
May 2007
Jan Tro, IET

Master of Science in Communication Technology
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Musical descriptors
An assessment of psychoacoustical models in the presence of lossy
compression

Steinar Heimdal Gunderson

Problem Description

Due to the huge amount of net based searchable musical data the availability of reliable
fingerprint information – musical descriptors – in digitized music signals is essential for
recognition and identification. In order to decrease the need for data storage and transmission
capacity several dedicated data reduction methods based on psychoacoustical models
have been developed and are frequently in use.

The aim of this study is to explore and evaluate the influence of variable data reduction and
compression methods regarding reliability and robustness of musical descriptors.

Assignment given: 28. April 2007
Supervisor: Jan Tro, IET

Abstract

A simple system for recognizing music is presented, based on various musical descriptors, num-
bers that describe some aspect of the music. Various descriptors are discussed; in particular,
a novel descriptor, the floor-1 cepstral coefficient (F1CC) measure, a refinement of MFCCs
based on the Vorbis psychoacoustical model is presented and evaluated. Also, various forms of
statistical dimensionality reduction, among them PCA and LDA, are considered in the present
context. Finally, a few directions for future work are discussed.

vii

viii

Acknowledgments

First of all, I would like to thank my advisor Jan Tro, who patiently provided feedback and
guidance over the course of the entire semester. However, several other people have played
important roles: Greg Maxwell originally proposed the idea that eventually led to the develop-
ment of F1CCs, and Chris Montgomery provided helpful guidance on the internals of the Vorbis
encoder. Mette Langaas helped with various insights on statistics, in particular dimensionality
reduction. H̊avard Midtkil provided his entire music collection in FLAC format as data mate-
rial, saving countless hours of ripping labor. Finally, Rune Holm and Magne Mæhre proofread
the manuscript at various stages, providing invaluable feedback, corrections and suggestions.

ix

x

Contents

Abstract vii

Acknowledgments ix

Contents xi

1 Introduction 1

1.1 Music Information Retrieval . 1

1.2 Aim of study . 2

1.3 Structure . 2

1.4 Previous work . 2

2 Audio descriptors 5

2.1 Motivation . 5

2.2 Formal description . 5

2.3 Desired properties . 6

2.4 Distortion and noise . 7

2.5 Choice of source fragment . 9

2.6 Basic musical descriptors . 9

2.7 Human descriptors . 13

3 Mel frequency cepstral coefficients (MFCC) 15

3.1 Psychoacoustical motivation . 15

3.2 Homomorphic transforms . 16

3.3 Formal description . 16

3.4 Statistical data extraction . 18

4 Floor-1 cepstral coefficients (F1CC) 21

4.1 An overview of the Vorbis encoder . 21

4.2 Floor computation . 22

5 Methods 25

5.1 Testing model and distance metrics . 25

5.2 Data material . 28

5.3 Encoding and feature extraction . 28

5.4 Correlation and dimensionality reduction . 29

5.5 K-fold cross-validation . 31

xi

xii CONTENTS

5.6 Hypothesis testing . 31

6 Results 33
6.1 Simple descriptors only . 33
6.2 Effect of PCA/LDA on simple descriptors . 34
6.3 Comparison of MFCC and F1CC . 40
6.4 Effect of F1CC derivatives and central moments 42
6.5 Combining simple descriptors with F1CC . 44

7 Discussion 47
7.1 Overall system performance . 47
7.2 Applicability of dimensionality reduction . 48
7.3 Descriptor layering . 49

8 Conclusion 51
8.1 Conclusion . 51
8.2 Further work . 51

Bibliography 53

Index of terms 57

A Programming environment 59

B Source code 61
B.1 The GNU General Public License . 61
B.2 libvorbis license . 67
B.3 Code listings . 68

C Album list 111

Chapter 1

Introduction

1.1 Music Information Retrieval

As ever more data is produced globally, the need to find and extract useful information from it
has become increasingly apparent. The primary interest has traditionally been centered around
that of textual search, in more recent times that of the information found on the World Wide
Web (WWW).

However, while textual search has become a mature field, it is by definition limited to only
a certain part of the world’s available information. Thus, there is increased interest in extend-
ing information retrieval into non-textual areas. Music Information Retrieval (or Multimedia
Information Retrieval), often abbreviated MIR, is a field of study dedicated to search and clas-
sification in music data – frequently, its audio representation, but also in MIDI information1 or
metadata.

In MIR research, many different applications have been discussed, including:

• Genre classification, where music is automatically classified into different genres.

• Neighbor search, similar to genre classification, where similar music is grouped together.
(This can help answer questions such as “if I like song X, Y and Z, what other music
might I like?”.)

• Music identification, in which a piece of music is identified from its (possibly distorted)
audio representation. This is not only useful to automatically correct or add metadata,
but also to automatically track the use of music in radio, in shorter movie clips or as
played as part of a longer mix.

• Automated transcription, deducing note and instrument information from a monophonic
or polyphonic audio signal, possibly for further analysis.

• Various forms of musical queries from derived forms, for instance “query by humming” or
“query by beatboxing”, which attempt to locate a specific piece of music from a human
query only partially related to the original signal.

1“MIDI information” in this context means music represented as notes with given tone heights and durations,
instead of as a waveform. MIDI itself is a digital music communications protocol, standardized in 1983[36] and
today almost universally supported by electronic music equipment.

1

2 CHAPTER 1. INTRODUCTION

In this project, the primary use case is that of personal music identification. A user wants
to match songs from his/her music library (in the form of digitally compressed music files)
against a central library in order to update the files with correct metadata. To this end, a
set of descriptors (also called features) – numbers that describe some aspect of the music – is
extracted from each song, and compared against the descriptors stored in the library in order
to search for a match. High-quality descriptors are essential to the overall performance of a
music identification system – in particular, a descriptor should be robust against the distortion
arising from use of lossy compression such as MP3.

1.2 Aim of study

The aim of this paper is to explore the feature space and assess the quality of common descriptors
in a musical setting, as well as consider various forms of data refinement. In addition, a novel
descriptor, F1CC, is introduced, based on the Vorbis psychoacoustic model. F1CC better models
the auditory masking present in the human ear than existing descriptors, increasing the overall
robustness in the presence of lossy encoding.

1.3 Structure

The remaining text is intended to be read in order, and is structured as follows:

• In chapter 2, the use of descriptors is further motivated, and a formal notation is laid
down. Also, a few simple descriptors are described.

• In chapter 3, mel frequency cepstral coefficients (MFCCs), a common spectral measure
tuned towards imitating the human auditory system, is introduced. In chapter 4, floor-1
cepstral coefficients (F1CCs), a novel refinement of MFCCs based on the Vorbis psychoa-
coustical model, is introduced.

• In chapter 5, a simple test scenario is described, and descriptor assessment is discussed. In
chapter 6, results from various tests comparing different sets of descriptors are presented.

• Finally, in chapter 7 the results from chapter 6 are discussed, followed by more general
considerations regarding descriptor use and processing. Finally, in chapter 8, results are
summarized, and some ideas for further work are outlined.

1.4 Previous work

Several MIR systems capable of music recognition already exist – however, the performance
varies somewhat, and most are commercial systems with little or no published documentation.
However, there are open and semi-open systems available, as well as some systems that are
partially documented through papers or presentations.

One of the oldest and most widely used music recognition systems is Relatable’s TRM (short
for TRM Recognizes Music)[33], in particular due to its use in the MusicBrainz open content
music encyclopedia. TRM has been criticized for being too simplistic[34], with problems of colli-
sions (two or more distinct tracks being regarded as equal by the algorithm), eventually leading

1.4. PREVIOUS WORK 3

to MusicBrainz migrating towards MusicIP’s PUID/OFA[31] (Open Fingerprint Architecture)
system instead. Yet, TRM delivers relatively good results for a rather simple system.

Several other systems exist, both open and closed, for various different use cases. A par-
ticularly interesting system, Shazam[42], is designed to be highly robust, in that it is capable
of recognizing a track from 20 seconds of audio over the telephone, even with severe distortion
(such as high levels of ambient noise), by analyzing spectral peaks over time. A similar sys-
tem, dubbed MusicID, has recently been licensed by Sony Ericsson, and is as of 2007 being
introduced in current-generation consumer music mobile phones.

Finally, Tuneprint should be mentioned – even though the company behind the system
no longer exists, it was relatively recently documented in a research paper.[35] Many of the
ideas employed in the design of Tuneprint were new for its time, and it did show that music
recognition by audio fingerprinting was indeed possible on a larger scale.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Audio descriptors

2.1 Motivation

Just as with other kinds of information (such as text), there is a growing need for catego-
rization, recognition and searching in audio, in particular music (a field often denoted Music
Information Retrieval, or MIR). A typical three-minute song, however, contains a large amount
of information (about eight million samples, or in excess of 30MB in the industry-standard
44.1kHz 16-bit PCM format used in audio CDs), making it impractical to even transfer or store
it uncompressed, much less perform searches in a large music catalog.

Even discounting storage and processing problems, there is a large amount of redundancy in
the unprocessed data, which is undesirable in many classes of learning and searching algorithms.
Thus, even accounting for ever-increasing storage and processing power, there is a need for a
more compact representation than what is used for regular audio playback.

An audio descriptor, or sometimes, an “audio fingerprint”, is a reduced-dimensionality ver-
sion of an audio signal – in essence, a set of numbers describing some aspect of the audio in
question. Most (but not all) audio descriptors are designed to extract useful information from
the audio as heard by a human listener, not the specific bits and bytes in a given signal.

Even the best descriptor is not very useful on its own – it is merely a convenient representa-
tion for storage, searching and comparing against other descriptors. In every MIR system, some
sort of processing of the finished descriptors is required after the extraction stage, and as with
descriptors, systems with various levels of sophistication have been proposed. A simple back-
end system, primarily designed to compare the qualities of various descriptor configurations, is
described in chapter 5.

2.2 Formal description

Formally, an audio descriptor is an N -dimensional vector generated from an input vector (con-
sisting of the original audio waveform) of length M , where usually N ≪ M . (M need not
be constant, but usually is, and will in general be treated as such in the rest of the text.)
Mathematically:

~y = f(~x)

where f : RM → RN is the descriptor function. Often, the notion of an input sequence
{xi}M−1

0 will be used in place of a vector; the two notations are equivalent and will be used
interchangeably.

5

6 CHAPTER 2. AUDIO DESCRIPTORS

2.3 Desired properties

The parameters of design for a good audio descriptor1 depend on the application in question.
In this text, the discussed use-case is that of music recognition: A complete song (or at the
very least, the beginning of it) is available in digital format, and the user wants to search for
the song in some sort of musical library. Notably, this use case implies that the tracks in the
reference library and the track to be searched for are approximately aligned in time, and as
such, one does not need to consider extreme time shift.

The actual methods used to extract the descriptors from the audio data vary widely. De-
scriptors can be time-based (ie., work directly on the waveform representation), spectrally based
(ie., work on a frequency representation) or a combination. (Also, there are approaches, such
as wavelet-based analysis, that do not fit well into either category.) From section 2.6 onwards,
descriptors from each category will be presented, and as will be seen, they differ significantly in
both basic workings, complexity, robustness and performance.

However, almost all audio descriptors share the property that they should somehow be well-
correlated to human hearing – in other words, pieces that are perceived as musically “the same”
should have audio descriptors that are close2, while distinct pieces should be spaced relatively
far apart.3 In some applications, such as neighbor search, it is also desired that distinct pieces
of the same artist or in the same genre are closer to each other than to other pieces.

2.3.1 Dimensionality

N , the dimensionality of the descriptor, can be as low as 1 (making it a scalar descriptor), but
usually, it will be higher. As the dimensionality increases, the volume of the descriptor (hyper-
)space increases, ideally increasing the distance between different music pieces’ descriptor points.
However, adding more dimensions will not help if there is significant correlation between the
vector elements – the end effect will be more data without much increase in distance.

However, there is a much worse problem than data bloat – adding more dimensions also
involves larger potential for noise, and many classification algorithms will perform progressively
worse as the amount of training data gets smaller compared to the number of dimensions.4

This problem, which is commonly known as the curse of dimensionality (a term originally
coined in [3]), motivates the desire to reduce the number of dimensions. Thus, when designing
a descriptor, one should aim for a “sweet spot” in the number of elements.

It should be mentioned that both increasing and reducing the number of dimensions in a
descriptor is possible, with certain restrictions. For instance, concatenating two or more smaller
descriptors will yield a higher-dimensional combined descriptor – however, if the descriptors are
not sufficiently independent, the gain will not be very large, as described above. The opposite
procedure, dimensionality reduction, will be discussed in chapter 5.

1For brevity, one often speaks about the descriptor (which is just an output vector) as if it were to be designed,
when more precisely, it the fingerprinting method is what is being discussed.

2The usage of the word “close” implies that some sort of distance measure is available to compare features.
Chapter 5 contains a brief discussion on the topic of descriptor distance measures.

3It could be argued that it is not always obvious what is the “same” piece of music – for instance, is the same
sonata played twice by the same piano player the same? What about by a different piano player? Edge-cases
like this will mostly be ignored here.

4Just how much is difficult to quantify as long as the back-end algorithms have not been specified, nor the
precise amount of training data available – however, a practical music matching system might have only a single
reference point available.

2.4. DISTORTION AND NOISE 7

2.3.2 Intellectual property issues

Ideally, one would want to design a system entirely on its own merits. However, in most
legislations one would have to at least partially consider so-called intellectual property issues –
that is, copyright and patent issues.

With regard to copyright issues, it is beneficial if the descriptor is destructive. A descriptor
is destructive if it is not reasonably possible to reconstruct the original audio data from the
descriptor. If destructive, the extracted data does not become subject to the copyright that
governed the original audio, and can be transferred freely without worrying about copyright
issues, in particular to a central server. Most practical descriptors, and all presented here, are
destructive.

No particular patent search has been performed for this project, partially because it was
deemed to be outside the project’s scope, and partially because the current situation regarding
software patents is somewhat unclear. However, it is believed that the work as described does
not infringe on any patents, with the notable exception that MP3 encoding and decoding is
claimed to be patented by several different entities, among them the Fraunhofer institute and
Thomson Consumer Electronics.[38]

2.4 Distortion and noise

The human auditory system is capable of recognizing music even in the presence of severe dis-
tortion – even in the presence of highly perceptible distortion (such as the distortion imposed
by a standard telephone line), the recognition rate is usually quite high. Thus, one will fre-
quently encounter distorted audio (whether the distortion is perceptible or non-perceptible for
the listener) in real-life data, and robustness becomes an important parameter in the design
of a musical descriptor. In the following sections, a few common forms of distortion will be
discussed.

2.4.1 Time shift

Time shifting is usually imperceptible, within certain limits. Although it could be argued that
it should not be considered to be distortion at all, it could still create problems for some classes
of descriptors. Time shifting occurs in practice even for content digitally ripped from CD –
not only because of various slightly different variations between the same track on different
CD publications, but also because of codec delay. In particular, MP3 encoding and decoding
commonly results in over a thousand samples (25ms at 44.1kHz) of delay[24], depending on
various factors. Thus, one must either somehow re-align the musical piece in question, or use
descriptors that are robust against a reasonable amount of time shifting.

2.4.2 Amplitude changes

In general, the playback volume can be turned up and down (within limits) without noticeable
distortion – a musical piece is not perceived as much different or distorted simply because the
amplitude has changed. In the presence of compression5 , as frequently used on radio, the change

5The term “compression” for dynamic range limiting is somewhat unfortunate, as it is easily confused with
digital compression algorithms such as MP3 or Ogg Vorbis. In general, “compression” will be used only to refer
to lossy, digital compression from the next section onwards.

8 CHAPTER 2. AUDIO DESCRIPTORS

of amplitude could even change within very short time spans.

Even disregarding compression and assuming all-digital transfer (e.g. in a personal music
library), one must be prepared for some change of the overall amplitude – in particular, MP3
requires an overall downscaling of the volume at some bit rates to avoid clipping in the decoded
output. Fortunately, volume normalization is a relatively simple process, at least assuming
uniform volume over a given time frame.

2.4.3 Lossy compression

Musical content is frequently encountered in digitally compressed form, processed to save storage
space and bandwidth. A lossy codec will usually attempt to maintain perceptual transparency
(or at least, avoid annoying artifacts), often at the cost of more distortion as measured under
mathematical similarity measures.[8] (There are, however, a few examples of codecs taking
special measures to ensure some aspects of mathematical transparency – in particular, voice
codecs being designed to allow low-bitrate modem traffic to pass through.[15])

A typical lossy encoding/decoding cycle will introduce various forms of signal distortion –
not only time shifting or amplitude changes as described above, but also frequently filtering,
loss of stereo fidelity and various forms of quantization noise. Many of these effects are highly
nonlinear in nature, and somewhat difficult to predict mathematically. Thus, experimental
results are needed when assessing a descriptor’s quality in the face of lossy compression.

Is it impossible to test each and every lossy codec, especially given the amount of bit rates
and other tuning options frequently available. Thus, only two codecs were used, chosen as being
relatively representative of typical use:

• First, the ubiquitous MPEG-1 audio layer III codec, more commonly known as MP3.
MP3, standardized as early as 1991, is without doubt the most widely used audio codec for
personal use as of 2007, and for many, synonymous with music on the desktop. Although
several MP3 decoders are available, LAME, a freely available, high-quality encoder, was
chosen, in the typical bit rate configurations of 128, 192 and 256 kbit/sec.

• Second, the Vorbis codec (sometimes Ogg Vorbis, as technically, Ogg is the bitstream
format and Vorbis is the audio codec), designed by a volunteer developer team led by
Chris Montgomery in 1998 after concerns over the licensing of MP3. Vorbis is specifically
designed to be freely licensable without patent concerns, and although the claim that
Vorbis is not covered by any patents has been contested[1], no company has yet claimed
any ownership over Vorbis.

In this project, Vorbis was chosen as representative of the ever-growing field of “next-
generation” audio codecs, having shown itself competitive in audio quality in several
independent listening tests.[28, 27, 11] The bit rates were set to 64, 128 and 192 kbit/sec6

– although it is still disputed whether any of the “next-generation” audio codecs can
produce audio at 64 kbit/sec rivaling a good MP3 encoder at 128 kbit/sec, data at this
bit rate would serve as a “low anchor”, as it is unlikely that most people would store music
in a lower bit rate.

6As Vorbis is a true VBR codec, these are nominal bit rates – the encoder parameters are set to produce bit
streams that on average are close to the nominal bit rates, but there is no attempt to force the stream under a
given target. Thus, the actual bit rate will vary with the audio content.

2.5. CHOICE OF SOURCE FRAGMENT 9

2.5 Choice of source fragment

Before discussing actual descriptors, one will need to decide what part of the input track to use.
In the given use case, there are three basic strategies:

• One could use the entire track. This will ensure no data is missed, but requires decoding
of the entire track (which might not always even be available) for proper classification. As
decoding is often among the most computationally intensive parts of the process, increas-
ing the amount of data needed might be undesirable. Still, it is a very viable strategy,
and it opens up the possibility for variable-length descriptors (having, for instance, one
descriptor set per 250ms of audio) for easier partial matching – see section 3.4 for a brief
discussion on this topic.

• One could use only the first N seconds of each track, where N usually varies from 5 to 120.
(If a track is shorter than N seconds, it is usually padded with zeros.) When decoding and
processing of only a fraction of each track is needed, overall processing overhead is reduced.
Furthermore, all fingerprints will be based on the same amount of data, simplifying some
calculations and considerations.

• In [5] and others, thumbnailing algorithms are described, designed to extract the “most
representative” N seconds of a song (or more generally, N seconds that represent the
song well – the thumbnail does not need to consist of a single N -second cut from the
original track); these could be used as a high-quality, fixed-length input to the descriptor
algorithm. However, computing a thumbnail requires decoding of the entire track, and
it is in general not known how robust thumbnail selection is under lossy compression or
other forms of distortion.

Both the first and second options have been used in existing fingerprinting systems; the
author knows of no fingerprinting systems using musical thumbnails. In this project, a fixed
30-second clip from the beginning of each track was used as a performance/complexity trade-off;
in general, 30 seconds should be more than enough to both identify a track for a human, and
collect enough data for statistical measures to stabilize.7

2.6 Basic musical descriptors

In this section, a few basic, scalar musical descriptors will be introduced – although by no means
a complete list, the descriptors provided will serve as simple examples of what could constitute a
descriptor. Being simple mathematical formulas, they work mostly in the time domain, without
much psychoacoustical or musical justification. Nevertheless, they should not be immediately
discounted as “primitive” – as will be evident in chapter 6, many of them perform quite well in
the given test scenario, and can play a useful part in a larger system.

In the present implementation, a certain amount of preprocessing was done prior to the
descriptor calculations. Although many of the given descriptors could work equally well without
preprocessing, some would not, and it was regarded more sensible to let all descriptors work on
the same sound signal. The assumptions made were:

7This choice also allowed the zero crossing rates to be replaced with simple zero crossing counts, the difference
between the two measures only being a constant factor.

10 CHAPTER 2. AUDIO DESCRIPTORS

• The signal was assumed to be monoaural (consisting of only one sound channel). While
there certainly is much fidelity in a stereo signal not present in a mono signal, the loss
of stereo information usually will not affect recognition for a human listener at all. Also,
under lossy compression, large amounts of stereo information is typically distorted or even
completely sacrificed[9], making descriptors based on stereo information less useful in the
presence of digital compression.

All stereo signals were down-converted to mono signals by averaging the value of the two
channels sample by sample; although a linear formula might be regarded as less than
ideal with regard to perceived signal power[19], it is by far the most used approach for
stereo-to-mono down-conversion.

• The signal was assumed to have zero DC offset. Change in the DC offset, the average
of the signal, does not influence hearing at all, and is computationally simple to remove.
Testing did not show much DC offset in practical recordings, but it was nevertheless
preprocessed out.

• The signal was assumed to be energy normalized – in other words, all tracks were assumed
to contain the same amount of total energy. (This was realized simply by measuring the
original total energy, and scaling the entire signal by a factor to correct the energy level
if wrong.)

• The signal was assumed to have a constant sampling frequency of 44.1kHz, matching that
of an audio CD.

2.6.1 Mean/square ratio

The mean/square ratio is a simple time-domain scalar descriptor. It measures the normalized
average distance from zero, and is calculated as:8

r =
avg(|x|)
RMS

=

P

|xi|
N

√

P

xi
2

N

=

∑ |xi|
√

N
∑

xi
2

Note that due to the normalization discussed in the previous step, the RMS is constant or
near-constant. However, the normalization factor will still influence the nominator less than
the denominator (due to the squaring in the denominator), so the mean/square ratio is not
scale-invariant.

2.6.2 Rate of zero crossings

The rate of zero crossings is simply how many times a signal goes from being positive to
negative, or vice versa, divided by the total number of samples. It is simultaneously a measure
of frequency and noise.

8Note that the limits of the summations have been dropped for brevity; when not written, the summation is
generally taken to be over the entire sequence – that is, i ranges from 0 to N − 1, inclusive.

2.6. BASIC MUSICAL DESCRIPTORS 11

A
m

p
lit

u
d

e

Time

Signal
Guard band

Zero crossings (regular)
Zero crossings (Schmitt triggering)

Figure 2.1: A signal with zero crossings marked, both using the normal zero crossing rate as
described in section 2.6.2, and using Schmitt triggering as described in section 2.6.3.

It is possible to express the zero-crossing rate in closed form (assuming that no samples are
exactly zero), although the resulting expression is not very instructive:

r = −

N−1
∑

i=1

(

xixi−1

|xixi−1|
− 1
)

2(N − 1)

The zero-crossing rate is scale-invariant, but easily skewed by only a moderate amount of
noise (in particular high-frequency noise). It can also be skewed by DC offset.

2.6.3 Schmitt triggering

Schmitt triggering (after Otto H. Schmitt) is an incremental improvement on counting the zero
crossings. A guard band −G < x < G is defined, wherein any samples that fall inside the
guard band are ignored (also known as hysteresis). This improves noise resilience, especially in
the quieter areas of a recording, as a zero crossing is not counted until the signal has crossed
the entire guard band. Depending on the choice of G, Schmitt triggering can also be used for
primitive tempo estimation.

Figure 2.1 illustrates the difference between the simple zero crossing count and Schmitt
triggering – note how the sensitivity to small changes near origin is reduced when Schmitt
triggering is employed.

12 CHAPTER 2. AUDIO DESCRIPTORS

2.6.4 Steepness

Steepness is, intuitively, a measure of the rate of change in the signal. It is the mean value of
the numerical derivative of the signal:

s =
1

N − 1

N−1
∑

i=1

|xi − xi−1|

The steepness is, like, the zero crossing rate, a measure of frequency, but it is less influenced
by noise, in that small amounts of noise will only increase the steepness marginally.

2.6.5 Track length

The track length is simply the length of the source track in seconds (or samples; the end effect
will be the same, but seconds is usually regarded as a more natural measure). The usefulness of
the track length as a descriptor is highly dependent on the use case in question: In discerning
different tracks from CD, it can be an excellent measure, in genre classification, it is nearly
useless9, and finally, in some cases (such as when identifying what music is being played on the
radio at a given instant), it might not be available at all.

It should be mentioned that in the case of lossy compression, finding track length may
require decoding the entire track, or at least a partial decoding – not all audio file formats store
the track length explicitly in the file. Care must be taken in the decoding implementation if one
wishes to avoid a computationally intensive full decode, negating some of the benefits of using
only the first N seconds of the track. (In particular, there is no officially standardized way of
storing the track length in MP3, and not all MP3 decoders support scanning through the file to
determine the track length without a full decode and PCM synthesis.) However, it is extremely
robust to lossy compression; even though not all codecs preserve the length to the sample (some
round up to the nearest block, and some introduce extra delay, as discussed earlier), the change
will usually be small even at very low bit rates.

2.6.6 Centroid

The centroid is the first spectral measure introduced. First, the entire sequence is transformed
from the time domain into the frequency domain by means of the discrete Fourier transform
(DFT)[32]:

Xk =
M−1
∑

n=0

xne−
2πi

M
kn; k = 0, . . . , N − 1 (2.1)

The centroid (center of mass) of the spectrum is then found by calculating

fc =

M−1
∑

k=0

fk|Xk|
|Xk|

where fk is the center frequency of bin k.

9One could imagine that some genres could be estimated by length – for instance, if a track is 30 minutes
long, it is much more likely to be a classical symphony than a pop track.

2.7. HUMAN DESCRIPTORS 13

Taking the DFT of the entire sequence might seem excessive, but in practice it is not a
problem – by computing the DFT by means of an efficient Fast Fourier Transform (FFT), the
FFTW[12] library computes a 1,323,000-point DFT (30 seconds of 44.1kHz audio) in about
150-200ms on a modern 1.2GHz computer.

The centroid is relatively insensitive to white noise – however, it is easily skewed by filtering,
and it is not a very good measure of transients in general.

2.7 Human descriptors

Not much is known about the exact methods used by the human auditory system to recognize
music, but several intuitive measures exist for describing music, and it is reasonable to assume
that these measures also play a role in recognition. Among these are measures like tempo (and
more detailed, rhythm), the genre, the instruments used, the lyrics (if any) and characteristic
melody lines (so-called melodic contour).

