
June 2009
Torbjørn Ekman, IET
Kimmo Kansanen, IET

Master of Science in Electronics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Queue Management and Interference
control for Cognitive Radio

Pål Håland

Problem Description
Future wireless networks are envisioned to utilize new paradigms of spectrum reuse, i.e. cognitive
radio. where radio frequencies can opportunistically be taken into use if no other use is detected.
In such systems the mechanisms for interference control are of essential importance. On the
other hand, delay and energy efficiency requirements call for intelligent data queue handling for
transmission over fading channels.

In this work we study the use of stochastic control methods on the transmitter data queue to
optimize the energy useage of an opportunistic user in a cognitive radio system. Radio sensors are
used to monitor the interference levels generated by the opportunistic user, and control the
opportunistic transmissions in order to not exceed the allowed average interference level.
The student will implement a system model in MATLAB and find its behavior through simulations.

Assignment given: 21. January 2009
Supervisor: Torbjørn Ekman, IET

Contents

1 Introduction 1

2 Background theory 3

3 Methods 5

3.1 Different functions of the system . 6
3.1.1 How the queue is handled . 6
3.1.2 The arrival process . 6
3.1.3 Channel state . 7
3.1.4 The transfer function µ . 7
3.1.5 The virtual interference queue . 7
3.1.6 Transmit power allocation . 7

3.2 The capacity of the system . 8

4 Results 9

4.1 The arrival rate . 9
4.1.1 Arrival rate below capacity . 10
4.1.2 Arrival rate above capacity . 14

4.2 Average received interference Xav . 16
4.3 The peak power limit . 19

5 Conclusion and Discussion 21

A Matlab code 23

A.1 Transfer function µ(t, S(t), P (t)) . 25
A.2 Arrival function Aq(t) . 25
A.3 Queue function U(t) . 26
A.4 Channel state function S(t) . 26
A.5 Power allocation function P (t) . 27
A.6 Runtime environment . 27
A.7 Capacity calculation of the channel . 29

Acronyms 33

v

Chapter 1

Introduction

Today wireless systems take up more and more of the frequencies that are available. Most of
them are licensed to mobile and telephone operators, other for high speed wireless internet.
While new wireless systems are developed there seems to be a lack of free frequencies, and most
of the unlicensed frequencies is already packed with users.

These high demands on frequencies require the new system to build upon new types of tech-
nology. One of them called cognitive radio, which allow the re-use of spectrum. This technology
takes in to account other users on the network, the spectrum and channel state. The idea of
cognitive radio was first introduced by Joseph Mitola III in 1998, and the term cognitive ra-
dio identifies (from [1]) the point at which wireless personal digital assistants (PDA) and the
related networks are sufficiently computationally intelligent about radio resources and related
computer-to-computer communications to:

a) detect user communications needs as a function of use context, and

b) to provide radio resources and wireless services most appropriate to those needs.

What we are interested in is a spectrum agile radio. We use a more simple approach by re-
using the spectrum and implementing a form of interference control too keep the average received
level at a constant level.

One problem with the cognitive radio is that the secondary user do not know if any primary
user that’s in its range are already listening to another primary user outside the listening range.
At this point the secondary user would just start transmitting and thus interfering with the
primary user. One approach to protect the primary user is to set up a sensor that listens on
the secondary user as well as the primary user, and we solve the problem with interference at
the sensor. Since the secondary user does not know of the primary user transmitting, he thinks
it is okay for him to transmit, thus interfering for the primary user. The sensor should then
give feedback to the secondary user that it should lower the transmission power. At this point
we need a data queue at the secondary user that control the arriving data, a power allocation
method to allocate power based of the channel state between secondary user TX-RX and the
interference history received from the sensor. We do this to keep the data rate between the
secondary users high while trying to limiting the average received interference at the sensor. The
and one interference queue at the sensor that just hold the interference size. If there are no
primary users transmitting that the sensor senses, the transmission of the secondary user is okay.

The goal of the work is to maximize the data rate between the secondary transmitter and
receivers, while limiting the interference with the primary user, using a sensor network. We will
focus on three things, the data queue at the secondary transmitter, the power allocation and

1

2 CHAPTER 1. INTRODUCTION

a virtual interference queue at the sensor. This virtual queue is modeled on the principles a
ordinary queue, so that we can use the same stability criteria. In [2] Michael J. Neely develops a
dynamic control strategy for minimizing energy expenditure in time varying wireless networks.
The queue and power management were used in Neelys paper, but there he used a virtual power
queue to control the average transmit power at each node. Where his strategy were to operate
without knowledge of traffic rates or channel statistics, we tries to develop a way to maximize the
data throughput using a sensor to rely feedback to the secondary user. Here we will implement
an virtual interference queue at a sensor instead of using a local virtual power queue, that will
submit feedback to the secondary user about the interference level it receive.

