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Problem Description

JPEG2000[1] is a powerful image compression standard and amongst other used within Digital
Cinema and high resolution video transport. The coding efficiency of JPEG2000 comes at the
expense of significantly increased algorithmic complexity compared to older standards, e.g. JPEG.
This has limited the availability of cost-effective, high-performance solutions targeting general-
purpose computer hardware.

The work of this Master Thesis is to study JPEG2000 and develop a real-time decoder for high
resolution JPEG2000 video. The codestream shall originate from a T-VIPS TVG430 video gateway
and be received through an IP interface. The decompressed video frames shall be presented to the
user immediately after decoding in a graphical user interface. Real-time demands shall be
fulfilled by including the GPU in the decoder pipeline[2].

The implementation shall be done using C++ and CUDA.

[1] - D Taubman and M Marcellin, JPEG2000: Image compression fundamentals, standards and
practice, Kluwer Academic Publishers, 2001.

[2] - G. Shen et al, Accelerate Video Decoding With Generic GPU, IEEE Transactions on Circuits and
Systems for Video Technology, 2005.
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Abstract

There is widespread use of compression in multimedia content delivery, e.g.
within video on demand services and transport links between live events and
production sites. The content must undergo compression prior to transmis-
sion in order to deliver high quality video and audio over most networks,
this is especially true for high definition video content.

JPEG2000 is a recent image compression standard and a suitable com-
pression algorithm for high definition, high rate video. With its highly
flexible embedded lossless and lossy compression scheme, JPEG2000 has a
number of advantages over existing video codecs. The only evident draw-
backs with respect to real-time applications, are that the computational
complexity is quite high and that JPEG2000, being an image compression
codec as opposed to video codec, typically has higher bandwidth require-
ments.

Special-purpose hardware can deliver high performance, but is expen-
sive and not easily updated. A JPEG2000 decoder application running on
general-purpose computer hardware can complement solutions depending on
special-purpose hardware and will experience performance scaling together
with the available processing power. In addition, production costs will be
none-existing, once developed.

The application implemented in this project is a streaming media player.
It receives a compressed video stream through an IP interface, decodes it
frame by frame and presents the decoded frames in a window. The decoder
is designed to better take advantage of the processing power available in
today’s desktop computers. Specifically, decoding is performed on both
CPU and GPU in order to decode minimum 50 frames per second of a 720p
JPEG2000 video stream. The CPU executed part of the decoder application
is written in C++, based on the Kakadu SDK and involve all decoding steps
up to and including reverse wavelet transform. The GPU executed part of
the decoder is enabled by the CUDA programming language, and include
luma upsampling and irreversible color transform.

Results indicate that general purpose computer hardware today easily
can decode JPEG2000 video at bit rates up to 45 Mbit/s. However, when
the video stream is received at 50 fps through the IP interface, packet loss at
the socket level limits the attained frame rate to about 45 fps at rates of 40
Mbit /s or lower. If this packet loss could be eliminated, real-time decoding
would be obtained up to 40 Mbit/s. At rates above 40 Mbit/s, the attained
frame rate is limited by the decoder performance and not the packet loss.
Higher codestream rates should be endurable if reverse wavelet transform
could be mapped from the CPU to the GPU, since the current pipeline is
highly unbalanced.
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Chapter 1

Introduction

Communication between humans has historically been based on speech, writ-
ing and signs. Our everyday communication habits have evolved over the
last decades to include other types of communication, like digital images,
music and videos. The introduction of these new communication types has
not been at the expense of existing ones, and people communicate more to-
day than ever before. Examples include sending of emails with attachments,
instant messaging, video conferencing, online gaming and online social- and
professional networking. This variety of communication mediums are the
results of the technological progress also made over the last decades.

Not all communication types used today are based on new concepts.
Rather, they have been renewed by the employment of new technology and
thereby increased their market appeal. Video streaming is an example of the
latter, since it has been used within digital television distribution since the
first broadcasts. In streaming applications the content is constantly received
by, and often presented to, an end-user. Streaming does in this context refer
to the content delivery method, rather than to the content type or channel
type itself, but the content is mostly distributed over television broadcast
networks and telecommunication networks.

Both professionals and consumers benefit from high quality video stream-
ing services. Examples of such services are the movement of uncut content
from a live event to a production site, or the transmission of a TV show from
a content provider to a number of consumers. All video in real-time stream-
ing applications must in practice undergo some sort of compression before
transmission, due to limited and expensive transmission bandwidth. Mod-
ern compression algorithms provide high compression ratios and rich func-
tionality while retaining high visual quality, but have higher computational
complexity compared to previous generations of algorithms. E.g. JPEG2000
and H.264 are algorithmically more complex than their predecessors JPEG
and H.263[1, 2]. This computational complexity can compose a problem in
real-time decoding of streamed high definition video. Special-purpose hard-
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ware will deliver the needed computing power, but not all scenarios embrace
such a solution, since special-purpose hardware is expensive and can quickly
become outdated. A software decoder targeting general-purpose computer
hardware will supplement solutions depending on special-purpose hardware,
automatically experience performance scaling with the available processing
power and has zero production costs once developed, but only if the real-time
requirements can be fulfilled.

A considerable amount of work and effort has been put into optimiza-
tion of multimedia processing with respect to throughput on general-purpose
computer hardware[3, 4, 5]. Various techniques are described, but pro-
grammers have usually been restricted to in-line assembly, intrinsic func-
tions or specialized libraries when optimizing CPU executed code[6]. Re-
cently, the field called General-Purpose Computing on GPUs (GPGPU)[7]
has received increased attention. GPGPU provides a different approach to
accelerating multimedia processing, since tasks can be handed over from
the CPU to the GPU. Operations such as matrix multiplication[8], Dis-
crete Cosines Transform[9], Discrete Wavelet Transform[10] and Fast Fourier
Transform[11] have already been successfully mapped to the GPU. In [12],
Wong et al. enhanced the performance of the JPEG2000 codec JasPer with
GPU based wavelet transform. The first attempt to use the graphics pipeline
to accelerate video decoding, was reported by Shen et al in [13]. In all, it is
most likely that GPGPU can improve performance in video decoding appli-
cations.

The aim of this work is to obtain real-time decoding of a JPEG2000
video stream, targeting occasions where special-purpose decoding hardware
is unsuitable. The application shall receive the compressed video stream
through an IP interface, and the decoding shall be done on general-purpose
computer hardware. The application shall be able to decode minimum 50
frames per second at a resolution of 1280x720 pixels. Real-time requirements
shall be met by pipelining the CPU and the GPU, and handing parts of the
decoding process over from the CPU to the GPU.

The thesis is organized as follows. Chapter 2 provides background in-
formation on video transport, a specification of the software decoder and
its user scenarios, in addition to a short overview of existing decoder ap-
plications. Chapter 3 presents relevant theory on image compression and
video compression, while chapter 4 contains information regarding General-
Purpose Computing on GPUs. Chapter 5 presents details regarding the de-
velopment process and chosen software architecture. The obtained decoder
performance is presented in chapter 6 and discussed in chapter 7, while the
work is concluded in chapter 8. Future work is outlined in chapter 9. The
source code is given in appendix E.



Chapter 2

Background

This chapter provides background information on the transportation of HD
video and a specification of the software decoder containing the necessary
high-level engineering requirements. The chapter rounds off with a short
overview of existing video decoders with JPEG2000 capabilities.

2.1 Transmission of HD Video

Streaming is a popular delivery method for video, as mentioned introduc-
torily. This section inspects the video transmission chain from a wider per-
spective.

The market for HD content has grown together with the number of
sold High Definition (HD) TV sets, but improved broadcast infrastructure
may be needed for consumers to receive HD content. Figure 2.1 shows a
simplified diagram of the transmission chain, with the content production
site as source and the consumer as sink. A complete specification of the
transmission protocols between entities in this chain, is far beyond the scope
of this work. It has therefore been abstracted into two parameters, namely
compression algorithm and network protocol.

i Contribution Playout
Live eve.nt/ Central y Emission
- studio encoding
site
Secondary
distribution Primary distribution
Head-
end

Figure 2.1: The content transmission chain.
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Both contribution and playout address the medium-independent point-
to-point movement of broadcast material between two entities, while distri-
bution usually is a one-to-many transmission. In this model the content is
produced at some live event or production site, and transmitted (contribu-
tion) to a central studio where it is integrated into a finished show. This
program material is then sent (playout) to an emission encoder where it
is applied an appropriate encoding scheme and distributed to cable/satel-
lite/DTT(Digital Terrestrial Television) head-ends where a number of chan-
nels are merged into the secondary distribution stream transferred to the
end-consumer. If the content not originates from a live event, it may be
stored at several points in the chain. Standard Definition (SD) contribu-
tion has the last years usually been done by compressing the stream with
MPEG-2 to about 10-15 Mbit/s and transmitting it over a dedicated line,
e.g. ATM. As HDTV demands about four times the bit rate of a SD signal,
the broadcasters have two solutions: either scale the existing solutions to
handle the increased bit rate or employ new technology. We will consider
the latter case, where compression algorithm and encapsulation method will
be investigate.

Multiple compression algorithms for image content exists, e.g. MPEG
2, MPEG 4, VC-1 and JPEG2000. The preferred algorithm must yield a
high compression ratio while retaining high fidelity, but HD video compres-
sion in professional applications impose strict requirements. Transmission
errors should be short-lived and not produce blocking artifacts. The absence
of inter-frame coding would ease the postproduction process and lower the
encoder/decoder latency. JPEG2000[14] is very suitable as HD video com-
pression algorithm, since it is developed to produce a compact, high quality
representation of single images and covers the above mentioned demands. It
should be noted that Digital Cinema Initiative (DCI) has chosen JPEG2000
as compression algorithm for motion pictures in their Digital Cinema System
Specification[15], and that their requirements were similar at many points.

