
June 2009
Andrew Perkis, IET

Master of Science in Electronics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Serious Gaming
Serious content in an entertaining framework

Håvard Richvoldsen

Problem Description
The term serious game refers to a software or hardware application developed with technology
and game design principles for a primary purpose other than entertainment. The genre is an
increasingly important medium with respect to education, training and social change. The majority
of serious games fall into the category of "edutainment" games as they focus on teaching the
same subjects with the same learning principles taught in schools. In this sense, most serious
games do not fulfill the potential that the genre promises. For a game to be both entertaining and
give the player a sustained learning experience it has to be interesting, playable, enriching,
enjoyable and entertaining at the same time.

In this thesis a serious game should be created with the purpose of recruiting high school
students to NTNU. The gaming environment shall be a realistic, exciting, and informative, virtual
world to make the game both serious and fun at the same time.

This should be divided into three parts; 1. A software discussion to point out what development
tool is best suited for the job, 2. Create a serious game with the chosen software, and 3. Analyze
the game by classifying it, extract the fun factors, and point out its potential for success.

[1]
RITTERFELD U. et.al.: Serious Games – Mechanisms and Effects, Chapter 2 and 3, 2009

[2]
WARTMANN C., KAUPPI M.: the Blender Gamekit 2nd Edition, 2009.

Assignment given: 15. January 2009
Supervisor: Andrew Perkis, IET

Abstract

This thesis is based on work done at the Norwegian University of Science and
Technology (NTNU) in the field of serious gaming. The motivation for the
work is to create a serious game with the purpose of recruiting high school
students that undertake studies at NTNU within engineering and science.

After considerations of several available tools, Blender was chosen as the
best development tool for this kind of game, and used to create "Student
Quest - A First Person Student Game". The game analysis shows that the
game’s Primary Learning Principle is Marketing, the Primary Educational
Content is Knowledge Gain through Exploration, the Target Age Group is
Middle and High School, and it is developed for a Computer Platform. By
extracting the fun factors, we conclude that the game passes the Playability
threshold and reaches the Enjoyability threshold. By implementing the po-
tential features suggested, the game may reach the Super Fun threshold and
thus has the potential of becoming an extremely entertaining serious game.

i

Preface

This thesis is submitted by the author as a part of requirement for the degree
of Master of Science in Electrical Engineering at the Norwegian University
of Science and Technology (NTNU). The study has been performed at the
Department of Electronics and Telecommunications, in cooperation with the
Norwegian Center of Excellence: the Centre for Quantifiable Quality of Ser-
vice in Communication Systems (Q2S).

My supervisor during this work has been Andrew Perkis, to whom I am
very grateful for giving me the opportunity to explore this new, challenging
field of research. He has always been available when I needed help, and has
contributed a lot to the game concept.

I would like to thank Pablo Vazquez for helping me with the development
for the game. He is a really talented 3D artist and game developer who
deserve a big amount of credit for the product in this thesis.

I would also like to thank Ute Ritterfeld for providing me with research
material from her book which is due to be published in July 2009, and Tor
Ivar Eikaas and Frank Jakobsen from Cyberlab for providing me with the
edutainment games.

Håvard Richvoldsen

iii

Contents

1 Introduction 1

2 Theory 3
2.1 Serious Games . 3

2.1.1 Classifying Serious Games 3
2.1.2 What Makes a Game Seriously Fun? 8

2.2 Gaming Engines . 11
2.3 Software Discussion . 13

2.3.1 jMonkey Engine . 13
2.3.2 Blender . 14
2.3.3 Project Wonderland 15
2.3.4 Autodesk ImageModeler 15
2.3.5 Conclusion . 16

2.4 Blender Gaming Engine . 17
2.4.1 Game Objects . 17
2.4.2 Properties . 18
2.4.3 Sensors . 18
2.4.4 Controllers . 19
2.4.5 Actuators . 19
2.4.6 The Blender Laws of Physics 20
2.4.7 Sound player . 20
2.4.8 Game Engine Python 21

3 Design 23
3.1 Concept . 23
3.2 Potential Features . 25

3.2.1 Interactive Menu . 26
3.2.2 Sound Zones . 26
3.2.3 Story Line . 27
3.2.4 Social Experience . 27

v

vi CONTENTS

4 Implementation 29
4.1 Modeling . 29
4.2 Game logic . 31

4.2.1 Hallway . 31
4.2.2 Room . 33
4.2.3 Menu . 34

4.3 Installation Wizard . 36

5 Discussion 37
5.1 Classifying our serious game 37

5.1.1 Primary Educational Content, Learning Content, Tar-
get Age Group and Platform 37

5.1.2 Extracting the fun factors 38
5.2 Hardware Requirements and Performance 40

6 Conclusion 43

A Appendix 45
A.1 Python Scripts . 45
A.2 Installation Wizard Script . 47

List of Figures

2.1 Partition of Primary Educational Content, from [1] 5
2.2 Partition of Primary Learning Principle, from [1] 6
2.3 Partition of Target Age Group, from [1] 7
2.4 The big 5 fun factor categories in digital gaming, [1] 10
2.5 Screenshot from jME. Picture from [10] 13
2.6 Screenshot of the logics GUI. 17
2.7 Screenshot of Blenders sound player 20
2.8 Screenshot of BGE Python logics. 21

3.1 Comparison of a real photo (top) and the model (bottom). . . 24
3.2 Screenshot of the Electronics room. 25
3.3 Suggestion for layout of the interactive menu. 26

4.1 Screenshot illustrating modeling on top of a background image 29
4.2 Screenshot showing UV mapping. Left side: Faces in the

model where the textures is mapped. Right side: Areas of
the texture image that is mapped to the faces. 30

4.3 Screenshot of the hallway in bird view. 31
4.4 Overview of the hallway logics 32
4.5 Screenshot of the game menu. 35

5.1 Comparison of HQ (left) and LQ versions (right). Top: Floor
patterns. Bottom: Library arc. 41

1

Introduction

The word game refers to a structured activity usually performed for enjoy-
ment, and people have enjoyed playing different kinds of games for all time,
i.e. the chinese game Mahjong was developed about 500 B.C. The rise of the
computer age in the 1970’s gave birth to new kind of games, digital games.
At first, the games were simple and had a severe lack of narrativity, like "Pac-
Man" and "Spacewar!". In the mid 80’s, modern adventure games were born
with Sierra’s "King’s Quest" and "Space Quest" series, which became the
start of some of the most popular games on the market today. These game’s
primary purpose is, without doubt, entertainment.

Computers and digital games have increased exponentially in popularity
over time, they have made significant impact upon popular culture, and
are assumed to be one of the biggest influence sources to youth in modern
society. Consequently, developers have begun creating games that work as
educational tools. This has given rise to the new genre serious games which
is an increasingly important medium with respect to education, training, and
social change.

There is a severe lack of studies on serious gaming, as it is a relatively
new field of research. Ritterfeld et.al. [1] [2] suggest a classification system for
understanding and interpreting the serious games genre, and state what fun
factors a game needs to be playable, entertaining, and fun. They point out
that the majority of the serious games today focus on education and prac-
ticing skills, which means that most serious games are edutainment games.
Marketing is the least extensive application of serious games, which is why
this thesis focus on creating a serious marketing game.

Today’s youth communicate and retrieve information on a number of
new platforms, especially computers and the internet. It is important that
institutions and companies update their marketing strategies accordingly.
This thesis is an example of how NTNU can improve their marketing through
the concept of a serious game with the purpose of recruiting high school
students. As of today, NTNU arranges several stands, presents keynotes,
and delivers brochures to inform potential students about the opportunities
at the university. By expanding the marketing of NTNU through a serious
game, we aim at the gaming generation by embedding the informational
content in an entertaining game setting. The goal of the game, "Student
Quest - A First Person Student Game", is to illustrate that education is

1

2 CHAPTER 1. INTRODUCTION

indeed serious, but it can be presented in an entertaining way where the
gamers can recognize themselves.

Theory

2.1 Serious Games
A serious game refers to a software or hardware application developed with
game technology and game design principles for a primary purpose other than
entertainment. The term serious game was actually used long before com-
puter games, namely in Clark Abts book entitled "Serious Games" (1977).
Although his references were primarily to the use of board and cards games,
he gave a useful general definition which is still applicable in the modern
gaming world;

"Reduced to its formal essence, a game is an activity among
two or more independent decision makers seeking to achieve their
objectives in some limiting context. A more conventional def-
inition would say that a game is a context which rules among
adversaries trying to win objectives. We are concerned with se-
rious games in the sense that these games have an explicit and
carefully though-out educational purpose and are not intended to
be played primarily for amusement."

This section is based on work by Ritterfeld and Ratan [1], and Wang, Shen
and Ritterfeld [2] where they suggest a framework for classifying serious
games and what makes them seriously fun.

2.1.1 Classifying Serious Games

Serious games are increasingly important with respect to education, training
and social change. These games are meant to provide deep and sustained
learning, and reach a wide span of audiences by building on "the native
tongue" of the gaming generation. In the last few years there has been a great
increase in focus on developing these games as educators, health advocates
etc. are joining industry officials and game designers in advertising serious
gaming as a new and groundbreaking way to educate the public. There
has been several studies that imply that serious games actually are more
effective than more traditional pedagogy tools [3] [4]. Educators are always
searching for new pedagogic techniques that mix enjoyment and education.
Gaming technology might be a good alternative as the game will serve as

3

4 CHAPTER 2. THEORY

an entertainment frame in which serious content could be embedded. Some
researchers claim [3] that any digital game may provide the player with some
form of learning opportunities, regardless of whether or not the game is
considered serious. The serious games genre has explicit focus on education
and is thus associated with positive features such as seriousness, education
and learning. Consequently, this genre may influence both user’s, developer’s,
and parent’s attitudes and selective exposure of digital gaming toward serious
gaming.