Chapter 2

Background theory

There are a couple of assumptions made in this report. The first assumption is that both the
sensor and primary user that is receiving are in close proximity to each other. By looking at the
power level received at the sensor, we can determine if the secondary user is degrading any signal
that the primary user is trying to receive. This is only possible if we assume that the channel SS

is ergodic, and have the same statistics between TXSU1
and RXPU as well as TXSU1

and RXS .
This assumption does not hold if the transmitters and receivers are stationary, and the channel is
no longer ergodic. If that happens, it is possible to enforce an ergodic channel by using multiple
transmit antennas, or if the secondary is moving relative to the sensor and primary user.

SS

TXSU1

RXPU

RXS

Figure 2.1: Display of sender and transmitter

Another assumption is based on the propagation environment, we assumed that the channel is
located in a high density area, where there are a lot of objects creating many paths (multipaths)
from the transmitter to receiver. In these environments you typically do not have any form of line
of sight (LOS) component, and we assume that the channel in these areas has a Rayleig fading
distribution. This channel have an exponential probability density function (PDF) of the squared
envelope, because it exist of a multipath that distort the phase and quadrature component. By
knowing this we can emulate a channel that have the same statistical probabilities. For further
reading of the Rayleigh fading channel you can read [3, Ch:3.2].

Since it is the sensor that give feedback to the secondary user about interference, and we
assume that the sensor and primary user is close to each other, then it is necessary to know that
the channel statistics. If we cannot assume the same statistics on the propagation environment,
then we cannot assume that the sensor and primary user have the same signal strength, and the
interference measured might not be the same as at the primary user.

For other parts of the system we use the assumption that the flow of data in to the queue

3

4 CHAPTER 2. BACKGROUND THEORY

is less then the data capacity through the channel between TXSU1
and RXSU2

. If the flow in
is larger than the flow out, it is possible to force this assumption by utilizing package dropping.
The channel capacity can be calculated using the techniques in[3, 4].

Chapter 3

Methods

S1

SS

RXPURXS

Aq(t)

P (t)

µ(t, S1, PTX)

TXSU1
RXSU2

U(t)

X(t)

Figure 3.1: Sketch of the system principle

Our system design in figure 3.1 is designed to simulate the effects of using a sensor to limit
the interference level created by communication between two secondary users, while trying to
achieve a high data throughput between them. For this purpose you need to control the data flow
in to the system, and out of the system, thus creating a data queue where the data that arrives
should be queued before transmitting. Controlling the interference means that you would need
a form of transmit power control, that control the power to a level where it do not interfere with
the primary user. Here you need to spend as much power as possible without interfering with a
primary user to acheive a high data throughput. Thats when the sensor should do its purpose,
creating an interference queue that keeps track of the interference level from the secondary user.
By assuming that the channel between the secondary user and the sensor share the same statistics
as the channel between the secondary user and primary user, we can use the interference data
from the sensor to control the secondary user transmit power.

The thought is that a lot of sensors is placed randomly around a location, and would probably
be close to a primary user. If the sensor senses a secondary user transmitting, it would start
monitoring that user, and give feedback to it in case it start interfering too much. Since the
sensor and primary user are not located at the same place, you have to use the assumption
that the channel between TXSU1

– RXS and TXSU1
– RXPU have the same statistics. With

5

6 CHAPTER 3. METHODS

the assumption that the sensor and primary user have the same statistics, we can assume that
the primary user have the same average received power as the sensor. Our approach is to
create an interference queue at the sensor, and then stabilizing it. If we manage to stabilize the
interference queue, we could stabilize the interference that the secondary user cause. This is
done by lowering the transmission power at the secondary user, using data from the interference
queue at the sensor.

3.1 Different functions of the system

The different functions of the system in figure 3.1 are as follows:

• the data queue U(t) - Is the transmit buffer for the transmitter TXSU1
, and hold the size

of the data queue at a given time. It has the arrival process Aq(t) as input, and depends
on the transfer rate function µ(t, P, S) as output.

• the arrival process Aq(t) - Models the random arrival of data from the upper transportation
layers in to the TXSU1

.

• the channel state S(t) - is the channel state between the secondary users and sensor.

• rate function µ(t, P, S) - is the function that calculate how much data is transmitted from
the TXSU1

to the RXSU2
, depending on the transmit power P (t) and S1.

• interference queue X(t) - is at the receiving sensor RXS and holds the interference, and it
depends of SS and P (t).

• power allocation function P (t) - Implemented in TXSU1
and uses X(t) from the sensor,

but need to operate if there is no received interference from the sensor.

3.1.1 How the queue is handled

The queue is handled by subtracting amount transferred from the size of the queue then adding
a random arrival Aq(t). By storing the queue state at every time instant, we can find the
approximate of how long data is stored before transmitted, by taking the mean of the queue size.
The next value of the queue size is calculated with the following equation:

U(t + 1) =

{

U(t) − µ(t, P (t), S1(t)) + Aq(t) if U(t) ≥ µ(t, P (t), S1(t))
Aq(t) else

(3.1)

The queue would be stable if and only if the mean arrival is less or equal to mean transmission
data.

