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Preface
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goes to Johannes Skaar and Guro Svendsen, for guidance and for supplying
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Summary

The intention of this report is twofold. The main goal is to find out
if it is possible to increase the reflection at the end of a waveguide, by
adding blocks of different refractive indices. This has been done by utilising
a method called the Transfer Matrix Method. Most commonly, this method
is used with a single mode, but this report will focus on a planar dielectric
waveguides with several modes.

A code has been utilised to obtain matrices with reflection and transmis-
sion amplitudes, these have in turned been used with the Transfer Matrix
method to obtain the reflection as a function of the number of blocks added
to the waveguide. The results have been mixed. The transfer matrix method,
as described in this report, seem to function perfectly for single modes, but
with several modes, the results are less satisfactory, since it give impossible
values for the reflection. These bad results may very well be tied to the
inevitable use of pseudoinverse in the code.
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1 INTRODUCTION

1 Introduction

With nanotechnology it is possible to manipulate matter down to the molecular
level, in other words down to 10−9 m. It is then possible to be able to guide light
on this level. This can be a achieved by using something called nanowires[1]. A
nanowire is basically a one dimensional nanostructure that can be synthesised by
a chemical vapour process, and can be used as waveguides. Until now scientists
and engineers have probably barely scratched the surface of what nanowires are
capable of and how they can be applied. Among their potential applications are
as components in optoelectronics electronics at the nano level. More specifically,
this includes but is not limited to being componentes in lasers, optical waveguides
and single photon sources [2]. It is worth noting that the wire can not only
consist of many different materials, but through controlling the chemical precursors
during growth one can also change the impurity doping profiles among other things.
With such detailed control of the composition of the nanowire, one can produce
specimens with a vast variety of propertes.

As already mentioned, nanowires can be used as laser, called nanowire lasers.
The length of this kind of laser is normally between 2 − 40µm and the width or
diameter is between 20 − 400nm [3]. They are often made of materials with a
big dielelectric contrast between the surrounding materials, for example air. This
results in the nanowire’s ability to laterelly confine electrons, holes and photons,
and it is this ability that makes them very attractive to use in laser technology.
In order to function properly as a laser, the end facets of the nanowire has to
function as mirrors so that as much light as possible is reflected. For natural
unaltered facets, however, the reflectivity is low, which means that there will be
high losses furing lasing. This can be prevented in several ways. One possible
solution is by forming a distributed bragg reflector at the end facets of the wire.
Another solution might be to add a media with a different refractive index at
the end of the nanowire, and perhaps even add several layers of media of varying
refractive index. To find out what kind of effect this will have on the reflective
coefficient it is necessary to do simulations, using an appropriate program, for
example Matlab. In this paper, one will use a premade matlab code to find the
reflection and transmission coefficients of a transition from a medium with an
arbitrary refraction index to vacuum[4]. The code in question will produce matrices
of modal amplitudes, which will be used in something called the ”Transfer Matrix
Method” to find out how the reflection depends on the number of layers of media
of varying refractivity. The ”Transfer matrix method” will basically involve taking
the reflection and transmission matrices produced in the code, and use them to
make a so called ”Transfer Matrix”. One important characteristic of the Transfer
Matrix is that by multiplying matrices of different refractions one can produce
one single matrix that the describes the reflection of the entire system. The fact
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1 INTRODUCTION

that one will work with large number of modes described by matrices, in stead of
single digits, makes the calculations slightly different from the ones shown in some
textbooks[5]. By using the code one can easily check the reflection coefficients as a
function of the number of layers. However there are also other methods of finding
the reflection. By using the Fresnel equations one can find the reflection between
two media, and by using the Fabry-Perot one can find the reflection of a system
of three media. These methods can therefore be used to test the Transfer Matrix
Method.

2



2 BACKGROUND THEORY

2 Background theory

This is the theory behind the Matlab code and the Transfer Matrix method.

2.1 Simplifying the problem

Trying to do calculations on modes within a fiber can quickly become very compli-
cated; luckily there are some methods of simplifying this. One has to keep in mind
that modes through a fiber will change continously, however this can be simplified
by dividing the fiber into small sections, so small in fact that it is reasonable to
assume that each section is uniform. It is then possible to apply multilayer optics
to the modes, so that one can look at the reflectance and transmittance of the
transitions between the layers and consider the sections between the transitions as
homogenous. With the help of matrices it is possible to calculate a large number
of modes at the same time. Using these assumptions one can use transfer matrices
to do calculations on the modes(see fig 2.1). This is called the Transfer Matrix
Method[5].

