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Problem Description
In 3D graphics, several floating-point formats are used in computations. The task is to make a
floating-point multiplier with the current features:

   - 256-bit input vector and 128-bit output.
   - Supporting FP16/FP32/FP64 inputs.
   - IEEE754 conforming.
   - 5 step pipeline.
   - Simple handshake interface.

Depending on input formats the following operations should be performed:

   - Vec4 FP16 multiply uses a 128-bit input vector, and produces a 64-bit output vector.
   - Vec4 FP32 multiply uses a 256-bit input vector, and produces a 128-bit output vector.
   - Vec2 FP64 multiply uses a 256-bit input vector, and produces a 128-bit output vector.

The assignment is a continuation of the project task, where different floating-point multiplier
architectures were proposed, analyzed and evaluated. Based on this, further analysis has to be
made before an architecture is chosen. Implement the chosen architecture at register transfer
level, for testing and synthesis.
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Abstract

3D graphic accelerators are often limited by their floating-point performance.
A Graphic Processing Unit (GPU) has several specialized floating-point units
to achieve high throughput and performance. The floating-point units con-
sume a large part of total area and power consumption, and hence archi-
tectural choices are important to evaluate when implementing the design.
GPUs are specially tuned for performing a set of operations on large sets of
data. The task of a 3D graphic solution is to render a image or a scene. The
scene contains geometric primitives as well as descriptions of the light, the
way each object reflects light and the viewer position and orientation.

This thesis evaluates four different pipelined, vectorized floating-point
multipliers, supporting 16-bit, 32-bit and 64-bit floating-point numbers. The
architectures are compared concerning area usage, power consumption and
performance. Two of the architectures are implemented at Register Trans-
fer Level (RTL), tested and synthesized, to see if assumptions made in the
estimation methodologies are accurate enough to select the best architec-
ture to implement given a set of architectures and constraints. The first
architecture trades area for lower power consumption with a throughput of
38.4 Gbit/s at 300MHz clock frequency, and the second architecture trades
power for smaller area with equal throughput. The two architectures are
synthesized at 200MHz, 300MHz and 400MHz clock frequency, in a 65nm
low-power standard cell library and a 90nm general purpose library, and for
different input data format distributions, to compare area and power results
at different clock frequencies, input data distributions and target technology.

Architecture one has lower power consumption than architecture two at
all clock frequencies and input data format distributions. At 300MHz, ar-
chitecture one has a total power consumption of 1.9210mW at 65nm, and
15.4090mW at 90nm. Architecture two has a total power consumption of
7.3569mW at 65nm, and 17.4640mW at 90nm. Architecture two requires
less area than architecture one at all clock frequencies. At 300MHz, archi-
tecture one has a total area of 59816.4414µm2 at 65nm, and 116362.0625µm2

at 90nm. Architecture two has a total area of 50843.0µm2 at 65nm, and
95242.0469µm2 at 90nm.
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This thesis concludes my Master’s degree in Electrical Engineering at Nor-
wegian University of Science and Technology (NTNU), and is a continuation
of my 2007 autumn project. The assignment is given by ARM Norway,
and involves research, implementation, testing and synthesis of a vector-
ized floating-point multiplier. The work was carried out from January 2008
to June 2008, and the topic was interesting, challenging and very instructive.

I spent a lot of time researching floating-point implementations in hard-
ware, especially floating-point rounding, in addition to power consump-
tion in sub-micron technologies. IEEE specifies a detailed standard for bi-
nary floating-point arithmetic, but leaves the implementation completely to
the designer. Two different vectorized floating-point multipliers was imple-
mented using the Verilog Hardware Description Language, which I had little
knowledge of before starting this assignment. A significant amount of time
was spent developing a sufficient testplan for the designs, and by research-
ing and understanding the tools used for synthesis and the Tcl scripting
language. Working on this thesis, I learned much about floating-point arith-
metic in hardware, the synthesis and optimization process, and power con-
sumption in different target technologies. I also gained further knowledge of
digital design in general, and the Verilog Hardware Description Language.

A special thank goes to my supervisors, Associate Professor Per Gunnar
Kjeldsberg (NTNU), and Torstein Hernes Dybdahl (ARM) for their guid-
ance, feedback and interest in this assignment. I would also like to thank
my fellow students for comments and constructive questions, my family and
friends.

Espen Stenersen
Trondheim, June 2008.

III





Contents

1 Introduction 1
1.1 Floating-Point Multiplication . . . . . . . . . . . . . . . . . . 3
1.2 Power and Area Optimized Designs . . . . . . . . . . . . . . . 4

1.2.1 Low Power Design . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Area Optimized Design . . . . . . . . . . . . . . . . . 6

1.3 High-Speed Multiplication . . . . . . . . . . . . . . . . . . . . 6
1.4 Architecture Search-space Exploration . . . . . . . . . . . . . 7

1.4.1 Power Consumption . . . . . . . . . . . . . . . . . . . 7
1.4.2 Area Usage . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 Throughput and Delay . . . . . . . . . . . . . . . . . . 8

1.5 Proposed Architectures . . . . . . . . . . . . . . . . . . . . . . 9
1.5.1 Architecture One . . . . . . . . . . . . . . . . . . . . . 9
1.5.2 Architecture Two . . . . . . . . . . . . . . . . . . . . . 10
1.5.3 Architecture Three . . . . . . . . . . . . . . . . . . . . 10
1.5.4 Architecture Four . . . . . . . . . . . . . . . . . . . . . 11

1.6 Thesis Organization and Main Contributions . . . . . . . . . 11

2 Architecture Estimations 13
2.1 Power Estimation Methodology . . . . . . . . . . . . . . . . . 13
2.2 Power Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Area Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Performance Estimation . . . . . . . . . . . . . . . . . . . . . 22
2.5 Trade-Off Considerations . . . . . . . . . . . . . . . . . . . . . 23

3 Implementation 25
3.1 Choosing Architecture . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Vectorized Floating-Point Multiplier . . . . . . . . . . . . . . 26

3.2.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Architecture Description . . . . . . . . . . . . . . . . . 29

3.3 Testing and Simulation . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Reference Circuit . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . 37

V



VI CONTENTS

4 Synthesis Results 39
4.1 Synopsys R© . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Static Power . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Dynamic Power . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 Capturing Switching Activity for Synthesis . . . . . . 40
4.1.4 Setting Design Constraints . . . . . . . . . . . . . . . 41

4.2 Architecture One . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Architecture Two . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Power Comparison . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Area Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Conclusions 67
5.1 Estimation Methodologies . . . . . . . . . . . . . . . . . . . . 68
5.2 Power Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Area Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A Architecture One Verilog Sources 73

B Architecture Two Verilog Sources 119

C Test Data Generator 145

D Simulation Sources 151
D.1 Vectorized DesignWare floating-point multiplier Source . . . . 151
D.2 Testbench Sources . . . . . . . . . . . . . . . . . . . . . . . . 158
D.3 Switching Activity Simulation Source . . . . . . . . . . . . . . 171



List of Tables

2.1 Normalized leakage current for logic gates [1]. . . . . . . . . . 14
2.2 Significand multipliers static power consumption. . . . . . . . 16
2.3 Significand multipliers dynamic power consumption. . . . . . 16
2.4 Static power estimation of proposed architectures. . . . . . . . 17
2.5 Total power consumption, 256-bit input vector. . . . . . . . . 18
2.6 Total power consumption, 128-bit input vector. . . . . . . . . 19
2.7 Architecture area comparison, FA-cells and equivalent register-

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Trade-off considerations. . . . . . . . . . . . . . . . . . . . . . 26
3.2 Format encoding. . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Rounding modes encoding. . . . . . . . . . . . . . . . . . . . . 28
3.4 Rounding mode reduction. . . . . . . . . . . . . . . . . . . . . 36

4.1 Architecture one, 65nm CMOS total power consumption. . . 42
4.2 Architecture one, 65nm CMOS building blocks power con-

sumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Architecture one, 90nm CMOS total power consumption. . . 44
4.4 Architecture one, 90nm CMOS building blocks power con-

sumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Architecture one, 65nm CMOS area usage. . . . . . . . . . . . 49
4.6 Architecture one, 90nm CMOS area usage. . . . . . . . . . . . 50
4.7 Architecture two, 65nm CMOS total power consumption. . . 51
4.8 Architecture two, 65nm CMOS building blocks power con-

sumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9 Architecture two, 90nm CMOS total power consumption. . . 52
4.10 Architecture two, 90nm CMOS building blocks power con-

sumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.11 Architecture two, 65nm CMOS area usage. . . . . . . . . . . 58
4.12 Architecture two, 90nm CMOS area usage. . . . . . . . . . . 58

VII





List of Figures

2.1 Full-Adder gate-level model. . . . . . . . . . . . . . . . . . . . 15
2.2 Ratio of leakage power to total power in a 65nm CMOS library

at different process corners, supply voltages and temeratures
[2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Architecture power comparison. . . . . . . . . . . . . . . . . . 20
2.4 Architecture area comparison. . . . . . . . . . . . . . . . . . . 21
2.5 Architecture latency comparison. . . . . . . . . . . . . . . . . 23