Many of the more elusive descriptors of this class are those dealing with timbre – that is,
the “feel” of the sound not described by pitch or amplitude (or, as it has been described, “the
psychoacoustician’s multidimensional wastebasket category”[29]). In particular, timbre is what
makes it possible to distinguish different instruments from each other, but a skilled musician
can produce various different timbres from the same instrument. Timbre encompasses measures
such as coloration, roughness, attack time and many others, mostly subjective measures that
can be hard to quantify mathematically.

The measures used by humans are usually considerably more high-level than the current state
of the art in signal processing – even the seemingly simple task of finding the precise position
of beats and thus the tempo is surprisingly complex[23]. Nevertheless, systems inspired by such
measures, such as query-by-humming systems[13, 22], complete transcription systems[21] and
even systems capable of discerning the style of different concert pianists[44] have been proposed.

Yet, there are many applications where such descriptors would be useful – in particular,
when a descriptor is assigned a textual description that a human can relate to, it is possible
for the user to manually modify the searching criteria in, for instance, a neighbor search. A
typical query might be phrased “something like song X, but with more percussion, and with a
female singer”, depending on the user’s wishes and/or needs. In the Music Genome Project [43],
experienced human analysts have rated a relatively large corpus of music manually, using 150-
400 descriptors such as “Acid Jazz Roots”, “Prominent Mandolin Part” or “Tight Kick Sound”
on a one-to-five-scale. While this allows for much flexibility, it is also very intensive in manual
labor.

Due to the complexity inherent in implementing this class of descriptors well, they have
been left out in this project. Nevertheless, much of the post-processing and searching in a
MIR system is believed to be applicable to these descriptors in the same way as the lower- and
medium-level descriptors discussed presently.

14 CHAPTER 2. AUDIO DESCRIPTORS

Chapter 3

Mel frequency cepstral coefficients
(MFCC)

In this chapter, mel frequency cepstral coefficients (abbreviated MFCCs) will be introduced and
discussed. MFCCs have been used and researched extensively in various acoustical applications
– they are probably best known from speech recognition systems (where they have long enjoyed
widespread use), but are now also finding increased use in musical descriptor systems.

3.1 Psychoacoustical motivation

MFCC is a spectral measure, attempting to mimic certain key aspects of the human auditory
system. The basis of MFCC is the mel scale (from the word “melody”), a perceptual frequently
scale designed to approximate the human experience of pitch heights at constant loudness, as
compared to the usual unit of 1 Hz, which is a strictly physical measure.

The conversion from the regular frequency scale into mel scale is expressed as

B(x) = 1127 ln(1 +
x

700
)

where x is measured in Hertz and the result is in mel. The inverse transform (from mel to
Hertz) thus becomes

B−1(x) = 700(e
x

1127 − 1).

In MFCC, closely related frequencies are grouped into triangular spectral bands, placed
linearly across the mel scale (see figure 3.1). The spectral bands are inspired by the critical
bands in the human inner ear, which play a central role in the ability or inability to distinguish
two simultaneous tones from each other.

However, pitch is not the only measure that is perceived roughly logarithmically; sound
energy is also perceived logarithmically, and thus frequently measured in decibels (dB).1 Thus,
what is used in further calculations is not the total energy per band, but rather the logarithm of
the energy per band. (To avoid problems with floating-point underflow, a small “fudge factor”
was added before the logarithm, to ensure that a filter output of zero or nearly zero would not
adversely affect the entire descriptor.)

1The notion of logarithmic scale in this context must be understood as an approximate measure. In reality,
the human notions of both pitch and loudness are complex and interrelated – however, the logarithmic scale is
usually a good approximation.

15

16 CHAPTER 3. MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

F
ilt

e
r

re
s
p

o
n

s
e

Frequency

Figure 3.1: Frequency response for a few MFCC filters. For easier viewing, only the last few
filters are shown – the full filter bank covers the entire spectrum, unlike in this figure.

3.2 Homomorphic transforms

A homomorphic transform H : Cn → Cn is a transform that satisfies

H{f ⋆ g} = H{f} + H{g}

where f ⋆ g is the convolution of the sequences f and g.
Homomorphic transforms are interesting for several reasons – in the context presently dis-

cussed, the most interesting interpretation is viewing f as the original sound data and g as the
impulse response of a filter. Here, “filter” covers not only the usual class of low-pass, high-pass,
band-pass etc. filters, but also other effects as reverb, which are usually possible to describe in
terms of a convolution. Thus, any filtering will only each affect each frame by adding a constant
vector (depending on the filter in question), and thus will be canceled out under for instance
differentiation. The use of this effect will be discussed further in section 3.4.

3.3 Formal description

As there are several, slightly different variations of MFCC calculation, a brief description on
the precise method used in this project is given here. The method is largely based on [20].

First, the input data is broken into chunks of 1024 samples each, or about 25ms. The chunks
overlap by 50%, which means that the beginning of successive chunks are 512 samples apart.
First, the input chunk is windowed using a Hamming window of length N = 1024, that is,

3.3. FORMAL DESCRIPTION 17

x′
n = xnwn; n = 0, . . . , N − 1

where wn is the Hamming window, defined as

wn = 0.54 − 0.46 cos(
2πn

N − 1
).

It should be mentioned that with this choice of window and overlap, so-called perfect overlap
is realized, in that the overlapping windows sum to unity, and thus every sample is given the
same weight.[37]

After windowing, the DFT (equation 2.1) of the signal is calculated, again using the FFTW
library as in section 2.6.6. A filter bank with M = 32 overlapping, triangular filters is then
applied, where each filter Hm (with index m = 1, . . . ,M) is defined by:

Hm
k =

0 ; k < fm−1
k−fm−1

fm−fm−1
; fm−1 ≤ k ≤ fm

fm+1−k

fm+1−fm
; fm ≤ k ≤ fm+1

0 ; k > fm+1

(3.1)

The center frequencies2 of the filters, fm, are placed linearly on the mel scale:

fm = B−1(m
B(Fs/2)

M + 1
),

which makes the filter bank span the entire available spectrum, from 0 to Fs/2 = 22050 Hz.

From each filter, the logarithm of the output energy of the filter is then computed:

Sm = ln

(

N−1
∑

k=0

|X ′
k|2Hm+1

k

)

;m = 0, . . . ,M − 1 (3.2)

Finally, the resulting vector is transformed using the discrete cosine transform (DCT), more
precisely, the DCT-II[2]:

cn =

M−1
∑

m=0

Sm cos

(

πn(m − 1
2
)

M

)

; 0 ≤ n < M

Analogously with the DFT, the DCT is computed efficiently in form of a fast cosine trans-
form (FCT)[26], again using the FFTW library.

The sequence cn contains the final set of MFCC coefficients. It should be noted that MFCC
as described is not a homomorphic transform (it would be if the order of the logarithm and
summation in equation 3.2 were reversed) – however, it is approximately homomorphic for
filters with a smooth transfer function, and the given form is somewhat more robust to noise
and estimation errors.[20]

2In this description, f is taken to be a frequency; however, for a practical filter implementation, it must be
converted to a bin number before use. In particular, equation 3.1 assumes that this conversion has already taken
place, or that k is the center frequency of the bin instead of a bin number.

18 CHAPTER 3. MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)

3.4 Statistical data extraction

Even though the MFCC procedure yields a significant data reduction, the amount of data is
still considerable – in the present case, 32 values for each frame, which equates to about 80000
values (about 2500x32) for the chosen 30-second window. How to further process this set of
values is an open question, and several measures have been proposed.

One of the most tempting solutions is to simply keep all the values, either in full form or
in some quantized version. It could be argued that this is simply postponing the problem to
the searching stage – however, few other approaches preserve the multiple layers of temporal
information present in most music as well. On the other hand, the fingerprint gets large,
and somewhat complex searching algorithms are needed to search this data. Most systems
employing this solution use either larger windows than the 1024-sample windows used here[14],
vector quantization[34], dimensionality reduction[35] or other measures of reducing the total
amount of data somewhat while keeping most of the temporal information intact.

The alternative to keeping all the data usually involves some form of statistical data extrac-
tion. Various statistical tools have been employed to this end, from the simple computation
of averages to the slightly exotic suggestion of using the partial output of a singular value de-
composition (SVD)[31]. For this project, a relatively simple method was chosen. As primary
measure, the mean (or first zero moment) was estimated from the data for each coefficient m:

µ̂m =
1

N

N−1
∑

i=0

cm,i

Also, the first central moments were extracted – in particular, the second central moment
(variance), but also the third and fourth moments (which in turn can be used to define skewness
and kurtosis). The expression for the dth central moment of the mth MFCC coefficient is:

Cd
m =

1

N − 1

N−1
∑

i=0

(cm,i − µ̂m)d

In order to prevent the final descriptors from becoming unreasonable large, the dth root was
extracted from this expression, yielding finally:

C ′d
m = d

√

√

√

√

1

N − 1

N−1
∑

i=0

(cm,i − µ̂m)d

Notably, due to this extraction, a scaling of the input signal would transfer directly to the
output descriptors – in other words, the scale sensitiveness of the measure is reduced (or rather,
linearized) by the root extraction.

When extracting statistical moments, one discards all temporal information – information
that is, as mentioned above, often important to recognition. There are multiple ways of alle-
viating this. One method is using Hidden Markov Models (HMMs), modeling the signal as a
finite state machine where each state has an associated probability distribution and transition
probabilities to other states. HMMs have been found to be better than regular Gaussian models
(such as the one presented here) for spectral modeling, but unfortunately, this does not nec-
essarily translate into better accuracy[6] – also, estimation (and in part, comparison) of these
models is a rather complex task. Another approach would be using multi-scale approaches such

3.4. STATISTICAL DATA EXTRACTION 19

as wavelets, which might be well-suited to the multiple layers of temporal structure present in
music – however, it is not readily apparent exactly how wavelets would be used to extract useful
information from the MFCC data.

A third and much simpler option is simply using the derivatives of the MFCC coefficients:

∆cm,i = |cm,i+1 − cm,i|

The derivatives are treated in the same way as the regular coefficients – the mean and first
central moments are extracted for each m, and the results are stored and used as part of the
final descriptor. (The absolute value is taken to avoid getting a mean value that is almost always
very close to zero.) While the use of derivatives still involves discarding long-term temporal
information, it does help retain short-term transient information, and is commonly used in
among others speech recognition systems, sometimes in conjunction with double derivatives.[20]
In this project, this was the favored approach, primarily for its simplicity and low processing
overhead.

20 CHAPTER 3. MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)

Chapter 4

Floor-1 cepstral coefficients (F1CC)

While MFCC works reasonably well for modeling the inner ear, its use as a musical descrip-
tor in the presence of lossy compression could be improved on. In particular, modern sound
compression systems rely on auditory masking to single out parts of the spectrum that can be
compressed more aggressively (or removed altogether) without affecting the perceived result –
energy in one part of the spectrum can make the ear relatively insensitive to energy in other,
nearby parts of the spectrum (following certain rules and curves), and this phenomenon makes
more efficient audio coding possible, as less detail needs to be preserved in masked areas of the
spectrum. However, these spectral differences between the compressed and uncompressed audio,
while imperceptible (or only weakly perceptible) to the human ear, still introduce undesirable
noise in the MFCC coefficients. Thus, it it would be desirable to refine the MFCC model to
make it more robust towards these kinds of artifacts.

In this chapter, a novel MFCC refinement based on the Vorbis psychoacoustical model is
presented. By reusing an internal representation of the Vorbis encoder, tone-tone masking that
occurs when a louder tone can “hide” another weaker nearby tone perceptually is taken into
account.1 As the input to the MFCC calculations is based on masking strength at different
frequencies, a reasonable name would be mask-frequency MFCC ; however, the resulting nat-
ural acronym, MFMFCC, was deemed too cumbersome. Instead, the name floor-1 cepstral
coefficients (F1CC) was chosen, after the Vorbis representation from which it is derived.

4.1 An overview of the Vorbis encoder

In the following, only a rough overview of the Vorbis encoder and format will be given. A formal
description of the Vorbis audio format can be found in [10], and [39] contains a description of
the psychoacoustical model used in the encoder.

Vorbis encoding is a three-stage process. First, the audio is split into overlapping frames
which are then processed separately. For each frame, the encoder computes a floor. The floor
is a measure of approximate discrimination threshold as estimated by the encoder – that is, a
measure of how much noise would be imperceptible in a given frequency area, given the rest
of the audio spectrum. The floor is quantized, stored and then subtracted from the input

1The resulting model is not linked to the Vorbis codec; the reuse of the Vorbis code is primarily to ease
the prototyping of the system. By using a known-working model and code, much tedious and error-prone
reimplementation (in particular with regard to tone curve measurements) is avoided.

21

22 CHAPTER 4. FLOOR-1 CEPSTRAL COEFFICIENTS (F1CC)

-120

-100

-80

-60

-40

-20

 0

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
m

p
lit

u
d

e
 (

d
B

)

Frequency (mel)

2000 Hz tone
2000 Hz tone, masking threshold

3000 Hz tone, -6 dB
3000 Hz tone, masking threshold

Figure 4.1: A tone being masked off by a 6 dB louder tone in the F1CC model. Note that the
maskee is almost completely hidden, as the union of the masking curves is what is used as input
to the F1CC calculations.

signal (resulting in a whitening of the spectrum), and the resulting residue is encoded using a
codebook-based vector quantization algorithm.

The primary point of interest in this context is the floor computation – the residual encoding
will not be described further here, nor will other practical aspects of the codec be discussed.
Again, the reader is referred to [10] for a full description.

4.2 Floor computation

The floor2 is computed by combining two separate curves. The first, the noise masking curve,
is somewhat misnamed, as it models many effects besides just noise masking. In particular, it is
constructed from estimates of tonality, overall noise envelope and a hard-wired bias curve.[39]
Many of these values are not expected to be very well preserved by lossy encoding[30], and thus,
the noise masking curve will not be discussed further here.

The tone masking curve, however, is of more use. For each tone (ie. frequency band), a
tonal masking curve is looked up from a table. (The tonal masking curves were independently
measured for Vorbis, citing quality concerns with the “standard”, classic set of curves originally
measured by Ehmer[4].) The superposition, or union, of these curves is then used as a combined

2Technically, Vorbis can accommodate multiple different types of floors. However, only two floors are defined
in the Vorbis I specification, of which one, floor 0, is not in general use, and floor 1 is what is described here.

4.2. FLOOR COMPUTATION 23

-120

-100

-80

-60

-40

-20

 0

 0 500 1000 1500 2000 2500 3000 3500 4000

A
m

p
lit

u
d

e
 (

d
B

)

Frequency (mel)

Audio data, original
Noise floor, original

Noise floor, 128kbps Vorbis
Noise floor, 64kbps Vorbis

Figure 4.2: A 1024-sample frame of music, with noise floors for both the original audio and two
Vorbis-encoded versions – note in particular the divergence between the encoded versions over
about 3200 mel. Audio data from “The tale of Room 420” by Ehren Starks.

tonal masking curve, which is finally combined with an ATH (Absolute Threshold of Hearing)
curve to produce the final tone masking curve.

Two points are worth noting:

• First, the tone masking curve does not represent audio energy; in particular, it has no
phase information. However, it is definitely correlated with the audio energy, and in
particular, a tone that is masked by another tone will not affect the tone masking curve
at all. (See figure 4.1 for an example.) Thus, it makes sense to treat the curve as if it were
colored noise; it will share many spectral characteristics with the original audio spectrum,
and the MFCC process in particular does not use the phase information.

• Second, it is not possible to know the exact ATH curve at encoding time, as the actual
sound volume is not known before at playback time. (This could even change mid-piece, as
the listener turns the volume up and down.) Thus, the Vorbis encoder makes a pessimistic
estimate based on the maximum peak in the spectrum for each frame – as the loudest
peak can not be higher than about 100 dB SPL, the most pessimistic ATH curve can be
applied at 100 dB below that. However, the ATH curve will then vary between frames,
based on the highest peak, which is not desirable for an audio descriptor. Thus, the ATH
logic was disabled when used in F1CC computation.

After the tone masking curve has been computed, it is treated as an audio spectrum as

24 CHAPTER 4. FLOOR-1 CEPSTRAL COEFFICIENTS (F1CC)

described above, and input to a modified version of the original MFCC process described in
chapter 3. The modifications are minor, but should still be mentioned:

• First, as the tone masking algorithm never emits a value that is exactly zero (even for an
all-zero input spectrum), there is no need for the “fudge factor” described earlier, and it
was consequently dropped.

• Second, the tone masking curves were found to not be very precise over about 3200 mel
(about 11 kHz), being significantly distorted by lossy encoding. Thus, the triangular
windows were re-aligned so that the highest frequency used was 3200 mel, reducing the
overall amount of noise entering the system.

It should be mentioned that the tone masking curve generation is relatively compute-
intensive – in general, extracting F1CC coefficients was about twice as slow as extracting MFCC
coefficients. However, the increase in computational complexity would seem to be worth it in
most cases, as F1CC indeed appears to be more robust to lossy encoding than MFCC (see
section 6.3 for detailed results).

Chapter 5

Methods

5.1 Testing model and distance metrics

When assessing the quality of descriptors, a test model is required in which to test the various
descriptors (and combinations thereof) against each other. For this project, a relatively simple
classification or matching test was used:

• First, all tracks were distorted, by lossy compression in the formats and bit rates discussed
in section 2.4.3: 128, 192 and 256 kbit/sec for MP3, and 64, 128 and 192 kbit/sec for
Vorbis.

• Then, for each track, its feature vector was compared to the feature vectors of all reference
tracks (the original, unencoded tracks).

• If the closest match was the correct reference, a “success” would be noted; in the opposite
case, a “failure”.

Intuitively, the classification can be visualized as the N -dimensional hyperspace being par-
titioned into areas, one for each reference – a so-called Voronoi diagram (see figure 5.1, next
page). Any test point that lands inside the cell of the parent is counted as a success – if,
however, the cell border is crossed, the track will be inevitably misclassified and a failure is
counted.

While the model used is primitive (it does not, for instance, consider false positives, in
that a track not in the reference database should be matched as “none found”), it was found
to be sufficient for comparing the various descriptor sets against each other. For a practical
application, the choice of testing model would probably be different, depending on the terms
imposed by the use case and the data available. (In particular, an unmodified copy of the
original tracks might not be available.)

When comparing descriptor vectors (in order to consider what track is the “closest match”
in the model above), a distance metric is needed. Two common distance metrics were used and
evaluated: The standard Euclidean distance and the Mahalanobis distance.

5.1.1 Euclidean distance

The Euclidean distance is one of the most well-known distance metrics, and is easily extended
from the familiar two- and three-dimensional cases to N -dimensional hyperspace. The Euclidean

25

26 CHAPTER 5. METHODS

-10

-8

-6

-4

-2

 0

 2

 4

 6

-15 -10 -5 0 5

M
e

a
n

 o
f

F
1

C
C

 c
o

e
ff

ic
ie

n
t

5

Mean of F1CC coefficient 4

Figure 5.1: Fourth and fifth F1CC coefficients from all eleven tracks from the album “Night-
watch” by Silje Nergaard. The large crosses represent the FLAC originals; the smaller circles
in the same color represent the MP3 and Vorbis versions. Note the black decision boundaries
generated at equidistant points from the references, forming a Voronoi diagram; three tracks
end up in the wrong cell and will thus be misclassified.

distance between two N -dimensional vectors ~a and ~b (represented as column vectors, as in
~a = (a1, a2, . . . , aN)T) is defined as:

DE(~a,~b) =

√

(~a −~b)T (~a −~b) =

√

√

√

√

N
∑

i=1

(ai − bi)2

As
√

x is a monotonous function (for x ≥ 0), and the distance metric was only used for
comparison, DE

2 was used instead of DE . This modified measure is equivalent to the standard
Euclidean distance when used to find the closest match, but computationally cheaper, as one
square root is saved per comparison.

5.1.2 Mahalanobis distance

The Mahalanobis distance is a different, statistical distance measure, first presented in [25].
It is not unlike the Euclidean distance, but better suited to spaces where the vector elements
might be correlated. Also, unlike the Euclidean distance, it is scale-invariant in that an overall
(uniform or non-uniform) scaling of the data set will not change the computed distance.

5.1. TESTING MODEL AND DISTANCE METRICS 27

-80

-60

-40

-20

 0

 20

 40

 60

-80 -60 -40 -20 0 20 40 60 80

M
e

a
n

 o
f

M
F

C
C

 c
o

e
ff

ic
ie

n
t

4

Mean of MFCC coefficient 3

Figure 5.2: MFCC coefficients 3 and 4 for the full song list (uncompressed versions only),
with each song represented as a point. Note the diagonal shape of the point cloud, indicating
correlation between the coefficients.

The Mahalanobis distance is computed as:

DM (~a,~b) =

√

(~a −~b)T Σ−1(~a −~b) (5.1)

where Σ is the covariance matrix for the given data set.1 (In the presently described classifier,
the covariance matrix was estimated from the set of all feature vectors. This works well as long
as there is enough data compared to the number of the elements in the covariance matrix to be
estimated.) Note that when Σ = I (all vector elements are uncorrelated and normalized), the
Mahalanobis distance is equivalent to the Euclidean distance.

For performance reasons, again DM
2 was used instead of DM . Also, equation 5.1 was

expanded into

DM (~a,~b)2 = (~a −~b)T (Σ−1~a − Σ−1~b). (5.2)

As Σ−1~x could be precomputed for each feature vector ~x, O(N2) matrix multiplications
were saved per N -element classification run.

The increased sophistication of the Mahalanobis distance does not come without a cost. Even
with the expansion optimization from equation 5.2, the Mahalanobis distance is computationally
more expensive than Euclidean distance – about twice the amount of computation is needed

1It can be confusing that Σ is used both as summation sign and to denote the covariance matrix. Usually,
however, the meaning should be clear from the context.

28 CHAPTER 5. METHODS

(ignoring the pre-computation). Furthermore, sophisticated methods for accelerating range
queries in Euclidean space exist, among them R-trees[16]; not all of these can be expected to
be readily adaptable to the Mahalanobis metric.

Mahalanobis distance was not used together with dimensionality reduction (which will be
presented in section 5.4), as it would constitute an overlap of functionality, in that the dimen-
sionality reduction methods used also include decorrelation measures similar to the Mahalanobis
distance.

5.2 Data material

For this project, the data set consisted of a personal music collection consisting of 7372 CD
tracks in digital, lossless form. Consisting mostly of contemporary music, it was believed to
be a reasonable approximation to a medium-sized CD collection. After a few duplicates and
other anomalies were removed2, the final set numbered 7242 tracks, totaling about 514 hours
of music, about 175 GB of FLAC data. The complete list of albums and the number of tracks
from each can be found in appendix C.

Although 7372 tracks is a reasonable number for a personal CD collection, it is probably a bit
smaller than a typical digital music collection, and it is not remotely close to the total amount
of tracks commercially available today, which has been estimated informally to be several tens
of millions of tracks.[34] (As a point of reference, the Shazam music recognition system cites
a database of 1.8 million commercial tracks.[42]) Unfortunately, as will be seen, the data set
is simply too small to draw conclusions about the feasibility of a larger-scale system based on
the same principles – in a sense, the problem of matching against a database this small is “too
easy”, which makes it difficult to separate good algorithms and descriptors from bad ones.

The demand that all tracks be available in uncompressed (or at least, non-lossy compressed)
form makes acquisition of a larger test library difficult, as most personal music collections
contain mainly MP3-compressed tracks. However, using already-compressed music would risk
severely skewing the study of how lossy compression would affect the chosen descriptors, as
almost all tracks would be compressed twice, accumulating (possibly distinct) distortion in
both compression steps. Thus, it was decided to stay with using the given track set, even
though a music library of ten or possibly even hundred times the size would be desirable for a
more realistic, full-scale test.

5.3 Encoding and feature extraction

The data set was stored in the FLAC format, reducing the storage requirement by about 2:1
while still maintaining bit-accuracy. All FLAC files were then encoded into MP3 and Vorbis,
using the bit rates selected in chapter 2: 128 kbit/sec, 192 kbit/sec and 256 kbit/sec for MP3,
and 64 kbit/sec, 128 kbit/sec and 192 kbit/sec for Vorbis.

Although the encoding process is CPU intensive, it is also easily parallelizable, as each track
can be encoded separately. Thus, a simple job distribution system was written, storing the job
queue in an relational database and having the worker machines execute them on a first-come,
first-serve basis. At most, thirteen separate CPU cores were involved in the encoding, which

2Duplicate removal by hand is a rather tedious task – however, during testing, the classifier got good enough
that looking at the list of misclassified tracks showed most of the duplicates right away. As these tests ended up
largely replacing manual searching, there is no guarantee that the set was completely free of duplicates.

5.4. CORRELATION AND DIMENSIONALITY REDUCTION 29

was finished in a little under 24 hours. (A sequential, single-machine implementation would
most likely need over a week to do to the same encoding task.)

As it was anticipated that there would be a need for multiple runs of the descriptor and
classification algorithms, a time/space trade-off was made, in that the encoded files were stored
permanently on disk instead of being encoded anew every time. All in all, the encoded files
(including the FLAC originals) consumed about 375 GB of storage space; however, the pre-
encoding facilitated relatively simple reruns whenever an aspect of the feature extraction im-
plementation was changed.3

It should be mentioned that as only the first thirty seconds of each sample were used (as
described in section 2.5), storing partial tracks would have reduced the storage requirements
significantly; however, this decision was made at a later stage, and keeping full tracks allowed
for both increased flexibility and uncovered several performance bugs related to longer tracks.

After all tracks were encoded, the actual work of descriptor generation and test classification
commenced. As feature extraction (even with 27 scalar and vector descriptors in all, totaling 648
floating-point values per track) was computationally less intensive than the encoding, no need
was seen to use a work distribution system, and all extraction was done on a single dual-core
laptop. (The extraction process was not timed, but the final run over all available data took
less than 24 hours. As all tracks were pre-encoded, changing the feature extraction code would
require only a re-run of this part of the task, as compared to the much more computationally
intensive lossy encoding.) The results of the feature extraction were stored in a format designed
for rapid loading into the classification engine – in general, each classification run over the full
data set completed in under a minute on a single core.

5.4 Correlation and dimensionality reduction

As mentioned in chapter 2, adding more descriptors will not always lead to a better result. Not
only will gathering more data require more processing (and to a lesser extent, demand more
storage), but too many dimensions will invoke the curse of dimensionality, wherein there is too
little training data available to properly train the descriptors.

Thus, some sort of dimensionality reduction is often desired. Dimensionality reduction takes
on two primary forms[17]: Feature selection, where certain descriptors (or elements thereof) are
simply discarded, and feature extraction, where data from multiple descriptors are combined into
a (often smaller) set of descriptors. (Gathering the “raw” descriptors from the audio waveform
is, of course, a form of feature extraction in itself.)

In this project, a combined feature selection/extraction approach was decided upon. First,
the standard and modified MFCC coefficients were split into distinct sets, together with the
“simple” descriptors described in chapter 2. (That is, MFCC and F1CC descriptors were never
used in the same set. In chapter 6 the exact descriptor subsets used are described in detail.)
Also, all possible subsets of the “simple” descriptors (already making up a very small part of
the entire descriptor space) were tested.

Second, further dimensionality reduction by use of feature extraction was evaluated. Feature
extraction is usually semi-automated, in that there are methods to find new bases for the data
set that are optimal or locally optimal in some (method-specific) sense. Two linear, relatively

3375 GB is not particularly much as of 2007; however, as mentioned earlier, a sample at least ten times the
size of the present data set would be desirable. Although 3-4 TB is far from unattainable in current systems, the
cost quickly increases beyond that of simple desktop storage as more data gets added.