3.1.2 The arrival process

The idea of the queue arrival process is to simulate random arrival to be transmitted. The
current setup of the queue arrival is:

Aq(t) =

{

n bits if k < pR

0 bits if k ≥ pR
(3.2)

where n ∈ [1, N] and k ∈ [0, 1] is a random number with uniform distribution. The arrival rate
cannot be higher than N · pR ≤ instantaneous Shannon capacity for the channel between the

3.1. DIFFERENT FUNCTIONS OF THE SYSTEM 7

two secondary users, where pR is the probability of receiving data to the queue and N is max
amount of bits that can arrive. This limitation is set because of the assumption that the flow in
to the system should be less or equal to the flow out of the system.

3.1.3 Channel state

The channel state is a description on how good the signal from the transmitter can be “read” at the
receiver. To generate the channel state, the Matlab function random(’exp’,<dimension>·<mean>)
was used.

3.1.4 The transfer function µ

The transfer functions purpose is to calculate how much data we manage to transmit over the
channel, given a channel state S(t) and the transmit power P (t) calculated in section 3.1.6. It
origins from Shannon’s capacity theorem, found in [5, Ch:9.10]

µ(t, P (t), S(t)) = log2(1 + P (t) · S1(t)) (3.3)

where P (t) is the transmit power and S1(t) is the channel state between the secondary TX and
RX .

3.1.5 The virtual interference queue

By using the sensor to update the interference level, and returning the value to the secondary
user. In [2] a similar virtual power queue was used to enforce a transmit power constraint. Here
we hope to stabilize the virtual interference queue to stabilize the interference. If this is possible
the hope is to get as much throughput to the secondary receiver with stable interference to the
primary user.

X(t + 1) =

X(t) − Xav + P (t) · Ss(t) if X(t) > Xav

P (t) · Ss(t) if P (t) · Ss(t) > Xmin and X(t) < Xav

Xmin if P (t) = 0 and X(t) < Xav

(3.4)

The interference queue’s next value is updated every time instant, and depends on the transmit
power P (t) from the secondary user, the channel state Ss(t) between SU1 and sensor and the
average interference Xav. The average interference is how much interference is allowed to be over
an average. This value can be tuned to the interference level you allow at the sensor, but would
also change the data throughput between the TXSU and RXSU . A high Xav allow for higher
data throughput, and a low value for less data throughput. The Xmin control maximum power
level, if set to 0 would make it possible for the transmit power to become infinity. If we manage
to stabilize the interference queue, we should be able to stabilize the interference done to the
primary user/sensor. The interference queue can only be stable if the average received P (t) ·S(t)
is less than Xav.

3.1.6 Transmit power allocation

The goal of the transmit power allocation is to get an adaptive system, one that tries to transmit
as much data as possible on good channel states. The system depends on the channel state
between the secondary TX and RX, the data queue size and the interference registered at the
sensor. The interference queue explained in section 3.1.5, transmit the interference level back to

8 CHAPTER 3. METHODS

the TXSU so that the value can either increase or decrease the power level. The power allocation
is done the following way:

P (t) =

Ppeak if Ppeak ≤ P (t)
2·U(t)
X(t) − 1

S1(t)
if 0 < P (t) < Ppeak

0 if P (t) ≤ 0

(3.5)

As you can see in equation 3.5 it allocate the power to use based on the interference queue X(t)
explained in equation 3.4. Both of the equations have a channel state, the power allocation use
the current channel state S1, and the interference queue use the channel state SS . The power

allocation is also part of the water filling solution
(

1
γ0

−
1

γD

)

from [3], but here the threshold

γ0 = X(t)
2(U(t) and would change depending on how large the data queue or interference queue

changes.

3.2 The capacity of the system

To figure out where to limit and start the simulations, we have to determine the capacity of a
Rayleigh fading channel with an average signal to noise ratio (SNR) of 1. We assume we have
an average power of 1 and that the channel is slowly varying. The capacity of the system were
then calculated numerical using Newtons method, to find a unique x0 so that f(x0) = 0 using
formula (13):

f(x) =
e−x

x
− E1(x) − γ̄ (3.6)

from [4], where x = γ0

γ̄
, En(x) is the exponential integral of order n, γ0 is the SNR at the Shannon

capacity and γ̄ = 1 is the average carrier-to-noise (CNR). Using Newton’s method:

xn+1 = xn −
f(xn)

f ′(xn)
(3.7)

where f ′(x) = e−x is the derived of f(t). Computing a new xn+1 trying to get as close as possible
to 0. When we find a value that we are happy with, we use this in equation (16) from [4] which
is

Copra

B
= log2(e)E1(

γ0

γ̄
) (3.8)

and we can find the Copra for the specific γ0.

Chapter 4

Results

By running the Matlab scripts listed in appendix A, written with the help of the formulas in
chapter 3. It is possible to get different simulations of how a sensor network would control
the transmission of a secondary user, and how much it would interfere with the primary user.
Varying one and one of the parameters used in the simulation it is possible to see how it affects
the entire system.

