Abstract: This embedded video demonstrator is built to show
the importance of both hardware and software in a computer sys-
tem. To show this the demonstrator presents video processed n
either hardware or software based on selection. In addition it also

shows the complexity of calculating decimal numbers (floating-

point) when manipulating colors. The user should be able to con-
clude that the introduction of dedicated hardware to do complex
and repeated tasks, can greatly increase performance.

Purpose

The purpose of the embedded video demonstrator is to give a visual demonstration of the importance
of hardware /software codesign. Without the combination of hardware and software many familiar ap-
plications would not be possible. PCs, mobile phones, cameras etc. are examples of such applications.

Theory

Video

To show video this system uses a camera called D5M from Terasic. This camera is configured to read
sensor data continuously. By reading the data fast enough it is possible to display multiple frames per
second. The sensor consists of 2592 x 1944 pixels, and each pixel has an image sensor to record light
at its location. It is not possible for the sensor to register all visible light, so a color filter is put on
top of all the pixel sensors. This filter makes each sensor register only the light intensity of one color,
either red, green or blue. The color filter used in this camera is called a Bayer filter. The Bayer filter
consists of twice as many green filters than red and blue. This is done to compensate for the fact that
the human eye is more sensitive to green light.

.column readout direction

black pixels 4 piXGlS (2X2)
- Flrst Clear 1 pixel (RGB)

Pixel (10,50)
B

G1|R|G1| R|G1| R |G1| R |G1

G1|R|G1| R |G1| R |G1| R |G1

G1|R|G1| R |G1| R |G1| R |G1

row readout direction

FIGURE 1: Color interpolation by using neighboring pixels to determine one full range RGDB pixel

As Figure 1 shows, the data that is captured from the sensor only has one color per pixel. In order for
a display to show a color image it needs three color data (red, green and blue) per pixel. To achieve
this a demosaic algorithm is used to interpolate the missing color values for each pixel. This can be
interpreted as "qualified” guessing. One of the simplest ways to do this is by using the closest neighbor
colors to calculate the missing colors. Figure 1 shows how this is done by grouping pixels in 2 x 2. The
interpolation can be done either in hardware or in software. Since an image consists of a lot of pixels
arriving at a high rate it would be smart to do the interpolation in its most effective environment.
The higher the resolution, the more pixels have to be processed per picture-frame.

Color Space

There are many different ways to represent colors, RGB is one of the most common. In this color
space a color is created by an adaptive combination of red, green and blue. There are a lot of displays
constructed to use this color space. RGB makes it very easy to create new colors, but the RGB color
space does not have any easy way to alter brightness or contrast of the image.

Y 16 0.257 0.504 0.098 R
Cb| =|128] + | —0.148 —0.291 0439|-| G (1)
Cr 128 0.439 —0.368 —0.071 | B

Embedded Demonstrator for Video Presentation and Manipulation

By Cato Marwell Jonassen

NTNU, Trondheim, Norway, 2010

R 1164 0.000 1596 [(Y —16)
G| =|1164 —0.392 —0.813 (Cb — 128) (2)
'B| | 1164 2017 0.000] |(Cr—128) |

YChCr is a color space that can be derived linearly from RGB. Y is the color’s luma component (can
be used to see a grayscale version of the image), Cb and Cr are the blue-difference and red-difference
chroma components. Adjusting the brightness of the color is done by adding or subtracting a constant
to the luma component. Equation 1 shows how to transtorm between the RGB and YCbCr color
domain, while Equation 2 shows how to transform back tfrom YCbCr to RGB color domain. This
transformation can be done by a matrix multiplication of floating-point constants. Floating-point or
decimal values require more computation than "simple” integer multiplication. To invert colors the
RGB values are binary inverted, either by using a dedicated inverter or by taking the maximum value
(based on the bit width, 8 bits gives the maximum value 255) and subtract the current color. These
two methods are functionally equivalent, but subtracting is more time-consuming.

System overview

LCD
Screen

Cyclone Il FPGA=-

SDRAM

- Terasic TRDB_D5M

Digital Camera

. 4

Exposure [SW6=increase,SW7=decreaéeq#

' Altera
== DE2

Color invert [SW5=invert on/off Reset push

|/O Button
Video modes 'SW4=Color, SW3=SW,SW2=HW (KEY0)
Start or Stop video [SW1 = Stop, SWO = Sta

FIGURE 2: An overview of the demonstrator and its /O

Figure 2 shows an overview of the whole system including a description of what the different switches
do.

Switch Purpose

KEY|0] Reset the whole system
SWO0 | Start capturing video data from the camera
SW1 | Stop capturing video data from the camera
SW2 | Select hardware video processing (default)

SW3 Select software video processing
oW4 Select color demonstration mode
SW5 [nvert colors on/off by toggling
SWGE Increase exposure
SW'7 Decrease exposure

TABLE 1: Switches and their purpose

Table 1 is a list of the switches and their purpose in the system.

Demonstration

This list presents a possible run-through of the demonstration.

1. Start the demonstration by first choosing "hardware” video processing. This is done by toggling
SW2

2. Start the video by toggling SWO, or stop the video by toggling SW1. SW5 is used to activa-
te/deactivate inverted colors. If the picture is too bright or too dark it is possible to adjust the
exposure by toggling SW6 or SW7

3. To start processing video in software, toggle SW3. This will reset the demonstrator and make it
ready to begin processing in software

4. Whenever you are ready, start the processing by toggling SW0 and stop it by togeling SW1. SW5
is used to activate/deactivate inverted colors

5. Observe, what was the difference?

6. To start the color demonstration mode, toggle SW4. The system will stop displaying video and
show a color palette image

7. Toggle SW4 turther to go through the different stages. The LCD panel will display what the de-
monstrator is doing and the result can be observed on the monitor

8. Observe, what was the difference between processing the colors in hardware and using the software
processor?

Conclusion

Video processing in hardware

When processing the video in hardware the video is very viewable and it has a high frame rate
(around 15 fps). This is a result of using dedicated hardware to do a static task which repeats itself
as long as there is video to process. Switching between normal color representation and inverted color
representation happens instantly when activating this function. The hardware inverts the color by
inverting the binary value of the color signal.

Video processing in software

When the video is processed in software the video is not very viewable and the frame rate is less than
one frame per second. This is because the processor has to do all the job processing the video. The
video data arrives quickly and in order for the processor to be able to keep up, the frame rate has to be
lowered significantly. Switching between normal color representation and inverted color representation
also works fine in software. The inverting is done by taking 255 and subtracting the color value for
each component. This is more complex than inverting in hardware, but it manages this because of the
low frame rate.

Color demonstration

Transformation between the color spaces by using floating-point constants demands more processing
time than multiplication of integers. To be able to perform floating-point calculations in software, the
values have to be translated to work in an integer multiplier. This translation takes time and makes
multiplication more complex. By using a dedicated hardware floating-point multiplier this process is
much faster than in software, because the floating-point or decimal values do not need to be translated.

References

1] - Jonassen, Cato Marwell, Master Thesis, Department of Electronics and Telecommunication,
Trondheim: NTNU, 2010, Unpublished