Traditionally, game developers develop games with one goal, to entertain
the users. The serious games developers takes a stand against this when
claiming that the content of a serious game is highly desirable from an ed-
ucator’s perspective. The outcome of playing these games should be solely
beneficial for the player by guaranteeing learning experiences, good (seri-
ous) intentions, and absolutely no negative effects. Thus, games that could
lead to aggression or addiction would not qualify as a serious game. Serious
games should always work as intended, providing a self-guided, enjoyable,
and sustained learning experience.

To define what the genre serious game is proves to be a non-trivial task.
Not only is there a lack of formal research regarding the actual effectiveness
of such games, but also the definition of a serious game is vague and needs
clarification. The Entertainment Software Rating Board (ESRB) defines an
edutainment game as a game that

"provides the user with specific skills development or rein-
forcement learning within an entertainment setting where skill
development is an integral part of product".

Edutainment games are often referred to as a synonym to serious games.
This, however is not the case. All edutainment games are certainly serious
games, but the potential of a serious game extends beyond edutainment,
thus including almost every game that has an additional purpose besides
entertainment. The Social Impact Games website defines serious games as

"entertaining games with non-entertainment goals".

This gives rise to problems when attempting to identify what such goals are,
because the developers may not have a definition that coincides neither with
the user’s experience nor the psychological reality behind that experience.

In [1] a total of 612 games are represented in the database and used
to develop a classification system of serious games. This system takes four
dimensions into account: Primary Educational Content, Primary Learning
Principle, Target Age Group and Platform. Primary Educational Content

2.1. SERIOUS GAMES 5

are split into the following categories: academic education, social change, oc-
cupation, health, military and marketing. Figure 2.1 illustrates the partition
for each of the categories.

Figure 2.1: Partition of Primary Educational Content, from [1]

Academic content is by far the most represented (63%) within the dataset.
Games with this kind of content are designed to teach material traditionally
taught within an academic environment, like algebra, nano technology, or
physics. Games in which the content is related to social change make up
14%. These games address particular social agendas such as political and
social issues. 9% of the games have Primary Educational Content related
to occupation. These games are designed to give the player knowledge and
skills that can be applied directly in the player’s occupation. Health related
games (8%) are meant to provide the player with knowledge and habits that
provide health, reduce risks and enable coping with health problems. The
most popular game in this category is the "Wii Fit" where the goal is to
make the players perform different kinds of physical activity like aerobics
and tennis. Military games (5%) and games related to marketing (<1%)
make up the least represented categories within the dataset.

It is through the Primary Learning Principles dimension that serious
games attempt to impart skills, knowledge and ideas to the players. This
is based on the understanding that the advantage of digital games is in pro-
viding opportunities for exploration, experimentation and problem solving,
and not so much in the delivery of curricular content. The primary learning
principles can be divided into four categories: practicing skills, knowledge
gain through exploration, cognitive problem solving and social problem solv-
ing. Figure 2.2 shows the partition for each of the categories.

The majority of the games (48%) in the dataset has practicing skills as the
Primary Learning Principle. These games encourage players to practice and
improve basic or advanced skills, often by repeatedly practicing a narrow
scope of activities and information. About a quarter of the games (24%)

6 CHAPTER 2. THEORY

Figure 2.2: Partition of Primary Learning Principle, from [1]

focus on cognitive problem solving. These games offer the player puzzles,
brain teasers or complex hypothetical situations that focus on making the
player use both creativity and cognitive problem solving. A similar part of the
dataset (21%) has the Primary Learning Principle of knowledge gain through
exploration. Typical for these games is that the players acquire some kind
of information, such as historical or biological facts, without engaging deeply
into the subjects. These games often focus on a broad scope of information
with little use of repetition, as opposed to practicing skills games. Games
related to social problem solving (7%) encourage the players to solve different
kinds of social problems through cooperation as a team and collaborating or
taking responsibility as members of a society.

Serious games have a rather different partition of the Target Age Group
than entertainment games. From figure 2.3 we can see that the majority
(78%) of the dataset have elementary, middle and high school as the target
age group. This indicates that serious games target younger players than
entertainment games, as the average commercial digital game player is 33
years old [5]. This means that the potential market for serious games may
be bigger than for traditional games, considering the wide span in targeted
age groups.

By examining the interactions of the various categories of educational
content and learning principles, Rata and Ritterfeld state that games with
both the primary purpose of academic education and the educational goal
of skills practice is by far the most prevalent. In the other content areas,
knowledge gain through exploration and cognitive problem solving play the
superior role. Hence, the majority of serious games attempt to teach the
same subjects taught in school by using the same methods, like repetition
and practice. Most of the serious games classify therefore as edutainment,
according to the ESRB’s definition mentioned earlier. This means that most
games in the serious game genre are not fulfilling their potential that serious

2.1. SERIOUS GAMES 7

Figure 2.3: Partition of Target Age Group, from [1]

games promise. To do this, the game has to be both interesting, playable,
enriching, enjoyable and entertaining, which is by far a non-trivial mix of
features. It can be argued that skill practice remains both boring and unin-
teresting even if it is done through an interactive world with great graphics
and a narrative context. Then the game is simply a different way of prac-
ticing the same skills, and only works as initial motivation. The problem is
that such serious games would not be played deliberately over a long period
of time, and be as non-enjoyable as the traditional way of practicing skills.
Ritterfeld and Weber [3] state that a successful mixture of entertainment and
education in gameplay requires parallel experiences which is best realized in
games that invite to exploration and requires complex reasoning.

The game platform may also play a role in the effectiveness of a serious
game. Computer-based digital games allow the user to multitask in a more
extended way than other platforms like Playstation, Xbox or Nintendo Wii.
This may be due to the easy internet accessibility, where the user can switch
to the web browser or other applications without looking at a different screen.
In addition, the average non computer-based games use more computing and
video processing resources, which implies that these games may have more
engaging game play and graphics. Differences in the platform’s input devices
may also impact the effectiveness of the games, i.e. it is much easier to
navigate a first person view with a keyboard and mouse than with non-
computer interfaces like a gamepad.

The classification system is not a final categorization that should yield
all serious games, but is meant merely to serve as a new tool and a guide
to understanding and interpreting serious games as a medium. In the next
section we provide a summary of research done in [2] on what features make
a serious game enjoyable.

8 CHAPTER 2. THEORY

2.1.2 What Makes a Game Seriously Fun?

"Fun" is a word which is often linked to game, as games are expected to
be fun. "Fun" and "serious" are two words that seldom occur together so
one could say that the serious games genre is an oxymoron. To point out
exactly what features make a game fun is not trivial and is dependent on
many aspects. Fun may be dependent on the individual player, and what
makes an entertainment game fun may not be the same as for serious games.
By identifying game elements that contribute to overall enjoyability, Wang et
al. establish a frame of reference for understanding media enjoyment in both
entertaining and serious games. The result of this research is a proposal of
"the big 5 in game enjoyment", and a three level threshold model for digital
game enjoyment.

The analysis of the dataset indicate the following 5 of 27 fun factor cate-
gories as the most frequent: Overall game design, visual presentation, audio
presentation, complexity and diversity, and control. These categories are
not only the most important for gamers, but also for game designers and
developers. The three least frequent categories are fantasy, presence, and in-
teractivity (table 2.1). It is important to note that these categories may not
be the least frequent because they’re unimportant to game enjoyment, but
merely because experienced gamers simply take these features for granted.
The fact is that these categories are unique characteristics of games com-
pared to other media formats, such as books and movies [6]. In [7] [8], these
factors are pointed out as crucial for offering players an emotionally engaging
game experience, which is the core of game enjoyment.

Based on this, the following "Big Five" of digital game enjoyment is pro-
posed: Technological capacity, game design, aesthetic presentation, game
play entertainment experience and narrativity. These five clusters are very
broad, abstract and lexical dimensions, and are not meant as a final defini-
tion, but to provide a potential generic taxonomy in understanding enjoya-
bility factors in digital games.

Further comparison of the content categorial rankings indicate that fac-
tors like humor, mechanics and gratification appear most often in positive
comments, while control, usability, challenge and artificial intelligence is more
often related to negative comments. Factors like characters, social interac-
tion, novelty, realness and gratification turn out to contribute the most in
the "fun" games with high rating, while overall entertainment game play
experience, story line, and length are the biggest contributers to diminish
the entertainment value in "not fun" games. This imply that there exists
certain thresholds that a game has to pass to become playable, entertaining
and finally super fun.

2.1. SERIOUS GAMES 9

Table 2.1: Top 5 and bottom 3 Content categories and examples
Content Categories Examples

1. Overall Game Design
Game elements, logics, rules,

procedures, objectives
and how they interact

2. Visual Presentation Style, quality and
sophistication of graphics

3. Audio Presentation Quality of auditory components
and effects

4. Complexity and Diversity
Number, level and interconnection

of meaningful acts presented
to the player in the game

5. Control Ease of use and comfortable
feel of game control devices

25. Fantasy
Need of a fantastical and

imaginative experience that is unrealistic
and impossible in real life

26. Presence
The player’s experience of
immersion and feeling of

actually being in the virtual world

27. Interactivity
Continous action and reaction

loops between the player
and the game world

The playability threshold is based on common complaints related to tech-
nological capacity and basic game elements like usability, control, challenge
and visual presentation. These are typical must-have features, and are ex-
pected to be present for a game to be playable. Not many players would
be interested in a game that looks ugly, takes forever to load, has numerous
glitches and becomes repetitive. Thus, if these features are not present, the
player may experience feelings like disappointment, frustration and irritation.
A game that passes this threshold is more likely to be picked up for a try by
players.