30 CHAPTER 5. METHODS

simple methods that are in common use are principal components analysis (PCA) and linear
discriminant analysis (LDA)[17]; both will be discussed briefly in the following sections.

When using PCA and LDA, assumptions about the underlying data sets and processing
methods are made that may not be valid in the present situation, especially with regard to the
rather simplistic test methods. Nevertheless, it will be clear that both methods can be employed
for relatively effective dimensionality reduction, although often some human interpretation or
other post-correction measures are needed.

5.4.1 Principal components analysis

Principal components analysis, or PCA, is a statistical transform or rotation of a given data
set. PCA essentially yields an input-dependent, square, orthogonal matrix that will transform
a vector from the given data set into an ordered output vector, where the lower-order com-
ponents will contribute more (often much more) to the overall variance than the higher-order
components. Thus, by discarding or zeroing the higher-order components and retaining the
lower-order components, the overall variance is kept approximately unchanged while achieving
an overall dimensionality reduction. Furthermore, the vectors of the PCA matrix will often
contain indications of what are the “principal components” (hence the name of the method),
or true underlying variables, of the input data set.

The PCA algorithm itself will not be explained nor derived here; the reader is instead
referred to [18]. PCA was not implemented from scratch; instead, the GNU R statistical analysis
package[40] was employed for both PCA and LDA analysis.

The interpretation of the PCA matrix and the ordering of the columns must be done some-
what carefully. In particular, one must not blindly equate variance with information from a
given component; a descriptor could be very useful for discrimination, yet simply be too small
to contribute to the overall vector length. PCA exists in both unscaled and scaled variants.
In scaled PCA, the columns are first pre-normalized to have equal variance, often increasing
accuracy in cases where the elements of the input vectors differ in scale. In unscaled PCA, no
pre-scaling is performed.

Results of PCA testing, both for unscaled and scaled PCA, can be found in section 6.2.1.

5.4.2 Linear discriminant analysis

As noted, one of the problems of PCA is that its primary metric of variance is not necessarily
the best metric for classification. Linear discriminant analysis (LDA) is a different, slightly
more complex method, designed to maximize class separation instead of variance. Unlike PCA,
LDA is a supervised learning algorithm – the algorithm makes explicit use of the grouping
information present in the training set. However, the result of the algorithm is comparable
to that of PCA; in particular, a matrix is returned that transforms each input vector onto a
different basis, with the more significant elements first.

Like with PCA, LDA will not be explained in detail here – the reader is referred to [18]
for a description of the algorithm. However, it should be mentioned that LDA, like PCA, is
not ideal for dimensionality reduction in the present situation. In particular, it is designed
to discriminate between a pre-defined set of groups or classes; usually, in a system designed
to discriminate between tracks, it will not be possible to know all possible groups (in this
case tracks) beforehand, meaning that there will be more groups in the full data set than in
the training set. (The situation would probably be different for a genre classification system,

5.5. K-FOLD CROSS-VALIDATION 31

though.) Yet, one could hope that the transformation computed by LDA is useful in a more
general sense than only for the groups in the training set.

Results of LDA testing can be found in section 6.2.2.

5.5 K-fold cross-validation

As has been seen, some algorithms need a training set for estimation of some set of model
parameters, in addition to the testing set itself. (For instance, calculation of the Mahalanobis
distance requires estimation of the covariance matrix for the given data.) One could let these
two sets be the same; however, one would then risk over-fitting the model to the given data,
yielding artificially low error rates for a model that would perform poorly on a different test set.
Thus, the data set is usually split into two distinct parts, where one is used for training and
one is used for testing. However, a training/testing split necessarily involves a trade-off between
testing and training set sizes, as a larger testing set would usually be desirable to increase the
precision of the measured results and a larger training set would usually be desirable to get a
better estimation of the needed parameters.

K-fold cross-validation is a common statistical technique for alleviating this problem. The
data is split into K parts of approximately the same size. Each part is then in turn used as the
test set, using a model trained using the other K−1

K
of the data; the results from each run are

then averaged. Various values for K can be chosen (trading off data set size, computation time
and variance of the final results against each other), but in line with recommendations made
in [18], K = 5 was chosen, and the data set was thus partitioned randomly into five pieces of
roughly the same size.4

It is important to remember that in the test scenario discussed in section 5.1, the final error
rate will be directly influenced by the number of elements in the test set, as all non-references in
the test set are checked against all references in the same set. As discussed in section 5.2, there is
already too little data for a realistic test, and using only 1

5
of it at a time would make the problem

even worse, artificially lowering the error rates. Thus, an inverted split was decided upon, where
only 1

5
of the data was used for training, and the remaining 4

5
was used for the testing. This

meant that less data was available for model estimation (reducing its quality, probably also
reducing the prediction accuracy somewhat), but was deemed an acceptable trade-off.

Note that as reducing the data set by 20% increases the accuracy somewhat, all models were
assessed using five-fold cross-validation, including the models that had no use for a training
set at all (models using Euclidean distance with no dimensionality reduction). This ensured
comparability between trained and non-trained models.

5.6 Hypothesis testing

Frequently, it is desirable to know whether using a given configuration (that is, the choice of
descriptors, distance metric and dimensionality reduction, if any) C1 yields better results than
a second configuration C2, in the sense that using C1 yields higher accuracy than C2 for the
same test set. To this end, a standard one-sided hypothesis test[41] was applied, modeling the
success rate of the two tests as coming from two distinct probability distributions X1 and X2.
If the mean of the first distribution, µ1, is higher than the mean of the second distribution, µ2,

4The data set was never split across tracks – a FLAC original and the six distorted copies were always kept
in the same set.

32 CHAPTER 5. METHODS

configuration C1 is said to be better than C2. For a set of given measurements, the hypothesis
test yields a p-value between 0 and 1, indicating the level of significance of the test, where a lower
p-value indicates a higher level of statistical significance. (One can also build up a confidence
interval of the estimated difference between the means, but when working when success rates
close to unity, the confidence interval is typically less interesting.)

Formally, the null hypothesis and alternative hypothesis are:

• H0 : µ2 ≤ µ1 (null hypothesis)

• H1 : µ2 > µ1 (alternative hypothesis)

By use of the hypothesis test, one can reject the null hypothesis H0 at some level of signifi-
cance (depending on the p-value), lending support to the alternative hypothesis H1, confirming
that C2 is indeed better than C1. (H0 should not, however, be regarded as confirmed if the
hypothesis test yields a high p-value.)

For a single data run, the two distributions can be modeled as binomial (which is ap-
proximately normal, due to the number of elements). However, the use of modified five-fold
cross-validation described in section 5.5 complicates the discussion, as five estimations of the
mean were returned instead of one, computed from overlapping data sets. These five values
then form a new distribution, whose mean is a different, hopefully better estimator of the true
mean of the original distribution. As the variances of these new, five-element sets are unknown,
they must be estimated from the data. This leads to the use of the Student’s t-test instead of
the z-test – more precisely, a paired t-test with unknown and unequal variances (the Welch’s
t-test) was used. (The use of a paired test was found appropriate as both configurations were
applied to the same five partitions in order.)

Again, the actual statistical calculations were performed in GNU R.

Chapter 6

Results

In this chapter, results from a few different experiments, performed as described in chapter 5,
are presented. If not otherwise mentioned, all tests are on the full data set of slightly over 7000
tracks in seven different versions (the original, three MP3 encoded versions and three Vorbis
encoded versions), as described in chapter 5.

6.1 Simple descriptors only

As a first test, the “simple” descriptors first introduced in chapter 2 were tested on their own,
without combining them with MFCC or F1CC. The primary motivation for these tests was
assessing the results of each descriptor (both on its own, and combined with other descriptors),
but the results also proved to illustrate more general trends.

As there were only six “simple” descriptors (length, mean/square-ratio, steepness, spectral
centroid, number of zero crossings, and number of zero crossings with Schmitt triggering),
testing all possible 26 − 1 = 63 subsets of descriptors was possible. Each subset was tested
separately, both under Euclidean and Mahalanobis distance, except for the subsets consisting
only of a single descriptor (as Euclidean and Mahalanobis distance reduce to the same measure
for these purposes). For all tests, the five-fold cross-validation method was used, as discussed
in section 5.5.

As the results from 63 tests using Euclidean distance and 57 using Mahalanobis distance
would prove too much data to be useful, only a subset of the test data is included here. The
chosen subsets are:

• All subsets consisting of a single descriptor are included, the results shown in table 6.1.

• The five best tests overall are also included, and summarized in table 6.2. Note that all of
these were run using Mahalanobis distance – for reference, the best single result obtained
with Euclidean distance are included in the same table.

• Finally, test data for the subset containing of all six descriptors are included, both under
Euclidean and Mahalanobis distance. The results are summarized in table 6.3.

The results show some interesting trends; of particular note are the following points:

• Scalar descriptors are, on their own, of little use for classification – however, when com-
bined relatively good results can be achieved, at least in a data set as small as the one
used in these tests.

33

34 CHAPTER 6. RESULTS

• Tracks encoded in lower bit rate are in general harder to classify correctly than those in
higher bit rate – unsurprisingly, they are less distorted also in an objective sense.

• Even when the covariance matrix was estimated from a training set distinct from the
test set, the use of Mahalanobis distance yielded significantly better overall results than
Euclidean distance.

• Different subsets of descriptors are better suited to some formats and bit rates than others.
In particular, different distortion arises from the use of MP3 than from Vorbis – an extreme
case is that the track length alone is a significantly more reliable measure in Vorbis than
in MP3, due to MP3 delay and block padding, as discussed in section 2.6.5. It should be
mentioned, though, that the inter-format difference can appear at first sight to be larger
than it actually is, as lower bit rates were used for Vorbis than for MP3. Nevertheless,
the results would seem to support the decision to include multiple formats and bit rates
in the data set.

• Adding more descriptors to an existing subset can indeed, as suggested in section 2.3.1,
lower the overall recognition rate. The exact results are, however, again dependent on the
format and bit rate used.

Interestingly, length and the mean/square ratio are present in all the five best combinations,
which suggests that these two descriptors are the best suited among the six tested. Similarly,
the centroid is absent from the “top five” list – however, the best combination involving the
centroid (actually, the combination of all six descriptors) is not far behind, with an error rate
of 14.7%.

6.2 Effect of PCA/LDA on simple descriptors

6.2.1 Principal components analysis

As described in sections 5.4.1 and 5.4.2, PCA and LDA can be used for dimensionality reduc-
tion, as an alternative and/or supplement to simple selection. To investigate the feasibility of
dimensionality reduction, a five-fold cross-validation test was first run for unscaled and scaled
PCA, with the six “simple” descriptors again used as input data. For each partition, the 1

5

training set was used to estimate the PCA matrix, and the remaining 4
5

of the data was used as
test set. The results, together with the results for the full (ie. non-reduced) descriptor set from
the previous section, are summarized in table 6.6 and in figure 6.1. Note that as described in
section 5.1, both PCA and LDA were consistently measured under Euclidean distance only.

Examining the rotation matrices, or loadings, output by PCA can yield interesting insights
in the sample data. One would a priori assume that the feature vector consisting of all six
descriptors would have in the order of five dimensions: Track length, mean/square ratio, steep-
ness and centroid would be assumed to be independent of each other and the zero crossing
descriptors, while the two zero crossing descriptors would be assumed to be somewhat inter-
dependent. Table 6.4 does suggest that it is indeed largely so, but with a slightly different set
of interdependencies. (One can also observe the general PCA trend of maximizing variance –
indeed, the component with the least weight is the mean/square ratio, although it was found in
section 6.1 to be of significant interest. This is, of course, since it takes on values at least three
orders of magnitude smaller than any of the other descriptor values.)

6.2. EFFECT OF PCA/LDA ON SIMPLE DESCRIPTORS 35

MP3 Vorbis
128 192 256 64 128 192

Total

Length (L) 83.6% 83.6% 83.6% 17.7% 17.7% 17.7% 50.6%

Mean/square ratio (M) 97.6% 98.0% 98.0% 97.2% 94.7% 92.3% 96.3%

Steepness (S) 97.2% 93.0% 93.2% 99.1% 98.1% 99.3% 96.6%

Centroid (C) 99.8% 99.8% 99.8% 99.6% 99.5% 99.7% 99.7%

Zero crossings (Z) 98.1% 96.4% 96.8% 99.6% 98.6% 99.1% 98.1%

Zero crossings, Schmitt (ZS) 96.4% 93.4% 93.9% 98.9% 97.7% 98.4% 96.4%

Table 6.1: Error rates for simple descriptors used alone (lower is better).

MP3 Vorbis
128 192 256 64 128 192

Total

L+M+S+ZS 2.2% 0.6% 0.3% 32.2% 8.7% 0.6% 7.4%

L+M+S+Z+ZS 8.9% 3.9% 2.2% 27.7% 9.8% 3.7% 9.4%

L+M+ZS 2.6% 0.4% 0.3% 40.2% 5.8% 8.4% 9.6%

L+M+S 4.5% 1.1% 0.6% 49.7% 10.8% 8.1% 12.5%

L+M+Z+ZS 11.6% 6.2% 4.0% 36.4% 14.3% 6.2% 13.1%

L+M (Euclidean) 65.1% 65.2% 65.2% 0.4% 0.2% 0.1% 32.7%

Table 6.2: Error rates for best five descriptor subsets under Mahalanobis distance, and best
single subset under Euclidean distance. The abbreviations are expanded in table 6.1.

MP3 Vorbis
128 192 256 64 128 192

Total

Euclidean 54.3% 29.6% 24.1% 90.7% 62.9% 72.9% 55.7%

Mahalanobis 27.7% 6.4% 2.8% 41.6% 7.9% 2.1% 14.7%

Table 6.3: Error rates for full descriptor set, measured under both Euclidean and Mahalanobis
distance.

36 CHAPTER 6. RESULTS

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

E
rr

o
r

ra
te

 (
%

)

Number of dimensions

PCA, unscaled
PCA, scaled

LDA
Raw, Mahalanobis (reference)

Raw, Euclidean (reference)

Figure 6.1: Error rate for PCA- and LDA-transformed “simple” descriptors plotted against the
number of dimensions, and compared against the full-dimensionality results. Note that all three
methods have a certain “sweet spot” in the number of dimensions, above which the error rate
increases.

However, when the data set is corrected for scaling, the matrix becomes significantly more
convoluted, as is seen in table 6.5; even the track length appears to be correlated with the
other measures. Although one should be careful in placing too much weight on the PCA matrix
itself (in particular as it is possible to get multiple equivalent rotations through the same basis
vectors), the high amount of correlation suggests that adding many of these descriptors will not
add very much real dimensionality to the data set, as they are all relatively correlated.

Overall, PCA is not problem-free: In particular, evidence can be seen of the PCA matrix
being over-fitted to the test set. As one moves past using two or three of the resulting vectors,
the overall accuracy goes down – sometimes very much so. (MP3 and Vorbis are influenced
differently by this effect; for instance, from 2D to 3D in the test of unscaled PCA, accuracy
on MP3 files goes up while accuracy on Vorbis files goes down.) However, these problems are
somewhat less pronounced in the case of scaled PCA, which in general yields better results
then unscaled PCA. Scaled PCA also gives somewhat better results than the selection methods
used in section 6.1 – however, the results are not conclusive, and one should weigh the extra
processing time and estimation overhead involved in using PCA against the relatively small
increase in accuracy.

6.2. EFFECT OF PCA/LDA ON SIMPLE DESCRIPTORS 37

PC1 PC2 PC3 PC4 PC5 PC6

Length −0.95 −0.32

Mean-square ratio −1.00

Steepness −0.11 0.32 −0.94

Centroid −0.99 0.10

Zero crossings 0.90 −0.43

Zero crossings (Schmitt) 0.43 0.90

Standard deviation 38477.67 8834.12 809.98 117.85 107.36 0.05

Proportion of Variance 0.95 0.05 0.00 0.00 0.00 0.00

Cumulative Proportion 0.95 1.00 1.00 1.00 1.00 1.00

Table 6.4: Principal components of sample partition, unscaled PCA. Matrix coefficients below
0.1 are omitted. Column sign is arbitrary.

PC1 PC2 PC3 PC4 PC5 PC6

Length −0.58 0.81

Mean-square ratio 0.77 0.57 −0.12 0.24

Steepness 0.54 0.12 −0.30 −0.77

Centroid 0.43 −0.11 −0.86 −0.14 0.21

Zero crossings 0.51 −0.18 0.16 0.82

Zero crossings (Schmitt) 0.51 0.45 −0.41 0.60

Standard deviation 1.82 1.07 0.96 0.70 0.32 0.18

Proportion of Variance 0.55 0.19 0.15 0.08 0.02 0.01

Cumulative Proportion 0.55 0.74 0.90 0.98 0.99 1.00

Table 6.5: Principal components of sample partition, scaled PCA. Matrix coefficients below 0.1
are omitted. Column sign is arbitrary.

MP3 Vorbis
128 192 256 64 128 192

Total

Raw, Euclidean 54.3% 29.6% 24.1% 90.7% 62.9% 72.9% 55.7%

Raw, Mahalanobis 27.7% 6.4% 2.8% 41.6% 7.9% 2.1% 14.7%

Unscaled PCA, 1D 83.6% 83.6% 83.6% 17.7% 17.7% 17.7% 50.6%

Unscaled PCA, 2D 80.1% 80.1% 80.1% 0.4% 0.2% 0.1% 40.2%

Unscaled PCA, 3D 48.7% 19.9% 17.2% 86.4% 58.7% 75.4% 51.0%

Unscaled PCA, 4D 81.5% 69.4% 56.1% 83.1% 59.1% 63.6% 68.8%

Unscaled PCA, 5D 81.2% 58.9% 57.3% 96.0% 80.7% 90.5% 77.4%

Unscaled PCA, 6D 54.1% 29.6% 24.4% 90.6% 63.3% 73.5% 55.9%

Scaled PCA, 1D 83.5% 83.5% 83.5% 17.7% 17.7% 17.7% 50.6%

Scaled PCA, 2D 4.7% 3.7% 3.7% 6.3% 1.3% 0.7% 3.4%

Scaled PCA, 3D 11.3% 3.0% 1.6% 64.4% 20.3% 26.5% 21.2%

Scaled PCA, 4D 11.9% 2.7% 1.1% 58.3% 14.1% 13.3% 16.9%

Scaled PCA, 5D 10.1% 2.0% 0.8% 56.5% 12.5% 9.7% 15.3%

Scaled PCA, 6D 8.7% 1.7% 0.6% 55.1% 11.5% 7.8% 14.2%

Table 6.6: Error rates for five-fold cross-validation test under scaled and unscaled PCA, with
varying number of dimensions used, compared to raw results.

38 CHAPTER 6. RESULTS

-6.7

-6.6

-6.5

-6.4

-6.3

-6.2

-6.1

-4 -3.95 -3.9 -3.85 -3.8 -3.75 -3.7 -3.65 -3.6 -3.55

M
e

a
n

 o
f

F
1

C
C

 c
o

e
ff

ic
ie

n
t

5

Mean of F1CC coefficient 4

Original
MP3 (128-320 kbit/sec)

Vorbis (128-320 kbit/sec)

Figure 6.2: Fourth and fifth F1CC coefficients for the same song (The National Bank: “I hear
the sparrow sing”) encoded in multiple different bit rates. Note the poor fit of the distribution
as a whole to a normal distribution.

6.2.2 Linear discriminant analysis

Like with PCA, a five-fold cross-validation test was run using LDA. Except for the use of LDA
(which has no unscaled version), the test methodology was identical to that described in section
6.2.1, and will not be repeated here. In figure 6.1 the overall results for PCA and LDA are
summarized and compared against the raw results (ie. the full set of “simple” descriptors,
without dimensionality reduction.) – the LDA-specific results are summarized in table 6.7.

Looking at the results, one can see similar problems to those of PCA, in that after a certain
point, performance gets worse as more dimensions are added. This is another example of the
curse of dimensionality – as only seven elements (the original, the three MP3 versions and the
three Vorbis versions) are available in each group, the covariance matrix for each group (which
is used as input for the LDA algorithm) is insufficiently estimated, with only seven vectors
estimating a 36-element matrix.

Results are overall somewhat worse than PCA, but it is difficult to determine if this is
because LDA is less suited the given scenario than PCA, or simply due to the small size of the
data set (in particular, the training set in this case). It should, however, be mentioned that the
variance between the five runs was much higher in the LDA test than in any of the other tests
– for instance, the results when using the three first dimensions varied from 70.0% to 92.3%
depending on the partition used.

It should also be mentioned that when using LDA, it is assumed that the distribution within
each group is approximately normal. Figure 6.2 shows a more detailed view of a single song,
where one reference has been encoded into many different bit rates – clearly, the resulting
distribution for the two F1CC coefficients selected is not normal, at least not for the given two
formats. This distribution discrepancy may be the source of some of the accuracy issues that

6.2. EFFECT OF PCA/LDA ON SIMPLE DESCRIPTORS 39

MP3 Vorbis
128 192 256 64 128 192

Total

Raw, Euclidean 54.3% 29.6% 24.1% 90.7% 62.9% 72.9% 55.7%

Raw, Mahalanobis 27.7% 6.4% 2.8% 41.6% 7.9% 2.1% 14.7%

LDA, 1D 83.6% 83.6% 83.6% 17.7% 17.7% 17.7% 50.6%

LDA, 2D 55.6% 55.5% 55.5% 0.4% 0.2% 0.1% 27.9%

LDA, 3D 10.9% 3.8% 2.7% 55.7% 17.4% 21.2% 18.6%

LDA, 4D 60.6% 40.6% 27.8% 59.5% 32.2% 23.8% 40.8%

LDA, 5D 69.5% 48.4% 46.5% 93.2% 73.6% 85.7% 69.5%

LDA, 6D 55.2% 34.7% 30.6% 89.6% 62.4% 74.8% 57.9%

Table 6.7: Error rates for five-fold cross-validation test using LDA, with varying number of
dimensions used.

40 CHAPTER 6. RESULTS

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35

E
rr

o
r

ra
te

 (
%

)

Number of coefficients

MFCC, Euclidean
MFCC, Mahalanobis

F1CC, Euclidean
F1CC, Mahalanobis

Figure 6.3: Error rate comparison between MFCC and F1CC for N descriptors, logarithmic Y
scale.

were observed.
As can be seen, LDA, like PCA, is not an ideal algorithm in the given scenario. However, it

should not be completely discounted – even though neither PCA nor LDA were pursued further
in this project, they might be more useful in a different scenario, depending on the use case and
the available data.

6.3 Comparison of MFCC and F1CC

To compare the merits of MFCC and F1CC (described in chapters 3 and 4, respectively), a
series of five-fold cross-validation tests were run with the same test data and differing numbers
of descriptors, under both Euclidean and Mahalanobis metrics. The results are summarized in
tables 6.8 and 6.9, and figure 6.3.

Many of the same trends as were found for the simple descriptors can be recognized in the
given set of results. To confirm these trends statistically, a series of one-sided, paired t-tests
were carried out as described in section 5.6, with the following results:

• In all tests, use of F1CC yielded higher recognition rate than the same number of MFCC
coefficients under the same distance metric (p < 10−6 for all tests). Also, use of four
F1CC coefficients yielded better results than six MFCC coefficients, and use of six F1CC
coefficients yielded better results than eight MFCC coefficients (p < 10−6, Mahalanobis
distance).

6.3. COMPARISON OF MFCC AND F1CC 41

MP3 Vorbis
128 192 256 64 128 192

Total

MFCC 1D 97.4% 99.1% 99.2% 99.5% 97.1% 99.0% 98.5%

MFCC 2D (E) 61.0% 75.8% 82.1% 97.3% 58.6% 77.4% 75.4%

MFCC 2D (M) 71.2% 68.8% 68.3% 97.7% 60.6% 66.8% 72.2%

MFCC 3D (E) 5.9% 10.9% 15.1% 85.8% 14.1% 10.6% 23.7%

MFCC 3D (M) 8.0% 3.5% 2.9% 86.4% 26.6% 3.0% 21.7%

MFCC 4D (E) 0.5% 1.0% 1.6% 64.4% 4.3% 1.0% 12.1%

MFCC 4D (M) 0.5% 0.1% 0.0% 65.0% 18.5% 0.1% 14.0%

MFCC 6D (E) 0.1% 0.0% 0.0% 36.4% 1.4% 0.0% 6.3%

MFCC 6D (M) 0.1% 0.0% 0.0% 24.0% 7.2% 0.0% 5.2%

MFCC 8D (E) 0.1% 0.0% 0.0% 23.1% 1.0% 0.0% 4.0%

MFCC 8D (M) 0.1% 0.0% 0.0% 4.6% 3.1% 0.0% 1.3%

MFCC 12D (E) 0.0% 0.0% 0.0% 12.2% 0.7% 0.0% 2.2%

MFCC 12D (M) 0.1% 0.0% 0.0% 0.7% 1.1% 0.0% 0.3%

MFCC 16D (E) 0.0% 0.0% 0.0% 8.7% 0.6% 0.0% 1.6%

MFCC 16D (M) 0.0% 0.0% 0.0% 0.3% 0.4% 0.0% 0.1%

MFCC 32D (E) 0.0% 0.0% 0.0% 5.4% 0.5% 0.0% 1.0%

MFCC 32D (M) 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.1%

Table 6.8: Error rates for five-fold cross-validation test using various numbers of MFCC coeffi-
cients, under Euclidean (E) and Mahalanobis (M) distance.

MP3 Vorbis
128 192 256 64 128 192

Total MFCC

F1CC 1D 97.9% 98.6% 98.6% 98.8% 96.6% 95.8% 97.7% 98.5%

F1CC 2D (E) 67.0% 70.1% 72.3% 86.3% 51.8% 46.3% 65.6% 75.4%

F1CC 2D (M) 64.7% 62.2% 62.9% 85.5% 57.8% 55.1% 64.7% 72.2%

F1CC 3D (E) 12.6% 13.6% 14.5% 41.1% 4.3% 2.5% 14.8% 23.7%

F1CC 3D (M) 7.7% 4.5% 4.2% 41.2% 3.9% 2.7% 10.7% 21.7%

F1CC 4D (E) 1.9% 1.9% 2.1% 15.2% 0.5% 0.2% 3.6% 12.1%

F1CC 4D (M) 0.3% 0.1% 0.1% 10.5% 0.3% 0.2% 1.9% 14.0%

F1CC 6D (E) 0.1% 0.1% 0.2% 3.3% 0.1% 0.0% 0.6% 6.3%

F1CC 6D (M) 0.0% 0.0% 0.0% 0.8% 0.1% 0.0% 0.2% 5.2%

F1CC 8D (E) 0.0% 0.0% 0.0% 1.8% 0.1% 0.0% 0.3% 4.0%

F1CC 8D (M) 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.1% 1.3%

F1CC 12D (E) 0.0% 0.0% 0.0% 1.2% 0.1% 0.0% 0.2% 2.2%

F1CC 12D (M) 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.3%

F1CC 16D (E) 0.0% 0.0% 0.0% 0.9% 0.1% 0.0% 0.2% 1.6%

F1CC 16D (M) 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1%

F1CC 32D (E) 0.0% 0.0% 0.0% 0.8% 0.1% 0.0% 0.2% 1.0%

F1CC 32D (M) 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1%

Table 6.9: Error rates for five-fold cross-validation test using various numbers of F1CC coef-
ficients, under Euclidean (E) and Mahalanobis (M) distance. The rightmost column is copied
from table 6.8 for comparison.

