
June 2009
Danilo Gligoroski, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Study of the IEEE Standard 1619.1:
Authenticated Encryption with Length
Expansion for Storage Devices

Ignacio Gonzalez Torrego

Problem Description
The thesis will investigate the new IEEE P1619.1 standard for encryption and authentication
algorithms suitable for data storage devices that support expanding blocks. All of these modes are
using the NIST-approved AES-256 block cipher. The approved modes are as follows:

CCM-128-AES-256: Counter mode encryption with cipher block chaining message authentication
code.
GCM-128-AES-256: Galois/Counter mode (counter mode encryption with 128-bit finite field
message authentication code)
CBC-AES-256-HMAC-SHA: Cipher block chaining mode for encryption with keyhash message
authentication code using secure hashing algorithm.
XTS-AES-256-HMAC-SHA: XTS encryption with key-hash message authentication code using
secure hashing algorithm.

Assignment given: 03. February 2009
Supervisor: Danilo Gligoroski, ITEM

Para Ana, por su apoyo y cariño

Abstract

Ignacio González Torrego - iggontor AT gmail DOT com
Student at the Norwegian University of Science and Technology (NTNU)

Spring 2009

This Thesis will analyze the standard 1619.1 published by the
IEEE. The aim of this standard is to provide authenticated en-
cryption to stored data with AES algorithm working in XTS
mode. XTS-AES is a 128-bit block cipher characterized by
the use of two AES encryptions with two different keys of
the same size, tweak values to add uncertainty to cipher data,
(2128) Galois fields and The Ciphertext Stealing technique for
data units not perfectly divisible into 128-bit blocks. There is
no unanimous agreement about the profits of this standard so
various aspects such as the use of two different keys, imple-
mentation in other areas or the support of the storage industry
will be a source of controversy. Some commercial software
and hardware that implement XTS-AES encryption mode will
be presented and used to test and analyze the security proper-
ties presented by the standard IEEE 1619.1.

Keywords

AES, XTS, Tweak values, Ciphertext Stealing, XTS-AES Comments

i

ii

Preface

This Thesis is submitted to the Norwegian University of Science and Technology (NTNU).

This Thesis has been performed at the Department of Telematics, NTNU, Trondheim,
with Danilo B. Gligoroski as main supervisor.

iii

iv

Acknowledgements

I would like to express my gratitude towards those who made this Thesis possible, those
who supported me during the work as well as those with whom it has been a true pleasure
to work.

I would like to express my sincere thanks to Prof Danilo B. Gligoroski from the Norwe-
gian University of Science and Technology (NTNU), an admirable professor, a really hard
worker and an expert in the field of Information Security for his great help. His support
and encouragement, together with the interesting and helpful discussions, are sincerely
acknowledged.

And last but by no means least, I would like to express my gratitude towards my family
and Ana for their moral support.

Ignacio González Torrego

Trondheim, June 2009

v

vi

Contents

Problem Description

Dedication

Abstract i

Preface iii

Acknowledgements v

Contents viii

List of Tables ix

List of Figures xii

Abbreviation xiii

1 Introduction 1
1.1 Problem outline . 1
1.2 Cryptography . 2
1.3 Block Ciphers . 4
1.4 IEEE . 6
1.5 Thesis Structure . 6

2 Background 9
2.1 Overview . 10
2.2 AES . 10

2.2.1 Key Expansion . 12
2.2.2 SubBytes . 12
2.2.3 ShiftRows . 14
2.2.4 MixColumns . 14
2.2.5 AddRoundKey . 14

2.3 XTS mode of operation . 15
2.4 Galois Fields . 16

vii

2.5 Tweakable Block Cyphers . 17
2.5.1 Tweak Block Chaining . 19
2.5.2 Tweak Chain Hash . 19
2.5.3 Tweakable Authenticated Encryption 20

3 IEEE 1619.1 23
3.1 Theory . 24

3.1.1 Data units and tweaks . 24
3.1.2 Multiplication by a primitive element α 24
3.1.3 XTS-AES encryption procedure 26
3.1.4 XTS-AES decryption procedure 30

3.2 Comments on XTS-AES . 34
3.2.1 The XTS-AES algorithm itself 34
3.2.2 The depth of support in the storage industry for which it was de-

signed . 36
3.2.3 The appeal of XTS for wider applications 36
3.2.4 The proposal for the approved specification to be available only

by purchase from IEEE . 37
3.2.5 Concerns of intellectual property rights 37

4 Tools: Software and Hardware 39
4.1 Software . 39

4.1.1 TrueCrypt . 40
4.1.2 FreeOTFE . 43
4.1.3 DiskCryptor . 44

4.2 Hardware . 45
4.2.1 Laptop Toshiba Satellite A200 45
4.2.2 Desktop DELL . 46

4.3 Commercial Hardware: IP cores . 46

5 Methods and results 49
5.1 Methods . 49

5.1.1 Container . 49
5.1.2 Partition . 54
5.1.3 System . 54

5.2 Results . 55
5.2.1 Volume creation . 56
5.2.2 Partition encryption . 58
5.2.3 System encryption . 59

6 Conclusion 61

Glossary 62

References 66

viii

List of Tables

1.1 Classical and medieval cryptography . 2
1.2 II World War and Modern Cryptography 3

2.1 GF(2) addition table . 17
2.2 GF(2) multiplication table . 17

3.1 Inputs and outputs in the multiplication by a primitive element α procedure. 25

4.1 Machine 1 XTS-AES benchmark . 41
4.2 Machine 2 XTS-AES benchmark . 42
4.3 Toshiba laptop features . 45
4.4 Dell desktop features . 46
4.5 IP core PIN description . 48

5.1 TrueCrypt Volume Creation . 56
5.2 FreeOTFE Volume Creation . 57
5.3 Partition Encryption . 58
5.4 DiskCryptor: Partition encryption and decryption time 58

ix

x

List of Figures

1.1 Scytale . 3
1.2 Alberti disc . 3
1.3 Enigma machine . 3
1.4 Block cipher encryption process . 4
1.5 Block cipher decryption process . 4

2.1 Key Expansion Code . 13
2.2 S box substitution values . 13
2.3 SubBytes Step . 14
2.4 ShiftRows Step . 14
2.5 MixColumn Step . 15
2.6 AddRoundKey Step . 15
2.7 Block Cipher Encription . 18
2.8 Tweak Block Cipher Encryption . 18
2.9 Tweak Block Chaining . 19
2.10 TBC ciphertext-stealing . 20
2.11 Tweak Chain Hash . 20
2.12 Tweakable Authenticated Encryption . 21

3.1 Little-Endian Transformation . 25
3.2 Multiplication by a primitive element 25
3.3 Diagram of the XTS-AES Encryption process 27
3.4 Encryption CTS diagram . 29
3.5 Diagram of the XTS-AES Decryption process 31
3.6 Decryption CTS diagram . 33

4.1 TrueCrypt main window . 41
4.2 Mounted volumes after TrueCrypt decryption 41
4.3 Machine 1 XTS-AES benchmark . 42
4.4 Machine 2 XTS-AES benchmark . 42
4.5 FreeOTFE main window . 43
4.6 DiskCryptor main window . 45
4.7 XTS3 IP core symbol . 47
4.8 XTS2 IP core symbol . 47

xi

5.1 TrueCrypt Step 1 . 50
5.2 TrueCrypt Step 2 . 50
5.3 TrueCrypt Step 3 . 50
5.4 TrueCrypt Step 4 . 50
5.5 TrueCrypt Step 5 . 51
5.6 TrueCrypt Step 6 . 51
5.7 TrueCrypt Step 7 . 51
5.8 TrueCrypt Step 8 . 51
5.9 FreeOTFE Step 1 . 52
5.10 FreeOTFE Step 2 . 52
5.11 FreeOTFE Step 3 . 52
5.12 FreeOTFE Step 4 . 52
5.13 FreeOTFE Step 5 . 52
5.14 FreeOTFE Step 6 . 52
5.15 FreeOTFE Step 7 . 53
5.16 TrueCrypt container vs. FreeOTFE container 53
5.17 TrueCrypt system encryption Step 1 . 54
5.18 TrueCrypt system encryption Step 2 . 54
5.19 TrueCrypt system encryption Step 3 . 54
5.20 TrueCrypt system encryption Step 4 . 54
5.21 TrueCrypt system encryption Step 5 . 55
5.22 TrueCrypt system encryption Step 6 . 55
5.23 TrueCrypt system encryption Step 7 . 55
5.24 TrueCrypt system encryption Step 8 . 55
5.25 TrueCrypt system encryption Step 9 . 56
5.26 TrueCrypt system encryption Step 10 56
5.27 TrueCrypt vs. FreeOTFE volume creation in Machine 1 57
5.28 TrueCrypt vs. FreeOTFE volume creation in Machine 2 57
5.29 Partition Encryption . 58
5.30 DiskCryptor: Partition encryption and decryption time 58
5.31 System encryption . 59

xii

Abbreviations

AES Advanced Encryption Standard
AES-CCM AES with Counter with CBC-MAC
AES-GCM AES with Galois/Counter Mode
ASIC Application-Specific Integrated Circuit

CBC Cipher-Block Chaining
CFB Cipher FeedBack

DES Data Encryption Standard
DSA Digital Signature Algorithm

ECB Electronic CodeBook
ECC Elliptic Curve Cryptography

FAQ Frequently Asked Questions
FAT File Allocation Table
FIPS Federal Information Processing Standards
FPGA Field Programmable Gate Array

GF Galois field

IEEE The Institute of Electrical and Electronics Engi-
neers

MAC Message Authentication Code

NIST National Institute of Standards and Technology
NSA/CSS National Security Agency/Central Security Ser-

vice
NTFS New Technology File System

OCB Offset CodeBook
OFB Output FeedBack

xiii

PRP PseudoRandom Permutation

QKD Quantum Key Distribution

SISWG Security in Storage Working Group

TAE Tweakable Authenticated Encryption
TBC Tweak Block Chaining
TBC Tweakable Block Cipher
TCB Tweaked CodeBook
TCH Tweak Chain Hash
TRD TrueCrypt Rescue Disk

UAC User Account Control

XCB X protocol C-language Binding
XEX Xor-Encrypt-Xor
XOR Exclusive OR
XTS XEX encryption mode with Tweak and cipher-

text Stealing

xiv

Chapter 1

Introduction

1.1 Problem outline

Nowadays, security is a vital part in our way of life. Cars are safer and prevent possible
injury to the occupants and people outside them, houses have complex alarms and pow-
erful systems to prevent burglary, companies hire firms specializing in security to prevent
thefts and assaults, etc.

For that reason, it is not a surprise that protecting information is a key objective at the
moment, not only at government level (classified files, future projects, economic, military
defense) but also business (patents, business strategies, development of new products), ad-
ministrative (medical files, criminal records) and private (personal details, bank accounts,
sensitive information). A way to hide sensitive information or manipulate it is needed so
that even if an attacker finds it, it would be unable to realize what is really watching.

The risk of compromised data security is becoming ever greater. These risks can be
classified into three classes:

• Unintentional errors of individuals and/or machines.

• Natural disasters.

• Intentional attacks.

The first being the most common, about 80% of cases.

The protection of information is more acute since the emergence of telematic networks.
These networks and especially the Internet, make information a global problem and not
isolated to machines within the company. Technologies applied to network security are in
their initial development phase, for two reasons:

• Most operating systems are designed for mainframe/terminal architectures and not
for client/server or Internet/Intranet architectures that are being used today.

1

1.2. Cryptography Chapter1. Introduction

• There are no standards or global organizations accepted by all companies special-
ized in providing security.

Cryptology was born long ago to protect information. Its primary intention is to ensure
the transmission medium by which information will be sent to avoid as much as possible
the access to any unauthorized person. Cryptography is a branch within the science of
Cryptology, and is responsible for encrypting and decrypting information using special
techniques.

1.2 Cryptography

Cryptography (from Greek kryptós, ”hidden, secret”; and grápho, ”I write”).