4.1 The arrival rate

By adjusting the arrival rate to the queue, up to the theoretic capacity of the system, we can
see where the system starts being ineffective. The simulations in this section are done with an
average interference level Xav = 1, minimum interference level Xmin is set to be a tenth of Xav.
The probability of receiving any bit n to the queue pR = 0.1.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3
x 10

4 Queue backlog, arrival n=8−10

time t

si
ze

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

100

200

300
Queue backlog, arrival n=1−7

time t

si
ze

Figure 4.1: Queue backlog, n = 1 − 10 bit, pR = 0.1, Xav = 1, Xmin = 0.1 and Ppeak = Inf

Figure 4.1 show the result for this simulation, where the upper plot is for 8 − 10 bit arrival,
and the lower plot is for 1 − 7 bit arrival. The blue graph is for 8 bit arrival, the green is for 9

9

10 CHAPTER 4. RESULTS

bit arrival, the red i is for 10 bit arrival and the grey on the lower plot is for 7 bit arrival with a
10% chance.

2 4 6
0

50

100
Mean queue size, n=1−7

bits

si
ze

1 2 3 4 5 6 7
0

20

40
Mean interference, n=1−7

bits

si
ze

Figure 4.2: Mean queue backlog, n = 1 − 7 bit, pR = 0.1, Xav = 1, Xmin = 0.1 and Ppeak = Inf

By looking at the plot in figure 4.1 we can see that the system is not able to stabilize when
the arrival rate is higher than 7 bits. A closer look at the mean size of the data queue and
interference can be found in figure 4.2. On the lower arrival rates the Ppeak peaks at 150 − 200,
but averages at 1 because of less transmission instances. The plot of the queue size interesting
because it show when the transmission rate is less than the arrival rate, at this point the queue
just start growing. The mean queue size also tell us how long it is expected for data to stay in
the queue before it is transmitted, meaning the delay of the system. One of the reasons that
the transmission do not reach the Shannon capacity is that we have a moving threshold at the
power allocation. When we have interfered at the sensor, it sends the interference back to the
secondary transmitter. If the interference is high compared to the queue size, then the threshold
for transmission is high, and some good channel states are wasted. One way to solve this problem
is including a peak power limitation Ppeak, so that the interference queue do not peak as high.

4.1.1 Arrival rate below capacity

Figure 4.3 and 4.4 were both simulated with a constant arrival rate between 0 and 1 bit to see
the effect on low arrival rates. As you can see from the stem in figure 4.4 the transmission rate
does not become steady before an arrival rate around 0.05 bit. This is because of equation 3.5

where the size of 2·U(t)
x(t) has to be larger than 1

S1

. It is part of the water filling solution, where you

would spend less power on bad channels and more power on good channels. The second change
in the transmission rate is where the transmission rate become less than the arrival rate. This
will be discussed later in the results.

4.1. THE ARRIVAL RATE 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60
Mean queue size, constant arrival 0.01 − 0.71

bits

si
ze

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40
Mean interference, constant arrival 0.01 − 0.71

bits

si
ze

Figure 4.3: Mean of the queue size and interference for increasing constant arrival size up to 0.71
bit.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8
Mean transmission rate, constant arrival 0.01 − 0.71

bits

bi
t/h

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5
Mean transmission power, constant arrival 0.01 − 0.71

bits

si
ze

Figure 4.4: Mean of the transmission size and transmission power for increasing constant arrival
size up to 0.71 bit.

12 CHAPTER 4. RESULTS

While looking at a zoomed in version of the queue and interference of the stable part of the
system in figure 4.5, where the arrival rate is less than 0.71 bit. We can see in the beginning
of the plot that when the interference level reaches a minimum of around 0.1, and when the
queue is larger, and there is a good channel. Then the interference suddenly peaks because it
uses this good channel to transmit data. While doing this it prevents new transmission trough
good channels because it is has changed the threshold because of high interference level and a
small queue. This stops the transmissions on good channels, and happens because of the power
estimation in equation 3.5.

2.62 2.625 2.63 2.635 2.64 2.645 2.65 2.655

x 10
4

0

50

100

150

200

250

300

350

400

S
iz

e
of

 q
ue

ue

2.62 2.625 2.63 2.635 2.64 2.645 2.65 2.655

x 10
4

0

1

2

3

4

5

6

7

8

9

Time t

T
ra

ns
m

is
si

on
 s

iz
e

TX queue
IF queue
transmitted data

Figure 4.5: A cut of the queue size and interference level, blue is queue size and red is interference
level (green is transmission size).

By zooming out a bit we can see that this is a trend in figure 4.6. The interference level

will be less than the queue until it hits a level where 2·U(t)
X(t) > 1

S1(t) . When this happens the

interference level will be very large compared to the queue size, and the transmit power will be
low until the interference level get below the queue size. The queue size will continue growing
because of an average arrival rate higher than the transmission rate until the interference level
is less that the queue size. Then the transmitter will start transmitting more often, and average
transmission rate will be higher than the arrival rate again. This continues until the interference
queue hit a minimum, and peaks up to a size a lot larger than the queue size. This problem
could be solved by using a Ppeak limitation, spreading the transmissions over time instead of
everything on a good channel.