2.2 Transfer matrix method

2.2.1 Transfer matrix

One can call the forward moving vector a and the backward moving one b, and the
vector in section 1 has the subscript 1 and the vector in section 2 has the subscript
2(see figure 2.1). The elements in the vectors are modal amplitudes. Writing it on
matrix form, one will get the following situation[5]:[

a2

b2

]
= M

[
a1

b1

]
=

[
M11 M12

M21 M22

] [
a1

b1

]
(2.1)

where M is the transfer matrix, and the elements inside the matrix can be
considered invertible matrices. As demonstrated on the picture, the vectors a1

and b2 go into the matrix, and a2 b1 go out. One important property of M, is
that N different matrices can be multiplied together to form one transfer matrix
representing the entire system:

M = MN ...M2M1. (2.2)

Much of this is material covered in text books like Saleh and Teich, but there
is a key difference. In most books the elements inside the transfer matrix and
the scattering matrix(which will be described shortly) are scalars. In this report
however, one will work with matrices.

3



2.2 Transfer matrix method 2 BACKGROUND THEORY

Figure 2.1:

2.2.2 Scattering matrix

There is also another important matrix, which is called scattering matrix S[5]:[
b1
a2

]
= S

[
a1

b2

]
=

[
R1 T T

T R2

] [
a1

b2

]
. (2.3)

The input of the transfer matrix is the backward and forward travelling waves of
the left side, and the output is the corresponding waves on the right side. The
input of the the scattering matrix on the other hand, is the incoming waves, and
the output is the outgoing waves(see fig. 2.2). The big advantage with this method

Figure 2.2:

is that the elements of the matrix have physical significance. R1 and R2 are the
reflectances for waves incident from respectively the left and the right, while T and

4



2 BACKGROUND THEORY 2.2 Transfer matrix method

T T are the transmittances. The disadvantage with this matrix is that unlike the
T matrix, one can not multiply a cascade of S-matrices to find a complete matrix
of the system. It is therefore convenient to convert between S and T-matrices to
exploit the advantages of each.

2.2.3 Properties of scattering matrix

In this case one assumes that the S-matrices are lossless and reciprocal, which
makes it possible to obtain information about the elements in the matrix. One
can first define

v =

[
a2

b1

]
, u =

[
a1

b2

]
. (2.4)

And assuming that the S-matrix is lossless, one can then write

v = Su, (2.5)

where u is the modes in, v is the modes out and S is the S-matrix. However since
there is an unknown number of modes in and out, it is more useful to write the a
and b as vectors as also mentioned above:

|u1|2 + |u2|2 + ... = u∗Tu, (2.6a)

|v1|2 + |v2|2 + ... = v∗Tv. (2.6b)

So using vectors in 2.4, one can write

v∗Tv = Su∗Tu. (2.7)

So, combining 2.4 with 2.6, one can write

(Su)∗TSu = u∗Tu (2.8a)

u∗TS∗TSu = u∗Tu (2.8b)

u∗T (S∗T − I)u = 0 (2.8c)

One have then shown that the S-matrix is unitary, by assuming that it is lossless:

S∗TS = I. (2.9)

Secondly, because the matrix is reciprocal, one can assume that the matrix is
symmetrical:

S = ST . (2.10)

5



2.2 Transfer matrix method 2 BACKGROUND THEORY

The fact that the matrix is both unitary and symmetric gives it the useful
property that it is possible calculate the numbers in the second column, from only
the numbers in the first column. From the symmetry property one knows that[

R1 T T

T R2

]
=

[
RT

1 T T

T RT
2

]
(2.11)

From the above definition of unitary matrices one can find out that[
R∗1 T ∗T

T ∗ R∗2

] [
R1 T T

T R2

]
=

[
1 0
0 1

]
, (2.12)

which can also be written[
(R∗1)R1 + (T ∗T )T (R∗T1 )T T + (T ∗T )R2

(T ∗)R1 + (R∗2)T (T ∗)T T + (R∗2)R2

]
=

[
1 0
0 1

]
. (2.13)

From 2.13 one can see find R2 in two different ways:

R∗2 = −(T ∗)R1(T )−1, (2.14a)

R2 = (T ∗T )−1R∗T1 T T . (2.14b)

where * signifies the complex conjugate. It is preferable to use 2.14a since this
does not require the matrix to be transposed, which can create a problem because
of the pseudoinverse.

