Using Xilinx Planahead to create physical constraints

Author: Vegard Endresen

1 Introduction

This tutorial will explain the steps to create physical constraints for a Platform Studio project in Xilinx
Planahead and how to export these constraints back into the Platform Studio project. Xilinx Design Suite
10.1 is used in this tutorial.

2 Steps

After completing design and synthesis in Platform Studio, open Xilinx Planahead.

2.1 Create a new Planahead project

Create a new Planahead project by File -> New Project. Follow the wizard until the window in figure
2.2.1 appears. Select import a synthesized (EDIF or NGC) netlist and click next.

Mew Project Pg|
Design Input
Create a project with an RTL or synthesized netlist, or without a netlisk, {;_:ﬁ

Do ol wank koimpart a netlisk nowe

{:} Yes, impork HOL sources

Wou will be able to run RTL analysis

(¥) ‘es, import & synthesized (EDIF or NGC) netlist

Wou will be able to use all Plandhead Features, such as design analysis,
Flaorplanning, Timeshead, Pindhead and Exploredhead

() Mo, do not import & netlist at this time

You will be able ko da pin planning with Pindhead. You can always import a netlisk
later with File | Update Metlist

< Tilbake]| Mext = | [Cancel

Figure 2.1.1 Imports

In the next window click the button to the right on the Netlist File line. This will open a file browser. In
the file browser navigate to the /implementation folder of the Platform Studio project in question and
select the top level NGC file as shown in figure 2.2.2.

(8 Netlist file

My Recent
Docurnents

My Compuker

“

Py Mekwork,
Flaces

Look in: ||ﬂ implermnentation

vy ?EE

am_cntlr_wrapper
arn_wrapper

che
m_ddr_clk_wrapper
m_ddr_Fx_wrapper

F_wrapper

in_led_wrapper
rin_system_wrapper
C_syskem_wrapper
4OPpC_Wrapper
ome_ddrZ_wrapper

0_MEMmary _wrapper

£

m_kemac_cntlr_wrapper

b _peripheral_wrapper
c405_syskern_wrapper

|53 reconf_0_wrapper

|:| reset_syskem_wrapper
[spi_cntlr _wrapper

[split_fpga_reset_wrapper
|9 wart_console_wrapper
|5 lnx_auko_0_xdb

[f_‘. xps_hwicap_0_wrapper
(5 brarn_crtlr_wrapper.ngc
[bram_wrapper.ngc

S dem_ddr_clk_wrappet.ngc
(i dern_ddr_Fx_wrapper.ngc
(5 dor _wrapper.nge

(51 gpio_led_wrapper.ngc

1 gpio_syskem_wrapper.ngc
(1 inkc_syster_wrapper.ngc

[jtagppc_wrappet . nge

(5 mprc_ddr2_wrapper.mgc

5 ocrn_temac_chtle_wrapper.nge
(5 plb_memary_wrapper.ngc

4 plb_peripheral_wrapper.nigc
[ppod0S_system_wrappet.nge
i reconf_0_wrapper.ngc

(5 reset_system_wrapper,ngc
[spi_cntlr_wrapper.ngc

i split_Fpga_reset_wrapper.nigc
i uart_console_wrapper.ngc

5 =ps_hwicap_ 0_wrapper.ngc

¥Ps_proj,mgc

File name:

ixps;-ru:uj.ngu:

Files of type: |I§DIFEIE {.edf, edn, ngo, sedif, ngc, edif)

After selecting the top level NGC file, click next and the netlists from the Platform Studio project will be

Figure 2.2.2 NGC file select

read. In the following windows select FPGA product family and part. For instance, the Suzaku-sz410
card’s product family is Virtex 4 and part is xc4vfx12sf363-10.

New Project (8 Select Part : X
Floorplan Name

Enter a name For W= virkexd 1 {
"-h':"l qrirkesxd

-0 irtexd

Flaorplan name: E|L_f-' wirbexdfx |
=5 4vfxlz

Choose Part: . - Ffees _ B
- =kl sfaes

5 o wcdval2sf363-12
-5 420

- 4vFxd

-5 4vfxE0

-1 dvf100

- 4vFl40

-5 wirkesdlx

[H-5 virtexdsx

(4][Cancel]j

Figure 2.1.3 Part selection

Finally in the import constraint window, select add. Go to the /data directory in the Platform Studio

project directory and select xps_proj.ucf as shown in figure 2.1.4. Finish the wizard by clicking next in
the following windows.

(8 Constraints files

Loak in: | | data

My Recent
Diocuments

My Dacuments

e 4

59

My Computer

My Rletwork,
Places

v ?EE

8k xps_projiuck

File name:

Files aof type:

ixps;uruj.ucf

|

Open

]

|LICF {.uck, ncf)

v | Cancel

2.2 Creating physical constraints

Figure 2.1.4 UCF file select

After creating a new project the Planahead workspace should appear. To create physical constraints for
a set of modules they need to be placed in a Pblock (Physical Block). One way of doing this is selecting
some set of modules from the Netlist window, right click and select Draw Pblock and draw a rectangle in
the device window. A Pblock containing the selected modules should now be created and displayed in
the device window as in figure 2.2.1.

