
Programmable
SLI
AT40K
AT40KAL
AT94K

Application
Note

Rev. 2324A–10/01
Pulse Width Modulation

Pulse Width Modulation (PWM) is a technique to provide a logic “1” and logic “0” for a
controlled period of time. Pulse Width Modulation is used in many applications such
as controlling the speed of a DC motor.

This application note describes the implementation of simple PWM using Atmel’s
FPGAs. The basic principle is to use a register to store the value which is loaded on to
the Up/Down Counter whenever the counter reaches its terminal count. The terminal
counter is used to generate the pulse width modulation.

Functional Description
A data register is used to store the value for the counter, this value determines the
pulse width. The Up/Down Counter is loaded with a new value from the data register
when the counter reaches its terminal count; a Toggle Flip-flop generates the PWM
output.

When the data value is first loaded, the counter begins to count down from the data
value to 0. During this phase of operation the terminal count and PWM signals are
Low. When the counter transitions through 0, the terminal count is generated and it
triggers the Toggle Flip-flop to drive the PWM signal High. The data value is re-loaded
and counting proceeds up to the maximum value. Again a terminal count will be gen-
erated when the counter reaches its maximum value, driving the PWM signal to toggle
from High to Low. The data value is re-loaded and the cycle repeats. The direction of
the counter is controlled by the PWM signal: the counter is set to count down when the
PWM is Low, and count up when the PWM is High. The terminal count controls the
data value that loads to the counter from the data register. Data is loaded when the
terminal count is High.

The duty cycle of the PWM signal is controlled by the data value loaded to the
up/down counter. The duty cycle of the PWM output can be varied by specifying vari-
ous data values, the higher the data value, higher the duty cycle (see Table 1).

Table 1. Data Values for Different Duty Cycles

Data Value Duty Cycle (%)

11100110 90

11000000 75

10000000 50

01000000 25

00011001 10
1

Block Diagram

Figure 1. Sample PWM Output Waveform(1)

Notes: 1. Duty Cycle is calculated by taking the ratio of Mark Period and Frame Period:
Duty Cycle = Mark Period/Frame Period = Data Value/2n.

2. Mark Period = Data Value x Tclock.
3. Frame Period = Tclock x 2n , where “n” is the binary counter width.

Design
Implementation

An 8-bit PWM counter is implemented using VHDL. The design uses an 8-bit data register, an
8-bit up/down counter and comparator logic. The designer can easily modify the design for a
different resolution by changing the data register and the counter width. The VHDL source
files, testbench files and the user packages can be downloaded from Atmel’s web site. Table 2
provides a list of the software requirements for the design implementation.

PWMTC

Data

Load

Up/down

Up/down
Counter

Data
Register

Toggle
Flip-Flop

Clock

Data

Reset

Clock

Mark Period(2)

Data Value x Tclock

Frame Period(3)

2n x Tclock

Table 2. Software Requirements

Tool Requirement

VHDL Synthesizer Exemplar’s LeonardoSpectrum™ or any
Synthesis tool which supports the Atmel AT40K
architecture

Place & Route Atmel’s IDS 6.0 and above or System Designer™

Simulator ModelSim® simulator or any simulator tool which
supports VITAL VHDL
2 Pulse Width Modulation
2324A–10/01

Pulse Width Modulation
Sample Design
Using
LeonardoSpectrum,
IDS Figaro and
ModelSim Simulator

1. Copy the source file pwm_fpga.vhd to your project or design directory. This file can be
downloaded from Atmel’s web site, at http://www.atmel.com/atmel/products/prod102.htm

2. Start LeonardoSpectrum.

3. Select AT40K under the Technology window and click on open files to select
pwm_fpga.vhd from your project directory.

4. Click on run for Leonardo to read the design file, map to Atmel architecture and
synthesize.

5. The successful compilation will generate the pwm_fpga.edf.

6. Import pwm_fpga to the IDS Figaro for placement and routing.

7. Generate the bistream and use this bistream to configure the FPSLIC™.
The resulting PWM signal is shown in Figure 2.

Figure 2. ModelSim Simulator Result for 65% Duty Cycle PWM Wave
3
2324A–10/01

Source Files

pwm_fpga.vhd Library IEEE;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all ;

USE work.user_pkg.all;

ENTITY pwm_fpga IS

PORT (clock,reset: in STD_LOGIC;

Data_value : in std_logic_vector(7 downto 0);

pwm : out STD_LOGIC

);

END pwm_fpga;

ARCHITECTURE arch_pwm OF pwm_fpga IS

SIGNAL reg_out : std_logic_vector(7 downto 0);

SIGNAL cnt_out_int: std_logic_vector(7 downto 0);

SIGNAL pwm_int, rco_int: std_logic;

BEGIN

-- 8-bit data register to store the data values .The data values

-- will determine the duty cycle of PWM output

PROCESS (clock,reg_out,reset)

BEGIN

IF (reset ='1') THEN

reg_out <="00000000";

ELSIF (rising_edge(clock)) THEN

reg_out <= data_value;

END IF;

END PROCESS;

--8-bit up/down counter. Counts up or down based on the pwm_int signal

--and generates terminal count whenever counter reaches the

--maximum value or when it transists through zero. Terminal

--count is uesd to automatically load the data value to generate

--different pwm out with different duty cycle

--INC and DEC are the two functions which are used for up and

--down counting. they are defined in sepearate user_pakge library

PROCESS (clock,cnt_out_int,rco_int,reg_out)