2.2.4 Relation between the scattering and transfer matrix

In order to convert between S and M matrices one must first know the relation
between them. This can be done by comparing 2.1 and 2.3. Firstly, equation 2.3
can be written out like this:

b1 = R1a1 + T T b2, (2.15a)

a2 = Ta1 +R2b2. (2.15b)

It can then be rewritten

a2 = a1(T −R2(T
T )−1R1) + b1R2(T

T )−1, (2.16a)

b2 = −a1(T
T )−1R1 + b1(T

T )−1, (2.16b)

and placed into an M-matrix.

M =

[
T −R2(T

T )−1R1 R2(T
T )−1

−(T T )−1
1 R1 (T T )−1

]
(2.17)

6



2 BACKGROUND THEORY 2.2 Transfer matrix method

This can also be done the other way. One begins by writing out the M-matrix:

a1 = (M12 −M11(M21)
−1M22)b1 +M11M

−1
21 b2 (2.18)

a2 = M−1
21 b2 − (M21)

−1M22b1 (2.19)

Finally one gets a matrix, that can convert from M-matrix to S-matrix.

S =

[
−M−1

22 M21 M−1
22

(MT
22)
−1 M12M

−1
22

]
(2.20)

2.2.5 Propagation matrix

In order to calculate to the complete matrix for the medium one has to calculate
the matrices for the individual sections. Until now we have covered the matrices
representing the transitions between the layers, however, one also has to find the
matrices representing propagation in a constant medium. Continuing with the
convention of using 2 × 2 matrices one has to imagine homogenous medium with
the width d and the refraction index n. From [5] we know that a1 = eiϕb1 and
a2 = eiϕb2. Using these equations one gets the matrices

Mp =

[
exp(iϕ) 0

0 exp(−iϕ)

]
, Sp =

[
exp(iϕ) 0

0 exp(iϕ)

]
, ϕ = nk0d, (2.21)

where d is the length of the uniform section and n is the refractive index. Like
before, M is the transfer matrix and S is the scattering matrix. This can easily
be transformed into matrices bigger than 2 × 2 matrices by using the relation
an = eiϕbn [6].

2.2.6 Finding the total reflection

Firstly one has to construct the S-matrices, which can easily be done as described
in section 2.2.2, and in 2.2.5 in case of the propagation matrix. Secondly one has to
convert these into M-matrices by using 2.17. As explained in the following section,
the matrices produced in the code describes the modes going from a medium
with refraction index n to a medium with refraction index 1. Since the matrix
is reciprocal, the inverse of the matrix describes the modes going from a medium
with refraction 1 and into one with refraction n. One then has to multiply these
matrices like shown in 2.2. By taking all these things into considerations one can
find the complete matrix for a wave guide with refraction index varying between
n1 and n2, where each section has a length d, given by the propagation matrix.
This has been done in equation 2.22:

M = ...Mn1Mp(Mn1)
−1Mn2Mp(Mn2)

−1Mn1 , (2.22)

7



2.2 Transfer matrix method 2 BACKGROUND THEORY

where Mn1 and Mn2 are the M-matrices representing the transitions from a medium
with refraction indices n1 and n2 to vacuum. Like in 2.21 Mp is the propagation
matrix.

8



2 BACKGROUND THEORY 2.3 Planar waveguide

2.3 Planar waveguide

The following is a description of how the Matlab code mentioned earlier, works.
Normally the cross section of a waveguide is circular. This can sometimes be
a bit harder to work with, compared to other kinds of cross sections, like that
of a planar waveguides. One can therefore assume a planar waveguide with a
thickness 2a, with waves propagating in the z-axis, like shown in fig 2.3 [4]. The

Figure 2.3:

core (−a < x < a) has a refractive index n, while outside the core there is vacuum.
In order to discretize the modes, the waveguide has to be encapsulated by mirrors
on either side, at a distance ±L where L� a. At z = 0 the waveguide ends, which
means that in the region z > 0 everything is vacuum. The modal fields calculated
with these conditions can be divided into two groups(TE and TM), depending on
their polarisation, and these groups can again be divided into even and odd modes.
These four groups of modes will not couple with each other through z=0[x], so they
can be studied separately.

The goal is now to find out how a mode couples through a z=0. As an example
one can use the even modes with TE polarisation.