3.1 Vectorized floating-point multiplier block diagram. . . . . . . 27
3.2 First input vector layout. . . . . . . . . . . . . . . . . . . . . 27
3.3 Second input vector layout. . . . . . . . . . . . . . . . . . . . 27
3.4 Clear register layout. . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Product vector layout. . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Exception register layout. . . . . . . . . . . . . . . . . . . . . 29
3.7 Vectorized floating-point multiplier simple timing diagram. . . 29
3.8 Vectorized floating-point multiplier architecture drawing. . . . 30
3.9 Architecture one exponent unit. . . . . . . . . . . . . . . . . . 32
3.10 Architecture two exponent unit. . . . . . . . . . . . . . . . . . 32
3.11 Architecture one significand multiplier unit. . . . . . . . . . . 34
3.12 Architecture two significand multiplier unit. . . . . . . . . . . 34
3.13 Architecture one rounding and exception unit. . . . . . . . . . 35
3.14 Architecture two rounding and exception unit. . . . . . . . . . 36
3.15 DW_vec_fp_mult block diagram. . . . . . . . . . . . . . . . 37

4.1 Architecture one, 65nm CMOS power consumption. . . . . . . 45
4.2 Architecture one, 90nm CMOS power consumption. . . . . . . 47
4.3 Architecture one, 90nm and 65nm CMOS power comparison. 48
4.4 Architecture two, 65nm CMOS power consumption. . . . . . 54
4.5 Architecture two, 90nm CMOS power consumption. . . . . . 55
4.6 Architecture two, 90nm and 65nm CMOS power comparison. 56
4.7 65nm architecture power comparison. . . . . . . . . . . . . . . 60
4.8 90nm architecture power comparison. . . . . . . . . . . . . . . 61
4.9 Estimated vs. real power comparison. . . . . . . . . . . . . . 62

IX



X LIST OF FIGURES

4.10 65nm CMOS architecture area comparison. . . . . . . . . . . 65
4.11 90nm CMOS architecture area comparison. . . . . . . . . . . 66



Chapter 1

Introduction

Floating-point numbers are frequently used in scientific calculations, digital
signal processing applications and in 3D graphics. In 3D graphics, floating-
point performance are especially demanding and several floating-point num-
ber formats are used in computations. 3D graphics accelerators have a highly
parallel structure that makes them more efficient for certain algorithms than
general purpose processors. The 16-bit, 32-bit and 64-bit floating-point for-
mats FP16, FP32 and FP64 are used for high dynamic range textures, that
is, where light and dark textures are spanned over a large area. All formats
can be used as vertex coordinates, and the FP64 format is the minimum for
graphic processing units (GPUs) to be used in scientific calculations.

ARM Norway develops hardware graphic accelerators, specifically tuned
for embedded system environments, supporting the OpenGL ES and OpenVG
APIs, which focus on high performance and low power consumption [3].
MaliTM 200 with GP2 fully supports OpenGL ES v2.0, v1.1 and OpenVG
v1.0. Detailed information about the MaliTM 3D Graphics System Solution
can be found in [4]. OpenGL ES is a royalty-free cross-platform API for full
function 2D and 3D graphics on embedded systems [5], and OpenVG is a
royalty-free, cross-platform API that provides a low-level hardware acceler-
ation interface for vector graphics libraries such as Flash and SVG [6].

The purpose of this floating-point multiplier is to support three different
floating-point number formats, FP16, FP32 and FP64. It is a vectorized
floating-point multiplier in the sense that the input vector is a vector of
operands, where three different types input vectors are supported. For the
FP16 format, the input vector should be

[127 : 0] = [D1, D0, C1, C0, B1, B0, A1, A0]

and the output will become

[63 : 0] = [D1×D0, C1× C0, B1×B0, A1×A0]

1
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For the FP32 format, the input vector should be

[255 : 0] = [D1, D0, C1, C0, B1, B0, A1, A0]

and the output will become

[127 : 0] = [D1×D0, C1× C0, B1×B0, A1×A0]

For the FP64 format, the input vector should be

[255 : 0] = [D1, D0, C1, C0]

and the output will become

[127 : 0] = [D1×D0, C1× C0]

Depending on the input vector data format, the output vector will be a 64-
bit or 128-bit vector of floating-point products on the IEEE 754 format.

This thesis is a continuation of my 2007 autumn project [7]. [7] presents
four possible vectorized floating-point multiplier architectures with differ-
ent area, power and throughput profiles. These architectures are evaluated
and compared concerning area, power, throughput and latency. This thesis
will further investigate power consumption of the four architectures and two
architectures will be selected for RTL implementation. The implemented ar-
chitectures will be tested and synthesized to see if assumptions and method-
ologies used to compare area and power are sufficient to select the best
alternative given a set of constraints.

In a 3D graphic processing application, throughput are very important
because it is operating on large data sets describing a frame or scene, where
for example shading, lighting, positions and viewers perspective are con-
sidered. In any hardware implementation, area and power are usually im-
portant constraints. In a handheld, battery powered device, both area and
power consumption are very important. Because of highly parallel computa-
tions, and the pipelined architecture of graphic accelerators, clock frequency
is typically much lower than in a modern general purpose CPU.

This Chapter will first present the floating-point multiplication algorithm
in Section 1.1. Then design strategies for low power and small area will be
discussed in Section 1.2. In Section 1.3 some high-speed multiplier schemes
are presented, and in Section 1.4, the vectorized floating-point multiplier
architecture search-space will be explored. Section 1.5 presents the architec-
tures evaluated in [7], and in Section 1.6, the outline and main contributions
of this thesis are presented.
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1.1 Floating-Point Multiplication

The IEEE standard for binary floating-point arithmetic specifies a detailed
standard for floating-point representation in computers [8]. Floating-point
numbers are represented by a sign, an exponent and a significand, and are
written as follows

floating − point number = (−1)s × f × βe−bias, (1.1)

where s represents the sign, f the significand, e the exponent and β the
base or radix. In IEEE 754 the base is always 2. Floating-point numbers in
IEEE 754 format are biased to ensure that the exponent is always greater
than zero, and thus making comparison between numbers easier. The ex-
ponent represents the range, and the significand the precision of the number.

Given to floating point numbers n1 = (−1)s1×f1×2e1 and n2 = (−1)s2×
f2 × 2e2 . The floating-point product is computed as

n = (−1)s1+s2 × (f1 × f2)× 2e1+e2−bias

This can be achieved by a simple algorithm. The floating-point multiplica-
tion algorithm is straight-forward; exponents are added and bias subtracted,
significands are multiplied, and signs computed by an XOR-operation. Be-
cause the result of the significand multiplication is of width 2n, where n is
the width of each significand, rounding has to be performed to obtain a final
product in the IEEE specified format. The algorithm is given below.

1 // Sign , exponent and s i g n i f i c a n d computation .
2 s i gn = sign_1 ^ sign_2 ;
3 exponent = exponent_1 + exponent_2 − b ia s ;
4 s i g n i f i c a n d = s ign i f i c and_1 ∗ s i gn i f i c and_2 ;
5
6 // Normalizing .
7 i f ( normal ize )
8 {
9 s i g n i f i c a n d = s i g n i f i c a n d >> 1

10 exponent = e + 1 ;
11 }
12
13 // Rounding .
14 i f ( roundup )
15 {
16 s i g n i f i c a n d = s i gn f i c and + 1 ;
17 }
18
19 // Post−normal i z ing .
20 i f ( postnormal i ze )
21 {
22 s i g n i f i c a n d = s i g n i f i c a n d >> 1 ;
23 exponent = exponent + 1 ;
24 }
25
26 product = { sign , exponent , s i g n i f i c a n d } ;
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For numbers on scientific notation, the fractional part has to be nor-
malized if it is outside the interval [0, 10). Normalizing is performed by
incrementing the exponent by one and dividing the fractional part by ten.
Likewise, in binary IEEE arithmetic, if the significand is outside the interval
[0,2) it has to be normalized, and normalizing is performed by incrementing
the exponent by one and dividing the significand by two. The decision for
normalizing is simple; if the most significant bit in the result after signifi-
cand multiplication equals one, every bit in the significand are shifted one
position to the right and the exponent incremented by one. If significand
is to be rounded, a ‘1’ is added to the significand. If the significand is not
normalized after rounding, post-normalizing occurs. The bits in the signif-
icand are shifted one position to the right, and exponent incremented by one.

IEEE specifies four rounding modes, round-to-nearest even, round-to pos-
itive infinity, round-to negative infinity and round-to zero. The rounding
decision are based on rounding mode and guard digits. In round-to-nearest
even mode, three guard digits are needed. In round-to positive infinity and
round-to negative infinity, two guard digits in addition to sign bit are needed
for making correct rounding decision. Rounding decisions for the different
rounding modes and guard digits are further described in [9].

1.2 Power and Area Optimized Designs

Low power and small area can be contradicting requirements, but both is
very important in handheld devices. Low power design exploit numerous
techniques such as dynamic voltage and frequency scaling as well as differ-
ent coding schemes and number representations to reduce the overall power
consumption. Low area can be achieved by for example resource sharing,
but is a trade-off between area, speed and latency.

1.2.1 Low Power Design

The average power dissipation in a CMOS circuit is given by the equation
[10]

Pavarage = Pstatic + Pshort−circuit + Pdynamic

= VDDIstatic + VDDIshort−circuit + αCLV
2
DDfclk

(1.2)

where α corresponds to the average number of 0 → 1 transitions at a
given node each clock cycle, VDD the supply voltage, CL the capacitive load
switched each cycle and fclk the clock frequency.
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Static Power Consumption

The static power dissipation is technology dependent, and increases as the
transistor dimension and threshold voltages decreases. The static power con-
sumption is an increasing problem in deep sub-micron technologies, and pro-
portional to the amount of transistors in a given design. Istatic is composed
of leakage currents due to tunneling effects and sub-threshold conduction.
Static power dissipation can be reduced by optimizing the supply voltage
and threshold voltage, or by reducing the amount of transistors, and hence
area. Other techniques such as channel engineering and changing the doping
profile of the transistors may also be used. In order to eliminate the static
power dissipation, the supply voltage needs to be turned off when parts of
the circuit is not used.