The enjoyment threshold is made up of factors mentioned in both posi-
tive and negative ways, and fun factors related to aesthetic content and game
design. Typical factors include quality of the visual and auditory presenta-
tion, complexity and diversity, mechanics, freedom, levels, balanced degree
of challenge, and gratification. Thus, an enjoyable game should have nice
graphics, good sound effects and provide the player with a variety of options

10 CHAPTER 2. THEORY

Figure 2.4: The big 5 fun factor categories in digital gaming, [1]

to explore the game world at different levels. Overcoming the enjoyment
threshold offers possibilities of an appealing and fun gaming experience.

The final threshold is the super fun threshold which is made up of factors
that make games extremely entertaining, and thus popular. They are ex-
tracted from the top games in the dataset, in which several has been awarded
"gamer’s choice" awards. Factors related to the role of narrativity in the
game (story lines, characters, and humor), the player’s social interaction dur-
ing and after playing the game-play experience, extraordinary game design
elements, and superior quality of aesthetics, are typical super fun factors.
The two most prevalent is narrativity and social interaction, hence should
organizations and institutions developing serious games focus primarily on
the narrative and social aspects of the game, instead of focusing on improv-
ing the design and looks. If a game incorporates these super fun factors, it
becomes exceptionally entertaining and might become a hit.

The Big Five may overlap across these thresholds, but technological ca-
pacity roughly defines the playability threshold and the game design and
aesthetic presentation defines the enjoyability threshold. Finally, the narra-
tivity and entertainment game play experience are often the two factors that
separate fun games and super fun games. For the future it will be exciting
to see whether or not a serious game can overcome the enjoyment threshold
and ultimately pass as a super fun serious game.

2.2. GAMING ENGINES 11

2.2 Gaming Engines

A gaming engine is a software package designed for the creation and develop-
ment of video games. Through a game engine, you interact with a 3D world in
realtime by controlling objects which can interact with other objects in that
world. A gaming engine consists of a framework with a collection of modules
for interactive purposes with core functionality including: rendering for 2D
and 3D graphics, scripting, a physics engine, collision detection, audio, net-
working, animation, artificial intelligence (AI), networking, threading, and a
scene graph.

For a long time, game developing companies used a lot of resources on
developing their own gaming engines for in-house use, and upgrading them
as the hardware got faster and better versions were needed. SCI by Sierra
and SCUMM by LucasArts powered most of the adventure games distributed
in the 1980’s and 90’s like "King’s Quest" and "Indiana Jones - Fate of At-
lantis". These engines are quite simple compared to the ones used in more
recent games, such as id Tech in Quake and the Unreal engine. Over the past
several years, the cost of always having an in-house gaming engine up to date
has grown significantly. Several companies have consequently begun special-
izing in making gaming engines and gaming engines components, instead of
developing games. What these companies distribute is called middleware
because they provide a flexible and reusable software which provides all the
modules needed to develop games, whether you are a skilled programmer or
not.

There are two types of gaming engines, called true and fake engines. The
early gaming engines like SCUMM and SCI are fake engines. Fake means
that the game logic, or decision making, isn’t done on an object level. In
these engines a higher intelligence (HI) in the game control all the objects
like moving them when appropriate, detecting collisions and keeping track
of their condition i.e alive or dead. Real engines, on the other hand, treat
each object as its own entity and reports the object’s movement and behavior
back to the game engine. The advantage of the real engines is that they can
simulate reality better since they allow for randomness to occur, as in the
real world. In addition, the decision load is distributed between every single
object so a single HI won’t have to calculate everything.

In addition to these two main types, gaming engines are also divided
into three groups based on their complexity. The first, and most complex,
is usually referred to as roll-your-own gaming engine. SCI and SCUMM
are examples of these types of engines that are developed from scratch by
the company that also develops the actual game. This means that they
use publicly available Application Programming Interfaces like DirectX and

12 CHAPTER 2. THEORY

openGL in combination with commercial and open source libraries to build
their own engines. These libraries can be physics libraries like Havok and
ODE, scene graph libraries like OpenSceneGraph, and GUI libraries like
AnTweakBar. The biggest advantage for this type of engines is flexibility.
The programmers can choose the components themselves and implement
them in whatever way they see fit. On the other hand, roll-your-own engines
take the longest amount of time to build and a lot of programming is needed
to make the libraries work together.

Mid-level gaming engines are usually referred to mostly ready gaming
engines. Most engines are in this category with examples like id Tech, the
Unreal Engine, and jMonkeyEngine. These engines are easier to use because
they contain a lot of default libraries like rendering, GUI, physics, and input,
so the user won’t need to do any programming to get the engine started.
However, these engines still need a bit of programming to get them up and
running into a complete game. Typically, both scripting and low level coding
is required to get a real game working. These engines are optimized for the
general case which means that they don’t offer the same amount of flexibility
as low level engines. However, since they contain a lot of libraries and built
in functions, they usually provide a better result with less effort than roll-
your-own engines.

Point and click engines are the highest level gaming engines and are
becoming more and more common these days. They include a full tool chain
which makes the user able to point and click its way to create a playable
game. GameMaker, Torque Game Builder, and Unity3D are examples of
these engines which are built to be as user friendly as possible. The problem
with these engines is that they are very limiting and they often do only one
or two types of gaming genres, or one or two types of graphics modes. In
other words, if you want all design possibilities, these engines don’t suffice.
However, they allow the user to work quickly and create a playable game
without too much effort. This is a typical choice for game designers without
experience.

2.3. SOFTWARE DISCUSSION 13

2.3 Software Discussion

Baba et al. [9] give an overview of the most important parameters for gaming
engines in the implementation of computer games, including edutainment
purposes. We will refer to these parameters, like cost, features, ease of use,
support, skill required, learning curve, interface, and plugins when choosing
what software to use for this project. In addition to these parameters, we
will also consider the possibility to implement the Java games from Cyberlab.
These games are an important part of the game environment and it’s a criteria
that they can be used, either as built-in or stand alone applications.

2.3.1 jMonkey Engine

jMonkey Engine (jME) [10] is a scene-graph based graphics API, built to
fulfill the lack of full featured graphics engines written in Java. It is written
in Java and is thus a true, or object based, gaming engine. The scene graph
allows for organization of the game objects in a tree structure, where a parent
node can contain any number of children nodes, but a child only contains
one parent. This scene-graph structure allows for quick rendering of complex
scenes as you can choose which parent nodes you want rendered, and discard
the rest.

Figure 2.5: Screenshot from jME. Picture from [10]

As mentioned earlier, the jME is a mid level engine, and requires Java
programming skills to get the games running. It has a lot of built in modules
and plugins like physics, lighting, texture system, camera system, sound,
and interface. JME is an open source project which means that it is free of
cost, but has a lack of certified documentation. The lack of documentation
is a big downside by choosing an open source application. But since it is an

14 CHAPTER 2. THEORY

open source software there also exists a lot of user communities with several
discussion forums where it is easy to get help, download tutorials etc.

Based on the test we did with the jME, we conclude that it has its advan-
tages at cost, features, support, interface, and plugins. It is a big plus that
anyone can extend the source code or develop their own plugins to fix their
given problem. Implementation of the games from Cyberlab can be done in
an easy manner since both the games and jME are written in Java. How-
ever, jME is a mid-level engine and requires extended programming skills.
The learning curve is steep and the threshold of mastering is high. As jME
is just a gaming engine and not a 3D modeling software, there is no support
for modeling "by hand". This is a big vote against jME considering that our
virtual world contains a lot of arbitrary shapes and textures which need to
be modeled. This means that we might be forced to use some 3D modeling
software in addition to jME for the hardcore modeling.

2.3.2 Blender

The Blender modeling software [11] [12] is unique because it combines a
modeler, a renderer, a video editing application, and a gaming engine. Its
gaming engine is the first to allow creation of complete games without any
programming. Through its point-and-click GUI, users with no programming
experience can create playable games in an easy manner. The GUI is a
graphical layer that visualizes how the game logic bricks work together. In
other gaming engines, the user has to make a script telling the engine to
attach a controller to the chosen object, for example. In Blender this is done
by choosing type of controller and what actions it should perform from a
drop down menu. Blender also supports C, C++ and Python scripting so
an experienced developer is able to expand the game logic by any features
needed. In other words, the Blender Gaming Engine (BGE) is a combination
of a high- and mid-level gaming engine, which makes the engine suitable for
all kinds of users.

Blender is an open source modeling software developed in C, but the gam-
ing engine is written from scratch in C++. Since C++ is an object-oriented
programming language, BGE is a true gaming engine where every object acts
as its own entity. The fact that BGE is written in C++ will give rise to a
small complication regarding the implementation of the edutainment games,
as it is non-trivial to integrate C++ and Java. There has been numerous
attempts to write a Java API in Blender, but developers have come to the
conclusion that it will be too much effort for a small gain. Thus it is impossi-
ble to embed the edutainment games in the Blender model. A smart solution
to this problem is to write a Python script that opens a web browser with

2.3. SOFTWARE DISCUSSION 15

the respective URLs.
We used Blender in an earlier project, and based on this we conclude that

the main benefits of Blender are cost, features, ease of use, learning curve,
support, interface, and plugins. Since Blender is both a 3D modeling software
and a gaming engine with all preferable features, it won’t be necessary to use
additional softwares to get the game up and running.

2.3.3 Project Wonderland

Project Wonderland [13] is a newly started project (august 2008) from Sun
Microsystems. It is a Java based toolkit for creating collaborative 3D virtual
worlds with multiple users and can be compared to the more known 2nd
Life [14]. Within the virtual worlds, users can communicate with immersive
audio, share desktop, applications, and documents, and conduct real business
through avatars.