4.1. THE ARRIVAL RATE 13

1 1.5 2 2.5 3 3.5 4

x 10
4

0

50

100

150

200

250

300

350

400

Time t

S
iz

e
 o

f
q

u
e

u
e

Data queue
IF queue

Figure 4.6: A larger cut of the queue size and interference level, blue is queue size and red is
interference level.

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5
Power at SU1/Power at S

bit arrival

siz
e

Figure 4.7: Factor between received power at sensor and secondary user -
mean(PSU1

)

mean(PS1
) .

14 CHAPTER 4. RESULTS

From figure 4.7 we see that power received at the secondary user is higher on an average then
at the sensor. This show that the sensor network can do it’s purpose to keep a higher power at
the secondary user compared to at the sensor (and the primary user). One interesting thing in
the figure, is that at lower arrival rates, the system give a higher ratio. this could be because
the queue has to grow larger before transmitting, and transmits only on good channels.

4.1.2 Arrival rate above capacity

The best place to find out where it start going wrong when the arrival rate is higher then the
transmission rate is at the beginning of the data and interference queue. Looking at figure 4.8
it show the same thing that happened for an arrival rate less then the transmission rate. The
interference queue make a peak after it had gone to a minimum with a good channel. When
the interference queue gets below the size of the data queue, the interference queue will start
increase again. At this point the arrival rate is higher then the transmission rate, and the data
queue will continue to grow, even though the system continue to transmit data. This causes the
interference queue to always be less than the data queue.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

Time t

S
iz

e
of

 q
ue

ue

Data queue
IF queue

Figure 4.8: Arrival rate higher than the transmission rate, arrival rate is 0.84 bit pr time instance

To see if there is any change in the trend of an ever growing queue, I try to run a simulation
increasing the bit arrival from n = 1 to n = 100 with a pR = 0.1. Figure 4.9 show the mean
transmission and power.

4.1. THE ARRIVAL RATE 15

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
Mean transmission rate

bit

bi
t/h

z

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4
Mean transmission power

bit

W

Figure 4.9: Mean of the transmission size and transmission power for increasing arrival size.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5
x 10

5 Mean queue size

Arrival rate in bit

si
ze

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
x 10

4 Mean interference size

Arrival rate in bit

si
ze

Figure 4.10: Mean of the queue size and interference size for increasing arrival size up to 100 bit
and 10% chance of arrival.

16 CHAPTER 4. RESULTS

Looking figure 4.10 you can see that the queue size is a lot larger than the interference size.
If you use a much larger number in to equation 3.5 for the queue size, it would increase the
transmission power. As the arrival rate continue to grow, the transmission rate continue to
grow as well at the expense of increased average power. By looking at the equation 3.5 for
power allocation, we see that this happens because U(t) grows quicker than X(t), but the ratio

between 2U(t)
X(t) seem to stabilize at 2.5 as seen in figure 4.11. When this happen the primary user

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

5

10

15

20

time t

2U
(t

)/
X

(t
)

Figure 4.11: The factor 2U(t)
X(t) as the time increase. Arrival rate higher than transmission rate.

will transmit when the factor 1
SS

is smaller than 2.5, and it depends only on the channel if the

secondary user transmit, because the factor between 2U(t)
X(t) stays the same.

4.2 Average received interference Xav

The average received interference Aav that the sensor operate from adjust how much interference
the sensor should tolerate. For the first simulation I set the arrival rate to be the same as the
transmission rate when the average power is equal to one. We can see from figure 4.12 that the
system will not be stable before Xav = 1, but the mean queue size decrease for increasing Xav.
Under this simulation the arrival rate were adjusted to the average transmission rate 0.71 with
an average power of 1.

By changing the arrival rate to be in the stable region, to an arrival rate of 0.4 bit/s, we can
simulate how changing the Xav affects the data queue and average transmission for increasing
value of Xav. While increasing it, we can see from figure 4.13 that the system is starts getting
stable after passing an average interference above 0.4.

By fixing the average interference Xav to be 0.4, and then simulating over different arrival
rate, we can see that the factor between PSU1

and PS from figure 4.14, have increased compared
to figure 4.7. This is because the TXSU would wait for a good channel to transmit because of
the interference level done to the sensor.

4.2. AVERAGE RECEIVED INTERFERENCE XAV 17

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
x 10

4 Mean queue size

Xav

si
ze

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

20

40

60

80

100

si
ze

time t

Data queue for Xav=1

Figure 4.12: The mean queue and interference for increasing Xav, fixed arrival rate of 0.71

0.2 0.4 0.6 0.8 1
0

5000

10000
Mean queue size

Xav

si
ze

0.2 0.4 0.6 0.8 1
0

5000

10000
Mean interference size

Xav

si
ze

Figure 4.13: The mean queue and interference for increasing Xav, fixed arrival rate of 0.4.