Short-circuit Power Consumption

The short-circuit current contributes to the average power consumption when
both the PMOS and NMOS transistor conduct simultaneously, creating a
direct path from VDD to ground. Short-circuit currents can be minimized
by designing PMOS and NMOS transistors with equal fall- and rise times.

Dynamic Power Consumption

The dynamic power dissipation is the main contributor to the average power
consumption when the circuit is operating. To reduce the power consump-
tion, either the switching activity, the capacitive load, the supply voltage,
the clock frequency or a combination of these can be reduced. [11] describes
three architectural techniques to reduce the power consumption in CMOS
circuits, trading area for lower power dissipation through hardware duplica-
tion, pipelining or a combination of these. Through hardware duplication
both supply voltage and clock frequency can be reduced at the cost of ad-
ditional registers at the input, and a multiplexer at the output. Through
hardware pipelining, the clock frequency or supply voltage can be reduced
while still maintaining the same throughput as a similar non-pipelined circuit
at a higher supply voltage. In graphic processing implementations, pipelining
is often used to improve throughput. [11] also describes techniques for re-
ducing the switching activity through algorithmic optimization. Statistical
knowledge of the input data can be exploited to lower the power dissipa-
tion, through choosing the best number representation, and hence lower the
switching activity.

In floating-point multipliers, the significand multipliers consume the larger
part of the area. Therefore, these should be implemented as area and power
efficient as possible in order to minimize both static and dynamic power



6 CHAPTER 1. INTRODUCTION

dissipation. Numerous techniques for multiplier designs represents different
power consumptions and area usage.

1.2.2 Area Optimized Design

Area can be reduced at the expense of larger latency and lower throughput,
or by reusing or sharing computational units efficiently. If throughput or
latency is an absolute demand due to some timing constraints, there may be
a limit to how much area can be reduced without violating those constraints.
Area is an important design parameter in handheld devices due to the size
of the devices, and the energy consumption.

In floating-point multipliers supporting several formats, area can be re-
duced mainly by using one multiplier computing the significands for each
supported format. This affects the power consumption as well, the dynamic
power consumption increases unless measures are taken to minimize this,
and the static power consumption is reduced due to less transistors.

1.3 High-Speed Multiplication

Multiplication involves two basic operations, generating partial products and
accumulation of the partial products. The time to perform a multiplication
can be reduced by either reducing the number of partial products or speed-up
their accumulation [9]. High-speed multipliers can be divided into two differ-
ent categories, bit-parallel- and bit-serial multipliers. Bit-parallel multipliers
can be further divided into three different categories [12].

• Shift-and-add multipliers.

• Parallel multipliers.

• Array multipliers.

Shift-and-add multipliers generates partial products sequentially and ac-
cumulates them successively. This type of multiplier require the least amount
of area, but is also the slowest. It can be implemented using only one bit-
parallel adder and successively adding the partial products row- or column-
wise. The shift-and-add multiplier requires n2 AND operations, and n − 1
shift operations, where n is the with of the operands.

Parallel multipliers generates all partial products in parallel, and uses
an adder-tree for their accumulation. Thus it can be partitioned into three
parts, partial product generation or reduction, partial product accumula-
tion (carry-free addition) and carry-propagation addition for the final re-
sult. Partial product reduction is most often performed by some version
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of Booth’s algorithm, and partial product accumulation by a Dadda [13] or
Wallace [14] tree. The carry-propagation addition is often performed by a
carry-lookahead adder. Tree-based multipliers have a latency proportional
to O(log2(n)), where n is the with of the operands.

Array multipliers consists of almost identical cells for the generation of
partial products and their accumulation. Compared to three-based multi-
pliers, the array multiplier utilizes the least amount of area, but has larger
latency. Array multipliers are good candidates for pipelining, and relatively
easy to implement. The cells for partial product generation and accumula-
tion are adders, most often implemented as carry-save adders to make them
more efficient. Array multipliers have a latency proportional to O(n), where
n is the with of the operands.

High-speed multipliers and multiplier schemes are further described and
elaborated in [7].

1.4 Architecture Search-space Exploration

Given the specification, a vectorized, pipelined IEEE compliant floating-
point multiplier supporting 16-bit, 32-bit and 64-bit floating-point numbers,
there is a minimum requirement of computational units. One significand
multiplier, exponent adder and rounding and exception logic capable of han-
dling every supported format is required. In addition to input- and output
registers, and pipeline registers.

1.4.1 Power Consumption

Power consumption consists of both a static and a dynamic component. The
static component is hard to estimate because it is strongly technology de-
pendent, but is directly related to the chip area. The dynamic component
depends on variables such as switching activity and glitching. Glitching ac-
tivity can be much higher than functional activity in certain datapath mod-
ules such as adders and multipliers, and in a 32-bit multiplier, the power
dissipation due to glitches can be three times higher than that due to func-
tional activities [15]. Glitching can be reduced by balancing signal paths,
and hence reducing uneven arrival times.

The optimized minimum power solution is difficult to obtain because the
probability distribution of the different formats is unknown, and because
static power dissipation can be a large contributor to the overall power and
energy consumption. The choice of using only one significand multiplier for
every supported format, or several significand multipliers for every supported
format is crucial for both the power and energy consumption as well as the
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area usage and throughput. However, the FP32 format is assumed to be
the main data format, and used frequently compared the FP16 and FP64
formats. Because the use of the different supported formats is unknown, and
only assumptions can be made, it is difficult to optimize the overall floating-
point multiplier concerning power consumption. If FP16 computations are
performed very infrequently compared to FP32 computations, the FP16 sig-
nificand computations can be performed in the FP32 significand multiplier
with little power overhead in the long run. This favors a solution with at
least one 24-bit significand multiplier for the FP32 (and FP16) format, and
one 53-bit significand multiplier for the FP64 format. However, even if the
power dissipation seems to be low, the total energy consumption by comput-
ing an entire input vector has to be considered.

Reducing the input vector also reduces area requirements due to less
computational units and registers, and hence less static power dissipation and
total power dissipation. However, energy consumption is not significantly
reduced. Because of reduced throughput, additional cycles are needed to
compute an entire input vector.

1.4.2 Area Usage

A minimum area solution would have only one XOR-gate computing the
sign, one exponent adder and one significand multiplier supporting every
format, rounding and normalizing logic supporting all three formats and a
256-bit input register and an 128-bit output register, in addition to exception
logic handling exceptions raised during computation. Pipeline registers will
infer a significant increase in area, and should not be used in a minimum
area solution. This architecture will suffer from very low throughput and
clock-speed, in addition to a high power consumption due to glitching in
very long and possible uneven signal paths plus functional switching. This
floating-point multiplier is inefficient and energy consuming, and will not be
suited for a battery powered graphic solution.

Power and energy consumption, as well as throughput and critical path
delay, can be improved at the expense of additional pipeline registers. The
area consuming part of any floating-point multiplier is the significand mul-
tiplier. Different multiplier schemes may be used to reduce the overall area
usage. Amongst bit-parallel multipliers, the array multiplier requires the
least amount of area, but is also the slowest [12].

1.4.3 Throughput and Delay

A vectorized floating-point multiplier, optimized concerning throughput and
delay requires pipelining to reduce the critical path delay and parallel com-
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putation to increase the data processed each cycle. However, parallelizing
the computations requires additional computational units, which increases
both area and static power dissipation significantly. In a graphic processing
application, high throughput is an important criteria, however in a battery
powered graphic processing application performance has to be a compromise
between throughput, area and energy consumption.

To maximize the throughput, at least two significand multipliers and ex-
ponent adders supporting the FP32 and FP16 format, and two significand
multipliers and exponent adders supported every format are needed, in addi-
tion to four XOR-gates computing the signs, and rounding and normalizing
logic capable of handling four products in parallel. The exception logic also
needs to be able to handle exceptions from four products simultaneously. An
128-bit input bus may not only reduce area and power consumption, it may
also reduce the throughput.

Critical path delay is limited by the FP64 significand multiplier, assum-
ing registers at the input and output of this multiplier. Techniques for fast
multiplication can be applied to speed up the multiplication. Compression
multipliers such as Dadda [13] and Wallace [14], or versions of this, in addi-
tion to techniques for reducing partial products, speeds up the multiplication
at the expense of area and possibly power overhead.

1.5 Proposed Architectures

The architectures presented in [7] lies somewhere in between the solutions
discussed above, and have different power consumptions, area, throughputs
and latencies, where latency is measured in cycles before a product vector is
ready at the output. Four architectures are presented.