Project Wonderland is not a gaming engine, but a framework for building
virtual worlds powered by jME, and share the same options in regard to user
generated content as the jME. Since Project Wonderland is a relatively new
project it is continuously updated with features and plugins from different
developers, and the potential here is huge. The project is open source and
also free of cost, but the development of the framework is lower level than
its engine, jME.

Based on the test with Project Wonderland we conclude that it shares
the same advantages and disadvantages as jME. In addition, it has great po-
tential in making a virtual Gløshaugen campus where multiple users visiting
the campus can communicate and share information and opinions about the
university. However, this framework requires the player to create a Project
Wonderland account to be able to play. This is a big disadvantage since our
game is meant to be an easy plug-and-play game. Project Wonderland is
Java based and low level, so the required skill for using this option is much
higher than the three other alternatives.

2.3.4 Autodesk ImageModeler

ImageModeler [15] was suggested as an alternative way to create the photo-
realistic virtual world without the use of a gaming engine. This is a licensed,
image based modeling software developed by Autodesk, where you can cre-
ate 3D models from 2D digital images or panoramas. It creates a 100%
image based virtual world [16] by stitching, blending and mapping a series
of photographs into a spherical panorama.

16 CHAPTER 2. THEORY

As this is a licensed software with protected source code, it’s not possible
to extend the usage of this program beyond the limits set by Autodesk. Im-
ageModeler works good for its cause, but its lack of support for user generated
content makes it a poor choice in this setting.

2.3.5 Conclusion

Referring to the parameters of a good gaming engine, we conclude that jME
and Blender stands out as the two best options for this project. The biggest
difference between the two is that Blender has a high level GUI where it is
easy, efficient and time saving to create basic logics etc. By using jME much
time will be spent to program every little bit of logic, but in Blender this can
be done by a few mouse clicks. These time saving factors, combined with
some prior experience with Blender, means that less time will go to waste to
learn the basics of the software and more time can be spent developing the
actual game. Thus, we conclude that Blender is the best choice of software
in this thesis.

2.4. BLENDER GAMING ENGINE 17

2.4 Blender Gaming Engine

Blender is a complete development tool for interactive worlds, including a
gaming engine to play the worlds. Its gaming engine is a framework with
a collection of modules for interactive purposes like physics, graphics, logic,
sound and networking. Functionally the gaming engine processes virtual
reality, consisting of content and behaviors, in realtime. By content, we
mean the world itself with buildings etc, and the behavior consists of physics,
animation and logic. The next subsections explain the most important BGE
features used in this thesis.

2.4.1 Game Objects

The objects, or elements, of the world are called Game Objects. They behave
autonomously through a set of tools called Logic Bricks and Properties, which
are controlled by the Logic Buttons. The Logic Buttons are separated in two
parts: the left part containing global settings for the Game Objects, and the
right containing the local settings, fig. 2.6.

Figure 2.6: Screenshot of the logics GUI.

The most important global setting is whether the object should be cal-
culated with the built-in physics. This is done by selecting whether or not
the object is an actor. If the object is set as an actor, there are several ways
the physics engine can treat it. A static object acts as surroundings for a
level. These objects are movable with LogicBricks, and dynamic objects will
react on collision with them. Dynamic objects follow the laws of physics, like
falling, bouncing and colliding. Rigid body objects enables the use of more
advanced physics. This makes it possible for spheres to roll, and other shapes
will tip over, tumble etc. The opposite of a rigid body is a soft body. With
this option selected, the physics engine treats the object as a "jelly object"
so when it collides with another object, it gets deformed. In addition, if an
object is defined as an actor, several physical properties can be edited, like
mass, radius, and friction.

18 CHAPTER 2. THEORY

2.4.2 Properties

The properties of a Game Object can carry values describing attributes of
the object, similar to local variables in a programming language. Since the
properties are local variables, no other objects can access these properties,
but it is possible to copy the properties or send them to other objects using
messages. There are five different types of properties. Boolean, integer, float,
and string are the same as in programming languages. The fifth property is
timer, which is updated with the actual game time in seconds. An example
of the boolean property is to define damaging objects. I.e. an enemy in the
game has a true boolean property called "enemy", and if a character detects
this property in a collision it looses health.

2.4.3 Sensors

There are three types of logic bricks called sensors, controllers and actuators.
Sensors act like real senses of a life form; they react on key presses, collisions,
contact with other materials, timer events, or values of properties. The
internal state of a sensor can only take boolean values, true or false. This
state value is updated at each frame based on the external conditions that the
sensor monitors, i.e. keyboard key press/release or mouse movement. At the
start of each frame, BGE runs through all the enabled sensors and updates
their internal state, and the sensor state remains unchanged through the rest
of the frame processing. Transitions between true and false states for the
sensors are the primary causes for triggering controllers. The directions of the
transition doesn’t matter for triggering. Either way, false/true or true/false,
the controller is executed. The controller is not executed instantly, but only
when all enabled sensors have been updated. Even if multiple sensors are
triggering the same controller, the triggered controller is executed only once.

The internal state transition of a sensor triggers all the active controllers
attached to it. A controller that is executed will usually check the internal
state of the sensor and take appropriate action. The logic controllers evaluate
whether or not the controllers should be executed using AND, OR or XOR
ports with the state of all the sensors connected to them as input values.
This means that the logic controllers do not use the transition information.

As mentioned earlier, transitions between sensor states is the primary
cause for triggering controllers, but the controllers may also be triggered at
other frames. By using the pulse mode tool, the user may postpone the
triggering for any number of frames after the transition. This is widely used
in first person shooting games when enabling burst fire. Then the gun shoots
three bullets, and if you press the shooting button at any time during the

2.4. BLENDER GAMING ENGINE 19

three shots, the gun won’t respond until the first three bullets are shot.

2.4.4 Controllers

Controllers act as the brain for the game logic. They collect events from
the sensors and translate them to a result. This includes everything from
basic decisions like connecting two or more inputs, to complex Python scripts
carrying artificial intelligence. The basic decisions are made by logic ports
(AND, OR, NAND, NOR, XOR and XNOR). More complex controllers are
the Expression controller and Python controller. The Python controller is
the most powerful controller in the gaming engine. This will be extensively
used in this project, especially to apply video textures.

2.4.5 Actuators

Actuators are the executing Logic Bricks, and can be compared to muscles.
Depending on the type or purpose of an actuator, it can act differently on a
pulse. Some inputs are more like keys and get released when no pulse arrives,
and some act like a switch which needs to be switched off by a pulse carrying
a negative value.

The most basic actuator is the Motion actuator which, as the name indi-
cates, is meant to move objects. Movement can be affected in two ways by
this actuator depending if the object is dynamic or non-dynamic. For non-
dynamic objects the actuator can move (Loc) and rotate (Rot) the object in
x, y and z direction. The values for the Loc and Rot span from -10000 to
10000, and indicates how many units the object move along the respective
axis per activation. Dynamic objects have more physics parameters, and the
motion is controlled by location, rotation, force, torque, linear velocity, an-
gular velocity and damping. All these parameters can be set to follow either
the global or local axis of the objects.

To avoid problems with objects going faster and faster, or to allow more
control of the game physics, there is a motion actuator called Servo Control.
This variant of the motion actuator allows control of speed with force. The
control is a PID controller (Proportional, Integral, Derivate), which means
that the force is automatically adapted to achieve the target speed. All the
parameters of the Servo actuator are configurable which makes it possible to
simulate motion styles like anisotropic friction, flying and sliding.

There are a lot of other actuators available as well, such as Constraint,
Distance, Orientation, Force Field, IPO, Sound and Edit Object. In this
project we will primarily use the Motion, IPO, and Sound Actuators, for
more info on the others, see [11].

20 CHAPTER 2. THEORY

2.4.6 The Blender Laws of Physics

The physics engine in Blender is called "Bullet" and is written by Erwin
Coumans who is also one of the original authors of the BGE. This engine
calculates the physical behaviors of the objects like falling, forces, and col-
lisions. It also features a 3D Collision Detection and Rigid Body Dynamics
Library for games, including Playstation 3. The engine runs many aspects
of a game like ray tracing, near- and collision sensors, and constraints.

As mentioned earlier, all objects with the Dynamic or Rigid Body option
set will be evaluated using the physics laws as defined by the physics engine.
The key property for a dynamic object is its mass. Gravity, forces and
impulses only work on objects with mass. The default value of gravity is
9.81, so if you use one Blender unit as 1 m and the mass of 1 as 1 kg,
the objects will react almost as in the real world. Damping is often use to
simulate air drag and maximum speed as it decreases the velocity in percent
per second.

2.4.7 Sound player

Blender also has an integrated sound player to apply sounds in the game.
Currently only .wav files are supported, but .mp3 and .ogg support is under
development and will be available in Blender 2.5. In the sound panel, figure
2.7, you can see the name of the sound objects, edit them, and load new
sound objects. Besides playing the sound objects, you can also edit their
pitch and loop, and play them in "ping pong" mode which plays the sound
forwards, then backwards in a loop.

Figure 2.7: Screenshot of Blenders sound player

To get a more realistic sound picture the gaming engine also features
calculation of 3D sound. This means the volume of the sound depends on
the distance and position between the sound source and the listener. The
calculations do not include advanced audio parameters like reverberation
time in materials, absorption etc, but it gives the sound a more natural

2.4. BLENDER GAMING ENGINE 21

propagation. To edit the relationship between gain and distance, a slider
lets you set the sound attenuation. For example, if a sound passes by the
camera, the scaling factor determines how much the sound will gain if it
comes towards the camera and how much it will diminish if it goes away.
In Blender 2.5 the Doppler effect will also be supported, so the frequency
rises as the sound source gets closer to the listener and lowers as the sound
distance to the source increases.

