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Summary

A precise subthreshold potential model for Quadruple FET (QuadFET) is presented in
this thesis. The attempt of modeling FinFET ("Fin" FET) in the same way failed,
but the procedure of the attempt will still be presented, and a conclusion of why this
modeling did not work is given.

An analytical solution for the inter-electrode potential distribution of a double-gate
MOSFET (DG MOSFET) is used for the QuadFET by performing a simple geometric
scaling transformation. This is done with a high degree of precision due to structural
similarities between the QuadFET and DG MOSFET, accounting for the di�erence in
gate control of the two devices. A parabolic approximation is then used to model the
cut-plane in the middle of the device, perpendicular to the electron �ow from source to
drain. The resulting analytical solution agrees very well with numerical simulations.

For the FinFET, the same analytical solution of the DG MOSFET is used directly
in the ground plane of the device, assuming that the electric �elds going through the
ground plane, into the thick substrate, is negligible. Conformal mapping is then used in
the same plane as modeled in the QuadFET, that is the plane in the middle of the device,
perpendicular to the electron �ow from source to drain, resulting in an analytical solution
for the FinFET. Since the potential curvature in the source-drain direction was neglected
when making the three dimensional problem of the FinFET to a two dimensional one,
the modeling failed. However, an attempt of modeling the transistor has been tested,
the electrostatics of the device is better known, and a new way of modeling the device is
brie�y discussed.





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Important issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Review of MOSFET modeling 7
2.1 History of single gate MOSFET modeling . . . . . . . . . . . . . . . . . . 7
2.2 Modeling for DG MOSFET and GAA MOSFET (Gate-all-around) . . . . 8
2.3 Potential modeling for FinFET . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Potential modeling for QuadFET . . . . . . . . . . . . . . . . . . . . . . . 10

3 Basic theory 11
3.1 Conformal mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Conformal mapping for rectangles . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Geometric constants C and k . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Expressions along boundaries and symmetry lines . . . . . . . . . . . . . . 13
3.5 Inverse transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Solution of the 2D Laplace equation (DG MOSFET) . . . . . . . . . . . . 16

4 Potential modeling of FinFET and QuadFET 19
4.1 Device structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Conformal mapping for QuadFET . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Parabolic approximation for QuadFET . . . . . . . . . . . . . . . . . . . . 26
4.4 Conformal mapping for FinFET . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Oxide gap correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion 37

6 Future work 39
6.1 Subthreshold potential model for FinFET . . . . . . . . . . . . . . . . . . 39
6.2 Modeling of other cut planes . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Electrostatic modeling of threshold and strong-inversion . . . . . . . . . . 40

v



Contents

6.4 Drain current model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5 Threshold voltage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6 Capacitance modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.7 Development of SPICE-type model . . . . . . . . . . . . . . . . . . . . . . 40
6.8 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 41

Appendixes 44

A ϕ(u, v) for DG MOSFET 44

B Approximation for F 2(k, u) 45

C Deriving ϕ(u, v) for the FinFET 46

D Oxide correction 49



Notation and symbols

εox Relative dielectric permittivity of oxide
εsi Relative dielectric permittivity of silicon
tox Oxide (insulator) thickness
t′ox E�ective Oxide (insulator) thickness for silicon permittivity (t′ox=toxεsi/εox)
λQuad Characteristic length of QuadFET
λDG Characteristic length of DG MOSFET
L Gate length of FinFET and QuadFET
H Height of FinFET
Heff E�ective height of FinFET (Heff=H+t′ox)
W Width of FinFET
Weff E�ective width of FinFET (Weff=W+2t′ox)
S Length of sides in QuadFET
S′ E�ective length of sides in QuadFET (S′=S+2t′ox)
L′ Extended gate length of DG MOSFET (L′=LλDG/λQuad)
Na Acceptor doping
NC E�ective density of states in conduction band
NV E�ective density of states in valence band
ni Intrinsic electron density
mn E�ective electron mass
mp E�ective hole mass
h Plancks constant
~ Reduced Plancks constant
Vbi Built in potential, band bending
VFB Flat band voltage
Vth Thermal voltage
VT Threshold voltage
Vgs Gate to source voltage
Vds Drain to source voltage
kB Boltzmann's constant
T Temperature
q Electron charge
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χ Electron a�nity silicon
Φm Gate metal work function
φb Fermi-intrinsic band bending
ϕc Potential di�erence between center in device and at gate-silicon interface
ϕm Maximum potential in cut plane perpendicular to source-drain symmetry

line in center of device
ϕ(x,y,z) Potential distribution in body
ϕ(u,v) 2D Potential distribution in a device body in W-space
k Modulus
K(k) Complete elliptic integral of the �rst kind
F(k,w) Legendre elliptic integral of the �rst kind
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Chapter 1

Introduction

1.1 Background

MOSFETs (Metal Oxide Semiconductor Field-E�ect Transistors) have existed since the
beginning of the 1960's, and are still, by far, the most important type of transistor in
the world. No other types of technology have yet been able to compete with the well
known MOSFET technology. The worlds request for faster and smaller electronics has
put an enormous pressure on the semiconductor industry to keep shrinking the tran-
sistor, especially since smaller also means faster and more logic on chip. However, the
conventional single-gate MOSFETs is reaching its scaling limit due to problems such as
leakage and loss of gate control. The search for alternative devices is for this reason
extremely important in order to keep up the development in the semiconductor indus-
try. Strong candidates to replace the conventional bulk MOSFET is the FinFET ("Fin"
FET) and QuadFET (Quadruple FET). The replacement is needed in order to meet the
ever growing demands for high-speed, low power CMOS (Complementary Metal Oxide
Semiconductor) circuitry.

The scaling of the single-gate MOSFET into the sub-100nm range has been possible
by for instance increasing the doping in the body and by using steep doping gradients.
However, this will be detrimental for the charge carrier mobility, and thus lower the
drain current and speed of the transistor. The FinFET and QuadFET have advantages
compared to the bulk MOSFET in terms of short-channel e�ects and much improved
gate control due to the use of volume inversion in the entire thin, lightly doped silicon
body in all regimes of operation. The FinFET and QuadFET become for this reason
superior to the ordinary MOSFET at short gate lengths.

The amount of current which is moving through the body of a transistor when op-
erated in the subthreshold region is important to predict precisely, since it determines
the o�-state leakage current of the device, and therefore also the power dissipation in
logic circuits. This is especially important in battery driven circuits with reduced power
supplies.

1
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1.1.1 Integrated circuits
An integrated circuit is a miniaturized electronic circuit that can consist of complete
systems of both analog and digital functions (VLSI- very large scale integration) on a
wafer. Integrated circuits are used in many battery driven circuits, such as cell phones,
cameras, mp3-players, etc. CMOS technology has become the most used in these imple-
mentations because it provides density and power savings on the digital side, and a good
mix of components for analog design[3].

1.1.2 Device simulation (TCAD)
A device simulator is a technology computer aided design (TCAD) tool, which apply
numerical derivations based on complex equations, such as partial di�erential equations,
to predict the behavior of a device.

Iterating Poisson's equation combined with a transport model for a given set of bound-
ary conditions with a numerical device simulator, gives a prediction of the electrical
characteristics of a device. The device is discretized in all three dimensions with a grid
and then iterated with a PDE (Partial di�erential equation) solver, which means that
the time of convergence and accuracy depends very much upon the grid distribution and
size, solver type, models for carrier statistics and current continuity.

In this work the numerical device simulator Atlas from Silvaco is used to verify the
models presented. Atlas has a range of models for di�erent physical properties such as
device electrostatics, charge carrier transport and noise.

1.1.3 Circuit simulation (SPICE)
Since the cost of manufacturing integrated circuits is high due to expensive photolithog-
raphy and processing equipment, is it extremely important that the circuit is designed
with high precision before produced. Simulating the circuit with a circuit simulator, such
as SPICE (Simulation Program with Integrated Circuit Emphasis), is necessary in order
to verify the circuit and make it ready for production.

A part of the development of FinFET and QuadFET is to create precise compact
models for implementation in circuit simulators and circuit design tools, in order to use
the transistors in an integrated circuit. Usually, a selection of models exists for a tran-
sistor, where an exact model has made the expense of being slow due to being more
complex, and visa versa. Previous, less precise MOSFET models use many adjustable
parameters which have to be extracted through analyzing measurement or a device sim-
ulator (TCAD). For the designer to choose an appropriate model for a speci�c circuit is
often a di�cult task.