42 CHAPTER 6. RESULTS

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35

E
rr

o
r

ra
te

 (
%

)

Number of coefficients

F1CC
F1CC + differential

F1CC + second central moment
F1CC + second and third central moments

Figure 6.4: Error rate for F1CC with various extra statistical moments, plotted against the
number of base coefficients; logarithmic Y scale.

• In almost all tests, use of the Mahalanobis distance yielded higher recognition rate than
the Euclidean distance metric (p < 10−4). The sole exceptions were 1D cases (where
the two metrics will yield identical results), and the case of 4D MFCC, where curiously
enough, Euclidean metric was better (also with p < 10−4).

• Adding more coefficients does in general improve accuracy; however, less is gained for
each extra coefficient. There is even a marginal negative difference in accuracy from 16
to 32 coefficients, regardless of MFCC/F1CC choice and distance metric – however, the
statistical significance for this result (difference between 16 to 32 F1CC coefficients, under
Mahalanobis distance) was weaker than in most of the other tests (p = 0.027).

In general, using 8-16 F1CC coefficients measured under Mahalanobis distance would seem
to give the best accuracy/data amount trade-off for this testing set.

6.4 Effect of F1CC derivatives and central moments

As explained in section 3.2, MFCC is homomorphic – that is, convolution (and equivalently,
filtering) will only influence the mean of the coefficient vector. In other words, derivatives
and central moments can be expected to remain approximately unchanged. Thus, tests were
performed to see how the accuracy rate would be influenced by incorporating derivative and
central moment data in the feature vector, which would presumably be less influenced by the
filtering and other effects introduced by lossy compression.

As shown in the previous section, the use of F1CC yielded higher accuracy than MFCC, and
thus, it was decided to run these tests using F1CC only. Even though it has not been proved
that F1CC is a homomorphic transform (it most likely is not, even if based on a homomorphic

6.4. EFFECT OF F1CC DERIVATIVES AND CENTRAL MOMENTS 43

MP3 Vorbis
128 192 256 64 128 192

Total F1CC

F1CC+∆ 1D 80.9% 82.1% 83.5% 83.1% 53.6% 43.1% 71.1% 98.5%

F1CC+∆ 2D 12.2% 8.4% 8.2% 11.7% 0.6% 0.3% 6.9% 72.2%

F1CC+∆ 3D 2.5% 1.5% 1.5% 2.3% 0.0% 0.0% 1.3% 21.7%

F1CC+∆ 4D 1.1% 0.6% 0.6% 0.7% 0.0% 0.0% 0.5% 14.0%

F1CC+∆ 6D 0.6% 0.6% 0.6% 0.1% 0.0% 0.0% 0.3% 5.2%

F1CC+∆ 8D 0.8% 0.6% 0.6% 0.1% 0.0% 0.0% 0.4% 1.3%

F1CC+∆ 12D 0.9% 0.8% 0.7% 0.1% 0.0% 0.0% 0.4% 0.3%

F1CC+∆ 16D 1.1% 0.9% 0.9% 0.1% 0.0% 0.0% 0.5% 0.1%

F1CC+∆ 32D 1.1% 1.1% 1.1% 0.1% 0.0% 0.0% 0.6% 0.1%

F1CC+C2 1D 74.9% 79.4% 80.9% 73.5% 67.1% 57.4% 72.2% 98.5%

F1CC+C2 2D 1.7% 1.0% 1.0% 12.4% 0.8% 0.5% 2.9% 72.2%

F1CC+C2 3D 0.4% 0.1% 0.1% 3.1% 0.5% 0.2% 0.7% 21.7%

F1CC+C2 4D 0.4% 0.0% 0.0% 1.6% 0.4% 0.1% 0.4% 14.0%

F1CC+C2 6D 0.1% 0.0% 0.0% 0.5% 0.1% 0.1% 0.1% 5.2%

F1CC+C2 8D 0.1% 0.0% 0.0% 0.3% 0.1% 0.0% 0.1% 1.3%

F1CC+C2 12D 0.1% 0.0% 0.0% 0.2% 0.0% 0.0% 0.1% 0.3%

F1CC+C2 16D 0.1% 0.0% 0.1% 0.2% 0.0% 0.0% 0.1% 0.1%

F1CC+C2 32D 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.1% 0.1%

F1CC+C2+C3 1D 47.2% 46.3% 47.0% 32.1% 32.1% 21.9% 37.8% 98.5%

F1CC+C2+C3 2D 4.6% 4.5% 4.5% 5.1% 1.8% 1.0% 3.6% 72.2%

F1CC+C2+C3 3D 5.0% 4.1% 4.0% 7.0% 2.4% 1.2% 4.0% 21.7%

F1CC+C2+C3 4D 5.8% 3.6% 3.5% 8.5% 3.2% 1.7% 4.4% 14.0%

F1CC+C2+C3 6D 1.9% 0.7% 0.5% 4.7% 1.5% 0.7% 1.7% 5.2%

F1CC+C2+C3 8D 0.4% 0.1% 0.1% 1.4% 0.4% 0.2% 0.5% 1.3%

F1CC+C2+C3 12D 0.2% 0.1% 0.1% 0.2% 0.1% 0.0% 0.1% 0.3%

F1CC+C2+C3 16D 0.2% 0.1% 0.1% 0.2% 0.1% 0.0% 0.1% 0.1%

F1CC+C2+C3 32D 0.3% 0.2% 0.2% 0.2% 0.0% 0.0% 0.1% 0.1%

Table 6.10: Error rates for five-fold cross-validation test using various numbers of F1CC coef-
ficients and their differentials (∆), second order central moments (C2) and third order central
moments (C3), all under Mahalanobis distance. The rightmost column is copied from table 6.9
for reference.

44 CHAPTER 6. RESULTS

MFCC variant, as the tone curves used are nonlinear in nature), it is similar enough to MFCC
that it would not seem unreasonable that it is approximately homomorphic.

Three configurations were tested for various numbers of dimensions, all with added descrip-
tors over the F1CC tests presented in the previous section. The three configurations consisted
of, for each coefficient:

• The mean, plus the delta mean (the mean of the absolute value of the change from one
MFCC frame to the next).

• The mean, plus the second central moment, the variance.

• The mean, plus the second and third central moments.

More information about each of these descriptors can be found in section 3.4.
The results can be found in table 6.10, which contains results for all three tests. Note that

only results for the Mahalanobis distance are presented, as the general trends proved not to
be too different for Euclidean distance, and Mahalanobis distance was earlier found to be an
overall better measure. The same results are also visualized in figure 6.4.

Comparing the data in table 6.10 against the reference results from table 6.9, it is clear
that adding delta or variance information for F1CC coefficients is beneficial when using few
coefficients. However, simply adding more F1CC mean coefficients gives a similar result, and
as more coefficients are added, the overall accuracy is marginally worse than when only using
the regular mean. (This is most likely related to the fact that the covariance matrix for the
largest test is as big as 96x96 = 9216 elements, which is poorly estimated at the given training
set size.) In general, however, the results are somewhat inconclusive – as has been seen, adding
more coefficients yields only marginal improvements after a while, and for a bigger set, the extra
information provided by non-mean data might be beneficial.

6.5 Combining simple descriptors with F1CC

Finally, tests were run combining “simple” descriptors with F1CC. In line with results in pre-
vious sections, the selected configuration consisted of length, mean/square ratio and a variable
number of F1CC coefficients, measured under Mahalanobis distance, and without any dimen-
sionality reduction. Although more configurations could be tested, in particular with regard to
the selection of the simple descriptors, this was believed to be relatively representative of what
could be achieved by combining elements from both classes.

The results can be found in table 6.11, and are summarized in figure 6.5. Note that the
plots should be interpreted with caution, as the general error rates at high dimensionality are
too low for accurate measurements. In particular, at 32 dimensions, there was not sufficient
statistical evidence to show that the results for F1CC with and without “simple” descriptors
were different (two-sided paired Welch’s t-test, p = 0.079).

All in all, however, it would appear that supplementing the F1CC data with the relatively
simple measures of track length and mean/square ratio yields a reasonable increase in overall
accuracy.

6.5. COMBINING SIMPLE DESCRIPTORS WITH F1CC 45

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35

E
rr

o
r

ra
te

 (
%

)

Number of coefficients

F1CC
F1CC + length + mean/square ratio

Figure 6.5: Error rate for F1CC, both alone and supplemented with length and mean/square
ratio, plotted against the number of F1CC coefficients; logarithmic Y scale.

MP3 Vorbis
128 192 256 64 128 192

Total F1CC

L+M+F1CC 1D 36.5% 43.6% 46.2% 51.9% 14.0% 9.6% 33.6% 98.5%

L+M+F1CC 2D 0.2% 0.1% 0.1% 5.6% 0.3% 0.1% 1.1% 72.2%

L+M+F1CC 3D 0.0% 0.0% 0.0% 1.4% 0.0% 0.0% 0.2% 21.7%

L+M+F1CC 4D 0.0% 0.0% 0.0% 0.5% 0.0% 0.0% 0.1% 14.0%

L+M+F1CC 6D 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 5.2%

L+M+F1CC 8D 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 1.3%

L+M+F1CC 12D 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.3%

L+M+F1CC 16D 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1%

L+M+F1CC 32D 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1%

Table 6.11: Error rates for five-fold cross-validation test using length, mean/square ratio and
various numbers of F1CC coefficients, measured under Mahalanobis distance. The rightmost
column is copied from table 6.9 for reference.

46 CHAPTER 6. RESULTS

Chapter 7

Discussion

7.1 Overall system performance

As mentioned earlier, the test set of 7242 tracks is too small for a realistic test of real-life
application performance, where the number of reference tracks can number several millions.
Yet, a comparison to existing systems may give an indication of the overall scaling ability.

In general, the system presented here is relatively simplistic – often, when there was a
choice between simplicity and sophistication, the simpler solutions were chosen. (In particular,
the decision to extract statistical moments from the MFCC/F1CC coefficients, as described
in section 3.4, is probably less than ideal for accuracy.) However, even a simple solution may
scale surprisingly well – the TRM system has been criticized for being overly simplistic (being
mostly based on “simple” descriptors such as the ones described in chapter 2, in addition to
a few spectral measures)[34], yet the MusicBrainz database contains over 8.8 million TRMs[7]
and still works reasonably well.1

The scaling discussion is somewhat complicated by lack of reliable accuracy measures for
practical systems. Judging from MusicBrainz statistics found in [7], it appears Relatable’s
TRM and MusicIP’s PUID system would have about the same collision rate (about 14% of all
TRMs or PUIDs in MusicBrainz’ database point to more than one distinct track) – however,
at the time of writing, the database contains about 8.8 million distinct TRMs and only 1.7
million distinct PUIDs, which makes the comparison somewhat unfair. Tuneprint claims 100%
matching accuracy in a test against a database of 100,000 reference tracks[35], with descriptors
reminding somewhat of F1CC without the triangular bands and DCT – however, with only 73
samples in the test set, the confidence interval would seem somewhat broad. For other systems,
large databases are cited to be used in production (such as Shazam, with 1.8 million tracks[42]),
but no numbers for overall matching accuracy are given. Also, error rates will vary naturally
with the amount of distortion in the test set – again, a complicating factor.

When discussing scaling, it is also important to consider the amount of processing power
needed for each query, in particular on the server side. (The processing time needed for the
actual feature extraction is less important here, as it will usually be done on the client side.) For
instance, the strategy of comparing against each reference in turn, as described in section 5.1,

1This is not to say that TRM scaled comfortably to these levels – TRM has ongoing scaling problems, both
computationally and performance-wise, which has lead MusicBrainz to start a long-transition towards MusicIP’s
PUID system[31]. Yet, the TRM system is far from being unusable even for a data set of this size.

47

48 CHAPTER 7. DISCUSSION

is not very efficient on a larger scale, and should ideally be replaced by a more sophisticated
method for a practical system. However, given the size of the data set used, computational
scaling was not a primary concern.

7.2 Applicability of dimensionality reduction

At first sight, dimensionality reduction appears very attractive: Not only does it reduce the
amount of data that needs to be stored, transferred and searched, it also comes with a promise
of decorrelation and increased resilience to noise. However, as has been seen, there are multiple
problems with both PCA and LDA in practice.

First, the optimal decorrelation matrix for a data set can be difficult to estimate from only
a part of it, leading to possible overtraining unless great care is taken to make the selected part
representative (and large enough). In other words, the curse of dimensionality discussed in 2.3.1
can be reintroduced in the very methods that were supposed to alleviate these problems.

Second, every method of dimensionality reduction will necessarily depend on a given set
of assumptions. Violations of these assumptions can lead to poor or unpredictable results,
depending on the method and the concrete nature of the violations. In the present case, many
of these assumptions are poorly met by the input data:

• For PCA, it was seen in section 5.4.1 that the notion of variance as the primary information-
bearing measure was ill-suited to the classification scheme. While the issue is somewhat
alleviated by using scaled PCA instead of unscaled PCA, the fundamental problem re-
mains.

• As described in section 5.4.2, LDA is designed to separate between N pre-defined classes
(and usually, N is less than the number of dimensions in the data), all known at the time
of matrix estimation. As has been seen, reusing the resulting matrix to also separate other
classes (actually, many other classes) from each other can lead to less than ideal results.

• Finally, the entire assumption of approximate normality is most likely false, as discussed
in section 6.2.2 – in particular, the various compressed versions of each track will not be
identically distributed, as they are encoded in different bit rates and formats.

Especially in the light of the overall good results achieved by using Mahalanobis distance
(which compensates for much of the correlation seen) instead of Euclidean distance, one should
consider carefully whether the negative and somewhat unpredictable effects of PCA and LDA
are outweighed by the gains in the particular situation at hand.

It should be mentioned that in a situation with more descriptors than in the given test
setup (for instance, if much more temporal information was kept, as described in section 3.4),
dimensionality reduction might again be more attractive, as the combined fingerprint would
simply become impractically large without it. In such cases, one would also usually have more
data overall to work with, depending on the internal structure of the descriptors – for instance,
if one represented each 200ms slice of audio by an N -dimensional vector, a thirty-second audio
clip would yield 150 vectors, as opposed to only a handful when using statistical moments.
Again, the use of PCA/LDA should be carefully considered for each case, in particular with
regard to the descriptors extracted from each track.

7.3. DESCRIPTOR LAYERING 49

7.3 Descriptor layering

The various forms of description of audio, and in particular music, can be organized in a
layered fashion. Although there is no standardized segmentation, these layers can be described
approximately as follows:

• On the least sophisticated levels of description is the purely physical, time-based percep-
tion. All signals can be described in a physical fashion, most obviously in the case of “real”
instruments with vibrating strings or air moving through a physical system, but also for
electronically generated audio. Analysis of time-based representations usually involves
considering only very short time segments at a time. Most of the “simple” descriptors
introduced in chapter 2 utilize only time-based information.

• One layer up lies spectral measures of various sophistication, such as MFCC and F1CC
introduced in chapters 3 and 4. Information at this level often corresponds better to
the workings of the human auditory system (including the outer and inner ear) than
information from the first level. When analyzing audio on a short-time spectral scale, the
signal is usually analyzed in blocks of about 10-50ms.

• At the next layer, the difference between arbitrary audio and music becomes increasingly
important, as it contains descriptors such as single tones, time intervals (which in turn
lead to rhythm), timbre, chords, and short melody lines. Information on this level is
usually processed in blocks of up to a few seconds, corresponding to the human short-
term memory.

• Finally, the uppermost layer corresponds to overall artistic ability. This layer incorporates
long-term musical structure and development, overall interpretation of the piece and even
measures as subjective as musical quality.

This “layer stack” also describes the relationship between the different fields of musical study
– from pure physics and signal processing at the bottom of the stack, ultimately progressing
towards psychology at the top. As human perception frequently is centered around the upper
layers, it would seem beneficial for a MIR system to utilize the information on these levels –
indeed, as has been shown in the experiments in previous chapters, descriptors utilizing spectral
information are significantly better choices than time-based descriptors from the bottom layer.

Unfortunately, general knowledge about the upper layers is still incomplete, and as extracting
information on each layer commonly depends on having accurate information from the lower
layers, the complexity is increased and data extraction becomes increasingly difficult. Limited
knowledge about several stages of the human auditory system further increases these difficulties.

It should also be mentioned that as one moves towards the top of the stack, descriptors and
information become less objective, and more subject to the individual listener’s preferences and
experiences. (Considering a measure such as “musical quality” for a given piece, one can expect
to find a great deal of disagreement in the general population.) This can pose a challenging
task to a MIR system, but also opportunities for delivering results better tuned towards the
individual. What the optimal layer for a given MIR application is, remains an open question.

50 CHAPTER 7. DISCUSSION

Chapter 8

Conclusion

8.1 Conclusion

As has been seen, it is possible to build a personal music recognition system with reasonable
accuracy even with relatively simple descriptors and methods. However, more sophisticated
descriptors and measures do in general deliver better results – in particular, use of F1CC gives
markedly better results in this case than MFCC does, and Mahalanobis distance likewise over
Euclidean distance. However, the use of dimensionality reduction methods such as PCA or
LDA should be carefully considered in each case – while effective in some cases, their use can
also reduce matching accuracy significantly in others. Also, overall complexity is increased.

All in all, F1CC, combined with a few “simple” descriptors such as mean/square ratio or
track length, appears to be a promising choice for a system of this form. However, extracting
statistical moments from the F1CC data might not be the best post-processing, and depending
on the use case, measures better preserving the temporal structure present in music should be
considered.

8.2 Further work

As the use of F1CC has shown promising results, it would be natural to consider its use in
other situations than the one presently described – in particular to assess whether accounting
for auditory masking makes for a better descriptor model, or if its increased usefulness in the
present use case stems primarily from the ability to better “ignore” artifacts created by lossy
encoding. One might also want to experiment with different methods of post-processing after
the floor computation.

Furthermore, larger-scale tests would be interesting – if a given MIR system is capable of
working well without uncompressed originals, it should not be impossible to run tests with
100,000 tracks or more, possibly yielding interesting insights into larger-scale behavior. How-
ever, with larger data sets, more sophisticated searching and processing algorithms would also
probably be needed, eventually moving into the realm of distributed computing.

Finally, assuming an appropriate feature extraction system, the use of more complex, human-
oriented descriptors (such as tempo/rhythm, instrument selection, chord structure or melodic
contour) could make a very worthwhile addition to a music recognition system. However,
as always, the use of a given descriptor must be considered in the light of implementation

51

52 CHAPTER 8. CONCLUSION

complexity, accuracy, robustness and performance.

Bibliography

[1] Vorbis development, status & patent issues. Hydrogenaudio discussion forum, September
2003. http://www.hydrogenaudio.org/forums/index.php?showtopic=13531, accessed
2007-05-12.

[2] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE Transactions
on Computers, pages 90–93, January 1974.

[3] Richard Ernest Bellman. Dynamic Programming. Princeton University Press, 1957.

[4] Richard H. Ehmer. Masking patterns of tones. Journal of the Acoustical Society of America,
31:1115–1120, August 1959.

[5] Gianpaolo Evangelista and Sergio Cavaliere. Event synchronous wavelet transform ap-
proach to the extraction of musical thumbnails. In Proceedings of the 8th International
Conference on Digital Audio Effects (DAFx’05), pages 232–236, September 2005.

[6] Arthur Flexer, Elias Pampalk, and Gerhard Widmer. Hidden Markov models for spectral
similarity of songs. In Proceedings of the 8th International Conference on Digital Audio
Effects (DAFx’05), pages 131–136, September 2005.

[7] MetaBrainz Foundation. MusicBrainz database statistics. Available online at
http://musicbrainz.org/stats.html, accessed 2007-05-28.

[8] Xiph.org Foundation. Ogg Vorbis: Fidelity measurement and terminology discussion. Avail-
able online at http://xiph.org/vorbis/doc/vorbis-fidelity.html, accessed 2007-05-
12.

[9] Xiph.org Foundation. Ogg Vorbis stereo-specific channel coupling discussion. Available
online at http://xiph.org/vorbis/doc/stereo.html, accessed 2007-05-12.

[10] Xiph.org Foundation. Vorbis I specification. Available online at
http://www.xiph.org/vorbis/doc/Vorbis_I_spec.pdf, accessed 2007-05-12.

[11] Niechcial Francis. MPC vs VORBIS vs MP3 vs AAC at 180 kbps.
Hydrogenaudio discussion forum, August 2005. Available online at
http://www.hydrogenaudio.org/forums/index.php?showtopic=36465, accessed
2007-05-12.

[12] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2):216–231, February 2005.

53

http://www.hydrogenaudio.org/forums/index.php?showtopic=13531
http://musicbrainz.org/stats.html
http://xiph.org/vorbis/doc/vorbis-fidelity.html
http://xiph.org/vorbis/doc/stereo.html
http://www.xiph.org/vorbis/doc/Vorbis_I_spec.pdf
http://www.hydrogenaudio.org/forums/index.php?showtopic=36465

54 BIBLIOGRAPHY

[13] Asif Ghias, Jonathan Logan, David Chamberlin, and Brian C. Smith. Query by humming
– musical information retrieval in an audio database. Proceedings of ACM Multimedia 95,
November 1995.

[14] Pascutto Gian-Carlo. foosic - the living music database.
http://foosic.org/libfooid.php, accessed 2007-05-16.

[15] Jerry D. Gibson, Toby Berger, Tom Lookabaugh, Dave Lindbergh, and Richard L. Baker.
Digital Compression for Multimedia: Principles & Standards. Morgan Kaufmann Publish-
ers, Inc., 1998.

[16] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Data, pages 44–57.

[17] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182, March 2003.

[18] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer, 2001.

[19] Tammo Hinrichs. The workings of fr-08’s sound system, part 4: Let’s talk about synthe-
sizers. PAiN Magazine, February 2002.

[20] Xuedong Huang, Alex Acero, and Hsiad-Wuen Hon. Spoken Language Processing. Prentice-
Hall, 2001.

[21] Anssi Klapuri and Manuel Davy, editors. Signal Processing Methods for Music Transcrip-
tion. Springer Science+Business Media LLC, 2006.

[22] Naoko Kosugi, Yuichi Nishihara, Tetsuo Sakata, Masashi Yamamuro, and Kazuhiko
Kushima. A practical query-by-humming system for a large music database. Proceedings
of the eighth ACM international conference on Multimedia, pages 333–342, 2000.

[23] Jean Laroche. Estimating tempo, swing and beat locations in audio recordings. 2001 IEEE
Workshop on the Applications of Signal Processing to Audio and Acoustics, pages 135–138,
October 2001.

[24] Gaoyong Luo. Ultra low delay wavelet audio coding with low complexity for real time
wireless transmission. Proceedings of 2005 International Symposium on Intelligent Signal
Processing and Communication Systems, pages 741–744, December 2005.

[25] Prasanta Chandra Mahalanobis. On the generalised distance in statistics. In Proceedings
of the National Institute of Science of India, volume 12, pages 49–55, 1936.

[26] John Makhoul. A fast cosine transform in one and two dimensions. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 28(1):27–34, February 1980.

[27] Sebastian Mares. Results of public, multiformat listening tests at 128kbps, December
2005. Available online at http://www.listening-tests.info/mf-128-1/results.htm,
accessed 2007-05-12.

http://foosic.org/libfooid.php
http://www.listening-tests.info/mf-128-1/results.htm

BIBLIOGRAPHY 55

[28] Sebastian Mares. Results of public, multiformat listening tests at 48kbps, November 2006.
Available online at http://www.listening-tests.info/mf-48-1/results.htm, accessed
2007-05-12.

[29] Stephen McAdams and Albert Bregman. Hearing musical streams. Computer Music Jour-
nal, 3:26–63, 1979.

[30] Chris Montgomery. Re: Getting masked FFT data out of libvorbisenc.
Communication on vorbis-dev mailing list, April 2007. Available online at
http://lists.xiph.org/pipermail/vorbis-dev/2007-April/018811.html, accessed
2007-05-12.

[31] MusicIP. Open Fingerprint Architecture whitepaper, version 1.0, March 2006. Available on-
line at http://www.musicip.com/dns/files/Open_Fingerprint_Architecture_Whitepaper_v1.pdf,
accessed 2007-05-16.

[32] John G. Proakis and Dimitris G. Manolakis. Digital Signal Processing. Prentice-Hall, third
edition, 1996.

[33] Relatable. TRMTM: The universal barcode for music and media from Relatable R©. Avail-
able online at http://www.relatable.com/tech/trm.html, accessed 2007-05-28.

[34] Geoff Schmidt. Acoustic fingerprinting. Communication on
the mb-devel mailing list, October 2005. Available online at
http://lists.musicbrainz.org/pipermail/musicbrainz-devel/2005-October/001432.html,
accessed 2007-05-25.

[35] Geoff R. Schmidt and Matthew K. Belmonte. Scalable, content-based audio identifica-
tion by multiple independent psychoacoustic matching. Journal of the Audio Engineering
Society, 52(4):366–377, April 2004.

[36] Inc. Sequential Circuits. The MIDI specification, August 1983.

[37] Julius Smith III and Xavier Serra. PARSHL: An analysis/synthesis program for non-
harmonic sounds based on a sinusoidal representation. Technical report, Center for Com-
puter Research in Music and Acoustics (CCRMA), Department of Music, Stanford Uni-
versity, 1987.

[38] Thomson. MP3 patent portfolio. Available online at
http://www.mp3licensing.com/patents/index.html, accessed 2007-05-12.

[39] Jean-Marc Valin and Christopher Montgomery. Improved noise weighting in CELP coding
of speech – applying the Vorbis psychoacoustic model to Speex. Proceedings of the AES
120th Convention, May 2006.

[40] W. N. Venables, D. M. Smith, and the R Development Core Team. An introduction to
R, version 2.5.0, April 2007. http://cran.r-project.org/doc/manuals/R-intro.pdf,
accessed 2007-05-12.

[41] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye. Probability &
Statistics for engineers and scientists. Prentice-Hall, seventh edition, 2002.

http://www.listening-tests.info/mf-48-1/results.htm
http://lists.xiph.org/pipermail/vorbis-dev/2007-April/018811.html
http://www.musicip.com/dns/files/Open_Fingerprint_Architecture_Whitepaper_v1.pdf
http://www.relatable.com/tech/trm.html
http://lists.musicbrainz.org/pipermail/musicbrainz-devel/2005-October/001432.html
http://www.mp3licensing.com/patents/index.html
http://cran.r-project.org/doc/manuals/R-intro.pdf

56 BIBLIOGRAPHY

[42] Avery Wang. An industrial-strength audio algorithm. Presentation from ISMIR 2003,
October 2003.

[43] Tim Westergren. The Music Genome Project. Available online at
http://www.pandora.com/mgp.shtml, accessed 2007-05-30.

[44] Gerhard Widmer, Simon Dixon, Werner Goebl, Elias Pampalk, and Asmir Tobudic. In
search of the Horowitz factor. AI Magazine, pages 111–130, fall 2003.

http://www.pandora.com/mgp.shtml

Index of terms

ATH Absolute Threshold of Hearing, the (frequently-dependent) minimum sound level of a
pure tone an average ear can hear, assuming an otherwise silent environment.

