& NTNU

Innovation and Creativity

System on a chip - Soft IP from the
FPGA-vendor or an OpenCore-
processor?

Robert Bayona Adam

Master of Science in Electronics
Submission date: February 2007
Supervisor: Bjern B. Larsen, IET

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Problem Description

Design reuse is an important part of today’s design practice. Reuse may be implemented using
Intellectual Property (IP) from a vendor or reusing older internal designs. Effective reuse requires
proper documentation and flexibility. The Reuse Methodology Manual [1] gives some
recommendatoions in this regard.

Describe how a microprocessor core should be implemented and documented as an IP.
On an FPGA a processor may be implemented using IP from the FPGA-vendor, IP from a third
party vendor or free IPs available on the internet.

Identify a free microprocessor core that may be implemented on an FPGA as an alternative to the
cores offered by the vendors. Implement the core on FPGAs together with ALTERA NI0S2 and
XILINX MicroBlaze. Implement Embedded Linux on the cores, perform a bench mark of the
implementations and compare the results.

The comparison of the IPs should also take into account the documentation and ease of use. Also
the tools available to the designer should be evaluated. Compare the available modules to the
recommendations in [1].

Supervisor: Bjgrn B. Larsen, Room B-317, bjorn.b.larsen@iet.ntnu.no

(1] Reuse Methodology Manual, Michael Keating and Pierre Bricaud, Kluwer Academic

Publishers, 2002.

Assignment given: 04. September 2006
Supervisor: Bjgrn B. Larsen, IET

Robert Bayona Adam Master Thesis

System on a chip - Soft IP from the FPGA-vendor or an
OpenCore-processor?

1. Index

D 114 [N page 01
2. INtrOdUCHION....uueicirericrsnricssnnicssnnscssanesssnnsssssnsssssnssssssssssssssssssssssssssssssssssssssnasses page 03
2.1. Project DeSCHIDHON.ccccueeiiiiiiiieiiiieet et page 03
2.2, MOEIVALION.ooeeeeieeeee et e e enae e e page 03

3. BenchmarKing.......ccoeiiciviinisnninsseicssnicssnicsssnissssssssssssssssssssssssssssssssssssssnens page 04
3L PUFDOSE. ..ot page 04
320 CRAILEAGES.........oooeeeeeeee e e page 05
3.3. Types of bBeNChMATK..............ccccoovuiiiiiiiiiiiiieeee e page 06

4. Analysis and Methods..........ciiivviiiisniinssnninsnncssnicssnncsssnecsssssescssssssscsssnses page 08
4.1. ANQLYSiS Of the PrOCESSOFS..........ooeeeeieeiieeeiie e page 08
4.1.1.Ni0s IT Altera MiCTOPTOCESSOTeeiueeeuiieiieeiieniieesieeesireaeieeeeeneenns page 08
4.1.2.Xilinx Microblaze MiCrOPrOCESSOT.........eeeruvieeriiieeiieeeiieeniieeraeeeenns page 09
4.1.3.Leon2 Gaisler MiCrOPIOCESSOTccvuutrueeriieieeniieeieeniieenieeeieenneene page 11

4.2. Development tOOLS...............cccueeeceeeeiiieeiiee e page 12
4.2.1.N108 IT Altera MiCTOPTOCESSOTeeuieeiieiieeiienieeeeieeenireaeieeeeeneenns page 12
4.2.2.Xilinx Microblaze MiCTOPIOCESSOT.......c.eerveerrrerrierreenieesveereenneaans page 13
4.2.3.Leon2 Gaisler MiCIOPIOCESSOTcc.verueerieeriieeieeniienieenieeseeenieenaeens page 15

4.3, BENCHMATEKS. ..ot page 16
4.3.1.Pros and cons regarding benchmarking.............cccccceeiieniiiniieinnenn. page 16
4.3.2.DRIYSIONE 2.1 ..uiiiiiiiiieeiiieiieeieeiee ettt et et page 16
4.3.3.WHEtSTONE.eiiiieiieeiieiee ettt ettt eeee e page 17
4.3.4.Dhrystone vs. WhetStone..........ceeveieruierieeiiienieeieenieeeneeesveeeevee s page 17

5. BencChmarks.....iiciinveiiciiisnnicssssnnncsssssrncsss page 18
5.1. Benchmarks in Cyclone II board..................c.ccccccocuimiiiniiiniiiiiincncn, page 18
5.1.1.Dhrystone on Cyclone I1 Board..........c.cccceevvierieniiiinieeiieieecieeene page 18
5.1.2.Whetstone on Cyclone II Board..........cc.cccoveiriiiiniiiniiniiinicnicennns page 18
5.1.3.CONCIUSION. ..ccuiiiiiiiie et e e e eaaee e page 18

5.2. Benchmarks in Xilinx board...................cccccooioiiiiiiniiiiiiiiiiiiieieeee. page 18
5.2.1.Dhrystone on Xilinx Board............ccccceevieriieniiniiieiecieeeeeee e page 19
5.2.2.Whetstone on Xilinx Board............cccoooiiriiiiiiiiiinie e page 20
5.2.3.CONCIUSION. ...cuuiiieiiieeiiie e et e e e e e page 20

(U U1 1) 11 page 21
O. 1. INTOS L.t page 21

0. 1. 1. TOOIS. ...ttt ettt e ettt e et eees page 21
6.1.2.D0CUMENLALION.c.utieiiiiiieiie ettt ettt et s page 22

6.2, MICFODIAZE...........c...ooooeeeeeeeee e page 22
0.2.1.TOOIS ...ttt page 22
6.2.2.DOCUMENLALION.eeuiiieiiieeiiieeiieeeree et eeteeeeaeeeereeesareeesnseeene page 23

Robert Bayona Adam Master Thesis

0.3, LOOMZ........ooeeeeeeee e page 23
0.3.1.TO0IS. .. ettt e et e e e page 23
6.3.2.D0CUMENLALION.uvieiiieiieiieeiieeiie ettt et e seee et e saaeebeesereeeeeseee e page 23
0.4 CONCIUSTON. ..o eee ettt e e e e s page 24
7. Configurability....cccuveiccrivsnnicsissnricssssnnnccssssnnecsssssssssssessssssssssssssssssssssssssssssses page 25
Tod. INFOS ... page 25
7.2. MICODIQZE................oooceoeeieeieeceeeee e page 25
7.3 L@ON2Z ... page 25
74 CONCIUSTON. ... page 25
RS TINT 1111 11721 o TR page 26
0. DiSCUSSION.ccccrrurrierisrrnrecssssannecssssssresssssssassnsssss page 27
Q1. OBSIACLES.........ooeeeeeeeee e page 27
9.2. FULUYE TMPFOVEIMENLS.........ooeeeeiiieeeeiie e e e e e e e e eieeeeeee e e e e page 27
10. Ref@IeNCES...ccocvueriinsirnricssssnrecsssnsiesssssssecssns page 28
11, ACEACHIMENLES...ccccrireriiniirnricssssnsresssssssiesssssssasss page 29
11.1.Leon2 on Altera board Tutorial...................ccccccoevveviiiiiiiniiaiaieeeen, page 29

11.2.Leon2 on Xilinx board TUtOrial...................ccccoeveeviiiiniiieeiiiiieeeeiiieeen, page 45

Robert Bayona Adam Master Thesis

2. Introduction

2.1.Project description

The work will consist of comparing two different processors from two FPGA
vendors and an OpenCore-processor.

For this work we are going to use two different boards, the first will be a Cyclone 11
FPGA Altera Board, in which we will run the Nios II Altera microprocessor and the
free processor Leon?2.

The second board will be a SUZAKU-S board, in which we will run the Microblaze
Xilinx microprocessor and the free processor Leon2.

In all this boards we are going to run two different benchmarks, the Dhrystone and
the Whetstone, for compare the different velocities between the free and not free
processors.

Also, we are going to take into account the documentation and ease of use of the
processors.

2.2.Motivation

Nowadays, there are a lot of different processors, FPGAs, software for the
microprocessors, etc... and for this reason, we have thought that is a good idea that
somebody studies the differences among different processors, and if is really a good
idea to pay for processors or is better to use a free processor.

Also, the ease of use of the processors is something to take care about it. We think
that is necessary that somebody makes a serious study about which processor is
easier to use, how many different operative systems you need to program and run
software in their, and how much difficult can be to use the software needed to
program their.

Also the information in internet about this is not much and is all dispersed. To find
some interesting information about this subject, you have to search a spend lot of
time browsing in the internet webs.

For all these reasons, we have decided to do this project and to make a clear
document in which you can find a studied opinion about these processors

Robert Bayona Adam Master Thesis

3. Benchmarking

In computing, a benchmark is the result of running a computer program, a set of
programs, or other operations, in order to assess the relative performance of an
object, by running a number of standard tests and trials against it. The term,
benchmark, is also commonly used for specially-designed benchmarking programs
themselves. Benchmarking is usually associated with assessing performance
characteristics of computer hardware, for example, the floating point operation
performance of a CPU, but there are circumstances when the technique is also
applicable to software. Software benchmarks are, for example, run against compilers
or database management systems.

Benchmarks provide a method of comparing the performance of various subsystems
across different chip/system architectures. Benchmarking is helpful in understanding
how the database manager responds under varying conditions. You can create
scenarios that test deadlock handling, utility performance, different methods of
loading data, transaction rate characteristics as more users are added, and even the
effect on the application of using a new release of the product.

3.1.Purpose

As computer architecture advanced, it became more and more difficult to compare
the performance of various computer systems simply by looking at their
specifications. Therefore, tests were developed that could be performed on different
systems, allowing the results from these tests to be compared across different
architectures. For example, while Intel Pentium 4 processors generally operate at a
higher clock frequency than AMD Athlon XP processors, this does not necessarily
translate to more computational power. In other words a 'slower' AMD processor,
with regards to clock frequency, can perform as well on benchmark tests as an Intel
processor operating at a higher frequency.

Benchmarks are designed to mimic a particular type of workload on a component or
system. "Synthetic" benchmarks do this by specially-created programs that impose
the workload on the component. "Application" benchmarks, instead, run actual real-
world programs on the system. Whilst application benchmarks usually give a much
better measure of real-world performance on a given system, synthetic benchmarks
still have their use for testing out individual components, like a hard disk or
networking device.

Benchmarks are particularly important in semiconductor microprocessor design,
giving processor architects the ability to measure and make tradeoffs in
microarchitectural decisions. For example, if a benchmark extracts the key
algorithms of an application, it will contain the performance-sensitive aspects of that
application. Running this much smaller "snippet" on a cycle-accurate simulator, can
give clues on how to improve performance.

Robert Bayona Adam Master Thesis

Prior to 2000, computer and microprocessor architects used SPEC to do this,
although SPEC's Unix-based benchmarks were quite lengthy and thus unwieldy to
use intact.

Computer manufacturers have a long history of trying to set up their systems to give
unrealistically high performance on benchmark tests that is not replicated in real
usage. For instance, during the 1980s some compilers could detect a specific
mathematical operation used in a well-known floating-point benchmark and replace
the operation with a mathematically-equivalent operation that was much faster.
However, such a transformation was rarely useful outside the benchmark until the
mid-1990s, when RISC and VLIW architectures emphasized the importance of
compiler technology as it related to performance. Benchmarks are now regularly
used by compiler companies to improve not only their own benchmark scores, but
real application performance.

Manufacturers commonly report only those benchmarks (or aspects of benchmarks)
that show their products in the best light. They also have been known to mis-
represent the significance of benchmarks, again to show their products in the best
possible light. Taken together, these practices are called bench-marketing.

Users are recommended to take benchmarks, particularly those provided by
manufacturers themselves, with ample quantities of salt unless the benchmarks are
certified and relate directly to a recognizable application workload. Ideally
benchmarks should only substitute for real applications if the application is
unavailable, or too difficult or costly to port, to a specific processor or computer
system. If performance is really critical, the only benchmark that matters is the
actual workload that the system is to be used for. If that is not possible, benchmarks
that resemble real workloads as closely as possible should be used, and even then
used with skepticism unless independently certified. It is quite possible for system A
to outperform system B when running program "furble" on workload X (the
workload in the benchmark), and the order to be reversed with the same program on
your own workload.