The employed network protocol must be reliable and cost-effective, but
also flexible and scalable. It is not unlikely that Internet Protocol (IP)
will become more and more popular for video transportation. First, IP
can easily encapsulate the compressed codestream. Second, it is currently
a convergence towards IP on many fields, e.g. data, voice, surveillance
and video conferencing. Some of the reasons behind this may be the low
infrastructure cost and high bandwidth, implying lower cost per bandwidth
unit. The need to operate and maintain different networks vanishes, since
most companies already have IP based data networks.

In the light of the above discussion, it seems clear that JPEG2000 over
IP offers a number of advantages in HD video transportation. High quality
content can easily be moved between production sites and delivered to con-
sumers. The scalability within IP and JPEG2000 makes it a competitive
solution, now and in the future.
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2.2 Software Decoder Specification

This section specifies the engineering requirements for a software implemen-
tation of a JPEG2000 video decoder running on general-purpose computer
hardware. The purpose of this software decoder is real-time playback of
a JPEG2000 video stream from network to display, targeting applications
where a special-purpose hardware decoder is unsuitable. The application
shall be able to decode minimum 50 frames per second (fps) at a resolution
of 1280x720 pixels. Thus, in the following, real-time decoding will refer to
50 fps or more. The video stream shall originate from a T-VIPS TVG430[16]
video gateway, but the decoder core will be generalizable to any JPEG2000
code stream. The application shall perform the following tasks concurrently:

e Receive UDP/RTP packets.

e Reconstruct JPEG2000 codestreams from multiple UDP/RTP pay-
loads.

e Decode JPEG2000 codestreams.

e Display decoded video frames.

As described in section 2.1, JPEG2000 applies well to high quality video.
Because of the computational load associated with JPEG2000 encoding
and decoding, it can be challenging to fulfill real-time requirements. Mod-
ern GPUs have massive processing power deployable in processing with a
high degree of parallelization. By pipelining the CPU and GPU within the
JPEG2000 decoder and handing decoding tasks over from the CPU to the
GPU, sufficient throughput should be obtained and real-time requirements
met. Three parts of the decoding process stand out as primary candidates
for processing on the GPU, i.e. reverse wavelet transform, chroma upsam-
pling and color space transform. The deployment of the GPU within the
decoder is not only motivated by the GPUs ability to perform certain tasks
faster than the CPU, but also the possibility to pipeline! the CPU and GPU.

2.2.1 User Scenarios

Three user scenarios for the software decoder have been identified and named
Monitoring, Debugging and Distribution. The first two can be seen in fig-
ure 2.2 and the last in figure 2.3. The location of the software decoder can
be seen in both figures as red boxes.

LA pipeline is a set of data processing modules connected in series, where the output
of one module is the input of the next one. The modules in a pipeline are often executed
in parallel and buffers are often inserted between the modules.
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Monitoring

The primary objective in the Monitoring scenario is transmission of video
content from source to drain, which is equal to the contribution and playout
processes described in section 2.1. This can e.g. be handled by two TVG430
as seen in the dashed box in figure 2.2. In such a scenario the broadcaster
or transmission entity would want to have continuous supervision and mon-
itoring of the transmission. I.e. visually control the presence and quality of
the transferred content. The person supervising the transmission does not
need to be at neither the source or the drain, rather at an arbitrary location
connected to the IP network, as seen in figure 2.2. A hardware device may
be more appropriate for high quality monitoring, but a software solution
will be mobile and more cost- and space efficient.

Management

| I
| I
: Network :
: IP IP |
|

| HD-SDI i |
| TVG430 TVG430 | Video |
: source X RX " | drain :
| I
S S S _

PC with e.g. DVI

software »| Display

decoder

Figure 2.2: A usual setup with two TVG430 is shown within the dashed
box, while the dotted box contains the software decoder placing. Both
boxes compose the Monitoring and Debugging scenarios.

Debugging

When a video link breaks down, it is desirable to quickly locate the source
of error, which forms the basis for the Debugging scenario. A technician
with access to the IP network and a laptop with the decoder software, can
quickly limit the number of possible error sources. If the technician is able
to receive and decode the video stream, the decoder is most likely the source
of error. But if the technician is unable to receive the video stream, most
likely the error source is the encoder or network infrastructure. Setup for
the Debugging scenario is the same as for Monitoring.

Distribution

In the Distribution scenario HD material is delivered to multiple consumers.
An increasing number of consumers will have high-speed fiber connections in
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densely populated areas, even at the last mile?. Thus, high quality content
may be received through this connection. Each user must be connected to
the IP network and run the software decoder as shown in figure 2.3. The
consumer may present the decoded video stream at any screen of choice,
e.g. computer display or television. Software upgrades are easy to distribute
and no additional hardware is need if the consumer already has a suitable
computer.

HD-SDI IP IP i
Video | TVG430 PCwith | o g.Dvi |
> software » Display
source X >
decoder
PC with
P »| software &9 DVI; Display
decoder
= JPEG2000 :
Management encoded P PC with DVI
material —p| software .9 »| Display
decoder

Figure 2.3: The Distribution user scenario.

2.3 Existing Software Decoders

Known applications capable of decoding JPEG2000 video are listed in ta-
ble 2.1. Both Aware and Kakadu provide their products as a proof of concept
for their JPEG2000 SDKs, and not as commercial applications. All appli-
cations listed in table 2.1 are based on CPU decoding from local storage.
None of the applications can handle streamed JPEG2000 video or utilize the
GPU in the decoding process.

Table 2.1: Applications Supporting JPEG2000 Part 1
Company | Program

Aware Sample application
Kakadu kdu_vex fast

2The final leg from a communications provider to a customer, typically the distance
from the nearest switching central to your house.






Chapter 3

Image and Video Coding

This chapter considers digital image and video coding, which include tech-
niques to accurately and compactly represent the given data. Many consid-
erations and trade-offs have to be made when designing a coding scheme,
but the applied compression technique is most likely the biggest design is-
sue. Image and video compression are a special case of data compression,
and reduce the usage of limited resources such as hard drive capacity or
transmission bandwidth. Depending on the area of application, the com-
pression process may be lossless or lossy. In the lossless case, internal signal
dependencies are removed in order to obtain a representation length close
to the entropy of the original signal, but the original can still be perfectly
reconstructed. The Lempel-Ziv[17] algorithm and its many variations are
amongst the most popular algorithms for lossless storage. If the perfect
reconstruction requirement is eased, higher compression ratios can be at-
tained, but noise is inevitably introduced. JPEG and the various MPEG
compression standards are examples of popular lossy coding schemes. The
amount of acceptable noise will wary with the area of application, but com-
pression beyond the lossless case is possible even if visual degradation is
unacceptable. A representation length that is shorter than the entropy of
the original may by achieved, by exploiting the fact that the human obser-
vation system only can absorb a limited amount of information. E.g. the
eye is much more sensitive to variations in luminance, than to variations in
color, and therefor less resources may be spent on color coding without any
visual difference. Image and video compression is usually lossy, where the
goal typically is to obtain minimal bit rate at a given distortion or to obtain
minimal distortion at a given bit rate. High performance compression is ob-
tained by utilizing the two basic properties explained above, namely signal
redundancy and visual redundancy. Besides the introduced noise in lossy
compression, the only evident drawback connected to data compression is
the fact that some schemes are quite complex and time consuming, and can
therefor be problematic in applications with limited processing capabilities
or real-time requirements.
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3.1 JPEG2000

JPEG2000 is a still image compression standard developed by the JPEG
committee. Supplementing the widely used JPEG standard, it is a highly
flexible embedded lossless and lossy coding scheme and supports a wide set
of features. JPEG2000 Core coding system, was given status as an inter-
national standard in december 2000 and is presented in this section. There
are several books and articles giving an overview of the standard, this pre-
sentation is mainly based on [18, 19, 20].

The compression standard can be decomposed into three main parts as
shown in figure 3.1. First is a preprocessing step, then core processing fol-
lowed by bitstream formation. The figure also shows the operations within
the core processing. In accordance with JPEG and MPEG tradition, only
the codestream syntax and decoder are standardized. This enables encoder
improvements after standardization and competition between different de-
signs with regards to cost, performance and complexity. JPEG2000 encoding
is considered in the following sections, because it gives a better understand-
ing about how compression is obtained. Decoding involves the same steps
in reversed order.

Uncompressed ! 5 . i
bitstream i escrete I
Preprocessing > Wavelet — Quantization i
i Transform !
= a
. Core processing i
Compressed ! !
bitstream . ! |
— E;trf:;m - Entropy Coding !

h ) -—
. ! EBCOT - Tier 1 '
EBCOT - Tier 2 ! !
: 1

___________________________________________

Figure 3.1: JPEG2000 block diagram.

3.1.1 Preprocessing
Tiling

The preprocessing starts with an image tiling, were the image is partitioned
into rectangular non-overlapping sections covering the entire image. All tiles
have the same size, with exceptions only at the image boundaries since the
image resolution may not be an integer multiple of the tile size. The tile size
is upper limited by the image dimensions, i.e. one tile covering the entire
image. Furthermore, tiling reduces the memory requirements since each
tile is processed individually and only the tile currently being processed
must reside in memory. Tiling will unfortunately introduce artifacts at low
rates compared to processing the entire image as one tile. In the subsequent
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sections we assume that the image consist of a single tile, since the extension
to multiple tiles is trivial.

DC Level Shift

Following after the tiling is a DC level shift. All unsigned samples are shifted
down so they are symmetrically distributed around zero. It should be noted
that this has no effect on the coding efficiency, but merely is done to simplify
certain implementation subjects, such as numerical overflow and arithmetic
coding.