Cryptography is the art, science or art of writing secret. The basic principle of cryp-
tography is to maintain the privacy of communication between two people by altering
the original message so that it is incomprehensible to anyone other than the addressee,
to which we must use authentication, i.e. the signature of the message so that a third
person can not impersonate the sender. A transformation of the original message in the
encrypted message (cryptogram) is called encryption, and the reverse is called decryp-
tion, these steps are executed using a predefined set of rules among sender and receiver
and that we call it ”key”. Cryptanalysis is the set of techniques that try to find the key
used between sender and receiver, thus revealing the secret of his correspondence.

In the cryptography, it is possible to distinguish between classical cryptography, which
includes all references cryptographic before 1st century BC, and modern cryptography,
from the 15th century.1 Tables 1.1 and 1.2 show various landmarks in the history of
cryptography.

Classical Cryptography Medieval Cryptography
Scytale (V century BC) 1.1 Alberti Cipher Disc (XV century) 1.2

Polybios cipher (II century BC) Jefferson disc (XVIII century)
Caesar cipher (I century BC) Wheatstone disc (XIX century)

Table 1.1: Classical and medieval cryptography

What are the current trends with regard to modern cryptography? Elliptic curve cryp-
tography (ECC) and Quantum key distribution (QKD) are the new cryptographic goals
toward which all are directing efforts.

• In 1985 Neil Koblitz and Victor Miller proposed Elliptic Curve Cryptosystem (ECC),
or elliptic curves cryptosystems whose security is based on the same problem that

1After the 1st century BC and until the 15th century AD, was not aware of any new invention of crypto-
graphic system (at that time was known as the Dark Ages because there were more regression than progress
in absolutely every facet of human knowledge and cryptography would not be an exception).

2

Chapter1. Introduction 1.2. Cryptography

II Word War Cryptography Modern Cryptography
Enigma 1.3 Blockciphers

Hagelin Pseudorandom Functions
M-325 Symmetric Encryption

Vigenère cipher Hash Functions
Beaufort cipher Message Authentication
Playfair cipher Digital Signatures

Hill cipher Authenticated Encryption
Computational Number Theory
Number-Theoretic Primitives

Asymmetric Encryption
Digital signatures

Authenticated Key Exchange

Table 1.2: II World War and Modern Cryptography [1]

Figure 1.1: Scytale Figure 1.2: Alberti disc [2]

Figure 1.3: Enigma machine [3]

3

1.3. Block Ciphers Chapter1. Introduction

the methods of DSA and Diffie-Hellman, but instead of using numbers as symbols
of the alphabet to encrypt the message, using points in a mathematical object called
elliptic curves. ECC can be used both to encrypt and to digitally sign. Until now,
any attack is not known whose execution time is expected sub exponentially to
break the ECC, this makes that for obtaining the same level of security provided by
other systems, the space key ECC is much smaller, what makes a technology appro-
priate for use in environments restricted resources (memory, cost, speed, bandwidth,
etc.)

• Quantum key distribution method is based on the Heisenberg uncertainty principle,
which states that simply by observing, changing what is being observed, i.e. is not
possible to know two different properties of a subatomic particle in a single instant
of time.

1.3 Block Ciphers

In cryptography, a cipher block is a symmetric key cipher which operates on groups of bits
of fixed length, called blocks, applying an invariant2 transformation. When performing
encryption, a block cipher takes a block of plaintext or clear input and produces a block
of ciphertext of equal size. This transformation takes place under the action of a user-
provided secret key. Decryption is similar, but now the ciphertext block is the input and
the output is the corresponding plaintext block. [4]

Figure 1.4: Block cipher encryption
process

Figure 1.5: Block cipher decryption
process

Block ciphers are different of stream ciphers because they transform the plaintext pro-
cessing each bit individually, one after another, and the transformation varies during the
encryption process. The difference between the two types of units is somewhat fuzzy,
since a block cipher can be operated in a mode that allows use as a stream cipher unit,
where instead of digit operating blocks.

The Data Encryption Standard (DES) was a design of block cipher of great influence.
Was developed and published by IBM and released in 1977 as standard. The Advanced

2In mathematics, an entity is considered invariant under a transformation if the transformed image of
the entity is indistinguishable from the original entity.

4

Chapter1. Introduction 1.3. Block Ciphers

Encryption Standard (AES)3 is a successor to DES, which was adopted in 2001.

To encrypt messages longer than the block size, different mode of operation are used:

• Electronic Code Book (ECB) is the easiest mode of operation. It consist on breaking
the plaintext into blocks P1, P2...Pn and then encrypt each of them independently.

Ci = Ek(Pi)

Its main weakness is if the same plaintext is encrypted twice or more times, the
same ciphertext will be generated. The typical application for ECB is the secure
transmission of short pieces of information, as for example temporary encryption
keys.

• Cipher Block Chaining (CBC). As in ECB mode, the plaintext is divided into blocks
P1, P2...Pn but now the encryption of each block of plaintext depends on the previ-
ous ciphertext block: before encrypt a plaintext block, it is XORed with the previ-
ous ciphertext block. To encrypt the first block of plaintext, an Initial Vector (IV) is
used.

Ci = Ek(Ci−1 ⊕ Pi)

C0 = IV

The major advantages of this mode is that the encryption of a block depends not
only on the current but in all the previous blocks, so a repeated plaintext block will
be encrypted differently.

• Cipher FeedBack (CFB) mode is different of the modes listed above because the
Key is now different to each plaintext block. The first key is created from an Initial
Vector, the following keys from the previous ciphertext block.

Ci = Pi ⊕Ki

Advantages: the block cipher is used as a stream cipher and is appropriate when
data arrives in segments. Disadvantages: A corrupted ciphertext segment during
the transmission will affect the current and several following plaintext segments
when decryption is tried.

• Output FeedBack (OFB) mode is similar to CFB, but now the each key is generated
from the previous one. With this variation is achieved the avoidance the propagation
of a corrupted ciphertext segment to the following decrypted segments.

• The basic idea of Counter mode is create a key stream from a single key to encrypt
the different plaintext blocks.

T1 = IV

Ti = Ti−1 + 1

Ci = Pi ⊕ EK(Ti)

3We will deeply analyze AES in 2.2

5

1.4. IEEE Chapter1. Introduction

C = (IV, C1, C2, ...)

The main advantages of this mode of operation are: fast encryption and decryption
because blocks can be processed in parallel, IV should not be used several times.

1.4 IEEE

The IEEE name was originally an acronym for the Institute of Electrical and Electronics
Engineers, Inc. Nowadays, the field of study of this organism is so extend that they are
not only focused on those fields so they prefer to be named using their initials: IEEE.

Its creation dates back to 1884, counting among its founding to personalities such as
Thomas Alva Edison, Alexander Graham Bell and Franklin Leonard Pope. In 1963 they
adopted the name IEEE of the merge of the associations AIEE (American Institute of
Electrical Engineers) and IRE (Institute of Radio Engineers).

Through its members, over 360,000 volunteers in 175 countries, IEEE is a leading author-
ity and most prestigious in different technical areas such computer engineering, biomedi-
cal and aerospace technologies, areas of electricity, control, telecommunications and con-
sumer electronics, among others.

According to the IEEE, its job is to promote creativity, development and integration, shar-
ing and applying advances in information technology, electronics and general science for
the benefit of humanity and the professionals themselves.

1.5 Thesis Structure

Throughout this chapter we have made an overview of the current state of the crypto-
graphic field and their characteristics as we presented SISWG belonging to the IEEE and
have been the authors of the XTS-AES encryption that we will develop during the follow-
ing chapters:

• Chapter 2: Background

• Chapter 3: IEEE 1619.1

• Chapter 4: Tools: Software and Hardware

• Chapter 5: Methods and results

• Chapter 6: Conclusion

In the second chapter, named Background (2), we will presents to the reader the back-
ground needed to deeply understand the theory in which is based the standard IEEE
1619.1 described in (3). Chapter 4 will introduce the software (4.1) and the hardware
(4.2) used to test the functionality of the XTS-AES encryption mode under study, the

6

Chapter1. Introduction 1.5. Thesis Structure

results will be shown in (5) and we will analyze it comparing the different software en-
cryption tools. Finally conclusion and a future work will be presented in the last chapter
(6).

7

1.5. Thesis Structure Chapter1. Introduction

8

Chapter 2

Background

This section of the Thesis is intended to provide the reader a comprehensive idea about
the current situation in which the cryptographic sector is present as well as analyze the
several innovations that incorporate the standard XTS-AES.

First we will see an overview of the characteristic of the standard under review and a
description of the different components which allow encryption of stored data as: tweak
vectors, Galois fields, AES encryption and XTS variation of the AES standard.

In the following topic we pretend to show the characteristics of the AES encryption algo-
rithm, which is the basis of the standard under study. Analyzing how AES uses the key
entered for building with it the separate subkeys for each of the rounds, and how AES is
able to manipulate the text entered. To do this we will see, step by step, which are the
changes made on the plaintext to provide uncertainty to the ciphertext.

After knowing how AES works, we must know what is the XTS mode of operation and
how can increase the security of the AES algorithm. Also we want to analyze why it has
been introduced in the IEEE standard and has been gradually included in the encryption
software and the new IP cores.

Then we will enter in the world of Galois fields (also called finite fields). We will see
what are they and what its main features are. In the next chapter we will see how Galois
fields are useful in the new encryption standard.

Finally we will analyze the last of the features of the standard that provide more security
for stored data. We refer to tweak values. Specifically tweak values will introduce ran-
domness to the ciphertext, thereby will prevent the encryption system to be deterministic
and will add uncertainty to a potential attacker.

9

2.1. Overview Chapter2. Background

2.1 Overview

The security of data stored in a digital format has grown in importance and that is why it
is usual for large amounts of digital information, secret and extremely sensitive to their
owners, to be entrusted to organizations specifically dedicated to this task, or outside
recorded in a digital format and subsequently saved physically locked to prevent theft and
the subsequent acquisition of data and confidential information.

For this reason, the IEEE Computer Society established the Security in Storage Working
Group (SISWG) in 2002 along with the 1619 draft as a way to standardize the way in
which data is safe. The objective is to build a standard architecture that could protect the
data from the time they are created until a duly authorized person wishes to access them,
without taking into account the way in which data is transmitted or stored.

The IEEE 1619 standard covers a wide range of topics that include:

• Tape Encryption

• Wide Encryption

• Key Management

This Thesis will focus on the first topic, Tape Encryption, which is deeply developed in the
draft 1619.1 Standard for Authenticated Encryption with Length Expansion for Storage
Devices.

In the next sections of this chapter, we will introduce to the reader the basic concepts to
undestand how works XTS-AES and why is a good way for storing data securely.

2.2 AES

Advanced Encryption Standard (AES), also known as Rijndael1, was published on Novem-
ber 26, 2001 by the National Institute of Standards and Technology (NIST) as U.S. FIPS
PUB 197 (FIPS 197) after 5 years of a normalization process in which fifteen com-
peting designs were submitted and evaluated before Rijndael was selected as the most
appropriate.[5]

This section shows the reader how the Rijndael algorithm works, a symmetric block cipher
that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and
256 bits. Rijndael was designed to handle additional block sizes and key lengths.

The algorithm specified here will be referred to as ”the AES algorithm”. The algorithm
may be used with the three different key lengths indicated above, and therefore these
different ways of work may be referred to as ”AES-128”, ”AES-192”, and ”AES-256”.[6]

1Rijndael is the name of the original algorithm in which its two Belgian developers, Joan Daemen and
Vincent Rijmen, were presented to the AES selection process

10

Chapter2. Background 2.2. AES

We will show the reader the main features of AES algorithm that will be helpful to under-
stand the basic operation of the standard at issue:

• Notation and conventions used in the algorithm specification, including the ordering
and numbering of bits, bytes, and words;

• Mathematical properties that are useful in understanding the algorithm;

• Algorithm specification, covering the key expansion, encryption, and decryption
routines;

• Implementation issues, such as key length support, keying restrictions, and addi-
tional block/key/round sizes.

AES is based on a design principle named Substitution permutation network and it presents
some advantages: it is fast in both software and hardware, is relatively easy to implement
and not require a big amount of memory. One of the difference between AES and its
predecessor DES, is that AES do not use a Feistel network.

AES has a fixed block size of 128 bits and a key size of 128, 192, or 256 bits, in difference
with Rijndael that was developed to work with block and key sizes in any multiple of 32
bits, with a minimum of 128 bits and a maximum of 256 bits.