3.2.Challenges

Benchmarking is not easy and often involves several iterative rounds in order to
arrive at predictable, useful conclusions. Interpretation of benchmarking data is also
extraordinarily difficult. Here is a partial list of common challenges:

Vendors tend to tune their products specifically for industry-standard benchmarks.
Use extreme caution in interpreting such results.

e Benchmarks generally do not give any credit for any qualities of service
aside from raw performance. Examples of unmeasured qualities of service
include security, availability, reliability, execution integrity, serviceability,
scalability (especially the ability to quickly and nondisruptively add or
reallocate capacity), etc. There are often real trade-offs between and among
these qualities of service, and all are important in business computing. TPC

-5-

Robert Bayona Adam Master Thesis

Benchmark specifications partially address these concerns by specifying
ACID property tests, database scalability rules, and service level
requirements.

In general, benchmarks do not measure TCO. TPC Benchmark specifications
partially address this concern by specifying that a price/performance metric
must be reported in addition to a raw performance metric, using a simplified
TCO formula.

Benchmarks seldom measure real world performance of mixed workloads
running multiple applications concurrently in a full, multi-department/multi-
application business context. For example, IBM's mainframe servers
(System z9) excel at mixed workload, but industry-standard benchmarks
don't tend to measure the strong I/O and large/fast memory design such
servers require. (Most other server architectures dictate fixed function/single
purpose deployments, e.g. "database servers" and "Web application servers"
and "file servers," and measure only that. The better question is, "What more
computing infrastructure would I need to fully support all this extra
workload?")

Vendor benchmarks tend to ignore requirements for development, test, and
disaster recovery computing capacity. Vendors only like to report what might
be narrowly required for production capacity in order to make their initial
acquisition price seem as low as possible.

Benchmarks are having trouble adapting to widely distributed servers,
particularly those with extra sensitivity to network topologies. The
emergence of grid computing, in particular, complicates benchmarking since
some workloads are "grid friendly," while others are not.

Users can have very different perceptions of performance than benchmarks
may suggest. In particular, users appreciate predictability, servers that always
meet or exceed SLAs. Benchmarks tend to emphasize mean scores (IT
perspective) rather than low standard deviations (user perspective).

Many server architectures degrade dramatically at high (near 100%) levels
of utilization, "fall off a cliff", and benchmarks should (but often don't) take
that factor into account. Vendors, in particular, tend to publish server
benchmarks at continuous ~80% utilization, a totally unreal situation, and do
not document what happens to the overall system when/if demand spikes
beyond that level.

3.3.Types of benchmarks

1. Real program

o word processing software

o tool software of CDA

o user's application software (MIS)
2. Kernel

o contains key codes

o normally abstracted from actual program

o popular kernel: Livermore loop

o linpack benchmark (contains basic linear algebra subroutine written in
FORTRAN language)

Robert Bayona Adam Master Thesis

o results are represented in MFLOPS
3. Toy Benchmark/ micro-benchmark
o user can program it and use it to test computer's basic components
o automatic detection of computer's hardware parameters like number of
registers, cache size, memory latency
4. Synthetic Benchmark
o Procedure for programming synthetic Bench mark
= take statistics of all type of operations from plenty of application
programs
= get proportion of each operation
= write a program based on the proportion above
o Types of Synthetic Benchmark are:
* Whetstone
= Dhrystone
o Its results are represented in KWIPS (kilo whetstone instructions per
second). It is not suitable for measuring pipeline computers.
5. I/O benchmarks
6. Parallel benchmarks: used on machines with multiple processors or systems
consisting of multiple machines.

Robert Bayona Adam Master Thesis

4. Analysis and methods

4.1.Analysis of the processors
4.1.1.Nios II Altera processor

The Nios II processor is a general-purpose RISC processor core, providing:

Full 32-bit instruction set, data path, and address space

32 general-purpose registers

32 external interrupt sources

Single-instruction 32 x 32 multiply and divide producing a 32-bit result
Dedicated instructions for computing 64-bit and 128-bit products of
multiplication

Floating-point instructions for single-precision floating-point operations
Single-instruction barrel shifter

Access to a variety of on-chip peripherals, and interfaces to off-chip
memories and peripherals

Hardware-assisted debug module enabling processor start, stop, step and
trace under integrated development environment (IDE) control

Software development environment based on the GNU C/C++ tool chain and
Eclipse IDE

Integration with Altera's SignalTap(r) II logic analyzer, enabling realtime
analysis of instructions and data along with other signals in the FPGA design
Instruction set architecture (ISA) compatible across all Nios II processor
systems

Performance up to 250 DMIPS

A Nios II processor system is equivalent to a microcontroller or “computer on a
chip” that includes a CPU and a combination of peripherals and memory on a single
chip. The term “Nios II processor system” refers to a Nios II processor core, a set of
on-chip peripherals, onchip memory, and interfaces to off-chip memory, all
implemented on a single Altera® chip. Like a microcontroller family, all Nios II
processor systems use a consistent instruction set and programming model.

Robert Bayona Adam Master Thesis

Figure 1. Nios Il Processor Core Block Diagram

Nios Il Processor Core
reset » Tightly Coupled
clock Program - Instruction Memary
cpu_resetrequest Cnm&mller General .
= Purposs ™
- P resettaken I
JTAG Gonoraton Registers : =
interface JTAG il to ra3d Instruction Tightly Coupled
S e Cache — | truction M
to software Debug Module nstruction Memory
debugger Exception
Contraller
_ Control
irg[a1..0] Irterrupt Registers e |nstruction Bus
—-
Controller ctl0 to ctls
[l [laita Bus
Cu:_stum Custom Aritl_ﬁmetip Data | Tightly Coupled
VO gpe| Instruction Logic Unit Cache '*—> Data Memory
Signals Logic
L]
-
-
PR Tightly Coupled
o Data Memory

The Nios II architecture describes an instruction set architecture (ISA). The ISA in
turn necessitates a set of functional units that implement the instructions. A Nios II
processor core is a hardware design that implements the Nios II instruction set and
supports the functional units described in this document. The processor core does
not include peripherals or the connection logic to the outside world. It includes only
the circuits required to implement the Nios II architecture.

4.1.2.Microblaze Xilinx Microprocessor

The MicroBlaze is a soft processor core from Xilinx for use in Xilinx FPGAs. A soft
processor is a processor created out of the configurable logic in an FPGA. The
MicroBlaze is based on a RISC architecture very similar to the DLS architecture
described in a popular computer architecture book by Patterson and Hennessy. It
features a 5-stage pipeline, with most instructions completing in a single cycle. Both
instruction and data words are 32 bits. The MicroBlaze can reach speeds of up to
150MHZ on the Virtex4 FPGA's family. This processor can connect to the OPB bus
for access to a wide range of different modules. It can also communicate via the
LMB bus for a fast access to local memory which is normally BRAM that are inside
the FPGA.

Many aspects of the MicroBlaze can be configured at compile time owing to the
configurable nature of FPGAs. Cache structure, peripherals, and interfaces can be
customized to the application. In addition, hardware support for certain operations,

-9.

Robert Bayona Adam

Master Thesis

such as multiplication, division, and floating-point arithmetic, can be added or
removed.

Although lacking a Memory Management Unit, and thus unable to run full Linux,
several operating systems have been ported to the MicroBlaze including uClinux
and FreeRTOS.

Xilinx includes, as part of its MicroBlaze development package, a MicroBlaze GNU
C Compiler (MB-GCC) which allows programmers to use the C programming
language to write programs for the architecture.

I@______________¢_7

F5L

ILMB

3-stage [U MicroBlaze
Debug Unit
ICache |DCache
DLMB
IOPE | DOPB

Local RAM

LMB ‘ \

Memory

Controller

Timers IO port

8/16/32-bits memory bus

I
External memory

Figure 2: Overview of the MicroBlaze processor architecture.

-10 -

Robert Bayona Adam Master Thesis

4.1.3.Leon2 Gaisler Microprocessor

LEON?2 is a synthesisable VHDL model of a 32-bit processor compliant with the
SPARC V8 architecture. The model is highly configurable, and particularly suitable
for system-on-a-chip (SOC) designs. The full source code is available under the
GNU LGPL license, allowing free and unlimited use in both research and
commercial applications.

The LEON?2 processor has the following features:

SPARC V8 compliant integer unit with 5-stage pipeline

Hardware multiply, divide and MAC units

Interface to the Meiko FPU and custom co-processors

Separate instruction and data cache (Hardvard architecture)

Set-associative caches: 1 - 4 sets, 1 - 64 Kbytes/set. Random, LRR or LRU
replacement

Data cache snooping

AMBA-2.0 AHB and APB on-chip buses

8/16/32-bits memory controller for external PROM and SRAM

32-bits PC133 SDRAM controller

On-chip peripherals such as uarts, timers, interrupt controller and 16-bit I/O
port

Advanced on-chip debug support unit and trace buffer

Power-down mode

| - Debrg Debug Local Ram | |

| s-stage IU Support Unit Serfal Link |
PCl ?

| ‘Luml Kq_w}— ICache ‘Dcarhe
MMU]

Ethernet QLF

I AMEBA AHB |

AHE Memory AMBA APB AHB/APB |

Controller Controller | | Bridge

[oarrs] | [ieacad] |

['I'imersl |]L'} port | |

____________________ —

BA1652 hits memory Titis

| I

|proM|| 10 ||sram||sDRaM]

Figure 3: Cweryview of the LEONZ processor architecture

-11 -

Robert Bayona Adam

Master Thesis

The processor is extensively configurable and can be efficiently implemented on
both FPGAs and ASIC technologies. The only technology-specific mega-cells
needed are ram cells for caches and register file.

4.2.Development tools

4.2.1.Nios II Altera Microprocessor

For programming, compile and development of the Nios II processor, we need to

use the Altera Quartus II software and the Nios Development Kit.

The Altera® Quartus® II design software is a multiplatform design environment. It
is a comprehensive environment for system-on-a-programmable-chip (SOPC)
design. The Quartus II software includes solutions for all phases of FPGA and
CPLD design. We can define with the SOPC builder the characteristics of our Nios
IT processor. Also with Quartus software we can define the inputs and outputs pins
and all the necessary configuration settings for the Nios II microprocessor. Now we
can see in the figure 4 an example of SOPC builder tool running on the Altera
Quartus II software

- N File Module System Wiew Tools Help

System Contents | Nios IT Mars "cpu_0" Settings | System Gensrstion
5 Attera SOPC Buider ~ ik
7777777777 Iy Creste New Componert Clack Source NHz
// Copyright [(= Avalon Components Board: | DEZ_Board b k. External FDM
S mmmmmm e ‘@ Mios || Processor - A1 - : clk_50 External =0.0
£ LA Bridges ik Slick ta 3dd., [
// Permission: [} Communication
A i [#-DSP
:Q;J I Terasic o Display Use Module Marme Description Input Clo... . Base End JBBJ
/¢ in synthe MC20 Hios Developn Bl cpu_0 Mios Il Processar - Attera Car .. [olk ~
fiI /¢ FKits made ~EP1510 Hios Developm ¢ Instruction_master haster port
= /7 ,duplicat - EP1S40 Hios Developr data_taster Master port R@ 0 IRE 316
2= I EP20K200E Hios Develc jtan_debug_moduls Slawe port 0x0D680000| 0=006807FF
Lﬂ /7 Disclaimer: [£-EP2C35 Hios Developr tri_state_bridge_0 Avalon Tristate Bridoe clk
E i &-EP2560 DSP Board Stra cfi_flash_0 Flash Memory {Common Flash... & 0x00000...| 0x003FFFFF,
=l . // This VHDL 7 EP2860 Hios Developm sdram_0 SDRAM Controller iclk_50 0x00800000] Ox00FFFFFF
ﬂ| o which ill [#-El Camino epcs_controller EPCS Serial Flash Cortroller [clk 0x00680800| 0x00G30FFF|[0
v E Gh bhe -Ethernet jtag_uart_0 JTAG UART lclk 0x006810F0| 0x006810F7|[1~
B /! consisten Interfaces and Periphi uart_0 UART [RS-232 serial port) iclk 0x00681000| 0x0068101F|[2
F‘;' /7 werificat Legacy Components timer_0 Interval timer iclk 0x00681020| 0x0068103F|[3
| i or functi [£-Math Coprocessors timer_1 Interval timer clk 0xO0GE040) 0x0065105F([F
i E mory led_display Character LCD (18x2, Optrex ...[clk 0x00681060) 0=0068106F
ik Emmmsmarsa] crocontrollers led_red PIO (Parallel 1iCr) iclk 0x00681070/ 0x0068107F
Iy led_pio IO (Parallel 1100 clk 0x00681050) 0=0065106F
i L button_pio PIO (Parallel 1i07) lclk 0x0068109F|[5 —
o > switch_pio PIC! (Parallel 110 iclk 0xD06810AD| 0x0065104F
] | Seven_seg_pio SEGT_LUT 8 clk 0x00681100 000681103
sram_0 SRAM_1EBE_512K el 0x00600000) 0=00E7FFFF
— I o | e oo |l @ Documentation
Add
b M [A Move Up] [w Move Down]
x|
4 cpu_0 was generated as & time-imited OpenCare Plus module and will tme-out unless compiled in Quartus IT with a valid license.
(i) Do chacking For updates.
£\ system { Frecessng | Evaliis =y o (et > | T
& [Mescage: By [| et > enerate
= - —IT
Far Help, press F1 [tng, colt [BeB 507 de | M|

Figure 4: SOPC running on Quartus II software

The Nios® II Integrated Development Environment (IDE) is the primary software
development tool for the NiosII family of embedded processors. All software
development tasks can be accomplished within the Nios II IDE, including editing,
building, and debugging programs. The Nios IIIDE provides a consistent

-12 -

Robert Bayona Adam Master Thesis

development platform that works for all Nios II processor systems. In the figure 5
we have a capture of the Nios II IDE software.