CBR Constant Bit Rate, where a multimedia clip is encoded is the same bit rate at all times
(except over very short, strictly limited time periods). Contrast VBR.

codec COder/DECoder (originally an acronym, but now usually written in lowercase), a device
or program capable of digital encoding or decoding of a signal. Most codecs are lossy, in
that an encoding/decoding cycle leaves an imperfect representation of the original signal
– while lossless codecs exist, lossy codecs are typically much more bandwidth efficient,
making the (often imperceptible) degradation a reasonable trade-off.

DFT Discrete Fourier Transform, a common transformation of discrete signals from a time- to
a frequency-based representation.

FFT Fast Fourier Transform, a particularly efficient implementation of the DFT. (Actually,
several different FFT algorithms exist; the term “FFT” can refer to any one of them.)
Computation of the FFT of an n-element array requires only O(n log n) operations, while
a näıve implementation of the DFT would need O(n2).

FFTW The “Fastest Fourier Transform in the West”, a free FFT library developed by Matteo
Frigo and Steven G. Johnson.[12]

FLAC Free Lossless Audio Codec, a codec for lossless audio compression.

LAME LAME Ain’t an MP3 Encoder (an example of a recursive acronym), a free, high-quality
MP3 encoder. The name remains from a time when LAME was distributed only as a patch
set against the ISO MP3 encoder, and thus was not a complete encoder in itself; however,
in these days no ISO source remains in LAME, and thus, the acronym is now a misnomer.

LDA Linear Discriminant Analysis, a statistical technique for finding linear combinations of a
given data set that best separate two or more classes from each other.

MIDI Musical Instrument Digital Interface, a digital music communications protocol, stan-
dardized in 1983 and today almost universally supported by electronic music equipment.

MIR Music Information Retrieval (or sometimes, Multimedia Information Retrieval), the sci-
entific field concerned with retrieving information from music.

MP3 MPEG-1 audio layer III, a highly popular audio codec.

57

58 BIBLIOGRAPHY

Ogg An open container format for digital multimedia. Typically, Ogg streams contain Vorbis,
FLAC or Speex (an open speech codec) audio. (Ogg is not an acronym, and as such is
not fully capitalized.)

PCA Principal Components Analysis, a statistical transform for decorrelation and dimension-
ality reduction.

PCM Pulse Code Modulation, the most common representation of uncompressed audio, rep-
resenting a signal in uniformly sampled, linearly quantized form.

PUID Portable Unique IDentifier, an ID used in the Open Fingerprint Architecture from
MusicIP.

SPL Sound Pressure Level, a physical measure of sound strength. Usually measured in decibels
(dB), where 0 dB is equivalent to 20 micropascals.

SVD Singular Value Decomposition, a factorization of real or complex matrices especially
important in signal processing and statistics.

TRM TRM Recognizes Music, a semi-open commercial fingerprinting system from Relatable.
TRM can also refer to the ID given to each distinct track (as determined by the TRM
server) in the TRM system.

VBR Variable Bit Rate, a technique where a multimedia encoder can use different bit rates in
different parts of the material to increase overall quality while keeping the total bit rate
roughly constant. Contrast CBR.

Vorbis A free, lossy audio codec, intended to serve as a patent-free, next-generation alternative
to MP3.

Appendix A

Programming environment

In the making of this project, a wide range of software, mostly free software, was used. The
final list of software eventually used in or by the finished code is:

• Debian GNU/Linux (http://www.debian.org/), versions 3.1 (“sarge”) and 4.0 (“etch”),
was used as the base operating system for nearly all tasks.

• The GNU C Compiler Collection, GCC (http://gcc.gnu.org/), version 4.1.2, was used
for compiling C and C++ code.

• The LAME MP3 encoder (http://lame.sourceforge.net/), version 3.97, was used for
MP3 encoding.

• libvorbis (http://www.vorbis.com/), version 1.1.2, was used for both Vorbis encoding,
Vorbis decoding and as the base for the F1CC tone-tone masking curve calculations.

• Underbit MAD, MPEG Audio Decoder (http://www.underbit.com/products/mad/),
version 0.15.1b, was used for MP3 decoding.

• FLAC, Free Lossless Audio Codec (http://flac.sourceforge.net/), version 1.1.4, was
used for lossless encoding and subsequent decoding of audio files.

• The FFTW library (http://www.fftw.org/), version 3.1.2, was used for fast DFT and
DCT calculations.

• The Perl programming language (http://www.perl.org/), version 5.8.8, was used for
various prototyping tasks and smaller processing tasks, including the job control system
for distributed encoding.

• The PostgreSQL relational database (http://www.postgresql.org/), version 8.2.3, was
used as data storage for the processing queue in the distributed encoding effort.

• The Bazaar-NG version control system (http://www.bazaar-vcs.org/), versions 0.12
through 0.16, was used for revision control for both of the code and the report.

Also, the following software was used for the preparation of this report:

59

http://www.debian.org/
http://gcc.gnu.org/
http://lame.sourceforge.net/
http://www.vorbis.com/
http://www.underbit.com/products/mad/
http://flac.sourceforge.net/
http://www.fftw.org/
http://www.perl.org/
http://www.postgresql.org/
http://www.bazaar-vcs.org/

60 APPENDIX A. PROGRAMMING ENVIRONMENT

• Leslie Lamport’s LATEX document markup language (http://www.latex-project.org/),
based on Donald Knuth’s TEX typesetting system (http://www.tug.org/), was used for
the typesetting and layout of the report.

• Gnuplot (http://www.gnuplot.info/), version 4.0.0, was used for figures and charts.

• The R programming language and statistics environment (http://www.r-project.org/),
version 2.5.0, was used for PCA and LDA calculation, hypothesis testing, and covariance
matrix estimation.

• Qhull (http://www.qhull.org/), version 2003.1, was used for the calculation of the
Voronoi diagram in figure 5.1.

• Vim (http://www.vim.org/), version 7.0, was used for all editing.

http://www.latex-project.org/
http://www.tug.org/
http://www.gnuplot.info/
http://www.r-project.org/
http://www.qhull.org/
http://www.vim.org/

Appendix B

Source code

This chapter contains an excerpt of the descriptor extraction code and Voronoi/closest-match
searcher described in the project. It does not include the build scripts, the various scripts
used to generate tables and graphs automatically, and certain other auxiliary code – however,
the complete, buildable code used, including all necessary scripts to reproduce the material
(although excluding the song material used), is available in electronic form, along with a copy
of this thesis, from http://descriptors.sesse.net.

All code except the source adapted from libvorbis is Copyright 2007 Steinar H. Gunder-
son, and licensed under the GNU General Public License, version 2 (see section B.1). The
source adapted from libvorbis (residing in f1cc.cpp) is Copyright 1994-2002 by the Xiphopho-
rus Company (http://www.xiph.org/), and licensed under the BSD-style license in section
B.2.

B.1 The GNU General Public License

The following is the text of the GNU General Public Licence, under the terms of which this
software is distributed.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

B.1.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

61

http://descriptors.sesse.net
http://www.xiph.org/

62 APPENDIX B. SOURCE CODE

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

B.1.2 Terms and conditions for copying, distribution and modification

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term “modification”.) Each licensee is addressed as
“you”.

Activities other than copying, distribution and modification are not covered by this Li-
cense; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the Program). Whether that
is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

B.1. THE GNU GENERAL PUBLIC LICENSE 63

2. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program
is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium custom-
arily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

64 APPENDIX B. SOURCE CODE

(c) Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribu-
tion and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify
the Program subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

B.1. THE GNU GENERAL PUBLIC LICENSE 65

If any portion of this section is held invalid or unenforceable under any particular cir-
cumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded.
In such case, this License incorporates the limitation as if written in the body of this
License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

11. Because the Program is licensed free of charge, there is no warranty for the
Program, to the extent permitted by applicable law. except when other-
wise stated in writing the copyright holders and/or other parties provide the
program “as is” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The entire risk as to the quality and perfor-
mance of the Program is with you. Should the Program prove defective, you
assume the cost of all necessary servicing, repair or correction.

66 APPENDIX B. SOURCE CODE

12. In no event unless required by applicable law or agreed to in writing will
any copyright holder, or any other party who may modify and/or redistribute
the program as permitted above, be liable to you for damages, including any
general, special, incidental or consequential damages arising out of the use
or inability to use the program (including but not limited to loss of data or
data being rendered inaccurate or losses sustained by you or third parties or
a failure of the Program to operate with any other programs), even if such
holder or other party has been advised of the possibility of such damages.

END OF TERMS AND CONDITIONS

B.1.3 Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something other

B.2. LIBVORBIS LICENSE 67

than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items–whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

B.2 libvorbis license

Copyright (c) 2002-2004 Xiph.org Foundation

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

• Neither the name of the Xiph.org Foundation nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUN-
DATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

68 APPENDIX B. SOURCE CODE

B.3 Code listings

B.3.1 Descriptor extraction code

descriptor.cpp

// descriptor.cpp -- main program , responsible for reading in the file

(by

// calling the appropriate file reader), preprocessing the file

appropriately,

// call all extraction functions in turn and finally output the

extracted

// descriptors to standard output.

include <stdio.h>

include <math.h>

include "common.h"

include "centroid.h"

include "wavelet.h"

include "mfcc.h"

include "f1cc.h"

include "vorbis.h"

include "mp3.h"

include "flac.h"

void remove_dc_offset(Sample &s)

{

double sum_x = 0.0;

size_t N = std::min(s.samples.size(), (size_t)FEATURE_SAMPLES);

for (unsigned i = 0; i < N; ++i) {

sum_x += s.samples[i];

}

double dc = sum_x / N;

for (unsigned i = 0; i < N; ++i) {

s.samples[i] -= dc;

}

fprintf(stderr, "-dc(%.2f)... ", dc);

}

void normalize_gain(Sample &s)

{

double sum_x2 = 0.0;

size_t N = std::min(s.samples.size(), (size_t)FEATURE_SAMPLES);

for (unsigned i = 0; i < N; ++i) {

sum_x2 += s.samples[i] * s.samples[i];

}

B.3. CODE LISTINGS 69

double gain = 8192.0 / sqrt(sum_x2 / N);

for (unsigned i = 0; i < N; ++i) {

s.samples[i] *= gain;

}

fprintf(stderr , "gain (%.2fdB)... ", 10.0 * log10(gain));

}

void find_len(Sample &s)

{

std::vector <double> d;

d.push_back(s.length);

s.descriptors["length"] = d;

fprintf(stderr , "len(%.3fs)... ", s.length);

}

// avg / RMS

void find_msratio(Sample &s)

{

std::vector <double> d;

double sum_x2 = 0.0, sum_x = 0.0;

size_t N = std::min(s.samples.size(), (size_t)FEATURE_SAMPLES);

for (unsigned i = 0; i < N; ++i) {

double x = s.samples[i];

sum_x2 += x * x;

sum_x += fabs(x);

}

double rms = sqrt(sum_x2 / N);

double avg = sum_x / N;

d.push_back(avg / rms);

s.descriptors["msratio"] = d;

}

// number of zero -crossings

void find_zerocrossings(Sample &s)

{

std::vector <double> d;

unsigned zc = 0;

double last_val = 0.0;

size_t N = std::min(s.samples.size(), (size_t)FEATURE_SAMPLES);

for (unsigned i = 0; i < N; ++i) {

double x = s.samples[i];

if (x > 0.0 && last_val < 0.0)

++zc;

else if (x < 0.0 && last_val > 0.0)

70 APPENDIX B. SOURCE CODE

++zc;

last_val = x;

}

d.push_back(zc);

s.descriptors["zerocrossings"] = d;

}

// number of zero -crossings , with guard band (schmitt triggering)

void find_zerocrossings_guard(Sample &s)

{

std::vector<double> d;

unsigned zc = 0;

double last_val = 0.0;

size_t N = std::min(s.samples.size(), (size_t)FEATURE_SAMPLES);

for (unsigned i = 0; i < N; ++i) {

double x = s.samples[i];

if (fabs(x) < 2048.0)

continue;

if (x > 0.0 && last_val < 0.0)

++zc;

else if (x < 0.0 && last_val > 0.0)

++zc;

last_val = x;

}

d.push_back(zc);

s.descriptors[" zerocrossings_guard"] = d;

}

// rate of signal change

void find_steepness(Sample &s)

{

std::vector<double> d;

double sum_delta_x = 0.0;

size_t N = std::min(s.samples.size(), (size_t)FEATURE_SAMPLES);

double last_x = s.samples[0];

for (unsigned i = 1; i < N; ++i) {

double x = s.samples[i];

sum_delta_x += fabs(x - last_x);

last_x = x;

}

d.push_back(sum_delta_x / (N-1));

s.descriptors["steepness"] = d;

}

int main(int argc , char **argv)

{

FILE *wisdom = fopen("fft -wisdom", "rb");

B.3. CODE LISTINGS 71

if (wisdom == NULL) {

fprintf(stderr, "Optimizing FFTs for your system; this

will take a few minutes\n");

fprintf(stderr, "even on a reasonably fast machine , so

please wait. This will only\n");

fprintf(stderr, "need to happen once unless you remove

the \"fft -wisdom \" file.\n\n");

init_mfcc();

init_vp();

init_centroid();

wisdom = fopen("fft -wisdom", "wb");

if (wisdom == NULL) {

perror("fft -wisdom");

exit(1);

}

fftw_export_wisdom_to_file(wisdom);

fclose(wisdom);

} else {

fftw_import_wisdom_from_file(wisdom);

fclose(wisdom);

}

for (int i = 1; i < argc; ++i) {

Sample s;

fprintf(stderr, "%s... ", argv[i]);

if (strstr(argv[i], ".ogg"))

read_vorbis_file(s, argv[i]);

else if (strstr(argv[i], ".flac"))

read_flac_file(s, argv[i]);

else

read_mp3_file(s, argv[i]);

remove_dc_offset(s);

normalize_gain(s);

find_len(s);

fprintf(stderr, "msratio... ");

find_msratio(s);

fprintf(stderr, "zerocrossings... ");

find_zerocrossings(s);

fprintf(stderr, "zerocrossings_guard... ");

find_zerocrossings_guard(s);

fprintf(stderr, "steepness... ");

find_steepness(s);

fprintf(stderr, "centroid... ");

find_centroid(s);

72 APPENDIX B. SOURCE CODE

fprintf(stderr , "mfcc... ");

find_mfcc(s);

fprintf(stderr , "mfcc_floor1... ");

find_mfcc_floor1(s);

fprintf(stderr , "done.\n");

printf("filename=%s\n", argv[i]);

for (std::map <std::string , std::vector <double> >::

const_iterator j = s.descriptors.begin (); j != s.

descriptors.end(); ++j) {

printf("%s=", j->first.c_str());

for (unsigned k = 0; k < j->second.size(); ++k)

{

printf("%f", j->second[k]);

if (k != j->second.size() - 1) {

printf(",");

}

}

printf("\n");

}

printf("\n");

}

printf("END\n");

exit(0);

}

centroid.cpp

// centroid.cpp -- finds the spectral centroid of the given sample.

include "centroid.h"

include <fftw3.h>

bool centroid_initialized = false;

fftw_plan centroid_fft_plan;

double *centroid_fft_in;

std::complex <double> *centroid_fft_out;

void init_centroid()

{

if (centroid_initialized)

return;

// FFTW_PATIENT is not worth it -- it takes about two hours to

plan and gives very little

// extra performance in practice.

centroid_fft_in = reinterpret_cast <double *> (fftw_malloc(

B.3. CODE LISTINGS 73

sizeof(double) * FEATURE_SAMPLES));

centroid_fft_out = reinterpret_cast <std::complex <double> *> (

fftw_malloc(sizeof(std::complex <double >) * (FEATURE_SAMPLES

/ 2 + 1)));

centroid_fft_plan = fftw_plan_dft_r2c_1d(FEATURE_SAMPLES ,

centroid_fft_in , reinterpret_cast < fftw_complex *> (

centroid_fft_out), FFTW_MEASURE | FFTW_DESTROY_INPUT);

centroid_initialized = true;

}

void find_centroid(Sample &s)

{

init_centroid();

size_t N = std::min(s.samples.size(), (size_t)FEATURE_SAMPLES);

// get the data , and pad

for (unsigned i = 0; i < N; ++i) {

centroid_fft_in[i] = s.samples[i];

}

for (unsigned i = N; i < FEATURE_SAMPLES; ++i) {

centroid_fft_in[i] = 0.0;

}

// takes some time ...

fftw_execute(centroid_fft_plan);

// find the centroid from the spectrum

double weighted_sum = 0.0, total_sum = 0.0;

for (unsigned i = 0; i < (FEATURE_SAMPLES / 2 + 1); ++i) {

double f = (i + 0.5) * 22050.0 / (FEATURE_SAMPLES / 2 +

1);

weighted_sum += f * abs(centroid_fft_out[i]);

total_sum += abs(centroid_fft_out[i]);

}

std::vector <double> d;

d.push_back(weighted_sum / total_sum);

s.descriptors["centroid"] = d;

}

mfcc.cpp

// mfcc.cpp -- extracts MFCC coefficients from the given sample, and

computes

// statistical moments from that.

#include "mfcc.h"

bool mfcc_initialized = false;

fftw_plan fft_plan , dct_plan;

double *fft_in;

74 APPENDIX B. SOURCE CODE

std::complex <double> *fft_out;

double *mfcc_in , *mfcc_out;

double *window;

void init_mfcc()

{

if (mfcc_initialized)

return;

// FFT

fft_in = reinterpret_cast <double *> (fftw_malloc(sizeof(double)

* MFCC_WIN_LEN));

fft_out = reinterpret_cast <std::complex <double> *> (fftw_malloc

(sizeof(std::complex <double >) * (MFCC_WIN_LEN / 2 + 1)));

fft_plan = fftw_plan_dft_r2c_1d(MFCC_WIN_LEN , fft_in ,

reinterpret_cast <fftw_complex *> (fft_out), FFTW_PATIENT |

FFTW_DESTROY_INPUT);

// DCT

mfcc_in = reinterpret_cast <double *> (fftw_malloc(sizeof(double

) * MFCC_COEFFICIENTS));

mfcc_out = reinterpret_cast <double *> (fftw_malloc(sizeof(

double) * MFCC_COEFFICIENTS));

dct_plan = fftw_plan_r2r_1d(MFCC_COEFFICIENTS , mfcc_in ,

mfcc_out , FFTW_REDFT10 , FFTW_PATIENT | FFTW_DESTROY_INPUT);

// Initialize the Hamming window

window = new double[MFCC_WIN_LEN];

for (unsigned i = 0; i < MFCC_WIN_LEN; ++i) {

window[i] = 0.54 - 0.46 * cos(2.0 * M_PI * double(i) /

double(MFCC_WIN_LEN - 1));

}

mfcc_initialized = true;

}

void find_mfcc(Sample &s)

{

unsigned pos = 0;

unsigned chunk_len = MFCC_WIN_LEN / MFCC_OVERLAP;

double buf[MFCC_WIN_LEN];

double mel_spacing = hz_to_mel(44100.0 / 2.0) / double(

MFCC_COEFFICIENTS + 1); // ??

std::vector<double> coeffs[MFCC_COEFFICIENTS];

double mu[MFCC_COEFFICIENTS];

init_mfcc();

// fill the first buffer

for (unsigned i = 0; i < MFCC_WIN_LEN - chunk_len; ++i, ++pos)

{

buf[i + chunk_len] = s.samples[pos];

B.3. CODE LISTINGS 75

}

for (;;) {

if (pos + MFCC_WIN_LEN / MFCC_OVERLAP >=

FEATURE_SAMPLES)

break;

// move everything back a chunk

memmove(buf , buf + chunk_len , (MFCC_WIN_LEN - chunk_len

) * sizeof(double));

// read a new chunk

for (unsigned i = 0; i < chunk_len; ++i, ++pos) {

buf[i + MFCC_WIN_LEN - chunk_len] = s.samples[

pos];

}

// window it

for (unsigned i = 0; i < MFCC_WIN_LEN; ++i) {

fft_in[i] = buf[i] * window[i];

}

fftw_execute(fft_plan);

// apply the triangular windows

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

double start = mel_to_hz(mel_spacing * (i))

;

double mid = mel_to_hz(mel_spacing * (i + 1))

;

double end = mel_to_hz(mel_spacing * (i + 2))

;

double s = 0.0;

for (int j = int(ceil(hz_to_bin(start))); j <=

floor(hz_to_bin(end)); ++j) {

double f = bin_to_hz(j);

double energy = abs(fft_out[j]) * abs(

fft_out[j]);

if (f < mid) {

s += energy * (f - start) / (

mid - start);

} else {

s += energy * (end - f) / (end

- mid);

}

}

mfcc_in[i] = log(s + 0.001);

}

76 APPENDIX B. SOURCE CODE

fftw_execute(dct_plan);

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

coeffs[i].push_back(mfcc_out[i]);

}

}

#if 0

// output a little grayscale image

{

FILE *pgm = fopen("out.pgm", "wb");

fprintf(pgm , "P5\n%u %u\n255\n", coeffs [0].size() - 1,

MFCC_COEFFICIENTS);

double max = 0.0;

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

for (unsigned j = 0; j < coeffs [0].size(); ++j)

{

max = std::max(max , log(fabs(coeffs[i][

j])));

}

}

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

for (unsigned j = 1; j < coeffs [0].size(); ++j)

{

double z = 255.0 * log(fabs(coeffs[i][j

])) / max;

if (z < 0.0)

fprintf(pgm , "%c", 0);

else

fprintf(pgm , "%c", (unsigned

char)z);

}

}

fclose(pgm);

}

// output a graph of the 7th MFCC coeffient

{

draw_graph("graph.pgm", coeffs [6]);

std::vector <double> c_level1;

std::vector <double> d_level1;

{

std::vector<double> tmp;

wavelet_filter_haar(coeffs [6], tmp);

decimate(tmp , c_level1 , 2);

}

{

B.3. CODE LISTINGS 77

std::vector <double> tmp;

wavelet_filter_haar_detail(coeffs [6], tmp);

decimate(tmp , d_level1 , 2);

}

std::vector<double> c_level2;

std::vector<double> d_level2;

{

std::vector <double> tmp;

wavelet_filter_haar(c_level1 , tmp);

decimate(tmp , c_level2 , 2);

}

{

std::vector <double> tmp;

wavelet_filter_haar_detail(c_level1 , tmp);

decimate(tmp , d_level2 , 2);

}

draw_graph("c_level2.pgm", c_level2);

draw_graph("d_level2.pgm", d_level2);

std::vector<double> c_level3;

std::vector<double> d_level3;

{

std::vector <double> tmp;

wavelet_filter_haar(c_level2 , tmp);

decimate(tmp , c_level3 , 2);

}

{

std::vector <double> tmp;

wavelet_filter_haar_detail(c_level2 , tmp);

decimate(tmp , d_level3 , 2);

}

draw_graph("c_level3.pgm", c_level3);

draw_graph("d_level3.pgm", d_level3);

std::vector<double> c_level4;

std::vector<double> d_level4;

{

std::vector <double> tmp;

wavelet_filter_haar(c_level3 , tmp);

decimate(tmp , c_level4 , 2);

}

{

std::vector <double> tmp;

wavelet_filter_haar_detail(c_level3 , tmp);

decimate(tmp , d_level4 , 2);

}

78 APPENDIX B. SOURCE CODE

draw_graph("c_level4.pgm", c_level4);

draw_graph("d_level4.pgm", d_level4);

std::vector <double> c_level5;

std::vector <double> d_level5;

{

std::vector<double> tmp;

wavelet_filter_haar(c_level4 , tmp);

decimate(tmp , c_level5 , 2);

}

{

std::vector<double> tmp;

wavelet_filter_haar_detail(c_level4 , tmp);

decimate(tmp , d_level5 , 2);

}

draw_graph("c_level5.pgm", c_level5);

draw_graph("d_level5.pgm", d_level5);

std::vector <double> c_level6;

std::vector <double> d_level6;

{

std::vector<double> tmp;

wavelet_filter_haar(c_level5 , tmp);

decimate(tmp , c_level6 , 2);

}

{

std::vector<double> tmp;

wavelet_filter_haar_detail(c_level5 , tmp);

decimate(tmp , d_level6 , 2);

}

draw_graph("c_level6.pgm", c_level6);

draw_graph("d_level6.pgm", d_level6);

}

#endif

// first find the first zero moment (average)

{

std::vector <double> d;

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

mu[i] = 0.0;

for (unsigned j = 0; j < coeffs[i].size(); ++j)

{

mu[i] += coeffs[i][j];

}

mu[i] /= coeffs[i].size();

d.push_back(mu[i]);

B.3. CODE LISTINGS 79

}

s.descriptors["mfcc_avg"] = d;

}

// then the other moments (which are central moments)

for (unsigned m = 2; m <= MFCC_MOMENTS; ++m) {

std::vector<double> d;

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

double v = 0.0;

for (unsigned j = 0; j < coeffs[i].size(); ++j)

{

v += pow(coeffs[i][j] - mu[i], m);

}

d.push_back(v / coeffs[i].size());

}

char name [32];

sprintf(name , "mfcc_moment%u", m);

s.descriptors[name] = d;

}

// deltify

{

std::vector<double> d;

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

mu[i] = 0.0;

for (unsigned j = 1; j < coeffs[i].size(); ++j)

{

mu[i] += fabs(coeffs[i][j] - coeffs[i][

j - 1]);

}

mu[i] /= (coeffs[i].size() - 1);

d.push_back(mu[i]);

}

s.descriptors["mfcc_delta_avg"] = d;

}

for (unsigned m = 2; m <= MFCC_MOMENTS; ++m) {

std::vector<double> d;

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

double v = 0.0;

for (unsigned j = 1; j < coeffs[i].size(); ++j)

{

v += pow(fabs((coeffs[i][j] - coeffs[i

][j - 1])) - mu[i], m);

}

d.push_back(v / (coeffs[i].size() - 1));

}

char name [32];

80 APPENDIX B. SOURCE CODE

sprintf(name , "mfcc_delta_moment%u", m);

s.descriptors[name] = d;

}

}

f1cc.cpp

// f1cc.cpp -- extracts F1CC coefficients from the given sample, and

computes

// statistical moments from that.

include <stdio.h>

include <math.h>

include "mfcc.h"

include "f1cc.h"

// Headers imported from vorbisenc , with some adaption to allow

// the C code to be used from C++.