Assuming one byte equals 8 bits, the fixed block size of 128 bits is 128 œ 8 = 16 bytes.
AES operates on a 4Œ4 array of bytes, termed the state (versions of Rijndael with a
larger block size have additional columns in the state). Most AES calculations are done
in a special finite field2.

The AES cipher is specified as a number of repetitions of transformation rounds that
convert the input plain-text into the final output of cipher-text. Each round consists of
several processing steps, including one that depends on the encryption key. A set of
reverse rounds are applied to transform cipher-text back into the original plain-text using
the same encryption key. [5]

Now, this section pretends to introduce to the reader the different stages that make up each
of the iterations of the Rijndael algorithm:

• Key Expansion

• Initial Round

– AddRoundKey

• Rounds

– SubBytes

– ShiftRows

– MixColumns
2Arithmetic in a finite field is different from standard integer arithmetic. There are a limited number of

elements in the finite field; all operations performed in the finite field result in an element within that field.

11

2.2. AES Chapter2. Background

– AddRoundKey

• Final Round

– SubByte

– ShiftRows

– AddRoundKey

2.2.1 Key Expansion

The AES algorithm takes the Cipher Key, K, and begin the Expansion Key routine to
generate all the subkeys that are used in different rounds.

The Key Expansion generates a total of Nb (Nr + 1) words: the algorithm requires an
initial set of Nb words, and each of the Nr rounds requires Nb words of key data.

• Subword()→ takes a four-byte input word and applies the S-box to the each of the
four bytes to produce an output word

• RotWord()→ takes a word [a0 a1 a2 a3] as input, then performs a cyclic per-
mutation and returns the word [a1 a2 a3 a0]

• Rcon[i] → is the round constant word array and contains the values given by the
array [xi−1 00 00 00], where xi−1 are the powers of x

At the beginning, the first Nk words of the Expanded Key are filled with the Cipher Key.
After that as we can see at the code of figure 2.1, every following word, w[i], is equal to
the XOR of the previous word, w[i-1], and the word Nk positions earlier, w[i-Nk]. For
words in positions that are a multiple of Nk, a transformation is applied to w[i-1] prior
to the XOR, followed by an XOR with a round constant, Rcon[i]. This transformation
consists of a cyclic shift of the bytes in a word (RotWord()), followed by the application
of a table lookup to all four bytes of the word (SubWord()).[6]

2.2.2 SubBytes

The SubBytes() transformation is a non-linear byte substitution that operates indepen-
dently on each byte of the State3 using a substitution table (S-box).

The S-box (see figure 2.2) is created to avoid attacks based on simple algebraic properties,
is constructed by combining the inverse function with an invertible affine transformation.
The S-box is also chosen to avoid any byte will be at the same position after the SubBytes
step, and also to avoid any byte could be at its opposite position.

3Internally, the AES algorithm’s operations are performed on a two-dimensional array of bytes called
the State. The State consists of four rows of bytes, each containing Nb bytes, where Nb is the block length
divided by 32.[6]

12

Chapter2. Background 2.2. AES

Figure 2.1: Key Expansion Code[6]

Figure 2.2: S Box: Substitution values for the byte xy[6]

13

2.2. AES Chapter2. Background

For example, if a2,2 = (19), then the substitution value will be determined by the inter-
section of the row ”1” and the column ”9” in the S box(fig 2.2). This would result in
b2,2 = (d4).

Figure 2.3: SubBytes Step[5]

2.2.3 ShiftRows

In the ShiftRows() step, the rows of the the State are rotated depending of its index. The
first row. r=0 is not shifted. The bytes of the first row are shifted once, the bytes of the
second row are shifted twice and the bytes for the third row are shifted three times.

Figure 2.4 illustrates the ShiftRows() transformation.

Figure 2.4: ShiftRows Step[5]

2.2.4 MixColumns

This step provides diffusion to the cipher. The MixColumns() transformation operates
on the State column-by-column. Each column is treated as a four-term polynomial. The
columns are considered as polynomials over GF(28) and multiplied modulo x4 + 1 with
a fixed polynomial c(x), given by c(x) = 03x3 + 01x2 + 01x+ 02, as we can see in 2.5

2.2.5 AddRoundKey

In the AddRoundKey() step, a Round Key is finally added to the State by a simple bit-
wise XOR operation. Each Round Key is a subkey of Nb words from the key schedule

14

Chapter2. Background 2.3. XTS mode of operation

Figure 2.5: MixColumns Step[5]

(described in 2.2.1). Those Nb words are each added into the columns of the State as is
shown in figure 2.6

Figure 2.6: AddRoundKey Step[5]

2.3 XTS mode of operation

XTS is XEX-based Tweaked CodeBook mode (TCB) with Ciphertext stealing (CTS)4.
Ciphertext stealing provides support for sectors with size not divisible by block size.[7]

XTS mode is, in fact, XEX mode designed by Phillip Rogaway in 2003, with a little
modification: Instead XEX mode uses a single key for two different purposes, XTS mode
uses two independent keys. XTS mode was approved as the IEEE 1619 standard for
cryptographic protection of data on block-oriented storage devices in 2007.

For understand how XTS mode works, we pretend to show the reader an overview of
XEX mode.

4XEX-TCB-CTS should be abbreviated as XTC but ”C” was replaced with ”S” (for ”stealing”) to avoid
confusion with the abbreviated [[Methylenedioxymethamphetamine/ecstasy]].

15

2.4. Galois Fields Chapter2. Background

XEX was designed to be a strong tweakable block cipher. Is another tweakable encryption
mode that execute a very good processing of consecutive blocks. In XEX mode, the entire
key is divided in two parts of equal size: K = K1|K2, one of them is used to encryt the
tweak value and combine the result with the plaintext of the block that will be encrypted
with the second part of the key.

For example, we pretend to encrypt block j in sector S, the following formula is used
and represent the working mode of XEX mode: C = EK1(P ⊕ X) ⊕ X where X =
EK2(S) ⊕ αj and α is the primitive element of GF (2128) defined by polynomial x.(See
2.4)

As we will see in 2.5, tweak values are built by the combination of the sector address and
the index of the block inside the sector where is stored. Tweak values produce variability
and provide some randomly to the cipher text.

The next thing we need to know to completely understand XTS mode is the term Cipher-
Text Stealing. CipherText Stealing refers to the messages that are not evenly divisible into
blocks without resulting in any expansion of the ciphertext.

Is a technique of altering processing of the last two blocks of plaintext, resulting in a
reordered transmission of the last two blocks of ciphertext and no ciphertext expansion is
produced. This is accomplished by padding the last block (which is possibly incomplete)
with the high order bits from the second to last ciphertext block (stealing the ciphertext
from the second to last block). The (now full) last block is encrypted, and then exchanged
with the second to last ciphertext block, which is then truncated to the length of the final
plaintext block, removing the bits that were stolen, resulting in ciphertext of the same
length as the original message size.[8]

2.4 Galois Fields

Galois Fields (GF) get their name from Évariste Galois and are also called finite fields.
A GF is a field that has a finite field order5 and that order is always a prime number or
a power of a prime number. For each prime power there exists exactly one finite field
GF (pn).

GF (p) is called the prime field of order p, and is the field of residue classes modulo p,
where the p elements are denoted 0, 1, ..., p − 1. a = b in GF (p) means the same as
a ≡ b (mod p).[9]

for example, the elments of the finite field GF(2) ara 0 and 1 and they satisfy both addition
and multiplication tables shown in tables 2.1 and 2.2

A polynomial over GF(2) is irreducible if it cannot be factored into non-trivial polynomi-
als. For example, x2 +x+1 is irreducible, but x2 +1 is not, since x2 +1 = (x+1)(x+1).

5Field order refers to the number of elements of the field.

16

Chapter2. Background 2.5. Tweakable Block Cyphers

+ 0 1
0 0 1
1 1 0

Table 2.1: GF(2) addition table

x 0 1
0 0 0
1 0 1

Table 2.2: GF(2) multiplication table

A polynomial over GF(2) is primitive if it has order 2n − 1. For example, x2 + x+ 1 has
order 3 = 22 − 1 since (x2 + x + 1)(x + 1) = x3 + 1. Thus x2 + x + 1 is primitive.
And let α denote one of the roots of a primitive polynomial, so a polynomial F (x) with
coeficients in GF (p) = Z/pZ is a primitive polynomial if it has a root α in GF (pm) such
that {0, 1, α, α2, α3, ..., αpm−2}6 is the entire field GF (pm), and also, F (x) is the smallest
degree polynomial having α as a root.

For the rest of the Thesis, αj would be considered as one of the root of the polynomial
F (x).

2.5 Tweakable Block Cyphers

As the authors7 said in the presentation paper, TBC wants to became in a new crypto-
graphic primitive and add a new input to the cipher: ”the tweak”. As we will see during
this section, the tweak acts like an Initialization Vector in CBC mode or a Nonce in OCB
mode. But, what are the advantages to add a new input to the cipher and what is ”the
tweak”? The main features are named in [10]:

1. TBC are easy to design.

2. The extra cost of making a block cipher ”tweakable” is small.

3. It is easier to design and prove modes of operation based on TBC.

The ciphertext C ∈ {0, 1}n in a conventional block cipher, is the result of the encryption
of the message M ∈ {0, 1}k with the key K ∈ {0, 1}n, as we can see in figure2.7.

Modes of operation began to use for encrypt messages with arbitrary length. They take
the Key K ∈ {0, 1}n, an initialization vector (or nounce) V ∈ {0, 1}v and a message
M ∈ {0, 1}∗ as input and produce a ciphertext C ∈ {0, 1}∗ also with arbitrary length.

6If α in GF (pm) is a root of a primitive polynomial F (x) then since the order of α is pm−1 that means
that all elements of GF (pm) can be represented as successive powers of α

7Moses Liskov, Ronald L. Rivest and David Wagner

17

2.5. Tweakable Block Cyphers Chapter2. Background

Figure 2.7: Block Cipher Encription[10]

Block ciphers have a serious problem that greatly compromises the security and privacy
of the ciphertext and is that they are inherently deterministic, i.e. several encryptions
of the same message with the same key will always produce the same ciphertext with
corresponding weaknesses in security that this implies. To try to resolve that problem a
conflict started about what it was better, keep the same key to enforce the efficiency or
introduce variability in the encryption. This conflict usually end with the idea of using the
same key, but adding variability before encrypting, after or both.

And that is the main idea of TBC, that maintain the same Key during the encryption
process and also adds a new input, the tweak T ∈ {0, 1}t that provides variability, to the
message M ∈ {0, 1}n and the K ∈ {0, 1}k to produce the ciphertect C ∈ {0, 1}n. Those
tweak values act like an initialization vectors or nounces.

Figure 2.8: Tweak Block Cipher Encryption[10]

There are some objectives that TBC may accomplish to be as efficient as possible. TBC
should have the property that changing the tweak should be easier that changing the key.

18

Chapter2. Background 2.5. Tweakable Block Cyphers

TBC should be secure also, even if an intruder takes control of the tweak input, TBC
should remain secure: each fixed setting of the tweak gives rise to a different, apparently
independent, family of standard block cipher encryption operators[10]. The main goal
of TBC is that should be efficient: Both encryption and decryption should be easy to
compute

It is necessary to distinguish the roles of the key and the tweak. On one hand, the key
must be used to introduce uncertainty to the ciphertext, on the other hand the tweak should
introduce variability but is not intended to introduce more uncertainty to the ciphertext.

Like block ciphers, TBC also allows variations the mode of operation due to the new
input. Those modes are:

• Tweak Block Chaining (TBC)

• Tweak Chain Hash (TCH)

• Tweakable Authenticated Encryption (TAE)

2.5.1 Tweak Block Chaining

TBC mode of operation is similar to cipher block chaining (CBC). Instead of using an
initialization vector, an initial tweak T0 is used. Each successive message block Mi is
encrypted using the key K and the tweak Ti−1 that is the ciphertext for the previous
block: Ti = Ci.

Figure 2.9: Tweak Block Chaining[10]

It is also possible to encrypt messages whose length is not a multiple of n, as it is shown
in figure 2.10 a variant of the ciphertext-stealing is used.