2.3.1 Modes in the z > 0 region

For z > 0 the electric field behaves according to

em
TE = Amcos(km

x x)exp(ikm
z z)ŷ, (2.23)

where
km

x = π/2L+mπ/L, (2.24)

9



2.3 Planar waveguide 2 BACKGROUND THEORY

k2m
z = ω2/c2 − k2m

x , (2.25)

and the normalisation constant is defined as

Am = 1/
√
|km

z |L. (2.26)

The corresponding transversal component of the magnetic field is given by

hm
TE · x̂ = −A

mkm
z

ωµ
cos(km

x x)exp(ikm
z z)ŷ. (2.27)

It can then be shown that

ωµ

∫ L

−L

em
TE · hm′∗

TE · ẑdx =
km∗

z

|km∗
z |

δmm′ . (2.28)

Then we will do the same for the z < 0.

2.3.2 Modes in the z < 0 region

Since z < 0 consists of different regions, the core and outside of the core, the
solution will be a bit different. One noticeable difference is that the modes behave
differently in 0 < x < a and a < x < L. Continuing working with even modes
with TE polarisation, the electric field for the region 0 < x < a is Bcos(k′xx) and
for a < x < L it is Csin(kxx+ ϕ). Here

k
′2
x =

ωn2

c2
− β2, (2.29)

k2
x =

ω

c2
− β2. (2.30)

while B C and ϕ are real constants.
One also has to take into account that the modes will vary in the z-direction

with exp(iβz). For the modes to exist in the z < 0 region, certain requirements
need to be met. The first is that the electric field at the L, which is the boundary
between the vacuum and the mirror is 0, in other words Csin(kxx+ϕ). Conditions
number two and three state that both the electric field and the derivative of the
electric field eith respect to x, must be contious at x = a. Condition number one
can be condensed down to

ϕ = −kxL, (2.31)

while condition two can be written

Csin(kxa+ ϕ) = Bcos(k′xa), (2.32a)

10



2 BACKGROUND THEORY 2.3 Planar waveguide

C

B
=

cos(k′xa)

sin(kxa+ ϕ)
, (2.32b)

and number three can be written

Ckxcos(kxa+ ϕ) = −Bk′xsin(k′xa) (2.33a)

C

B
=
k′x
kx

sin(k′xa)

cos(kxa+ ϕ)
(2.33b)

By combining these three conditions, one gets the following equation

C

B
=

cos(k′xa)

sin(kxa+ ϕ)
= −k

′
x

kx

sin(k′xa)

cos(kxa+ ϕ)
, (2.34a)

tan[kx(L− a)]tan(k′xa) =
kx

k′x
. (2.34b)

The electric field e can then be expressed:

ej =
1√
|βj|

ψj(x)exp(iβjz)ŷ. (2.35)

Here

ψj(x) =

{
Djcos(k

′j
x x) for0 < x < a

Ejsin[kj
x(L− x)] fora < x < L

(2.36)

and

Ej = Dj cos(k
′j
x a)

sin[kj
x(L− a)]

. (2.37)

The transversal componenent of the magnetic field can be written

hj · x̂ = − βj

ωµ
√
|βj|

ψj(x)exp(iβjz)ŷ. (2.38)

Dj is a normalisation constant and is chosen so that

ωµ

∫ L

−L

e× hh′∗ · ẑdx =
βj∗

|βj|

∫ L

−L

φj∗(x)φj′
(x) =

βj∗

|βj|
δjj′ (2.39)

2.3.3 Coupling through the z = 0 boundary

The next goal is to find out how the modes behave through the boundary z = 0.
Assuming the incoming wave is ei and the using the Fresnel equation we get:

ei +
∑

j

rije
j =

∑
m

timem. (2.40)

11
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Since exp(iβz) is on both sides cancel each other out, one can write

1√
|βi|

+
∑

j

rij
1√
|βi|

=
∑
m

tim
1√
|km

z |L
cos(km

x x). (2.41)

The corresponding equations for the transversal magnetic fields are

hi +
∑

j

rijh
j =

∑
m

timhm, (2.42)

and
βi√
|βi|

+
∑

j

rij
βj√
|βi|

=
∑
m

tim
km

z√
|km

z |L
cos(km

x x). (2.43)

2.3.4 The reflection matrix

In order to find the reflection matrix, one can combine 2.39 with 2.43.