#define class _class

extern "C" {

#include "vorbis/codec.h"

#include "codec_internal.h"

#include "registry.h"

#include "psy.h"

#include "misc.h"

#include "masking.h"

#include "scales.h"

}

#undef class

#undef max

#undef min

vorbis_look_psy vp_p;

void _vp_mod_tonemask(vorbis_look_psy *p, float *logfft, float *logmask

, float global_specmax , float local_specmax);

void find_mfcc_floor1(Sample &s)

{

unsigned pos = 0;

unsigned chunk_len = MFCC_WIN_LEN / MFCC_OVERLAP;

double buf[MFCC_WIN_LEN];

// the tone curves seem to go haywire from about 3200 mel (

about 11khz), so stop there

double mel_spacing = 3200.0 / double(MFCC_COEFFICIENTS + 1);

std::vector<double> coeffs[MFCC_COEFFICIENTS];

double mu[MFCC_COEFFICIENTS];

float tone[chunk_len];

float logfft[chunk_len];

B.3. CODE LISTINGS 81

init_mfcc();

init_vp();

// fill the first buffer

for (unsigned i = 0; i < MFCC_WIN_LEN - chunk_len; ++i, ++pos)

{

buf[i + chunk_len] = s.samples[pos];

}

for (;;) {

if (pos + MFCC_WIN_LEN / MFCC_OVERLAP >=

FEATURE_SAMPLES)

break;

// move everything back a chunk

memmove(buf , buf + chunk_len , (MFCC_WIN_LEN - chunk_len

) * sizeof(double));

// read a new chunk

for (unsigned i = 0; i < chunk_len; ++i, ++pos) {

buf[i + MFCC_WIN_LEN - chunk_len] = s.samples[

pos];

}

// window it

for (unsigned i = 0; i < MFCC_WIN_LEN; ++i) {

fft_in[i] = buf[i] * window[i] * (1.0/32768.0);

}

fftw_execute(fft_plan);

float scale = 4.0f / chunk_len;

float scale_dB = todB(&scale) + .345;

// find amplitude maximum

float temp = abs(fft_out[0]);

float ampmax = logfft [0] = scale_dB + todB(&temp) +

.345;

//printf ("logfft: %f", logfft [0]);

for (unsigned i = 1; i < MFCC_WIN_LEN / 2; ++i) {

temp = abs(fft_out[i]);

logfft[i] = scale_dB + todB(&temp) + .345;

//printf (" %f", logfft[i]);

ampmax = std::max(ampmax , temp);

}

//printf ("\n");

// tone masking curve

_vp_mod_tonemask(&vp_p , logfft , tone , ampmax, ampmax);

82 APPENDIX B. SOURCE CODE

#if 0

printf("tone dump: ");

for (unsigned i = 0; i < chunk_len / 2; ++i) {

printf("%f ", tone[i]);

}

printf("\n");

#endif

#if 0

// debugging output for gnuplot et al

if (pos == (MFCC_WIN_LEN / MFCC_OVERLAP) * 860) {

FILE *f1 = fopen("fft.plot", "w");

for (unsigned i = 0; i < MFCC_WIN_LEN / 2; ++i)

{

fprintf(f1, "%f %f\n", hz_to_mel(

bin_to_hz(i)), logfft[i]);

}

fclose(f1);

FILE *f2 = fopen("tone.plot", "w");

for (unsigned i = 0; i < MFCC_WIN_LEN / 2; ++i)

{

fprintf(f2, "%f %f\n", hz_to_mel(

bin_to_hz(i)), tone[i]);

}

fclose(f2);

usleep (50000);

}

#endif

// apply the triangular windows

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

double start = mel_to_hz(mel_spacing * (i))

;

double mid = mel_to_hz(mel_spacing * (i + 1))

;

double end = mel_to_hz(mel_spacing * (i + 2))

;

double s = 0.0;

for (int j = int(ceil(hz_to_bin(start))); j <=

floor(hz_to_bin(end)); ++j) {

double f = bin_to_hz(j);

double energy = fromdB(tone[j]) *

fromdB(tone[j]);

if (f < mid) {

s += energy * (f - start) / (

mid - start);

} else {

B.3. CODE LISTINGS 83

s += energy * (end - f) / (end

- mid);

}

}

mfcc_in[i] = log(s);

}

fftw_execute(dct_plan);

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

coeffs[i]. push_back(mfcc_out[i]);

}

}

// first find the first zero moment (average)

{

std::vector<double> d;

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

mu[i] = 0.0;

for (unsigned j = 0; j < coeffs[i].size(); ++j)

{

mu[i] += coeffs[i][j];

}

mu[i] /= coeffs[i].size();

d.push_back(mu[i]);

}

s.descriptors["mfcc_f1_avg"] = d;

}

// then the other moments (which are central moments)

for (unsigned m = 2; m <= MFCC_MOMENTS; ++m) {

std::vector<double> d;

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

double v = 0.0;

for (unsigned j = 0; j < coeffs[i].size(); ++j)

{

v += pow(coeffs[i][j] - mu[i], m);

}

d.push_back(v / coeffs[i].size());

}

char name [32];

sprintf(name , "mfcc_f1_moment%u", m);

s.descriptors[name] = d;

}

// deltify

{

std::vector<double> d;

84 APPENDIX B. SOURCE CODE

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

mu[i] = 0.0;

for (unsigned j = 1; j < coeffs[i].size(); ++j)

{

mu[i] += fabs(coeffs[i][j] - coeffs[i][

j - 1]);

}

mu[i] /= (coeffs[i].size() - 1);

d.push_back(mu[i]);

}

s.descriptors["mfcc_f1_delta_avg"] = d;

}

for (unsigned m = 2; m <= MFCC_MOMENTS; ++m) {

std::vector <double> d;

for (unsigned i = 0; i < MFCC_COEFFICIENTS; ++i) {

double v = 0.0;

for (unsigned j = 1; j < coeffs[i].size(); ++j)

{

v += pow(fabs(coeffs[i][j] - coeffs[i][

j - 1]) - mu[i], m);

}

d.push_back(v / (coeffs[i].size() - 1));

}

char name[32];

sprintf(name , "mfcc_f1_delta_moment%u", m);

s.descriptors[name] = d;

}

}

// Everything below this line is copied/adapted from libvorbisenc ,

mostly

// from lib/floor1.c, and is Copyright 1994 -2002 by the Xiphophorus

Company

// (http ://www.xiph.org/). See the COPYING file included with libvorbis

for

// the full license.

typedef struct {

int att[P_NOISECURVES];

float boost;

float decay;

} att3;

typedef struct {

int pre[PACKETBLOBS];

int post[PACKETBLOBS];

float kHz[PACKETBLOBS];

float lowpasskHz[PACKETBLOBS];

} adj_stereo;

B.3. CODE LISTINGS 85

typedef struct {

int lo;

int hi;

int fixed;

} noiseguard;

typedef struct vp_adjblock{

int block[P_BANDS];

} vp_adjblock;

typedef struct {

int data[NOISE_COMPAND_LEVELS];

} compandblock;

typedef struct {

int data[P_NOISECURVES][17];

} noise3;

#include "modes/psych_44.h"

bool vp_initialized = false;

vorbis_info_psy vp_vi = _psy_info_template;

vorbis_info_psy_global vp_gi = _psy_global_44[0];

void init_vp()

{

if (vp_initialized)

return;

_vp_psy_init(&vp_p , &vp_vi , &vp_gi , MFCC_FLOOR0_DATA_LEN / 2,

44100);

vp_initialized = true;

}

#define NEGINF -9999.f

/* octave /(8* eighth_octave_lines) x scale and dB y scale */

static void seed_curve(float *seed ,

const float **curves ,

float amp ,

int oc , int n,

int linesper ,float dBoffset){

int i,post1;

int seedptr;

const float *posts ,*curve;

int choice =(int)((amp+dBoffset -P_LEVEL_0)*.1f);

choice=std::max(choice ,0);

choice=std::min(choice,P_LEVELS -1);

posts=curves[choice];

curve=posts +2;

post1=(int)posts [1];

seedptr=oc+(posts[0]-EHMER_OFFSET)*linesper -(linesper >>1);

86 APPENDIX B. SOURCE CODE

for(i=posts [0];i<post1;i++){

if(seedptr >0){

float lin=amp+curve[i];

if(seed[seedptr]<lin)seed[seedptr]=lin;

}

seedptr+= linesper;

if(seedptr >=n)break;

}

}

static void seed_loop(vorbis_look_psy *p,

const float ***curves ,

const float *f,

const float *flr ,

float *seed ,

float specmax){

vorbis_info_psy *vi=p->vi;

long n=p->n,i;

float dBoffset=vi->max_curve_dB -specmax;

/* prime the working vector with peak values */

for(i=0;i<n;i++){

float max=f[i];

long oc=p->octave[i];

while(i+1<n && p->octave[i+1]==oc){

i++;

if(f[i]>max)max=f[i];

}

if(max+6.f>flr[i]){

oc=oc >>p->shiftoc;

if(oc >= P_BANDS)oc=P_BANDS -1;

if(oc <0)oc=0;

seed_curve(seed ,

curves[oc],

max ,

p->octave[i]-p->firstoc ,

p->total_octave_lines ,

p->eighth_octave_lines ,

dBoffset);

}

}

}

static void seed_chase(float *seeds , int linesper , long n){

long posstack[n];

float ampstack[n];

long stack =0;

long pos=0;

B.3. CODE LISTINGS 87

long i;

for(i=0;i<n;i++){

if(stack <2){

posstack[stack]=i;

ampstack[stack ++]=seeds[i];

}else{

while (1){

if(seeds[i]<ampstack[stack -1]){

posstack[stack]=i;

ampstack[stack ++]=seeds[i];

break;

}else{

if(i<posstack[stack -1]+linesper){

if(stack >1 && ampstack[stack -1]<= ampstack[stack -2] &&

i<posstack[stack -2]+ linesper){

/* we completely overlap , making stack -1 irrelevant. pop

it */

stack --;

continue;

}

}

posstack[stack]=i;

ampstack[stack ++]=seeds[i];

break;

}

}

}

}

/* the stack now contains only the positions that are relevant. Scan

’em straight through */

for(i=0;i<stack;i++){

long endpos;

if(i<stack -1 && ampstack[i+1]>ampstack[i]){

endpos=posstack[i+1];

}else{

endpos=posstack[i]+linesper+1; /* +1 is important , else bin 0 is

discarded in short frames */

}

if(endpos >n)endpos=n;

for(;pos <endpos;pos++)

seeds[pos]= ampstack[i];

}

/* there. Linear time. I now remember this was on a problem set I

had in Grad Skool ... I didn’t solve it at the time ;-) */

}

88 APPENDIX B. SOURCE CODE

/* bleaugh , this is more complicated than it needs to be */

#include <stdio.h>

static void max_seeds(vorbis_look_psy *p,

float *seed ,

float *flr){

long n=p->total_octave_lines;

int linesper=p->eighth_octave_lines;

long linpos =0;

long pos;

seed_chase(seed ,linesper ,n); /* for masking */

pos=p->octave [0]-p->firstoc -(linesper >>1);

while(linpos +1<p->n){

float minV=seed[pos];

long end=((p->octave[linpos]+p->octave[linpos +1]) >>1)-p->firstoc;

if(minV >p->vi ->tone_abs_limit)minV=p->vi ->tone_abs_limit;

while(pos+1<=end){

pos++;

if((seed[pos]>NEGINF && seed[pos]<minV) || minV==NEGINF)

minV=seed[pos];

}

end=pos+p->firstoc;

for(;linpos<p->n && p->octave[linpos]<=end;linpos ++)

if(flr[linpos]<minV)flr[linpos]=minV;

}

{

float minV=seed[p->total_octave_lines -1];

for(;linpos<p->n;linpos ++)

if(flr[linpos]<minV)flr[linpos]=minV;

}

}

void _vp_mod_tonemask(vorbis_look_psy *p, float *logfft, float *logmask

, float global_specmax , float local_specmax)

{

int i, n = p->n;

float seed[p->total_octave_lines];

for (i = 0; i < p->total_octave_lines; i++)

seed[i] = NEGINF;

#if 1

for (i = 0; i < n; i++)

logmask[i] = local_specmax + p->vi ->ath_adjatt;

#else

float att = local_specmax + p->vi ->ath_adjatt;

if (att < p->vi ->ath_maxatt)

att = p->vi ->ath_maxatt;

B.3. CODE LISTINGS 89

for (i = 0; i < n; i++)

logmask[i] = p->ath[i] + att;

#endif

/* tone masking */

seed_loop(p, (const float ***)p->tonecurves , logfft , logmask ,

seed , global_specmax);

max_seeds(p, seed , logmask);

}

// End of libvorbisenc code.

vorbis.cpp

// vorbis.cpp -- reads in Vorbis files , using libvorbisfile.

#include <stdio.h>

#include <vorbis/vorbisfile.h>

#include <cassert >

#include "vorbis.h"

void read_vorbis_file(Sample &s, char *filename)

{

int junk __attribute__ ((unused));

OggVorbis_File vf;

unsigned num_read = 0;

s.samples.reserve(5000000);

FILE *fle = fopen(filename , "rb");

if (fle == NULL) {

perror(filename);

exit(1);

}

if (ov_open(fle , &vf , NULL , 0) < 0) {

fprintf(stderr, "Couldn ’t open bitstream\n");

exit(1);

}

for (;;) {

char buf[4096];

short *ptr = (short *)buf;

int ret = ov_read(&vf, buf , 4096, 0, 2, 1, &junk);

if (ret < 0) {

fprintf(stderr , "Error in Vorbis bitstream\n");

exit(1);

}

if (ret == 0)

break;

90 APPENDIX B. SOURCE CODE

assert(ret % 4 == 0);

num_read += ret / 4;

for (int i = 0; i < ret / 2; i += 2) {

s.samples.push_back(0.5 * (double(ptr[i]) +

double(ptr[i+1])));

}

if (num_read >= FEATURE_SAMPLES)

break;

}

s.length = ov_time_total(&vf , -1);

ov_clear(&vf);

}

mp3.cpp

/*

* Simple MP3 decoder using MAD. We use the low -level API (documented

in

* madlld) so we can stop synthesizing PCM and only count time when we

have

* the data we need; a bit more involved , but much faster. Heavily

based

* on madlld.c.

*/

include <stdio.h>

include <assert.h>

include <mad.h>

include "mp3.h"

static inline

signed int scale(mad_fixed_t sample)

{

/* round */

sample += (1L << (MAD_F_FRACBITS - 16));

/* clip */

if (sample >= MAD_F_ONE)

sample = MAD_F_ONE - 1;

else if (sample < -MAD_F_ONE)

sample = -MAD_F_ONE;

/* quantize */

return sample >> (MAD_F_FRACBITS + 1 - 16);

}

// Read in the entire file , which is the simplest way to provide

B.3. CODE LISTINGS 91

// the EOF semantics libmad assumes.

char *gobble_file(char *filename , long *file_len)

{

FILE *fle = fopen(filename , "rb");

if (fle == NULL) {

perror(filename);

exit(1);

}

fseek(fle , 0, SEEK_END);

*file_len = ftell(fle);

char *mp3_buf = new char[* file_len + 8]; // eight guard bytes

rewind(fle);

fread(mp3_buf , *file_len , 1, fle);

fclose(fle);

memset(mp3_buf + *file_len , 0, 8);

return mp3_buf;

}

void read_mp3_file(Sample &s, char *filename)

{

s.samples.reserve(FEATURE_SAMPLES + 44100); // some extra room

unsigned mp3_pos = 0;

long mp3_len;

char *mp3_buf = gobble_file(filename , &mp3_len);

struct mad_stream stream;

struct mad_frame frame;

struct mad_synth synth;

mad_timer_t timer;

mad_stream_init(&stream);

mad_frame_init(&frame);

mad_synth_init(&synth);

mad_timer_reset(&timer);

for (;;) {

// need to fill buffer?

if (stream.buffer == NULL || stream.error ==

MAD_ERROR_BUFLEN) {

if (stream.next_frame != NULL) {

size_t remaining = stream.bufend -

stream.next_frame;

mp3_pos -= remaining;

}

mad_stream_buffer(&stream , (unsigned char *)

mp3_buf + mp3_pos , mp3_len + 8 - mp3_pos);

92 APPENDIX B. SOURCE CODE

stream.error = MAD_ERROR_NONE;

}

if (mad_frame_decode(&frame , &stream)) {

if (MAD_RECOVERABLE(stream.error) && stream.

error == MAD_ERROR_LOSTSYNC && stream.

this_frame == (unsigned char *) mp3_buf +

mp3_len) {

// end of stream

break;

} else {

fprintf(stderr , "mad error. exiting.\n"

);

exit(1);

}

}

mad_timer_add(&timer , frame.header.duration);

if (timer.seconds < 30) {

mad_synth_frame(&synth , &frame);

assert(MAD_NCHANNELS(& frame.header)==2);

for (unsigned i = 0; i < synth.pcm.length; ++i)

{

signed short l, r;

l = scale(synth.pcm.samples[0][i]);

r = scale(synth.pcm.samples[1][i]);

#if 0

/*

* There’s a lot of codec delay in MP3.

This skips

* the first 1105 samples (LAME’s

estimate of the

* delay for our test MP3s) to make

lining up plots

* easier.

*/

static unsigned delayed = 0;

if (++delayed < 1105)

continue;

#endif

s.samples.push_back(0.5 * (double(l) +

double(r)));

}

}

}

delete [] mp3_buf;

B.3. CODE LISTINGS 93

s.length = double(timer.seconds) + double(timer.fraction) /

double(MAD_TIMER_RESOLUTION);

}

flac.cpp

// flac.cpp -- reads in FLAC files using libflac (1.1.4 or newer).

#include <stdio.h>

#include <math.h>

#include <assert.h>

#include <FLAC/all.h>

#include "flac.h"

extern "C" FLAC__StreamDecoderWriteStatus flac_write_callback(const

FLAC__StreamDecoder *decoder , const FLAC__Frame *frame , const

FLAC__int32 *const buffer [], void *client_data)

{

Sample *s = (Sample *) client_data;

assert(frame ->header.channels == 2);

assert(frame ->header.bits_per_sample == 16);

assert(frame ->header.sample_rate == 44100);

const FLAC__int32 *lptr = buffer [0], *rptr = buffer [1];

for (unsigned i = 0; i < frame ->header.blocksize; ++i) {

s->samples.push_back(0.5 * (double (*lptr++) + double (*

rptr++)));

}

return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE;

}

extern "C" void flac_metadata_callback(const FLAC__StreamDecoder *

decoder , const FLAC__StreamMetadata *metadata , void *client_data)

{

if (metadata ->type != FLAC__METADATA_TYPE_STREAMINFO)

return;

Sample *s = (Sample *) client_data;

s->length = metadata ->data.stream_info.total_samples / 44100.0;

}

extern "C" void flac_error_callback(const FLAC__StreamDecoder *decoder ,

FLAC__StreamDecoderErrorStatus status , void *client_data)

{

fprintf(stderr , "FLAC status %d, exiting\n", status);

exit(1);

}

94 APPENDIX B. SOURCE CODE

void read_flac_file(Sample &s, char *filename)

{

s.samples.reserve(5000000);

s.length = -1.0;

FILE *fle = fopen(filename , "rb");

if (fle == NULL) {

perror(filename);

exit(1);

}

FLAC__StreamDecoder *dec = FLAC__stream_decoder_new ();

if (FLAC__stream_decoder_init_FILE (dec , fle ,

flac_write_callback , flac_metadata_callback ,

flac_error_callback , &s) !=

FLAC__STREAM_DECODER_INIT_STATUS_OK) {

fprintf(stderr , " FLAC__stream_decoder_init_FILE failed

.\n");

exit(1);

}

/*

* Decode until we have enough samples _and_ we know the length

. Hopefully

* the length will come from metadata; if not , we will decode

the entire

* stream to memory. This could be avoided , but it’s not a use -

case we need

* to worry particularly about in this context.

*/

while (s.samples.size() < FEATURE_SAMPLES || s.length < 0.0) {

if (FLAC__stream_decoder_get_state (dec) ==

FLAC__STREAM_DECODER_END_OF_STREAM)

break;

if (FLAC__stream_decoder_process_single (dec) == false)

{

fprintf(stderr, "

FLAC__stream_decoder_process_until_end_of_stream

 failed .\n");

exit(1);

}

}

FLAC__stream_decoder_finish(dec);

FLAC__stream_decoder_delete(dec);

}

B.3.2 Voronoi/closest-match searcher

voronoi.cpp

// Simple descriptor tester -- tests a given descriptor configuration

// using the nearest - neighbor test described in the report.

B.3. CODE LISTINGS 95

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <stdlib.h>

#include <getopt.h>

#include <map >

#include <string >

#include <vector >

#include <algorithm >

// Basic data structures.

typedef std::map <std::string , std::vector <double> > descriptor;

struct song {

descriptor desc;

unsigned file_num , subfile_num;

std::string filename;

unsigned class_id;

};

// The collection of all song data , unprocessed.

std::vector<song > songs;

// All vectors for references (r) and others (s). The "trans" versions

// are transformed by the covariance matrix (inv_cov_mat , below), if

any.

// rnum and snum are counts.

double *rvec , *svec , *rtransvec , *stransvec;

int *rnum , *snum;

// How many references are there in all? (Non - references is songs.size

()

// minus this.)

unsigned num_ref = 0;

// Various filenames and options.

static std::string output_data_filename;

static std::string output_class_filename;

static std::string output_tex_filename;

static std::string output_raw_filename;

static std::string input_matrix_filename;

static std::string input_center_filename;

static std::string input_scale_filename;

static std::string input_inv_cov_filename;

static bool show_misclassified = false;

static std::string dump_filename;

static bool do_read_dump = false , do_write_dump = false;

static int num_dimensions = -1;

// Various matrices , usually read from tet files.

double *rot_mat = NULL , *center = NULL , *scale = NULL , *inv_cov_mat =

NULL;

96 APPENDIX B. SOURCE CODE

// Options to be given to getopt_long().

const static struct option longopts[] = {

{ "features", required_argument , NULL , ’f’ },

{ "output -data", required_argument , NULL , ’o’ },

{ "output -class", required_argument , NULL , ’O’ },

{ "output -tex", required_argument , NULL , ’x’ },

{ "output -raw", required_argument , NULL , ’X’ },

{ "show -misclassified", no_argument , NULL , ’m’ },

{ "write -dump", required_argument , NULL , ’w’ },

{ "read -dump", required_argument , NULL , ’r’ },

{ "num -dimensions", required_argument , NULL , ’d’ },

{ "transform -matrix", required_argument , NULL , ’t’ },

{ "transform -center", required_argument , NULL , ’c’ },

{ "transform -scale", required_argument , NULL , ’s’ },

{ "inv -covariance -matrix", required_argument , NULL , ’i’ },

};

// Read a descriptor file as generated by the feature extractor.

void read_file(const char * const filename)

{

static unsigned file_num = 0;

unsigned subfile_num = 0;

std:: string song_filename;

descriptor d;

FILE *f = fopen(filename , "r");

if (f == NULL) {

perror(filename);

exit(1);

}

for (;;) {

char buf[4096];

char *ptr = fgets(buf , 4096, f);

if (ptr == NULL) {

fprintf(stderr, "%s: Unexpected EOF\n",

filename);

exit(1);

}

// strip trailing EOL

ptr = strchr(buf , ’\n’);

if (ptr != NULL)

*ptr = ’\0’;

// EOF marker

if (strcmp(buf , "END") == 0)

break;

// end -of -record marker

if (strlen(buf) == 0) {

B.3. CODE LISTINGS 97

song s;

s.file_num = file_num;

s.subfile_num = subfile_num++;

s.desc = d;

s.filename = song_filename;

// Hard -coded class list

if (strstr(song_filename.c_str(), ".flac") !=

NULL) {

s.class_id = 0;

} else if (strstr(song_filename.c_str(), ".128

kbps.mp3") != NULL) {

s.class_id = 1;

} else if (strstr(song_filename.c_str(), ".192

kbps.mp3") != NULL) {

s.class_id = 2;

} else if (strstr(song_filename.c_str(), ".256

kbps.mp3") != NULL) {

s.class_id = 3;

} else if (strstr(song_filename.c_str(), ".64

kbps.ogg") != NULL) {

s.class_id = 4;

} else if (strstr(song_filename.c_str(), ".128

kbps.ogg") != NULL) {

s.class_id = 5;

} else if (strstr(song_filename.c_str(), ".192

kbps.ogg") != NULL) {

s.class_id = 6;

} else {

fprintf(stderr , "Unable to classify

file ’%s ’\n",

song_filename.c_str());

exit(1);

}

songs.push_back(s);

d = descriptor();

continue;

}

ptr = strchr(buf , ’=’);

if (ptr == NULL) {

fprintf(stderr , "%s: Malformed line ’%s ’\n",

filename , buf);

exit(1);

}

*ptr = ’\0’;

char *key = buf;

char *value = ptr + 1;

if (strcmp(key , "filename") == 0) {

98 APPENDIX B. SOURCE CODE

song_filename = value;

continue;

}

std::vector <double> values;

values.reserve(16);

ptr = strtok(value , ",");

while (ptr != NULL) {

double v = atof(ptr);

// some fiddling that should really be done in

descriptor.cpp

if (strcmp(key , "mfcc_moment2") == 0 || strcmp(

key , " mfcc_f1_moment2") == 0)

v = sqrt(v);

else if (strcmp(key , "mfcc_moment3") == 0 ||

strcmp(key , "mfcc_f1_moment3") == 0)

v = cbrt(v);

else if (strcmp(key , "mfcc_moment4") == 0 ||

strcmp(key , "mfcc_f1_moment4") == 0)

v = pow(v, 1.0/4.0);

else if (strcmp(key , "mfcc_moment5") == 0 ||

strcmp(key , "mfcc_f1_moment5") == 0)

v = (v < 0.0) ? -pow(-v, 1.0/5.0) : pow

(v, 1.0/5.0);

values.push_back(v);

ptr = strtok(NULL , ",");

}

d.insert(std::make_pair(key , values));

}

fclose(f);

++file_num;

if (file_num % 64 == 0)

fprintf(stderr , "Reading: %u\r", songs.size());

}

// Read several files -- the file names are first read from a file list

,

// and each file name is then passed to read_file().

void read_filelist(char *filename)

{

FILE *f = fopen(filename , "r");

if (f == NULL) {

perror(filename);

exit(1);

}

B.3. CODE LISTINGS 99

for (;;) {

char buf[4096];

char *ptr = fgets(buf , 4096, f);

if (ptr == NULL)

break;

// strip trailing EOL

ptr = strchr(buf , ’\n’);

if (ptr != NULL)

*ptr = ’\0’;

read_file(buf);

}

fclose(f);

}

// Extract a single feature from a "song" struct. A feature can either

// be of the form "name[index]", or just "name" (in which case index

// is taken to be zero). No error checking is performed , in particular

// not on out -of -bounds indices.

double extract_feature(song &s, std::string feature)

{

char buf[256];

unsigned i = feature.find_first_of("[");

if (i == std::string ::npos) {

return s.desc[feature][0];

} else {

strncpy(buf , feature.c_str(), i);

buf[i] = ’\0’;

return s.desc[buf][atoi(feature.c_str() + i + 1)];

}

}

// Euclidean distance between two vectors of dimensionality LEN.

double distance(double *p1 , double *p2 , unsigned len)

{

double sum = 0.0;

for (unsigned i = 0; i < len; ++i, ++p1, ++p2) {

sum += (*p2 - *p1) * (*p2 - *p1);

}

return sum;

}

// Mahalanobis distance between two vectors of dimensionality LEN. p1t

and p2t

// are taken to be transformed (by the inverse covariance matrix)

versions of p1

// and p2, respectively.

double distancem(double *p1, double *p2 , double *p1t , double *p2t ,

100 APPENDIX B. SOURCE CODE

unsigned len)

{

double sum = 0.0;

for (unsigned i = 0; i < len; ++i, ++p1 , ++p2 , ++p1t , ++p2t) {

sum += (*p2 - *p1) * (*p2t - *p1t);

}

return sum;

}

// Split a feature string (feature[1],other_feature[0],etc.) into a

list of single

// feature names.

std::vector <std::string > parse_features(const char * const

feature_string)

{

std::vector<std::string > features;

char *fs = strdup(feature_string);

char *ptr = strtok(fs, ",");

while (ptr != NULL) {

features.push_back(ptr);

ptr = strtok(NULL , ",");

}

free(fs);

return features;

}

// From the list of songs and the list of desired features , create a

simple

// two -dimensional arrays of just the features we need for processing.