2.5.2 Tweak Chain Hash

One possibility to make a hash function, is to adapt the Matyas-Meyer-Oseas construction
to our TBC. We can use T0 as the first tweak value and then perform the new tweak value

19

2.5. Tweakable Block Cyphers Chapter2. Background

Figure 2.10: TBC ciphertext-stealing. Let r denote the length of the last (short) blockMm

of the message. Then |Cm| = |Mm| = r and |C ′| = n− r. Here X denotes the rightmost
n− r bits of Cm−2[10].

for next block as the or-exclusive addition with the message and the ciphertext. Figure
2.11 shows the procedure of this operation mode.

Figure 2.11: Tweak Chain Hash. The value of H is the output of the hash function. [10]

2.5.3 Tweakable Authenticated Encryption

The last mode of operation, TAE, is similar to OCB described in [11]. It could be viewed
a rewrite of OCB using TBC instead DESX-like modules.

This mode takes as input an (n/2)-bit nonce N . The tweak Zi for i > 0 is defined as the
concatenation of the nonce N , an (n/2− 1)-bit representation of the integer i, and a zero
bit 0: Zi = N ||i||0. The tweak Z0 is defined as the concatentation of the nonce N , an
(n/2− 1)-bit representation of the integer b, where b is the bit-length of the message M ,
and a one bit 1: Z0 = N ||b||1. The messageM is divided intom−1 blocksM1, ...,Mm−1

of length n and one last block Mm of length r for 0 < r ≤ n (except that if |M | = 0
then the last (and only) block has length 0). Each ciphertext block Ci has same length as
Mi. The function len(Mm) produces an (n)-bit binary representation of the length r of
the last message block. The last message block Mm is padded with zeros if necessary to
make it length n before xoring. The checksum is (M1 ⊕ ... ⊕Mm−1 ⊕ (Mm||0∗)). The
parameter τ , 0 ≤ τ ≤ n specifies the desired length of the authentication tag.[10]

20

Chapter2. Background 2.5. Tweakable Block Cyphers

As OCB mode proposed by Rogaway, TAE achieve all the security features that charac-
terize the OCB mode:

• Unforgeable

• Pseudorandom

Figure 2.12: Tweakable Authenticated Encryption [10]

21

2.5. Tweakable Block Cyphers Chapter2. Background

22

Chapter 3

IEEE 1619.1

In this chapter we will focus on the main issue and which is the principal subject of this
Thesis: IEEE Std 1619, IEEE Standard for Standard for Authenticated Encryption with
Length Expansion for Storage Devices. If we refer to the description that the standard
makes of himself, we have an idea of what we will find throughout this chapter:

The purpose of this standard is to describe a method of encryption for data stored in
sector-based devices where the threat model includes possible access to stored data by
the adversary. The standard specifies the encryption transform and a method for ex-
porting/importing encryption keys for compatibility between different implementations.
Encryption of data in transit is not covered by this standard.

This standard defines the XTS-AES tweakable block cipher and its use for encryption of
sector-based storage. XTS-AES is a tweakable block cipher that acts on data units of
128 bits or more and uses the AES block cipher as a subroutine. The key material for
XTS-AES consists of a data encryption key (used by the AES block cipher) as well as a
”tweak key” that is used to incorporate the logical position of the data block into the
encryption. XTS-AES is a concrete instantiation of the class of tweakable block ciphers
described in [12]. The XTS-AES addresses threats such as copy-and-paste attack, while
allowing parallelization and pipelining in cipher implementations.

After deeply analyze the process of Cryptographic Protection of Data on Block-Oriented
Storage Devices, we will discuss some considerations of the different features included
on the standard and could have some other approach.

23

3.1. Theory Chapter3. IEEE 1619.1

3.1 Theory

This section is intended to unify all knowledge displayed throughout the previous chapter,
to finally understand in-depth how the new encryption standard developed by IEEE works
that is intended to provide security for tape storage by means of privacy and integrity.

IEEE 1619.1 specifies an architecture for protection of data in variable-length block stor-
age media such as tape cartridge. It utilizes AES-GCM and AES-CCM with the 256-bit
key size for privacy and integrity of data stored on tape.

3.1.1 Data units and tweaks

When we talk about data streams, we are talking about the data that we pretend to encrypt
and safely store on the device, and this standard refers to the encryption of this data stream
dividing it into consecutive equal-size data units. Divide the data unit is important because
of the order of each data block: the order of each data block will be the tweak value that
the standard will us to provide aleatory tho the cipher stream. Data that is not intended to
be encrypted, it will not be considered data stream.

The minimum size of each data unit should be 128 bits and that will be the size of each
block in which the data unit will be divided if it is greater than 128 bits. It could be pos-
sible that the last block of the data unit will be shorter than 128 bits, for this problem the
standard implements the CipherText Stealing feature, we will see it deeply in following
sections. There are some restrictions or recommendations with the number of 128-bit
blocks: They should not be greater that 2128 − 2 in the data unit and also they should not
be greater than 220.

As we referred before, to each data unit a tweak value is assigned, based on its order,
that is a non-negative integer. Those tweak values are assigned consecutively, starting
from an arbitrary non-negative integer. That tweak value is converted into a little-endian
byte array before could be encrypted using AES algorithm. For example, the tweak value
1a2b3c4d5e16 is converted to the byte array [5e 4d 3c 2b 1a]16.

Is not an aim of the standard to describe how the mapping between the data unit and
the transfer, placement and composition on the data stored device should be done. The
different data storage devices that implement this standard, should include documentation
specifying how this mapping is done within the device.

3.1.2 Multiplication by a primitive element α

During the encryption and decryption process, the result of the encryption of the 128-bit
tweak with AES usingKey1,EAES(Key1, i), is subsequently multiplied by the j-th power

24

Chapter3. IEEE 1619.1 3.1. Theory

Figure 3.1: Little-Endian Transformation

of α, where α is a primitive element of GF (2128).1

Before doing the multiplication process, the result of the encryption is firstly converted
into a byte array a0[k], k = 0, 1, ..., 15, where a0[0] is the first byte of the AES block. The
multiplication process is defined by the following elements:

Inputs j is the power of α
byte array a0[k], k = 0, 1, ..., 15

Outputs byte array aj[k], k = 0, 1, ..., 15

Table 3.1: Inputs and outputs in the multiplication by a primitive element α procedure.

Figure 3.2: Multiplication by a primitive element

The output array aj[k] is calculated recursively using the following formulas where i is
iterated from 0 to j:

ai+1[0]← (2(ai[0] mod 128))⊕ (135 bai[15]/128c)
1If α ∈ GF (q) and the order of α is n = q − 1, then α is a primitive element of GF (q).

25

3.1. Theory Chapter3. IEEE 1619.1

ai+1[k]← (2(ai[k] mod 128))⊕ bai[k − 1]/128c , k = 1, 2, ..., 15

If we observe closely at the formulas, we could see that the bytes of the vector ai+1

are formed by combining the bytes of the vector ai using the values of the current and
previous byte, it could be considered a left shift. Also the final byte (15th) of the vector ai

is used to form the first byte of the vector ai+1, the value 135 that appears in the formula
is derived from the modulus of the Galois Field (polynomial x128 +x7 +x2 +x+1).[13]

3.1.3 XTS-AES encryption procedure

The aim of this section of the Thesis is to join all the ideas together and show how the
encryption process is done. First we will analyze how the encryption of a 128-bit block
is done, and after we will study the encryption process of a data stream with an arbitrary
length.

Encryption of a single 128-bit block

The process of encryption XTS-AES system can be summarized by the following equa-
tion:

C ← EXTS−AES(Key, j, i, P)

Where:

• Key is the 256 or 512 bit used during the XTS-AES encryption process. The Key
is composed of the concatenation of two equal-sized keys that will be used for
different purposes during the encryption process, Key = Key1|Key2.

• j is the order of the 128-bit blocks inside the data unit.

• i is the 128-bit tweak value.

• P is the 128-bit block of plaintext.

• C is the 128-bit block resulting of the encryption process.

This equation refers to the final result of the encryption process, but for arriving to the
final ciphertext it is necessary to follow a series of steps:

1. T ← EAES(Key2, i)⊗ αj

2. PP ← P ⊕ T

3. CC ← EAES(Key1, PP)

4. C ← CC ⊕ T ”

26

Chapter3. IEEE 1619.1 3.1. Theory

As we can see in the figure 3.3, the encryption process starts by encrypting the tweak
value i with the second part of the key Key2. The result of this firstly encryption is then
transformed using the GF (2128) primitive element described in 3.1.2. α is this primitive
element and it will vary with each data unit depending of j, the number of 128-bits in
which it is divided the data unit. After that, this result, T , will be xor-ed with the 128-
bit block of plaintext and then the second encryption take place, encrypting the result of
T ⊕P with the first part of the Key Key1. Then T will be again xor-ed, this time with the
result, CC, of the last AES encryption. The final result is the ciphertext C.

Figure 3.3: Diagram of the XTS-AES Encryption process [13]

27

3.1. Theory Chapter3. IEEE 1619.1

XTS-AES encryption of a data unit

We have explained the encryption process of a 128-bit block of plaintext, the next step
is to explain how to encrypt a data stream with an arbitrary stream. The equation that
models this process is:

C ← EXTS−AES(Key, i, P)

This equation is similar than the equation that model the encryption of a 128-bit block, the
difference is the number of elements that compose the equations, the number of the 128-
block is not included on the equation, but it will be used during the encryption process.

• Key is the 256 or 512 bit used during the XTS-AES encryption process. The Key
is composed of the concatenation of two equal-sized keys that will be used for
different purposes during the encryption process, Key = Key1|Key2.

• i is the 128-bit tweak value.

• P is the plaintext stream.

• C is the ciphertext. Same length as plaintext.

The data stream should be divided into 128-bit blocks. The length of the last block could
not be 128 bit.

P = P0|P1|...|Pm−1|Pm

The length of P0, ..., Pm−1 is 128 bit while the length of the last block Pm could be 0 <
bit < 127. The following steps explain how the plaintext is encrypted:

1. for r ← 0 to m− 2 do

(a) Cr ← EXTS−AES(Key, Pj, i, r)

2. b← bit-size of Pm

3. if b = 0 then do

(a) Cm−1 ← EXTS−AES(Key, Pm−1, i,m− 1)

(b) Cm ← empty

4. else, if b 6= 0

(a) CC ← EXTS−AES(Key, Pm−1, i,m− 1)

(b) Cm ← first b bits of CC

(c) CP ← last (128− b) bits of CC

(d) PP ← Pm|CP

28

Chapter3. IEEE 1619.1 3.1. Theory

(e) Cm−1 ← EXTS−AES(Key, PP, i,m)

5. C ← C0|C1|...|Cm−1|Cm

Is interesting to note how the index of the 128-bit block is included in the encryption
process. We saw in the equation that model the encryption of an arbitrary data stream
that the order of the block is not taken into account. However, as we could see during the
steps, the order of the 128-bit block is used to encrypt as is described before. The length
of the last block is checked, if is 0 there is no problems: all blocks are 128-bits. If the last
block is not empty then is necessary to use the CipherText Stealing (CTS) technique. As
we could see in the step description some bits of the penultimate 128-bit block are used
to form the two last block of the ciphertext. Figure 3.4 show a diagram of how the CTS
technique in the encryption process is done.

Figure 3.4: Encryption of last two blocks when last block is not empty [13]

As we see in the figure 3.4 the XTS-AES encryption of the penultimate 128-bit block of
plaintext is done as the encryption of the rest of 128-bit blocks. Then the first b bits of the
result are selected and form the last block of the ciphertext. The rest of the bits of CC
are combined with the last block of plaintext (is not a 128-bit block) to form a 128-bit
block. This new block is then encrypted using XTS-AES as the rest of the blocks. The
result of this encryption will perform the penultimate block (the last 128-bit block) of the
ciphertext.

29

3.1. Theory Chapter3. IEEE 1619.1

3.1.4 XTS-AES decryption procedure

After explaining the encryption process of the standard, is time to see how the how the
decryption process will be done. The encryption and decryption are similar but with some
differences that we will se during this section. As the previous section, we will see the
decryption of a single 128-bit block and then we will analyze the decryption of a cipher
stream of an arbitrary length.