ωµ

∫ L

−L

ei×hm′∗ · ẑdx+ωµ

∫ L

−L

∑
j

rije
j×hm′∗ · ẑdx = ωµ

∫ L

−L

∑
m

rimem×hm′∗ · ẑdx

(2.44)
Written fully out the equation will be:

ωµ

∫ L

L

1√
|ki

z|L
cos(ki

xx)×− βm∗

ωµ
√
|βm|

ψm∗dx

+ ωµ

∫ L

L

∑
j

rij
1√
|kj

z|L
cos(kj

xx)×− βm∗

ωµ
√
|βm|

ψm∗dx

= ωµ

∫ L

L

∑
m

tim
1√
|βm|L

ψm ×− βm∗

ωµ
√
|βm∗|

ψm∗dx

(2.45)

This can also be written:

ωµ

ωµ
· −βm∗

∫ L

L

1√
|ki

z||βm|L
cos(ki

xx)ψm∗dx
ωµ

ωµ
·

− βm∗
∑

j

rij

∫ L

L

1√
|kj

z||βm∗|L
cos(kj

xx)ψm∗dx

= − βm

|βm|
tim

∫ L

L

ψmψm∗dx.

(2.46)

12
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By using the definition

Ψjm =
1√

|βm||kj
z|L

∫ L

−L

ψm(x)cos(kj
xxdx) (2.47)

one can rewrite 2.47 as

βm∗Ψim +
∑

j

rjmβ
m∗Ψjm = tim

βm∗

|βm|
. (2.48)

From 2.48, it is easy to find the reflection matrix.

13
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2.4 Using the Matlab code

2.4.1 Obtaining the solution

As mentioned in the introduction it is interesting to find out what exactly happens
to the reflection in the end of the waveguide if one adds media of different refractive
index at the end. This will in practice mean that one adds several mirrors to the
end of the waveguide. One can therefore use the information about the multilayer
optics above to calculate the the reflectance and end transmittance of the entire
system. By using the reflection coefficeint between the individual layers one can
construct scattering matrices. After converting them into transfer matrices one
can multiply them together as explained earlier. However due to the functioning
of the Matlab program used, in stead of finding the reflection and transmission
coefficients between the two media, we will find the coefficients between a medium
1 and vacuum, and between medium 2 and vacuum(see fig 2.4). Converting the
two resulting matrices into transfer matrices and then simply multiply them, we
assume that the distance between the two mirrors are zero. We will then get the
desired transfer matrix.

Figure 2.4:

2.4.2 The output data

It would then be interesting to see what kind of output data the code produces.
Firstly one gets the reflection matrix R1. This represents the reflection of the

transition from the material with refraction index n1, to vacuum with refraction 1.
This will be an m×m matrix, where m is the number of modes in the waveguide,

14



2 BACKGROUND THEORY 2.4 Using the Matlab code

and includes both bound and radiation modes. Secondly there is the transmission
matrix T which is a k×m matrix[4]. It describes the transition from the waveguide
material to vacuum, and k represents the free modes found in vacuum where the
precise number can be adjusted in the code. The transition matrix T T represents
the modes going the opposite way, from vacuum to the waveguide. The matrix R2

describes the reflection from the vacuum to the waveguide material, and therefore
is of the size k × k.

15
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2.5 The Moore-Penrose pseudoinverse

In order to do some of the calculations one needs to inverse certain matrices. In
the majority of cases, it is impossible to use a normal inverse function on the
matrices one is supposed to inverse. This is due to that the matrices are not
square, which is a prerequisite for the inverse function[7]. In that case one can use
the Moore-Penrose pseudoinverse, which has some of the same properties as the
inverse function, and can be used on non square matrices. For a matrix B to be
the pseudoinverse of matrix A, the following conditions has to be met:

A ∗B ∗ A = A, (2.49a)

B ∗ A ∗B = B, (2.49b)

A ∗B is Hermitian, (2.49c)

B ∗ A is Hermitian. (2.49d)

Here B has the same dimensions as A’.
In many cases the solution of Ax = b is not unique, but have an infinite

amount of solutions. This happens when A has more rows than columns and is
rank deficient. Otherwise, the pseudoinverse is the pseudoinverse is the unique
solution. This can prove to be a problem when one transposes the matrices,
because by transposing the matrix, it will no longer have full rank and there will
be problems with the pseudoinverse. This is a problem which will have to be
solved, by using the pseudoinverse as little as possible.