Color Transform

The last preprocessing step is an optional color transform of the first three
image components. Depending on the following wavelet transform one of two
color transforms may be applied. Both assumes the three first components
belongs to the Red-Green-Blue (RGB) color space. The first is the Irre-
versible Color Transform (ICT), which is a RGB to YCbCr transform used
with lossy coding. The second is the Reversible Color Transform (RCT),
which is an approximate RGB to YUV transform and may be used with
both lossy and lossless coding. Both transforms are linear, and in order to
apply them the components must have the same bit depth and subsampling.
Both color transforms achieve color decorrelation for efficient compression
and an appropriate color space for quantization, i.e. quantization in the
transformed color space gives less visual artifacts than quantization in the
original color space.

3.1.2 Core Processing

Each image component is processed individually within the following core
processing steps.

Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) may be considered as both a sub-
band technique and a transform coding method, producing a multiresolu-
tion representation of the original sequence. A one dimensional wavelet
transform gives a decomposition of the given input signal into two resolu-
tion bands, called detail and approximation. The approximation signal is a
coarse-grained representation of the input, while the detail signal contains
the high-frequency information not present in approximation. Together they
can reconstruct the original signal perfect, disregarding rounded floating-
point calculations. Traditionally, DWT has been computed with the Filter
Bank Scheme (FBS), which include convoluting the input signal with the
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impulse response of either a low-pass or a high-pass filter, followed by critical
down-sampling. This scheme can be seen in figure 3.2.

The Lifting Scheme (LS) is an approach proposed more recently[21]. Its
main advantage over FBS is that it exploits the redundancy between the
high-pass and low-pass filter, and thereby reduces the number of arithmetic
operations. For long filters, FBS asymptotically tends to require twice as
many operations as LS[22]. Computing DWT with the lifting scheme, in-
clude a number of prediction and update steps. A prediction step (p) consists
of predicting each odd sample as a linear combination of the even samples
and subtracting the prediction from the odd sample to form the prediction
error. An update step (u) consists of updating the even samples by adding
to them a linear combination of the already modified odd samples. The
number of needed lifting steps per DWT level will depend on the wavelet in
question. A lifting procedure with two prediction and two update steps can
be seen in figure 3.3.

High-pass FIR filter = § > Detail

Input
sequence

Low-pass FIR filter —»| § - Approximation

Figure 3.2: One dimensional Wavelet Transform computed with filter bank.

Input
sequence
Predicted #1
u1 u1 u1 u1 u1 u1 u1 u1
{ } Updated #1
p p P P p P p p
2 2 2 2 2 2 2 2 K  Highpass
output
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<|7_1 L L L \j ) tﬁmss

Figure 3.3: One dimensional Wavelet Transform computed with lifting. Two
prediction (p) and update (u) steps are performed.

FBS and LS are mathematically equivalent with respect to the output
signals, although the intermediate signals are different. The reduced num-
ber of arithmetic operations in the lifting scheme makes it superior on many
platforms. E.g, a performance comparison between FBS and LS on a DSP,
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concluded that LS always performs better with respect to execution time[23].
A similar result was presented in[24]. The reduction in arithmetic operations
does however introduce data dependencies in the signal being transformed,
which can become a bottleneck on highly parallel platforms. Wavelet trans-
formation performed on modern GPUs would benefit from avoiding data
dependencies, and should therefor use the filter bank scheme[25].

In JPEG2000 part 1, two wavelets are chosen from the diversity of exist-
ing wavelets, namely the Cohen-Daubechies-Feauveau (CDF) 9/7 for lossy
coding and the CDF 5/3 for lossless coding. A one level 5/3 wavelet trans-
formation can be performed with one p and one u step, while a one level
9/7 wavelet transformation can be performed with two p and two u steps.
The lifting coefficients for the 9/7 wavelet are given in table 3.1, while the
lifting steps are illustrated in figure 3.3.

Table 3.1: Lifting coefficients for the CDF 9/7 wavelet.

P1 -1.586134342059924
P2 -0.052980118572961
up 0.882911075530934
U 0.443506852043971
K= 1/Kp | 1.230174104914001

The wavelet transform is applied both in horizontal and vertical direction
in JPEG2000. The transformation order is indifferent, since the transfor-
mation is a linear operation, i.e., horizontal processing may precede vertical
processing or the other way around. Figure 3.4 and 3.5 show the step by
step transformation of an image, where the first figure indicates the subband
positions and the latter displays the actual transform output. After a one
level, two dimensional wavelet transform, we obtain a four-split of the input
as seen in figure 3.5b. The first letter in each subband name denote the
horizontal filter and the second letter denote the vertical filter, for instance
HL1 is horizontally high-pass filtered and vertically low-pass filtered. Note
that most of the energy is concentrated at the low frequencies, i.e. in the
LL subband, and that the other sub-bands only have energy at the detailed
regions (high concentration of high frequencies). Since the LL1 subband
contains most of the energy, it is applied a second transformation. The re-
sult can be seen in figure 3.5c. The LL subband can be transformed further,
until the desired number of decomposition levels is obtained.

After transformation, the wavelet coefficients are specified to be stored
in an interleaved scheme as seen in figure 3.6. Depending on the way the
encoder produces wavelet coeflicients, interleaving may be needed after the
transformation is performed.
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LL2 | HL2
LL1 HL1 HL1
LH2 | HH2
LLO
LH1 HH1 LH1 HH1
a b c

Figure 3.4: The subbands produced by a dyadic, two dimensional DWT. a)
Image before transformation. b) Image after the first transformation step.
c¢) Image after the second transformation step.

b c

Figure 3.5: Two dimensional DWT using the 9/7 filter-bank. a) The image
before transformation. b) The image after the first transformation step. c)
The image after the second transformation step. Note that the only change
from b, is that LL1 is replaced by LL2, HL2, LH2 and HH2, while HL.1, LH1
and HH1 are unchanged.

LLO4y | LLOyy | LLOg¢ | LLO,, LLLqq |HL1 44 | LL1og [HL1,, LL2y; | HL144 | HL244 [ HL1o4

LLOy, | LLOy, | LLOg, | LLO,, LH14y [HH144 | LH15; |HH1,, LH1,; |HH1,4; | LH15, |HH1,,

LLOy5 | LLOsg | LLOg5 | LLO,g LL1y, |HL1 o | LL1oy |HL1o, LH2,, | HL145 | HH2,; | HL1 55

LLOy4 | LLOsy | LLOg, | LLO,, LH145 [HH1,5 | LH1,55 [HH1,, LH1,5 |HH1,5 | LH1,, |HH1,,
a b c

Figure 3.6: Section of the interleaved coefficients after two dimensional
DWT. The three first letters in the coefficient name denote the subband,
while the two numbers in subscript denote the coefficient index within the
given subband. E.g, LH1y; is a coefficient from column two and row one
in the LH1 subband. a) The pixels values prior to transformation. b) The
coefficients after first transform step. c) The coefficients after the second
transformation step. Note that only the red coefficients have changed from

b.
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Quantization

After the DWT follows a straight-forward quantization procedure, namely an
uniform scalar quantization with a central deadzone. This is shown in [26] to
be rate-distortion optimal for a continuous signal with a Laplacian probabil-
ity density function (pdf). Wavelet coefficients typically follows a Laplacian
pdf, and can be approximated as continuos for high bit rates. The central
deadzone is twice the step size, which may be different for each subband.
An important property with this approach is that if subband b is quantized
with My, bits and step size Ap but only Ny, bits is decoded(Np<My,), this
is the same as quantizing with Ny, bits and step size Apx2MeNo  In other
words we obtain SNR scalability without any additional coding cycles. In
the case of lossless compression, the coefficients being quantized are integers
and the quantizer step size is one.

EBCOT - Tier 1

Tier 1 is the first layer of the JPEG2000 coding engine called Embedded
Block Coder with Optimal Truncation (EBCOT)[27], and performs source
modeling and entropy coding of the quantized wavelet coefficients. EBCOT
is second large difference in JPEG2000 compared to JPEG, and has at its
core an adaptive arithmetic coder named the MQ-coder. This is a modi-
fication of the Q-coder[28] developed by IBM, that simplifies the probabil-
ity estimation compared to usual block-coding because no joint-probability
estimation is needed. The MQ-coder does not exploit any statistical de-
pendencies between subband, most of all because this would reduce the bit-
stream flexibility and remove the ability to change progression order without
transcoding.

In the same manner that the image was tiled in section 3.1.1, each sub-
band is now compulsorily partitioned into code-blocks, containing e.g. 32x32
or 64x64 quantized wavelet coefficients. Each code-block is bit-plane coded
starting with the most significant bit (MSB). Each bit-plane is coded in
three passes, with the ability to truncate the bitstream after each pass.
Each quantized wavelet coefficient has a binary state variable called sig-
nificance state, which changes from zero to one(significant) when the first
non-zero bit is found. The probability estimate for each bit is produced from
its significance state and the significance state of its neighbors. The symbol
and the MQ-coders state are used to encode the given symbol. Then the
coders internal state is updated in order to refine probability estimates for
the current context.

A deliberate redundancy in the MQ-coder results in that any two con-
secutive bytes of coded data are forced to lie in the range 0x0000 to OxFFS8F,
leaving the range 0xFF90 to OxFFFF free to represent unique marker! codes.
This assists codestream parsing and improves error resilience.

1See section 3.1.4 for more on marker segments.
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3.1.3 Bitstream Formation
EBCOT - Tier 2

The bitstream is formed in Tier 2, the second layer of EBCOT. For each
code-block the output from Tier 1 is a single codeword and side information
that indicates the valid truncation points and the given distortion at each
truncation point. This information is used to find the optimal truncation
points for a given target bit-rate, i.e. iteratively finding the (possibly trun-
cated) codeword that gives the largest reduction in distortion relative to the
codeword length. This post-encoding truncation scheme gives the advan-
tage that no additional coding cycles are need to obtain the target bit rate
or quality. Finding the optimal truncation points is a global optimization
problem over all code-blocks and may be solved by Lagrange multipliers.