1.1.4 Device modeling
In this thesis, a physically based device model is a description of the device behavior in
terms of analytical, algebraic expressions. The model is further compact if it is described
by analytical, explicit expressions. Compact models can also be based on preprocessing
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routines, which imply iteration of models, resulting in parameter look-up tables for fast
retrieval for use in simpli�ed parameterized models. This is contrary to device simula-
tions, which are numerical derivations of complex equations, such as partial di�erential
equations.

1.2 Objectives of thesis
The objective of this thesis is to create a physical basis for precise potential modeling of
nanoscale short-channel lightly doped FinFET and QuadFET in the subthreshold regime,
based on the work of Fjeldly et al. The potential modeling can in future work be used
to create a precise current and capacitance model in the subthreshold regime, and also
be added to a threshold and strong-inversion model to give a compact model for the full
regime of operation.

The modeling is based on a three-dimensional analysis for both the FinFET and the
QuadFET, where the 2D analytical solution of the inter-electrode potential distribution
of a DG MOSFET (Double-gate MOSFET)[2][1] is used in both analysis. Short-channel
e�ects are intrinsic to this 2D and 3D analysis, and the DIBL-e�ect (Drain Induced
Barrier Lowering) is added by the use of conformal mapping. The analytical solution
from the DG MOSFET, can with the appropriate modi�cations be used as the inter-
electrode potential distribution of the cut plane along the source-drain symmetry line
in the middle of the QuadFET. In the case of the FinFET, the solution from the DG
MOSFET is used as the potential distribution in the ground plane of the FinFET.

1.3 Important issues
In the attempt of modeling the subthreshold inter-electrode potential distribution of
nanoscale short-channel FinFET and QuadFET, important terms are 3D electrostatics,
DIBL, inversion charge, quantum mechanical e�ects, gate tunneling and noise. Below
follows a summary of to what extent these topics are addressed in this thesis.

3D electrostatics. In this work, the two devices considered are of dimensions such
that there is a signi�cant coupling between all the contacts. For this reason, both devices
must be modeled with a three dimensional analysis.

DIBL. Drain induced barrier lowering is the shift of both position and magnitude
of the minimum potential along the source to drain symmetry line of a device, thus
lowering the barrier for the charge carriers to reach drain. This happens especially for
small devices at high source-drain voltages, and can in worst case lead to total lack of
gate control. Due to the use of conformal mapping, this e�ect will be included in the
modeling.

Inversion charge. In the near and above threshold regime, the electrostatic in�u-
ence from the contacts starts to induce a signi�cant amount of inversion charge in the
silicon body which have to be taken into consideration. In this work however, only the
subthreshold regime is considered and therefore the in�uence from the inversion charge
on the body electrostatics is neglected.
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Quantum mechanical e�ects. Classical theory is still applicable for device dimen-
sions larger than 10nm[4]. All modeling in this work is because of this based on classical
theory. Considering quantum mechanical e�ects are therefore outside the scope of this
thesis.

Gate tunneling. In this work, a high-κ insulator material with relative permittivity
of 7 and thickness of 1.6nm is considered. The gate tunneling is in this case quite small[5],
and will not be considered.

Noise. Noise modeling is beyond the scope of this thesis.

1.4 Outline of thesis
In this thesis, the potential distribution in the cut planes perpendicular to the source-
drain symmetry line in the middle of the FinFET and QuadFET, biased to operated
in the subthreshold regime, are attempted to be modeled. These potential pro�les are
important for �nding a subthreshold current and capacitance model in future work, and
are for these reasons important to model. The devices considered have a low doped, fully
depleted body, where the inter-electrode coupling between the contacts dominate the
potential distribution. The inversion charge has of this reason been neglected. Conformal
mapping is a central tool to solve the Laplace equation in this thesis.

Due to the structural similarities between the QuadFET and the DG MOSFET, the
analytical 2D inter-electrode solution for the DG MOSFET has been used to map the
cross-section along the source-drain symmetry line of the QuadFET by accounting for the
di�erence in gate control between the two devices. From this, the potential distribution
in the cut plane perpendicular to the source-drain axis, also called the vertical plane in
the middle of the QuadFET, has been modeled.

For a relatively high FinFET (H=30nm) sitting on a thick substrate, the electrical
�elds going through the ground plane, into the substrate, is negligible. The analytical
solution of the 2D potential distribution for the DG MOSFET has been used as the
potential distribution in the ground plane of the FinFET. Further, conformal mapping
has been applied to the vertical plane in the center of the device, resulting in a model
for this cross-section.

Throughout this thesis, all models and results are compared with, and veri�ed by
the numerical device simulator Atlas from Silvaco. Atlas is a numerical solver, which
has many di�erent models for physical phenomena such as electrostatics, charge carrier
transport, and classical and quantum mechanical carrier statistics. All constants used in
the models are for this reason kept the same as in Atlas.

In chapter 2, modeling for di�erent types of MOSFETs, since the late 1960s to present,
are brie�y reviewed.

In chapter 3, basic theory of conformal mapping is presented. The 2D Laplace equa-
tion of a rectangle, ie. (that is) a DG MOSFET, is solved with the conformal mapping
technique.

In chapter 4, the conformal mapping technique and the solution to the 2D Laplace
equation of the DG MOSFET is used to model the potential distribution in the cut planes
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perpendicular to the source-drain direction in the middle of the FinFET and QuadFET.
The layouts of the the two devices are presented, and at the end of the chapter, the
results are discussed.

In chapter 5, a conclusion of the work in this thesis is given.
Finally, in chapter 6, possible future work is discussed.
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Chapter 2

Review of MOSFET modeling

In this chapter, modeling for di�erent types of MOSFETs, since the late 1960s to present,
are brie�y reviewed.

2.1 History of single gate MOSFET modeling
In the late 1960s and early 1970s, the development of simulation programs aimed to ana-
lyze nonlinear circuits started (SPICE released in 1972). Since the fundamental building
blocks of integrated circuit simulation tools are the device models, the development of
these building blocks started at the same time.

The �rst MOSFET model for the SPICE simulator, was the simple long-channel
charge control model for small substrate doping, also known as the Shichman-Hodges
model. It is based on the gradual channel approximation which states that under certain
conditions, the electrostatic problem under the gate can be expressed in terms of two
coupled one-dimensional equations[6]. The Shichman-Hodges model was modi�ed and
replaced by the Meyer I-V model, which included the e�ects of the depletion charge[7].
These models, called the Level 1 model, describes the current for gate voltages larger
than threshold voltage, which means that the subthreshold current is assumed to be
zero. Meyer also made a capacitance model based on the simple charge control model[8,
pp.170-173], which, however, was not charge conserving.

The Level 2 model, unlike Level 1, does not model the subthreshold current as zero.
It addresses second-order e�ects associated with small-geometry devices. The Ward-
Dutton capacitance model was improved compared to the Meyer model in that it is
charge conserving[9]. However, the capacitance model of Meyer is a subset of the Ward-
Dutton model of Level 2. The problem with Level 2 is that convergence problems are
often encountered due to that it is computationally very complex[10].

The Level 3 model is an improvement over Level 2 in that it is a semi-empirical
short-channel model, developed to address the shortcomings of Level 2. For this reason,
it seldom encounters convergence problems and it also runs faster. The DIBL-e�ect was
included in this level in an empirical way. However, the failure of properly modeling the
subthreshold current was a major drawback for Level 3. The capacitance model of level

7
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3 was the Ward-Dutton model and a Meyer-type model[8, pp. 182-183].
Due to the rapid evolution of the MOS technology in the 1980s, the early models

are clearly not appropriate to simulate circuits with large number of ever-smaller tran-
sistors. Another approach of modeling emerged with the BSIM (Berkeley Short-Channel
IGFET Model) models (BSIM1, BSIM2 and HSPICE Level 28), where the creation of
new physical models were dropped in favor of mathematical models characterized by a
large number of SPICE parameters (more than a hundred in some cases).

In the 1990s, Philips began the third-generation modeling approach with BSIM3, its
extension BSIM4 and MOS Model 9, where physically based models were reintroduced.
The use of smoothing functions provided a smooth behavior of the device in all the
regimes of operation[11].

The models mentioned in this section are the most used models for integrated circuit
design from the 1970s to the start of the 21th century. More accurate models for the
MOSFET have been created later on, but will not be discussed further in this review.

2.2 Modeling for DG MOSFET and GAA MOSFET (Gate-
all-around)

With new devices, there must also be new models. A lot of work have already been
done in modeling DG MOSFET and GAA MOSFET (gate-all-around)(see �gure 2.1).
Presenting all the di�erent types of modeling are out of the scope of this thesis, so, in
this section, the work of Fjeldly et al. on subthreshold potential modeling for nanoscale
DG MOSFET and GAA MOSFET are shortly described[2][1].