18 CHAPTER 4. RESULTS

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5
Power at RXSU1/Power at RXS

bit

si
ze

Figure 4.14: Factor between received power at sensor and secondary user -
mean(PSU1

)

mean(PS1
) .

0.2 0.4 0.6 0.8 1
0

0.5

1
Mean transmission rate

Xav

bi
t/h

z

0.2 0.4 0.6 0.8 1
0

0.5

1
Mean transmission power

Xav

W

Figure 4.15: The transmission rate and power.

4.3. THE PEAK POWER LIMIT 19

4.3 The peak power limit

Changing the power limit Ppeak equal to Xav = 1 makes a huge change to the system. Looking
at figure 4.16 we see that the queue size is actually a lot less at an arrival rate of 0.8 compared to
no peak power constrain, but this causes the system to transmit with an average power of almost
1, as we can see from figure 4.17, causing the system to have the same signal strength at the
primary user/sensor as it has with the RXSU2

. Using a Ppeak > Xav will make sure that the link
between the secondary users always have a higher strength then the link between TXSU1

and
RXS . If the data queue grows a lot larger than the interference queue, the system will transmit
with a peak power, no matter what the channel state is.

1 2 3 4 5 6 7 8
0

10

20

30

40
Mean queue size, 1−8 bits arrival and peak power=1

bits

si
ze

1 2 3 4 5 6 7 8
0

1

2

3

4

5
Mean interference, 1−8 bits arrival and peak power=1

bits

si
ze

Figure 4.16: The mean data and interference queue with a Ppeak = 1 and Xav = 1.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8
Mean transmission rate, 1−8 bits arrival and peak power=1

bits

bi
t/h

z

1 2 3 4 5 6 7 8
0

0.5

1
Mean transmission power,1−8 bits arrival and peak power=1

bits

si
ze

Figure 4.17: The mean transmission size and power with a Ppeak = 1 and Xav = 1.

Chapter 5

Conclusion and Discussion

From the results of the simulations we have that using an opportunistic transmission mode gives a
higher received power at the secondary receiver. Using the sensor implementation helped control
the power level at the secondary transmitter, with an average received interference of Xav = 1 at
the sensor. One of the problems occurred was that we could not achieve close to the theoretical
capacity of the channel. Much of this was because of the interference constrain in the power
allocation, caused good channels between the two secondary users go to waste because of a high
interference level at the sensor. Setting a peak power limitation would spread the transmissions
and keeping a low interference at the sensor. This would stop the virtual interference queue
from peaking, and created the interference queue more stable, allowing a higher arrival rate. For
higher arrival rate then the capacity of the system would cause the power to go in to constant
transmission. For arrival rates higher than the capacity of the system, it is possible to use package
dropping at the arrival process. But this would not cause any increase in capacity. Decreasing
the Xav decreases the transmit power from the secondary user, but would cause the data queue
to become unstable as long as arrival rate were higher or equal to Xav. At lower arrival rates
there was a peak in the factor between the power at secondary receiver and the power at the
sensor.

For future work on this subject, it would be interesting to study more of the effects adjusting
the peak power to achieve better efficiency. Implementing package dropping to keep the data
queue stable.

21

Appendix A

Matlab code

23

Listings

A.1 The transfer function . 25
A.2 The arrival function . 25
A.3 The queue function . 26
A.4 The channel state function . 26
A.5 The power function . 27
A.6 The runtime environment . 27
A.7 Calculating the capacity of the channel . 29

A.1 Transfer function µ(t, S(t), P (t))

Listing A.1: The transfer function

1 function retur = uTrans (t,P,S)

2 global transm

3 % B = bandwith , P = transmit power , S = channel state

4 %B = 200000; % Hz

5 %transm (t) = B*log2 (1+ P.*S);

6 transm (t) = log2 (1+ P.*S);

7 retur = transm (t);

8 end

A.2 Arrival function Aq(t)

Listing A.2: The arrival function

1 function retur = aQueue (t,varargin)

2 global Aq vilkaarlige

3 k = 0.01;

4 bit = 102;

5 if (size(varargin ,2) >= 2)

6 bit = varargin {1};

7 k = varargin {2};

8 elseif (size(varargin ,2) == 1)

9 bit = varargin {1};

10 end

11 tmp = vilkaarlige (t);

12 if tmp > k;

13 Aq(t) = 0;

14 else

15 Aq(t) = bit ;

16 end

25

26 LISTINGS

17 retur = Aq(t);

18 end

A.3 Queue function U(t)

Listing A.3: The queue function

1 % The queue management , Utran updates the queue length U every time it is

2 % run , does not need the t. pTrans is supposed to be the variable power ,

3 % used to minimize the interference at the primary user. s_Trans is the

4 % state of the link. uTrans is how much is transmitted trough the link. and

5 % aQueue is how much that has arrived to the queue .