The smallest codestream building-block is the compressed code-block,
which is a number of neighboring wavelet coefficients after quantization,
entropy coding and truncation. A number of spatially consistent compressed
code-blocks from each subband at a given resolution level form a precinct
as seen in figure 3.7a. A number of coding passes for each code-block in
the precinct forms the body of a packet, which is a quality increment at a
spacial location for a given resolution level. In a similar fashion, one packet
from each precinct at a given resolution level comprises a layer, which is a
quality increment for the entire image at that resolution level. A number of
layers make up the codestream, and the resulting structure can be seen in
figure 3.7b.
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Figure 3.7: Codestream formation

By carefully choosing the order in which packets are included in the code-
stream, the desired progression order is obtained. The different progression
orders are defined by the ordering of layer(L), component(C), position(P)
and resolution(R). The allowed progression orders are RLCP, RPCL, PCRL,
CPRL and LRCP, the last one expressed in pseudocode in listing 3.1. We
see that the first letter in the progression order denotes the parameter that
varies the slowest through the bitstream, while the last letter denote the pa-
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rameter that varies the fastest. The chosen progression order will vary with
the area of application. E.g., processing time can be reduced by decoding
only parts of a given codestream, where the obtained image will depend on
the chosen progression order. It can be an image with reduced resolution,
quality, number of components or region of support, compared to the origi-
nal.

Listing 3.1: Pseudocode for LRCP progression order.

forl=1to ..
forr =1 to ..
forc=1to ..
forp=1to ..

Add packet for layer 1, resolution r, component ¢ and position
p to bitstream

3.1.4 Codestream Syntax

The JPEG2000 codestream can be generalized into two entities, namely
header data describing the compressed bitstream and sections containing
the actual compressed bitstream. The latter was discussed in section 3.1.3.

The basic building block for header data is the marker segment. This
is a version of Key-Length-Value (KLV) coding. The general syntax can be
seen in figure 3.8, and include three fields. The Marker is a two byte field
always starting with OxFF, and denotes the information contained within
the marker segment. The length field is following the marker, and denotes
the number of bytes in the marker segment, excluding the marker. The
marker segment parameters is last, and is where the actual information is
stored, for instance picture dimensions, subsampling and progression order.

The rules for a valid JPEG2000 Part 1 codestream are stated in Annex A
in [14], and the reader is referred there for more details on valid codestream
syntax.

3.1.5 Summary

JPEG2000 was not developed just to achieve higher compression efficiency
than existing systems, but rather to produce an algorithm with a rich set of
features within the same scheme and "address areas where current standards
fail to produce the best quality or performance'[29]. The result can address
a variety of existing and emerging compression applications and produces a
highly flexible and embedded bitstream, with both lossless and lossy com-
pression within the same integrated algorithm. Most of the credit for this
should be given to two factors, namely the wavelet transform and entropy
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Figure 3.8: General codestream marker segment

coding. The wavelet transform is a flexible subband technic resulting in a
fine partitioning. When combined with the EBCOT coding engine, powerful
compression is obtained.

It should also be noted that JPEG2000 has many new important fea-
tures not discussed here, e.g. Region of Interest (ROI) coding, error re-
silience, random access in codestream, metadata support and Digital Rights
Management (DRM).

3.2 Video Coding

Image and video coding are closely related, and many of the same techniques
are used. A video signal is basically a sequence of still images, where two
dimensions represent the spacial video resolution and the third dimension
represent the time line. In addition to the intraframe techniques described
in this start of the chapter, video coding algorithms may apply interframe
compression. l.e., intraframe compression is performed relative to infor-
mation that is contained only within the current frame, while interframe
compression in addition may utilize past and future frames.

Intraframe techniques aim at reducing the bit consumption within a
given frame, and may choose from a number of decorrelating operations.
Wavelet transform and fractal coding are used, but Discrete Cosines Trans-
form (DCT) is most widely employed in modern video coders.

Since most video material meant for human consumptions contains smoothly
moving objects, the change from one frame to another can be quite small.
Huge bit rate savings can therefor be made by only coding the change
from one frame to another. Motion estimation is another technique where
frames are estimated as a best-match copy-paste from nearby sections in
past and/or subsequent frames. Only vectors telling where to find the esti-
mates are encoded together with the estimation error. This scheme is used
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in the MPEG standards with variations. But interframes techniques have
drawbacks. If errors are introduced or parts of a frame is lost, consecutive
frames may not be correctly reconstructed. This error propagation between
frames is the expense for the lowered bit rate. To bound the error prop-
agation, frames are periodically encoded without interframe dependencies.
Editing is also complicated by interframe coding, since changes made in one
frame can impose changes in past or subsequent frames that depends on the
current frame.

Although JPEG2000 is a still image compression standard, it is more
than suitable for video coding. The DW'T applied in JPEG2000 is superior
in many ways to the classic DCT used in MPEG 2, MPEG 4 and VC-1,
and the coding scheme does not suffer from the blocking artifacts seen in
MPEG video. Editing is eased and errors do not propagate from frame
to frame, because it is a intraframe coder. Multiple coding cycles are not
needed to meet the target bit rate, since the bitstream is truncated after
quantization and entropy coding. Because of the bitstream flexibility, a
representation with reduced resolution and/or SNR may be extracted from
an initially-encoded high-quality version without any transcoding. It should
be noted that standards exist that obtain higher quality at low rates through
exploiting inter-frame and inter-subband dependencies, but for high-rate
applications JPEG2000 is a natural candidate as compression algorithm.
The only evident drawbacks are that high computational complexity may
compose a problem in real-time applications and that JPEG2000, being an
image compression codec as opposed to video codec, typically has higher
bandwidth requirements.






Chapter 4

General-Purpose Computing
on GPUs

General-Purpose computing on Graphics Processing Units (GPGPU)[30] refers
to techniques where calculations traditionally done by the Central Process-
ing Unit (CPU), are handed over to the Graphics Processing Unit (GPU).
Earlier, the GPU was used only to accelerate certain parts of the graphics
pipeline, but now it can reduce the CPU load and/or increase the processing
throughput for general purpose scientific and engineering computing. It is
obvious that handing tasks over to the GPU can lower the CPU load, since
the CPU has to do less work. Increased processing throughput is not equally
trivial, but modern GPUs may have a core count in the range of eighth to
several hundred, while CPUs seldom contains more than four. These cores
can be utilized on none-graphics data through massive threaded paralleliza-
tion if data dependencies between threads can be avoided, i.e. threads don’t
have to wait for results from other threads executing in parallel. Some calcu-
lations fit this scenario perfect, e.g. color space conversion where each pixel
can be processed independently. In contrast are tasks that are truly serial
i nature, e.g. decoding of a symbol sequence with variable symbol length.
GPGPU will increase the performance of the first task considerable, while
the latter will experience little or no improvement over the CPU benchmark.
In general, computations with high arithmetic density map well to the GPU.
Arithmetic density is defined as the ratio between the number of operations
performed and the number of word transfered to and from memory. This is
reasonable since the GPU cores can perform calculations much faster than
they can access memory and have no cache.

Early attempts to use graphics hardware for general purpose comput-
ing required that the programmer had knowledge of the graphics pipeline,
which is different in both terminology, data types, operations and program-
ming model compared to other widely used programming paradigms. Thus,
high level languages were created to hide graphics-related details from the
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developer and include AMD Streams[31], CUDA[32] and OpenCL[33]!. In
the following, we will take a closer look at CUDA.

We get a historical outline for two important benchmarks for Intel CPUs
and NVIDIA GPUs from figure 4.1, namely the number of FLoating point
OPerations (FLOP) per second and memory bandwidth[34]. NVIDIA GPUs
have gained a considerably advance on Intel CPUs over the last five years,
judging by these benchmarks. Because the same instructions are executed on
several data elements concurrently on a GPU, the requirements for sophisti-
cated flow control and caching are lower and more transistors can be devoted
to data processing than on CPUs. Some commentators have suggested that
CPUs will be made superfluous, because of the superior performance found
in modern GPUs. This is somewhat a misunderstanding, since GPUs lack
important functionality to overtake the CPU, e.g. the ability to run an
operating system.
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Figure 4.1: Peak floating-point operations per second and peak memory
bandwidth for NVIDIA GPUs and Intel CPUs.

4.1 CUDA

In order to ease the usage of GPUs for programmers not familiar with the
graphics pipeline, the CUDA[32] language was created by NVIDIA. It is an
extension to the widely used C language, with a programming model easily

OpenCL is a unified programming environment for a mix of multi-core CPUs, GPUs
and other processors such as DSPs and Cell-type architectures.
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understood by programmers already familiar with threaded applications. A
throughout CUDA introduction is given in [34].

Two basic terms in the CUDA terminology are host and device, which
are synonymous with CPU and GPU. Both entities manage its own DRAM,
referred to as host memory and device memory. A simplified CUDA program
is illustrated in figure 4.2 and is a mix of serial and parallel code. The serial
code is executed on the host, while the parallel code is executed on the
device. The first step in the CUDA related code is to transfer data from
host memory to device memory. Then a special function is invoked on the
device, which is named a kernel. Kernels have a special launch syntax:

kernelName<<<grid , block >>>(param1l, param2, ..., paramN );

and are executed by multiple threads in parallel. Each tread processes dif-
ferent data and is extremely light weight, i.e. switching between threads is
done with almost zero overhead. A kernel can be compared to host exe-
cuted code placed inside a loop, but unlike the loop that processes data by
running the code over and over in a consecutive way, a kernel is executed
on several device cores concurrently?. Each device core processes different
data elements. The result is transfered back from device memory to host
memory when the kernel has finished.