Figure 2.1: Device layout of DG MOSFET and GAA MOSFET in the doctoral thesis of Børli[1].
x and r are axial and radial coordinates, as indicated.

When a DG MOSFET and a GAA MOSFET is operated in the subthreshold regime,
the applied voltage at the gates is too small to in�ict signi�cant inversion charges in the
bodies of the transistors. The only contribution to the potential distribution left are then
the inter-electrode potential, which means that the 2D and 3D Poisson's equation, which



2.3. Potential modeling for FinFET 9

have to be solved in order to get the potential distribution, reduces to the corresponding
Laplace equation.

Conformal mapping is a mathematical tool used to solve the 2D Laplace equation in
a simple way. The mapping was �rst demonstrated by Klös et al. to map the �elds of a
semi-in�nite slab of silicon[12], where most of the short-channel e�ects became intrinsic
to the model. Later on, the mapping technique was used on a sub-100nm bulk MOSFET
by Østhaug et al. with good agreement compared to experimental results[13].

If conformal mapping is used on the DGMOSFET, it transforms (Schwarz-Christo�el)
the DG MOSFETs body from the real x, y ∈Z-plane to the semi-in�nite u, v ∈W-plane[2,
ch. 3]. In this semi-in�nite u, v-space, the Laplacian has a solution in form of an
integral[14, pp. 365] which gives an analytical solution for the inter-electrode poten-
tial distribution[2, pp. 35] when integrated over the correct set of boundary conditions.
Inverse transforming[2, pp. 30] the analytical solution, maps the inter-electrode poten-
tial back into the x, y ∈Z-plane. The analytical solution agrees very well with numerical
simulations. A more thorough explanation of what conformal mapping is and how it is
used is given both the work of Kolberg[2] and Børli[1], as well as in chapter 3.1 in this
thesis.

Conformal mapping is not directly applicable to the GAA MOSFET because of its
3D electrostatics. However, due to structural similarities between the DG MOSFET and
the GAA MOSFET, the analytical solution for the DG MOSFET can be adapted to
�t the 3D GAA MOSFET by using the characteristic lengths of the two devices[1, ch.
3.3.1]. A characteristic length is a measure of the penetration depth of the source and
drain contacts into the silicon body of the device. By elongating the DG MOSFET,
its analytical solution is adapted to give the inter-electrode potential distribution of the
GAA MOSFET with great correspondence with numerical simulations[1]. This method
is also used in this thesis, on the QuadFET.

Modeling in threshold and strong-inversion region, among other work, have also been
performed with good results by Fjeldly et al.[2][1], however this will not be discussed in
this review.

2.3 Potential modeling for FinFET
Some modeling have been performed for the FinFET (see �gure 2.2), but relatively little
compared to the DG- and the GAA MOSFET. Under follows some of the work most
related to that of this thesis.

Potential modeling for nanoscale FinFET has been performed by obtaining an ana-
lytical solution of the 3D Laplace equation by using series expansion in sine/cosine and
hyperbolic functions. By combining this subthreshold solution with a self-consistent so-
lution of the Poisson's and Schrödinger equation for the strong-inversion region, a drain
current model has been developed[15]. The results however, are not very impressive.

By considering 3D charge-sharing, top corner e�ect and surface potential lowering,
a threshold voltage model has been made which shows good agreement with numerical
simulations[16]
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A compact drain current model for a long channel (500nm) GAA MOSFET has been
proved to give a good current model for a FinFET with the same dimensions[17].

Figure 2.2: Basic layout of a FinFET

2.4 Potential modeling for QuadFET
Work regarding modeling the QuadFET, a transistor with rectangular cross-section and
gate all around (see �gure 2.3), very little has been done so far. However, the work of
solving the 3D Laplace equation in an analytical way by using symmetry properties and
parabolic approximations, giving the potential distribution of the device in subthreshold
conditions, are under development by Fjeldly et al.

Figure 2.3: Basic layout of a QuadFET
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3.1 Conformal mapping
Conformal mapping is a function which preserves angles and directions of curves, and
consists of multiple transformations z = x + jy = f(w = u + jv). The angles and
directions are preserved mathematically at any point z0, except for points where f ′(z) is
zero. That is, a map is conformal at a point if its derivative do not vanish. A transform
of a multi angled polygon in the x, y ∈Z-plane to the upper half of the u, v ∈W-plane, is
called the Schwarz-Christo�el transformation. This transformation maps the periphery
of the polygon to the real axis of the W-plane, and the inner of the polygon to the upper
half of the W-plane. A visualization of this transformation is given in �g 3.1.

Figure 3.1: Visualization of Schwarz-Christo�el transformation

3.2 Conformal mapping for rectangles
When the transistors considered in this thesis is operated in the subthreshold regime,
the electric �elds from the inversion charge and the low density of doping charges in the
silicon body, can be neglected. This is because the applied potential at the gates do
not induce enough charge carriers to signi�cantly a�ect the potential distribution in the
body. Thus, the main contribution to the electrostatic potential comes from the contacts.
Further, the main contribution to the subthreshold drain current will be along and near
the source-drain symmetry axis in the double-gate, gate-all-around and QuadFET, and
along the middle of the bottom plane in the FinFET. In order to �nd the distribution of

11
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the potential in a cut plane of the FinFET and QuadFET, the 2D Laplace equation

∆ϕ(x, y) = ∇2ϕ(x, y) = −ρ

ε
= 0 (3.1)

must be solved. Here, ϕ(x,y) is the electrostatic potential, ε the permittivity and ρ
the charge density in the body. Conformal mapping for a rectangle, ie. for instance
the DG MOSFET or a cross section of the FinFET or QuadFET, can be used to solve
this equation in the u, v ∈W-plane, and the solution can then be mapped back into the
x, y ∈Z-plane.

The general Schwarz-Christo�el transformation for a rectangle is given by[14, pp.
354]

∂z

∂w
=

kC√
(1− w2)(1− k2w2)

(3.2)

This transforms the rectangle or a cut from the real Z-plane to the complex W-plane.
Here, k is the modulus which is given merely by the geometry of the cut, and w = u+jv.
The rim of the rectangle now lies along the real u-axis with corners in −1/k, −1/

√
k, 1/k

and 1/
√

k, meanwhile the inner of the body is in the semi-in�nite room of the complex
W-plane. An illustration of the transformation is given in �gure 3.2.

Figure 3.2: Mapping of a rectangle from the x,y∈Z-plane to the u,v∈W-plane[2, ch. 3]

The integral form of equation (3.2) becomes

z = kC

∫ w

0

∂w′√
(1− w′2)(1− k2w′2)

+ C1 = kCF (k, w) + C1 (3.3)

Here C1 is an integration constant, which is equal to zero if z is chosen to be zero at
the center of the lower side L of the rectangle . The constant C is, like k, given by the
geometry of the rectangle, and both will be determined in chapter 3.3. F is de�ned by
the Legendre form of the elliptic integral of the �rst kind, given by[2, pp. 27]

F (k, w) =
∫ w

0

dw′√
(1− w′2)(1− k2w′2)

. (3.4)
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Calculation of equation (3.4) is well de�ned, so it can be determined by look-up tables,
simple iteration algorithms or regular power expansions.

3.3 Geometric constants C and k
In order to complete the transformation from the Z- to the W-plane, the constants C and
k must be determined. This is done by integrating (3.3) from u = −1 to u = 1 (along
side A), giving the device length L

L = 2kC

∫ 1

0

du′√
(1− u′2)(1− k2u′2)

= 2kCK(k), (3.5)

since v = 0 and u = 1 correspond to the lower right corner of the rectangle (see �gure
3.2). Here, K(k) = F (k, 1) is the complete elliptic integral of the �rst kind.