310" x

Teklist O
= [E

|30 ps_proj
-5 Mets (2678)

| Primitives (223

bram tbram_wrapper)

0

s
IEEIE |
=11 |

@ ppc40S system (ppodlS: system_ wra | G I | il
I §-q i

il I 1k
-in il I W1 - BT Ll

Figure 2.2.1 Pblock

A Pblock contains the FPGA resources that are within its borders. To verify that a Pblock contains
enough resources for the modules assigned to it, select the Pblock and inspect the Physical Resources
Estimates table in the Properties window. If resource utilization for all types of resources is less than or
equal to 100%, there are enough resources within the Pblock to accommodate the assigned modules. If
not some action must be taken to ensure that resource demands are met. Figure 2.2.2 shows the
Physical Resources Estimates table for pblock 1 in figure 2.2.1, which contains enough resources for its
modules.

Pblock Properties O & =

& & E & B
(@ phlock_1
”
Pheysical Resources Eskimates
Site Type Available Required e LI
LUT 7296 Saal a0.33
FF 7296 2595 35,61
SLICEL 1524 17585 93,03
SLICEM 1524 17585 93,03
DaP43 22 1] 0.00
FIFO16 21 1] 0.00
RAMELG 21 19 0,45
Carry statiskics
Type Yalue "
£ >

General | Statistics | Instances | Rectangles | Attributes

Figure 2.2.2 Physical Resources Estimates

Planahead enables reallocation through assign and unassign, which can be used to move modules
between existing Pblocks to meet resource demands. It is also possible to resize and move a Pblock, thus
changing the number of resources it contains. By partitioning a full design into Pblocks a custom layout
can be created.

2.3 Exporting constraints from Planahead

After completing partitioning a design into Pblocks, the constraints can be exported to file by File ->
Export Floorplan. Deselect EDIF under files to generate and select Export only fixed placement in the
dialog that appears. Next click finish. The generated UCF file can be found in the Planahead project
directory and is named top.ucf by default.

@8 Export Floorplan E|

| Select export mode and file types to generate

Floorplan: |FI|:u:ur|:|Ian_1 |

Directary name: |C:'|,D|:u:ument5 and Settingsivegardiiy Du:u:uments'l,F'Ian.ﬁ.heat| E]

File tvpes ko generate

Constrainks (LCF)
{(#) Expart anly fixed placement

() Expart all placement

[o Mext ” Cancel ” Finish

Figure 2.3.1 Export to UCF
2.4 Importing constraints in Platform Studio

To use the constraints generated in Planahead in a Platform Studio project, top.ucf from the previous
section should be used. The UCF file for a Platform studio project, xps_proj.ucf, is located in its /data
directory and can also be found in the Project Information Area -> Project tab -> UCF file in Platform
Studio. Ideally one should only need to change the Platform Studio project’s UCF file from xps_proj.ucf
to top.ucf to import the constraints created in Planahead, but | have had to create a workaround as
replacing xps_proj.ucf with top.ucf does not work for me.

When running place and route of a Platform Studio design using a UCF file generated by Planahead, |
experience an error with diagnostics: Conflicting Vcc voltages in bank 1/0 Bank 8. Planahead actually
modifies the original constraints from the Platform Studio project’s UCF file, which are imported during
creation of a Panahead project, and causes PAR to fail. A solution is to manually combine the placement
constraints created in Planahead with the original constraints from the Platform Studio project’s UCF file
as follows.

Create a new file called merge.ucf in the /data directory of the Platform Studio project, copy the region
containing constraints generated by PlanAhead from top.ucf and the entire content of xps_proj.ucf into
merge ucf. | have attached a UCF folder to this tutorial, containing three UCF files: xps_proj.ucf, top.ucf
and merge.ucf. They demonstrate the process of merging UCF files as mentioned here. If changing the
Platform Studio project’s UCF file to top.ucf works for you, then stick to that and disregard the merging
trick.

To change the Platform Studio UCF file, go to the Project Information Area, right click UCF file and click
change as shown in figure 2.4.1 and select the UCF file that is to be used as shown in figure 2.4.2.

Project Information &rea

Project Applications IF Catalog

Platform

=~ Project Files
kMHS File: wps_proj.mhbz
k55 File: xps_proj.mez

LICF File: datawp=_proj.ucf
iMPACT Command File: etc/do
Implementation Options File: ek
Bitgen Options File: etc/bitgen.ut
=- Project Options
Device: scdviz12sf363-10
Metlist: Toplewvel
Implementation; #PS [=flow)]
HOL: WwHDL
Sim kodel BEHAWVIORAL
=- Reference Files
Log Files
Synthesiz Report Files

Open

Zhange

Figure 2.4.1 Changing Platform Studio UCF file

Select UCF File

Look ir; 1 =7 data

= = @EcF E

-';t rnE:r'gE.u':F
L 3 @ bop.ucf

by Becent xps_proj,uck
Documents

F—
| ®

L

Desktop

=,

by Documents

by Computer

<
Py Mtk File name: 1merge.ucf
Places

Files af type: !LIEF Files[". ucf]

L] Open
_:_J Cancel

e
L

Figure 2.4.2 Select UCF file

Constraints have now been imported back into Platform Studio and the design can be placed and

routed. Make sure to inspect the routed design in FPGA editor afterwards as some restrictions might not

work as planned.

3 Final Words

This tutorial shows how to create placement constraints for a Platform Studio project in Planahead and
how to export them back into the original project. This is of interest if position of parts of a design must

be known, for instance in a reconfigurable design. Any comments or questions to the tutorial can be

sent to me at vegarend@gmail.com