5] ne i3
E@ = q:i;) Create, manage, and run configurations & is not available,
| B : P
% dhrystone D 3 [Target Connection]: Select a ITAG cable, If none are available, you must install one first.
+ s dhrystone_0_syslib [system_0]
+1 = dhrystone_syslb [system_0]
+ @72 hello_led_0 Configurations: Mame: | whetstane Nios IT HW corfigration
&) v@bjﬁ :Z::g_\;gﬁg_;vshb_l [Mios] = ;ihu‘s I Hardware
=1 fiz hello_warld | benchmark Mios 1T+ —
+ € Binaries I%hoard disg_1 Nios 1 Wain | Bl Target Connection | % Debugger | [source | £ Common
+-(= Debug P count_binary_0 Mio: Help
= [€) hello_warld.c P chrystone Nios TTH!
= application.stf m hello_led D MiosIT+ Project:
= B foatins bt 1 hello_world_DMios 1 [netaione Browse...
4152 hello_world_0_syslib_1 [Mios] P4 hello_arid_L Mios 1
= _world_|
#- = hello_world_1 P hello_world_small 0
C
+1- 5 hello_world_1 _syslib [system_0] m LCD Mios 1T HW conl
T
i linpacke P21 linpacke Nios IT Hy 4
+- = linpacke_syslib [system_0] ackpe Nios 1L HL
e linpackpc vy stone Mios
+ fun linpackpe_syslib_2 [system_0] = Mios
C
= standfor LCD Hios 1T 155 conf [4
+1- g standfor_syslb [system_0] Mios 11 Madsisim
s whetstane i
@:; m Rios 1T Multiprocessar C | J
4 = whetstane_syslib [system_0]
-
< b
Mew Delete 4 —J

Jhello_world_0

Figure 5: Nios II IDE software

With this software, we are ready to work with the Nios II processor.
4.2.2. Microblaze Xilinx Microprocessor

MicroBlaze hardware and software development is done using Xilinx Embedded
Development Kit (EDK). EDK is a development environment where the hardware is
instantiated as different IP-blocks connected via buses and signals. The software is
developed on top of the generated libraries derivated from the hardware design.
EDK focuses on system development closely integrated with a microprocessor. Both
Xilinx's soft processor MicroBlaze and IBM's PowerPC 405, available as a hard
macro in some FPGA circuits, are supported. EDK includes an integrated
development environment (IDE) named Xilinx Platform Studio (XPS), which is a
graphical GUI on top of the EDK. The figure number 6 shows the Xilinx Platform
Studio.

-13 -

Robert Bayona Adam Master Thesis

= Xilinx Platform Studio - C:/EDK/projecte/sz030 - [System Assembly View1]

Fle Edit View Project Hardware Software Device Configuration Debug Simulation Window Help

DR ELZ PR O DRMAMNEBOR B P-ARNS WS X Bris r:agnONR
0] x

= o Flers
1P Catacg | Project | Applications | E: O Buslnterface) Pots O Addresses [Eyw Filtrs (4pplied) | [, Add Extemal Port |
Softwere Projscts = Met | Ditection | Dlsss Sersitivly Fargs 1P Typs 1P Version | Fraquency
1£)4dd Softwars Application Project. ~>Eutemal Ports
M\ Defavit micrblaze._ bootloop S microblae i wicroblsze 400
M1 Default microblaze | smdstub <d_opb_v20 opb_v20 110¢
i 212 - @i Inh 10 b 10 1004
= [HlProject: boot @ d Imb_w10 Ib_v10 1.00a
Processor. mizroblaze_)) < aystem_timer opb_timer 1000
Execttable: CAEDKprojectshsal3020081 01 Pymicioblsze_feodetesscutsblecot o 50 F5 00 s brom i crth 1 105
Corpler CIptions < (_Imb_bram_t_cnth ob_bram_it_cnth 1,005
Sources @ console_uart opb_uatite 100k
Headzrs P system_intc opb_ints 100
< scham_cantraller opb_scham_w 1.00a
o systern_mnemenn oph_eric w100
<»oph_gpio_0 opb_gpio 301k
@led_apio oph_apio 3k
S ddem 14 il dem_roduls 1008
< bram_block_D biam_block 1.00a
tus_select 5 D bus select s 100
[Platform Studia] | [System Assembly View!

it Local date and time: Hon Feb 12 14:14:14 2007
¥hash -g -¢ "od foygdrive/o/EDK/projecte/sz030-20061017/; /usr/bin/make -f xps_proi.make inir bram; exit;" starced...
make: Nothing to be done for °init_bram'.

Done!

| ounit | warings | Enors

74 Inicia D& 2 7 Oek., et [£ocdi. | &z | dbui., | 8% Gl | = = Es 'v["l.;,;‘ S 1414

Figure 6: Xilinx Platform Studio

The design is mainly specified in the Microprocessor Hardware Specification file
(MHS) and the Microprocessor Software Specification file (MSS). The MHS file
instantiates the different hardware IP-blocks and connects them together. A make
script is used to synthesize and route the hardware, compile the software libraries
and applications, generate simulation models and bitstreams etc. XPS acts as a
graphical front-end for the make scripts when compiling the software and
implementing the hardware. The compiler used in the compilation is a modification
of the GNU Compiler Collection tools (GCC).

For synthesis the Xilinx XST is used. In order to debug software Xilinx
Microprocessor Debugger (XMD) is included. XMD can connect to a MicroBlaze
or PowerPC processor implemented on a physical FPGA development board or
execute an instruction set simulator. To debug the software the GNU debugger
(GDB) can connect to XMD.

-14 -

Robert Bayona Adam Master Thesis

4.2.3.Leon2 Gaisler Microprocessor

Altera Board Synthesis

For the Altera board, we can use the Altera® Quartus® II design software

Xilinx Board Synthesis

Synthesis is available through Xilinx XST.

Compiler

There are two cross-compiler toolchains for the LEON2 processor, one for bare-C
applications and one for RTEMS applications. Both of them use the GNU compiler
toolchain and the GNU debugger. There is a graphical IDE for C/C++ development
available as a plugin for Eclipse 3.0. The figure number 7 is the graphical tool for
Windows made by Eclipse.

¥-e
W48 Register 22 = O ||packirace Memory = Profiing 52 =0
Integer | Float | Other Sembol Somples Rat...
M Choose configuration @
kS |Grmon-eval v
[1
Altera ITAG v
Cabls [
Disassembly | GR Grib £3 [JuaRT Loophack = 0| 9 Breakpoints 52 | Symbols iml
Extra options: -lecnz 0D faricass Type i
= £4 | Trace view % B | ot ci =0

Target Consols
GRHCN LEON debug monitor v1.1.19 (evaluation wersion) ~

Copyright (C) 2004,2005 Gaisler Research - all rights reserved.
For latest updates, go to http://uvw.gaisler.com/
Conwents or bug-reports to supportBgaisler.com

This evaluation version will expire on 26/6/2007
using Altera JTAG cable

Figure 7: GRMON graphical tool for Windows

There is a graphical user interface for GRMON, which acts as a front-end for
LEON2 debugging. This user interface is also provided as an Eclipse 3.0 plugin. In
order to debug a LEON2 microprocessor system, GRMON can be used. GRMON
can connect to a LEON2 system implemented on a physical FPGA

-15 -

Robert Bayona Adam Master Thesis

4.3.Benchmarks
4.3.1.Pros and cons regarding benchmarking

When choosing a benchmark, the system's intended area of usage should be
considered. If the system is intended for automotive applications, the benchmark
should try to benchmark parameters important in such applications.

The ideal benchmark is measuring the performance of all the applications the
system will ever run, but such a benchmark is difficult to construct. Most
benchmarks include fragments from real applications, or algorithms comparable to
algorithms in real applications, in an attempt to behave comparable to real
applications. It is of great importance to know the differences between the
underlying hardware and software when comparing benchmark results from
different processors.

For this thesis, we have chosen two general benchmarks like the Dhrystone and the
Whetstone because was difficult to know exactly what we have to measure, and
which benchmark is really able to make it.

Maybe we could have chosen a more extensive benchmark, like the Stanford, which
measures a lot of processor parameters with different tests, or also to create a
specific benchmark only for our application to measure really which is the best
processor, but maybe it could be made in another thesis, therefore we will include it
in the future improvements paragraph.

4.3.2.Dhrystone 2.1

The Dhrystone benchmark was created back in 1984 by Dr. Reinhold P. Weicker.
Today Dhrystone 2.1 is the current version, which was written in 1988. Weicker's
intention with writing Dhrystone was to measure the performance of computer
systems, and since the computer systems of that era were focused on integer
performance, Dhrystone primarily targets integer performance. [AW04]

Dhrystone is a synthetic benchmark composed of a, of that time, .typical application
mix of mathematical and other operators. Dhrystone is written in the C language
which makes it highly portable but there are some drawbacks:

e The size of the code is very small, not stressing the memory system of
nowadays machines.

e The small size of the code makes it possible for compiler writers to write a
compiler that recognizes the code and optimizes it.

e A large amount of the execution time is spent in basic library functions,
rendering the benchmark, really measuring the performance of the library
functions of different compilers.

e Compiler optimizations may render unrealistic results.

The Dhrystone benchmark basically consists of a main loop executed a number of
times. The output of the benchmark is the time spent in the main loop.

-16 -

Robert Bayona Adam Master Thesis

4.3.3. Whetstone

The Whetstone benchmark is a benchmark for evaluating the performance of
computers. It was first written in Algol 60 in 1972 at the National Physical
Laboratory in the United Kingdom and derived from statistics on program behaviour
gathered on the KDF9 computer, using a modified version of its Whetstone Algol 60
compiler. The program's behaviour replicated that of a typical KDF9 scientific
program and was designed to defeat compiler optimizations that would have
adversely affected the accuracy of this model.

4.3.4.Dhrystone vs. Whetstone

The Dhrystone benchmark contains no floating point operations, thus the name is a
pun on the then-popular Whetstone benchmark for floating point operations. The
output from the benchmark is the number of Dhrystones per second (the number of
iterations of the main code loop per second).

Both Whetstone and Dhrystone are synthetic benchmarks, meaning that they are
simple programs that are carefully designed to statistically mimic some common set
of programs. Whetstone, developed in 1972, originally strove to mimic typical Algol
60 programs based on measurements from 1970, but eventually became most
popular in its Fortran version. Whetstone thus reflected the highly numerical
orientation of computing in the 1960s.