The height H of the rectangle is correspondingly given by integrating from u = 1
to u = 1/k along the boundary, or equivalently from u = 0 to u = 1/k subtracting the
integral from u = 0 to u = 1, giving side B of the rectangle. Integrating in such a way
results in

jH = kC(F (k,
1
k
)− F (k, 1)) (3.6)

Using F (k, 1) = K(k) and F (k, 1/k) = K(k)−K(k′), where k'=
√

1− k2, equation (3.6)
becomes

jH = jkCK(k′) (3.7)
Rearranging equation (3.5) gives

C =
L

2kK(k)
, (3.8)

and combining this with equation (3.7) results in

L

2H
=

K(k)
K(k′)

=
K(k)

K(
√

1− k2)
, (3.9)

which is used to �nd the modulus k.
Inserting equation (3.8) into the integral form of the Schwarz-Christo�el transforma-

tion for the rectangle (equation (3.3)), results in

z = x + iy =
L

2
F (k, w)
K(k)

(3.10)

3.4 Expressions along boundaries and symmetry lines
Expressions for the elliptic integral (F (k,w)) along the boundary and for symmetry lines
inside of a device, are very useful when modeling the electrostatics of a transistor. In this
section, expressions for mapping along the boundary and symmetry lines of the rectangle
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are because of this presented. F (k, w) can be expressed in terms of the standard elliptic
integral of the �rst kind, K(k), in the following way[18]:

From equation (3.4) the elliptic integral for 0 ≤ u < 1 becomes

F (k, u) =
∫ u

0

du′√
(1− u′2)(1− k2u′2)

(3.11)

When starting to move along side B of the rectangle (see �gure 3.2), ie. for 1 < u ≤ 1/k,
the imaginary part starts to increase and the elliptic integral becomes

F (k, u) = K(k) + j

∫ u

1

du′√
(1− u′2)(1− k2u′2)

= K(k) + j

(
K(

√
1− k2)− F

(√
1− k2,

√
1− k2u2

1− k2

))
(3.12)

The real part of the expression for the elliptic integral becomes smaller when moving
along the top of the rectangle, ie. for 1/k < u < ∞, and results in

F (k, u) = K(k) + jK(
√

1− k2)−
∫ u

1/k

du′√
(u′2 − 1)(k2u′2 − 1)

= F

(√
1− k2,

√
1− k2u2

1− k2

)
− jK(

√
1− k2) (3.13)

For �nding the elliptic integral for −∞ < u < 0, equation (3.11)-(3.13) are used together
with the symmetry property

F (k,−u) = −F (k, u) (3.14)
By using equation (3.10) together with (3.11)-(3.14), the transformation along the

boundary of the rectangle becomes

x =
L

2





F (k, u)/K(k), for u ∈ 〈−1, 1〉 Side A
1, for u ∈ 〈1, 1

k 〉 Side B
F (k, 1

ku)/K(k), for u ∈ 〈 1
k ,− 1

k 〉 Side C
−1, for u ∈ 〈− 1

k ,−1〉 Side D

(3.15)

and

y = H





0, for u ∈ 〈−1, 1〉 Side A
1− F (k′,

√
1− k2u2/k′)/K(k′), for u ∈ 〈1, 1

k 〉 Side B
1, for u ∈ 〈 1

k ,− 1
k 〉 Side C

1− F (k′,
√

1− k2u2/k′)/K(k′), for u ∈ 〈− 1
k ,−1〉 Side D

(3.16)

This mapping is illustrated in the lower part of �gure 3.3.
For the symmetry line along the middle, from side A to C of the rectangle, ie. for

u = 0 and v ∈ [0,∞〉, equation (3.17) is used [2, pp. 29].

y = H
F

(√
1− k2, v√

1+v2

)

K
(√

1− k2
) (3.17)
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Figure 3.3: The body of a DG MOSFET or a rectangle mapped into the semi-in�nite u, v ∈W-
plane. The mapping functions for the rim of the device are shown in the lower part, and the
symmetry lines are shown in the upper left (gate-to-gate) and right (source-to-drain) corners.
This is a plot produced by Kolberg[2, pp. 29], where k=0.4278.

This symmetry line (3.17) is plotted in the upper left corner of �gure 3.3.
The other symmetry line from side B to D is located by keeping y = H/2, giving

a constant imaginary part in equation (3.10). This requirement is only ful�lled when
v =

√
1/k − u2, giving the side B to D symmetry line a semicircle with radius v =

√
1/k

in the transformed u,v∈W-plane [2, pp. 29].

x =
L

2

F
(

2
√

k
1+k ,

√
ku

)

K
(

2
√

k
1+k

) (3.18)

This symmetry line (3.18) is plotted in the upper right corner of �gure 3.3. Here, θ =
cos−1(

√
ku).

3.5 Inverse transformation
Equation (3.17) and (3.18) are used to �nd the potential along the symmetry lines.
However, in order to �nd the potential in a plane, an inverse transformation of equation
(3.10) must be obtained. By de�ning a regular grid in the x, y ∈Z-plane and �nding the
corresponding points in the u, v ∈W-plane, the following equation is obtained[1, pp. 35].

w = u + jv =
sn(k, x)dn(k′, y) + j · cn(k, x)dn(k, x)sn(k′, y)cn(k′, y)

cn2(k′, y) + k2sn2(k, x)sn2(k′, y)
(3.19)
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Here, sn(k, z), cn(k, z) and dn(k, z) are three basic Jacobi functions that arises when
inverting the elliptic integral F (k, w), which are given by

sn(k, z) = sin(am(k, z)) = w (3.20)

cn(k, z) = cos(am(k, z)) (3.21)

dn(k, z) =
√

1− k2sin2(am(k, z)) (3.22)
Here am(k, z) is the Jacobi amplitude and k′=

√
1− k2.

Going deeper into the mathematics of conformal mapping is beyond the scope of this
thesis. However, more information about conformal mapping can be located in the book
by Weber[14].

3.6 Solution of the 2D Laplace equation (DG MOSFET)
A solution of the Laplacian in the u, v ∈W-plane which describes the body potential, is
given by the following integral along the u-axis[14, pp. 365]:

ϕ(u, v) =
v

π

∫ ∞

−∞

ϕ(u′)
(u− u′)2 + v2

du′, (3.23)

where ϕ(u) represents the boundary conditions of the rectangle, ie. for u ∈ 〈−∞,∞〉.
If the rectangle is applied a potential Vgs−VFB, Vbi+Vds, Vgs−VFB and Vbi along the

boundary at side A, B, C and D respectively, the inter-electrode potential distribution
throughout the rectangle has the solution (appendix A)

ϕ(u, v) =
1
π

{
π(Vgs − VFB) + (Vbi + VFB − Vgs)tan−1

(
1− ku

kv

)

+ (Vbi + Vds + VFB − Vgs)tan−1

(
1 + ku

kv

)

− (Vbi + VFB − Vgs)tan−1

(
1− u

v

)

− (Vbi + Vds + VFB − Vgs)tan−1

(
1 + u

v

)}
(3.24)

This is the case for the DG MOSFET for constant boundary conditions, assuming that
the in�uence on the potential in the body from the small oxide gaps, is negligible[19].
Vgs, Vds, VFB and Vbi are the gate to source potential (side A and C to D), drain
to source potential (side B to D), �at-band voltage of the two gates, and the built-in
potential which occurs due to the connection between the body and the source and drain
contacts, respectively. Figure 3.4 shows the layout of the DG MOSFET used in the
doctoral thesis of Sigbjørn Kolberg[2]. In this �gure, tox is replaced by t′ox, which is the
oxide thickness using nitrided oxide and undoped silicon respectively, in order to apply
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Figure 3.4: Layout of the DG MOSFET (double-gate MOSFET) used in the doctoral thesis of
Sigbjørn Kolberg[2].

conformal mapping to the device. This is called extending the device body, and is also
done with both the FinFET and the QuadFET later in this thesis.

The potential in the u, v ∈W-plane along the symmetry lines of the DG MOSFET
can be derived from equation (3.24). By keeping u = 0, the potential from side A to C
(gate-to-gate) along the middle of the rectangle becomes

ϕG−G(v) =
1
π

{
2(Vgs − VFB)tan−1

(
1
v

)

+ (Vgs − VFB)

(
π − 2tan−1

(
1
kv

))

+ (2Vbi + Vds)

(
tan−1

(
1
kv

)
− tan−1

(
1
v

))}
(3.25)

Holding v =
√

1/k − u2, which represents a semi-circle with radius
√

1/k in the
u, v ∈W-plane, gives the potential along the other symmetry line of the rectangle, ie.
from side B to D (source-to-drain), and equation (3.24) results in

ϕS−D(u) =
1
π

{
π(Vgs − VFB)− (Vgs − VFB − Vbi)tan−1

(
1− ku

k
√

1/k − u2

)

− (Vgs − VFB − Vbi − Vds)tan−1

(
1 + ku

k
√

1/k − u2

)

+ (Vgs − VFB − Vbi)tan−1

(
1− u√
1/k − u2

)

+ (Vgs − VFB − Vbi − Vds)tan−1

(
1 + u√
1/k − u2

)}
(3.26)
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Chapter 4

Potential modeling of FinFET and
QuadFET

4.1 Device structures
The geometric layouts of the devices considered in this thesis are shown in �gure 4.1
and 4.2. Both devices have gate length L=30nm and oxide thickness tox=1.6nm if not

Figure 4.1: Geometric layout of the FinFET

19
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Figure 4.2: Geometric layout of the QuadFET with quadratic cross-section

speci�ed otherwise.
In the FinFET, Heff=H+t′ox and Weff=W+2t′ox are the e�ective height and e�ective

width of the device, respectively. Here, t′ox=toxεSi/εox is the e�ective oxide thickness of
the extended silicon body. εox and εSi are the permittivity of nitrided oxide and undoped
silicon, which are 7 and 11.9, respectively. If not speci�ed otherwise, the height of the
FinFET is H=30nm, and the width is W=12nm.