16



2 BACKGROUND THEORY 2.6 Redefining the the Amplitude parameters

2.6 Redefining the the Amplitude parameters

The Matlab code which is used to find the reflection and transmission coefficients,
produces coefficients for the E-field, and have the subscripts E1 and E2. These
coefficients however, cannot be used directly in the Transfer Matrix Method, since
the modes used in the method, are a set of field amplitudes called a and b. By
using the following method, one can translate the coefficients RE1 , RE1 , TE1 and
TE1 into R1, R2, T1 and T2. Firstly, one can define the scattering matrix for the
E-field: [

Eb1

Ea2

]
=

[
RE1 TE2

TE1 RE2

] [
Ea1

Eb2

]
(2.50)

One possible way to translate the coefficients from the E-field into coefficients we
can use, is to use the method shown in [6] . Here a and b can be redefined as

b1 = Eb1/
√
Z1, (2.51a)

a1 = Ea1/
√
Z1, (2.51b)

a2 = Ea1/
√
Z2, (2.51c)

b2 = Eb2/
√
Z2, (2.51d)

where Zm is the characteristic impedance of the material. This can be inserted in
2.50: [ √

Z1b1√
Z2a2

]
=

[
RE1 TE2

TE1 RE2

] [ √
Z1a1√
Z2b2

]
. (2.52)

This can be multiplied into the S-matrix by[
b1
a2

]
=

[
RE1/

√
Z1 TE2/

√
Z1

TE1/
√
Z2 RE2/

√
Z2

] [ √
Z1a1√
Z2b2

]
(2.53)

and [
b1
a2

]
=

[
(
√
Z1/
√
Z1)RE1 (

√
Z2/
√
Z1)TE2

(
√
Z1/
√
Z2)TE1 (

√
Z2/
√
Z2)RE2

] [
a1

b2

]
. (2.54)

And then be rewritten as[
b1
a2

]
=

[
RE1 (

√
Z2/
√
Z1)TE2

(
√
Z1/
√
Z2)TE1 RE2

] [
a1

b2

]
. (2.55)

The characteristic impedance can be set equal to the wave impedance and it there-
fore depends on refractive index[6]:

Zm =
η0

ηm

=
nm

n0

. (2.56)

17



2.6 Redefining the the Amplitude parameters 2 BACKGROUND THEORY

Lastly, 2.54 can be inserted into 2.53 and one gets[
R1 T2

T1 R2

]
=

[
RE1

√
n1/n2TE2√

n2/n1TE1 RE2

]
, (2.57)

and one can see that T1 and T2 depend on the refractive index of both sides.
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2.7 Testing the calculations

2.7.1 Fresnel

To find the reflection between two surface, it is possible to use the Fresnel equations
[5]

rx =
n1cosϕ1 − n2cosϕ2

n1cosϕ1 + n2cosϕ
. (2.58a)

ry =
n1secϕ1 − n2secϕ2

n1secϕ1 + n2secϕ
, (2.58b)

where n1 and n2 are the refractive indices of the two media, while ϕ is the angle of
incidence. The coefficients rx is the complex amplitude reflectance for TE polari-
sation, while ry is the complex reflectance for TM polarisation. Another important
value is the power reflectance. It is defined as the ratio of power flow between the
reflected wave and the incident wave. One can then define the reflectance to be:

R = |r|2, (2.59)

In the calculations it is assumed that the incident angle is normal to the surface,
which means that the power reflectance in all cases can be written as

R = (
n1 − n2

n1 + n2

)2. (2.60)
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2.7.2 Fabry-perot

A Fabry-perot etalon is a kind of intereferometer which consists of two mirrors,
paralell to each other and highly reflective[5]. The light transmitted from it de-
pends on the optical pathlength between the two mirrors, so that it can among
other things be used as a filter. It is also assumed that the system is reciprical and
lossless. The entire Fabry-perot system can be described with matrices like this:

M =

[
t1 − (−r1)∗r1

t1

−r1

t1−r1

t1
1
t1

][
exp(−jθ) 0

0 exp(jθ)

][
t2 − (−r2)∗r2

t2

−r2

t2−r2

t2
1
t2

]
.

(2.61)
The reflection r1 is defined as the reflection between n1 and n2 from the right, and
r2 is the reflection between n2 and n3 from the left:

r1 =
n1 − n2

n2 + n1

, (2.62a)

r2 =
n2 − n3

n3 + n2

. (2.62b)

These reflections are illustrated in fig 2.5. In order to find the total reflection
one has to add all the reflections. The first reflection, is the reflection between
n1 and n2 from the left, which is simply r1. The other reflections are a bit more

Figure 2.5:

complicated to explain. The second reflection can be described by the following
equation where ϕ = nk0d:

r01 = t1t2r
2exp(2jφ). (2.63)
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The wave first has to cross the border between n1 and n2, then it must traverse
the medium and reflect at the other side. Then it must traverse the medium again
and cross the n1 − n2 border a second time, but from the other side. One can
call the sum of all the reflections that has traversed the medium rt. Then one can
write:

rt = r01(1 + f + f 2...). (2.64)