-17 -

Robert Bayona Adam Master Thesis

5. Results

5.1.Benchmarks on Cyclone Il Board

This section presents the benchmark results for the Dhrystone 2.1 benchmark, and
the Whetstone benchmark on Cyclone II board.

5.1.1.Dhrystone on Cyclone Il Board

Dhrystone tries to represent the result more meaningfully than MIPS (million
instructions per second), because MIPS cannot be used across different instruction
sets (e.g. RISC vs. CISC) for the same computation requirement from users. Thus,
the main score is just Dhrystone loops per second. Another common representation
of the Dhrystone benchmark is the DMIPS — Dhrystone MIPS- obtained when the
Dhrystone score is divided by 1,757 (the number of Dhrystones per second obtained
on the VAX 11/780, nominally a 1 MIPS machine). Next, we can see the results of
the Dhrystone on the Altera board (figure 8)

Nios II Altera Processor Leon2 Gaisler Processor
Processor Frequency 50 MHz 50 MHz
Million instructions 263,55 MIPS 298,69 MIPS
per second (MIPS)
Dhrystones per second 150 DMIPS 170 DMIPS
(DMIPS)
Dhrystones 3 iterations 3,4 iterations
iterations/second/MHz

Figure 8: Dhrystone results on the Altera Board

The Dhrystone 2.1 benchmark measures only integer performance and does not
stress an 8 Kbytes cache much. The significance of the Dhrystone 2.1 benchmark
results should not be taken too seriously since the benchmark is considered
unreliable for today's processor architectures as stated in chapter 2.3.2 Dhrystone
2.1

5.1.2. Whetstone on Cyclone Il board
The Whetstone benchmark originally measured computing power in units of kilo-
Whetstone Instructions per seconds (kWIPS). Results for a variety of languages,

compilers and system architectures have been obtained and modern workstations
typically achieve more than 1 000 000 kWIPS (1 Giga-WIPS)

-18 -

Robert Bayona Adam Master Thesis

Nios II Altera Processor Leon2 Gaisler Processor

Processor Frequency 50 MHz 50 MHz
Loops 1000 1000
Duration 1430 sec 1236 sec
C converted Double 69.9 KIPS 75.6 KIPS

Precision Whetstones

Figure 9: Whetstone results on the Altera Board
5.1.3.Conclusion
Looking the results of the Dhrystone and Whetstone benchmarks executed on the
Cyclone II Board, we can arrive to the conclusion that the Leon2 processor is a bit

faster than the Nios II processor in both tests.

With the Dhrystone, the Leon2 processor is able to make more Dhrystone iterations
per second than the Nios II processor in the same conditions

In the second test, with the Whetstone, also the Leon2 processor is able to finish
first the 1000 benchmark loops

With both tests, and like I have said before, now, we know that the Leon2 processor
is faster than the Nios II processor.

Also, we have made the test at 50 MHz, but if the processor frequency had been 100
MHz, the processor will continue working, and the results will be practically the

double of MIPS in the Dhrystone and the half of the time in the Whetstone, but in
comparison, the Leon2 will be faster and more efficient than the Nios II processor.

5.2.Benchmarks on Xilinx Board

This section presents the benchmark results for the Dhrystone 2.1 benchmark, and
the Whetstone benchmark on Xilinx board.

5.2.1.Dhrystone on Xilinx Board

Microblaze Xilinx Processor | Leon2 Gaisler Processor
Processor Frequency 50 MHz 50 MHz
Million instructions 70,75 MIPS 81,23 MIPS
per second (MIPS)
Dhrystones per second 40,26 DMIPS 46,23 DMIPS
(DMIPS)
Dhrystones 0,80 iterations 0,92 iterations
iterations/second/MHz

Figure 10: Dhrystone results on the Xilinx Board
We have spoken before about what means DMIPS and about the Dhrystone results.

And now, we can see that the Leon2 is also more efficient than the Microblaze
Xilinx processor.

-19 -

Robert Bayona Adam

5.2.2.Whetstone on Xilinx board

Master Thesis

Microblaze Xilinx Leon2 Gaisler Processor
Processor
Processor Frequency 50 MHz 50 MHz
Loops 1000 1000
Duration 2154 sec 2013 sec
C converted Double 60.6 KIPS 73.2 KIPS
Precision Whetstones

Figure 11: Whetstone results on the Xilinx Board

Like in the Dhrystone, in the Whetstone the Leon2 processor is also faster than the
Microblaze Xilinx processor.

5.2.3.Conclusion

We can say the same than before about the Nios II processor and the Leon2
processor, but in this case we are speaking about the Microblaze Xilinx processor
and the Leon2.

The Leon?2 is faster and more effective than the Xilinx processor in both tests at the
same frequency

With both tests, and like I have said before, now, we know that the Leon2 processor
is faster than the Microblaze processor.

Like we have spoken before, about the processor frequency, in this case, if the
processor frequency was been 100 MHz, with the processors will appear the same
than in the Nios II board. Always the Leon2 will be more efficient than the
Microblaze Xilinx board.

-20 -

Robert Bayona Adam Master Thesis

6. Usability

It’s time to evaluate how easy the system is to use. Aspects like how easy the
available tools are to use, how much documentation there is and how well it is
written will be reviewed together.

6.1.Nios I
6.1.1.Tools

The tools evaluated for the Nios II processor are the Altera Quartus II 6.0 Web
Studio and Altera Nios II EDS 6.0

With the Altera Quartus II 6.0 Web studio, the user can configure the processor
pretty easy with the SOPC builder.

The user only needs to create a new project, and open the Altera SOPC builder.
Then he can choose the Nios II processor, the board that is going to use and the user
can add or remove the components that he wants with a simple click.

Is an easy tool to configure our processor without to know too much about how to
build one and compile.

After configure and compile the processor, only is needed to create a schematic file,
or use one created before in the tutorials if the user don’t know how to create one, to
configure the project outputs and inputs. We have worked some times with Altera
Quartus II, and for us are pretty easy to work with this. Then we don’t know how
problematic could be for a new user to learn to do it, we think that with the manuals
it wouldn’t be difficult.

Respect the pins, when the inputs and outputs are declared, to assign the correct pins
to they is not difficult.

To program the board with the Nios II processor, only is needed to go to the
programmer panel and to push start.

About the Nios II EDS 6.0, we never have worked with it before, but the first time
that we use it was very easy to understand how it works. Also the software has a lot
of C programs to run and test the boards.

The only that we need to start to create a C file are the processor files that have been
created by the Quartus software. With these files the user can create the C program
to run in it, and with a simple run, the software downloads the program in the board
and starts it.

-21 -

Robert Bayona Adam Master Thesis

6.1.2.Documentation

We are surprised about the Altera documentation. We guessed that Altera have a lot
of documentation and tutorials to work, but only looking for our processor and
board, we have found a lot of tutorials, examples and files created no only for the
Altera developers, also for a lot of students and people who work in this world.

Also, the Altera Quartus II software has a big database to help the developers to
work with it, and solve a lot of problems without look for it in the Altera website or
Altera foros.

6.2.Microblaze
6.2.1.7o0ls

The tools evaluated for the MicroBlaze processor are the ones included in the
Embedded Development Kit v8.2, abbreviated EDK. EDK includes the GNU
toolchain for compilation and debugging, a graphical user interface named Xilinx
Platform Studio (XPS) for developing FPGA systems with a MicroBlaze or
PowerPC processor, and additional tools.

From within XPS one can configure MicroBlaze, add peripherals and user defined
IP cores, add software and finally synthesize, place and route and combine the
hardware and software into a single bitstream. The bitstream can be downloaded to
the FPGA circuit.

We never have used the Xilinx software before, and our first impression is that it
looks like more professional and complicated than the Altera software. Also, the
options are pretty different and it is not easy to start to use this kind of software after
to get use to working the Altera software.

A positive aspect of XPS is that it includes a user friendly wizard for building a base
system. This wizard works fine for the supported FPGA development boards, but if
the user wants to use an unsupported FPGA development board like the GR-PCI-
XC2V [PE03], some additional modification has to be done.

The user does not necessary have to use the wizard for building a base system, but
this requires deeper knowledge of the hardware being used.

When running the system on the FPGA development board, XMD can connect to
the MicroBlaze processor via a debug unit using the JTAG interface. From XMD the
user can download software applications into the MicroBlaze memory, control the
execution flow, and inspect registers etc.

-22 -

Robert Bayona Adam Master Thesis

The source code for the MicroBlaze processor is proprietary and is not included45
in the EDK. The processor being closed source requires that the documentation
follows a high standard. The closed source code makes the simulation and
debugging more difficult, because it is difficult to know what is really happening
inside the processor.

6.2.2.Documentation

The available documentation for MicroBlaze and for the included tools is very
informative. There is also an extensive answer database available at the Xilinx
website [XILWEB], where users can submit questions.

On the contrary than the Altera documentation, for us have been more difficult to
find how to use the Xilinx hardware and software.

Like we have said before, there is a big database of answers at the Xilinx website
but the most part of this place is for experimental users and weird problems. And for
us, beginner uses who don’t know how to start to program a processor with a not
common Xilinx board have been difficult to found easy manuals, tutorials and help.

6.3.Leon2
6.3.1.7o0ls

The tool evaluated for LEON2 is the configuration and implementation
environment, which consists of make scripts. A TCL/Tk based configuration GUI
can be invoked from the make scripts for generating a working LEON2 system. The
GUI is very similar to the Linux 2.4 kernel graphical configuration tool and is very
simple to use. To help the user, there are tool tip boxes for all configuration options.
The output of the configuration tool is a configuration file, which is used by the
mkdevice program to generate a VHDL package containing constants defining the
configuration of the LEON2 processor.

When we have the VHDL code, we have used the Quartus software to compile and
program the Nios II processor and the Xilinx software for the Xilinx board.

To download and run the software in both boards, we can use the GRMON tool,
which can works on Linux, Cygwin and also there is a graphical interface for
windows made by eclipse.

6.3.2.Documentation
The available documentation for the LEON2 processor and the included tools is
good. There is a mailing list providing LEON2 support at Yahoo, see [LMWEB],

which is frequently visited by Gaisler Research employees. There is also
commercial support available.

-23 -

Robert Bayona Adam Master Thesis

6.4.Conclusion

Once time we have worked with all the different software, for us the easiest and best
software and documentation is the Altera. Maybe we are influenced by to have
worked before with it, but the Xilinx software is harder to know what is happening
and what you are doing.

Also, the Leon2 scripts to create the VHDL files are very easy to use but, you have
to know what you are doing in every moment, and have a big knowledge of the

hardware.

Also, in the Leon2 scripts we can’t change the name of the parameters and other
options, and we have to open the VHDL code to configure it.

-4 -

Robert Bayona Adam Master Thesis

7. Configurability
7.1.Nios Il

In the Nios II processor we can configure absolutely all the parameters that we want

with the SOPC builder. And like we have said before, is pretty easy to change these
options.

7.2.Microblaze

The amount of configurable parameters for MicroBlaze is less than for the LEON2
and Nios II processors

7.3.Leon2

The LEON2 processor has an extensive amount of configurable parameters. This
can easily be reviewed by the number of configurable parameters, which contains
some of the more interesting parameters. Besides the many functional options, one
can also find several options for improved timing, simulation and debugging.

7.4.Conclusion
The graphical Altera tool (SOPC builder) is the easiest way to configure a processor

and its parameters, therefore for us; the Altera software is the most configurable and
easiest way to configure a processor.

-25-

Robert Bayona Adam Master Thesis

8. Summary

The three processors have been compared on performance, configurability and
usability. And now, like we have told before in the conclusions in each paragraph,
we are going to write a global summary about this.

The LEON2 processor shows the best performance both in terms of
benchmark results and in terms of performance per clock cycle.

Nios II is the most configurable processor, while MicroBlaze and Leon2
have less configuration options.