In general, all data transfers between host and device, and all kernel
invoking can be made either synchronous or asynchronous with respect to
the host. Synchronous execution implies that the host will wait in a spinlock?
or sleep until the invoked kernel has processed its data. On the other hand,
asynchronous execution implies that the host invokes a kernel, performs
other calculations while the kernel runs, and at some point finds out that
the kernel has finished or waits until the kernel finishes. Both approaches
have advantages and drawbacks. Asynchronous execution can increase the
total amount of work done, but will add latency to the critical path if the
host continues to perform long-lasting calculations after a critical kernel has
finished. Synchronous execution reduces the latency, but inhibits the host
from performing any useful work while the kernel executes. The best would
if the host could perform some work while a kernel executed and return
the instance the kernel finished, but this is hard to obtain since timing
requirements will vary between platforms and data sets.

4.1.1 GPU Hardware and Execution Model

The graphics hardware and code execution model must be shortly visited,
in order to understand how CUDA can attain high performance. NVIDIA

2The degree of concurrent execution will depend on the number of processor cores on
the device.

3Loop where the thread simply waits (or "spins"), constantly checking a variable until
it reaches a predefined value.
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/IC program with
/lsequential execution.
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Figure 4.2: Synchronous CUDA program. Each curly arrow represent a
worker thread.

GPUs consist of a scalable array of multithreaded Streaming Multiproces-
sors (SMs) and global memory accessible by all multiprocessors. The current
generation of multiprocessors consists each of eight Scalar Processors(SP),
on chip memory and a multithreaded instruction unit. Each multiproces-
sor employs a new architecture called SIMT (Single Instruction, Multiple
Threads), where each multiprocessor maps the threads to scalar processors,
and each thread executes independently with its own instruction address
and register state. SIMT is in many ways equal to SIMD (Single Instruc-
tion, Multiple Data) used on CPUs, except for the important difference that
it is hidden for the programmer in CUDA. Entry-level graphics cards can
contain 8 or 16 SPs, while high-end workstations graphics cards can contain
several hundred SPs.

Threads are organized into one, two or three dimensional structures
called thread blocks, providing a natural way to process vectors, matrices
and three dimensional arrays. A given thread block is executed on only one
multiprocessor, establishing a way to synchronies and exchange information
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between threads in the same thread block. Thread blocks are again orga-
nized in a two dimensional array called a grid, as seen in figure 4.3. The
thread block size is a trade-off between efficient time-slicing within a block
and multiprocessor occupancy, and typically has a value in the range 64-256.
Allocating more threads per block is better for efficient time slicing between
threads in the same block, but to large thread blocks will limit the obtained
multiprocessor occupancy. High multiprocessor occupancy is attained when
each multiprocessor has multiple active thread blocks at the same time. This
hides memory latency and synchronization latency between thread blocks
and implies that no scalar processor within the multiprocessor has to wait
in an idle state. Given the thread block size, the grid size is determined by
the total number of needed worker threads, which again is determined by
the amount of data to process and how much data each tread processes.

Grid
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Figure 4.3: Thread hierarchy within the CUDA programming model.

Both block and grid dimensions are explicit specified by the programmer
at kernel launch time, and together they govern how many elements that
are processed. E.g, to process an image with dimensions 1024x1024, a block
dimension of 16x16 treads and a grid dimension of 64x64 would be able to
process the entire image if each tread processes one pixel. Each tread decides
which data elements to process, based on embedded information regarding
block- and grid size and indices within the grid and current block.

The scalability in CUDA lies in the number of thread blocks active at the
same time, i.e. a device with many multiprocessors will be able to process
many thread blocks concurrently, while a device with fewer multiprocessors
has fewer active thread blocks. It should however be emphasized that a
device with few multiprocessors is perfectly able to run the same program
as one with more multiprocessors, it just take longer time. If a program
has a large number of blocks per grid, it will experience performance scaling
over future generations of GPUs. About 100 blocks per grid is advised for
scaling to future devices, while 1000 will scale over several generations.
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4.1.2 High Performance CUDA Code

In general, writing a program that processes its data in a correct manner is
much easier than writing a program which in addition utilizes all available
processing power in the underlying hardware. This is also true for CUDA,
where any experiences programmer may write a CUDA program that pro-
cesses its data correctly, but the true power within the GPU is only utilized
if several considerations are taken into account.

First, the memory bandwidth between host and device is limited and of-
ten a bottleneck in both graphic and non-graphic applications. Off course,
the device must be provided some initial data to process, but transfers be-
tween host and device should only be performed when absolute necessary.
Further, a factor of two or more in transfer time may be saved, by allocating
page-locked memory at the host. This ensures that the memory not changes
physical addresses or is swapped out to disk by the operating system.

A similar performance increase can be expected if all threads access
global memory in a smart fashion. More specific, if each thread accesses
either a 32-, 64- or 128 bit words in memory in a consecutive manner and
the memory is properly aligned, multiple memory accesses within a block
will compile into one or two wide memory fetches. This technique is called
coalescing and will give considerable speedups compared to non-coalesced
memory access. Thus, coalesced memory access should always be the objec-
tive when planing the application architecture.

Another issue which that be considered, is to minimize the number of
data dependent conditional branches made within a warp®. This is because
each path taken within a warp is serially executed, until the paths con-
verge, lowering the processing speed considerable. For further information
on performance issues, consult chapter 5 in [34].

1A warp is a collection of 32 threads from the same block with increasing thread ID.
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Implementation

This chapter treats details regarding the chosen software architecture. The
application was implemented in accordance with the software decoder spec-
ification given in section 2.2.

5.1 Architectural Overview

The architecture is illustrated in four parts, a component diagram, an activ-
ity diagram, a class diagram and of course the source code. The three first
are based on the graphical notation techniques standardized in the Unified
Modeling Language (UML). Each rectangular box in the component dia-
gram, which can be seen in figure 5.1, represents an instance of the labeled
class running as an individual thread!. The cylinders are storage elements
and provide a mean for data exchange between threads. All buffers are
implemented as FIFO queues protected by one or multiple mutexes. This
ensures that no thread can read a buffer at the same time as another is writ-
ing to it. The activity diagram is given in appendix A and gives together
with the class diagram in appendix B the schematic workflow of compo-
nents in the system. The reader is advised to study the activity diagram
and components diagram in order to understand the parallelization within
the application.
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To display
<---- Gui < PBO < DeviceDecoder < devicelnputBuffer hostOutputBuffer
(GPU) (GPU DRAM) (GPY) (GPU DRAM) (CPU DRAM)
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Figure 5.1: Component diagram for the software application.

! This is not true for the box named Gui and DeviceDecoder, which is executed by the
same thread. HostDecoder is composed of two threads.
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e The Socket2PacketBuffer class is responsible for joining the UDP mul-
ticast and receiving UDP packets. These UDP packets are then placed
in a circular buffer named packetBuffer.

e PacketBuffer2CodeStream is a class that unites several UDP payloads
from the packetBuffer into a single JPEG2000 encoded frame and
places it in the codestreamBuffer.

e The HostDecoder class extracts a single JPEG2000 encoded frame from
the codestreamBuffer, performs the CPU executed decoding and puts
it in the hostOutputBuffer.

e The DeviceDecoder is responsible for transferring the partly decoded
frame from CPU memory to GPU memory, and performing the final
decoding on GPU. The result is written to a Pixel Buffer Object (PBO)
residing in GPU memory.

e The Gui displays the data stored in the PBO after the DeviceDecoder
has finished. This can be done with almost zero overhead, since the
frame already reside in graphics memory.

5.2 Decoding Performance at Chosen Milestones

This section presents the decoder performance at chosen milestones during
the development process. The results have been obtained by individually
testing of the decoder elements, while all other application components were
disabled, as described in section 5.5.1. This way the maximal performance
for each element in the pipeline was revealed, and no synchronization was
required between pipeline elements.

In order to estimate the theoretical gain obtained from mapping decod-
ing steps from the CPU to the GPU, it would be advantageous to know the
relative execution time for the different decoding steps in the JPEG2000
processing chain. However, this will vary considerably between different im-
plementations, hardware platforms, image dimensions and codestream rates.
The values reported in literature also vary over a wide interval. Thus, rela-
tive execution time can only be roughly estimated from [3, 35], which treats
encoding with the 9/7 wavelet. It can be assumed that wavelet transform
consume about 25-50%, EBOCT 35-65% , ICT 5-10% and quantization 5-
10%. When instead considering decoding, EBCOT will have a smaller rel-
ative execution time, since forward EBCOT is more complex than reverse
EBCOT. The best would be to perform an accurate run-time profiling? of
the software and hardware in question, but this has been considered out off
the scope for this thesis.

2Profiling is the use of a performance analysis tool that measures the behavior of a
program as it executes, particularly the frequency and duration of function calls.
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Table 5.1: Decoder performance for 1280x720 image at chosen milestones
during the development process. Codestream read from local storage, at a
rate of 45 Mbit/s.

Milestone CPU decoder | GPU decoder | Increase from baseline
JasPer 1fps * -
Kakadu:

baseline 27.3fps - 1

enhancement 1 | 43.4fps 312fps 1.59

enhancement 2 | 50.5fps 468fps 1.85

enhancement 3 | 56.7fps 158fps™** 2.08

*Unknown.

**IDWT not included.

5.2.1 JasPer

JasPer[36] is an open-source initiative to provide a free software-based refer-
ence implementation of JPEG2000, based on CPU executing alone. Initial
tests were done with a GPU accelerated version of JasPer, enhanced with
forward and inverse DWT on GPU[12]. Unsatisfactory performance made
this codec uninteresting for further investigations.