1.5.1 Architecture One

This architecture attempts to be a throughput and power optimized solution
at the cost of increased area. Achieving a high throughput requires parallel
computation of input vectors. To minimize the dynamic power consumption,
two 53-bit multipliers, four 24-bit multipliers and four 11-bit multipliers
are used to compute the significands of the FP64, FP32 and FP16 formats
respectively. In addition, two 11-bit bit adders and subtractors, four 8-bit bit
adders and subtractors and four 5-bit bit adders and subtractors to compute
the exponents of the FP64, FP32 and FP16 formats respectively. Four XOR-
gates are used to compute the signs. By using components that exactly fit
the operand widths, unnecessary switching is reduced when computing the
different formats. Architecture one has a latency of four cycles, assuming
a 256-bit input bus, and throughput is 256 bits per clock cycle. But, if
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input bus is reduced to 128-bit, throughput reduces to 128 bits per cycle
and latency increases to five cycles. In addition, only one 53-bit multiplier,
two 24-bit multipliers and two 16-bit multipliers, one 11-bit exponent adder
and subtractor, two 8-bit adders and subtractors and two 5-bit adders and
subtractors are needed if input bus is reduced to 128-bit. An architectural
drawing of architecture one is given in [7].

1.5.2 Architecture Two

Architecture two attempts to be a throughput and area optimized solution
by using more general significand multipliers and exponent adders than ar-
chitecture one. Two 53-bit multipliers and two 24-bit multipliers are used to
compute the significands of all supported formats. Two 11-bit adders and
subtractors and two 8-bit adders and subtractors to compute the exponents
of the FP16, FP32 and FP64 data formats, in addition to four XOR-gates
computing the signs. By reducing the area, static power dissipation is re-
duced, but dynamic power is increased due to functional switching. Signif-
icands have to be extended to fit the with of the multipliers for the FP32
and FP16 formats. The 11-bit exponent adders have to support subtraction
of three different bias values, and the 8-bit exponent adders have to support
subtraction of the FP16 and FP32 bias values. As architecture one, this
architecture has a latency of four cycles and a throughput of 256 bits per
cycle, assuming 256-bit input bus. If input bus is reduced to 128-bit, latency
increases to five cycles, and throughput decreases to 128 bits per cycle. As
for architecture one, number of significand multipliers and exponent adders
and subtractors are halved. The architectural layout of architecture two is
also given in [7].

1.5.3 Architecture Three

Architecture three attempts to be an area and power optimized architecture,
where throughput is traded for smaller area. One 53-bit multiplier, one 24-bit
multiplier and one 11-bit multiplier computes the significands of the FP64,
FP32 and FP16 formats respectively. One 11-bit adder and subtractor, one
8-bit adder and subtractor and one 5-bit adder and subtractor are used to
compute the exponents of the FP64, FP32 and FP16 formats respectively.
One XOR-gate is used to compute the signs. By reducing area, static power
is reduced, and by using components that fit the operand width of their
designated format, functional switching is reduced and hence dynamic power
consumption. This architecture has a latency of six cycles, assuming 256-bit
input bus. The throughput of this architecture is 64 bits per cycle. If input
bus is reduced to 128-bit, neither latency or throughput is reduced because
only one product is computed each cycle. However, input register size may
be reduced and hence area and static power dissipation. Architecture three
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should have a 64-bit input bus to avoid wait cycles, and hence reducing
registers required, and area further. The architectural layout of architecture
three is given in [7].

1.5.4 Architecture Four

This architecture is close to an area optimized solution, and almost identical
to architecture three, except only one 53-bit multiplier is used to compute
the significands of all supported formats, one 11-bit adder and subtractor is
used to compute the exponents, and one XOR-gate computing the sign. The
Exponent subtractor supports FP16, FP32 and FP64 bias values. By reduc-
ing area to a minimum of components needed for computing the products of
all formats, static power is reduced even further but a the cost of functional
switching. As architecture three, this architecture has a latency of six cycles
and a throughput of 64 bits per cycle, assuming 256-bit input bus. If input
bus is reduced, latency and throughput are unaffected.

As discussed in [7], and above, area, and hence static power, can be re-
duced for architecture one and two by reducing the input bus from 256-bit to
128-bit. This does not change the overall energy consumption significantly
because an additional cycle is needed to compute an entire input vector.
Architecture three and four are not affected by reducing the input bus. The
rounding, normalizing/post-normalizing and exception logic are equal for all
four architectures presented in [7].

1.6 Thesis Organization and Main Contributions

The rest of this thesis is organized as follows. In Chapter 2, a power esti-
mation methodology is presented and used to compare the the architectures
presented in [7] concerning power consumption. The architectures are fur-
ther compared concerning area usage, and performance including latency and
throughput. Chapter 2 also discusses trade-off considerations when choos-
ing an architecture to implement. In Chapter 3, two architectures are se-
lected for implementation, and the implemented architectures are presented
and described. In addition, testing and simulation of the two architectures
are discussed. Chapter 4 describes how synthesis has been performed, and
presents the synthesis power and area results. The two architectures are
further compared concerning power consumption and area usage. Chapter 5
concludes this thesis.

The main contributions of this thesis are:

• A power estimation methodology for comparing the relative differences
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in power consumption of the architectures proposed in [7].

• Comprehensive RTL implementation of two vectorized floating-point
multiplier architectures.

• Synthesis results of the two architectures realized in a 65nm low-power
library, and a 90nm general purpose library, for comparison with es-
timations performed in this thesis, and in [7], in two different target
technologies.



Chapter 2

Power, Area and Performance
Estimation

Power, area and performance estimations are important to consider when
choosing an architecture to implement. Especially power can be hard to
estimate because it is strongly technology dependent, and both static and
dynamic power dissipation have to be taken into account. When moving
into deep sub-micron technology, static power dissipation can be a signifi-
cant contributor to the total power consumption.

This Chapter will first present a power estimation methodology based
on power dissipated by significand multipliers in Section 2.1. In Section 2.2,
this power estimation methodology will be used to compare power consump-
tion of the four architectures presented in Section 1.5. Section 2.3 compares
area requirements of the proposed architectures, and in Section 2.4, latency,
throughput and clock frequency of the proposed architectures will be dis-
cussed. Trade-off considerations that should be considered when choosing
an architecture to implement are presented in Section 2.5.

2.1 Power Estimation Methodology

The significand multiplier is the major computational unit in any floating-
point multiplier. Therefore, estimating the power consumed by the signifi-
cand multipliers will give a good indication of the total power consumption
of the overall floating-point multiplier.

When computing the resulting significand of two floating-point numbers
of size n-bit, the n most significant bits of the n×n-bit product are the bits
of interest. This means that for example if a FP32 significand is computed
in a FP64 significand multiplier, the FP32 significand has to be extended
to fit the width of the FP64 significand multiplier. If additional bits are

13
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appended as the most significant bits, shifting has to be performed after the
multiplication, or multiplexers connected to the output register of the signif-
icand multiplier has to select the correct bits for further computations such
as rounding and normalizing. Alternatively, additional bits can be appended
as the least significant bits, and avoid the shifting or multiplexing.

In order to estimate the power consumption, both static and dynamic
power consumption, a power model or methodology is needed. In [1] simu-
lations of leakage currents for different logic gates are performed for a 65nm
CMOS library, with standard threshold transistors and standard cells with
a driving force of one. The result is given in Table 2.1. In [2], simulations
are performed to analyze the ratio of static power dissipation to total power
dissipation. The simulations are performed in a 65nm CMOS library for
different process corners and different supply voltages and temperatures. In
the simulated circuit it is assumed that 95% of the gates are quiet and 5%
are switching. The simulation result is given in Figure 2.2.

Input NAND AND XOR
L L 1 5.3 17.9
L H 5.9 10.2 17.9
H L 7.1 11.4 9.1
H H 4.5 14.5 9.1

Table 2.1: Normalized leakage current for logic gates [1].

As can be seen from Table 2.1, static power can be reduced by setting
unused bits to other values than zero. However, this simple power model
aims to highlight the relative differences between the four architectures, and
not their exact power consumptions. As seen from Equation 1.2, static power
is given by Istatic×VDD. Assuming equal VDD for all architectures, VDD can
be eliminated from the equation, and total static power of a Full-Adder can
be computed as

2× 17.9 + 2× 1 + 1× 4.5 = 42.3

assuming unused bits are set to ‘0’. The Full-Adder model used for the static
power computation is given in Figure 2.1, and differs from the Full-Adder
model used in [7, 16]. The model used in Figure 2.1 utilizes 6 transistors
less, and therefore reduces the area, and in addition makes it possible to use
the simulated data from Table 2.1.

Figure 2.2 shows that for a typical 65nm CMOS process the static power
dissipation is approximately 30% of total dissipated power. Hence if the
static power is 42.3, the dynamic power will be

42.3× (7/3) = 98.7
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Figure 2.1: Full-Adder gate-level model.

Figure 2.2: Ratio of leakage power to total power in a 65nm CMOS library
at different process corners, supply voltages and temeratures [2].
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Assuming that the significand multipliers are implemented as array mul-
tipliers as described in [7], the FP16 multiplier requires

11× 10 = 110

FAs, the FP32 multiplier
24× 23 = 552

FAs, and the FP64 multiplier

53× 52 = 2756.

FAs. The static power consumption of the three different multipliers are
given in Table 2.2, normalized to the value of the FP16 multiplier, assuming
every input-bits equals ‘0’.

Multiplier Static Power Normalized Static Power
FP16 4653.0 1.0
FP32 23349.6 5.0
FP64 116578.8 25.1

Table 2.2: Significand multipliers static power consumption.

As shown in Table 2.2, the 53-bit FP64 significand multiplier dissipates
25.1 times more static power than the 11-bit FP16 significand multiplier, and
the 24-bit FP32 significand multiplier 5 times more than the FP16 multi-
plier. Assuming dynamic dissipated power equals approximately 70% of total
power consumption, dynamic power consumption is computed and given in
Table 2.3, where the dynamic power is normalized to the static power dissi-
pation of the FP16 significand multiplier.