Also, Altera has the most extensive documentation for the processor. The
documentation for Xilinx is extensive too, but is more difficult to find what
you are looking for, while the documentation for Leon2 is sufficient. The
three processors, Nios II, MicroBlaze and LEON2 have qualified support.
The three, Nios II, LEON2 and MicroBlaze have satisfying configuration
tools, which makes configuration easy. The LEON2 configuration tool has
help readily available for all configuration options, the Altera configuration
tool, is the easiest to use, while the options in MicroBlaze are well
documented but more difficult to access.

-26 -

Robert Bayona Adam Master Thesis

9. Discussion
9.1.0bstacles

For us, that we never have worked programming processor, have been pretty
difficult to start to learn how they work, and how you have to program them.

Also, we have had to learn how to program three different processors, with their
three different software and their problems and difficulties.

To start with the Altera has been a good choice, because we knew how to handle its
software, and its way to work, but when we have been to work with the Xilinx
software it has been difficult. Every thing is different than the Altera, and the way to
work, etc...is different.

When we started to work with the Leon2, we had the experience of the two firsts
processors, and it has been easier to change the way of thinking and work with it.

We have spoken about the documentation before, but the tutorials and manuals
found in different private project webs have been very useful. To choose a thesis
about a subject in which there are a lot of people working, interestedly and
disinterestedly has been really grateful, and in the private groups of Google and
yahoo, where we have written a lot of emails asking for help, a lot of people have
answered us, always quickly and with a lot of respect.

9.2.Future improvements

There are several improvements which can be done to achieve more comparable
results.

An extension of the number of benchmarks could be done to increase the reliability
of the results. The development board of choice could have been changed into a
development board which is currently unsupported by all processors. This could
result in a comparison of the portability for all three processors, including LEON2.

Also, a specific benchmark for the board, or what we want to measure, could have
been made for improving the comparison among the processors

-27 -

Robert Bayona Adam Master Thesis

10.References

[1] Altera Web
http://www.altera.com/

[2] Cyclone IT Altera board Web
http://www.altera.com/products/devices/cyclone2/cy2-index.jsp

[3] Altera tutorials Web
http://www.altera.com/literature/lit-cyc2.jsp

[4] Nios II processor Web
http://www.altera.com/literature/lit-nio2.jsp

[5] Xilinx Web
http://www.xilinx.com/

[6] Microblaze Web

http://www.xilinx.com/xInx/xebiz/designResources/ip_product_details.jsp?key=mic
ro_blaze

[7] Microblaze tutorials Web
http://www.ii.uam.es/~igonzale/recursos/Tutorial MicroBlaze uCLinux_jcra2004.p
df

[8] Suzaku Web
http://www.atmark-techno.com/en/products/suzaku/suzaku-s

[9] Suzaku tools
http://download.atmark-techno.com/

[10] Gaisler Web
www.gaisler.com

[11] Leon2 processor Web
http://www.gaisler.com/cms4 5_3/index.php?option=com_content&task=view&id=
12&Itemid=52

[12] Grmon tool
http://www.gaisler.com/cms4 5 _3/index.php?option=com_content&task=view&id=
39&Itemid=128

[13] Opencores Web
http://www.opencores.org/

[14] Cygwin
http://www.cygwin.com/

-28 -

Robert Bayona Adam Master Thesis

11.Attachments

11.1.Leon2 on Altera board Tutorial

Introduction

This tutorial is created to help you design your first embedded system with a Leon
SPARC softcore processor. Before you proceed you must have the following

software and hardware:

Software:

Quartus IT 3.*

Cygwin (installed with devel. tools option)
WinRAR

Synplify PRO 7.2 [Optional]

Hardware:

- windows-PC

- Linux-PC

- Altera FPGA development board

Chapter I is a general chapter where you can learn how to define your Leon SPARC
processor system.

In chapter 11, there are possible 2 tracks to follow:

TRACK 1: completing the design with Quartus I1:

Easiest way to set up a Leon SPARC microprocessor system on an FPGA.
Synthesis, place & route is

done with Altera Quartus II.

TRACK 2: completing the design with a third party synthesis tool

An alternative way to set up the Leon SPARC microprocessor system on an
FPGA. Synthesis is done

in the third party tool (in this case SYNPLIFY PRO), place and route is done
in Altera Quartus.

Chapter III describes how to download the embedded system into the FPGA and
how to run it.

-20 -

Robert Bayona Adam Master Thesis

I Defining the embedded system

I. Download and installation of Leon 2 source files:

A. Download leon2-1.0.15.tar.gz from http://www.gaisler.com

B. Unzip the tar.gz archive to e.g. c:\leon2 (From now on we will
suppose that this is your working directory. If you choose another
one, you’ll have to replace “c:\leon2” in this tutorial with your own
directory.)

C. To get quick access to the Leon configuration utility (which makes
use of cygwin), create 2 files in the same directory:

leon.bat
@C:\Cygwin\bin\bash.exe --rcfile c:\leon2\leon.bashrc

leon.bashrc

PATH="/bin:/contrib/bin: /cygdrive/c/leon2/leon"
cd /cygdrive/c/leon2

II. Configure the processor
A. Start cygwin by double-clicking on leon.bat

B. Normally you should be in the correct directory (you can check it
with the “pwd”-command)

C. Start the Leon configuration utility by typing “make xconfig” (figure
1)

Figure 1: start the Leon configuration-utility

FINNT\System 32! cond.exe

Synthesis Drebug supperl uril

Piosesioe and caches Pl pileslace. Sawe and Euit

Faudlich i Ot Wi Saving

AMBA AHE corfiguration | Bosl opions Load Cenfiguealion rom Fie

Oplicnal e des VHDL Debugeing Stees Carfgurslion 1o File

-30 -

Robert Bayona Adam Master Thesis

D. In the Leon configuration utility you can define your own processor
system. Below you can find a short description of the necessary
configuration you’ve got to do for building your own embedded
system on an FPGA. Most of the settings are correct by default, to
make sure however that everything is configured correctly, run
trough the following steps.

1. Click on the “synthesis”-option (figure 2), where you’ll be able to
define your target technology. In your case this will be "generic"
for all Altera targets. All other parameters shouldn’t be changed
unless you know what you’re doing.

Figure 2: The synthesis options window

(C: synthesis e | =] 1
Symthesiz

||Iccm||g | Carfiguration name

ﬁenenicl Target technology

B o baff

-GEnesit
Al ATCSS
RAtmed-ATC2ZS
Atmed-ATCIE Iides B0
UMC-FS90
UMC-0.18 | Irfies pad:
TaMC-0.25
Actel-Prozsic Il muifiphie
Actel-Axgal
Hine-rkex Iepurcrve ieegister file waite timing
Hlires-Wirkes 2

T | Uze dusl-poit Aok far DS raes buffs

Hain Manu | st [Pz I

ii. In the “processor and caches” window (figure 3) you can
configure the integer unit and the cache system. For FPGA’s this
means the following (to avoid possible timing problems):

Figure 3: The processor and caches window

(" Processor and coches R [1

-31 -

Robert Bayona Adam

Master Thesis

a) Disable the floating point unit and coprocessor unit.

b) Configure the integer unit (figure 4):

o Make sure “fast jum-address™ is selected
o Make sure “ICC interlock™ is selected
o Make sure “fast instruction decoding” is selected

Figure 4: The integer unit window

o e it

[[t

L !
[|| & || SPAREVEHULEN ko

Spcnr | M iz Lmey

o I

1 |L|:-a-clm

Gylf’nlranmmmm

& g r..|m-_...-¢

iy n|rwmm

|

Hmudwﬂ

oy e Pl O 4

i P3R: mrimrenision i

ul PSR v |0

a:] “"l

c) Configure the data and instruction cache system (figure 5).
Depending on the amount of block RAM available, you can
use different values. The following are example settings
(instruction and data cache have the same configuration):

= Associatively on 2 sets

= Set size on lkbyte/set

= Line size on 32 bytes/line

= Random replacement algorithm

Fi lgure 5: The cache System window

8]

| [istucion cacne E
2 | Assaciatiil fsets) Hedp
1| Set siee (kbples/esl] Help
32| Line size {hytes/lie] | Help
Hmdufnl Replacement abiihe [ﬁl
I"y[ﬁ'nllt‘:m[ﬂd&lng [Hea:

” Data cache
2| Asscisviy sty | Hsﬂn';!
& o= [|

-32 -

Robert Bayona Adam Master Thesis

iii. Turn on the “debug support unit” in the “debug support unit”
window (figure 6)

Figure 6: The debug support unit window

et oppart it _J;uﬂj
ot supget ik 1

=g || || metg mapenia Hmi‘“
C || n]liombae |] §
e | = | i i l
& [t hee |
1

iv. Now you’ve got to configure your “memory controller” (figure
7). Depending on your hardware, use the following settings:

B You’ve got SRAM:
® Select 8/16 bit prom/scram bus depending on the data bus
width to your SRAM/PROM. For 32 bit access select
none.
B You’ve got SDRAM
® Make sure “SDRAM controller” is selected
® Make sure you selected the "inverted SDRAM clock"
option when using an FPGA. Otherwise you could create
an unstable system caused by clock-scew
B You want to use on-chip RAM (look at step (v))

Figure 7: The memory controller window

(- emory controller e ==
Hrmiy ek

oy || on || Sl PRIMSRAR bus suppat | el -
cliE n 16t FAOM SRS bis sipparl | Hido
| i i1 | fa n'l i ke b leadback: I Hedg
'-“.v|f=n Sh SRAM chip-celect | Helo
oy || o || SORAM conteler | Hel

e | G | o o e

Wi W res | Hed Praw [

v. In the “peripherals” window (figure 8), make sure that the Leon
configuration register is selected. If you need on chip RAM
(AHB-RAM), select the On-chip AHB RAM option, and define

-33-

Robert Bayona Adam

Master Thesis

its size. Take care though that you don’t exaggerate its size, as
there is a very limited amount of RAM available in the FPGA,
and the cache also makes use of it. Disable the Ethernet and PCI

interface.

Figure 8: The peripherals window

CETTEE———— N TET
Paripherals |
& o |[7 0 || LEON compuaation mgee He | =
C oy || 7 0 || Seconday intemngd corticles Help
il coonl Heip
oy || Fon || wakchdog Helg
oy || F || AHE status iegute Help
&y || © n || OncheARE RAM Helg
4 | A b e Pl Fielo
Flbwrml rislace]
PO wdemlacw
Main Menu I Heit I Brev I

vi. In the “boot options” window (figure 8) you can select where you
want your device to boot from. To avoid synthesis problems,
select “memory” as boot location. This way the Leon will try to
boot from address location 0x0, probably there will no valid data
on address 0x0, but that’s no problem as you’ll still be able to
connect to the debugging unit and download your executable

manually.

Figure 9: The boot options window

Boot options

=10l %]

Memary I Eoot selection

Help | |

0

Rk read waitstates

Help

0

Rtk virite waitstates

Help

25

Spstem slock fiequency

Help

38400

UBRT baud rate

Help

£y " ©on " Use external baud rate setting (PIG[7:0]) Help

11

| Intermal boot PROM address bits

Help

Ll

Main Meru I Hest

Prev

vii.Don’t change anything in the “VHDL-debugging” window.

E. The configuration of the LEON processor system is now complete. In
the main window, push on “save and exit”. This will save your

-34 -

Robert Bayona Adam

Master Thesis

configuration, after this you’ll het the message that you have to type

the

“make dep” command to generate the proper VHDL

configuration files. Type “make dep” at the command prompt, and
hit the enter button. The VHDL configuration file will now be
generated automatically.

II1.Adjust the top file to your needs

A. Create a backup copy of the file “c:\leon2\leon\leon.vhd”.

B. Open “c:\leon2\leon\leon.vhd” and adjust the in & out ports to
correspond with your pinning file*:

1. Critical basic signals are:

resetn: active low reset signal, if possible connect it with a
button, otherwise write a little reset-statemachine in the Leon
entity that drives the signal low for some clock cycles.

clk: The clock signal, if needed divide/multiply the incoming
clock with your own state machine, or use the Altera PLL’s.
Make sure however that your target component is able to
handle the clock speed you selected. Table 1 gives you an idea
of what clock speed is archievable on different Altera
hardware components

dsutx: debugging unit transmit UART port
dsurx: debugging unit receive UART port

dsuen: debugging unit enable, this active high input signal
enables the debugging unit, a logical ‘1’ has to be provided to
activate the debugging unit

bexcn: memory mapped I/O bus exception, this active low
input indicates a memory problem, a logical ‘1’ has to be
provided to avoid exceptions

brdyn: memory mapped I/O bus ready, this active low input
indicates that the access to a memory mapped I/O area can be
terminated on the next rising clock edge, a logical ‘1’ has to
be provided when no memory mapped 1/O is used

dsubre: debugging unit break enable, this active high input

will generate break condition and put the processor in debug
mode, in this case a logical ‘1’ has to be provided.