Decryption of a single 128-bit block

As the encryption process, we could also model the decryption process with an equation:

P ← DXTS−AES(Key, i, j, C)

Where:

• Key is the 256 or 512 bit used during the XTS-AES decryption process. The Key
is composed of the concatenation of two equal-sized keys that will be used for
different purposes during the decryption process, Key = Key1|Key2.

• j is the order of the 128-bit blocks inside the data unit.

• i is the 128-bit tweak value.

• C is the 128-bit block of ciphertext.

• P is the 128-bit block resulting of the decryption process.

A series of steps is necessary to follow to finally decrypt the 128-bit block of ciphertext:

1. T ← EAES(Key2, i)⊗ αj

2. CC ← C ⊕ T

3. PP ← DAES(Key1, CC)

4. P ← PP ⊕ T ”

The following figure shows the process of decryption of a single 128-bit block.

As we can see in the figure 3.5, the decryption process starts by encrypting the tweak
value i with the second part of the key Key2. The result of this firstly encryption is then
transformed using the GF (2128) primitive element described in 3.1.2. α is this primitive
element and it will vary with each data unit depending of j, the number of 128-bits in
which it is divided the data unit. After that, this result, T , will be xor-ed with the 128-bit
block of ciphertext and then the decryption procedure take place, decrypting the result of
T ⊕C with the first part of the Key Key1. Then T will be again xor-ed, this time with the
result, PP , of the AES decryption. The final result is the recovered plaintext P .

30

Chapter3. IEEE 1619.1 3.1. Theory

Figure 3.5: Diagram of the XTS-AES Decryption process [13]

In this figure we observe the similarity between the encryption and decryption processes.
If we compare both 3.3 and 3.5 figures, we observe that the unique differences between
them are position exchange between the plaintext and the ciphertext, and the second XTS-
AES block that in this case is used as decryption mode. However the first XTS-AES block
is used as encryption mode, that means that the tweak value is also encrypted as in the
encryption process.

31

3.1. Theory Chapter3. IEEE 1619.1

XTS-AES decryption of a data unit

As we did with the encryption process, the next step to deeply understand the decryption
mode is to analyze how the decryption of a ciphertext stream with an arbitrary length is
done.The equation that models this process is:

P ← DXTS−AES(Key, i, C)

Again, the order of each 128-bit block is not used to model the complete decryption
because each 128-bit block will has its own order j and does not depend on what data unit
are we trying to encrypt but the data unit size.

• Key is the 256 or 512 bit used during the XTS-AES decryption process. The Key
is composed of the concatenation of two equal-sized keys that will be used for
different purposes during the decryption process, Key = Key1|Key2.

• i is the 128-bit tweak value.

• C is the ciphertext stream.

• P is the plaintext resulting of the decryption process, same size as ciphertext.

The data stream should be divided into 128-bit blocks. The length of the last block could
not be 128 bit.

C = C0|C1|...|Cm−1|Cm

The length of C0, ..., Cm−1 is 128 bit while the length of the last block Cm could be
0 < bit < 127. The following steps explain how the ciphertext is decrypted:

1. for r ← 0 to m− 2 do

(a) Pr ← DXTS−AES(Key,Cj, i, r)

2. b← bit-size of Cm

3. if b = 0 then do

(a) Pm−1 ← DXTS−AES(Key, Pm−1, i,m− 1)

(b) Pm ← empty

4. else, if b 6= 0

(a) PP ← DXTS−AES(Key,Cm−1, i,m− 1)

(b) Pm ← first b bits of PP

(c) CP ← last (128− b) bits of PP

(d) CC ← Cm|CP

32

Chapter3. IEEE 1619.1 3.1. Theory

(e) Pm−1 ← DXTS−AES(Key,CC, i,m)

5. P ← P0|P1|...|Pm−1|Pm

The procedure to recover the last two block of ciphertext, is similar than the procedure
executed in then encryption process. Is interesting to note how the index of the 128-
bit block is included in the decryption process. We saw in the equation that model the
decryption of an arbitrary data stream that the order of the block is not taken into account.
However, as we could see during the steps, the order of the 128-bit block is used to
decrypt as is described before. The length of the last block is checked, if is 0 there is no
problems: all blocks are 128-bits. If the last block is not empty then is necessary to use
the CipherText Stealing (CTS) technique. As we could see in the step description some
bits of the penultimate 128-bit block are used to form the two last block of the plaintext.
Figure 3.6 show a diagram of how the CTS technique in the decryption process is done.

Figure 3.6: Decryption of last two blocks when last block is not empty [13]

As we see in the figure 3.6 the XTS-AES decryption of the penultimate 128-bit block of
ciphertext is done as the decryption of the rest of 128-bit blocks. Then the first b bits of
the result are selected and form the last block of the ciphertext. The rest of the bits of PP
are combined with the last block of ciphertext (is not a 128-bit block) to form a 128-bit
block. This new block is then decrypted using XTS-AES as the rest of the blocks. The
result of this decryption will perform the penultimate block (the last 128-bit block) of the
plaintext.

33

3.2. Comments on XTS-AES Chapter3. IEEE 1619.1

3.2 Comments on XTS-AES

After P1619 Task Group of the Security in Storage Working Group (SISWG) of the In-
stitute of Electrical and Electronics Engineers, Inc. (IEEE) had submitted the XTS-AES
algorithm to NIST as an encryption mode of operation of the Advanced Encryption Stan-
dard (AES) block cipher, NIST opened a period (from June 5, 2008 to September 3, 2008)
to express public comments related to the XTS-AES algorithm. During this period the ex-
tract of IEEE standard 1619-2007 was available for free, after that period the standard was
available paying a charge. That decision was unpopular and one of the topics that NIST
suggested to discuss. Those are the topics that NIST proposed to discuss in the comments:
.

• The XTS-AES algorithm itself.

• The depth of support in the storage industry for which it was designed.

• The appeal of XTS for wider applications.

• The proposal for the approved specification to be available only by purchase from
IEEE.

• Concerns of intellectual property rights.

Within this period, NIST received different emails and public documents analyzing the
different topics proposed above from particular people interested on the standard like P.
Rogaway [14] or Moses Liskov and Kazuhiko Minematsu [15], and also from people that
belong enterprises as Microsoft Corporation or Entropic communications.

Along the following sections, the different topics proposed by NIST are going to be de-
veloped and analyzed, explaining what are the different opinions submitted to NIST.

3.2.1 The XTS-AES algorithm itself

For Moses Liskov and Kazuhiko Minematsu (see [15]) there are two fundamental aspects
in the standard that should be improved or clarified: First is the use of two keys instead
of one, because the XTS mode of operation is a derived mode of XEX introduced by
Rogaway which is proven the efficiency and safety of using a single key. The second is
about the security of XTS-AES algorithm, is not sufficiently developed or proved.

Vijay Bharadwaj and Neils Ferguson of Microsoft Corporation expose some relevant as-
pect that should be treated to clearly define the security and functions of this new algo-
rithm:

• Unclear Security Goals: They explain that the proposal does not clearly define
what are the application-level security goals that XTS-AES wants to achieve, this
made difficult to analyze and determine how widely applicable XTS-AES should

34

Chapter3. IEEE 1619.1 3.2. Comments on XTS-AES

be. SISWG explain that instead the proposal provide a good argument on the secu-
rity of XTS-AES, they should have added more details about the applications that
are available for XTS-AES.

• Temporal effects: It is possible for an attacker observe a disk for enough period of
time and then take a significant advantage about the encryption mode used. SISWG
recognize that it could be a kind of attack that could suffer not only XTS-AES mode
but some other modes of operation, but this seems impracticable.

• Attack on large data units: Large data units weak the system, for that reason the
standard should not allow data units larger than 220 as is specified on the standard.

• Ciphertext Manipulation Attacks: XTS-AES is prone to fine-grained ciphertext ma-
nipulation attacks due works with 128-bit blocks. SISWG defends XTS-AES, in-
stead admitting that an attacker has greater malleability with 128-bit narrow block
encryption mode like XTS-AES than with wide-block encryption mode like XCB,
arguing that XTS-AES is appropriate to systems where the attacker has limited
access in making malicious attacks and the programs could detect a randomized
128-bit block with high probability.

For Phillip Rogaway, there are two idea that need clarification:

• A description of what security property of XTS-AES is supposed to deliver, specif-
ically the CTS method. Although XTS is a version of XEX mode described by
Rogaway, he does not oppose to it if the security is well defined. SISWG answer
suggesting that XTS-AES is enough secure for applications that use it and also
NIST wants to incorporate a similar CTS mode to the established CBC.

• XTS is not as strong as PRP, it could be a good choice only if is too hard to afford
the computation or latency associated to computing a strong PRP. SISWG argue
that there are many applications that could not support the extra computing effort
that PRP implies, and there are also secure with XTS because of the fact that the
attacker has limited access to the ciphertext.

Another person that submitted comments to NIST in order to debug the proposal of this
standard is Boaz Shahar from Entropic Communications. In his opinion, a multiplication
over GF (2128) in Little Endian notation not only increases the complexity on the imple-
mentation and also it change NIST policy of using Big Endian notation. For SISWG
there is not a problem using Little Endian in order is optimus for software based on Little
Endian systems.2

2Nowadays Little Endian systems is the most popular byte-ordering scheme.

35

3.2. Comments on XTS-AES Chapter3. IEEE 1619.1

3.2.2 The depth of support in the storage industry for which it was
designed

Although the mode XTS-AES encryption is subject to a broad debate to discuss is-
sues about their safety and possible improvements, various products and companies have
shown interest and have implemented the XTS-AES mode among its features. As of June
2009 the following list of companies and products presented (or intended) XTS-AES as
one of its features: AMCC, Bloombase Technologies, Brocade, CipherMax, DiskCryp-
tor, EMC, Emulex, FreeOTFE, Freescale Semiconductor, GED-i, Helion, Hifn, Oxford
Semiconductors, PMC-Sierra, SafeNet, Thales, TrueCrypt, WinMagic.3

Hard Disk vendors and IP Cores manufactures also include XTS-AES as one of its work-
ing modes as for example:

• Quantum, HP, IBM, Tandberg’s LTO-4 Tape Drive uses IEEE 1619.1 GCM-AES.

• IBM’s TS1120 Enterprise Tape Drive uses GCM.

• Sun’s T10000 Enterprise Tape Drive uses 1619.1 CCM.

3.2.3 The appeal of XTS for wider applications

For David Clunie (See [14]) there ara applications as medical image exchange where
XTS-AES mode can have a wide field of work due to the lack of standardization that
exists and the need to store and transmit securely.

A very different point of view is the expressed in [17] by Michael Willett from Seagate
Technology. Under his trial, XTS-AES presents different aspects that the implementation
for more issues will not constitute a good idea:

• Interoperability: Many of the new storage units have their own internal encryption,
so it would not be possible to combine the platters to use XTS-AES encryption
mode.

• Archived data recovery in the distant future: It has not a hopeful future.

• There is a wide list of issues that may be considered before propose the establish-
ment of XTS-AES encryption mode to other applications: Implementation errors
should be avoided, XTS applicability, protection of debug ports, etc.

SISWG compare XTS operation mode with CBC, arguing that the complexity is roughly
in both operation modes but the improvement of XTS is the less malleability of the ci-
phertext. It is true that there are more aspects that make secure an encryption mode and
they are needed to accomplish before exporting XTS-AES to other application, but they
also exist for other encryption modes.

3For a deeply description of how each companies and products implements XTS-AES, see [16].

36

Chapter3. IEEE 1619.1 3.2. Comments on XTS-AES

3.2.4 The proposal for the approved specification to be available only
by purchase from IEEE

This issue has united under a single opinion to all who have sent their comments to NIST.
Because the measure adopted by the IEEE to allow the access to the standard under paying
a fee has not been well received. The general opinion rejects as unacceptable pay to
acquire the standard, and even more when they have been exposed it to debate to gather
different points of view outside the IEEE. Many voices call on NIST that the access to the
standards should be without any cost and should seek other forms of financing.