Multiplier Dynamic Power Normalized Dynamic Power
FP16 10857.0 2.3
FP32 54482.4 11.7
FP64 272017.2 58.5

Table 2.3: Significand multipliers dynamic power consumption.

This estimation methodology has several sources of error, which may lead
to the wrong conclusions. The most severe source of error in this method-
ology, is probably the assumption that 95% of the gates are quit during the
simulations given in Figure 2.2. Floating-point multiplications are frequently
performed in a graphic application, and in the proposed architectures 95%
of the gates will not be quiet during computation. In addition static power
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consumption is very technology dependent, and may be different for a low-
power and a general purpose CMOS process, and may even vary between
vendors as well. Because leakage current simulations are performed by [1],
and static power consumption by [2] this may enhance the error, and lead
to not choosing the best architecture for implementation given a set of area,
power and throughput constraints.

2.2 Power Estimation

The architectures presented in [7] have different power consumptions, areas
and throughputs. In Table 2.4, the static power dissipation for each of the
four architectures is computed, assuming none of the significand multipliers
are performing any computation.

# FP64 multipliers × Pstatic(FP64) +
Pstatic = # FP32 multipliers × Pstatic(FP32) +

# FP16 multipliers × Pstatic(FP16)
(2.1)

The values in Table 2.4 are computed according to Equation 2.1, and the
values are normalized to architecture four.

Architecture Static Power Normalized Static Power
One 345168.0 3.0
Two 279856.8 2.4
Three 144581.4 1.2
Four 116578.8 1.0

Table 2.4: Static power estimation of proposed architectures.

The total power consumption is given by both the static power con-
sumption and the dynamic power consumption, where the dynamic power
consumption is given by

# FP64 multipliers × Pdynamic(FP64) +
Pdynamic = # FP32 multipliers × Pdynamic(FP32) +

# FP16 multipliers × Pdynamic(FP16)
(2.2)

, and the total power consumption given by

Ptotal = Pstatic + Pdynamic (2.3)

The methodology presented in Section 2.1, is a simplified and inaccurate
methodology. However, the relative differences between the architectures
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evaluated in [7] and described in Section 1.5 are well highlighted through this
simple methodology. The static and dynamic power consumption computed
in Table 2.2 and Table 2.3 are used to compute the total significand multiplier
power consumption for each of the four architectures. In Table 2.5 and
2.6, the total power dissipated per cycle, and total power dissipated per
multiplication are computed for the different supported formats. Total power
per multiplication is important because if the input bus is reduced to 128-bit,
two cycles are needed to compute the significands of an entire input vector
for architecture one and two. It is also important to consider how input data
format affects power dissipation of the four architectures, because the input
data distribution is unknown. It can only be assumed that the FP32 format
are frequently used compared to the FP16 and FP64 format. This knowledge
may be important when choosing architecture. Total power includes both
static and dynamic power dissipation, where the values are normalized to
the purely static power dissipation of architecture four.

Data format Architecture Total Power
Normalized Normalized
Power per Power per
Cycle Multiplication

FP16

One 388596.0 3.33 3.33
Two 932856.0 8.00 8.00
Three 155438.4 1.33 5.33
Four 388596.0 3.33 13.33

FP32

One 563097.6 4.83 4.83
Two 932856.0 8.00 8.00
Three 199063.8 1.71 6.83
Four 388596.0 3.33 13.33

FP64

One 889202.4 7.63 7.63
Two 823891.2 7.07 7.07
Three 416598.6 3.57 14.29
Four 388596.0 3.33 13.33

Table 2.5: Total power consumption, 256-bit input vector.

Figure 2.3 displays the differences in power consumption per cycle, and
power consumption per multiplication for the four architectures. It shows
that in addition to reducing the overall chip area, reducing the input bus
also reduces the power dissipated each clock cycle for architecture one and
two. The total power dissipated by architecture three and four is unchanged
by reducing the input bus. This is because the amount of computational
units are not reduced as for architecture one and two. However, even if total
power consumption per cycle is reduced for architecture one and two, the
power consumption per multiplication is not reduced because an additional
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Data format Architecture Total Power
Normalized Normalized
Power per Power per
Cycle Multiplication

FP16

One 194298.0 1.67 3.33
Two 466428.0 4.00 8.00
Three 155438.4 1.33 5.33
Four 388596.0 3.33 13.33

FP32

One 281548.8 2.42 4.83
Two 466428.0 4.00 8.00
Three 199063.8 1.71 6.83
Four 388596.0 3.33 13.33

FP64

One 444601.2 3.81 7.63
Two 411945.6 3.53 7.07
Three 416598.6 3.57 14.29
Four 388596.0 3.33 13.33

Table 2.6: Total power consumption, 128-bit input vector.

cycle is needed to compute an entire 256-bit input vector.

The relative differences in power consumption of the four architectures
are well highlighted in Figure 2.3. Architecture three and four dissipates
the least amount of power per cycle, but suffers from high total power con-
sumption when computing an entire input vector compared to architecture
one and two. Because only one product is computed each cycle, four cycles
are needed to compute an entire input vector. Architecture one dissipates
slightly more power than architecture three per cycle assuming a 128-bit in-
put bus, but has significantly lower total power consumption when an entire
input vector is considered. Architecture one has lowest power consumption
per multiplication for all data formats, except FP64. Because the FP32
format is assumed to be the most used data format this should be an im-
portant consideration when choosing the architectures to implement. Total
power consumption per multiplication is more important to consider than
power dissipation per cycle. Because the rounding and exception logic, which
is a significant part of the architectures, are not considered when computing
power consumption, the relative differences may be greater or smaller.

2.3 Area Estimation

Area estimations are performed following the methodology described in [7].
Number of Full-Adders and equivalent 1-bit register cells are used to compute
the total area requirements. Control logic and additional computational logic
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(a) Power estimation, only FP16 input data.

(b) Power estimation, only FP32 input data.

(c) Power estimation, only FP64 input data.

Figure 2.3: Architecture power comparison.
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requires little area compared to the significand multipliers, exponent adders
and registers. The rounding logic differs somewhat for the architectures
evaluated. Architecture one and two requires additional rounding logic due
to parallel computing of product vectors. The ratio of transistors required
by the Full-Adder model in Figure 2.1 and the register model presented in
[7] is given by Equation 2.4.

transistor ratio =
# transistors in FA

# transistors in register
=

40
36

= 1.11 (2.4)

Architecture Input-bus # FA-cells Eq. register-size # Transistors

One 256-bit 8160 924 9990.7
128-bit 4080 530 5063.3

Two 256-bit 6616 1134 8485.1
128-bit 3308 635 4310.6

Three 256-bit 3418 612 4409.8
128-bit 3418 484 4281.8

Four 256-bit 2756 612 3674.2
128-bit 2756 484 3546.2

Table 2.7: Architecture area comparison, FA-cells and equivalent register-
size.

Figure 2.4: Architecture area comparison.

Figure 2.4 illustrates the area usage of the different architectures as a
function of required transistors as presented in Table 2.3. Figure 2.4 shows
that for an 256-bit input bus, architecture one requires more than twice as
much transistors as architecture three and four, and architecture two approx-
imately almost twice as much as architecture three. For an 128-bit input bus,
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the relative differences are much smaller, and not more than approximately
1000 transistors. Area reduction of architecture one and two is large com-
pared to architecture three and four, because number of computational units
such as significand multipliers and exponent adders are reduced, while only
number of equivalent 1-bit register cells is reduced in architecture three and
four. From an area point of view, an 128-bit input bus is favored.

Because logic not included in this area estimation methodology differs
somewhat for the different architectures, this is a source of error. The largest
computational unit not considered in this methodology are the rounding and
exception unit, and because this unit is larger, and equal, for architecture
one and two compared to architecture three and four, the differences will
be greater than displayed in Figure 2.4. However, the relative difference in
area usage by the proposed architectures are still well highlighted because
the rounding and exception logic are small compared to the significand mul-
tipliers.

2.4 Performance Estimation

Performance is measured by clock frequency and data processed each clock
cycle. The maximum clock frequency will be approximately equal for all ar-
chitectures, and determined by the critical path delay. The clock frequency
is given by the inverse of the delay trough the 53-bit significand multiplier.

The data processed each cycle, or the throughput, is determined by the
ability to process data in parallel. The architectures described in [7] have
different throughputs and latencies. Throughput is measured in how many
products computed each clock cycle. Reducing the input bus also reduces
the throughput for architecture one and two, but not for architecture three
and four. The ARM 3D graphic solutions typically runs at 300MHz clock
frequency. Assuming a clock frequency of 300MHz, and a 256-bit input bus,
the throughput of architecture one and two will be

256 bit× 300 MHz = 76800
Mbit

s
,

and for architecture three and four

64 bit× 300 MHz = 19200
Mbit

s

If the input bus is reduced to 128-bit, the throughput of architecture one
and two will become

128 bit× 300 MHz = 38400
Mbit

s
,
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and for architecture three and four the throughput will be unchanged.

The computations above shows that architecture one and two have higher
throughput than architecture three and four. However, if the input bus is
reduced to 128-bit, architecture one and two still have higher throughput,
but reduced by 50% compared to an 256-bit input bus, while the throughput
of architecture three and four remains the same.