5.2.2 Kakadu, Baseline

Kakadu[37] is a commercial JPEG2000 SDK, which also is based on CPU
executing alone. This milestone represents the baseline performance, with
all decoding done on CPU. It should be noted that the ICT routine used
here, not had been optimized. Thus, higher throughput can be expected
based on CPU decoding alone, with an optimized ICT routine.

5.2.3 Kakadu, Enhancement 1

This milestone represents the first version employing GPU assisted decoding.
More specific, chroma upsampling and ICT was mapped from the CPU
to the GPU. This gave a fair throughput improvement over the baseline
decoder.

5.2.4 Kakadu, Enhancement 2

Thread switching latency, which is the time needed by the operating system
to switch the CPU to another thread, can accumulate to significant amounts
if the switching frequency is high. By forcing the decoder threads to utilize
their allocated time slice better, less thread switching is performed and
higher throughput is obtained. I.e. by explicitly telling each decoder thread
to perform a bigger amount of work before yielding the rest of its time slice
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to other waiting threads, more of the available processing power in the CPU
are exploited. This came at the expense of increased memory consumption,
but was no problem since the application has a small memory footprint.

The decoding steps are allocated between CPU and GPU as in enhance-
ment 1. The GPU performance was enhanced by performing less uncoalesced
mMemory access.

5.2.5 Kakadu, Enhancement 3

In order to obtain a more balanced pipeline, an attempt was made to map
the the reverse DWT from the CPU to the GPU. This included three decoder
changes.

First, the internal IDWT in the Kakadu core system had to be by-
passed, which proved to be a demanding task. The Kakadu core system
is pipelined and optimized for high throughput, and therefor hard to un-
derstand. Instead of changing the source code, the internal IDWT was
bypassed by adding an Arbitrary Transform Kernel (ATK) marker segment
to the JPEG2000 codestream prior to CPU executed decoding. An arbitrary
transform kernel is a part 2 extension, usually employed when encoding with
wavelets other than default CDF 9/7 or 5/3. But rather than encoding with
a special wavelet, the decoder is explicit told to use a special wavelet called
the "lazy-wavelet". This is simply a lifting process with zero lifting steps, or
mathematically equivalent, all lifting coefficients set to zero. Thus, output
from the CPU executed decoder is now DW'T coefficients, since the decoder
apply an IDWT with no effect. From a performance perspective this is be-
lieved to be suboptimal. Although the throughput increased with about
12% for the CPU based decoder element, a further increase in throughput is
expected if the internal IDW'T in the Kakadu core system is bypassed with a
source code change. This is based on the assumption that IDWT consumes
a larger part of the total decoding time for the CPU executed decoder, as
discussed in the start of section 5.2.

Second, since the wavelet coefficients are interleaved as illustrated in fig-
ure 3.6, they had to be deinterleaved before the reverse transform. This was
done with a CUDA kernel. However, because the deinterleaving involves ac-
cessing memory in a unordered fashion, the kernel has few coalesced memory
accesses and the resulting performance is weak.

Last, an attempt to perform IDWT on the GPU was made. Initially,
the author wished to write a CUDA kernel performing reverse 9/7 wavelet
transform, but limited time made this impossible. A CUDA kernel therefor
had to be obtained from other sources. Attempts were first made with a
CUDA kernel from the Schroedinger project[38], but it proved incapable of
performing a correct reverse transform. A second attempt was made with
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a CUDA kernel provided by the courtesy of Jiri Matela®. However, this
code contained approximations that introduced unacceptable noise in the
decoded image. Therefor, no successful decoding was obtained with IDW'T
mapped to the GPU.

5.3 Core Components Revisited

The components briefly visited in section 5.1 are now discussed more thor-
ough. For the deepest level of details, the reader is referred to the source
code given in appendix E.

5.3.1 Socet2PacketBuffer: Receive UDP Packets

The transport layer services are maintained by the User Datagram Proto-
col (UDP). A datagram socket must be created in order to join a UDP
multicast and thereby receive UDP packets. This is an interface between
an application process and the IP protocol stack provided by the operat-
ing system. The operation system uniquely identifies a datagram socket by
the protocol, the local TP address and port number. The operating system
forwards incoming IP data packets to the correct application by extract-
ing the above socket address information from the IP and UDP headers.
Sockets were developed at Berkley as an abstraction to enable computer
communication over different mediums, and forms the de-facto standard for
networking. Windows Sockets 2 builds on the Berkley Sockets and provides
the necessary methods to join a multicast and receive UDP packets. The
received UDP payloads are placed in a circular buffer to facilitate detection
of packet reordering, duplication, deletion and immunity to mild jitter. The
application layer services are maintained by the Real-time Transport Pro-
tocol (RTP), where the RTP header contains a sequence number used to
detect packet reordering, insertion and deletion.

5.3.2 PacketBuffer2Codestream: Reconstruct JPEG2000 Code-
stream from Multiple UDP Payloads

Figure 5.2 shows an example of a packetized codestream originating from
a TVG430. As seen in this figure, each UDP payload is composed of a
RTP header and a RTP payload. The RTP payload is composed of a
JPEG2000 codestream segments, encapsulated in the Material eXchange
Format (MXF)[39, 40]. MXF is a container format used to carry sound-,
image- and metadata content, collectively termed essence. It is also used
for synchronization. Since each compressed video frame is divided amongst
multiple UDP payloads, several codestream segments must be extracted and
put together in order to obtain a complete frame ready for decoding.

3Master student at the Masaryk University, Czech Republic.
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The compressed video frames are coded with the YCbCr color space,
where luma and chroma components are received as separate JPEG2000
codestreams, i.e., the Y component (luma) is encoded as one codestream,
while the Cb and Cr components (chroma) are encoded as another code-
stream. These two codestreams could be decoded separately and combined
before the YCbCr to RGB color space transform, but instead they are com-
bined into one single codestream before decoding in order to avoid multiple
decoders. This is possible without any transcoding, owing to the flexibil-
ity in JPEG2000. Some minor changes must be made in the codestream
header, since the luma and chroma codestreams contains redundant marker
segments?, but no changes are made to the compressed bitstreams. By
inserting a Progression Order Change (POC) marker segment in the code-
stream header and encapsulating the luma and chroma codestream in indi-
vidual tile-parts, the underlying decoder is able to correctly decode all three
components in one run. The meaning of progression order within JPEG2000
is explained in section 3.1.3. For more information on the POC marker seg-
ment and the changes made in the codestream header, please consult annex
A in [14] and the source code in appendix E, respectively.

Complete encoded frame, I I | | |
ready for decoding:/‘ / + +

codestream JPEG2000 codestream JPEG2000 codestream
Header
segment segment segment
[Header | MXF payload | [ MXF payload | [ MXF payload |
[Header | RTP payload ] [Header | RTP payload |  [Header | RTP payload |
|

|
[ Payload from UDP packet #1 [ Payload from UDP packet #2 | .... [ Payload from UDP packet #n |

Figure 5.2: Simplified overview of the TVG430 bitstream.

5.3.3 HostDecoder and DeviceDecoder: Decoding of JPEG2000
Codestream

The implemented decoder is composed of two parts, where the first is named
HostDecoder?, is executed on the CPU and involve all decoding steps up to
and including inverse wavelet transform. The second part is named De-
viceDecoder®, include chroma upsampling and Irreversible Color Transform
(ICT) and is executed on the GPU. This architectureis identical to the one
described in section 5.2.4, named Kakadu enhancement 2.

HostDecoder is based on Kakadu[37], which is a JPEG2000 SDK and a
complete implementation of JPEG2000 Part 1, and a great deal of Parts 2
and 3. More specific, the CPU executed part of the decoder is based on
the high-level application kdu_ stripe_ decompressor, which again is based
on the low-level application kdu_ decoder, both found in the Kakadu SDK.

4See section 3.1.4 for more information on marker segments.
5The names are motivated by the CUDA naming convention.
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Input to the decoder is a JPEG2000 compressed codestream, while the out-
put is a three component bitmap represented with the YCbCr color space
with 4:2:2 subsampling.

The CUDA language was used to perform all GPU processing in De-
viceDecoder. After the output from the CPU executed decoder is transfered
from host to device memory, a Pixel Buffer Object (PBO) is mapped into
CUDA memory space. This enables the computed RGBAS values with 4:4:4
subsampling to be directly written to the PBO during the concurrent chroma
upsampling and Irreversible Color Transform (ICT). The ICT is from the
YCbCr color space to the RGB color space, and is treated mathematically in
appendix C. The PBO is used in order to reduce the overhead connected with
the later displaying of the result, which is further discussed in section 5.3.4.

The CPU and GPU are pipelined to exploit the inherent parallelism
between them, meaning that both the CPU an GPU can perform decoding
at the same time, just on different frames. Synchronization is needed when
accessing shared buffers, and is obtained with mutexes. The synchronization
is based on the assumption that the CPU decoder is slower than the GPU
decoder, meaning that frames will be lost if the opposite is true. This
is a tradeoff between fool-prof synchronization and execution time, since
additional synchronization would add latency to the critical path. The buffer
between the CPU and GPU executed decoder should probably be increased
to accommodate multiple partly decoded frames, in order to better absorb
the inevitable jitter in processing time. Currently it holds only one partly
decoded frame.

In addition to the implemented decoder described above, a serious at-
tempt has been made to map the inverse wavelet transform from CPU to
GPU. This is explained more thorough in section 5.2.5.