-35-

Robert Bayona Adam Master Thesis

Table 1: Leon clockspeed

Technology Timing
Altera APEX20K1000E-1X 36 MHz
Altera APEX20K1000E-2X 32 MHz
Altera APEX 11 25-7 51 MHz
Altera APEX 11259 36 MHz
Altera Cyclone 20-8 43 MHz
Altera Cyclone 20-8 42 MHz

ii. Optional signals are:

m errorn: active low output which indicates error condition, connect
to a led

m dsuact: active low output that indicates whether the debugging
unit is active, connect to a led

m pio[15]: Transmit signal of standard I/O in/out UART

m pio[14]: Receive signal of standard I/O in/out UART

iii. When you use SRAM, following signals have to be connected:
®m data: data path

B address: address path

B ramsn: RAM chip select

B ramoen: RAM output enable

® rwen: RAM write enable

iv. When you use SDRAM [PC100/PC133 compatible], following
signals have to be connected:

= data: data path

= address: address path ([14:2] is used as address, [16:15] are the
bank select signals)

= sdcke: clock enable

= sdcsn: chip select

= sdwen: write enable

» sdrasn: row address strobe

= sdcasn: column address strobe
= sddgm: data I/O mask

= sdclk: SDRAM clock

C. Save all changes to the Leon top file

-36 -

Robert Bayona Adam Master Thesis

HINT: * The Leon topfile makes use of “pads” to route its signals to the
outside world. Depending on the selected target technologies (Atmel,
generic,...) other types of pads are inferred. The 3 types of paths you’ll
encounter are: [pad = output pin, d/g/en: Leon in/output]

(©)

(©)

outpad(d: in st_logic, pad : out std logic)
inpad(pad: in st_logic, q : out std_logic)

iopad(d: in st logic, en : in std logic, q : out std logic, pad : inout
std_logic)

With this knowledge you can easily create extra pads (e.g. and extra
addresspad to connect your SRAM and SDRAM simultaneously).

II Synthesis, place & route, generating the bitstream

As mentioned in the introduction, there are 2 possible tracks to complete your

design (figure 10):

TRACK 1: completing the design with Altera Quartus:

Easiest way to set up a Leon SPARC microprocessor system on an FPGA.
Synthesis, place & route is

done with Altera Quartus.

TRACK 2: completing the design with a third party synthesis tool

An alternative way to set up the Leon SPARC microprocessor system on an
FPGA. Synthesis is done

in the third party tool (in this case SYNPLIFY PRO), place and route is done
in Altera Quartus.

-37 -

Robert Bayona Adam

Figure 10: The design flow

Master Thesis

CHAPTER |

TRACK |

¥ v
Quartus 11 Synplify T
+ (synthesis) (synthesis) TRACK 2

Quartus Place &
route

CHAPTER II

Download & test
the LEON SPARC

CHAPTER IV

TRACK 1 Complete your design with Quartus II

1) Start Quartus II (Start %o programs %o Altera %o Quartus 11 2.2)
2) Create a new quartus project (File %o new project wizard) (figure 11)

-38 -

Robert Bayona Adam Master Thesis

Figure 11: Create a Quartus Il project

& (st 8

=[] =]

Fie B e Pt Ass@hnienks Preidesing - Toaks | Wiridie Help -

D@ ibe cowrermerp|0d|€e]

[RenwaE|ceeve i vz@e
alul

T

rasw Profest Wizsed: Dieectory; Manme, and Top-Level Entity {Rage= 1 of 6]

‘What it tha wxlang o thir peniact* Ther drmclon pell contam deign flas and
m;mhm* .

Mo prgeck ¥ pou bipe a drechony rava Bl o ot
83 Hhaschie: [T Flee | 8 Das Ltz] e e e
=l
Hodda [Progeeee & [Time & | “whid b e s o s profect 1 sou whehi, ol s s the g of Hee prjects
topr ke dhesign rtlp
= =

Wt b e g o Hie bocebesst deign sty In o pogscd T The usius E solwaie sl
ically coeate Comgdar and Tinadusot ielivgg kot s lop vl ey pou specdy

m I Alter oz coaste m penjec). P wan add more lopereel anditinr and cieate

Compder anct Samobsiod sethngs bt thenowith pomneands on the asionmends nenil

H

Ceuartus 1l
Infarmation
(hitp: FAwneny, altera, com
Lomplt (St
[iPrvceaciy -}, 3pem _ ;
Eoebel et | S 7 o e e e T

3) Select the directory “c:\leon2\syn\” as working directory, name of the project
is “Leon”, top level entity is “Leon”, click on “next”

4) Add the following vhdl files from the “c:\leon2\leon\” directory [starting with
the left column] and
click on next:

-39 -

amba.vhd tech_atcI8.vhd dsu_mem.vhd div.vhd nart.vhd
target.vhd tech_atc25.vhd ahbmst.vhd meiko.vhd ahbram.vhd
device.vhd tech_atc35.vhd dcom_uart.vhd fpu_lth.vhd apbmst.vhd
config.vhd tech_fs90.vhd dcom.vhd fpu_core.vhd wprot.vhd
sparcv8.vd tech_umcl8.vhd | |cachemem.vhd in.vhd ahbstat.vhd
mmuconfig.vhd | |tech_virtex.vhd icache.vhd proc.vhd ahbarb.vhd
iface.vhd tech_virtex2.vhd | |dcache.vhd lconf.vhd mcore.vhd
macro.vhd tech_tsmec25.vhd | [acache.vhd irgetrl.vhd leon.vhd
ambacomp.vhd tech_proasic.vhd | |cache.vhd sdmctrl.vhd yourpinningfile.csf
bprom.vhd tech_axcel.vhd rstgen.vhd metrl. vhd

multlib.vhd tech_map.vhd fpulib.vhd ioport.vhd

tech_generic.vhd | |dsu.vhd mul.vhd timers.vhd

Robert Bayona Adam Master Thesis

5) Select “none” as design entry synthesis tool, and click on “next”.

6) Select your component’s target family, and select “yes” to select the
component itself directly. Click on “next”

7) Select your target component, click on “next”
8) Press on “finish” to complete the project setup.

9) Start the compilation “processing %o start compilation” to synthesize and
place & route the design and create the bitstream.

10) In the “message”-window, look for the message indicating the archived
clock speed.

TRACK 2 Complete your design using Synplify.

1) Start synplify. (start %o programs %o synplicity %o synplify pro)
2) Open the existing Leon project (File %o open project %o existing project)
3) Browse to “c:\leon2\syn” and open the “Leon” project.

4) Add your own vhdl files to the project by clicking on “add file”. Make sure
your hdl files are
synthesized before the “Leon” top entity by optionally altering the synthesize
order.

5) Configure the implementation options (project %o Implementation Options)

(figure 15)
e The device tabs:
Select your target component (Technology/part/speed/package)
e The options tab:
Not a single option may be selected, as this could result into netlists with
a non-working Leon.
e The constraints tab:
Enter your desired clockspeed
o [mplementation results
Make sure the resulting format is “vqm’
e Timing report:
These values should be correct
e Vhdl-tab:
Make sure the top level entity is “Leon”
Press on “OK™

b

- 40 -

Robert Bayona Adam Master Thesis

Figure 15: Synplify implementation options

e
ok i yow vt 1ot s ot oty

lPEOSRGE « 0%

=i
ol

Bu(t2 PP Prie » [m’
|

Cipan P z =
: m || Synplity Pro”

s Planct | S Vit 00 - R B, masdan 100

— P = e = ==

= "_‘ — “T'M"“ e -

Chargn Fi. | B Lovort] aa il

i =] |m,lum.<‘d‘_

T B [t thricn v =
Lo] 4 [k cordug bl E
| e

1 B st dneromd
| 4 L] mcrocvhd
TS| - st d
= [t berom vhd
= i Disce Mg Oipkons
b | e L
(e 100
Conatia v camrion r
Prsinmg i
Lyt Correste Port Trang Dot =
Verticn e = s #
Ot Drakesplions =
ik i an cplions B B desiipheont. ."'_:
S pun.2t
Synplicity :i
0| s te
| = progent -oiose o lecesiscnz-1.0 10vsynclecn pry
1] * proasct -losd 7 lachslsond-1.0 18-synth synsleon. pry (|
1] = |
_ LI &
|0 Aoy vy, P
T T

6) Press on the famous “Run” button to start synthesis, wait until synthesis is
complete

7) Now press on the “view log” button, and check whether your desired clock
speed has been met. If not, track back and change your clock divider to a lower
value.

8) Now you have to place & route your design in Quartus II.
a. Start Quartus II (Start %o programs %o Altera %o Quartus 11 2.2)
b. Create a new quartus project (File %o new project wizard) (figure 11)

c. Select the directory “c:\leon2\syn\” as working directory, name of the
project is “Leon”, top level entity is “Leon”, click on “next”

d. Add the “leon.vgm” file generated by synplify
e. Select “synplify” as design entry synthesis tool, and click on “next”.

f. Select your component’s target family, and select “yes” to select the
component itself directly. Click on “next”

g. Select your target component, click on “next”
h. Press on “finish” to complete the project setup.

9) Start the compilation “processing %o start compilation” to synthesize and
place & route the design and create the bitstream.

10) In the “message”-window, look for the message indicating the achieved
clock speed.

-41 -

Robert Bayona Adam Master Thesis

III Download and test the Leon SPARC

1) Open the Quartus programmer (700ls %o Quartus)

Figure

Start

a. Make sure you connected your download cable correctly (e.g.
byteblaster,...), make sure your board is powered on

b. Push on the “setup” button to configure your hardware setup.

c. After the hardware configuration, push on the “auto detect” button.
This will initialize the device-chain and display it.

d. Remove the device that has to be programmed, and add the generated
target file (“leon.sof” or “leon.pof™) to the chain by pushing on the button
“add file”. After the file has been added, make sure the order of the
different devices is still correct.

e. Select the program/configure box of your device in the
“Program/configure”-column (figure 16)

16.: Quartus programmer

Programming Hardwar

Stop

Add File...

Add Device...

Fremaye
)
Diary

Froperties

Auto Detect

SaveFile.

1kl

L

Mode: IJTAG _'J Progress: | 0% ’VType. EBpteBlaster [LPT1] Setup..