The QuadFET got a quadratic shape of the body with e�ective length of sides
Seff=S+2t'ox. The sides are S=15nm if not speci�ed otherwise.

The reason for extending the devices by using undoped silicon instead of nitrided
oxide, is to apply conformal mapping to the transistors. This extension of a body can be
performed if the assumption that the oxide thickness is relatively small compared to the
thickness of the body, is made.

The bodies are doped with an acceptor concentration Na of 1015cm−3 in both devices,
and they have both idealized Schottky contacts to the source and drain, which means
negligible series resistance and no depletion regions. These contacts have a work function
Φs=4.17eV, corresponding to that of n+ silicon. The metal used at the gate contacts
is a near mid-gap material with work function Φm=4.53eV, which corresponds to that
of molybdenum. All the contacts in both devices are assumed to have equipotential
surfaces.

In both devices, electrons will di�use from the source and drain contacts, recombining
with the holes in the acceptor doped body, thus making it fully depleted in all regimes
of operation. This results in better gate control[20].
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The built-in and �at-band voltages of both devices are given by

Vbi =
Eg

2q
+ φb +

kBT

2q
ln

(
NC

NV

)
, (4.1)

and
VFB =

(Φm − (χ + Eg

2 + qφb))
q

− kBT

2q
ln

(
NC

NV

)
, (4.2)

respectively. Eg is the silicon bandgap, χ is the electronic a�nity for silicon, and
φb=Vthln(Na/ni) is the potential di�erence between Fermi levels of intrinsic and doped
silicon. NC and NV are the e�ective density of states in the conduction and valence band.
They are functions of the e�ective mass of electrons mn and holes mh as

NC = 2
(

mnkBT

2π~

)3/2

, NV = 2
(

mpkBT

2π~

)3/2

. (4.3)

In this work however, they are assumed to be constants taken directly from Atlas, equal
to NC=2.84·1025cm−3 and NV =1.04·1025cm−3, since the purpose of this project is to test
the models against numerical simulations.

4.2 Conformal mapping for QuadFET
Conformal mapping on a QuadFET requires to make the potential problem (Laplace
equation 3.1) a two dimensional one. In the approach investigated, the potential pro�le
in x- and y-direction of the QuadFET, ie. in the directions perpendicular to the source-
drain direction, are assumed to be equal, which is a fair assumption. The analytical
solution for the DG MOSFET is then adapted to the QuadFET by a technique proposed
and used by Håkon Børli [19]. This adaption is illustrated in �gure 4.3.

The major di�erence between a QuadFET and a DG device is the gate control. This
di�erence can be expressed in terms of the characteristic lengths of the two devices, which
is a measure of the electrostatic penetration depth of the source and drain contacts along
the source-drain symmetry line. The characteristic lengths of the QuadFET and the DG
MOSFET are given by[21, pp. 22]

λQuad =
√

εsi

4εox
toxS (4.4)

λDG =
√

εsi

2εox
toxtsi, (4.5)

respectively. The characteristic length of the DG MOSFET used in this thesis is slightly
di�erent than the one used in the doctoral thesis of Børli[1].

By elongating the DG device to

L′ =
λDG

λQuad
L, (4.6)
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Figure 4.3: Illustration of adapting the potential pro�le from an elongated DG MOSFET with
gate length λDG/λQuad·L (left), to the potential pro�le of a QuadFET with gate length L(right).

where L is the original gate length of the QuadFET, giving the device a modulus k′ given
by

K(k′)
K(
√

1− k′2)
=

L′

2Seff
, (4.7)

and using equation (3.23), the inter-electrode potential distribution in the plane along
the source-drain symmetry line of the QuadFET becomes

ϕ′(u, v) =
1
π

{
π(Vgs − VFB) + (Vbi + VFB − Vgs)tan−1

(
1− k′u

k′v

)

+ (Vbi + Vds + VFB − Vgs)tan−1

(
1 + k′u

k′v

)

− (Vbi + VFB − Vgs)tan−1

(
1− u

v

)

− (Vbi + Vds + VFB − Vgs)tan−1

(
1 + u

v

)}
(4.8)

The ratio λDG/λQuad=
√

2 is called the scaling factor, due to the fact that it is the length
the DG MOSFET is scaled with.

By inverse transforming ϕ′(u, v) with equation (3.19), the potential distribution is
mapped back into the (x, z′)-coordinates of the extended DG MOSFET. Compress-
ing ϕ(x, z′) uniformly in the longitudinal direction, using the inverse scaling factor of
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Figure 4.4: Comparison of the potential distribution in the middle of the device along the gate-
to-gate symmetry line (ie. in the x-direction) with scaling factor λDG/λQuad =

√
2 (solid green)

and λDG/λQuad ≈
√

1.8 (solid blue). Red crosses represents numerical simulations with Atlas.
The plot is only through the body, without the oxides. Vgs=0V and Vds=0V.

λQuad/λDG, results in a solution of the inter-electrode potential distribution of the Quad-
FET. The only di�erence from the potential distribution of the QuadFET to that of the
DG MOSFET, is the modulus k.

By holding u=0 in equation (4.8), the gate-to-gate symmetry line of the QuadFET
is obtained in the same way as for equation (3.25). When this potential distribution is
compared to numerical simulations, an error of approximately 5.7mV is obtained at the
position v=

√
1/k′, ie. at the potential maximum in the vertical plane ϕm (see �gure

4.4). The assumption made earlier in this chapter, that the potential pro�le in the x-
and y-direction is equal, is the cause of the error. The assumption is only valid along
the source-drain axis. When moving outside this axis, the assumption is broken, and an
error is introduced. The total potential in the vertical plane is pulled down, resulting in
a noticeable underestimation of ϕm.

Because of the underestimation, a new scaling factor is purposed. By extracting
the maximum potential in the middle of the vertical cut for zero applied potential from
numerical simulations, using equation (4.8), (4.7) and (4.6) to trace the scaling factor
backwards, results in λDG/λQuad ≈

√
1.8. The inter-electrode potential distribution of

the QuadFET is then obtained in the same way as for the scaling factor of λDG/λQuad =√
2. The improved result is presented in �gure 4.4.
The scalability of the purposed scaling factor λDG/λQuad ≈

√
1.8, ie. the capability

of the scaling factor to produce good results with changing geometry, has been tested
by comparing the maximum potential in the vertical plane ϕm for di�erent geometry
with Atlas. Figure 4.5 and 4.6 shows the great correspondence of ϕm to numerical
simulations for gate lengths L = {15, 50}nm and thickness of sides S = {5, 25}nm,
respectively. The model has of course a direct match with numerical simulations at gate
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length L=30nm and sides S=15nm since the scaling factor has been extracted from Atlas
for this geometry.
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Figure 4.5: Gate length L testing of the scaling factor λDG/λQuad ≈
√

1.8 by comparing ϕm

from model (solid blue line) with the one from Atlas (red crosses). Vgs=0V and Vds=0V.
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Figure 4.6: Side length S testing of scaling factor λDG/λQuad ≈
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1.8 by comparing ϕm from
model (solid blue line) with the one from Atlas (red crosses). Vgs=0V and Vds=0V.
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Figure 4.8: Vgs testing the scaling factor λDG/λQuad ≈
√

1.8 by changing the applied gate-source
voltage and comparing ϕm from model (solid blue line) with the one from Atlas (red crosses).
For gate-source voltages above 0.2V, the model breaks down since the transistor enters the near
and above threshold regime. Vds=0V.
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The scaling factor has also been tested for di�erent voltages. Figure 4.7 and 4.8 shows
the great agreement of ϕm with numerical simulations for di�erent contact voltages,
Vds = {0, 0.7}V and Vgs = {−0.3, 0.4}V respectively. At Vgs ≈ 0.3V, the QuadFET
enters the threshold regime, and the model based on conformal mapping breaks down due
to the increasing amount of inversion charge in the body that have not been calculated
for. However, in the subthreshold regime, the model agrees very well with numerical
simulations. The good agreement with Atlas for high Vds, shows how well the conformal
mapping includes DIBL. For very high voltages (0.5-0.7V) however, the applied potential
starts to induce a lot of carriers in the body near the source and drain, resulting in a
higher ϕm than calculated for. The results however, are still very good, even though the
device never will be operated with such high source-drain voltages.