For its part SISWG defends itself arguing that, instead is a logical position, the develop-
ment of the standard implies some cost and so it is necessary to pay a certain amount of
money to acquire it, even it is not one of their competences but the IEEE. SISWG refers
to NIST the decision to grant the access to standards, but while this is not possible should
be consumers who paid the costs.

3.2.5 Concerns of intellectual property rights

The vast majority of people who have analyzed and commented on the operation mode
XTS-AES agree that it is too early for standardization, and that the IP can be compromised
if NIST accept to adopt the proposal as a standard because it would imply a mandatory
implementation in all storage devices without the appropriate guarantees of security.

In response, SISWG suggests that there is ambiguity as to the rights of IP concerns,
and that ambiguity affects all systems and modes of encryption, so this should not be a
problem for the standardization.

37

3.2. Comments on XTS-AES Chapter3. IEEE 1619.1

38

Chapter 4

Tools: Software and Hardware

The aim of this chapter is to introduce briefly the tools used to probe the new standard
published by IEEE that is the objective of this Thesis. We will see the different software
used explaining the characteristic and how they implements the XTS-AES encryption
mode, this software is:

• TrueCrypt

• FreeOFTE

• DiskCryptor

In the following chapter we will present the results obtained comparing the performance
of the different software tools in two different machines with different characteristics:
Operation System, memory, processor... This two computers are:

• Laptop Toshibas Satellite A220

• Desktop DELL

At the end of the chapter, a section about commercial hardware, the IP cores, is included.
We will explain what are they, hoe implement the XTS-AES encryption mode and how
could be useful.

4.1 Software

In this section, we will briefly introduce to the reader the different tools we have used to
test XTS-AES encryption mode developed along the standard under study. It will be a
short description of the characteristics of each software, in the next chapter we will show
the different methods to provide security to the stored data using XTS-AES encryption.

39

4.1. Software Chapter4. Tools: Software and Hardware

4.1.1 TrueCrypt

TrueCrypt is the first software tool we are going to present. It is a great tool for encrypt-
ing data stored to avoid that an outsider can access them or disclose their content. The
official website is http://www.truecrypt.org/ and presents the option to download differ-
ent versions of the encryption tool depending the Operation System. We could find in
the website a great support, both in tutorials and in various forums. The download also
includes a complete PDF manual in English.

TrueCrypt is an excellent free source code software to encrypt and hide data on your
PC that you believe it reserved using different encryption algorithms like AES, Blowfish,
CAST5, Serpent, Triple DES, and Twofish, or a combination of some of them. TrueCrypt
also supports AES with XTS mode with 256-bit key.

What it does is create a TrueCrypt ”secret volume”, which consists of a file that can have
any name and that TrueCrypt can mount as a drive, with its respective identification ac-
cording to the operating system installed. The contents of this file has its own filesystem
and everything needed to operate as a common storage unit. What is recorded in the vir-
tual drive is encrypted using technology and with powerful encryption mode you choose.
When ”mounted” drive through TrueCrypt, it calls for the password that the user chose
when creating this secret file. Encodes and decodes data on your hard disk in real time
(”on the fly”).

Ideal for data you have saved on the encrypted drive can not be read without the password
or encryption key, until that moment happens, the encrypted data will appear as a series
of meaningless characters.

Apart from allowing to create an encrypted file, it allows you to encrypt an entire disk or
partition and also the partition where is installed the Windows operating system, hidden
volumes, etc. These options are only recommended for users with advanced knowledge
and under its responsibility. The encrypted file can then be transported for example on a
DVD, CD, USB memory, etc...

The following figures 4.1 and 4.2 show the main window of TrueCrypt with two encrypted
file mounted and decrypted and how the system recognize them and we could have access
to both decrypted files and read the information stored inside. In the figures we could
see two different volumes decrypted. The first volume is a partition encrypted with AES,
and the other volume is a container file stored inside the first volume and encrypted using
three different techniques in cascade.

The following figures 4.1 and 4.2 show the main window of TrueCrypt with two encrypted
file mounted and decrypted and how the system recognize them and we could have access
to both decrypted files and read the information stored inside. In the figures we could
see two different volumes decrypted. The first volume is a partition encrypted with AES,
and the other volume is a container file stored inside the first volume and encrypted using
three different techniques in cascade.

40

Chapter4. Tools: Software and Hardware 4.1. Software

Figure 4.1: TrueCrypt main window Figure 4.2: Mounted volumes after
TrueCrypt decryption

We will explain in 5.1 how to make the encryption of a partition and how to create a
container with XTS-AES.

TrueCrypt includes a benchmark tool, with which is possible to test the performance of
XTS-AES algorithm on both machines depending on the buffer size. The benchmark tool
were executed in both machines with the following results:

Buffer Size Encryption Speed Decryption Speed Mean Speed
(MB) (MB/s) (MB/s) (MB/s)
0.1 115,67 98 107
0.5 117,67 110 114
1 111,33 114 112,67
5 103,1 104,63 103,7

10 108,33 112,67 110,67
50 100,93 106 103,33

100 107 107,33 107
200 105,67 104,03 104,97
500 109,33 108,67 108,67

1000 106,33 106 106,33

Table 4.1: Machine 1 XTS-AES benchmark

Speed is more constantly in Machine 2 (instead of a little variation when the buffer size
is 5 MB due to CPU load), but Machine 1 achieves higher speed.

41

4.1. Software Chapter4. Tools: Software and Hardware

Buffer Size Encryption Speed Decryption Speed Mean Speed
(MB) (MB/s) (MB/s) (MB/s)
0.1 79.8 78.4 79.1
0.5 80.1 78.1 79.1
1 80.3 77 78.6
5 75 66.2 70.6

10 79.5 77.8 78.7
50 78.7 77 77.8

100 79.8 78.1 79
200 79.5 78.1 78.9
500 79.4 78.2 78.8

1000 79 77.6 78.3

Table 4.2: Machine 2 XTS-AES benchmark

Figure 4.3: Machine 1 XTS-AES
benchmark

Figure 4.4: Machine 2 XTS-AES
benchmark

42

Chapter4. Tools: Software and Hardware 4.1. Software

4.1.2 FreeOTFE

The following encryption tool we are going to present and it also implements the XTS-
AES encryption mode is FreeOTFE1. In the website http://www.freeotfe.org/ is possible
to download the installer and read the user manual and the FAQ to learn how to use it.

Under the trade name FreeOTFE we find a file encoder ”on-the-fly” for PCs with Win-
dows2000/XP/Vista and devices with Windows Mobile 2003/2005 and Windows Mobile
6. FreeOTFE is an open source program that creates a new virtual disk drive in which we
can store encrypted confidential file, simply storing it in the unit.

The program has a ”wizard” who is responsible for guiding us in building our encrypted
unity. Supports multiple encryption algorithms: AES, Twofish, Blowfish or Serpent can
use functions hash like MD5, SHA-512 or Tiger, among others. The virtual drive can be
created by a file, for example by allocating a folder on the memory card, or use a partition.
FreeOTFE has many functions and options for achieving a virtual safe for our data.

FreeOTFE works perfectly on Windows XP with NTFS file system. For filesystems
FAT/FAT32 maximum volume that can be created is 4 GB, in the NTFS system there
is almost no limit: supports volumes of more than 10 million GB. In Windows Vista ex-
ists a problem caused by the unpopular UAC, if is turned on will not allow the normal
performance of FreeOTFE, one solution is saving the application elsewhere in the system
outside ”Program Files”.

Figure 4.5: FreeOTFE main window

This figure shows the main window of FreeOTFE encryption tool. We can observe one
volume mounted, this volumen is encrypted using XTS-AES with a 256-bit key size. We
will se how to create volumes in section 5.1.

1FreeOTFE is the short form of Free On The Fly Encryption

43

4.1. Software Chapter4. Tools: Software and Hardware

FreeOTFE presents also a portable version, allowing encrypt an entire disk or flash mem-
ory. It also gives us the ability to create a volume on an invisible disc, i.e., for example the
C disk could contain a new 20 GB drive will only be visible by running the application
and of course, entering the key or password. As at the same time we have the portable ver-
sion, we can copy it in a flash memory and encrypt the entire contents or create a volume
invisible inside the flash memory.

4.1.3 DiskCryptor

The last encryption tool that will help us to test the XTS-AES encryption mode is DiskCryp-
tor. In the website http://www.diskcryptor.de/en/ we can download the installer file and
read the manuals to learn how to use it. DiskCryptor is different than TrueCrypt and
FreeOTFE because DiskCryptor only allows to encrypt a disk partition or the entire disk.

DiskCryptor is a free application that will encrypt the hard disk partitions that you choose.
Its size is quite small and installation is fast. The encryption system used is AES, Twofish,
Serpent, Twofish-AES, Twofish-Serpent, Serpent-AES or AES-Twofish-Serpent in XTS
mode. XTS Mode is specially designed to encrypt and protect disks against any attack.

The encryption key is randomly created and saved in the first sector of the hard disk.
DiskCryptor is under the GPLv3 license, works for:

• Windows 2000 SP0-SP4

• Windows XP (x86, x64) SP0-SP3

• Windows Server 2003 (x86, x64) SP0-SP2

• Windows Vista SP0, SP1

• Windows Vista x64 SP0, SP1

• Windows Server 2008

• Windows Server 2008 x64

DiskCryptor is a free project developed to provide reliable protection on the computer,
using a strong encryption system that prevents access and modification on any disk parti-
tion.

The program is able to apply this condition on the file systems FAT32 and NTFS, even
if they correspond to the unit that is installed in the operating system. The encryption
process is very simple, just choose the partition to protect and define the password that
will allow the release of same.

DiskCryptor will display a list all available drives on the computer, adding additional
information concerning the name of the volume, storage capacity, file system and state. If
we are looking for an effective way to prevent the unauthorized use of your content, this
application is the perfect solution.

44

Chapter4. Tools: Software and Hardware 4.2. Hardware

Figure 4.6: DiskCryptor main window

4.2 Hardware

This section will show briefly the two different machines we have used to test the encryp-
tion software. These machine are completely different between them and we will realize
different test on them.

4.2.1 Laptop Toshiba Satellite A200

The first machine is a Toshiba Laptop. Is more powerful than the other computer and
presents the following features:

Company TOSHIBA
Model Satellite A200

Processor Intel Core 2 Duo, T7100 @ 1.80 GHZ
Operating System Windows Vista Home Premium with Service Pack 2

RAM 2 GB
Hard Disk 160 GB
Partitions 2

Table 4.3: Toshiba laptop features

45

4.3. Commercial Hardware: IP cores Chapter4. Tools: Software and Hardware

4.2.2 Desktop DELL

THe other machine in which we have tested the different encryption encryption software
is a DELL desktop. It presents the following features:

Company DELL
Model OPTIPLEX GX280

Processor Pentium 4, 3 GHZ
Operating System Windows XP Professional Version 2002

with Service Pack 3
RAM 1.49 GB

Hard Disk 75 GB
Partitions 1

Table 4.4: Dell desktop features

4.3 Commercial Hardware: IP cores

General description

What is an IP core?

Within a FPGA may include the functionality of several integrated circuits. This func-
tionality can be developed by the same team or acquired through a third party. Because
these features are like electronic components, but without their physical part, they are of-
ten called virtual components. In industry they are known as block intellectual property
or IP cores.

The families XTS2 and XTS3 implemments the XTS-AES encryption mode defined by
IEEE.

XTS3 implements the NIST standard AES cipher in the XEX/XTS mode for encryp-
tion and decryption. The XTS3 family of cores covers a wide range of area/throughput
combinations, allowing the designer to choose the smallest core that satisfies the desired
clock/throughput requirements. XTS2 is similar to XTS3, but supports only 128-bit keys.
Each core contains the base AES core AES1 and is available for immediate licensing.[18]
[19]

The XTS3 family fully supports the XTS-AES algorithm with key size of 256 and 128
bits. XTS2 family supports only XTS-AES with key size of 128.