File Device Checksum Usercode “erify Examine

Program/ Blank- Security
Configure Check Bit
1, ..onzebdfisyrileon,pof EPCZ O065EGAC FFFFFFFE Il Il [L1

f. Press on the “start” button (the one in Quartus) to download your
design into the device

2) Now you’ll have to try to connect to the Leon and run “hello world”. (you
need linux for that).

a. Download LECCS from http://www.gaisler.org

-42 -

Robert Bayona Adam Master Thesis

b. Install the LECCS tools with following commands into the /opt/rtems
directory:

e (Cd/opt

e gunzip —c leccs-linux.tar.gz | tar xf —

e unzip —c leccs-docs-tools.tar.gz | tar xf —

e unzip — leccs-docs-rtems.tar.gz | tar xf —

e add /opt/rtems/bin to your search path

c. Now compile the test programs that are available within the installed
package.
e cd /opt/rtems/src/examples/samples
e sparc-rtems-gcc —msoft-float —Ttext=XXXXXXXXXX hello.c —o
hello (with -Ttext=0x40000000 for S(D)RAM or -Ttext=0x60000000
for AHB-RAM)

d. Connect the DSU-UART cable to you linux-system

e. Connect to the target board:
e cd /opt/rtems/src/examples/samples

e /dsumon —i —u —uart /dev/ttySO
(or ttyS1 if you use COM1)

f. If all goes well, you get the following message (with your correct clock
speed and other settings):

asu=

LECN DSU Moniter, wersion 1.0.6
Copyright @ 2001, Gaisler Research - all rights reserved
Comments or bug-reports to jirifgaisler.com

Clock frequency i 20.28 MHz

Register windows : 8

V& hardware mul/div : no

floating-point unit : not found

instruction cache i & * 1 kbytes, 32 bytes/line (2 kbytes total)
data cache : 2 * 1 kbytes, 32 bytes/line (2 kbytes total)
Sram : not found

sdram : not found

stack pointer i Ox43fELfLf0

g. Connection with the LEON has been succesfull!

h. Use the following commands to load the “hello world” program into
the Leon

e Jo hello

e run OxXXXXXXXX (with XXXXXXXX = 40000000 for

S(D)RAM, or 60000000 for
AHB-RAM)

1. The message “Hello world” should appear on your screen!

- 43 -

Robert Bayona Adam Master Thesis

-44 -

Robert Bayona Adam Master Thesis

11.2.Leon2 on Xilinx board Tutorial

Introduction

This tutorial is created to help you design your first embedded system with a Leon
SPARC softcore processor. Before you proceed you must have the following
software and hardware:

Software:

- Xilinx ISE 5.x

- Cygwin, not Xygwin (installed with devel. tools option)
- WinRAR

- Synplify PRO 7.2 [Optional]

Hardware:

- windows-PC

- Linux-PC

- Xilinx FPGA development board

Chapter I is a general chapter where you can learn how to define your Leon
SPARC processor system.

In chapter 11, there are possible 2 tracks to follow:
TRACK 1: completing the design with Xilinx ISE:

Easiest way to set up a Leon SPARC microprocessor system on an FPGA.
Synthesis, place & route are done with Xilinx XST.

TRACK 2: completing the design with a third party synthesis tool

An alternative way to set up the Leon SPARC microprocessor system on an
FPGA. Synthesis is done in a third party tool (in this case SYNPLIFY PRO),
place and route is done in Xilinx ISE

Chapter III describes how to download the embedded system into the FPGA and
how to run it.

- 45 -

Robert Bayona Adam Master Thesis

Defining the embedded system

1) download and installation of Leon 2 source files:

a) download leon2-1.0.15.tar.gz from http://www.gaisler.com

b) unzip the tar.gz archive to e.g. c¢:\leon2 (From now on we will suppose
that this is your working directory. If you choose another one, you’ll have to
replace “c:\leon2” in this tutorial with your own directory.)

c) To get quick access to the Leon configuration utility (which makes use of
cygwin), create 2 files in the same directory:

leon.bat
@C:\Cygwin\bin\bash.exe --rcfile c:\leon2\leon.bashrc

leon.bashrc

PATH=""/bin:/contrib/bin: /cygdrive/c/leon2/leon"
cd /cygdrive/c/leon2

2) configure the processor

a) start cygwin by double-clicking on leon.bat

b) normally you should be in the correct directory (you can check it with the
“pwd”-command)

c) start the Leon configuration utility by typing “make xconfig” (figure 1)

Figure 1: start the Leon configuration-utility

Syrbesic Db suppat it

Processoe and caches FCI intesface Save and Exi

Faultch i Qi Wihoul Saving

AMBAAHE corfiquration | Bool optians Load Cerfiguslicn from Fie

Oplicndl mothies WYHDL Debugging Store Carfiguralion 1o Fike

- 46 -

Robert Bayona Adam Master Thesis

d) In the Leon configuration utility you can define your own processor
system. Below you can find a short description of the necessary
configuration you’ve got to do for building your own embedded system on
an FPGA. Most of the settings are correct by default, to make sure however
that everything is configured correctly, run trough the following steps.

1) Click on the “synthesis”’-option (figure 2), where you’ll be able to
define your target technology. In your case this will be “Xilinx Virtex
(2)” for “Virtex (2)” targets, or “generic” for spartan targets. All other
parameters shouldn’t be changed unless you know what you’re
doing.

i1) In the “processor and caches” window (figure 3) you can configure
the integer unit and the cache system. For FPGA’s this means the
following (to avoid possible timing problems):

Figure 3: The processor and caches window

E Processor and cathes = = =j

(1) Disable the floating point unit and coprocessor unit.

(2) Configure the integer unit (figure 4):
e Make sure “fast jump-address” is selected
e Make sure “ICC interlock™ is selected
e Make sure “fast instruction decoding” is selected

Figure 4: The integer unit window

=101 =

i L] || L] || SRARGVE UL rrinacbons 2
o . Akt Hels
P [t | e
L& o[0 [rotmpsst i | o]
_#p||<‘n||:r_m | e
e [
I e e
ul Hadveant pasbhioeil Help
1] PR vdamaniaion © :
e [

............ e =
T3 I Hest I P

- 47 -

Robert Bayona Adam Master Thesis

(3) Configure the data and instruction cache system (figure 5).
Depending on the amount of block RAM available, you can use different
values. The following are example settings for instruction and data cache:
Associativity on 2 sets

Set size on 1 kbyte/set

Line size on 32 bytes/line

Random replacement algorithm

Figure 5: The cache system window

(C Cache system R -iox
| [[st cache El
2 ssciaiiy o) [ﬁl
1 et fmessen | El
32| T E’J
Randon | Rieplscenent abitben e |
|f"_n,-“ﬁ'n||tachal’.ond&lng [Hﬁi’p
| || Data cache
2| sssocianiy e | viep |21
oK | oot | Bev I

iii) Turn on the “debug support unit” in the “debug support unit” window
(figure 6)

Figure 6: The debug support unit window

=
ll
|
ilili]i
LE!E’E-_..”

iv) Now you’ve got to configure your “memory controller” (figure 7).
Depending on your
hardware, use the following settings:
e You’ve got SRAM:
o Select 8/16 bit prom/sram bus depending on the data bus
width to your SRAM/PROM. For 32 bit access select none.
e You’ve got SDRAM
o Make sure “SDRAM controller” is selected
o Make sure you selected the “inverted SDRAM clock”

- 48 -

Robert Bayona Adam Master Thesis

option when using an FPGA. Otherwise you could create an
unstable system caused by clock-skew

e You want to use on-chip RAM (look at step (v))

Figure 7: The memory controller window

=10 =

&y || ™ on || SbiPROMISRAN bus suopot | Helo |
oy |llF n || et rro R s st | e
i _p] 15 || i st fing bendback Helor
e | I
-.“,.| # 1 || S FAM chipcelect | Hela
oy |l F || SDRAM conmet | bl

! TR | ™S vebrteecd BOF M ok I Hedo | —

Wi M s | Hed | Praws [

v) In the “peripherals” window (figure 8), make sure that the Leon
configuration register is selected. If you need on chip RAM (AHB-
RAM), select the On-chip AHB RAM option, and define its size.

Hint: Take care though that you don’t exaggerate its size, as there is a
very limited amount of RAM available in the FPGA, and the cache also
makes use of it. Disable the Ethernet and PCI interface.

Figure 8: The peripherals window

ErT— ol
Paripherals |
& || || e confpuaion rgete He | =
C oy || 7 0 || Seconday intemngd corticles Help
L
oy || Fon || wakchdog Helg
oy || F || AHE status iegute Help
&y || © n || OncheARE RAM Helg
4 | A b e Pl Fielo
Flbwrml rislace]
PO wdemlacw
Main Menu I Heit I Brev I

vi) In the “boot options” window (figure 8) you can select where you
want your device to boot from. To avoid synthesis problems,
select “memory” as boot location. This way the Leon will try to
boot from address location 0x0, probably there will no valid data
on address 0x0, but that’s no problem as you’ll still be able to

- 49 -

Robert Bayona Adam Master Thesis

connect to the debugging unit and download your executable

manually.

Figure 9: The boot options window

S
Boot options

Merory I Boot selection Help | |

0 Rk read waitstates Help

0 Fiishd virite waitstates Help

25 Systen clock fisnuancy Help

38400 USRT baud rate Help

iy " i " Use extemal baud

| Internal boot PROM address bits Help

ste seifina {(PIGED]) | Help

vii) Don’t change anything in the “VHDL-debugging” window.

e) The configuration of the LEON processor system is now complete. In the
main window, push on “save and exit”. This will save your configuration,
after this you’ll get the message that you have to type the “make dep”
command to generate the proper VHDL configuration files. At the prompt
type “make dep”, and hit the enter button. The VHDL configuration file will
now be generated automatically.

3) Adjust the top file to your needs

a) Create a backup copy of the file “c:\leon2\leon\leon.vhd”.
b) Open “c:\leon2\leon\leon.vhd” and adjust the in & out ports to correspond
with your pinning file*:

1) Critical basic signals are:
e resetn: active low reset signal, if possible connect it with a button,
otherwise write a little reset-state machine in the Leon entity that
drives the signal low for some clock cycles.
e clk: The clock signal, if needed divide/multiply the incoming clock
with your own state machine, or use the Virtex DLL’s. Make sure
however that your target component is able to handle the clock speed
you selected. Table 1 gives you an idea of what clock speed is
achievable on different Xilinx hardware devices
e dsutx: debugging unit transmit UART port
e dsurx: debugging unit receive UART port
e dsuen: debugging unit enable, this active high input signal enables
the debugging unit, a logical ‘1’ has to be provided to activate the
debugging unit
e bexcn: memory mapped I/O bus exception, this active low input
indicates a memory problem, a logical ‘1’ has to be provided to avoid

-50 -

Robert Bayona Adam Master Thesis

exceptions

e brdyn: memory mapped I/O bus ready, this active low input
indicates that the access to a memory mapped I/O area can be
terminated on the next rising clock edge, a logical ‘1’ has to be
provided when no memory mapped I/O is used

e dsubre: debugging unit break enable, this active high input will
generate break condition and put the processor in debug mode, in this
case alogical ‘1’ has to be provided.

Table 1: Leon clock speed

Technology Timing
Xilinx Virtex 1000-4 18 MHz
Xilinx Virtex 1000-6 24 MHz
Xilinx Virtex 2 FRO 7-5 59 MHz
Xilinx Virtex 2 FRO 7-7 9 MHz
Xilinx Spartan 2E 600-6 33 MHz
Xilinx Spartan 2E 600-7 40 MHz

1) Optional signals are:

e crrorn: active low output which indicates error condition, connect
toaled

e dsuact: active low output that indicates whether the debugging unit
1s active, connect to a led

e pio[15]: Transmit signal of standard I/O in/out UART

e pio[14]: Receive signal of standard I/O in/out UART

iii) When you use SRAM, following signals have to be connected:
data: data path

address: address path

ramsn: RAM chip select

ramoen: RAM output enable

rwen: RAM write enable

iv) When you use SDRAM [PC100/PC133 compatible], following
signals have to be connected:

e data: data path

e address: address path ([14:2] is used as address, [16:15] are the
bank select signals)

e sdcke: clock enable

sdesn: chip select

sdwen: write enable

sdrasn: row address strobe

sdcasn: column address strobe

-51 -

Robert Bayona Adam Master Thesis

e sddgm: data I/O mask
e sdclk: SDRAM clock

c) Save all changes to the Leon top file

HINT: * The Leon topfile makes use of “pads” to route its signals to the
outside world. Depending on the selected target technologies (Atmel,
Xilinx,...) other types of pads are inferred. The 3 types of paths you’ll
encounter are: [pad = output pin, d/q/en: Leon in/output]

e outpad(d: in st logic, pad : out std_logic)

e inpad(pad: in st logic, q : out std_logic)

e iopad(d: in st _logic, en : in std logic, q : out std logic, pad : inout
std_logic)

With this knowledge you can easily create extra pads (e.g. an extra
address pad to connect your SRAM and SDRAM simultaneously).

IT Synthesis, place & route, generating the bitstream

As mentioned in the introduction, there are 2 possible tracks to complete your

design (figure 10):

TRACK 1: completing the design with Xilinx ISE:
Easiest way to set up a Leon SPARC microprocessor system on an FPGA.
Synthesis, place & route is done with Xilinx XST.