4.3 Parabolic approximation for QuadFET
By using equation (4.8) together with (3.17), results in an expression for the gate-to-gate
potential distribution in the middle of the device. However, in order to �nd the potential
distribution in the whole vertical plane, not just along the symmetry lines, a parabolic
approximation of the gate-to-gate potential distribution must be made in both x- and
y-direction. A parabolic approximation with the form

ϕ(y) = ϕc

(
1−

( 2y

Seff

)2)
+ Vgs − VFB (4.9)

is used in the y-direction, and the corresponding approximation

ϕ(x) = ϕc

(
1−

(
1− 2x

Seff

)2)
+ Vgs − VFB (4.10)

in the x-direction. Here ϕc=ϕm−Vgs+VFB. The total expression for the vertical plane,
after inserting (4.9) into (4.10), becomes

ϕ(x, y) =
(
ϕc

(
1−

( 2y

Seff

)2)
+ Vgs − VFB

)(
1−

(
1− 2x

Seff

)2)
+ Vgs − VFB (4.11)

Figure 4.9 shows a surface plot of the modeled potential pro�le in the vertical plane based
on the parabolic approximation. In this �gure, the potential in the oxide is included.

Figure 4.10 and 4.12 shows a contour and a surface plot of the model compared
with numerical simulations with zero applied potential (Vgs=0V, Vds=0V). These are in
contrast to �gure 4.9 in that they are plotted without the oxide. The model corresponds
very well with Atlas in the middle of the device, which is the most important region
when regarding the subthreshold current. However, when moving towards one of the
four gates, the error becomes larger. The parabolic approximation is the reason for this
increasing error since the distribution is not ideally parabolic, as �gure 4.11 and 4.13
clearly shows.

Figure 4.14 shows another contour plot of the vertical plane, only biased di�erently
(Vds=0.3, Vgs=0), with the same good correspondence with numerical simulations as
�gure 4.10.
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Figure 4.9: Modeled vertical plane potential pro�le in the middle of the QuadFET with parabolic
approximation. The potential in the oxide is included in this plot, and Vgs=0 and Vds=0.

y [m]

x 
[m

]

0.
49

5

0.495

0.495

0.
49

5

0.5

0.5

0.5

0.
5

0.5
0.5

0.5

0.
5

0.505

0.505

0.505

0.
50

5

0.505

0.505

0.
50

5

0.51

0.51

0.51
0.51

0.
51

0.515

0.515

0.515

0.515

 

 

−6 −4 −2 0 2 4 6

x 10
−9

0

0.5

1

x 10
−8

Model
Atlas

0.49

0.495

0.5

0.505

0.51

0.515
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Figure 4.15 indicates again how well conformal mapping handles the DIBL-e�ect.
However, when the minimum potential along the source-to-drain symmetry line moves
towards source, the modeled vertical plane looses the appropriate potential to model the
subthreshold current correctly. If a subthreshold current model is made from the vertical
potential model presented in this thesis, the current would have been overestimated for
large Vds, because of the DIBL-e�ect. For this reason, it is important to also model
the potential in other vertical planes in order to include the DIBL-e�ect in the current
model.

The biggest error in the model for the vertical plane will be at the corners. The
potential along the diagonal is plotted in �gure 4.16 to show how big this error is.
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Figure 4.15: Potential distribution along the source-to-drain symmetry line in the QuadFET,
where solid lines represents the model and crosses the numerical simulations. The DIBL-e�ect
is shown, where the potential barrier decreases and shifts towards source. Vgs=0 and Vds={0,
0.3, 0.5}.

4.4 Conformal mapping for FinFET
The FinFET is a more di�cult device to model compared to the QuadFET, since it does
not have the symmetry properties of the QuadFET. In order to use conformal mapping
on the FinFET, also here the 3D Laplace equation must be made 2D. A method of doing
it, is in this section tested.

When conformal mapping is applied on the vertical plane in the middle of the FinFET,
the potential in the ground plane is the only potential at the boundary that is unknown
and not constant. Since conformal mapping without constant boundary conditions is
di�cult to solve, an easy function for the potential in the ground plane must be obtained
in order to solve equation (3.23).
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Figure 4.16: Potential along the diagonal of the vertical plane, where solid blue line represents
the model and red crosses are numerical simulations. The plot is without the oxides, and Vgs=0
and Vds=0.

If the height of the FinFET and the thickness of the substrate are relatively large, the
vertical electric �elds going into the substrate, through the ground plane, is negligible.
The analytical solution of the inter-electrode potential distribution of a DG MOSFET [2]
[1] is because of this used in the ground plane of the FinFET, giving the last boundary
of the cut. The mapping of the FinFET is illustrated in �gure 4.17.

However, the potential distribution along the gate-to-gate symmetry line in the DG
device, given by equation (3.25), can not be used directly as the potential along the last
boundary of the cut, ie. from u=-1 to u=1 (see dotted blue line in �gure 4.17). A couple
of approximations must �rst be introduced in order to obtain an analytical solution from
equation (3.23).

By making a parabolic approximation of the gate-to-gate potential of the DG device
with the form

ϕ(x, y = 0, z = 0) = ϕc(1−
(2x

W

)2
) + Vgs − VFB, (4.12)

brings equation (3.23) one step closer to be solved. Here W is the width of the FinFET,
ϕc=ϕm-Vgs+VFB and ϕm is the maximum potential in the vertical plane. Transforming
equation (4.12) to the u, v ∈W-plane using equation (3.15) for u ∈ 〈−1, 1〉 results in

ϕ(u, v = 0) = ϕc

(
1−

(F (k, u)
K(k)

)2)
+ Vgs − VFB, (4.13)

Still, this potential distribution is too di�cult to solve, so another approximation must
be made for F (k, u) (appendix B):

F 2(k, u) ≈ 2(K2(k)− 1)− 2(K2(k)− 1)
√

1− u2 + (2−K2(k))u2 (4.14)
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Figure 4.17: Mapping of the vertical plane of a FinFET from the x,y∈Z-plane to the u,v∈W-
plane. The close to parabolic potential distribution in the ground plane is illustrated with dotted
blue line.

Figure 4.18 shows how well the approximated F 2(k, u) reproduce the exact one for low
values of k (k ≈0.011).

The resulting inter-electrode potential distribution of the FinFET, using the approx-
imation for F 2(k, u) in equation (4.14), together with equation (4.13) in equation (3.23),
becomes (appendix C)

ϕ(u, v) = (Vgs−VFB)+
ϕc

π

(
tan−1

(1− u

v

)
+tan−1

(1 + u

v

))
− vϕc

πK2(k)

∫ 1

−1

F 2(k, u′)
(u− u′)2 + v2

du′,

(4.15)
where
∫ 1

−1

F 2(k, u)
(u− u′)2 + v2

=
∫ 1

−1

C + D
√

1− u2 + Eu2

(u− u′)2 + v2

= −2(1−K2(k))
v

(
tan−1

(1− u

v

)
+ tan−1

(1 + u

v

))

+ 2(1−K2(k))
(

π +
π

v

[
(1 + v2 − u2) + (2uv)2

] 1
4

√√√√1
2

(√
(1 + v2 − u2)2

(1 + v2 − u2)2 + (2uv)2
+ 1

))

+ (2−K2(k))
(

2 +
u2 − v2

v

(
tan−1

(1− u

v

)
+ tan−1

(1 + u

v

))
+ uln

(1− 2u + u2 + v2

1 + 2u + u2 + v2

))

(4.16)

A plot of the distribution from the ground plane to top-gate symmetry line (using
equation (4.16) together with (3.17)), shown in �gure 4.19, clearly indicates that the
model fails miserably in reproducing the numerical simulation. The reason is that the
curvature in the z-direction (source to drain) is neglected. In the ground plane (y=0),
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Figure 4.18: Approximated F 2(k, u) (purple line) and the actual value of F 2(k, u) (blue line).
The modulus k ≈0.011.

the curvature in the z-direction is calculated for due to the analytical solution from the
DG device, which results in a perfect match with numerical simulations. However, when
moving towards the top-gate (y >0), ∂2ϕ/∂z2=0, which results in a failed attempt to
model the cut plane perpendicular to the source-drain symmetry line in the middle of
the FinFET.