2.4.8 Game Engine Python

As mentioned earlier, the core of Blender is written in C/C++ and supports
scripting in Python. In Blender there are two incarnations of the Python
integration: The Blender Python, meant for extending Blender and its mod-
eling and animation tools, and the BGE Python meant to be used with
real time content. To write Python scripts there is a built in text editor in
Blender. Here you can load external Python scripts, write new scripts and
it also features practical tools like syntax highlighting and line numbering.

Through the BGE Python you can influence LogicBricks by changing
their parameters and how events react when triggered by the Logic Bricks.
The scripts are activated by objects through their Sensors and the python
Controller, as shown in figure 2.8. Built in functions in the GameLogic
module lets you access Actuators, Sensors and Controllers, and manipulate
the objects in the game. For complete documentation of the Blender Python
API, see [23].

Figure 2.8: Screenshot of BGE Python logics.

Design

In this section we give an overview of the concept and design process of
"Student Quest - A First Person Student Game"1. Furthermore, we will
present several potential features that can be implemented to increase the
gaming experience.

3.1 Concept
The scope of this thesis is to create the start of a serious game where high
school students can visit a virtual NTNU campus to acquire information
about the different studies at NTNU. By placing a serious gaming experience
inside the virtual world, the goal is to have an exciting, yet informative,
environment. The virtual environment is made up of two different scenes.
The main scene is situated inside the hallway of the main building at NTNU
Gløshaugen campus, and is meant to serve as an architectural walkthrough.
Consequently, the primary focus is sophisticated graphics to make it look as
in real life, figure 3.1. To make the game play realistic, physics are as in
reality including movement with 6 degrees of freedom (forward, backward,
rotate right, rotate left, tilt up and tilt down), gravity, and collision.

On the 2nd floor in the hallway there are 5 doors which lead to the second
scene, the rooms which represent different lines of study. These rooms are not
present in the actual building and does not hold the same graphical details as
the hallway. When entering the room the first object the player notice is the
arcade machine where edutainment games may be activated. This is placed
in the middle of the room to serve as the primary focus point encouraging
the player to try the games. On the side walls there are images illustrating
both social and educational aspects of the studies at NTNU. Behind the
arcade machine one can see parts of the video texture menu where both
interviews and commercials can be played. This is intentionally covered up
by the arcade machine to make the player move past the machine and be
encouraged to explore the whole room.

Our focus has been to create a template for these rooms where content
easily may be replaced in future work. The Electronics room, figure 3.2, is

1The title is inspired by Sierra’s "King’s Quest" series, and the subtitle is a reformula-
tion of the popular video game genre "First Person Shooter Game".

23

24 CHAPTER 3. DESIGN

Figure 3.1: Comparison of a real photo (top) and the model (bottom).

3.2. POTENTIAL FEATURES 25

the only complete room in this thesis, with pictures, interview, edutainment
games and other useful information. Note that the pictures, movies etc. serve
as place-holders in the template. To create a new room one can simply copy
the .blend file and change the image links on the textures, as the 4 other
rooms are examples of.

Figure 3.2: Screenshot of the Electronics room.

The edutainment games are developed by Cyberlab, a company spring-
ing from NTNU. They have specialized in making learning games regarding
math, physics, cybernetics, electronics etc., and some of them are used in
courses at NTNU today. These games are a more entertaining part of the
environment, and are meant to work as "appetizers" for students who are
curious of what engineering and technology actually is. As an example we
use the "hover train" game where the point is to navigate a hover train from
Oslo to Trondheim. This is done by inducing different amounts of current in
the rails so the train stays "floating" and doesn’t jump off or crash down in
its tracks. The player thus gets the idea of how a hover train works and how
important it is with accurate regulation. These are all topics covered both
in cybernetics-, physics- and electronics courses.

3.2 Potential Features

To fulfill the potential of the serious games genre, the game has to be both
interesting, playable, enriching, enjoyable and entertaining. The potential
features suggested next may contribute to this. Note that these features
are not implemented in this thesis due to the time limit. We describe the

26 CHAPTER 3. DESIGN

implementation of the interactive menu and sound zones in detail for imple-
mentation in future work.

3.2.1 Interactive Menu

To make the user feel like a part of the environment, the game needs some
kind of interaction features. An interactive menu, as in figure 3.3, will provide
this interaction. The menu is made up of two elements. First, the question
menu on the left side. Here we place different "frequently asked questions"
divided into several subjects such as studies, sports, fraternities etc. By
moving the mouse cursor and selecting the category, the users may select
what questions they want answered.

Figure 3.3: Suggestion for layout of the interactive menu.

On the right side, there is a movie file showing a person with monotone
behavior. Once a question is clicked, this video texture is swapped with a
movie stream where the person answers the question, and finally, the stand-
by texture is applied again. Through this menu the user gets the important
feeling of feedback. This contributes as a stickiness factor at the same time
as the user acquires useful information. Technically this can be implemented
in the same manner as the other video textures with the same scripts as in
Appendix A.1. The question menu can be implemented using the same IPO
techniques used in the menu.blend file, except that instead of opening a new
scene when a subject is selected, the questions will become visible as a drop
down menu.

3.2.2 Sound Zones

When a user enters the room it is unlikely that he or she is patient enough
to listen to a 30 seconds long audio clip describing all the features inside

3.2. POTENTIAL FEATURES 27

the room. By dividing the room into sound zones, the user is only provided
information relevant to the current zone. As the player moves inside a zone
near i.e. the arcade machine, a sound track telling the user about this will be
played. When the user moves outside a zone the track will stop, and another
one will be activated as the player moves to the next zone. To implement this,
assign a property to the floor covering the area where the zones are situated.
I.e. one property can be named "arcadesound" and as soon as a collision
sensor detects this property, a Sound actuator will play the sound track. If
the user moves the camera to another area, the current clip is stopped, and
the one relevant to new zone is played.

3.2.3 Story Line

Narrativity is one of the main features that makes a game pass the Super Fun
threshold, but this is not embedded in this game. A suggestion of a story
line for this game is to make the player start out as a "freshman" on NTNU.
As the player explores the building and enters different doors, the character
gains experience points in different categories based on the choices made. The
first door could be a study line like electronics or cybernetics. Inside these
rooms several doors leading to different specialization categories. E.g. inside
the Electronics room there are doors to acoustics, signal processing, circuit
design etc. and inside these doors there are doors leading to multimedia
signal-processing and other specialization areas. Finally, when graduating,
the player can attend a virtual career day where the player is offered several
jobs based on the choices made along the way. In this way, the player is
presented to both the possible lines of study at the university and potential
jobs. Thus, the game contains both a story line and character building which
are the two most important features in the narrativity factor.

3.2.4 Social Experience

Social experience is pointed out by Wang et.al as the second fun factor that
makes a game reach the Super Fun threshold. This feature was never the
focus of this thesis, but we will propose it as a potential feature for future
work. The creation of a social experience for the user depends on the game
to support multiple users. Then each player can have their own avatar and
meet other students in the same situation as themselves. It is often hard to
initiate contact in real life, so meeting other potential students in a virtual
world might ease this process. The players can initiate discussions regarding
anything from choice of studies to the fear of starting a new life in Trondheim.
In addition, the university could have students present on the virtual campus

28 CHAPTER 3. DESIGN

24 hours a day so players may ask them questions and get more information
about NTNU.

If this feature is to be implemented, Project Wonderland or 2nd Life are
the best suited development tools. We recommend to use Project Wonder-
land since models made in Blender can be exported easily to the jME, which
Project Wonderland is built on. By doing this, one would obtain the same
aesthetic features while adding the social experience embedded in Project
Wonderland. ”

Implementation

In this section we present the implementation of the game divided into three
main parts; modeling, logics and installation wizard.

4.1 Modeling

We will not go into great detail of the modeling process since most of the
modeling work in this thesis is done with great help from 3D artist Pablo
Vazquez. Therefore, the following section only provides a quick summary of
the most important techniques used. See [21] for more complete documenta-
tion of modeling techniques.

The initial step of the modeling process is to obtain a 2D basis of the
surfaces. By using photos similar to figure 4.1 as background images such
base is created with proper relative scaling. To expand this to 3D we extrude
the faces and model difficult geometrical shapes by hand. The textures of the
surfaces are made up by photographs that are automatically mapped onto
the selected faces by UV-mapping, figure 4.2. Finally, we apply lighting to
make the environment look more alive.

Figure 4.1: Screenshot illustrating modeling on top of a background image

There are built in functions in Blender that calculates ray tracing, shadow
casting and reflections, but they are not activated in realtime rendering in
the BGE because the calculations are too heavy for the engine to handle.
Therefore we use a technique called baking [22] to capture the lighting, re-
flections, and shading in realtime. Shortly summarized, baking renders a

29

30 CHAPTER 4. IMPLEMENTATION

Figure 4.2: Screenshot showing UV mapping. Left side: Faces in the model
where the textures is mapped. Right side: Areas of the texture image that
is mapped to the faces.

selected viewpoint in the model and calculates how the faces look including
lighting, ray tracing, shadowing and reflections. From this render we select
which areas to use as textures for the faces in the model, and copy-paste
the areas into one image for each object. Right side of figure 4.2 shows the
texture faces for the "1st floor entrance" object. After doing several renders
to cover every object in the model, we obtain the same lighting conditions
etc. in realtime as in one single render. Finally, we UV-map these images
onto their respective faces, and the complete model of the hallway looks like
figure 4.3. The only drawback with baking is that the lighting is static, so if
we use a moving light source the shadows etc. won’t move accordingly.