TRACK 2: completing the design with a third party synthesis tool

An alternative way to set up the Leon SPARC microprocessor system on an
FPGA. Synthesis is done in a third party tool (in this case SYNPLIFY PRO),
place and route is done in Xilinx ISE

-52 -

Robert Bayona Adam Master Thesis

Figure 10: The design flow

i i
i YOUR LEON DESIGN i CHAPTER 1
|
¥ ¥
, E Xilinx XST Synplify P
TRACK | + (synthesis (synthesis) + TRACK 2

l CHAPTER I

Xilinx Place &
ronte

Download & test .
the LEON SPARC CHAPTER IV

TRACK 1 Complete your design with Xilinx XST

1) Start Xilinx project navigator (Start %o programs %o Xilinx ISE 5 %o Project
navigator)

2) Open the standard leon ISE project (File %o open project)

3) Browse to “c:\leon2\syn\xst” (figure 11) and click on “Open”

-53-

Robert Bayona Adam Master Thesis

Figure 11: Open the Leon SPARC ISE project

T ol M - 2 bl B e . -5 - bl _
Fip G dew Fomd Serm eem Wede Heb
([DFE P FRE LER M| eEk | ne

=

sl AdanhA 0

i
ik o | i3 et e | e iom |

P s Coitore § i
7

” S i¥rm s

Ca |
ﬂiﬂ&‘w '-I

P Hep, o ¥ |

4) Configure your target device by double-clicking on the currently selected
hardware target in the “project workspace” (figure 12)

Figure 12: Configuring the target device

5) Add your vhdl files that are needed to complete the design (e.g. clock
divider,...) by right clicking on your selected hardware target and then clicking
on “add source”. Also add your pinning file (*.UCF) and assign it to the leon top
entity.

6) Select the “leon” top entity in the “project workspace”. This will show the
available you the available processes for this file (figure 12)

-54 -

Robert Bayona Adam Master Thesis

Figure 13: The process workspace

=]

Frocesses for l

Create Timing Constraints
Azsign Package Fins
Create &rea Constraints

] Edit Constraints [Test]

=43 Spnthesize

; Yiew Synthesis Report

Wiew RTL Schematic

Analyze Hierarchy

5 Check Syntax

=253 Implement Dresign

: Translate

Map

g [Place & Foute

=] L8] Generate Programming File

H Programming File Generation Feport
Generate PROM. ACE. or JTAG File
5 Configure Device [iMPACT]

H = Analpze Design Using Chipscope

OO0 000

o0

B Process Wiew I

7) Right click on “synthesize”, set optimization goal on “Area” or “speed”
depending on your own expectations, and set the optimization effort to
“high”, push on “OK”. (figure 14)

Figure 14: Process properties
x

Synthesis Opfions | HDL Options | il Specific Dptions |

Property Hame: Value e
Optimization Goal ot
Optimization Effort Hicih
Syrthesis Constraints File
Lise Syrthesis Constraints File I
Keep Hierarchy (||
Global Optimization Goal A ockMets
Generate RTL Schematic Yes
Resd Cores ¥
‘yrite Timing Constraints Hj
Cross Clock Analysis Hj
Hierarchy Separator = |

0k | Annueren petat | Hep |

8) Double-click on “synthesize” in the “process workspace” and your design
will be synthesized. If there are any errors, you’ll have to trace back to figure out
what is going on.

9) Double-click on “Implement design” in the “process workspace” and your
design will be placed & routed on your target component. If there are any errors,
they will probably be generated because of errors in your pinning file (*.UCF).

HINT: If you have unmatched LOC constraints in your pinning file, do not
remove them as you might need them later. Instead use the following trick to
avoid getting into trouble later:

1. Open the preferences window (edit %o preferences), select the

“processes” tab, and select the “advanced” property display level.

2. Right click on “Implement design”, select “properties”, and make sure

the “allow unmatched LOC constraints” value is selected, after this, push
on “OK”.

10) Open the “Place & Route Report” by double-clicking on it in the “process

-55-

Robert Bayona Adam Master Thesis

workspace”, and check whether your design fits into your component.

11) Open the “Text-based Post Place & Route Static Timing Report” by double-
clicking on it in the “process workspace”, and check whether you meet your
desired clock speed. If you don’t meet it, trace back and alter your design.

12) Double-click on “Generate Programming file” in “the process workspace”
and the bitstream will be generated. Normally you will not experience any errors
here

TRACK 2 Complete your design using Synplify.

1) Start synplify. (start %o programs %o synplicity %o synplify pro)
2) Open the existing leon project (File %o open project %o existing project)
3) Browse to “c:\leon2\syn” and open the “leon” project.

4) Add your own vhdl files to the project by clicking on “add file”. Make sure
your hdl files are synthesized before the leon top entity by optionally altering the
synthesize order.

5) Configure the implementation options (project %o Implementation Options)

(figure 15)
e The device tab:
Select your target component (Technology/part/speed/package)
e The options tab:
Not a single option may be selected, as this could result into netlists with
a non-working leon.
® The constraints tab:
Enter your desired clock speed
e [mplementation results
Make sure the resulting format is “edif”
e Timing report:
These values should be correct
e Vhdl-tab:
Make sure the top level entity is “leon”
Press on “OK”

-56 -

Robert Bayona Adam Master Thesis

Figure 15: Synplify implementation options

=101
AMJ.!J

||= BENEEHGa » Un - u'='n'j;:_+,-;--of--m.~'j- »OPOPtie »||m.

e Freamct. |
: e Synplify Pro®
ek oo Sk Nite AV - HOGAT -, masdan: 100
Eekd e [E "—‘*""“""1‘9'“""-"‘“ 1=l Toos | wesed
e Feceet] i e Wi MR DN 00
Chargn Fi. | 5 I ba it] o 50 o MLER Tugam
S [agetvhed
— B o] oo T x
#I =i EE £
| i [s Diver |cua.u|cem-- | m--mhm| T-r-uauull \H1|
| R : wvenizioc
] P 5' — -
Vi Leg | 5 il mberwgeohd i vite = | |-f. =1 i ,ur.x. "“_'| !
| e ———
Figurcyiial | 5 D] vt vhd skl i
(5 = [i hed onken [e |2
| 3 fre ifabed Facaus vasae 1
I FSM Corgile =%, i Conatis L0 Eantton r
I FsH Exgionr 3 :'“‘" ° e r |
-
I Fasce shain B bty st e — r
| o] boch_vibievhed NesTalon Weds =il | - ¥
A e [| [e —
[Coch. ok an wer Ko & desciiphrs. -«
— pir 2
¢ ~losd Eslecnlesa2 10 1omm L S e
i Aoa et st Synpicity
e 16 14 43:55 2003 —— T
| | e OF | amusen Hep]
License synpiatypro node-iocked =
= 5y leedenuiet 0, 10/ e
prcaoat _Losd £-7kecuioong-1.0 . 19-syhthearis bedn.or3 |
. ol 2
|/[5 \ . Seipt, T Wt G | 5] L2
|l s o

6) Press on the famous “Run” button to start synthesis, wait until synthesis is
complete

7) Press on the “view log” button, and check whether your desired clock speed
has been met. If not, track back and change your clock divider to a lower value.

8) Now you have to place & route your design in Xilinx ISE.

a. Start Xilinx ISE (Start %o programs %o Xilinx ISE 5 %o Project
navigator)

b. Start a new project (File %o new project)

c. Select a project name, e.g. “leon” and a working directory (create a
new one). Make sure the correct target device is selected, as design flow
choose “EDIF”.

d. Add the “leon.edf” file generated by synplify by right clicking on your
target device in the “project workspace”, selecting “add source”, and
adding the EDIF file to the project

e. Add your pinning file (*.UCF) the same way
f. Select the “leon” entity in the “project workspace”.

g. Double-click on “Implement design” in the “process workspace” and
your design will be placed & routed on your target component. If there
are any errors, they will probably be generated because of errors in your
pinning file (*.UCF).

-57 -

Robert Bayona Adam Master Thesis

HINT: If you have unmatched LOC constraints in your pinning file,
do not remove them as you might need them later. Instead use the
following trick to avoid getting into trouble later:

e Open the preferences window (edit %o preferences), select the
“processes” tab, and select the “advanced” property display
level.

e Right click on “Implement design”, select “properties”, and
make sure the “allow unmatched LOC constraints” value is
selected, after this, push on “OK”.

h. Open the “Place & Route Report” by double-clicking on it in the
“process workspace”, and check whether your design fits into your
component.

i. Open the “Text-based Post Place & Route Static Timing Report” by
double-clicking on it in the “process workspace”, and check whether you
meet your desired clock speed. If you don’t meet it, trace back and alter
your design.

9) Double-click on “Generate Programming file” in the “process workspace”
and the bitstream will be generated. Normally you will not experience any errors
here.

III Download and test the Leon SPARC

1) Download your design with Xilinx iMPACT

a. Make sure you connected your download cable correctly (e.g. parallel
cable 1V,...), make sure your board is powered on

b. Start IMPACT (Start %o programs %o Xilinx ISE 5 %o Accessories %o
iMPACT)

c. As operation mode select “configure devices”, press on “next”
d. Configure the device via “Boundary-Scan Mode”, press on “next”

e. Select “automatically connect to cable and identify Boundary-Scan
chain”, press on “next”

f. Xilinx will report which hardware has been found on the JTAG chain
(figure 16)

Figure 16: iMPACT

-58 -

Robert Bayona Adam Master Thesis

[e [Conbawration Fode] - PiracT =B

Sl Lhe asw e et B
Baundary Scan | Slave Serlal | SelectMAP | Desklop Configuration |

Right click device to select operstions

Boured sy - an Lhain Lonbents Sumimiry x|

i Théns were 3 devices detectad in the boundary-20en chan,
x.) MEACT vl e et pourh e
BSTL fie vath mach device, startie with the frst...

[FHFCMPACT 501 - 1" Added Dirvice =000 suceessfally. 2]

done
PROGRESS END - End Oprastion
Elapeed lome = | e

; ;

For Help, pross F1 Confourshon Mode Boundary-5can FaralelPC3 lotl

g. Now Xilinx asks for the configuration files for each device. Select
“Leon.” bit for the correct device and click op “open”, press “cancel” for
the other devices.

h. Right click on the target component and select “program...”, in the
next screen press on “OK”, and your target device will be programmed.

2) Now you’ll have to try to connect to the leon and run “hello world”. (you
need linux for that).

a. Download LECCS from http://www.gaisler.org

b. Install the LECCS tools with following commands into the /opt/rtems
directory:
e Cd/opt
gunzip — leccs-linux.tar.gz | tar xf —
unzip — leccs-docs-tools.tar.gz | tar xf —
unzip —c leccs-docs-rtems.tar.gz | tar xf —
add /opt/rtems/bin to your search path

c. Now compile the test programs that are available within the installed
package.
e cd /opt/rtems/src/examples/samples
e sparc-rtems-gcc —msoft-float —Ttext=XXXXXXXXXX hello.c —o
hello (with -Ttext=0x40000000 for S(D)RAM or -Ttext=0x60000000
for AHB-RAM)

d. Connect the DSU-UART cable to you linux-system

e. Connect to the target board:
e cd /opt/rtems/src/examples/samples
e ./dsumon —i —u —uart /dev/ttySO (or ttyS1 if you use COM1)

-59 -

Robert Bayona Adam Master Thesis

f. If all goes well, you get the following message (with your correct clock
speed and other settings):

LEON DSU Monitor, wersion 1.0.6
Copyright © 2001, Caisler Research - all rights reserved
Comments or bug-reports to jiri@gaisler.com

Clock frequency : 20.28 MHz

Register windows I

VE hardwars mul/div :ono

floating-point unit : not found

instruction cache : 2 * 1 kbytes, 32 bytes/line (Z kbytes total)
data cache : 2 * 1 kbytes, 32 bytes/line (2 kbytes total)
Sram : not found

sdram : not found

stack pointer : Ox43fffff0

Qsu-

g. Connection with the LEON has been successful!

h. Use the following commands to load the “hello world” program into
the leon
e o hello
e run OxXXXXXXXX (with XXXXXXXX = 40000000 for
S(D)RAM, or 60000000 for AHB-RAM)

1. The message “Hello world” should appear on your screen!

-60 -

Robert Bayona Adam Master Thesis

-61 -