Latency is in this context defined as the number of clock cycles from a
vector arrives at the input to the product vector are ready at output. The
latencies for the different architectures are given in Figure 2.5.

Figure 2.5: Architecture latency comparison.

The delay through the 53-bit significand multiplier is equal to the inverse
of the delay through 106 full-adder cells, assuming the multiplier is imple-
mented as an array multiplier. For a typical low-power 65nm CMOS process
the delay through one full-adder cell equals 0.11ns, which gives a maximum
clock frequency of 90.9MHz. To achieve higher clock frequencies, the sig-
nificand multipliers must be implemented using a faster multiplier scheme.
The Dadda or Wallace multiplier, with or without Booth recoded input will
achieve this as described in Section 1.3. In the power and area estimations,
significand multipliers are assumed implemented as array multipliers. How-
ever, changing the significand multiplier scheme does not changes the relative
difference between the architectures, as long as the change is equal for all
four architectures.

2.5 Trade-Off Considerations

When choosing the architecture to implement, design constraints have to be
considered. Because throughput is very important in a graphic application,
throughput should be kept as high as possible. In a handheld, battery pow-
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ered device, area and power are also very important. Hence, the decision of
which architectures to implement should be a trade-off between area, power
and throughput. A weight-function could be used to help the decision, where
area usage, power consumption and throughput are weighted according to
importance. But, because total power consumption has a static and a dy-
namic component, where the dynamic component are dependent of which
format being computed, and the static power component directly related to
area usage, the weight-function can become complex. In addition, data for-
mat distribution may vary from user to user, which makes the decision even
harder. However, the FP32 format is expected to be the most used data
format. Thus, this should be weighted as more important than the FP16
and FP64 formats.

Because of error sources in the area and power estimation methodologies,
such as logic not considered and the assumptions of quiet gates in the static
power consumption calculation as described in Section 2.1, this should be
kept in mind when choosing architecture. Because of the error sources in
the estimation methodologies, two architectures should be implemented and
compared to see how well the area and power methodologies predicted the
relative differences in area usage and power consumption.



Chapter 3

Implementation

An IEEE compliant, pipelined, vectorized floating-point multiplier is to be
implemented RTL for testing and synthesis. In Section 3.1, two architec-
tures are selected for implementation based on the analysis and trade-off
considerations performed in Chapter 2. Section 3.2 presents the implemented
architectures, describes the differences between them, and provides user in-
formation. In Section 3.3, testing are discussed. Section 3.3 describes the
testing and simulation, and what have been tested.

3.1 Choosing Architecture

The width of the input bus affects area usage, power consumption and
throughput for the evaluated architectures. Area and power consumption
can be significantly reduced, if the input bus is reduced from 256-bit to 128-
bit. However, this lowers the throughput and increases the latency. The total
power consumption by computing an entire input vector does not change, if
the input bus is reduced from 256-bit to 128-bit, following the assumptions
made in the methodologies presented in Chapter 2. The total energy con-
sumption may be reduced somewhat if the input data is highly correlated,
however this can not be assumed. By reducing the input bus both area and
power consumption are reduced significantly for architecture one and two.
Area is slightly reduced for architecture three and four as well. Table 3.1,
presents a summary of estimated area usage, power consumption, latency
and throughput (at 300MHz ) for architecture one, two, three and four, as-
suming 128-bit input. Power is presented for only FP16 computations, only
FP32 computations and only FP64 computations, where power dissipated
by computing an entire input vector is considered.

Total power consumption by computing an entire input vector and area
is the most important criteria when choosing an architecture to implement,
in addition to the throughput. But, as seen from Table 3.1, dissipated power

25
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Architecture
One Two Three Four

Area 5063.3 4310.6 4281.8 3546.2
FP16 Power 3.33 8.00 5.33 13.33
FP32 Power 4.83 8.00 6.83 13.33
FP64 Power 7.63 7.07 14.29 13.33
Throughput 38400 38400 19200 19200
Latency 5 5 6 6

Table 3.1: Trade-off considerations.

is dependent of which format being computed, and input data format distri-
bution should be considered when choosing architecture. Architecture one
has lower power consumption than the other architectures for only FP16
and FP32 computations. But when only FP64 computations are performed,
architecture two has lower power consumption than architecture one. This
is because of static power dissipated by the significand multipliers in archi-
tecture one. If static power is modeled to high, architecture one might have
lower power consumption than architecture one for only FP64 computations
as well. Architecture one and two have lower latency and higher through-
put than architecture three and four. Architecture one and two have larger
area than architecture three and four, but architecture four suffers from sig-
nificantly higher power consumption. Architecture three has higher power
consumption than architecture one for all input formats, but lower than ar-
chitecture two for FP16 and FP32 input data.

Based on the analysis above, and the estimations performed in Section
2.2, 2.3 and 2.4, the input bus should be 128-bit and architecture one should
be implemented to minimize the trade-off between area and power consump-
tion, while keeping a relatively high throughput. Because only power dissi-
pated in the multipliers are considered, and the sources of error discussed
in Chapter 2, the differences may be greater or less due to power dissipated
in registers, logic not considered, and fan-out effects in multiplexers. To see
if the analysis made in Chapter 2 are accurate enough to make a correct
implementation decision, given a set of constraints, architecture one and two
should be implemented and compared concerning area and power.

3.2 Vectorized Floating-Point Multiplier

Two partially IEEE compliant, vectorized floating-point multipliers have
been implemented. Architecture one and two was selected for implemen-
tation in RTL. The vectorized floating-point multipliers does not support
denormalized inputs. If denormalized input vectors are provided to the
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floating-point multiplier, these are treated as zero. Otherwise, the floating-
point multiplier complies to the IEEE 754 specifications concerning deliver-
ing the correct result and exception generations.

The general block diagram of the vectorized floating-point multiplier top-
module is given in Figure 3.1.

Figure 3.1: Vectorized floating-point multiplier block diagram.

3.2.1 Inputs

The vectorized floating-point multipliers have five inputs, vectors, format,
mode, clear and start in addition to clock and reset inputs. The format in-
put tells the floating-point multiplier which format to compute, FP16, FP32
or FP64, and the mode input tells which rounding mode to apply. The clear
input is used to clear exceptions, and the start input tells the floating-point
multiplier that vectors are ready at the input. start must be kept high as
long as input vectors are ready at the input. Input vectors should be given
as shown in Figure 3.2 and Figure 3.3.

B1 B0 A1 A0

Figure 3.2: First input vector layout.

D1 D0 C1 C0

Figure 3.3: Second input vector layout.

Because the input bus is 128-bit and the input vector for the FP32 and
FP64 formats are 256-bit, the input vector has to be provided in two cycles
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where A0, A1, B0 and B1 should be given in the first cycle, and C0, C1, D0
and D1 should be given in the second cycle. The same has been done for the
FP16 format, therefore the upper 64-bits of the input vector should be set
to zero when FP16 computations are performed.

Data formats and rounding modes are encoded as given in Table 3.2 and
Table 3.3 respectively.

Format Encoding
FP16 00
FP32 01
FP64 10

Table 3.2: Format encoding.

Mode Encoding
Round-to-nearest even 00
Round-to-plus infinity 01
Round-to-minus infinity 10

Round-to zero 11

Table 3.3: Rounding modes encoding.

Exceptions should be cleared by setting the correct bits on the clear in-
put bus to one. The layout of the the clear register is given in Figure 3.4.

Underflow Overflow Inexact Invalid
15 12 11 8 7 4 3 0

Figure 3.4: Clear register layout.

invalid[0] correspond to the product A0 × A1, invalid[1] to the product
B0 × B1, invalid[2] to the product C0 × C1 and invalid[3] to the prod-
uct D0 ×D1. Likewise for the inexact, underflow and overflow exceptions,
except the index should be incremented as shown in Figure 3.4. However,
this functionality has not been implemented properly, and exceptions are not
cleared as specified in the IEEE 754 standard.
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3.2.2 Outputs

The vectorized floating-point multiplier has three outputs, products, excep-
tions and ready. The ready output is set to one whenever a product vector
is ready at the output. Products are laid out as given in Figure 3.5.

D1×D0 C1× C0 B1×B0 A1×A0

Figure 3.5: Product vector layout.

The exception layout is exactly the same as the clear register layout, and
as given in Figure 3.6.

Underflow Overflow Inexact Invalid
15 12 11 8 7 4 3 0

Figure 3.6: Exception register layout.

invalid[0], inexact[4], overflow[8] and underflow[12] corresponds to the
product A0 × A1. Exceptions for the products B0 × B1, C0 × C1 and
D0×D1 are found by incrementing the index.

A typical scenario with only one input vector pair is given in Figure 3.7.

Figure 3.7: Vectorized floating-point multiplier simple timing diagram.

3.2.3 Architecture Description

The architectures have some minor changes from the ones described in [7].
These changes does not affect the relative differences between the area, power
and performance estimations performed in Chapter 2 of the two implemented
architectures. Figure 3.8 shows a more detailed architecture diagram than
provided in [7].
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Figure 3.8: Vectorized floating-point multiplier architecture drawing.
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Building Blocks

The major building blocks in the design are the select input demultiplexer,
the sign unit, exponent unit, multiplier unit, check special unit, rounding and
exception unit and the select output demultiplexer.