5.3.4 Gui: Application Front-End

The application is implemented with a graphical user interface, which also
is composed of two parts. The first part is a startup wizard based on the
Qt framework([41], used at startup to obtain the multicast address and port
number for the UDP multicast. This window can be seen in figure 5.3.
The second part is the main window used to display the decoded video
frames, and can be seen in figure 5.4. It is implemented with the OpenGL
interoperability found in the CUDA runtime API, which enables the Gui to
create a texture based on the above discussed PBO. This texture is then
drawn to the screen. As mentioned in section 4.1.2, transfers between host
and device are costly with respect to execution time. This architecture com-
pletely avoids data read-back from device to host, since the host does not
access the data after they are transfered to device memory. This is accom-

SAll alpha values are set fully opaque.
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plished since the decoded stream is meant for immediate visual consumption,
and CUDA facilitate a simple binding to OpenGL.

Because of restrictions in CUDA with respect to threads and memory
access, the GPU decoding procedure described in section 5.3.3 has to be
called from the Gui main loop. The reason is that "any CUDA resources
created through the runtime in one host thread cannot be used by the run-
time from another host thread"”. This means that two host threads not can
use the same device memory. The same restrictions seems to apply to a
PBO, because the PBO has not been successfully mapped to two threads
for writing or reading. The only known solution is to let the thread running
the Gui main-loop copy data from hostOutputBuffer to deviceInputBuffer,
perform the GPU processing and use the OpenGL bindings to display the
decoded frame. This may be a little illogical, since the GUI not should be
involved in the decoding process, but it is the solution used in the OpenGL
sample applications in the CUDA SDK. A more logical partitioning between
decoder and GUI would be obtained, if the decoder could update the PBO
from a thread other than the GUI main-loop thread. However, the cur-
rent arrangement is advantageous from a performance perspective, since it
provide a simple way to pipeline the CPU and GPU decoding operations.

I JPEG2000 Yideo Decoder - Startup Wizard 2| x|

Fill in IP address and port number for the multicast.
Local IP only need if the computer has multiple network cards.

IP: 29.0.0.8

Port:  |SS00

Local IP: I129.241.3.230

Start decoder Exit

Figure 5.3: Screenshot of application startup wizard.

"See [34] section 4.5.1.1.
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Il JPEG2000 Video Decoder 40.8 fps(decoded) 40.8 fps(displayed)

Figure 5.4: Screenshot of application main window.

5.4 Software and Hardware Tools

The application has been developed on Windows XP SP3, although the only
platform specific code are the socket handling and synchronization between
treads. Visual Studio Professional v9.0.21022.8 has been the deployed IDE,
together with the Intel C4++ Compiler v11.0.072. Kakadu v6.1.1 was used
for all CPU executed decoding. All CUDA related code has been compiled
with the MS Visual C++ compiler and the NVCC compiler included in the
CUDA 2.1 SDK. CUDA Notebook driver 185.85 has been used when per-
forming the GPU calculations. All performance results have been obtained
on a HP Elitebook 8730w with Intel Core 2 Duo T9600 (2.80 GHz) CPU,
NVIDIA Quadro FX 2700M® GPU and 4GB RAM.

5.5 Test Setup

The application has been tested both during and after the development pro-
cess. This section presents two different test setups, where the first tests only
the decoder pipeline, while the second tests all application components. Se-
quences with raw video material have been obtained from Swedish television
(SVT) via the European Broadcasting Union®. The videos were represented
as uncompressed individual frames in the SGI format, with a resolution of
1280x720.

SWith 512 MB DRAM and 48 cores(SPs)
ftp: ftp.ebu.ch, username: hdseqs, password: 4testing
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5.5.1 Decoding from Local Memory

In this setup, various JPEG2000 codestreams are read from file to CPU
memory and then decoded over and over within a loop. Both the Socket2PacketBuffer,
PacketBuffer2Codestream and Gui module are deactivated. This setup fo-

cuses purely on decoding performance and provides an upper limit on the
attainable decoding rates on the given hardware, since all processing power

are allocated to the decoding process. The decoder pipeline elements can

be tested both individually and together, More specific, they can run in a
consecutive manner or concurrently.

5.5.2 Decoding from IP Interface

In this setup, all application modules are concurrently active. I.e. UDP
packets are received through the IP interface, compressed frames recon-
structed from multiple UDP payloads, and frames are decoded and dis-
played. The test sequences from SVT were fed from a ClipRecorder[42] at
50 fps through HD-SDI to a T-VIPS TVG430 video gateway for JPEG2000
encoding and IP encapsulation. ClipRecorder is a device for disk-based
recording and playout, capable of uncompressed output through HD-SDI.
The bitstream is after encoding transmitted via an IP router to a laptop
with the decoder software. The entire test setup can be seen in figure 5.5
and in appendix D.

——N
Management ' L
=

(AR &R

- IP
S—
HD-SDI IP L IP | Laptop with
ClipRecorder TVG430 — Gigabit —»| software
TX Router decoder

Figure 5.5: Overview of the test setup.
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Results

This chapter presents the achieved frame rates for the finalized application.
The decoder performance has been measured in four way, which differ in the
way the compressed codestream is obtain and the number of active modules
within the application. The tested architecture was Kakadu enhancement
2, as described in section 5.2.4.

First, each element in the decoder pipeline was tested individually as
described in section 5.5.1, to identify whether the obtained pipeline was
balanced or not. Compressed video frames were read from file prior to
decoding. The attained frame rates for various codestream rates are plotted
in green in figure 6.1, with triangles and stars at the data points for the GPU
and CPU executed parts of the decoder respectively. Note the discontinuous
X-axis.

The second setup also tested the decoder pipeline alone. But now both
pipeline elements were tested together, by running them concurrently on
the CPU and GPU. The resulting frame rate is plotted in red in figure 6.1,
with squares at the data points. The target frame rate was in section 2.2
specified to 50 frames per second. From figure 6.1 it can be seen that this
is achieved for codestream rates below 45 Mbit/s.

Last, the entire application was tested by activating all modules as de-
scribed in section 5.5.2. I.e. UDP packets were received through the IP in-
terface, compressed frames reconstructed from multiple UDP payloads, and
frames decoded and displayed. The attained frame rate for various code-
stream rates is plotted in blue in figure 6.1, with circles at the data points.
The total received data rate was about 10% higher than the received code-
stream rate, due to MXF, RTP and IP encapsulation of the compressed
video stream.
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Figure 6.1: Obtained frame rate for the finalized application. Note the
discontinuous x-axis.
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Discussion

The results presented in chapter 6 have been obtained by pipelining the
CPU and GPU within the JPEG2000 decoder. I.e. the decoding steps have
been divided between the CPU and the GPU, and performed concurrently.
This parallelization is simplified by the fact that the video stream is inter-
frame encoded only, and thereby without any dependencies between frames.
Since all frames must propagate through the entire pipeline before they can
be displayed, the entire decoder is only as fast as the slowest element in
the pipeline. Maximal throughput is obtained when both elements in the
pipeline have equal processing time, i.e., the optimal pipeline is perfectly
balanced. This can be proven by a simple contradiction. Assume that all
elements initially have equal processing time, and that one decoding task is
moved from one pipeline element to another with the intention to increase
the overall performance. Since the element receiving the additional decoding
task must perform more calculations than before, its processing time must
indisputably increase. Because the slowest element determines the pipeline
throughput, overall performance will decrease.

From figure 6.1, it is evident that the performance for the entire decoder
pipeline is marginally lower than the performance for the CPU part of the
decoder. This confirms the statement that the pipeline throughput is limited
by the slowest element in the pipeline. The difference between the CPU
part of the decoder and the entire pipeline, is caused by the time consuming
thread-safe synchronization between the two pipeline elements. Despite that
the decoder pipeline is below 50 fps for codestream rates of 45 Mbit/s or
higher, real-time decoding can be obtained at these rates. Owing to the
JPEG2000 flexibility and employed progression order, it is possible to decode
a truncated version of the received bitstream. This will reduce the quality,
compared to full rate decoding, but can yield the desired frame rate.

From figure 6.1, it is also obvious that the application never obtains the
target frame rate of 50 fps, when receiving the video stream through the
IP interface. At low rates, the application is limited to about 46 fps, due
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to packet loss at the socket level. This packet loss renders it impossible
to correctly reconstruct all JPEG2000 codestreams, since each compressed
frame is composed of several UDP payloads. The reason behind the packet
loss has not been determined, but it is most likely caused by high bit rate
combined with high CPU load. lL.e. a long inactive period for the socket
thread will result in packet loss, since network card buffering is limited. A
codestream rate of 40 Mbit /s equals 5000 UDP packets each second!, where
one lost packet results in one incomplete frame. If this packet loss could be
avoided, real-time decoding should be obtained at codestream rates up to
about 40 Mbit /s, when receiving the bitstream through the IP interface. At
high codestream rates, the performance for the entire application is limited
by the decoder performance, and not the packet loss. The difference between
the frame rates obtained with the decoder pipeline only and the entire ap-
plication, is caused by the overhead connected to reception and buffering
of UPD packets, reconstruction of the encoded frames from multiple UDP
payloads and display of the decoded video.

Although the developed decoder is applied to a wide range of codestream
rates, not all decoding steps have varying execution time. More specific, re-
verse EBCOT has varying execution time, while chroma upsampling and
irreversible color transform have execution times that are invariant to the
compressed codestream rate. This is confirmed by the results plotted in
figure 6.1 where the GPU part of the decoder has constant execution time,
while the CPU part has an execution time that monotonically decreases with
the codestream rate. This provide important knowledge, when designing a
system for a given frame rate, video resolution or codestream rate. E.g. low-
ering the codestream rate will not improve performance for the GPU based
decoder. Similarly, higher spatial video resolution does undeniably imply
higher load at the GPU side, since the problem size is directly determined
by the spatial video resolution.