The reason of the small slope in the numerical simulation close to the ground plane
(�gure 4.19), is due to the fringe �elds from the contacts going through the ground plane.
However, this slope is so small that the fringe �elds can be neglected.
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Figure 4.19: Ground plane (y=0) to top-gate (y=Heff ) symmetry line potential, where solid
blue line represents the model and red crosses represents numerical simulations.
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4.5 Oxide gap correction
Considering the extended bodies of the QuadFET and DG MOSFET closely, the bound-
aries are found to be piecewise equipotential except at the oxide gaps. In these small
gaps, the potential distribution has been shown to be close to linear by numerical simula-
tions [14]. In this thesis however, the gaps have been modeled as in the work of Sigbjørn
Kolberg[2], by extending the source and drain 1/8t′ox closer to the gates and extending
the gates 7/8t′ox closer to the source and drain, adjoining the contacts. This has proven
to give an accuracy in the mV regime in the center of the body[2, pp. 34].

By applying this oxide correction, disregarding the di�erent k's (k and k′), the expres-
sion for the potential in the QuadFET (4.8) and DG MOSFET (3.24) becomes (appendix
D)

ϕ(u, v) =
1
π

{
Vbi

(
tan−1

(
1/k −∆u2 − u

v

)
− tan−1

(
1 + ∆u1 − u

v

))

+ (Vgs − VFB)

(
tan−1

(
1 + ∆u1 − u

v

)
+ tan−1

(
1 + ∆u1 + u

v

))

+ (Vgs − VFB)

(
π − tan−1

(
1/k −∆u2 + u

v

)
− tan−1

(
1/k −∆u2 − u

v

))

+ (Vbi + Vds)

(
tan−1

(
1/k −∆u2 + u

v

)
− tan−1

(
1 + ∆u1 + u

v

))
(4.17)

where ∆u1 and ∆u2 are the transformation of 7/8t′ox at u = 1 or u = −1 and u = 1/k
or u = −1/k, respectively.

4.6 Discussion
In this chapter, the problem of modeling the potential distribution in the cut planes per-
pendicular to the source-drain symmetry lines in the middle of both nanoscale FinFET
and QuadFET, have been confronted. When the two devices are operated in subthresh-
old, the main contribution to the device electrostatics is the inter-electrode capacitive
coupling. In the process of modeling, the three dimensional Laplace equation has been
attempted to be made two dimensional in order to use conformal mapping, by using the
analogy of the devices to the DG MOSFET. Since there already exist good models based
on conformal mapping for the DG MOSFET, this seems to be a good approach.

In the case of the FinFET, the three dimensional problem was not successfully con-
verted to a two dimensional one, due to neglecting the curvature in the source-drain
direction above the ground plane of the device. The modeling of the vertical plane of the
FinFET failed miserably because of this. However, an attempt of modeling the transistor
has been tested, and the electrostatics of the device is better known.

In the case of the QuadFET however, by the use of symmetry properties and clever
adaption of the solution from the DG MOSFET, the potential distribution in the ver-
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tical plane of the QuadFET has successfully been modeled. The incorporation of the
DG MOSFETs solution was performed in a way that required an extraction from the
numerical device simulator Atlas. However, the model with the extracted parameter,
which leads to a scaling factor of λDG/λQuad=

√
1.8, shows great scalability for device

thicknesses S = {20, 5}nm and gate lengths L={50, 20}nm. Also with varying applied
potential, Vds = {0, 0.7}V and Vgs = {−0.3, 0.2}V, the model shows great correspon-
dence with numerical simulations. Since the potential pro�le in the cut is not ideally
parabolic, the biggest cause of error is the parabolic approximation. However, the re-
sults are acceptable even in the corners, and the potential in the center is generally very
precise.
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Chapter 5

Conclusion

In this thesis, the potential pro�les in the cut planes perpendicular to the source-drain
symmetry lines in the middle of nanoscale FinFET and QuadFET operated in subthresh-
old are endeavored to be modeled. These potential pro�les are the most important ones
for �nding subthreshold current models for both devices in future work, and are one of
the main reasons why they are modeled. All the results in this thesis are compared to
the numerical device simulator Atlas from Silvaco.

Conformal mapping has been used to �nd an analytical solution with good scaling
properties for the QuadFET, which agrees very well with numerical simulations. The
incorporation of the DG MOSFETs solution was performed in a way that required an
extraction from the numerical device simulator Atlas. However, the model with the
extracted parameter, which leads to a scaling factor of λDG/λQuad=

√
1.8, shows great

scalability.
The same has been attempted for the FinFET, only with a slightly di�erent approach,

without success. Due to neglecting the curvature in the source-drain direction above the
ground plane of the device, the attempt of transforming the three dimensional problem
to a two dimensional one, did not work. However, an attempt of modeling the transistor
has been tested, and the electrostatics of the device is better known. A new approach of
modeling the FinFET is already in progress by Fjeldly et al.
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Chapter 6

Future work

A complete compact model must have procedures for calculating currents, capacitances
and noise. In this thesis, the electrostatics in subthreshold region in the center vertical
planes of FinFET and QuadFET have been considered. Only a small fraction related to
compact modeling these nanoscale devices have been performed, and additional analysis
are for this reason required including the ones discussed below.

6.1 Subthreshold potential model for FinFET
Since the modeling of the subthreshold potential in the cut plane perpendicular to the
source-drain symmetry line in the middle of the FinFET failed in this thesis, it must be
modeled in some other way. A method purposed by Fjeldly et al. is to solve the 3D
Laplace equation

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0, (6.1)

with the curvature in the z-direction modeled with an y-dependent quadratic function.
The equation to solve thus becomes

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+ f(y) = 0 (6.2)

A di�cult task however, is to �nd an analytical solution to this equation.

6.2 Modeling of other cut planes
Modeling of other vertical planes closer to source are important in order to get a good
current model when a relatively large drain-source potential is applied. When Vds in-
creases, the DIBL-e�ect kicks in and makes the maximum potential in the vertical plane
(or minimum potential along the source to drain symmetry line) move towards source
and increase. The center vertical plane is then no longer the most favorable one to use
for �nding the subthreshold current.
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6.3 Electrostatic modeling of threshold and strong-inversion
In order to get a complete compact model for all regimes of operation, the electrostatics
of both the threshold and strong-inversion must be modeled. This is achieved using the
length scaling transformation discussed in section 4.2

6.4 Drain current model
A current model is o� course a very important part of compact modeling nanoscale
devices. When establishing a compact model for the drain current, there are basically two
main strategies. Firstly, the drift-di�usion model where the charge carriers experience
a lot of collisions and scattering on its way through the body. Secondly, the ballistic
transport model, where the gate length is so short that the carriers go through the body
without signi�cant scattering. Also an approach in between is possible with the quasi-
ballistic transport model, which is a ballistic transport model with a statistical ballistic
scattering constant which is included as a model parameter. The main advantages of
using the drift-di�usion model are its simplicity and its easy recognition of processes.

6.5 Threshold voltage model
Creating a model for the threshold voltage is important, since it marks the onset of the
transistor. Research groups have already performed threshold voltage modeling for the
FinFET[16], but the QuadFET remains.

6.6 Capacitance modeling
In order to consider the speed of the FinFET and QuadFET, capacitance modeling are
required. A capacitance model for the subthreshold regime of the QuadFET should not
be to di�cult to obtain. Electrostatics of the threshold and strong-inversion must be
obtained before a capacitance model for these regimes of operation can be created.

6.7 Development of SPICE-type model
The analytical expressions for the subthreshold regime developed in this thesis can be
used as a preprocessing routine where parameters are extracted from the analytical ex-
pressions, for instance the maximum potential in the center of the vertical plane, for use
in parametrized compact models. These compact models are suitable for implementation
in circuit simulators as SPICE. High computational speed and continuity in its deriva-
tives with respect to applied biasing is necessary if the model is to be implemented in a
SPICE simulator.
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6.8 Noise
Noise modeling is also considered to be an important part of a compact model for
nanoscale devices[3].
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Appendix A

ϕ(u, v) for DG MOSFET

The inter-electrode potential distribution of the DG MOSFET is derived by solving the
Laplacian of the u, v ∈W-plane (equation (3.23)).