Here f = r1r2exp(−2iφ), where the two reflections represent the internal reflections
of the n2 borders. By using the identity 1 + f + f 2 + f 3... = 1/(1 − f), one can
obtain the equation:

r = r1 +
t1t2r2exp(−2iφ)

1 + r1r2exp(−2iφ)
. (2.65)

Here t1 and t2 is the transmission to the left and right. They can be written
t1 = 1− r and t2 = 1 + r. One can then use the equation 1− r2 = (1− r)(1 + r)
and write

r = r1 +
(1− r2

1)r2exp(−2iφ)

1 + r1r2exp(−2iφ)
. (2.66)

To find the reflection, one can use R = |r|2.
It can also be interesting to note that if that area traversed is one wavelength,

or in other words if ϕ = π, the resulting reflection coefficient will always be equal
to (n1 − n3)/(n1 + n3). This can easily be proven by substituting 2.62 into 2.66:

n1 − n2

n1 + n2

+
n3−n2

n3+n2
− (n1−n2

n2+n1
)2 n2−n3

n2+n3

1 + n2−n3

n2+n3

n1−n2

n1+n2

. (2.67)

This can be reduced to

n1 − n2

n1 + n2

+
4n2

2n1 − 4n3n2n1

2n2
1n2 + 2n3n2n1 + 2n1n2

2 + 2n2
2n3

, (2.68)

which can again be reduced into:

n2
1 − 2n1n3 + n2 + n3

n2
1 + n1n3 + n2n1 + n2n3

. (2.69)

This can lastly be written as

(n1 − n3)(n1 + n2)

(n1 + n3)(n1 + n2)
, (2.70)

which can be reduced to (n1 − n3)/(n1 + n3)
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3 Testing with one mode

In order to verify that the code is correct, it is also useful test it with just one
mode. In stead of using a matrix as input, the reflection is given as scalars, where
r1 = (n3−n1)/(n3+n1) and r2 = (n3−n2)/(n3+n2). The left going and right going
transmission coefficents for r1 are given by

√
n1/n3(1 − r1) and

√
n3/n1(1 + r1)

and the corresponding coefficients for r2 is
√
n3/n2(1 − r1) and

√
n2/n3(1 + r1).

In all the following simulations, the reflectance is on the y axis, and the x axis
represents the number of blocks with different refractive index, as demonstrated
in fig 3.1. In other words fig 3.1 shows how the blocks are added to the waveguide,
with the number to the right being the value of the x-axis. The thickness of these
blocks are all half a wavelength, except when n2 is at the end, then the last block
is an entire wavelength in thickness. This prevents the reflection of fluctuating.
The results from these tests, conform perfectly to the testing with Fabry Perot
and Fresnel.

Figure 3.1:
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Figure 3.2: n1 = 3 and n2 = 1.5

Figure 3.3: n1 = 4 and n2 = 1.5
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Figure 3.4: n1 = 3 and n2 = 2.8

Figure 3.5: n1 = 2 and n2 = 1.5
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4 Simulations

The following graphs show the reflection as a function the number of blocks of
varying refraction index as described in section 2.4.1. Like mentioned in the theory,
the waveguide is assumed to be planar. The length of the section will be a half
wavelength, or ϕ = π/2. Like in section 3.3, the last section of a measurement with
an even number(n) of blocks is one wavelength long. This causes the the reflection
coeffiecient to be identical to the reflection of a waveguide n− 1 sections, and all
lines from odd to even sections will be flat. In the following simulations the width
of the waveguide, and the number of modes is shown for each figure. The number
of modes in the waveguide depend on the width of the guide, while the number
of free modes can be adjusted in the code. If the number of free modes and the
number of modes in the waveguide are the same, the matrices will be quadratical.
Fig 4.3 and 4.4 have quadratical matrices, but fig 4.3 was made only utilising the
bound modes. The values L and a correspond the the values in fig 3.1.
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4 SIMULATIONS