BEGIN

IF (rco_int = '1') THEN

cnt_out_int <= reg_out;
4 Pulse Width Modulation
2324A–10/01

Pulse Width Modulation
ELSIF rising_edge(clock) THEN

IF (rco_int = '0' and pwm_int ='1' and cnt_out_int <"11111111") THEN

cnt_out_int <= INC(cnt_out_int);

ELSE

IF (rco_int ='0' and pwm_int ='0' and cnt_out_int > "00000000") THEN

cnt_out_int <= DEC(cnt_out_int);

END IF;

END IF;

END IF;

END PROCESS;

PROCESS(cnt_out_int, rco_int, clock,reset)

BEGIN

IF (reset ='1') THEN

rco_int <='1';

ELSIF rising_edge(clock) THEN

IF ((cnt_out_int = "11111111") or (cnt_out_int ="00000000")) THEN

rco_int <= '1';

ELSE

rco_int <='0';

END IF;

END IF;

END PROCESS;

-- Logic to Generate the PWM ouput.

PROCESS (clock,rco_int,reset)

BEGIN

IF (reset = '1') THEN

pwm_int <='0';

ELSIF rising_edge(rco_int) THEN

pwm_int <= NOT(pwm_int);

ELSE

pwm_int <= pwm_int;

END IF;

END PROCESS;

pwm <= pwm_int;

END arch_pwm;
5
2324A–10/01

User_pkg_inc_dec.vhd LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE user_pkg IS

function INC(X: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function DEC(X: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

END user_pkg ;

PACKAGE BODY user_pkg IS

function INC(X: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is

variable XV: STD_LOGIC_VECTOR(X'LENGTH - 1 downto 0);

begin

XV := X;

for I in 0 to XV'HIGH LOOP

if XV(I) = '0' then

XV(I) := '1';

exit;

else XV(I) := '0';

end if;

end loop;

return XV;

end INC;

function DEC(X: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is

variable XV: STD_LOGIC_VECTOR(X'LENGTH - 1 downto 0);

begin

XV := X;

for I in 0 to XV'HIGH LOOP

if XV(I) = '1' then

XV(I) := '0';

exit;

else XV(I) := '1';

end if;

end loop;

return XV;

end DEC;

END user_pkg;
6 Pulse Width Modulation
2324A–10/01

Pulse Width Modulation
Post-layout
Testbench

pwm_posttb.vhd Post-layout Testbench File

• Design: pwm_fpga
• Program: Figaro
• Version: Atmel 7.2 (patch level 3 applied)
• Vendor: Atmel
• Created: May 31, 2001 at : 11:45:56 am

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.VITAL_timing.all;

library AT40K;

use AT40K.VCOMPONENTS.all;

entity post_test_bench is

end post_test_bench;

architecture arch_test_bench of post_test_bench is

component pwm_fpga

port (

clock : in STD_LOGIC := '0';

reset : in STD_LOGIC := '0';

Data_value : in STD_LOGIC_VECTOR(7 downto 0) := "00000000";

pwm : out STD_LOGIC

);

end component;

signal sig_pwm: STD_LOGIC;

signal sig_reset: STD_LOGIC;

signal sig_Data_value: STD_LOGIC_VECTOR(7 downto 0);

signal sig_clock: STD_LOGIC;

signal one : STD_LOGIC := '1';

signal zero : STD_LOGIC := '0';

shared variable ENDSIM: boolean:=false;

constant clk_period:TIME:=200 ns;

BEGIN

clk_gen: process

begin

if ENDSIM = FALSE THEN

sig_clock <= '1';

wait for clk_period/2;

sig_clock <= '0';
7
2324A–10/01

wait for clk_period/2;

else

wait;

end if;

end process;

inst_pwm_fpga:pwm_fpga

port map (

clock => sig_clock,

reset => sig_reset,

Data_value => sig_Data_value,

pwm => sig_pwm

);

stimulus_process: PROCESS

BEGIN

sig_reset <= '1';

wait for 100 ns;

sig_reset <= '0';

sig_data_value <= "11000000";

wait for 50 us;

sig_data_value <= "10000000";

wait for 50 us;

sig_data_value <= "01000000";

wait for 50 us;

sig_data_value <= "10000000";

wait;

END PROCESS stimulus_process;

end arch_test_bench;
8 Pulse Width Modulation
2324A–10/01

© Atmel Corporation 2001.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Product Operations
Corporate Headquarters

2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Atmel Heilbronn
Theresienstrasse 2
POB 3535
D-74025 Heilbronn, Germany
TEL (49) 71 31 67 25 94
FAX (49) 71 31 67 24 23

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 0 2 40 18 18 18
FAX (33) 0 2 40 18 19 60

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743

Atmel Programmable SLI Hotline
(408) 436-4119

Atmel Programmable SLI e-mail
fpga@atmel.com

FAQ
Available on web site

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

Atmel® is the registered trademark of Atmel. System Designer™ and FPSLIC™ are the trademarks of Atmel.

Leonardo® and ModelSim® are the registered trademarks of Mentor Graphics Corporation.
LeonardoSpectrum™ is the trademark of Mentor Graphics Corporation. Other terms and product names may
be the trademarks of others.

2324A–10/01/xM

	Functional Description
	Block Diagram
	Design Implementation
	Sample Design Using LeonardoSpectrum, IDS Figaro and ModelSim Simulator
	Source Files
	pwm_fpga.vhd
	User_pkg_inc_dec.vhd

	Post-layout Testbench
	pwm_posttb.vhd