By using
∫

V

(u− u′)2 + v2
du′ =

1
v

(
tan−1

(1− u

v

)
+ tan−1

(1 + u

v

))
, (A.1)

where V is a constant potential, and applying the correct boundary conditions for the
DG MOSFET as speci�ed in chapter 3.6, the resulting solution of the Laplacian becomes

ϕ(u, v) =
1
π

{
π(Vgs − VFB) + (Vbi + VFB − Vgs)tan−1

(
1− ku

kv

)

+ (Vbi + Vds + VFB − Vgs)tan−1

(
1 + ku

kv

)

− (Vbi + VFB − Vgs)tan−1

(
1− u

v

)

− (Vbi + Vds + VFB − Vgs)tan−1

(
1 + u

v

)}
(A.2)
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Appendix B

Approximation for F 2(k, u)

The purposed approximation of F 2(k, u) has the form

F 2(k, u) ≈ C + D
√

1− u2 + Eu2 (B.1)

Applying the boundaries for the region this approximation is used for, gives

u → ±1 C + E = F 2(k, u = ±1) = K2(k)
u → 0 C + D = 0

u → 0 − D

2
+ E = 1

u → 0
d2

du2
(C + D

√
1− u2 + Eu2) = −D + 2E = 2 (B.2)

Rearranging results in
D = 2(1−K2(k)) (B.3)

E = D + K2(k) = 2−K2(k) (B.4)
C = −D = −2(1−K2(k)) (B.5)

The approximtaion for F 2(k, u) then becomes

F 2(k, u) ≈ 2(K2(k)− 1)− 2(K2(k)− 1)
√

1− u2 + (2−K2(k))u2 (B.6)

Figure 4.18 shows the good agreement between the approximation and the exact function.
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Appendix C

Deriving ϕ(u, v) for the FinFET

The inter-electrode potential distribution of the FinFET in the u, v ∈W-plane is derived
by solving equation (3.23):

ϕ(u, v) =
v

π

∫ ∞

−∞

ϕ(u′)
(u− u′)2 + v2

du′

=
v

π

[∫ −1

−∞

Vgs − VFB

(u− u′)2 + v2
du′

+
∫ 1

−1

ϕc

(
1− (F (k, u)/K(k))2

)
+ Vgs − VFB

(u− u′)2 + v2
du′

+
∫ ∞

1

Vgs − VFB

(u− u′)2 + v2
du′

]
(C.1)

Inserting the approximation in equation (4.14) for F 2(k, u), the integral from u=-1 to
u=1 of D

√
1− u2 becomes the di�cult part. It is solved in the following way:
∫ 1

−1

√
1− u2

((u− u′)2 + v2)
du′

=
−ju2 + 2uv + j(1 + v2)

2v
√

1− u2 − 2juv + v2
ln

(
2jv

(1− u2 − 2juv + v2)3/2

)
− π

2

− j

2v

√
1− u2 + 2juv + v2ln

(
− 2jv

(1− u2 + 2juv + v2)3/2

)

− −ju2 + 2uv + j(1 + v2)

2v
√

1− u2 − 2juv + v2
ln

(
− 2jv

(1− u2 − 2juv + v2)3/2

)
− π

2

+
j

2v

√
1− u2 + 2juv + v2ln

(
2jv

(1− u2 + 2juv + v2)3/2

)
(C.2)
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= −π +
−ju2 + 2uv + j(1 + v2)

2v
√

1− u2 − 2juv + v2

(
ln

(
2jv

(1− u2 − 2juv + v2)3/2

)
− ln

(
− 2jv

(1− u2 − 2juv + v2)3/2

))

+
j

2v

√
1− u2 + 2juv + v2

(
ln

(
2jv

(1− u2 + 2juv + v2)3/2

)
− ln

(
− 2jv

(1− u2 + 2juv + v2)3/2

))

(C.3)

Since ln(1)− ln(−1) = −jπ,
∫ 1

−1

√
1− u2

((u− u′)2 + v2)
du′ = −π +

π

2v

(−u2 − 2juv + 1 + v2

√
1− u2 − 2juv + v2

+
π

2v

√
1− u2 + 2juv + v2

)

(C.4)
and using x + jy = |z|exp[jφ], x− jy = |z|exp[−jφ], z =

√
x2 + y2 and tan(φ) = |y/x|,

∫ 1

−1

√
1− u2

((u− u′)2 + v2)
du′ =− π +

π

2v

(√√
(1 + v2 − u2)2 + (2uv)2exp[−jφ]

+
√√

(1 + v2 − u2)2 + (2uv)2exp[jφ]
)

= −π +
π

2v

(
(1 + v2 − u2)2 + (2uv)2

)1/4

(exp[−jφ

2
] + exp[−jφ

2
])

= −π +
π

v

(
(1 + v2 − u2)2 + (2uv)2

)1/4

cos
(φ

2

)
(C.5)

where
φ = tan−1(

∣∣∣∣
2uv

1 + v2 − u2

∣∣∣∣) (C.6)

Using
cos(x) =

1
±

√
1 + tan2(x)

(C.7)

result in

∫ 1

−1

√
1− u2

((u− u′)2 + v2)
du′ = π+

π

v

[
(1+v2−u2)+(2uv)2

] 1
4

√√√√1
2

(√
(1 + v2 − u2)2

(1 + v2 − u2)2 + (2uv)2
+ 1

)

(C.8)
The complete expression for the inter-electrode potential distribution in the u, v ∈W-

plane then becomes

ϕ(u, v) = (Vgs−VFB)+
ϕc

π

(
tan−1

(1− u

v

)
+tan−1

(1 + u

v

))
− vϕc

πK2(k)

∫ 1

−1

F 2(k, u′)
(u− u′)2 + v2

du′,

(C.9)



Appendix C. Deriving ϕ(u, v) for the FinFET

where
∫ 1

−1

F 2(k, u)
(u− u′)2 + v2

=
∫ 1

−1

C + D
√

1− u2 + Eu2

(u− u′)2 + v2

= −2(1−K2(k))
v

(
tan−1

(1− u

v

)
+ tan−1

(1 + u

v

))

+ 2(1−K2(k))
(

π +
π

v

[
(1 + v2 − u2) + (2uv)2

] 1
4

√√√√1
2

(√
(1 + v2 − u2)2

(1 + v2 − u2)2 + (2uv)2
+ 1

))

+ (2−K2(k))
(

2 +
u2 − v2

v

(
tan−1

(1− u

v

)
+ tan−1

(1 + u

v

))
+ uln

(1− 2u + u2 + v2

1 + 2u + u2 + v2

))

(C.10)



Appendix D

Oxide correction

The body potential of both the DG MOSFET and the QuadFET (cut along source-drain
symmetry line) in subthreshold is located by solving the solution to the laplacian in the
u, v ∈W-plane[2]

ϕ(u, v) =
v

π

∫ ∞

−∞

ϕ(u′)
(u− u′)2 + v2

du′ (D.1)

By using the boundary conditions of the bodies, disregarding the di�erent values of k
the two devices have,

ϕ−∞≤u≤−1/k+∆u2
= Vgs − VFB

ϕ−1/k+∆u2≤u≤−1−∆u1
= Vbi

ϕ−1−∆u1≤u≤1+∆u1 = Vgs − VFB

ϕ1+∆u1≤u≤1/k−∆u2
= Vbi + Vds

ϕ1/k−∆u2≤u≤∞ = Vgs − VFB (D.2)

in the integral (D.1), gives

ϕ(u, v) =
v

π

[∫ −1/k+∆u2

−∞

Vgs − VFB

(u− u′)2 + v2
du′

+
∫ −1−∆u1

−1/k+∆u2

Vbi

(u− u′)2 + v2
du′

+
∫ 1+∆u1

−1−∆u1

Vgs − VFB

(u− u′)2 + v2
du′

+
∫ 1/k−∆u2

1+∆u1

Vbi + Vds

(u− u′)2 + v2
du′

+
∫ ∞

1/k−∆u2

Vgs − VFB

(u− u′)2 + v2
du′

]
(D.3)
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Appendix D. Oxide correction

Here uox1 and uox2 is the Schwarz-Christo�el transformation of the oxide gaps from the
(x,y)-plane to the (u,iv)-plane. Solving the integrals and rearranging, results in

ϕ(u, v) =
1
π

{
Vbi

(
tan−1

(
1/k −∆u2 − u

v

)
− tan−1

(
1 + ∆u1 − u

v

))

+ (Vgs − VFB)

(
tan−1

(
1 + ∆u1 − u

v

)
+ tan−1

(
1 + ∆u1 + u

v

))

+ (Vgs − VFB)

(
π − tan−1

(
1/k −∆u2 + u

v

)
− tan−1

(
1/k −∆u2 − u

v

))

+ (Vbi + Vds)

(
tan−1

(
1/k −∆u2 + u

v

)
− tan−1

(
1 + ∆u1 + u

v

))
(D.4)

When changing any geometric constants of the transistors, it is important to remem-
ber that not only the modulus k is changed, but also ∆u1 and ∆u2.
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