4.2. GAME LOGIC 31

Figure 4.3: Screenshot of the hallway in bird view.

4.2 Game logic

The game consists of 12 .blend files divided into three groups. 6 files are the
different starting points in the hallway, one for each door and one initial. The
only difference in these files is where the camera and empty has its initial
position. In addition there are one .blend file for each room, and one for the
menu. The game logics in the respective .blend files are implemented using
both the high level GUI and scripting. In the next sections we go further
into detail on the Logic Bricks used in the three .blend file groups; hallway,
room and menu

4.2.1 Hallway

The hallway and rooms use the same movement logics, a camera to maintain
the 1st person view and an empty-object to hold the logics. The camera
movement can be controlled both by the mouse and the keyboard. There are
two choices for the keyboard controllers, the arrow keys and w,a,s,d move
forward/backward and rotate left/right, respectively. This is implemented by
adding Keyboard sensors, And controllers and Motion actuators and choose
which key to trigger the sensor and how many units the actuator shall move
its object along the respective axis. I.e. the up-arrow will move the objects
location (Loc) 0.1 units along the y-axis, and the left arrow will rotate (Rot)
the object -0.1 units around the z-axis, see figure 4.4. For the mouse we make
the mouse wheel work similar to the up- and down-arrow, but the rotation is

32 CHAPTER 4. IMPLEMENTATION

implemented by a python script, mouseMovement.py in Appendix A.1. By
applying this script we get full rotation in all directions, as opposed to the
keyboard controllers where we are unable to tilt the view up and down.

Figure 4.4: Overview of the hallway logics

If the player enters one of the rooms or wants to go back to the menu, the
new .blend file is loaded with the Game actuator. Each door on the 2nd floor
has an invisible collision plane surrounding it with a true boolean property.
If the empty’s collision sensors detect a collision with one of these properties,
the game actuator opens the respective .blend file. The menu actuator is
activated by pressing F1.

When the player either enters or exits a room, it takes a few seconds to
load the new scene. To illustrate this loading process, a plane with an image
showing "loading..." becomes visible as the Game actuator is activated. The
plane is placed directly in front of the camera, and by making the camera
a parent to the plane, the plane will move if the camera moves to always
maintain its relative position to the camera. This plane has the property
"load" which is an integer equal to 1. A sensor continuously checks for this
property and if the property is 1, then the plane’s Visibility actuator is set
to "Invisible". But if the property is equal to 1 and a collision with the door
properties is detected, the Visibility actuator is set to "Visible". Thus, the
loading image is only visible to the player as the new .blend file is loaded.

4.2. GAME LOGIC 33

4.2.2 Room

The rooms share the same movement logics as the hallway, but in addi-
tion there are five Python controllers, one on the arcade machine, three on
the video screen, and one on the fraternity logo. As mentioned earlier, the
Cyberlab learning games are written in Java so they can’t be implemented
in-game. Therefore a Python controller on the arcade machine activates the
openWebbrowser.py script which opens the default web browser on the right
URL. A similar controller opens the fraternity homepage if the player collides
with the logo. The video texture scripts are quite complex, and are described
next.

Video Texture Module

To play movie files inside BGE is not a standard feature in the current
version (2.48). However, because of the open-source community, there are
some super-users who have developed a python module called VideoTexture
which provides all the functionality needed. This module is available in all
the latest SVN builds and can be downloaded from [19]. The videoTexture
module allows to manipulate textures during the game. Several sources for
texture are possible, such as video files, image files, video capture etc. The
principle is to identify an existing texture by object and name, then create
a new texture with dynamic content and swap the two textures in the GPU.
At the end, the new texture is deleted and the old texture restored. We will
now briefly explain how the video texture scripts work, appendix A.1. For
more detailed documentation on the VideoTexture module, see [20].

The first step is to create a Texture object. This is done in lines (1) - (4)
by the functions getCurrentController() and getOwner() from the GameLogic
module. Line (6) performs a check if the "video" attribute is true to make
sure the texture is created only once. Line (7), performs a search for the right
texture or material to apply the video texture on, by the materialID(obj,
"IMvideo.png") function. This retrieves the object material which is using
the "video.png" file as texture. The video texture object from the Texture
class is then created in line (8). Note that the texture object is assigned to
a GameLogic "video" attribute. The reason is that the texture object must
be persistent across game scripts. A local variable would be deleted at the
end of the script and the GPU texture deleted at the same time.

The next step is to create a source object from one of the possible sources
available in VideoTexture, i.e. VideoFFMpeg for moving pictures, Imag-
eFFMpeg for still pictures, or ImageRender for rendering from a camera.
Since we want a video file as the source, we choose the VideoFFMpeg con-

34 CHAPTER 4. IMPLEMENTATION

structor. This constructor takes a file name as argument. Since this game is
to work on several computers with different install paths, we use the GameL-
ogic.expandPath() to build an absolute file name to avoid confusion with the
location of the file. In lines (9) - (10) the file path of the movie gets stored in
the "movie" variable, and a video source object created with the respective
file. Finally the video playback is activated in line (11).

Since video playback is not a background process we also need to refresh
the texture continuously. This is done in a separate script, videoUpdate.py,
that runs on every frame and calls the refresh() method of the texture object.

VideoPause.py is used to switch between two or more sources on the video
texture, which simply stops the current source and starts the new. This script
is written by the user "ben2610", who is one of the main contributers to the
videotexture module.

In addition to the functions used here, there are several others available
to manipulate the video, like filtering, scaling, tuning the framerate etc.
All the formats and codecs that FFMpeg supports are supported by the
VideoTexture module, including AVI, Ogg, Xvid, and JPG. This module is
not built-in in the current version (2.48), but will be included in 2.49.

4.2.3 Menu

In the game menu there are options for Play, Controllers, Credits, and Exit.
Play and Exit starts the hallway.blend file and exits the game, respectively.
Controllers and Credits are both in the same .blend file as the main menu, but
are different scenes. All the options can be selected by moving the selector
up and down with the arrow keys and pressing the Enter key.

The menu logics are implemented in the following manner; First, we as-
sign a location (Loc) keyframe on each of the 4 options in the menu and place
the selector next to the respective options. Play is set to frame 1, Controllers
to frame 2 etc. The selector gets an integer property called "selection", with
initial value equal to 1. To get this applied in the BGE we add an Al-
ways sensor connected to an And controller, connected to an IPO actuator.
The actuator is set to "Property" and "Prop:selection". To make the up-
and down-arrow keys active, we add four sensors, controllers, and actuators.
Two of the sensors are Keyboard sensors, set to up- and down-arrow, and
they are connected to their own And controller and Property actuator. The
actuators are set to "Add", "Prop:selection" and "Value: +/-1". This means
that if you press the up-arrow the selection property gets set to 2 instead of
1, and the selector will the move to its position in frame 2. In addition, there
are two property sensors to change the value of the selection property if it
is either 0 or 5. This means that if the selector is positioned at frame 1 and

4.2. GAME LOGIC 35

Figure 4.5: Screenshot of the game menu.

the up-arrow is pressed, selection is set to 4 instead of 0 so the selector goes
to the bottom of the menu, and vice versa from bottom to top.

Finally, there are 4 more Property sensors, one for each menu option.
These are connected to their And controller together with the Keyboard
sensor for the Enter key, and further connected to their actuator. I.e. if the
selection property is 2 and Enter is pressed, the Scene actuator is activated
and starts the Controllers scene. The other three either starts a new game,
shows the credits scene, or exits the game.

36 CHAPTER 4. IMPLEMENTATION

4.3 Installation Wizard
The game is aimed at all kinds of high school students, including those with
less computer skills, and should follow the "plug and play" concept. There-
fore, we create a windows standardized installation wizard which guides the
user through the installation process step by step. The installation wizard
is written in Inno Setup [24] which is an open source installer for Windows
programs based on Pascal. Some of its key features are support of all win-
dows versions including Vista, it creates one single setup.exe file for easy
distribution, it has a standard Windows 2000/XP wizard interface, and it
also creates an uninstallation file. In addition, there are several tutorials and
examples included in the "help" file, so it is easy to use. The installation
script is placed in Appendix A.2.

To make the game work, the user needs the game files, Blender and a
Python compiler, so all these files need to be packed into the same installa-
tion. This is solved by splitting the installation in two parts, one for Blender
and the game files and one for the Python installation. The Blender folder
and Game folder are simply copied to the user defined installation path. To
install the Python compiler, we make the installer run the Python.msi file
which is a separate installation wizard created by Python. Thus, the only
folders visible in the root of the installation folder are the Blender folder, the
Game folder, the Python installation file, license and copyright files and the
uninstall file. To ease the process even more, the installer places a shortcut
on the desktop, called "Student Quest". In other words, all the user has to
do is click the "setup.exe" file, click through the installation wizard, double
click the desktop icon, and the game starts. This whole procedure should
not take any longer than 2 minutes.

As of today, the installation file is approximately 560MB including Blender,
the game, and Python. Only 40MB of this is Blender and Python, the rest
are the game files. While installing, the user may choose between a High
Quality (HQ) and a Low Quality (LQ) version. The game is the same and
the model contains the same amount of polygons, but in LQ the texture
folder is scaled down to half the size of the HQ version.

Discussion

5.1 Classifying our serious game
In this discussion we classify our game in the four dimensions explained in the
theory section, Primary Educational Content, Primary Learning Principle,
Target Age Group, and Platform. Furthermore, we point out what fun factors
our game contains and lacks, and clarify what Enjoyment thresholds the game
passes.