Key features

The XTS2 and XTS3 families implements some features to manage the Key:

46

Chapter4. Tools: Software and Hardware 4.3. Commercial Hardware: IP cores

Figure 4.7: XTS3 IP core symbol.[18] Figure 4.8: XTS2 IP core symbol.[19]

• Key Features Small size: XTS2-12.8 starts at less than 30,000 ASIC gates and
delivers throughput of 7 Gbps. XTS3-18.2 starts at less than 50,000 ASIC gates
at throughput of 18.2 bits per clock. The fastest cores in the families, XTS2-128
and XTS3-128, deliver 128 bits of throughput per clock (for example, at 500 MHz
clock the maximum throughput is 64 Gbps).

• Completely self-contained: does not require external memory.

• Supports both encryption and decryption.

• Includes key expansion and CTS support.

• Supports XEX-based Tweaked CodeBook mode (TCB) with CipherText Stealing
(CTS) (XTS) mode encryption and decryption.

• 128 + 128 and 256 + 256 bit AES keys supported.

• Easily parallelizable for even higher data rates.

There are more companies that develop those type of FPGA: IP cores with XTS-AES
encryption mode support. We have only described IP cores from ”IP Cores, Inc.” as en
example of commercial hardware that implements the new encryption mode described in
IEEE 1619.1 and it is the aim of this Thesis.

47

4.3. Commercial Hardware: IP cores Chapter4. Tools: Software and Hardware

Name Type Description
CLK Input Core clock signal

RESET Input HIGH level asynchronously resets the core
CEN Input Synchronous enable signal. When LOW the core ignores all

its inputs and all its outputs must be ignored.
E/D Input When HIGH, core is encrypting, when LOW core is decrypting

When HIGH, core uses the 256-bit key
K256 Input When HIGH, core uses the 256-bit key

START Input HIGH level starts the input data processing
READ Output Read request for the input data byte
WRITE Output Write signal for the output interface

D[127:0] Input Input Data (other data bus widths are also available)
plain or cipher text

IV[127:0] Input IV (logical position)
K1[255:0] Input AES key
K2[255:0] Input Tweak key (Key2)
Q[127:0] Output Output plain or cipher text
newKey Input New AES Key available on K1 input
newIV Input New Tweak Key available on K2 input,

and new IV available on IV input
CTS Input Marks the last full 128-bit block of the data unit in case that

the next block of this data unit is less than 128 bit (CTS mode)
PBL[3:0] Input Partial Block length (in bytes)

Table 4.5: IP core PIN description.[18] [19]

48

Chapter 5

Methods and results

In the previous chapter, we briefly introduced each of the encryption tools that will help
us to analyze the functionality of the new standard approved by the IEEE and its the main
object of this Thesis. Throughout this chapter, we will take a look for different methods of
protecting data stored on a device that offer each of the tools used such create encrypted
containers to secure store files, encrypt partitions or encrypt the entire system.

After knowing the different ways to use the XTS-AES encryption presented in the stan-
dard, we will try to compare the way of carrying it out by each of the tools used and then
we will analyze the time response of each of them, its functionality, safety, simplicity,
etc...

5.1 Methods

5.1.1 Container

What do we mean by the word ”container”? Programs such TrueCrypt or FreeOTFE
offer us the possibility to create volumes of certain size, thus protected by the XTS-AES
encryption and authentication, in order to securely store files in them, we will refer them
as ”containers”.

We will explain the necessary steps that we must follow for the creation of such containers
and store files in them and how these files are secure and inaccessible from the outside by
someone ignorant of the key. We will also try to decrypt these containers with other tools
to achieve read the files inside.

49

5.1. Methods Chapter5. Methods and results

TrueCrypt

For creating a new container, we must firstly click the button ”Create Volume” (fig 5.1)
to launch the volume creation process. Once the Wizard is launched, we will find three
options in the first step, we are going to select the first of them because we want to see
how create new containers (fig 5.2). We have the possibility to create them hidden, for
simplicity we will explain how to create a standard container.

Figure 5.1: TrueCrypt Step 1 Figure 5.2: TrueCrypt Step 2

Afterwards, is necessary specify the path and the name where the container will be created
(fig 5.3) and the algorithm and the hash that we are going to use to protect the stored data.
We will choose AES encryption algorithm (internally it will work in XTS mode) and
SHA-512 as hash algorithm (fig 5.4).

Figure 5.3: TrueCrypt Step 3 Figure 5.4: TrueCrypt Step 4

After selecting path, name and encryption algorithm for the container, we must to specify
the size we want to have the container (fig 5.5) and then introduce the password (fig 5.6).
Is it possible to include a file as a password selecting the option ”use key files”, but we will
introduce manually the password. This password will serve as an authentication method
to recover the stored data on the container.

We can now finally create the container clicking ”Format”. Before that, in order to intro-
duce randomization to the encrypted data, we should move the mouse within the Wizard

50

Chapter5. Methods and results 5.1. Methods

Figure 5.5: TrueCrypt Step 5 Figure 5.6: TrueCrypt Step 6

window (fig 5.7). Once the container is created we must ”mount” it, as if it was an external
device, introducing the password (fig 5.8).

When the container is mounted, is possible access it and store data inside as it was an
external device. For protecting data stored we only need to dismount the container. If
we try to open the container with, for example, notepad we will see string of bytes and
characters with apparently no meaning.

Figure 5.7: TrueCrypt Step 7 Figure 5.8: TrueCrypt Step 8

51

5.1. Methods Chapter5. Methods and results

FreeOFTE

The process to create a container with FreeOTFE software is very similar than the de-
scribed above. First of all we must launch the volume creation Wizard by clicking on the
button ”New” of the main window (fig 5.9). Once in the Wizard, after the first informative
window, we are going to choose the option ”Volume file” (fig 5.10).

Figure 5.9: FreeOTFE Step 1 Figure 5.10: FreeOTFE Step 2

The following steps will serve to specify the path, the name (fig 5.11) and the size (fig
5.12) for the container. We are going to create it at the same path and with the same size
than the container created with TrueCrypt.

Figure 5.11: FreeOTFE Step 3 Figure 5.12: FreeOTFE Step 4

Afterwards we are going to choose the encryption mode and the hash algorithm (fig 5.13).
Obviously we will select XTS-AES as the encryption mode, and SHA-512 as hash algo-
rithm as we did with TrueCrypt container. The next step will be choose the password for
the container (fig 5.14).

Figure 5.13: FreeOTFE Step 5 Figure 5.14: FreeOTFE Step 6

52

Chapter5. Methods and results 5.1. Methods

Finally we only have to finish the Wizard creating the container. To store data inside, we
must firstly mount it clicking ”Mount file” and introducing the password (fig ??). Before
we could use the container, we should format it, then the container is ready to be used at
the same way as the container created with TrueCrypt.

Figure 5.15: FreeOTFE Step 7

Now we stored in both volumes the same file and try to ”open” with a word processor,
we will realize that the ”information” we can read is not the same. This is produces be-
cause of the randomization introduced by both tools and produce that the same sored data
appears as different cipher data. If we try now to open the volume created by TrueCrypt
with FreeOTFE, we will be not allowed to do it, because of the metadata that each tool
introduce in the container for achieve mounting and decrypting it.

Figure 5.16: TrueCrypt container vs. FreeOTFE container

53

5.1. Methods Chapter5. Methods and results

5.1.2 Partition

The process of encrypt a partition is in between volume creation and system encryption
process. This process could be conducted by the three encryption tools used: TrueCrypt,
FreeOTFE and Diskcryptor. Next section will show the results of encrypting a partition
of 73.3 GB in Maachine 1.

5.1.3 System

Another important functionality that present the different encryption software is protect
the entire system with XTS-AES encryption mode and authentication. We are going to
show the process of encrypting the system in Machine 2 with Windows XP and TrueCrypt.
Results for the three different encryption tools will be shown in next section.

TrueCrypt system encryption is started as Container creation process, we must click on
”Create Volume” but this time, we must choose the third option: ”Encrypt the system
partition or entire system drive” (fig 5.17). Then we must select the option ”Encrypt the
whole drive” (fig 5.18) after selecting a normal type of encryption1.

Figure 5.17: TrueCrypt system encryp-
tion Step 1

Figure 5.18: TrueCrypt system encryp-
tion Step 2

As in Machine 2 we have only installed Windows XP, we will select the option ”Single-
boot” (fig 5.19). Next step will allow us to choose the encryption algorithm we want
to use, obviously we will select AES (internally will work in XTS mode). The Hash
algorithm in not possible to change it, so it will be RIPEMD-160 (fig 5.20).

Figure 5.19: TrueCrypt system encryp-
tion Step 3

Figure 5.20: TrueCrypt system encryp-
tion Step 4

1Hide the system encryption is not an relevant option with the XTS-AES encryption mode.

54

Chapter5. Methods and results 5.2. Results

Afterwards, introduce the password will be necessary to complete next step (fig 5.21).
After that we will add uncertainty to the cipher data, for do that we must move the mouse
within the Wizard window. When finish it, a part of the created keys will be shown (fig
5.22).

Figure 5.21: TrueCrypt system encryp-
tion Step 5

Figure 5.22: TrueCrypt system encryp-
tion Step 6

Now, a TrueCrypt Rescue Disk (TRD) will be created in order to restore the system if
some TrueCrypt data necessary to boot the system is damaged or Windows cannot start, it
would allow us to decrypt the system and recover it (it contains a backup of the first drive
track). We only have to set the path and the name for TRD (fig 5.23) and after that, burn
it to a CD. When TrueCrypt detects that we have recorded the rescue disk, will perform
a test (fig 5.24) for the necessary components rebooting the system. We will be asked for
the password before Windows starts.

Figure 5.23: TrueCrypt system encryp-
tion Step 7

Figure 5.24: TrueCrypt system encryp-
tion Step 8

Finally, after rebooting the system, the encryption could starts by clicking ”Encrypt” (fig
5.25). Once the system encryption process is started, is possible to see the progress and
the estimated remaining time (fig 5.26). When TrueCrypt finish the process, a message
will appear to inform us. Is it possible to perform the decryption of the system selecting
the option ”System/Permanently Decrypt System Partition/Drive”.

5.2 Results

The different results obtained by the various test of each encryption tool will be shown in
this section. We will compare all three encryption software in different aspects: volume
creation, partition encryption and system encryption.

55

5.2. Results Chapter5. Methods and results

Figure 5.25: TrueCrypt system encryp-
tion Step 9

Figure 5.26: TrueCrypt system encryp-
tion Step 10

5.2.1 Volume creation

Only TrueCrypt and FreeOTFE are able to create containers in order to store a group of
files. In table 5.1 is shown the time elapsed during the creation of different size TrueCrypt
containers in both Laptop (Machine 1) and Desktop (Machine 2). The times shown in
table 5.2 are refered to FreeOTFE encryption software.

Volume Size (MB) Time Machine 1 (s) Time Machine 2 (s)
0.5 4.3 0.8
1 4.4 0.8
5 4.4 0.9

10 4.6 1.2
50 6 4.4

100 7.9 7.6
500 21 36.7
1000 35.5 69.2
5000 163.4 261.6

10000 559.8 554

Table 5.1: TrueCrypt Volume Creation

For little size containers, TrueCrypt works faster in Machine 2 with Windows XP, but
when the size of the container is bigger than 100 MB it works better in Machine 1 with
Windows Vista. An exception occurs when we create a container of 10GB, times elapsed
in both machines are similar. One of the characteristics of TrueCrypt when creating con-
tainers is that is the program itself is responsible for formating the container. The format
is done in FAT.

FreeOTFE works better in Machine 1 when we create container of small size (< 100 MB),
however when the size is increased the performance of FreeOTFE in Machine 2 is better.
Is necessary clarify the times shown in 5.2 are composed by the addition of the elapsed
time of the software and the elapsed time formating the container, the difference between
these times lies in the time Windows takes to make the format, as in TrueCrypt containers
the format is made in FAT.

56

Chapter5. Methods and results 5.2. Results

Volume Size (MB) Time Machine 1 (s) Time Machine 2 (s)
1 1.3 4.5
5 1.8 5

10 3 5.1
50 5.5 6.4

100 25.1 7.9
500 125.3 20
1000 243.8 39
5000 1245.1 168.8

10000 2299.9 331.8

Table 5.2: FreeOTFE Volume Creation

Figure 5.27: TrueCrypt vs. FreeOTFE
volume creation in Machine 1

Figure 5.28: TrueCrypt vs. FreeOTFE
volume creation in Machine 2

Figures 5.27 and 5.28 show the functionality of TrueCrypt and FreeOTFE in both ma-
chines. TrueCrypt presents similar results in both machines. This is not the case of
FreeOTFE that presents different performing depending in which machine is executed,
also being faster that TrueCrypt in Machine 2 with Windows XP.