6

7 function retur = Utran (j,u_temp ,S,varargin)

8 if size(varargin ,2) == 1

9 bit = varargin {1};

10 k = 0.1;

11 elseif size(varargin ,2) >= 2

12 bit = varargin {1};

13 k = varargin {2};

14 else

15 k = 0.1;

16 bit = 10;

17 end

18 p = pTrans (j,S(1,j),S(2,j));

19 retur = max ([u_temp -uTrans (j,p,S(2,j)) ,0])+aQueue (j,bit ,k);

20 %retur = max ([u_temp -uTrans (j,1,S(2,j)) ,0])+aQueue (j,bit ,k);

21 end

A.4 Channel state function S(t)

Listing A.4: The channel state function

1 function retur = s_Trans (varargin)

2 MU = 1;

3 hoyde = 1;

4 bredde = 1;

5 if (size(varargin ,2) == 3)

6 MU = varargin {1};

7 hoyde = varargin {2};

8 bredde = varargin {3};

9 elseif (size(varargin ,2) == 2)

10 MU = varargin {1};

11 bredde = varargin {2};

12 hoyde = 1;

13 elseif (size(varargin ,2) == 1)

14 MU = varargin {1};

15 bredde = 1;

16 hoyde = 1;

17 end

18

19 retur = random (’exp ’,MU*ones(hoyde ,bredde));

20 end

A.5. POWER ALLOCATION FUNCTION P (T) 27

A.5 Power allocation function P (t)

Listing A.5: The power function

1 function retur = pTrans (t,varargin)

2 global U x xav Power metode P_peak Xmin

3 S = [0 0];

4 if size(varargin ,2) >= 2

5 S(1) = varargin {1};

6 S(2) = varargin {2};

7

8 prev = x(t);

9

10 P_transm = 2*U(t)/prev -1/ S(1);

11 Power (t) = min (max (P_transm ,0) ,P_peak);

12

13 if (t == size(x,2))

14 if strcmp (metode ,’runs’)

15 x(1)=max (max (prev -xav ,0) +Power(t)*S(2) ,Xmin);

16 elseif strcmp (metode ,’sample ’)

17 x(1) =1;

18 end

19 else

20 x(t+1)=max (max (prev -xav ,0) +Power(t)*S(2) ,Xmin);

21 end

22 else

23 Power (t) = 1;

24 end

25 retur = Power (t);

26 end

A.6 Runtime environment

Listing A.6: The runtime environment

1 %% Variables

2 global x xav U S Aq Power transm averaging vilkaarlige metode P_peak Xmin

3 % An empty queue with the lenght of t transmissions;

4 t = 1000000; % How many runs

5 maxLength = 100000;

6 averaging = 100;

7 tids = zeros (1, ceil(t/maxLength));

8 l = 1;

9 %%%%% Changable vars variables %%%%%

10 k = 1; % The probability of arrival to the queue

11 bit =0.1; % The ammount arriving to the queue

12 increase = .1; % How much one of the variables should increase

13 xav = 1; % Should be mean SNR

14 Xmin = 0.1; % The minimum itnterference to use in powerallocation (also

regulate max power)

15 P_peak = 1.5; % Maximum transmit power.

16

17 % runs or sample

18 metode = ’sample ’;

19 bitminav = 1; % 1 for change in bit , 2 for change in Xmin , 3 for change in Xav .

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21

22 c = clock ;

28 LISTINGS

23 if c(4) < 10

24 tempTid = [’0’ num2str (c(4))];

25 else

26 tempTid = num2str (c(4));

27 end

28 if c(5) < 10

29 tempTid = [tempTid ’0’ num2str (c(5))];

30 else

31 tempTid = [tempTid num2str (c(5))];

32 end

33

34 savePath = strcat (’simulering /’,date ,’--’,tempTid ,’/’);

35

36

37

38 instilling = struct (...

39 ’savePath ’,savePath ,’t’,t,’maxLength ’,maxLength ,...

40 ’averaging ’,averaging ,’l’,l,’k’,k,’bit ’,bit ,’P_peak ’,P_peak ,...

41 ’xav ’,xav ,’Xmin’,Xmin ,’metode ’,metode ,...

42 ’bitminav ’,bitminav ,’increase ’,increase);

43 if(~ exist(savePath ,’file’))

44 mkdir (savePath)

45 end

46 save(strcat (savePath ,’instilling .mat ’),’-struct ’,’instilling ’)

47 %save(strcat (savePath ,’instilling .txt ’),’instilling ’,’-ASCII ’)

48

49 meanU = zeros (1, size(tids ,2));

50 U = zeros(1, maxLength);

51 x = zeros(1, maxLength);

52 x(1) = 1;

53 S = zeros(2, maxLength);

54 Aq = zeros (1, maxLength);

55 vilkaarlige = zeros (1, maxLength);

56 Power = zeros (1, maxLength);

57 transm = zeros (1, maxLength);

58

59 Gl = 1; % is one when both receiver and transmitter

60 % is omnidirectional

61

62 %% Runtime

63 while (t > 0)

64 tic

65 if (t > maxLength)

66 j = maxLength ;

67 else

68 j = t;

