FSM : process(clk ,reset)

26 begin

27 --Initial configuration of output buffer

28 if(reset = ’0’) then

29 next_state <= IDLE;

30 dac_data <= ’0’;

31 audio_data (47 downto 0) <= (OTHERS => ’0’);

32
33 elsif(rising_edge(clk)) then

34 case next_state is

35 --IDLE state

36 when IDLE =>

37 --Save data for left channel on the 24 MSBs

38 audio_data (47 downto 24) <= audio_data_in (23 downto 0);

39 if(ast_source_valid = ’1’) then --If data from FIR is ready

40 dac_data <= ’0’;

41 next_state <= RECEIVE_RIGHT;

42 else

43 dac_data <= ’0’;

44 next_state <= IDLE;

45 end if;

46
47 --Receive and save data (24 bit) for right channel

48 when RECEIVE_RIGHT =>

49 audio_data (23 downto 0) <= audio_data_in (23 downto 0);

50 next_state <= START_TRANSFER;

51
52 --Transmits the MSB to audio -codec when codec is ready

53 when START_TRANSFER =>

54 if(lrc = ’1’) then --When DAC is ready

55 dac_data <= audio_data(counter ); --MSB left channel

56 counter <= counter - 1;

57 next_state <= CONT_TRANSFER;

58 elsif(lrc = ’0’) then

59 next_state <= START_TRANSFER;

60 end if;

61
62 --Sends the rest of the audio data to the codec in serial

63 when CONT_TRANSFER =>

64 if(counter > 0) then

65 dac_data <= audio_data(counter );

66 counter <= counter - 1;

67 next_state <= CONT_TRANSFER;

68 else
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69 dac_data <= audio_data(counter );

70 counter <= 47;

71 next_state <= IDLE;

72 end if;

73 end case;

74 end if;

75 end process;

76 end architecture;

Listing C.1: Audio output buffer
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Audio Manipulation
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The embedded audio demonstrator, seen in Fig-
ure 1, demonstrates the effects of sampling and 
filtering  through  manipulation  of  analog  audio 
signals on Altera's DE2 board. 

MOTIVATION
Sampling of audio signals is the process of con-
verting the analog music to a digital representa-
tion for manipulation, transmission or storage in 
the digital domain [1]. On standard CD discs, the 
sample rate is 44,1 kHz, meaning that the ana-
log  audio  signal  is  sampled  every  1/44100 
second.  The  Nyquist  theorem  states  that  the 
sample rate must be at least twice as high as 
the highest frequency in the sampled signal in 
order recover the analog signal completely from 
the  digital  domain.  The  audio  demonstrator 
provides  an  adjustable  sample  rate  with  rates 
both  above  and  below  the  Nyquist  frequency, 
making it possible to study how the quality of the 
perceived sound changes with the sample rate.

Figure 1: Altera DE2 development board

Digital  filters are present  in  many digital  audio 
systems  today,  and  provides  equalizers  and 
sound  manipulation  in  MP3-players,  amplifiers 
and TVs [1]. In order to demonstrate how filter-
ing affects the sound signal, the audio demon-
strator is designed with both high-pass- and low-
pass filters, in addition to a user interface for fil-
ter characteristic control.

DEMONSTRATION
Figure  2 presents the signal  flow in  the audio 
demonstrator,  and  illustrates  how  the  signal 
changes through the system.

                        

Figure 2: Signal flow in the audio demonstrator 
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