This

// structure is much smaller , simpler and faster to work on than the

general -

// purpose "song" structure.

void extract_features(const std::vector<std::string > &features)

{

double tmp[features.size()];

// count the number of references

for (unsigned i = 0; i < songs.size(); ++i) {

if (songs[i]. class_id == 0)

++ num_ref;

}

// extract the feature vectors

rvec = new double[num_ref * features.size()];

svec = new double [(songs.size() - num_ref) * features.size()];

rnum = new int[num_ref];

snum = new int[songs.size() - num_ref];

B.3. CODE LISTINGS 101

FILE *fp = NULL , *cl = NULL;

if (output_data_filename.size() > 0) {

fp = fopen(output_data_filename.c_str(), "w");

if (fp == NULL) {

perror(output_data_filename.c_str());

exit(1);

}

for (unsigned j = 0; j < features.size(); ++j) {

fprintf(fp, "%s", features[j].c_str());

if (j == features.size() - 1)

fprintf(fp , "\n");

else

fprintf(fp , ",");

}

}

if (output_class_filename.size() > 0) {

cl = fopen(output_class_filename.c_str(), "w");

if (cl == NULL) {

perror(output_class_filename.c_str());

exit(1);

}

fprintf(cl , "class\n");

}

for (unsigned i = 0, m = 0, n = 0; i < songs.size(); ++i) {

double *ptr;

if (songs[i].class_id == 0) {

ptr = rvec + m * features.size();

rnum[m] = i;

++m;

} else {

ptr = svec + n * features.size();

snum[n] = i;

++n;

}

for (unsigned j = 0; j < features.size(); ++j) {

ptr[j] = extract_feature(songs[i], features[j])

;

}

// Apply centering , scaling and rotation if applicable.

if (center) {

for (unsigned j = 0; j < features.size(); ++j)

{

ptr[j] -= center[j];

}

}

if (scale) {

for (unsigned j = 0; j < features.size(); ++j)

{

102 APPENDIX B. SOURCE CODE

ptr[j] *= scale[j];

}

}

if (rot_mat) {

for (unsigned j = 0; j < features.size(); ++j)

{

tmp[j] = 0.0;

for (unsigned k = 0; k < features.size

(); ++k) {

tmp[j] += rot_mat[j * features.

size() + k] * ptr[j];

}

}

memcpy(ptr , tmp , features.size() * sizeof(

double));

}

if (fp) {

for (unsigned j = 0; j < features.size(); ++j)

{

fprintf(fp, "%f", ptr[j]);

if (j == features.size() - 1)

fprintf(fp , "\n");

else

fprintf(fp , ",");

}

}

if (cl) {

fprintf(cl , "%u\n", songs[i].file_num);

}

}

if (fp)

fclose(fp);

if (cl)

fclose(cl);

}

// Precalculate transformed versions of all vectors , given an inverse

covariance

// matrix.

double *precalc_transformed_features (double *vecs , double *matrix,

unsigned num_vec , unsigned num_features)

{

double *ret = new double[num_vec * num_features];

for (unsigned i = 0; i < num_vec; ++i) {

for (unsigned j = 0; j < num_features; ++j) {

double sum = 0.0;

for (unsigned k = 0; k < num_features; ++k) {

sum += vecs[i * num_features + k] *

matrix[j * num_features + k];

B.3. CODE LISTINGS 103

}

ret[i * num_features + j] = sum;

}

}

return ret;

}

// Perform the actual classification , matching all non -references

against all

// references.

void do_search(unsigned num_features , unsigned stride)

{

// nearest -neighbor search

unsigned correct = 0, total = 0;

unsigned correct_class[7], total_class[7];

for (unsigned i = 0; i < 7; ++i) {

correct_class[i] = total_class[i] = 0;

}

for (unsigned i = 0; i < (songs.size() - num_ref); ++i) {

int best_match = -1;

double best_match_val = HUGE_VAL;

for (unsigned j = 0; j < num_ref; ++j) {

double this_match_val;

if (rtransvec == NULL) {

// Euclidian distance

this_match_val = distance(svec + i *

stride , rvec + j * stride,

num_features);

} else {

// Mahalanobis distance

this_match_val = distancem(svec + i *

stride , rvec + j * stride, stransvec

+ i * stride , rtransvec + j *

stride , num_features);

}

if (best_match == -1 || this_match_val <

best_match_val) {

best_match = j;

best_match_val = this_match_val;

}

}

if (songs[snum[i]].file_num == songs[rnum[best_match]].

file_num) {

++correct;

++ correct_class[songs[snum[i]].class_id];

104 APPENDIX B. SOURCE CODE

} else {

if (show_misclassified)

fprintf(stderr , "Misclassified: ’%s’ =>

 ’%s ’\n", songs[snum[i]].filename.

c_str(),

songs[rnum[best_match]].

filename.c_str ());

}

++total;

++ total_class[songs[snum[i]].class_id];

if (total % 64 == 0)

fprintf(stderr, "%5u/%5u (%5.1f%%)... \r",

correct , total , (100.0 * correct / total));

}

if (output_tex_filename.size() > 0) {

FILE *f = fopen(output_tex_filename.c_str(), "wb");

if (f == NULL) {

perror(output_tex_filename.c_str());

exit(1);

}

for (unsigned i = 1; i <= 6; ++i) {

fprintf(f, "%6.1f\\%% & ", 100.0 * (1.0 -

correct_class[i] / total_class[i]));

}

fprintf(f, "%6.1f\\%% \n", 100.0 * (1.0 - correct /

total));

fclose(f);

}

if (output_raw_filename.size() > 0) {

FILE *f = fopen(output_raw_filename.c_str(), "wb");

if (f == NULL) {

perror(output_raw_filename.c_str());

exit(1);

}

for (unsigned i = 1; i <= 6; ++i) {

fprintf(f, "%u %u\n", correct_class[i],

total_class[i]);

}

fprintf(f, "%u %u\n", correct , total);

fclose(f);

}

printf("Classifier was right %.1f%% of the time (%u/%u).\n",

(100.0 * correct / total), correct , total);

}

B.3. CODE LISTINGS 105

// Serializes the "songs" array down to a single file for quicker

reading back.

void write_dump(const std::string &filename)

{

FILE *f = fopen(filename.c_str(), "wb");

if (f == NULL) {

perror(filename.c_str());

exit(1);

}

unsigned num_songs = songs.size();

fwrite (&num_songs , sizeof(num_songs), 1, f);

for (std::vector<song >:: const_iterator i = songs.begin(); i !=

songs.end(); ++i) {

fwrite (&i->file_num , sizeof(i->file_num), 1, f);

fwrite (&i->subfile_num , sizeof(i->subfile_num), 1, f);

fwrite (&i->class_id , sizeof(i->class_id), 1, f);

unsigned filename_len = i->filename.size();

fwrite (&filename_len , sizeof(filename_len), 1, f);

fwrite(i->filename.c_str(), filename_len , 1, f);

unsigned num_descriptors = i->desc.size();

fwrite (& num_descriptors , sizeof(num_descriptors), 1, f)

;

for (std::map <std::string , std::vector<double> >::

const_iterator j = i->desc.begin(); j != i->desc.end

(); ++j) {

unsigned key_len = j->first.size();

fwrite (&key_len , sizeof(key_len), 1, f);

fwrite(j->first.c_str(), key_len , 1, f);

unsigned num_elem = j->second.size();

fwrite (&num_elem , sizeof(num_elem), 1, f);

for (std::vector<double >::const_iterator k = j

->second.begin(); k != j->second.end(); ++k)

{

fwrite (&*k, sizeof (*k), 1, f);

}

}

}

fclose(f);

}

// Reads the "songs" array back from a file created by write_dump().

void read_dump(const std::string &filename)

{

char buf[4096]; // vulnerable to overflows , but we’re only

106 APPENDIX B. SOURCE CODE

reading in trusted data anyhow

FILE *f = fopen(filename.c_str(), "rb");

if (f == NULL) {

perror(filename.c_str());

exit(1);

}

unsigned num_songs;

fread(&num_songs , sizeof(num_songs), 1, f);

songs.reserve(num_songs);

for (unsigned i = 0; i < num_songs; ++i) {

song s;

fread(&s.file_num , sizeof(s.file_num), 1, f);

fread(&s.subfile_num , sizeof(s.subfile_num), 1, f);

fread(&s.class_id , sizeof(s.class_id), 1, f);

unsigned filename_len;

fread(& filename_len , sizeof(filename_len), 1, f);

fread(buf , filename_len , 1, f);

buf[filename_len] = ’\0’;

s.filename = buf;

unsigned num_descriptors;

fread(& num_descriptors , sizeof(num_descriptors), 1, f);

for (unsigned j = 0; j < num_descriptors; ++j) {

unsigned key_len;

fread(&key_len , sizeof(key_len), 1, f);

fread(buf , key_len , 1, f);

buf[key_len] = ’\0’;

std:: string key = buf;

unsigned num_elem;

fread(&num_elem , sizeof(num_elem), 1, f);

std::vector<double> elem(num_elem);

for (unsigned k = 0; k < num_elem; ++k) {

double tmp;

fread(&tmp , sizeof(tmp), 1, f);

elem[k] = tmp;

}

s.desc.insert(std::make_pair(key , elem));

}

songs.push_back(s);

}

B.3. CODE LISTINGS 107

fclose(f);

fprintf(stderr , "Read %u songs from dump file.\n", songs.size()

);

}

// Allocate and read a NUM_ELEM -matrix from a text file.

void read_matrix(double **mat , const std::string &filename , unsigned

num_elem)

{

FILE *f = fopen(filename.c_str(), "r");

if (f == NULL) {

perror(filename.c_str());

exit(1);

}

*mat = new double[num_elem];

for (unsigned i = 0; i < num_elem; ++i) {

double tmp;

if (fscanf(f, "%lf", &tmp) == 0) {

fprintf(stderr , "%s contains only %u elements ,

expected %u\n",

filename.c_str (), i, num_elem);

exit(1);

}

(*mat)[i] = tmp;

}

double tmp;

if (fscanf(f, "%lf", &tmp) == 0) {

fprintf(stderr, "%s contains more than the expected %u

elements\n",

filename.c_str(), num_elem);

exit(1);

}

fclose(f);

}

int main(int argc , char **argv)

{

std::vector <std::string> features;

songs.reserve(70000);

int option_index = 0;

for (;;) {

int c = getopt_long(argc , argv , "f:o:O:x:X:w:r:d:t:c:s:

i:m", longopts , &option_index);

if (c == -1)

break;

108 APPENDIX B. SOURCE CODE

switch (c) {

case ’f’:

if (features.size() > 0) {

fprintf(stderr , "-f given twice;

exiting.\n");

exit(1);

}

features = parse_features(optarg);

break;

case ’o’:

output_data_filename = optarg;

break;

case ’O’:

output_class_filename = optarg;

break;

case ’x’:

output_tex_filename = optarg;

break;

case ’X’:

output_raw_filename = optarg;

break;

case ’w’:

dump_filename = optarg;

do_write_dump = true;

break;

case ’r’:

dump_filename = optarg;

do_read_dump = true;

break;

case ’m’:

show_misclassified = true;

break;

case ’d’:

num_dimensions = atoi(optarg);

break;

case ’t’:

input_matrix_filename = optarg;

break;

case ’c’:

input_center_filename = optarg;

break;

case ’s’:

input_scale_filename = optarg;

break;

case ’i’:

input_inv_cov_filename = optarg;

break;

default:

fprintf(stderr, "Unknown option character ’%c ’\

n", c);

exit(1);

B.3. CODE LISTINGS 109

}

}

if (features.size() == 0 || (optind >= argc && !do_read_dump))

{

fprintf(stderr, "Usage: voronoi -f FEATURELIST FILES

...");

exit(1);

}

if (do_read_dump && do_write_dump) {

fprintf(stderr, "Error: --read -dump and --write -dump

can not both be specified\n");

exit(1);

}

if (do_read_dump) {

read_dump(dump_filename);

}

while (optind < argc) {

if (argv[optind][0] == ’@’) {

read_filelist(argv[optind] + 1);

} else {

read_file(argv[optind]);

}

++ optind;

}

if (do_write_dump) {

write_dump(dump_filename);

}

if (input_matrix_filename.size() > 0) {

read_matrix(&rot_mat , input_matrix_filename , features.

size() * features.size());

}

if (input_center_filename.size() > 0) {

read_matrix(¢er , input_center_filename , features.

size());

}

if (input_scale_filename.size() > 0) {

read_matrix(&scale , input_scale_filename , features.size

());

for (unsigned i = 0; i < features.size(); ++i) {

scale[i] = 1.0 / scale[i];

}

}

extract_features(features);

if (input_inv_cov_filename.size() > 0) {

read_matrix(&inv_cov_mat , input_inv_cov_filename ,

110 APPENDIX B. SOURCE CODE

features.size() * features.size());

rtransvec = precalc_transformed_features (rvec ,

inv_cov_mat , num_ref , features.size());

stransvec = precalc_transformed_features (svec ,

inv_cov_mat , songs.size() - num_ref , features.size()

);

}

if (num_dimensions == -1) {

do_search(features.size(), features.size());

} else if (num_dimensions > 0) {

do_search(std::min((unsigned)num_dimensions , features.

size()), features.size());

} else {

fprintf(stderr , "No classification done.\n");

}

}

Appendix C

Album list

This chapter contains the final album list that was used in the project (the complete track list
was deemed too verbose to list), with the number of tracks used from each. Note that as the
metadata was automatically added at ripping time, minor errors and inconsistencies may be
present.

• 10,000 Maniacs – Blind Man’s Zoo (11 tracks), 10,000 Maniacs – In My Tribe (10 tracks), 10,000
Maniacs – MTV Unplugged (14 tracks), 10,000 Maniacs – Our Time In Eden (13 tracks), 10,000
Maniacs – What’s the Matter Here (2 tracks), 10000 Maniacs – The Wishing Chair (15 tracks)

• A-ha – Memorial Beach (10 tracks), Abbaye de Sylvanès – Salve Regina des bergers du Rouergue (2
tracks), Abercrombie Holland DeJohnette – Gateway (6 tracks), Alanis Morissette – Jagged Little
Pill (13 tracks), Ali Farka Toure – The Source (10 tracks), Alistair Cochrane – Vital Interests (7
tracks), Alnæs Værnes Reiersrud Klakegg – 4G (13 tracks), Amsterdam Symphony Orchestra –
Ludwig von Beethoven, Symphony No. 3 and 9 (5 tracks), Anderson, Bruford, Wakeman, Howe –
Anderson, Bruford, Wakeman, Howe (9 tracks), Andrew Charles Newcombe, David Scott Hamnes
– Mantra (14 tracks), Anew Voice – Anew Voice (10 tracks), Anita Baker – Rhythm Of Love (12
tracks), Anne Grete Preus – Alfabet (13 tracks), Anne Grete Preus – Fullmåne (14 tracks), Anne
Grete Preus – Lav sol! Høy himmel. (9 tracks), Anne Grete Preus – Millimeter (9 tracks), Anne
Grete Preus – Månens elev (promo CD-single) (one track), Anne Grete Preus – N̊ar dagen roper
(11 tracks), Anne Grete Preus – Og høsten kommer tidsnok (9 tracks), Anne Sofie Von Otter
Meets Elvis Costello – For The Stars (18 tracks), Anneli Drecker – Tundra (11 tracks), Antonin
Dvorak – Cello Concerto (Truls Mørk) (12 tracks), Antonsen, Marianne – Pickin’ up the spirit (13
tracks), Aqua – Aquarius (12 tracks), Arild Andersen – Arv (16 tracks), Arild Andersen – If you
Look Far Enough (12 tracks), Arild Andersen – Kristin Lavransdatter (18 tracks), Arild Andersen
– Sagn (15 tracks), Atomic Swing – A car crash in the blue (10 tracks)

• Baby Blue – Baby Blue (11 tracks), Beatles – Live At The BBC - CD2 (35 tracks), Beatles –
Revolver (14 tracks), Beatles, The – Abbey Road (17 tracks), Bel Canto – Magic Box (11 tracks),
Bel Canto – Shimmering, Warm & Bright (10 tracks), Bendik Hofseth – IX (11 tracks), Benny
Green & Russell Malone – Jazz at the Bistro (15 tracks), Bette Midler – Beaches Soundtrack (10
tracks), Big Country – Peace In Our Time (11 tracks), Big Country – The Seer (10 tracks), Bill
Evans – At the Montreux Jazz Festival (11 tracks), Billy Joel – Storm Front (10 tracks), Bjørn
Alterhaug – A Ballad (11 tracks), Bjørn Eidsv̊ag – Allemannsland (11 tracks), Bjørn Eidsv̊ag –
Alt du vil ha (14 tracks), Bjørn Eidsv̊ag – Landet lenger bak (13 tracks), Bjørn Eidsv̊ag – P̊a svai
(13 tracks), Bjørn Eidsv̊ag – Tapt uskyld (12 tracks), Bob Dylan – Bob Dylan at Budokan (CD
1) (11 tracks), Bob Dylan – Bob Dylan at Budokan (CD 2) (11 tracks), Bob Gaudio – Little Shop
Of Horrors (13 tracks), Bob Geldof – Deep In The Heart Of Nowhere (14 tracks), Bob Geldof

111

112 APPENDIX C. ALBUM LIST

– Room 19 (Sha La La La Lee) [Maxi] (4 tracks), Bob Geldof – The Happy Club (12 tracks),
BobbyZ – BobbyZ (9 tracks), Boomtown Rats – Greatest Hits (10 tracks), Bremnes, Kari – G̊ate
ved g̊ate (10 tracks), Bremnes, Kari – Mitt Ville Hjerte (12 tracks), Bremnes, Kari – Månestein
(11 tracks), Bremnes, Kari – Svarta Bjørn (10 tracks), Bruce Springsteen – The Ghost Of Tom
Joad (12 tracks), Brunborg - Wesseltoft - Jormin - Christensen – Tid (9 tracks), Bud Powell –
Jazz At Massey Hall, Vol. 2 (16 tracks), B̊ard Wessel – Atlantic Traveller (12 tracks)

• Camel – Music Inspired By The Snow Goose 2002 Remastered Expand (18 tracks), Carlos Santana
- Mahavishnu John McLaughlin – Love Devotion Surrender (7 tracks), Carola – Blott En Dag (11
tracks), Charles Mingus – Mingus Ah Um (11 tracks), Charles Mingus – Mingus At Antibes (6
tracks), Charles Mingus – Mingus Mingus Mingus Mingus Mingus (8 tracks), Charles Mingus –
New Tijuana Moods (9 tracks), Charlie Parker – Charlie Parker At Storyville (9 tracks), Chick
Corea Electric Band – Light Years (12 tracks), Christopher Hogwood – The Academy of Ancient
Music (12 tracks), Clawfinger – Warfair (4 tracks), Codona - Walcott, Cherry & Vasconcelos –
Codona II (6 tracks), Cornelis Vreeswijk – Guldkorn Fr̊an Mäster Cees Memoarer (19 tracks),
Cornelis Vreeswijk – Guldkorn Fr̊an Mäster Cees Memoarer Vol. 2 (20 tracks), Cornelis Vreeswijk
– Mäster Cees Memoarer - Vol. 3 (23 tracks), Cornelis Vreeswijk – Mäster Cees Memoarer - Vol. 4
(25 tracks), Cornelis Vreeswijk – Mäster Cees Memoarer - Vol. 5 (28 tracks), Count Basie, Oscar
Peterson – The Timekeepers: Count Basie Meets Oscar Peterson (7 tracks), Cowboy Junkies –
Pale Sun, Crescent Moon (12 tracks), Cowboy Junkies – The Trinity Session (12 tracks)

• Dalbello – whomanfoursays (9 tracks), Dance With A Stranger – Look What You’ve Done (11
tracks), Dave Holland Quartet – Conference Of The Birds (6 tracks), Dave Stewart and the
Spiritual Cowboys – Spiritual Cowboys 1990 - about the album (23 tracks), David Holland – Life
Cycle (11 tracks), David Motion and Sally Potter – Orlando (16 tracks), David Sanborn – David
Sanborn (8 tracks), Del Amitri – Change Everything (12 tracks), deLillos – Enda mere (4 tracks),
deLillos – Før var det morsomt med sne (14 tracks), deLillos – Hjernen Er Alene (20 tracks),
deLillos – Suser avg̊arde (14 tracks), Delillos – Svett Smil (14 tracks), deLillos – Sveve over byen
(Re Mix) (4 tracks), deLillos – Varme Mennesker (12 tracks), Depeche Mode – Exciter (13 tracks),
Depeche Mode – Only When I Lose Myself (Maxi) (3 tracks), Depeche Mode – Ultra (12 tracks),
Di derre – Jenter & S̊ann - 11 sanger om jenter og én om s̊ann. (12 tracks), Dire Straits – Love
Over Gold (5 tracks), Dire Straits – Money For Nothing (12 tracks), Disney Characters – Disney
Presents A Family Christmas (18 tracks), Dolly Parton – Legends (Disc 1) (15 tracks), Dolly
Parton – Legends (Disc 2) (16 tracks), Dolly Parton – Legends (Disc 3) (16 tracks), Dolly Parton
– Ultimate Dolly Parton (20 tracks), Doors – Waiting For The Sun (11 tracks), Douglas Wood
– Deep Woods (11 tracks), Dronning Mauds Land – Dronning Mauds Land (10 tracks), Duke
Ellington & John Coltrane – Duke Ellington & John Coltrane (7 tracks)

• Eddie Cochran – Lil’ Bit Of Gold (4 tracks), Edie Brickell & New Bohemians – Shooting Rubber-
bands at the Stars (12 tracks), Edvard Hoem, Henning Sommerro, Hildegun Riise, Voskresenije –
Den fattige Gud - Salmar av Edvard Hoem (12 tracks), Elgar - LSO - Barbirolli - Baker – Elgar
Cello Concerto in E minor, Op.85 - Sea Pictures Op.37 (9 tracks), Ella Fitzgerald – 16 Greatest
Hits (17 tracks), Ella Fitzgerald – The Harold Arlen Songbook (Volume One) (13 tracks), Ella
Fitzgerald & Louis Armstrong – Ella & Louis Again (12 tracks), Elton John – Reg Strikes Back
(10 tracks), Elvis Costello – Deep Dark Truthful Mirror (4 tracks), Elvis Costello – Mighty Like
A Rose (14 tracks), Elvis Costello – Spike (14 tracks), Elvis Costello and the Attractions – Get
Happy!! (20 tracks), Elvis Costello and The Brodsky Quartet – The Juliet Letters (20 tracks),
Enya – Amarantine (12 tracks), Enya – How Can I Keep From Singing (3 tracks), Enya – Shep-
herd Moons (12 tracks), Enya – Watermark (11 tracks), Erasure – Chorus (10 tracks), Eric Leeds
– Times Squared (11 tracks), Everything But The Girl – Idlewild (11 tracks), Everything But
The Girl – Missing (The remix EP) (4 tracks), Extended Noise – Slow but suden Langsam aber
plötzlich (9 tracks)

113

• Fairground Attraction – A smile in a whisper (4 tracks), Fairground Attraction – Original Hit
Singles (4 tracks), Ferenc Snetberger – Nomad (10 tracks), Fine Young Cannibals – The Raw &
The Cooked (10 tracks), Focus – Live at the BBC (9 tracks), Forskjellige artister – Perleporten
(Frelsesarmeen) (14 tracks), Four Men and a Dog – Barking Mad (13 tracks), Fra Lippo Lippi
– The Colour Album (9 tracks), Francis Lai, Philippe Servain – La Belle Histoire (16 tracks),
Frankie Goes To Hollywood – Relax [Maxi CD] (6 tracks), Frelsesarmeen – Stolpesko (11 tracks),
Frode Alnes, Arild Andersen, Stian Carstensen – Julegløggen (16 tracks), Frøydis Armand, Stein
Mehren & Ketil Bjørnstad – For den som elsker (15 tracks)

• Gabrielle – Find Your Way (10 tracks), Garbarek Jan – Visible World (15 tracks), Gateway –
Homecoming (9 tracks), Geirr Lystrup – Samme gamle greia - nye sanger om v̊ar og kjærlighet (12
tracks), Gentle Giant – Acquiring The Taste (8 tracks), Gentle Giant – Gentle Giant (7 tracks),
Gentle Giant – Octopus (8 tracks), Gentle Giant – Three Friends (6 tracks), George Frideric
Händel – Messiah (CD1) (15 tracks), George Frideric Händel – Messiah (CD2) (15 tracks), George
Harrison – When We Was Fab (4 tracks), George Michael – Listen Without Prejudice Vol. 1 (10
tracks), Gloria Estefan – Cuts Both Ways (12 tracks), Grieg - Dreier – Peer Gynt, incidental music
(17 tracks), Grieg - Dreier – Peer Gynt, incidental music (CD2) (13 tracks), Grieg – Peer Gynt
(11 tracks)

• Halvdan Sivertsen – Frelsesarmeens Juleplate (12 tracks), Hothouse Flowers – Home (14 tracks),
Händel, Georg Friedrich – Wassermusik & Feuerwerksmusik (CD1) (18 tracks)

• Indigo Girls – Rites Of Passage (13 tracks), Ivar Antonsen – Double Circle (11 tracks), Iver Kleive
– Alle Menschen müssen sterben (5 tracks), Iver Kleive – Hyrdenes Tilbedelse - Meditasjoner over
kjente julesanger (15 tracks), Iver Klieve & Knut Reiersrud – N̊ade (one track)

• J. S. Bach – Toccata (Peter Hurford) (4 tracks), J.A.C. Redford – Oliver & Company (11 tracks),
Jacob Young – Evening Falls (9 tracks), James Ingram – Always You (10 tracks), Jamiroquai –
The Return Of The Space Cowboy (10 tracks), Jan Akkerman & Thijs Van Leer – Focus (7 tracks),
Jan Eggum – Eggum (10 tracks), Jan Eggum – Underveis (11 tracks), Jan Garbarek - Ustad Fateh
Ali Khan – Ragas And Sagas (5 tracks), Jan Garbarek – All Those Born With Wings (6 tracks),
Jan Garbarek – Dis (6 tracks), Jardar Eggesbø Abrahamsen – Noko (19 tracks), Jarrett, Keith
– Paris Concert (3 tracks), Javed Bashir, Sondre Bratland – Dialogue (13 tracks), Jean-Michel
Jarre – Musik aus Zeit und Raum (13 tracks), Jeff Lynne – Armchair Theatre (11 tracks), Jethro
Tull – 20 Years Of Jethro Tull (21 tracks), Jethro Tull – In Concert (10 tracks), Jethro Tull –
This Was (10 tracks), Jimi Hendrix – Are You Experienced (11 tracks), Jimi Hendrix – The Cry of
Love (10 tracks), Jimi Hendrix – War Heroes (9 tracks), Jmre Szabo, Hans-Christoph Becker-Foss –
Romantic Organ Works (6 tracks), John Abercrombie - Dave Holland - Jack DeJohnette – Gateway
2 (5 tracks), John Coltrane – A Love Supreme (4 tracks), John Coltrane – A Love Supreme (CD
2) (9 tracks), John Coltrane – Coltrane Plays The Blues (7 tracks), John Coltrane – Giant Steps
(12 tracks), John Coltrane & Don Cherry – The Avant-Garde (5 tracks), John McLaughlin –
Extrapolation (10 tracks), John Scofield & Pat Metheny – I Can See Your House From Here (11
tracks), John Surman – Nordic Quartet (9 tracks), Jon Eberson – STASH (14 tracks), Jonathan
Richman – The Best Of Jonathan Richman And The Modern Lovers (18 tracks), Joni Mitchell –
Blue (8 tracks), Joni Mitchell – Song to a Seagull (10 tracks), Joni Mitchell – Turbulent Indigo (10
tracks), Jordi Savall – Tous les matins du monde (16 tracks), Joybells – Joy & Praise (12 tracks),
Jukkis Uotila – Introspection (7 tracks), Jøkleba – Live (10 tracks)