5.1.1 Primary Educational Content, Learning Content,
Target Age Group and Platform

As mentioned in section 3.1 is the main purpose of this game to educate
the player on studies available at NTNU. This is achieved by promoting the
product, NTNU, through an exciting virtual world containing various infor-
mation sources regarding each line of study at the university. These sources
are made up of both "plain" informative material embedded to educate, such
as the study plan, and fun content like the edutainment games and commer-
cial movies. Furthermore, we can argue that the target players are potential
"customers" in the sense of high school students. Based on this, the game’s
educational content is both academic and marketing. After playing the game,
the user should primarily have gained information about the university, and
learned something about the study area they have explored, i.e. through the
edutainment games. Thus the marketing of NTNU is by far the most preva-
lent, and The Primary Educational Content is therefore Marketing. Note
that this actually is the least prevalent educational content in the research
which indicates that our game might be a new way of using serious games.

The gameplay of our game is split in two settings. When situated in the
hallway, the player walks around and explores the building. As of now there
are not much educational content in the hallway, so this part works primar-
ily as a walkthrough. Secondly, when situated inside the room, the player
explores and uses the different information sources. Most of the sources are
primarily one-way, like the pictures and movies, but the edutainment games
encourage to a more interactive way of learning. This part of the gameplay
is more focused on cognitive problem solving as they engage the player both
cognitively and creatively with brain teasers and games. The main focus of

37

38 CHAPTER 5. DISCUSSION

the game is to explore the building and the rooms, and a broad scope of in-
formation is presented with a small amount of repetition. Thus the Primary
Learning Principle is Knowledge Gain through Exploration. It is important
to note that the advantage of serious games is not the educational content
itself, but how it is presented. Presenting the content through exploration is
a way of implementing information in a more exciting manner than listening
to a keynote, or reading brochures.

As this game aims towards recruitment of high school students it is ob-
vious that the Target Age Group, using the categorization from Ratan and
Ritterfeld, is Middle and High School. Most serious games have elementary,
middle and high school students as targets, and it is important to note that
this differs significantly from entertainment games where the average player
is 33 years old.

This game is developed on and for computers running Windows since
the target player is an average high school student. On high schools in
Norway there is an extensive use of Windows computers, so other operating
systems are seldom used. However, it is a trivial task to compile the game
for Mac OSx, Ubuntu and such since Blender is a cross platform software.
Other platforms, like Playstation, Nintendo DS and Nintendo Wii are not
considered relevant for this kind of game.

5.1.2 Extracting the fun factors

Technical Capacity and Game Design are two extremely important factors
the game has to incorporate to be playable. Game logics, rules, elements
and how they work together are typical examples of these kinds of factors.
As the primary gameplay in this game is a walkthrough, the logics are based
on reality. This means that the camera moves as in real life, with the same
laws of physics such as gravity and collision, and is thus intuitive for the
player. The controls are also meant to represent reality. The player can
walk, run and look around using the keyboard and mouse. For experienced
gamers this kind of control setting is common and easy to use, but for the
unexperienced gamer there might be some initial complications. The arrow
keys are usable for all players, but the mouse look needs a bit more experience
to handle. Based on a highly unofficial test done on 10 persons with different
background, only 1 person (a 48 years old professor) had severe problems
with the movement. The other test subjects (16 - 28 years) had no problem
navigating. Although some users may experience problems with the mouse
look, the average high school student has some prior experience in computer
games, and we therefore state that the controllers are sufficiently easy to
use. Furthermore, the game takes an acceptable time to load (see section

5.1. CLASSIFYING OUR SERIOUS GAME 39

5.2), and there are not numerous glitches. Thus, the game at least exceeds
the Playability threshold.

Aesthetics is an important factor when it comes to enjoyability. It clearly
gives the player a better gaming experience if the quality and sophistication
of both visual and auditory content is pleasing. In our case, the graphics has
been the top priority when modeling the game environment, and consequently
the graphical presentation is of extremely high quality. All the patterns on
the walls, arches, ceilings etc. are as in real life and give a high detail level
even when the game is played on a 50 inch TV with 1080p resolution. Sound,
is not nearly as present in the game, so adding a soundtrack could contribute
in setting a certain mood within the game. The only soundtrack used in this
game is the "welcome" track which is played whenever a room is entered.
This gives the player a kind of feedback, and creates the important feeling
of in-game presence. Based on this we state that this game features the
majority of aesthetics factors and thus reaches the Enjoyability threshold,
but does not exceed it. Note that an implementation of the sound zones
will lift the aesthetics to the next level and probably send the game past the
Enjoyability threshold.

Narrativity is a feature which this game lacks. As mentioned earlier
the game is, as of today, a walkthrough with edutainment and multimedia
content. A story line is a feature that probably would take the gaming
experience to a higher level and encourage the player to explore the building
further after one room is done. Social experience is the other key factor
missing in regards to the Super Fun threshold. This is also a feature that
could take the gaming experience to the next level, but creating a 2nd Life
like application was never the goal of this thesis. If that would have been
the case, Project Wonderland or 2nd Life would be a better software choice
than Blender. Based on this, the game does not fulfill the requirements to
pass the Super Fun threshold or even get close to it. However, by adding
the potential features suggested earlier, the game would in fact contain both
narrativity and social experience.

40 CHAPTER 5. DISCUSSION

5.2 Hardware Requirements and Performance
To run this game, the user needs Windows XP operating system or later.
As this game aims at all kinds of high school students, we have decided
to develop it on, and for, windows platforms. Furthermore, the BGE runs
slower on Mac OSx and it is actually not possible to open the hallway.blend
file in Blender running in Mac OSx. It is recommended to have at least 2GHz
processor, 1GB RAM and 600MB of free hard-disk space. The game will run
on less hardware, but the framerate will decrease significantly to about 5 fps,
and the user will experience long lags in the rendering.

To make the materials reflective during realtime rendering, we use real-
time GLSL materials. This implementation takes advantage of the OpenGL
Shading Language (GLSL). The game engine already supports GLSL shaders,
but it also requires a graphics card and drivers that support it. The following
cards typically support it:

• ATI Radeon 9x00, Xx00, X1x00, HD2x00, HD3x00 series and newer

• NVidia GeForce FX, 6x00, 7x00, 8x00, 9x00, GTX 2x0 and newer

Intel or VIA graphics cards, ATI Radeon cards older than the Xx00 series,
and Nvidia Geforce cards older than the 6x00 series are unlikely to support
the GLSL feature.

The graphics cards mentioned above are not state of the art and expensive
hardware. The oldest are about 5 years and they should be standard in
most stand-alone computers newer than 5 years. Laptops with an integrated
graphics controller may have problems supporting this. The consequence is
that some of the materials turn pink (default color), and some normal maps
won’t work. It is important to install the latest drivers as they might fix
bugs and improve performance.

There are two noticeable performance bottlenecks. First, the game load-
ing time due to huge amount of image data. When the user presses Play
in the menu, the hallway.blend file starts loading. All the textures are also
loaded at this point, which leads to a noticeable loading time. Since the
original images are shot with a digital SLR camera and the baking textures
are made from these, the native resolution of the textures are 2048x2048
pixels. Just inside the hallway there are 30 texture images at 5-7MB each.
Experimental tests show that it takes about 30-35 seconds to load the game
when the images are in native resolution, which is unacceptable. To com-
pensate, we make two versions of the game, one high and one low quality as
mentioned earlier. In the HQ version we optimize the texture size by scaling
simple textures, such as the ceiling, down to 256x256 pixels and keep native

5.2. HARDWARE REQUIREMENTS AND PERFORMANCE 41

resolution on the rest. This results in 15 seconds loading time, which is ac-
ceptable for a game with this kind of graphics. In the low quality version
all the textures are scaled to 256x256 pixels which results in a halving of the
size of the texture folder, from 160MB in HQ to 80MB in LQ. The loading
time is also significantly reduced, from 15 to 5 seconds. As seen in figure 5.1
it differs widely in the graphical experience in the HQ and LQ game. In LQ,
it is not possible to see the patterns on the walls. and the borders on the
floors are blurry. Note that the loading time is independent of the computer
hardware as it is the gaming engine that loads the images. For computers
below the requirements listed, it is recommended to install the LQ version.
The game will render close to 60 FPS in LQ, compared to 5-15 FPS in HQ.

Figure 5.1: Comparison of HQ (left) and LQ versions (right). Top: Floor
patterns. Bottom: Library arc.

The second bottleneck is due to collision detection. As the model is now,
the physics engine checks for collisions for every vertex on each frame, which
demands a huge amount of resources. On some computers, this is seen if the
camera is turned quickly. Then the rendering lags and comes down to 0-5
FPS. This can be fixed by applying a collision mesh in the model. A collision
mesh is simply a low polygon version of the original model, hence fewer
vertices. For up to date gaming computers, the current collision detection
should not give rise to noticeable problems. The collision mesh is not made
in this thesis considering the time limit, but is simply pointed out for future

42 CHAPTER 5. DISCUSSION

work.

Conclusion

The "Serious Games" genre is increasingly important with respect to edu-
cation, training and social change. The concept of the genre is to serve as
an entertainment frame where serious content can be embedded, and reach
a wide span of audiences by building on "the native tongue" of the gam-
ing generation. Serious games can be classified in four dimensions: Primary
Educational Content, Primary Learning Principle, Target Age Group, and
Platform. Serious games span a wide range of purposes and educational goals,
with the Academic Education and Practicing Skills categories representing
the vast majority of the games. This indicates that most serious games are
"edutainment" games and do not fulfill the huge potential of the genre.