Figure 4.1:

a = 20nm
L = 100nm
Number of free modes: 200

n1 = 2
Number of modes in n1 : 104
Number of bound modes in n1 : 12

n2 = 1.5
Number of modes in n2 : 102
Number of bound modes in n2 : 8
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Figure 4.2:

a = 20nm
L = 100nm
Number of free modes: 200

n1 = 3
Number of modes in n1 : 108
Number of bound modes in n1 : 19

n2 = 2.8
Number of modes in n2 : 107
Number of bound modes in n2 : 17
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Figure 4.3:

a = 20nm
L = 100nm
Number of free modes: 200

n1 = 3
Number of modes in n1 : 108
Number of bound modes in n1 : 19

n2 = 1.5
Number of modes in n2 : 102
Number of bound modes in n2 : 8
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Figure 4.4:

a = 8nm
L = 40nm
Number of free modes: 8

n1 = 5
Number of modes in n1 : 8
Number of bound modes in n1 : 8

n2 = 4.9
Number of modes in n2 : 8
Number of bound modes in n2 : 8
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Figure 4.5:

a = 8nm
L = 40nm
Number of free modes: 30

n1 = 5
Number of modes in n1 : 8
Number of bound modes in n1 : 30

n2 = 4.9
Number of modes in n2 : 8
Number of bound modes in n2 : 30
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5 Discussion

The major source of error in the code is probably the pseudoinverse. As described
in section 2.5, the pseudoinverse doesn’t necessarily have a unique solution, de-
pending on whether or not it is rank deficient. This creates a problem in the code,
when the matrices used are non quadratical, because the matrices invariably needs
to be transposed which in turn makes them rank deficient. Since this means one
can only find one solution among an infinite number, this can clearly become a
problem. One possible remedy to this problem is to use quadratical matrices, in
other words letting the number of free modes be equal to the number of modes in
the waveguide. This has been simulated for several values, and the result is shown
in fig. 4.4 and 4.5. 4.5 shows a nice increase in reflection and levels out at 0.25,
which is a reasonable value. However, due to problems with the other simulations,
it is difficult to say whether or not the simulation is reliable. 4.4 falls quickly to
zero, due to a problem that will be explained below. One can then compare the
single mode simulations in part 3, with the corresponding multi mode simulations
in part 4.

Fig 4.1 shows the reflection as a function of the number of blocks, which have
a refraction that varies between 2 and 1.5. One clan clearly see it flattens out
at a value higher than 1, which is physically impossible. This can possibly be
attributed to the use of pseudoinverse in the code. Since there are instances in the
code where the pseudoinverse is just one out of many solutions, it is very possible
this can lead to problematic results. Another noteworthy feature of this figure,
is that at block number nine, the reflectance dips towards zero. This is directly
due to the fact that matrix M−

221 from 2.20, suddenly drops sharply in value after
adding a certain number of blocks. This can be tied to a decrease of the rank of
this matrix. The fall in the reflectance value, correlate with a dramatic decrease
in the rank of this matrix, indicating that these two things are connected to each
other. The first value, matches perfectly with the single mode test in 3.5, while
the second value is not quite as similar.

Fig 4.2 has more or less the same situation. The reflectance sharply falls after
eleven blocks, but it is clear from the picture that if it had beeen able to continue,
it would level out above one. The first value is correct, but it then increases more
than it’s supposed to.

The third figure, fig 4.3, flattens out before it reaches 1, however the second
value is higher than it’s single mode counterpart. But like the fig 3.2, it levels
out after only a couple of blocks. This may indicate, that basic curvature of the
graphs are correct, but each step is for some reason far too high.

One can then go back to fig 4.4 and 4.5. They show the exact same waveguide,
but in 4.4 only the bound modes are included, as opposed to 4.5, where all modes
are included. There is a clear difference between these two graphs, and this is
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mainly due to the aforemented problem; that the value of the pseudoinverse of
M22 suddenly falls. In the system that produced fig 4.4, the rank of M22 falls
almost immediatly, while the corresponding M22 for fig 4.5 retains full rank much
longer.
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6 Conclusion

The Transfer Matrix Method utilised as described in this report, seems to produce
promising results, but it is doubtful that they are correct. The method gives
what might be the correct shape of the reflectance as a function of the number of
blocks, but the values are probably wrong. It is difficut to say with certainty why
this is, but it is possible this is due to the pseudoinverse and the non quadratical
matrices, since the pseudoinverse only gives one out of many possible solutions.
The problem with inverting a non quadratical matrix, was avoided in fig 4.5 where
a quadratical matrix was used, and the result looked promising. However without
further testing, it is difficult to say whether or not the simulation is correct.

There is also another problem. The reflectance suddenly falls to zero after
adding a certain number of blocks. The exact number of blocks, depend on the
number of modes. This problem is most likely tied to the use of pseudoinverse in
the code. That’s because the fall in reflectance correlelates with a fall in the rank
of the matrix, on which the pseudoinverse is used.
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