• KABAT – Devky ty to znaj (18 tracks), Kari Bremnes – 11 ubesvarte anrop (11 tracks), Kari
Bremnes – Bl̊a Krukke (10 tracks), Kari Bremnes – Folk i husan (17 tracks), Kari Bremnes –
Løsrivelse (15 tracks), Kari Bremnes – Over en by (14 tracks), Kari Bremnes – Spor (11 tracks),
Kari Bremnes Rikard Wolff – Desemberbarn (16 tracks), Kari Bremnes & Lars Klevstrand – Tid
å hausta inn (19 tracks), Kari og Ola Bremnes – Mit Navn er Petter Dass (14 tracks), Kari, Ola

114 APPENDIX C. ALBUM LIST

& Lars Bremnes – Soløye (14 tracks), Kari, Ola, og Lars Bremnes – Ord fra en fjord (12 tracks),
Karin Krog – Something borrowed ... Something new (13 tracks), Karin Krog – Where you at (11
tracks), Kate Bush – Aerial (CD1) (7 tracks), Kate Bush – Aerial (CD2) (9 tracks), Kate Bush –
Hounds Of Love (12 tracks), Kate Bush – Lionheart (10 tracks), Kate Bush – Never for Ever (11
tracks), Kate Bush – The Kick Inside (13 tracks), Kate Bush – The Red Shoes (12 tracks), Kate
Bush – The Sensual World (10 tracks), Kate Bush – The Sensual World (single) (2 tracks), Keith
Jarrett - Gary Peacock - Jack DeJohnette – Standards, Vol.1 (5 tracks), Keith Jarrett – Personal
Mountains (5 tracks), Keith Jarrett – The Köln Concert (4 tracks), Keith Jarrett – The Melody At
Night, With You (10 tracks), Keith Jarrett, Gary Peacock, Jack DeJohnette – The Out-of-Towners
(6 tracks), Keith Jarrett, Gary Peacock, Jack DeJohnette – Whisper Not - Live In Paris 1999 (Disc
1) (7 tracks), Keith Jarrett, Gary Peacock, Jack DeJohnette – Whisper Not - Live In Paris 1999
(Disc 2) (7 tracks), Ketil Bjørnstad – Odyssey (11 tracks), Ketil Bjørnstad m.fl. – Himmelrand
- Tusen̊arsoriatoriet (21 tracks), Ketil Bjørnstad & David Darling – The River (10 tracks), Kine
Hellebust – 15 salmar og 1 song - Kine Hellebust syng Elias Blix (16 tracks), KJØTT – 1979 - 1981
(12 tracks), Knauskoret – Stars in stripes -evt. Et liv med striper (13 tracks), Knut Reiersrud
– Sub (16 tracks), Knut Reiersrud – Sweet Showers Of Rain (10 tracks), Knut Reiersrud og Iver
Kleive – N̊ade over N̊ade (12 tracks), Kor p̊a menyen – Kor p̊a menyen (10 tracks), Kristusbilder
fra salmeboken – Smak av himmel - spor av jord - cd1 (14 tracks), Kristusbilder fra salmeboken –
Smak av himmel - spor av jord - cd2 (15 tracks)

• Lars Bremnes – Søndag (10 tracks), Legoland Band – Legoland Garden (14 tracks), Lenny Kravitz
– 5 (13 tracks), Lenny Kravitz – Circus (11 tracks), Leonard Cohen – The Essential Leonard
Cohen (Disc 2) (13 tracks), Leonard Cohen – The Essential Leonard Cohen [Disc 1] (18 tracks),
Les Négresses Vertes – Mlah (14 tracks), Lillebjørn Nilsen – 40 spor (CD1) (20 tracks), Lillebjørn
Nilsen – 40 spor (CD2) (21 tracks), Lou Reed – New York (14 tracks), Lou Reed – Transformer
[Expanded Edition] (13 tracks), Lou Reed & John Cale – Songs For Drella (14 tracks), Lynni
Treekrem – Ut i vind (10 tracks)

• Madonna – Bedtime Stories (11 tracks), Madonna – Confessions On A Dance Floor (10 tracks),
Madonna – I’m Breathless (12 tracks), Madonna – Ray of Light (13 tracks), Magni Wentzel
– All Or Nothing At All (15 tracks), Magni Wentzel – My Wonderful One (18 tracks), Magni
Wentzel, Roger Kellaway & Red Michell – New York Nights (11 tracks), Mano Negra – Puta’s
Fever (18 tracks), Mari Boine – Gávcci jahkejuogu (Eight seasons) (12 tracks), Marianne Antonsen
– Blomster i Soweto (11 tracks), Marie Fredriksson – Efter Stormen (12 tracks), Marie Fredriksson
– Het vind (11 tracks), Marius Muller – Seks (12 tracks), Marius Müller’s Funhouse – BIG (9
tracks), Mark Knopfler – Local Hero (14 tracks), Mary Black – Babes In The Wood (12 tracks),
Mary Black – Circus (12 tracks), Matchstick Sun – Flowerground (11 tracks), Matchstick Sun –
Itchy Bitchy (12 tracks), Matt Molloy, Paul Brady, Tommy Peoples – Molloy - Brady - Peoples (15
tracks), Mavis Staples – The Voice (12 tracks), McCartney & Davis – Paul McCartney’s Liverpool
Oratorio - RLPO, Davis (EMI 1991) (Disc 1) (24 tracks), McCartney & Davis – Paul McCartney’s
Liverpool Oratorio - RLPO, Davis (EMI 1991) (Disc 2) (26 tracks), Metallica – Enter Sandman
(Single CD) (3 tracks), Michael Jackson – Dangerous (14 tracks), Michael Monroe – Simple Life
(10 tracks), Michael Nyman – Gattaca (24 tracks), Michael Nyman – The Cook The Thief His
Wife Her Lover (5 tracks), Michael Nyman – The Piano (OST) (19 tracks), Michelle Shocked
– Captain Swing (11 tracks), Michelle Shocked – The Texas Campfire Tapes (12 tracks), Mick
Jagger – Wandering Spirit (14 tracks), Midnight Oil – Blue Sky Mining (10 tracks), Mikael Wiehe
– Sevilla (10 tracks), Mike Lawrence – Nightwind (7 tracks), Mike Oldfield – Amarok (one track),
Mike Oldfield – Earth Moving (9 tracks), Mike Oldfield – Islands (USA) (7 tracks), Mike Oldfield
– Orchestral Tubular Bells (2 tracks), Mike Oldfield – The Killing Fields (17 tracks), Mike Stern –
Odds Or Evens (8 tracks), Miles Davis – Agharta (CD1) (one track), Miles Davis – Agharta (CD2)
(2 tracks), Miles Davis – Bopping The Blues (9 tracks), Miles Davis – Cookin’ With The Miles
Davis Quintet (4 tracks), Miles Davis – In a Silent Way (2 tracks), Miles Davis – Miles Ahead (14
tracks), Miles Davis – Miles in Antibes (5 tracks), Miles Davis – Nefertiti (6 tracks), Miles Davis

115

– On the Corner (4 tracks), Miles Davis – Quiet Nights (8 tracks), Miles Davis – Seven steps to
heaven (5 tracks), Miles Davis – Sketches Of Spain (8 tracks), Miles Davis – Steamin’ With The
Miles Davis Quintet (5 tracks), Miles Davis – This is Jazz - Miles Davis - Acoustic (7 tracks),
Miles Davis – Tutu (8 tracks), Miles Davis & John Coltrane – Miles & Coltrane (7 tracks), Miles
Davis & Quincy Jones – Live At Montreux (14 tracks), Millions Like Us – ...millions like us (11
tracks), Moloney, O’Connell, Keene – Kilkelly (5 tracks), Monica Zetterlund – Varsamt (11 tracks),
Monty Alexander Trio – Impressions in Blue (11 tracks), Monty Alexander Ray Brown Herb Ellis
– Triple Treat II (8 tracks), Monty Python – Monty Python Sings (25 tracks), Morcheeba – Big
Calm (11 tracks), Mork, Truls, Thibaudet, Jean Yves – Grieg - Sibelius - Cello nad Piano Works
(11 tracks), Mormon Tabernacle Choir – Silent Night (11 tracks), Morten Harket – Wild Seed (12
tracks), Motorpsycho – 8 soothing songs for Rut (8 tracks), Motorpsycho – Angels And Daemons
At Play (11 tracks), Motorpsycho – Black Hole - Blank Canvas (CD1) (8 tracks), Motorpsycho –
Black Hole Blank Canvas (CD2) (9 tracks), Motorpsycho – Blissard (10 tracks), Motorpsycho –
Demon Box (14 tracks), Motorpsycho – Hey Jane (EP) (5 tracks), Motorpsycho – Let Them Eat
Cake (9 tracks), Motorpsycho – Mountain EP (5 tracks), Motorpsycho – Phanerothyme (9 tracks),
Motorpsycho – The Nerve Tatto E.P. (5 tracks)

• Nick Cave And The Bad Seeds – Murder Ballads (10 tracks), Nidarosdomeds Guttekor – Tidenes
Juleplate (14 tracks), Niels Henning Ørsted Pedersen & Sam Jones – Double Bass (10 tracks),
Niels-Henning Orsted Pedersen (NHOP) – This Is All I Ask (10 tracks), Niels-Henning Orsted
Pedersen & Palle Mikkelborg – Hommage - Once Upon A Time (9 tracks), Nirvana – Nevermind
(12 tracks), Norah Jones – Come Away With Me (14 tracks), Norah Jones – Feels Like Home (13
tracks), NYMARK COLLECTIVE – Contemporary Tradition (13 tracks)

• Oasis – (What’s The Story) Morning Glory (11 tracks), Oasis – Definitely Maybe (11 tracks),
October Project – bury my lovely (CD single) (3 tracks), Odd Børretzen - Lars Martin Myhre –
Noen ganger er det all right (12 tracks), Odd Børretzen og Alf Cranner – Hva Er Det De Vil? (12
tracks), Odd Børretzen og Julius Hougen – P̊a den ene siden - p̊a den andre siden (7 tracks), Ola
Bremnes - Bodø Domkor – Vær Hilset (15 tracks), Ole Paus - Oslo Kammerkor – Det begynner å
bli et liv - det begynner å ligne en bønn (6 tracks), Ole Paus – Stjerner i rennesteinen (12 tracks),
Ole Paus, Mari Boine Persen, Kari Bremnes – Salmer p̊a veien hjem (12 tracks), Oscar Peterson
Trio – The Trio (12 tracks), Oscar Peterson, Benny Green – Oscar and Benny (10 tracks), Oslo
Gospel Choir – Det skjedde i de dager (11 tracks), Oslo Gospel Choir – Get Up ! (11 tracks)

• Paul Brady – Songs and Crazy Dreams (12 tracks), Paul Simon – Concert In The Park - Disc 1
(11 tracks), Paul Simon – Concert In The Park - Disc 2 (12 tracks), Pavement – Crooked Rain,
Crooked Rain - L.A.’s Desert Origins (Disc 1) (24 tracks), Pavement – Crooked Rain, Crooked
Rain - L.A.’s Desert Origins (Disc 2) (25 tracks), Peter Sellers – A Hard Day’s Night (Single) (4
tracks), Petr Eben – Organ Works (Hallgeir Schiager, orgel) (13 tracks), Phil Collins – Hello, I
Must Be Going! (10 tracks), Pilgrimage – 9 Songs Of Ecstasy (9 tracks), Pink Floyd – A Collection
of Great Dance Songs (6 tracks), Pink Floyd – The Wall (CD1) (13 tracks), Pink Floyd – The
Wall (Disc 2) (13 tracks), Poi Dog Pondering – Poi Dog Pondering (10 tracks), Poi Dog Pondering
– Volo Volo (14 tracks), Portishead – Dummy (11 tracks), Prince – 1999 (10 tracks), Prince – 3121
(12 tracks), Prince – A time 2 dream (12 tracks), Prince – Batman - Motion Picture Soundtrack (9
tracks), Prince – Chaos And Disorder (9 tracks), Prince – Come (10 tracks), Prince – Controversy
(7 tracks), Prince – Dinner With Delores (3 tracks), Prince – Dirty Mind (8 tracks), Prince – For
You (8 tracks), Prince – Interactive (one track), Prince – Letitgo (6 tracks), Prince – Lovesexy
(one track), Prince – Music From Graffiti Bridge (17 tracks), Prince – Musicology (12 tracks),
Prince – Prince (8 tracks), Prince – Sign ’O’ The Times (Disc 2) (6 tracks), Prince – Sign ’O’
The Times (Disk 1) (9 tracks), Prince – Space (4 tracks), Prince – The Beautiful Experience (6
tracks), Prince – The Gold Experience (17 tracks), Prince – The Hits 1 (14 tracks), Prince – The
Hits 2 (16 tracks), Prince – The Hits The B Sides (Disc 3) (20 tracks), Prince – The Legendary
Black Album (8 tracks), Prince – The Most Beautiful Girl in The World (CD Single) (2 tracks),

116 APPENDIX C. ALBUM LIST

Prince – The Vault... Old Friends 4 Sale (10 tracks), Prince And The New Power Generation –
7 (4 tracks), Prince and the New Power Generation – Love Symbol (18 tracks), Prince And The
Revolution – Parade (Under the Cherry Moon) (12 tracks), Prince and The Revolution – Purple
Rain (9 tracks), Prince & The N.P.G. – 4AM JAM (9 tracks), Prince & The N.P.G. – Diamonds &
Pearls - Single (3 tracks), Prince & The New Power Generation – Diamonds and Pearls (13 tracks),
Prince & The Revolution – Around The World In A Day (8 tracks), Proclaimers – Sunshine on
Leith (12 tracks)

• R.E.M. – Dead Letter Office [The I.R.S. Years Vintage 1987] (22 tracks), R.E.M. – Near Wild
Heaven (CD Single) (4 tracks), Radka Toneff – Fairytales (10 tracks), Radka Toneff – Live in
Hamburg (11 tracks), Raga Rockers – BLAFF (12 tracks), Ray Brown Trio – Bassface - Live at
Kuumbwa (9 tracks), Ray Brown Trio – Live At Scullers (7 tracks), Red Hot Chili Peppers – Blood
Sugar Sex Magik (17 tracks), Richie Havens – Cuts to the Chase (13 tracks), Ritchie Valens – Lil’
Bit Of Gold (4 tracks), Robbie Williams – Intensive Care (12 tracks), Roger Waters – Amused To
Death (14 tracks), Roy Orbison – Mystery Girl (10 tracks)

• Sade – Love Deluxe (9 tracks), Santana – Abraxas (9 tracks), Sarah McLachlan – Afterglow (10
tracks), Sarah McLachlan – Fumbling Towards Ecstasy (13 tracks), Sarah McLachlan – Solace (11
tracks), Sarah McLachlan – Surfacing (10 tracks), Sarah McLachlan – Touch (10 tracks), Schola
Sanctae Sunnivae – Fingergullofficiet (21 tracks), Shankar – Vision (5 tracks), Sidsel Endresen –
Exile (11 tracks), Sidsel Endresen – So I Write (8 tracks), Sidsel Endresen – Undertow (8 tracks),
Sidsel Endresen & Bugge Wesseltoft – Duplex Ride (11 tracks), Sidsel Endresen & Bugge Wesseltoft
– Nightsong (10 tracks), Sidsel Endresen & Christian Wallumrød – Merriwinkle (13 tracks), Sigurd
Ulveseth Quartet – Infant eyes (9 tracks), Sigvart Dagsland – Det er makt i de foldede hender (12
tracks), Simple Minds – Glittering Prize (16 tracks), Simple Minds – Good News From The Next
World (9 tracks), Simple Minds – Love Song (Maxi) (4 tracks), Simple Minds – Simple Minds
[CDS] (3 tracks), Simple Minds – Street Fighting Years (11 tracks), Siri Gjære – Survival kit (11
tracks), Siri”s Svale Band – Necessarily so... (11 tracks), Siri’s Svale Band – Blackbird (9 tracks),
Sissel Kyrkjebø – Sissel (12 tracks), Skunk Anansie – Paranoid & Sunburnt (11 tracks), Skunk
Anansie – Post Orgasmic Chill (12 tracks), Skunk Anansie – Stoosh (12 tracks), Slim Dunlap –
Times Like This (11 tracks), Soundtrack – Barb Wire (11 tracks), Stabat Mater – Stabat Mater (15
tracks), Stan Getz & Bill Evans – Stan Getz & Bill Evans (11 tracks), Stan Ridgway – Mosquitos
(10 tracks), Steeles – Heaven Help Us All (10 tracks), Steve Taylor – Squint (10 tracks), Steve
Wynn – Kerosene Man (11 tracks), Steve Wynn – Kerosene Man (Single CD) (5 tracks), Steve
Wynn – Take Your Flunky And Dangle (11 tracks), Stevie Wonder – Fulfillingness’ First Finale
(10 tracks), Stevie Wonder – Innervisions (Gold Disc) (9 tracks), Stevie Wonder – Songs In The
Key of Life (Disc 1) (10 tracks), Stevie Wonder – Songs In The Key of Life (Disc 2) (11 tracks),
Sting - – If I Ever Lose My Faith In You (4 tracks), Sting – Love Is Stronger Than Justice - The
Munificent Seven (Maxi) (4 tracks), Sting – Seven Days - (CD-Single) (4 tracks), Sting – Songs
From The Labyrinth (23 tracks), Sting – Ten Summoner’s Tales (12 tracks), Susanne Lundeng
– Drag (13 tracks), Susanne Lundeng – Vals til den røde fela (12 tracks), Susanne Lundeng –
Ættesyn (15 tracks), Suzanne Vega – 99.9 F (13 tracks), Suzanne Vega – Days Of Open Hand (11
tracks), Suzanne Vega – In Liverpool (4 tracks), Suzanne Vega – Solitude Standing (11 tracks),
Suzanne Vega – Suzanne Vega (10 tracks), Suzanne Vega – Suzanne Vega Single Mini-Album 3 (3
tracks)

• Take 6 – Take 6 (9 tracks), Talking Heads – Stop Making Sense (9 tracks), Tanita Tikaram – The
Sweet Keeper (10 tracks), Terence Trent D’Arby – Symphony Or Damn (16 tracks), Terence Trent
D’Arby – Vibrator (13 tracks), Terje Isungset – Igloo (10 tracks), Terje Rypdal – Bleak house (6
tracks), Terje Rypdal – Descendre (6 tracks), Terje Rypdal – If Mountains Could Sing (11 tracks),
Terje Rypdal – To Be Continued (7 tracks), Terje Rypdal og Ronni Le Tekrø – Rypdal og Tekrø (9
tracks), Terje Rypdal & The Chasers – Blue (8 tracks), The Beatles – Live At The BBC (CD1) (34
tracks), The Beatles – Please Please Me (14 tracks), The Beatles – Sgt. Pepper’s Lonely Hearts

117

Club Band (13 tracks), The Beautiful South – Welcome To The Beautiful South (11 tracks), The
Chieftains – The Bells of Dublin (23 tracks), The Chieftains – The Long Black Veil (13 tracks),
The Commitments – The Commitments (14 tracks), The Draghounds – Angel Boots (14 tracks),
The Dream Syndicate – The Day Before Wine & Roses-(Live at KPFK, Sept. 5, 1982) (9 tracks),
The Jimi Hendrix Experience – Axis - Bold As Love (13 tracks), The Jimi Hendrix Experience –
Electric Ladyland (16 tracks), The Pogues – Hell’s ditch (12 tracks), The Pogues – If I Should Fall
From Grace With God (15 tracks), The Pogues – Peace And Love (14 tracks), The Pogues – Red
Roses for Me (16 tracks), The Pogues – Rum Sodomy & the Lash (13 tracks), The Pogues – White
city (3 tracks), The Police – Ghost In The Machine (11 tracks), The Police – Outlandos d’Amour
(10 tracks), The Police – Reggatta de Blanc (11 tracks), The Police – Synchronicity (11 tracks),
The Police – Zenyatta Mondatta (11 tracks), The Prodigy – Music For The Jilted Generation (13
tracks), The Quintet – Jazz At Massey Hall (6 tracks), The Rembrandts – I’ll Be There for You
(4 tracks), The September When – Hugger Mugger (11 tracks), The Style Council – The Singular
Adventures of the Style Council (16 tracks), The Waterboys – Dream Harder (12 tracks), The
Waterboys – Room To Roam (17 tracks), The Waterboys – This Is The Sea (9 tracks), Thelonious
Monk – Criss-Cross (12 tracks), Thelonious Monk – With John Coltrane (6 tracks), They Might Be
Giants – Flood (19 tracks), Thorbjørn Egner, Christian Hartmann, Egil Monn-Iversen – Klatremus
og de andre dyrene i Hakkebakkeskogen (one track), Tin Machine – Tin Machine (14 tracks), Tom
Lehrer – In Concert (23 tracks), Tom Lehrer – Tom Lehrer Revisited (15 tracks), Tom Waits –
Alice (15 tracks), Tom Waits – Blood Money (13 tracks), Tom Waits – Foreign Affairs (9 tracks),
Tom Waits – Mule Variations (16 tracks), Tom Waits – Orphans - Bastards (20 tracks), Tom Waits
– Orphans - Bawlers (20 tracks), Tom Waits – Orphans - Brawlers (16 tracks), Tom Waits – The
Black Rider (20 tracks), Tomasz Stanko – Selected Recordings (ECM) (12 tracks), Tomasz Stanko
Quartet – Lontano (9 tracks), Trond-Viggo Torgersen og Eivind Sol̊as – Samleplate (22 tracks)

• U2 – Achtung Baby (12 tracks), U2 – How to Dismantle an Atomic Bomb (11 tracks)

• Vadested – Sanger fra Iona (10 tracks), Vamp – Horisonter (13 tracks), Van Morrison – Hymns To
The Silence - CD 1 (10 tracks), Van Morrison – Hymns To The Silence - CD 2 (11 tracks), Van
Morrison & The Chieftains – Irish Heartbeat (10 tracks), Vangelis – Blade Runner (12 tracks),
Various – 1-800-NEW-FUNK (11 tracks), Various – 16 Big Hits From The Early 60’s (16 tracks),
Various – A Love Affair - The Music Of Ivan Lins (11 tracks), Various – Bringing It All Back
Home BBC (Disk 2) (20 tracks), Various – CD 7 - Rock Furore (8 tracks), Various – Classical
Preview Single, No. 1 (6 tracks), Various – Falling From Grace (Soundtrack) (13 tracks), Various
– Folkways - A Vision Shared (14 tracks), Various – High Fidelity Reference CD No. 9 (15 tracks),
Various – High Fidelity Reference [Disc 11] (13 tracks), Various – High Fidelity Reference [Disc
1] (19 tracks), Various – High Fidelity Reference [Disc 2] (17 tracks), Various – High Fidelity
Reference [Disc 4] (16 tracks), Various – High Fidelity Reference [Disc 5] (16 tracks), Various –
High Fidelity Reference [Disc 6] (16 tracks), Various – High Fidelity Reference-CD (Disc 7) (21
tracks), Various – La Bamba (12 tracks), Various – Natural Born Killers (27 tracks), Various –
Norske Utslipp - Støtteplaten for Bellona (13 tracks), Various – Norwegian Wood Festival 1996
(10 tracks), Various – On The Road Again (21 tracks), Various – Pretty In Pink (10 tracks),
Various – Red Hot + Blue (20 tracks), Various – Rock Furore - CD10 (8 tracks), Various – Rock
Furore - CD11 (7 tracks), Various – Rock Furore - CD6 (8 tracks), Various – Rock Furore - CD8
(8 tracks), Various – Stay Awake - Various Interpretations of Music from Vintage Disney Films
(11 tracks), Various – Surround Sounds 2 (13 tracks), Various – The Big Lebowski (14 tracks),
Various – The Last Temptation of Elvis [CD1] (13 tracks), Various – The Last Temptation of
Elvis [CD2] (13 tracks), Various – The Tree and the Bird and the Fish and the Bell (12 tracks),
Various Artists – Bringing It All Back Home (Disk 1) (17 tracks), Various Artists – Hadde månen
en søster - Cohen p̊a norsk (12 tracks), Various Artists – High Fidelity Reference [Disc 3] (21
tracks), Various Artists – Irish Folk Favourites (Disc 1) (19 tracks), Various Artists – Irish Folk
Favourites (Disc 2) (20 tracks), Various Artists – Irish Folk Favourites (Disc 3) (18 tracks), Various
Artists – Irish Folk Favourites (Disc 4) (23 tracks), Various Artists – Kirkelig Kulturverksted 25

118 APPENDIX C. ALBUM LIST

år - Varige spor (CD 1) (18 tracks), Various Artists – Kirkelig Kulturverksted 25 år - Varige spor
(CD 2) (16 tracks), Various Artists – Rock Furore - CD9 (8 tracks), Various Artists – Until The
End Of The World (19 tracks), Vassilis Tsabropoulos, Arild Andersen & John Marshall – Achirana
(9 tracks), Velvet Belly – The Landing (10 tracks), Vernon Reid – Mistaken Identity (16 tracks),
Vivaldi – The Four Seasons (Nigel Kennedy) (12 tracks), Vömmöl Spellmannslag – Vömlingen (12
tracks), Vømmøl Spellemannslag – Vømmøl̊aret (12 tracks), Vømmøl Spellmannslag – Vømmøl’n
(11 tracks), Vømmøl Spellmannslag – Vømmølmusikken (12 tracks)

• Warren Zevon – Transverse City (10 tracks), Whale – I’ll Do Ya (4 tracks), Whale – Pay For
Me (5 tracks), Whale – We Care (13 tracks), Whitney Houston – Whitney (11 tracks), Willie
Nelson – Across The Borderline (14 tracks), Wolfgang Amadeus Mozart – The Complete Edition
(19 tracks), World Party – Bang! (12 tracks), World Party – Goodbye Jumbo (12 tracks)

• YES – Close To The Edge (7 tracks), Yes – The Yes Album [Expanded & Remastered] (9 tracks),
Yuri Honing Trio – A matter of conviction (12 tracks)

• Zakir Hussain – Making Music (7 tracks), Zbigniew Preisner – La double vie de Véronique (18
tracks), Zbigniew Preisner – Trois Couleurs Bleu (24 tracks)

• Åge Aleksandersen & Sambandet – Ramp (11 tracks), Åsne Valland – Den ljose dagen (12 tracks)