69 end

70 S(1,:) = s_Trans (1,1, j);

71 S(2,:) = s_Trans (1,1, j);

72 vilkaarlige = rand(1, maxLength);

73 for i=1: j;

74 if (i == j)

75 if tids (1) == 0

76 saveFiles (savePath)

77 else

78 saveFiles (savePath ,’-append ’)

79 end

80 if t-i == 0

81 elseif strcmp (metode ,’runs’)

82 meanU (l) = mean(U);

83 U(1) = Utran (i,U(i),S,bit ,k);

84 elseif strcmp (metode ,’sample ’)

A.7. CAPACITY CALCULATION OF THE CHANNEL 29

85 U(1) = 0;

86 end

87 elseif strcmp (metode ,’runs ’)

88 U(i+1) = Utran(i,U(i),S,bit ,k);

89 elseif strcmp (metode ,’sample ’)

90 U(i+1) = Utran(i,U(i),S,bit ,k);

91 end

92 %U(i+1) = Utran (i,U(i) ,1);

93 end

94 tids(l) = toc ;

95 if t-j==0 && j < maxLength

96 U(j+1: size(U,2))=0;

97 x(j+1: size(x,2))=0;

98 S(1,j+1: size(S ,2))=0;

99 S(2,j+1: size(S ,2))=0;

100 Aq(j+1: size(U,2))=0;

101 transm (j+1: size(U ,2))=0;

102 end

103 if (tids(2) == 0)

104 disp([’Estimated time to run the simulation is ’ tiden (tids (1) *(t/maxLength

))])

105 else

106 disp([’Esitmated time left is ’ tiden(mean(tids (1: l))*(size(meanU ,2) -l))])

107 end

108 t = t-j;

109 l = l+1;

110 if strcmp (metode ,’sample ’)

111 switch bitminav

112 case 1;

113 bit = bit +increase ;

114 case 2;

115 Xmin = Xmin+increase ;

116 case 3;

117 xav = xav +increase ;

118 end

119 end

120 end

121

122 disp([’The time it took to run the simulation is ’ tiden(sum (tids))])

A.7 Capacity calculation of the channel

Listing A.7: Calculating the capacity of the channel

1 % Computing Copt

2 MU = 1;%0.5:0.001:1.0285;

3 hoyde = 1;

4 bredde = 1000000;

5 temp = 0;

6 %S = random (’exp ’,MU.* ones(hoyde ,bredde));

7 xnt = 0.5* ones(1, size(MU ,2));

8 fx = 1* ones(1, size(MU ,2));

9 Copra = zeros (1, size(MU ,2));

10 P_out = [];

11 f_newton = @(xn) xn - (exp (-xn)/xn - expint (xn) -1)/(-exp (-xn)/xn^2) ;

12 f_newton2 = @(xn ,gm) xn/gm - (exp (-xn/gm)/(xn/gm) - expint (xn/gm)-gm)/(- exp (-xn

/gm)/(xn^2/ gm));

13

30 LISTINGS

14 f = @(gamma0 ,gammaavg) exp (-gamma0 /gammaavg)/(gamma0 /gammaavg) - expint (gamma0 /

gammaavg)-gammaavg ;

15 fd = @(gamma0 ,gammaavg) exp (-gamma0 /gammaavg)/(gamma0 ^2/ gammaavg);

16

17 for i = 1: size(MU ,2)

18 n = 0;

19 while fx(i) ~= 0 && n <1000;

20 xnt (i) = f_newton2 (xnt (i),MU(i));

21 %xnt (i) = xnt (i)-f(xnt (i),MU(i))/fd(xnt (i),MU(i)); %f_newton (xnt (i));

22 fx(i) = f(xnt (i),MU(i));

23 n = n+1;

24 end

25 gamma0 = xnt (i);

26

27 Copra (i) = log2(exp (1))*expint (gamma0 /MU(i));

28 P_out = [P_out 1-exp (-gamma0 /MU(i))];

29 end

30

31

32 figure (1)

33 plot(Copra);

Bibliography

[1] Joseph Mitola III. Cognitive Radio - An Integrated Agent Architecture for Software Defined
Radio. PhD thesis, Royal Institute of Technology (KTH), 8 May, 2000.

[2] M.J. Neely. Energy optimal control for time-varying wireless networks. Information Theory,
IEEE Transactions on, 52(7):2915–2934, July 2006.

[3] Andrea Goldsmith. Wireless communications. Cambridge University Press, Cambridge, 2005.

[4] M.-S. Alouini and A.J. Goldsmith. Capacity of rayleigh fading channels under different adap-
tive transmission and diversity-combining techniques. Vehicular Technology, IEEE Transac-
tions on, 48(4):1165–1181, Jul 1999.

[5] Simon Haykin, S. Communication systems / Simon Haykin.

31

Acronyms

CNR carrier-to-noise . 8

LOS line of sight . 3

PDA personal digital assistants . 1

PDF probability density function . 3

SNR signal to noise ratio . 8

33

	Title Page
	Problem Description
	Rapport.dvi