To decide if a game is fun or not, a five category clustering of fun factors
can be used. "The Big 5 in Game Enjoyment" are Technical Capacity, Game
Design, Aesthetics, Narrativity and Character Building, and Social Expe-
rience. Relative position ranking of these fun-factor categories imply that
there are certain thresholds the game has to pass in order to be Playable,
Entertaining, and ultimately Super Fun. If the game features good Technical
Capacity and Game Design, the Playability threshold is passed. To pass the
Enjoyability threshold, the game’s Aesthetics has to be sophisticated and of
high quality. Finally, if the game also contains good Narrativity and a Social
Experience it might pass the Super Fun threshold and become extremely
entertaining.

We have used the concept of serious gaming to create a game for the
purpose of recruiting high school students to NTNU. The game is developed
in Blender and is meant to be as realistic as possible, both in graphics and
game play. In addition, we have created an easy installation wizard so the
game is easy to use, even for users with moderate computer skills.

The game has Marketing as it’s Primary Educational Content, Knowledge
Gain through Exploration as Primary Learning Principle. The Target Age
Group is Middle and High School, and it is developed for computer Platform.
Marketing is the least prevalent Educational Content in serious games which
indicates that our game might be a new way of using serious games.

Due to the Technical Capacity and overall Game Design it is clearly stated
that the game passes the Playability threshold. Graphics was the top priority
when modeling the game environment, so the detail level is high, the quality
is high definition, and the graphics are sophisticated. In other words, the

43

44 CHAPTER 6. CONCLUSION

Aesthetics are sufficient to reach the Enjoyability threshold, but not exceed
it. Narrativity and Social Experience are two features that the game lacks.
Consequently, we state that the game do not reach, or even come close to,
the Super Fun threshold. However, if the potential features suggested here
are implemented in future work, there is a good chance that the Super Fun
threshold might be reached.

In summary, we have created a good start for a serious game with the
purpose of recruiting high school students. The game’s primary purpose
is marketing NTNU and showing how exciting the studies here are. As of
today, the game passes the Playability threshold, reaches the Enjoyability
threshold, and by implementing the potential features suggested, the game
has the potential to reach the Super Fun threshold and thus become an
extremely entertaining serious game.

Appendix

A.1 Python Scripts
VideoStart.py:

import VideoTexture

contr = GameLogic.getCurrentController()
obj = contr.getOwner()
if not hasattr(GameLogic, ’video’):
matID = VideoTexture.materialID(obj, ’IMvideo.png’)
GameLogic.video = VideoTexture.Texture(obj, matID)
GameLogic.sources = [None,None]
movie = GameLogic.expandPath(’//Multimedia/Fast.m4v’)
GameLogic.sources[0] = VideoTexture.VideoFFmpeg(movie)
movie = GameLogic.expandPath(’//Multimedia/trailer_400p.ogg’)
GameLogic.sources[1] = VideoTexture.VideoFFmpeg(movie)
GameLogic.current = 1
GameLogic.video.source = GameLogic.sources[GameLogic.current]
GameLogic.video.source.scale = True
GameLogic.video.source.flip = True
GameLogic.video.source.repeat = 2

if contr.getSensors()[0].positive:
GameLogic.video.source.play()

VideoPause.py:

cont = GameLogic.getCurrentController()
if hasattr(GameLogic, ’video’):
if cont.getSensors()[0].positive:
print "Here"
GameLogic.current = 1-GameLogic.current
GameLogic.video.source.stop()
GameLogic.video.source = GameLogic.sources[GameLogic.current]
GameLogic.video.source.play()

VideoUpdate.py:

45

46 APPENDIX A. APPENDIX

if hasattr(GameLogic, ’video’):
GameLogic.video.refresh(True)

OpenWebbrowser.py:

import webbrowser

webbrowser.open("http://www.pidstop.com/energispillet_v2_1/")

MouseMovement.py:

####
#
MouseLook.py Blender 2.45
#
Clark R Thames
Released under Creative Commons Attribution License
#
Tutorial for using MouseLook.py can be found at
#
www.tutorialsforblender3D.com
#
####
Import Modules
import Rasterizer

Get Controller & Owner
cont = GameLogic.getCurrentController()
own = cont.getOwner()

Sensors & Actuators
mouse_move = cont.getSensor("mouse_move")
RotX = cont.getActuator("RotX")
RotY = cont.getActuator("RotY")

Values
Width = Rasterizer.getWindowWidth()
Height = Rasterizer.getWindowHeight()
Xpos = mouse_move.getXPosition()
Ypos = mouse_move.getYPosition()
Rot = own.getOrientation()[2][2]

A.2. INSTALLATION WIZARD SCRIPT 47

########## Constraints ##########
#################################
XSensitivity = 0.0007
YSensitivity = 0.0007
TopMax = -0.9
LowMax = 0.9

Get The Offset
OfX = -(Width/2-Xpos)*XSensitivity*-1
OfY = -(Height/2-Ypos)*YSensitivity*-1

RotX.setDRot(0,0,OfX,1)
RotY.setDRot(0,0,0,1)
if OfY < 0 and Rot > TopMax:
RotY.setDRot(OfY,0,0,1)
elif OfY > 0 and Rot < LowMax:
RotY.setDRot(OfY,0,0,1)

GameLogic.addActiveActuator(RotX,1)
GameLogic.addActiveActuator(RotY,1)
GameLogic.addActiveActuator(RotX,0)
GameLogic.addActiveActuator(RotY,0)

Rasterizer.setMousePosition(Width/2,Height/2)

A.2 Installation Wizard Script

[Setup]
AppName = Student Quest
AppVerName = Student Quest, Version 1.0
WindowVisible = yes
WindowStartMaximized = no
AppCopyright=Copyright (C) 2009 Norwgian University of Science and Technology - Q2S
DefaultDirName={pf}\Student Quest
DisableProgramGroupPage=yes
SetupIconFile = C:\\Source\Game high\Multimedia\logo.ico
OutputDir=C:\Desktop

[Types]
Name: "high"; Description: "High Quality"

48 APPENDIX A. APPENDIX

Name: "low"; Description: "Low Quality"

[Components]
Name: "high"; Description: "High Quality Files"; Types: high; Flags: fixed
Name: "low"; Description: "Low Quality Files"; Types: low; Flags: fixed

[Files]
;Blender
Source: "C:\Documents and Settings\Håvard\Desktop\Source\Blender*.*";
DestDir: "{app}\Blender"; Flags: recursesubdirs

;The "game" folder with subdirectories high quality
Source: "C:\Documents and Settings\Håvard\Desktop\Source\Game high*.*";
DestDir: "{app}\Game"; Flags: recursesubdirs; Components: high

;The "game" folder with subdirectories low quality
Source: "C:\Documents and Settings\Håvard\Desktop\Source\Game low*.*";
DestDir: "{app}\Game"; Flags: recursesubdirs; Components: low

;Python
Source: "C:\Documents and Settings\Håvard\Desktop\Source\python-2.5.4.msi";
DestDir: "{app}";

;License files
Source: "C:\Documents and Settings\Håvard\Desktop\Source\copyright.txt";
DestDir: "{app}"; Flags: isreadme
Source: "C:\Documents and Settings\Håvard\Desktop\Source\GPL-license.txt";
DestDir: "{app}";

[Run]
;Run Python installation
Filename: "msiexec.exe"; Parameters: "/i""{app}\python-2.5.4.msi"""

[Icons]
Name: "{commondesktop}\Student Quest"; Filename: "{app}\Game\play.exe" ;
IconFilename: "{app}\Game\Multimedia\logo.ico"

Bibliography

[1] RATAN R., RITTERFELD U.: Classifying Serious Games, Serious
Games - Mechanisms and Effects, Chapter 2, 2009

[2] WANG H., SHEN C., R., RITTERFELD U.: Enjoyment of Digital
Games: What Makes Them Seriously Fun?, Serious Games - Mechanisms
and Effects, Chapter 3, 2009

[3] RITTERFELD U., WEBER R.: Video Games for Entertainment and
Education, Playing Video Games - Motives, Responses and Consequences,
pp. 399-413, 2006

[4] PRENSKY M.: Digital game-based learning, New York, NT: McGraw-
Hill, 2006

[5] http://www.theesa.com, 2006

[6] GEE J. P..: Good video games and good learning, New York: Peter Lang,
2007

[7] KLIMMT C..: Serious Games - Mechanisms and Effects, Chapter 16,
2009

[8] WANG H., SINGHAL: Serious Games - Mechanisms and Effects, Chap-
ter 17, 2009

[9] BABA A. S, et al: An Overview of Parameters of Game Engine, IEEE
Multidisciplinary Engineering Education Magazine Sep. 3, vol 2, NO 3,
pp. 10-12

[10] http://www.jmonkeyengine.com

[11] WARTMANN C., KAUPPI M.: the Blender Gamekit 2nd Edition, 2009

[12] http://www.blender.org

49

50 BIBLIOGRAPHY

[13] https://lg3d-wonderland.dev.java.net/

[14] http://www.secondlife.com

[15] AUTODESK: Autodesk ImageModeler, Key Features and Benefits, 2009

[16] HIROSE M.: Image-Based Virtual World Generation, IEEE Multimedia
Jan-Mar. 1997, vol 4, issue 1, pp. 27-33

[17] APPLE INC: QuickTime VR, 2005

[18] CHEN E.: QuickTime VR - An Image Based Approach to Virtual En-
vironment Navigation, International Conference on Computer Graphics
and Interactive Techniques 1995, pp. 29-38

[19] http://www.graphicall.org

[20] http://wiki.blender.org/index.php/Dev:Source/GameEngine/2.49/VideoTexture

[21] http://wiki.blender.org/index.php/Doc:Manual

[22] http://wiki.blender.org/index.php/Doc:Manual/Render/Bake

[23] http://www.blender.org/documentation/248PythonDoc/

[24] http://www.innosetup.com/isinfo.php

	Title Page
	Problem Description
	masteroppgave.pdf