Because estimating the execution time for a given decoding step on ei-
ther CPU or GPU is complex, the pipeline balancing process has been rather
practical during the work with this thesis. More specific, the idea has been
to map one decoding step at the time from CPU to GPU, and measure
the execution time for each pipeline element afterwards. Partly mapping
a decoding step has been considered to complex. Luma upsampling and
color space conversion were first mapped from the CPU to the GPU, which
resulted in a highly unbalanced pipeline. Consequently, it was attempted
to map reverse wavelet transform from the CPU to the GPU. This did not
work out due to the lack of a IDWT routine for the GPU, as described in
section 5.2.5. However, based on the performance obtained with Kakadu en-
hancement 3 and performance reports from the author of the second tested
CUDA IDWT code, is should be possible to perform IDWT on the GPU

'"Each UDP payload carries about 1kB of JPEG2000 data.
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while staying above 50 fps for the GPU pipeline element. More specific, one
level IDWT has been reported to take 0.386 ms? on a 480 core GPU. If the
IDWT execution time can be assumed to be proportional to the number
of GPU cores and the image dimensions, a 5 level IDWT on three com-
ponents with 4:2:2 subsampling on a 48 core GPU, should be possible in
approximately 10 ms. This would give a significant speedup and is a natu-
ral extension to the current architecture.

2Image resolution of 1280x720, 8 bpp.
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Conclusion

A complete playback application for JPEG2000 video has been developed
within the scope of this thesis, where most of the attention has been given
to the decoder design and implementation. The application shows that real-
time decoding of a HD JPEG2000 video stream is feasible on general-purpose
computer hardware and it is targeting situations where a special-purpose
hardware decoder is unsuitable. The application obtains real-time playback
of a 720p video stream at codestream rates up to 40 Mbit/s. However, the
maximal obtained frame rate is limited to 46 fps, due to packet loss at the
socket-level.

Real-time demands have been met by including the GPU in the decoder
pipeline and mapping tasks from the CPU to the GPU. More specific, the
CPU performed all decoding steps up to and including reverse wavelet trans-
form, while chroma upsampling and color space conversion were performed
on the GPU. The obtained pipeline provided increased throughput for play-
back applications, where the video content is meant for instantaneous visual
consumption, compared to CPU decoding alone. The GPU has proven to be
a powerful device usable also on none-graphics data, and the use of GPUs
in none-graphics processing will most likely increase in the future.

Although considerable effort has been put into finding an architecture
that utilize the available processing power efficiently, further optimization
will always be possible. The obtained decoder pipeline is highly unbalanced,
and better performance is expected if inverse wavelet transform is success-

fully mapped from the CPU to the GPU.
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Future Work

This chapter briefly presents work that should be carried out in order to
make the application more sophisticated and stable.

First, measures should be made to enhance the socket layer of the appli-
cation, since it currently is experiencing an undesirable packet loss. Methods
for packet reordering and insertion has not been implemented since all tests
have been performed on an IP network with only one hop between encoder
and decoder, but this should also be included in future versions.

Secondly, the employed video gateway has functionality not supported
by the developed software decoder. This include scrambling, forward error
correction and uncompressed audio transmission. A decoder supporting this
functionality will increase its market value.
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Appendix B

Application Class Diagram



Thread
unsigned int ThreadID;
PUBLIC:
Thread();
HANDLE Start();
protected:
static unsigned __stdcall EntryPoint(void * pThis);
virtual void Execute();

Socket2PacketBuffer

int UDPsocket;

char* updPayloadBuffer[PAYLOAD_BUFFER_LENGTH];
int bytesInUdpPayload[PAYLOAD_BUFFER_LENGTH];
struct sockaddr_in client_address;

struct sockaddr_in TGV430_address;

struct ip_mreq multicastRequest;

ofstream debuglog;

HANDLE bufferMutexPartition0,bufferMutexPartition1;
HANDLE bufferMutexPartition2,bufferMutexPartition3;
HANDLE packetBufferSemaphore;

PUBLIC:
Socket2PacketBuffer(string *locallp); <+
~Socket2PacketBuffer();
void CloseSocket();
void Execute();
void Init(int udpPort, string udplp, string locallp);
void GetPayloadBuffer(char** payloadBuffer[], int** bytesinBuffer);
MxfVideoDescriptor GetVideoDescriptor(INPUT_VIDEO_FORMAT* videoFormat);
void PrintVideoDescriptor(struct MxfVideoDescriptor* videoDescriptor);

PRIVATE:
void BindSocket(unsigned short multicastPort, bool *succeeded);
void JoinMulticast(string multicast_IPAddr, string interface_IPAddr, bool *succeeded);
int IsVideoDescriptor(char* packetData, int packetSize);

MxfVideoDescriptor ParseVideoDescriptor(char *packetData, int descriptorOffset);

PacketBuffer2Codestream

char* updPayloadBuffer[PAYLOAD_BUFFER_LENGTH];
int* bytesinUdpPayload;

char* jpcBufferf CODESTREAM_BUFFER_LENGTH];

int bytesinJpcBuffel CODESTREAM_BUFFER_LENGTH];
char* chromaTempBuffer;

int bytesInChromaBuffer; <1
ofstream debuglog;

HANDLE bufferMutexPartition0,bufferMutexPartition1,bufferMutexPartition2,bufferMutexPartition3;
HANDLE packetBufferSemaphore, codestreamBufferSemaphore;

HANDLE codestreamBuff0, codestreamBuff1;

enum INPUT_VIDEO_FORMAT inputVideoFormat;

struct RtpFixedHeader rtpFixedHeader;

struct RtpPayloadHeader rtpPayloadHeader;

struct TvipsHack tvipsHack;

PUBLIC:
PacketBuffer2Codestream(char** packetBuffer(],int** bytesInBuffer, enum INPUT_VIDEO_FORMAT videoFormat);
~PacketBuffer2Codestream();
void Execute();
void GetCodestreamBuffer(char** codestreamBuffer(], int** bytesInBuffer);
PRIVATE:
void PrintPacketHeaders();
void ParsePacketHeader(int packetNumber);
int MarkerSearch(char * packetData, int packetSize, int targetMarker, bool rtpHeaderPresent);
void ClaimFramesSingleChip();
void ClaimFramesDualChip();
void ReconstructSingleField(int *currentPayloadindex, int *currentCodeStream);
void SortPartition(int partitionNumber);

HostDecoder

unsigned short *kduOutputHost0[3];
unsigned short *kduOutputHost1[3];
unsigned short *kduOutputDevice[3];

kduCompressedMemorySource codestreamNetwork;
kdu_codestream codestream;
kdu_stripe_decompressor decompressor; <
kdu_thread_env env, *env_ref;

char *jpcBuffer CODESTREAM_BUFFER_LENGTH];
int *bytesinJpcBuffer;

int stripeHeights[3];

int sampleGaps|[3];

kdu_byte * kduOutputBuff[3];

bool isSignedSamples;

HANDLE kduOutputOnHost0, kduOutputOnHost1;
HANDLE codestreamBuff0, codestreamBuff1;
HANDLE codestreamBufferSemaphore;

ofstream debuglLog;

PUBLIC:
HostDecoder(char** codestreamBuffer(], int** bytesInBuffer);
void RunPerformanceTest();
void Execute();
void RunCorrectnessTest();
PROTECTED:
bool kduDecodeField(int bufferNumber);
void SaveKduOutput();

CudaLib

extern "C" void DecodeFrameOnDevice(int hostBufferNumber);

extern "C" void InitGui(unsigned short *hostOutput0[3], unsigned short *hostOutput1[3], unsigned short *devicelnput[3], int imgWidth, int imgHight);
extern "C" void StartGuiMainloop();

extern "C" void* AllocateMemDevice(unsigned int numBytes);

extern "C" void* AllocateMemHost(unsigned int numBytes);

extern "C" void MemsetDevice(void* buffer, unsigned int numBytes);

extern "C" void FreeMem(void* data);

extern "C" void Cleanup(void);




Appendix C

Irreversible Color Transform

Input to the irreversible color transform considered in this thesis are triplets
of color channels from the Y’CyC, color space with 8 bit per channel, while
the output are triplets residing in the R’G’B’ color space. The prime ()
symbol means gamma correction is being used. As specified in ITU-R Rec-
ommendation BT.601, Y’ ranges from 16 to 235, where 16 is the darkest
and 235 is the brightest. Cp and C, range from 16 to 240, where 128 is
the zero-point. Y’ is often referred to as the luma component, while Cy,
and C; often are referred to as the blue-difference and red-difference chroma
components.

The first processing to be done, is to scale the luma and chroma com-
ponents to the correct interval. This is stated in (C.1), together with the
resulting intervals.

Y’ — 16
! /
Yy = 219 Yy € [0.0,1.0}
Cp — 128
e T ~0.5,05] (C.1)
Cr—128
Cr = W, Ccr € [_05,05}

The general r’g’b’ to y’c,c, equations are given in (C.2), (C.3) and (C.4),
while the general y’chc; to r'g’b’ equation is given in (C.5).



Y = K. x4+ (1-K,—Kp) xg +KyxV (C.2)

/ /
¢ — M (C.3)
/ /
.\ - ﬁ (C.4)
' 1 0 2(1_KT) y/
g = 1 R R |0 ©9
v 1 2(1 - Kp) 0 Cr
g ¥ e [0.0,1.0] (C.6)

The actual transform coefficients depend on the applied encoding. Since
the image content in this setting originally was transmitted over HD-SDI,
the transform coefficients are defined in ITU-R Recommendation BT.601 as
Kp=0.114 and K,=0.299. With this, equation (C.5) becomes:

v 1 0 1.402 Y/
Jd| =11 -034413 —0.71414 | x [ e (C.7)
Y 1 1.772 0 ¢

The last step in the ICT is to generate full-range R’G’B’ triplets, i.e:

R’ = round(255 x ') (C.8)
G' = round(255 x ¢) (C.9)
B’ = round(255 x V) (C.10)
R,G',B' € |0,255] (C.11)
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Test Setup
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Appendix E

CD-ROM
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