57

5.2. Results Chapter5. Methods and results

5.2.2 Partition encryption

We have tested the different encryption software by encrypting a partition of 73.3 GB
in Machine 1. DiskCryptor allows us to encrypt and subsequently decrypt the partition.
Both TrueCrypt and FreeOTFE encrypt the partition and convert it in a big container.

FreeOTFE TrueCrypt DiskCryptor
157.32 130.45 115

Table 5.3: Partition Encryption (minutes
elapsed)

Encryption Decryption
115 131

Table 5.4: DiskCryptor: Partition en-
cryption and decryption time (minutes
elapsed)

Figure 5.29: Partition Encryption Figure 5.30: DiskCryptor: Partition en-
cryption and decryption time

Table 5.3 and figure 5.29 show the minutes elapsed by each encryption tool to perform
the partition encryption. DiskCryptor spend less time encrypting and also it could undone
the encryption (table 5.4 and fig 5.30).

58

Chapter5. Methods and results 5.2. Results

5.2.3 System encryption

Finally, we encrypted the entire system in Machine 2 using the different encryption tools.

Figure 5.31: System encryption

DiskCryptor is the faster encryption software and the unique that spends more time de-
crypting than encrypting. All three tools ask for the password we entered during the
encryption config before booting the system.

59

5.2. Results Chapter5. Methods and results

60

Chapter 6

Conclusion

Throughout this Thesis we have conducted a comprehensive analysis of the new standard
published by the IEEE and developed by SISWG: 1619.1 Standard for Authenticated
Encryption with Length Expansion for Storage Devices. We have seen different aspects
related such as AES encryption algorithm in which is based on, the implementation of new
techniques to provide greater security, comments and opinions outside the SISWG trying
to ascertain its functionality and exposing any weaknesses, and finally its application
commercial and professional level.

The AES cipher is a secure system in which there is no known effective attack that can
break its security and to reveal the key, XTS operation mode provides greater security
the standard due to the use of AES block cipher for encrypting both plaintext and tweak
values, that add uncertainty in order to avoid repeated ciphertext when trying to encrypt
the same plaintext. Moreover Ciphertext Stealing technique used to encrypt data units
that are not fully divisible by 128-blocks is functional and safe, and NIST implements it
in some of its systems.

The use of two keys in the XTS encryption mode, one for each AES block cipher, and even
adds greater security to greatly diminish the chances of decrypting if they are unknown.
XTS is based on XEX mode developed by Rogaway, proved that using the same key for
two different objectives is enough secure, XTS perfects it varying the key of each of these
goals.

Several reviews have been submitted to NIST after the IEEE published the standard and
SISWG has made a public consultation to gather comments. Most of these comments are
related to the XTS-AES algorithm itself: issues such as security, the use of two keys or
Ciphertext Stealing technique have been the most required and subsequently rationalized
by SISWG. Other aspects such the industry support for the new algorithm and its future
applications have also been discussed.

The support of the industry is large and there are many developers, both software and
hardware, which have shown interest and have implemented XTS-AES encryption mode
in their products. Throughout this Thesis we have named some of them and we have

61

Chapter6. Conclusion

analyzed different tools that implement encryption XTS-AES: TrueCrypt, FreeOTFE and
DiskCryptor, as well as the IP cores that perform it also.

The future implementation of the XTS-AES encryption mode will be comprehensive, not
only by the amount of industrial and commercial products that support and implement it,
but because of the development work that continue the IEEE and the SISWG related with
the security of the stored data:

• 1619.2 Standard for Wide-Block Encryption for Shared Storage Media

• 1619.3 Standard for Key Management Infrastructure for Cryptographic Protection
of Stored Data

Finally we must emphasize that the XTS-AES encryption mode is a secure and reliable
system for safely storing sensitive information and the different variations that character-
ize it will not add undue complexity. The industrial support is broad and with which the
application future is hopeful, while pending the standardization by NIST.

62

Glossary

α A primitive element of GF (2128) that corre-
sponds to polynomial x

• Assignment of a value to a variable
bxc Floor of x
⊕ Bit-wise exclusive-OR operation
⊗ Modular multiplication of two polynomials over

the binary field GF (2), modulo x128 +x7 +x2 +
x+ 1

Affine Transformation A transformation consisting of multiplication by
a matrix followed by the addition of a vector.

Array An enumerated collection of identical entities
(e.g., an array of bytes).

Bit A binary digit having a value of 0 or 1.
Block Sequence of binary bits that comprise the input,

output, State, and Round Key. The length of a
sequence is the number of bits it contains. Blocks
are also interpreted as arrays of bytes.

Blowfish Is a symmetric block cipher that can be used as a
drop-in replacement for DES or TDEA. It takes
a variable-length key, from 32 bits to 448 bits,
making it ideal for both domestic and exportable
use.

Byte A group of eight bits that is treated either as a
single entity or as an array of 8 individual bits.

CAST5 Is a symmetric block cipher with a block-size of
8 bytes and a variable key-size of up to 128 bits.

Cipher Series of transformations that converts plaintext
to ciphertext using the Cipher Key.

63

Glossary Glossary

Cipher Key Secret, cryptographic key that is used by the Key
Expansion routine to generate a set of Round
Keys; can be pictured as a rectangular array of
bytes, having four rows and Nk columns.

Ciphertext Data output from the Cipher or input to the In-
verse Cipher.

Data unit Within IEEE Std 1619, 128 or more bits of data
within a key scope. The first data unit in a key
scope starts with the first bit of the key scope;
each subsequent data unit starts with the bit af-
ter the end of the previous data unit. Data units
within a key scope are of equal sizes. A data unit
does not necessarily correspond to a physical or
logical block on the storage device.

DES-X Is a variant on the DES (Data Encryption Stan-
dard) block cipher intended to increase the com-
plexity of a brute force attack using a technique
called key whitening.

Hash function A function that maps keys to integers, usually to
get an even distribution on a smaller set of values.

Inverse Cipher Series of transformations that converts ciphertext
to plaintext using the Cipher Key.

IP core An IP (intellectual property) core is a block of
logic or data that is used in making a field pro-
grammable gate array (FPGA) or application-
specific integrated circuit (ASIC) for a product.

Key Expansion Routine used to generate a series of Round Keys
from the Cipher Key.

Key scope Data encrypted by a particular key, divided into
equal-sized data units. The key scope is identi-
fied by three non-negative integers: tweak value
corresponding to the first data unit, the data unit
size, and the length of the data.(See [13])

MD5 Message-Digest algorithm 5. Is a widely used
cryptographic hash function with a 128-bit hash
value.

64

Glossary Glossary

Plaintext Data input to the Cipher or output from the In-
verse Cipher.

Rijndael Cryptographic algorithm specified in this Ad-
vanced Encryption Standard (AES).

RIPEMD-160 Is a 160-bit hash function. Is intended to be a
replacement of MD4, MD5 and RIPEMD hash
functions.

Round Key Round keys are values derived from the Cipher
Key using the Key Expansion routine; they are
applied to the State in the Cipher and Inverse Ci-
pher.

S-box Non-linear substitution table used in several byte
substitution transformations and in the Key Ex-
pansion routine to perform a one-for-one substi-
tution of a byte value.

Serpent Is a symmetric key block cipher which was a fi-
nalist in the Advanced Encryption Standard con-
test, where it came second to Rijndael. Has a
block size of 128 bits and supports a key size of
128, 192 or 256 bits.

SHA-512 Secure Hash Algorithm. The SHA hash func-
tions are a set of cryptographic hash functions.
SHA-512 belongs to the SHA-2 family, all the
mebers of the family use an identical algorithm
with a variable digest size.

State Intermediate Cipher result that can be pictured as
a rectangular array of bytes, having four rows and
Nb columns.

Tiger Is a cryptographic hash function designed for ef-
ficiency on 64-bit platforms. The size of a Tiger
hash value is 192 bits.

Triple DES Is the common name for the Triple Data Encryp-
tion Algorithm (TDEA) block cipher, it applies
the Data Encryption Standard (DES) cipher al-
gorithm three times to each data block.

65

Glossary Glossary

Twofish Is a symmetric key block cipher with a block size
of 128 bits and key sizes up to 256 bits. It was
one of the five finalists of the Advanced Encryp-
tion Standard contest, but was not selected for
standardisation. Twofish is related to the earlier
block cipher Blowfish.

Word A group of 32 bits that is treated either as a single
entity or as an array of 4 bytes.

66

Bibliography

[1] Mihir Bellare and Phillip Rogaway, “Introduction to Modern Cryptography,” 2005.

[2] Jose Luis Tabara, “Breve historia de la criptografía,” 2007.

[3] Dr. A. Ray Miner, “The Cryptographic Mothema tics of Enigma,” NSA/CSS.

[4] RSA Laboratories, “What is a block cipher?.”

[5] Laurent Haan, “Advanced Encryption Standard (AES).”

[6] FIPS, “Advanced Encryption Standard,” NIST, no. 197, 2001.

[7] Reach Information, “Disk Encryption Theory: Synonyms, Definition and Meaning
about disk encryption theory from Reach Information.”

[8] Bruce Schneider, Applied Cryptography. John Wiley and Sons, 1996.

[9] Weisstein, Eric W, “Finite Fields From MathWorld–A Wolfram Web Resource.”

[10] Moses Liskov, Ronald L. Rivest and David Wagner, “Tweakable Block Ciphers,”
2003.

[11] P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: a block-cipher mode of
operation for efficient authenticated encryptiona,” Proceedings of the 8th ACM Con-
ference on Computer and Communications Security, pp. 196–205, 2001.

[12] Phillip Rogaway, “Efficient Instantiations of Tweakable Blockciphers and Refine-
ments to Modes OCB and PMAC,” 2003.

[13] IEEE Computer Society, “IEEE Standard for Cryptographic Protection of Data on
Block-Oriented Storage Devices,” IEEE, no. 1619, 2007.

[14] NIST, “Public Comments on the XTS-AES Mode.”

[15] Moses Liskov and Kazuhiko Minematsu, “Comments on XTS-AES,” 2008.

[16] Matthew V. Ball, Sun Microsystems, Chair of IEEE Security in Storage Working
Group (P1619), “Public Comments on the XTS-AES Mode.”

[17] Willett, Michael, Seagate Technology, “Comments provided to NIST in response to:
Request for Public Comment on XTS/AES.”

67

BIBLIOGRAPHY BIBLIOGRAPHY

[18] IP Cores, Inc., “XTS3 Family of Cores,” 2007.

[19] IP Cores, Inc., “XTS2 Family of Cores,” 2007.

68

	Title Page
	Problem Description
	Problem Description
	Dedication
	Abstract
	Preface
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Abbreviation
	Introduction
	Problem outline
	Cryptography
	Block Ciphers
	IEEE
	Thesis Structure

	Background
	Overview
	AES
	Key Expansion
	SubBytes
	ShiftRows
	MixColumns
	AddRoundKey

	XTS mode of operation
	Galois Fields
	Tweakable Block Cyphers
	Tweak Block Chaining
	Tweak Chain Hash
	Tweakable Authenticated Encryption

	IEEE 1619.1
	Theory
	Data units and tweaks
	Multiplication by a primitive element
	XTS-AES encryption procedure
	XTS-AES decryption procedure

	Comments on XTS-AES
	The XTS-AES algorithm itself
	The depth of support in the storage industry for which it was designed
	The appeal of XTS for wider applications
	The proposal for the approved specification to be available only by purchase from IEEE
	Concerns of intellectual property rights

	Tools: Software and Hardware
	Software
	TrueCrypt
	FreeOTFE
	DiskCryptor

	Hardware
	Laptop Toshiba Satellite A200
	Desktop DELL

	Commercial Hardware: IP cores

	Methods and results
	Methods
	Container
	Partition
	System

	Results
	Volume creation
	Partition encryption
	System encryption

	Conclusion
	Glossary
	References