The select input demultiplexer provides the sign unit-, exponent unit-
and multiplier unit- registers with correct data, and selects parts of the in-
put registers based on which data format being computed. The sign unit,
exponent unit and multiplier unit computes the resulting signs, exponents
and significands respectively. The check special unit checks for special in-
puts like NaNs, infinities and zeroes used by the rounding and exception unit
to generate correct result and exceptions. The select output demultiplexer
select which part of the exception registers and output registers to load in
addition to setting the correct value of the ready register. These units are
equal for both implemented architectures.

There are some differences between the architectures of the two imple-
mentations. In architecture two, the exponent unit and the multiplier unit
needs to know which format being computed, in addition to the actual con-
tent of the building blocks as described in Section 1.5. As described in [7], the
bus width, and register size, between the multiplier unit and the computed
significands register changes between the two architectures. In architecture
one this is 106-bits, and in architecture two this is 154-bits because the prod-
ucts of the 53-bit significand multiplier and the 24-bit significand multiplier
equals 154-bit. This also infers a wider bus between the computed signs,
exponents and significands registers and the rounding and exception unit.
The exception and rounding unit differs for the two architectures, and will
be discussed later.

Exponent Unit

In the exponent unit, exponent adders and subtractors are implemented us-
ing carry-lookahead adders in the DesignWare R© library form synopsys [17].
One adder computes the sum of the two exponents, and a subtractor com-
putes the sum minus the bias. The exponent unit are different in architecture
one and two. In architecture one, one 11-bit adder and subtractor, two 8-bit
adders and subtractors and two 5-bit adders and subtractors are used for
computing the resulting exponents of the FP64, FP32 and FP16 formats
respectively. The exponent unit of architecture one is given in Figure 3.9.

In architecture two, one 11-bit adder and subtractor and one 8-bit adder
and subtractor are used to compute the exponents. The 11-bit subtractor
supports subtraction of all FP16, FP32 and FP64 bias values, and the 8-bit
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Figure 3.9: Architecture one exponent unit.

Figure 3.10: Architecture two exponent unit.
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subtractor supports subtraction of FP16 and FP32 bias values. Exponent
unit of architecture two is given in Figure 3.10.

The output bus from the exponent unit includes four extra bits in ad-
dition to the actual exponents. These are overflow bits from the exponent
additions and bias subtractions used by the rounding and exception unit to
generate correct exceptions, and are equal for both architectures. An input
demultiplexer selects the input bits from the exponent register to supply the
correct adder, and an output multiplexer puts the result from correct adder
on the output bus.

Multiplier Unit

The significand multipliers are implemented as unsigned parallel-prefix mul-
tipliers provided by the DesignWare R© datapath and building block IP library
[18] from Synopsys to obtain higher clock frequencies than 90.9 MHz as es-
timated in Section 2.4. This implementation is flexible, and dynamically
generated based on context, e.g., area and timing constraints, and technol-
ogy library. It exploits the characteristics of different implementations and
generates the optimal architecture [19]. The content of the multiplier unit
differs for the two architectures. In architecture one, one 53-bit, two 24-bit
and two 11-bit unsigned multipliers are used to compute the significands of
the FP64, FP32 and FP16 data formats respectively. Architecture one sig-
nificand multiplier unit are given in Figure 3.11.

In architecture two, one 53-bit multiplier and one 24-bit multiplier are
used to compute the significands. The 53-bit multiplier are used to compute
the resulting significand of all formats, and the 24-bit multiplier is used to
compute the resulting significand of the FP32 and FP16 formats. The sig-
nificand multiplier unit in architecture two are given in Figure 3.12.

An input demultiplexer selects which bits should go to which multiplier.
In architecture one, an output multiplexer selects which multiplier group
result FP16, FP32 or FP64 should be put on the output bus. In architecture
two, the significands are extended to fit the width of the 53-bit and 24-bit
multiplier input buses. Zeroes are appended as least significant bits to avoid
shifting or demultiplexing in the rounding and exception unit.

Rounding and Exception Unit

In the original architecture proposals in [7], the rounding and exception
unit is equal for all four architectures. However, this has been implemented
differently in architecture one and two to better highlight the differences
between them concerning power. In architecture one, specialized rounding



34 CHAPTER 3. IMPLEMENTATION

Figure 3.11: Architecture one significand multiplier unit.

Figure 3.12: Architecture two significand multiplier unit.
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units for each format are used, as for the multiplier unit and exponent unit.
One rounding and exception block handling the FP64 format, two round-
ing and exception blocks handling the FP32 format and two handling the
FP16 format. The rounding and exception unit in architecture one is given
in Figure 3.13. In architecture two, one rounding and exception block han-
dles every format, and one handling the FP32 and FP16 formats. A simple
rounding algorithm has been implemented. The rounding and exception unit
of architecture two is given in Figure 3.14.

Figure 3.13: Architecture one rounding and exception unit.

The implemented rounding algorithm is basically the same as the one pre-
sented in Section 1.1, except a demultiplexer is used in the post-normalizing
step to select the appropriate significand bits as the simple algorithm pre-
sented in [20]. Rounding could be performed faster and more efficiently, if
for example the QFT algorithm presented in [20] is used. However, this
requires a significand multiplier that outputs the sum and carry vectors as
separated carry-save encoded vectors. The four rounding modes, round-
to-nearest even, round-to positive infinity, round-to negative infinity and
round-to zero have been reduced to three, round-to-nearest even, round-to
infinity and round-to zero as in [21]. Round-to positive infinity, round-to
negative infinity and round-to zero can be reduced to round-to infinity and
round-to zero based on the sign as given in Table 3.4.
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Figure 3.14: Architecture two rounding and exception unit.

IEEE Rounding mode Positive Number Negative Number
Round-to-nearest even Round-to-nearest even

Round-to positive infinity Round-to infinity Round-to zero
Round-to negative infinity Round-to zero Round-to infinity

Round-to zero Round-to zero

Table 3.4: Rounding mode reduction.

In the rounding and exception unit, a demultiplexer supplies the different
rounding and exception blocks with signs, exponents and significands com-
puted in their respective units from their registers, as well as information
computed in the check special unit.

3.3 Testing and Simulation

Testing have been performed using the open source Verilog simulator and
synthesis tool, Icarus Verilog [22]. Test cases have been generated using the
C-code in Appendix C. “Random” floating-point numbers are created, and
special values are included “randomly” to ensure simulation of exceptional
cases like NaN times any number, and zero times infinity. 500,000 test cases
have been simulated for both architectures and for all supported data formats
and rounding modes.
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3.3.1 Reference Circuit

The DesginWare R© library from Synopsys provides a simulation model of a
fully IEEE compliant floating-point multiplier [23, 24]. This has been used
to create a vectorized version, that computes four products in parallel. The
block diagram of the DesignWare vectorized floating-point multiplier is given
in Figure 3.15.

The Verilog code for the DesignWare vectorized floating-point multiplier
can be found in Appendix D.1. In addition, because the DesignWare floating-
point multiplier supports denormalized numbers, the output is set to zero if
denormalized product, and an inexact exception is generated. The correct-
ness of the DesignWare vectorized multiplier can easily be verified by looking
at the code.

Figure 3.15: DW_vec_fp_mult block diagram.

3.3.2 Simulations

Whenever a product is ready, the computed product and exceptions is com-
pared to the product vector and exceptions computed by the DesignWare
floating-point multiplier. The testbench used for simulating the two archi-
tectures can be found in Appendix D.2.

Both architectures have been tested with FP16, FP32 and FP64 input
vectors. For each format, the rounding modes round-to-nearest even, round-
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to positive infinity, round-to negative infinity and round-to zero have been
tested with 500,000 test cases. The testbench does not try to change data
format or rounding mode during simulation time, however this is believed to
work. To verify correct operation of the implemented architectures, this has
to be tested. However, the emphasis of this assignment is not verification,
but rather highlighting the differences between the architectures concerning
power and area. The testbench used for simulation prints statistics about in-
put vectors, output vectors and exceptions generated when finished to ensure
every exceptional cases have been covered by input vectors during simula-
tion. In addition, behavioral testing has been performed at module level, to
ensure correct behavior of lower level modules such as rounding and excep-
tions unit, exponent unit, demultiplexers etc.

One error in the rounding unit has been detected with the FP16 format
in round-to-nearest even and round-to positive infinity mode. This error is
believed to be format independent, but has not been detected when the FP32
and FP64 formats have been tested. The error arises in post-normalization
when result should be rounded to the smallest representable normalized num-
ber, but is flushed to zero instead. This error has not been corrected because
the emphasis of this thesis lies on power and area comparison, and choosing
the best architecture to implement, given a set of constraints. The correction
of this error will probably not infer any significant increase in area nor power
consumption.



Chapter 4

Synthesis Results

Synopsys Design CompilerTM [25] and Power compilerTM [26] are used to
synthesize the designs, and perform area, timing and power analysis. A typ-
ical general purpose low-power standard cell library is used to map the design
into a 65nm technology, and a general purpose standard cell library to map
the design into a 90nm technology. Because the 65nm library is a low-power
library, and the 90nm library is a general purpose library, somewhat differ-
ent power results are expected. However, this will in addition highlight the
differences in which target technology the architectures are realized in.

This Chapter will first present how Synopsys Design CompilerTM and
Power CompilerTM calculates power, how to capture switching activity in
the implemented architectures, and how design constraints are set to opti-
mize the result, in Section 4.1. The power consumption and area usage of
architecture one is presented in Section 4.2. In Section 4.3 power consump-
tion and area usage of architecture two will be presented. In Section 4.4
the power consumption of the two architectures will be compared, and in
Section 4.5 area usage of the two architectures will be compared.

4.1 Synopsys R©

It is important to understand how Synopsys models and computes power to
obtain useful information from the synthesis reports. The following describes
how static and dynamic power is computed and are taken from the Power
Products Reference Manual [27] by Synopsys. The power analysis tool cal-
culates and reports power based on equations given in [27]. DesignPower
and Power CompilerTM use these equations and information modeled in the
technology library to evaluate the power of the design.

39
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4.1.1 Static Power

Static power is the power dissipated by a gate when it is not switching. It
is dissipated in several ways, mostly due to source-to-drain leakage currents
caused by reduced threshold voltages preventing the gate from completely
turning off. Other currents leaks also contributes, and hence it is often called
leakage power. For designs that are active most of the time, leakage power
is less than 1% of the total power.

4.1.2 Dynamic Power

Dynamic power dissipates when the circuit is active. Dynamic power has two
sources, internal power and switched power. Internal power is any power dis-
sipated within the boundary of a cell. During switching, a circuit dissipates
internal power by the charging or discharging of any existing capacitances in-
ternal to the cell. The definition of internal power includes power dissipated
by a momentary short circuit between the PMOS and NMOS transistors of a
gate, called short circuit power. The switching power of a driving cell is the
power dissipated by the charging and discharging of the load capacitance at
the output of the cell. The total load capacitance at the output of a driving
cell is the sum of the net and gate capacitances on the driving output.

4.1.3 Capturing Switching Activity for Synthesis

Synopsys provides several ways of including simulated switching activity
into the power calculations. These are described in the Power Products
Reference Manual [27]. The testbench used for capture the switching ac-
tivity of the different nets in the two architectures are given in Appendix
D.3. This testbench has been used for simulating typical switching activity,
only FP16 computations switching activity, only FP32 switching activity
and only FP64 switching activity. When typical switching activity is cap-
tured, FP32 computations are assumed to be performed 60% of the time,
FP16 computations 20% of the time and FP64 computations 20% of the
time. This distribution is chosen to ensure switching in all nets and regis-
ters, and is not given by ARM or any other. But, the FP32 format has been
indicated to be the main format used in computations. To capture switch-
ing activity, the method described in Power Products Reference Manual
Appendix B has been used. The function rtl2saif creates a switching ac-
tivity file (SAIF) from the Verilog RTL design files in the Synopsys dc_shell.
dc_shell is the Synopsys tools command line interface. The UNIX utility
saif2trace is used to create a forward-annotation trace file based on the in-
formation about non-combinational and combinational elements in the SAIF
file. This file is included in the testbench to generate switching information
as a value change dump file (VCD) of the different design elements. The
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VCD file is converted to a backward-annotation SAIF file by the UNIX util-
ity vcd2saif, that uses the set_switching_activity command in dc_shell
to set the static probability and toggle rate for elements in the design. The
backward-annotation SAIF file is read in the dc_shell before compilation
by the function read_saif, which incorporates information about switch-
ing activity into the compilation and optimization process performed by the
Design CompilerTM and Power CompilerTM.

4.1.4 Setting Design Constraints

Area and power constraints are set by the dc_shell commands set_max_area,
and set_max_total_power. Maximum dynamic power and leakage power
may be set individually by the commands set_max_dynamic_power and
set_max_leakage_power, respectively. Timing constraints can be set by the
set_max_transition command from input ports or pins to output ports or
pins. However, if the design is clocked, Design CompilerTM assumes single
cycle datapaths between registers and the create_clock command can be
used to set timing. To synthesize and optimize the design the set_max_area
and set_max_total_power have been set to zero. To set timing constraints
of combinational logic between registers, the create_clock command has
been used.

Architecture one and two have been synthesized for 200MHz, 300MHz
and 400MHz clock frequency, and for different input data format distribu-
tions, as described in Section 4.1.3. When simulating switching activity, all
four rounding modes have been simulated for each format to capture switch-
ing in every register and combinational units. The compile_ultra command
from the dc_shell enables the Design Compiler Ultra optimizations available
from Synopsys as described in [28], which, i.a., includes advanced arithmetic
optimization and obtains better quality of result for timing and area. Design
Compiler Ultra and Power Compiler works side by side. Power Compiler op-
timizes for timing, area and power simultaneously and includes switching
activity information to obtain better results concerning power.

4.2 Architecture One

Architecture one attempts to be a power optimized vectorized floating-point
multiplier. In this Section, the area usage and power consumption of this
architecture, realized in 65nm and 90nm CMOS, will be investigated. Power
units are given in mW, and area units in µm2.
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4.2.1 Power

Table 4.1 and 4.3 presents internal-, switching-, leakage- and total power
dissipated by architecture one in 65nm and 90nm CMOS technology respec-
tively, with typical input data distribution, as described in Section 4.1.3 at
200MHz, 300MHz and 400MHz clock frequency. Table 4.2 and 4.4 shows
which part of the circuit that dissipates the largest amount of power.

Clock frequency Power

200 MHz

Internal 1.0800 85.17 % of dynamic power
Switching 0.1880 14.83 % of dynamic power
Leakage 0.0185 1.44 % of total power
Total 1.2860 100.00 % of total power

300 MHz

Internal 1.6190 85.30 % of dynamic power
Switching 0.2790 14.70 % of dynamic power
Leakage 0.0228 1.19 % of total power
Total 1.9210 100.00 % of total power

400 MHz

Internal 2.1700 84.83 % of dynamic power
Switching 0.3880 15.17 % of dynamic power
Leakage 0.0286 1.11 % of total power
Total 2.5870 100.00 % of total power

Table 4.1: Architecture one, 65nm CMOS total power consumption.

From Table 4.1 it can be seen that, in 65nm low power CMOS, leakage
power is much less than estimated, on average 1.25% of total power com-
pared to the estimated value of 30%. This is because no idle simulation has
been performed as in [2], and because target library is optimized for low
power. The major power component, internal power, is due to charging and
discharging of capacitive loads internal to the cells, where the cells represents
the instantiated Verilog modules. The average increase in total power con-
sumption equals 0.6505mW/100MHz. From Table 4.2 it can be seen that
over 85% of total power is consumed by registers in the 65nm circuit. Sig-
nificand multipliers only accounts for 4.63% of total power on average. This
is a surprising result, which contradicts the assumptions made in the power
estimation methodology, that the significand multipliers are the most power
consuming units in the design. However, this result is partially because of
datapath optimizations performed by the Synopsys tools, it is also possible
that the sequential elements are not optimized for low power in the same
manner as the datapath elements. This should be investigated further.

From Table 4.3 it can be seen that, in 90nm CMOS, power consumption
is much larger than in 65nm CMOS. All power components are increased in
size, internal, switching and leakage. The most important increase are the



4.2. ARCHITECTURE ONE 43

Clock frequency Power % of total power

200 MHz

Registers 87.6
Multiplier Unit 4.3
Rounding Unit 0.7
Select Output 3.0
Select Input 3.9

300 MHz

Registers 86.9
Multiplier Unit 4.7
Rounding Unit 0.9
Select Output 3.1
Select Input 3.6

400 MHz

Registers 86.6
Multiplier Unit 4.9
Rounding Unit 0.9
Select Output 3.0
Select Input 3.8

Table 4.2: Architecture one, 65nm CMOS building blocks power consump-
tion.

increase in ratio of switching power to total dynamic power and the ratio of
leakage power to total power. Switching power is on average, at the different
clock frequencies, 36% of total dynamic power, and leakage power 9.62% of
total power. The large increase in power consumption is partially because
the 65nm library is a low-power library, and Synopsys Design CompilerTM

and Power CompilerTM exploits features in the low-power library to obtain
lower power consumption, and hence internal-, switching- and leakage power
is reduced. The average increase in total power is 5.1850mW /100MHz. In
Table 4.4 power dissipated by major units, when realized in 90nm CMOS,
are presented. The results presented in Table 4.4 are more as expected,
where the significand multipliers accounts for the larger part of the total
power consumption. Approximately 60% of total power is dissipated in the
significand multipliers, and approximately 28% by the registers, compared
to the 65nm results where on average 87% is dissipated in registers and 4.6%
in multipliers.

Figure 4.1 shows power consumption of architecture one at 200MHz,
300MHz and 400MHz in 65nm CMOS and for typical input data distri-
bution, only FP16 input data, only FP32 input data and only FP64 input
data. At 200MHz a strange case occurs. When only FP16 computations
are performed, power consumption is much larger than when the other input
data distributions are computed. From the synthesis report it can be seen
that the large power consumption is mostly due to high internal and switch-
ing power in the 53-bit and one of the 24-bit multipliers. Architecture one
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Clock frequency Power

200 MHz

Internal 5.5030 64.15 % of dynamic power
Switching 3.0760 35.85 % of dynamic power
Leakage 1.1500 11.81 % of total power
Total 9.7340 100.00 % of total power

300 MHz

Internal 8.9450 64.17 % of dynamic power
Switching 4.9950 35.83 % of dynamic power
Leakage 1.4700 9.54 % of total power
Total 15.4090 100.00 % of total power

400 MHz

Internal 11.8440 63.70 % of dynamic power
Switching 6.7500 36.30 % of dynamic power
Leakage 1.5100 7.51 % of total power
Total 20.1040 100.00 % of total power

Table 4.3: Architecture one, 90nm CMOS total power consumption.

Clock frequency Power % of total power

200 MHz

Registers 28.2
Multiplier Unit 61.1
Rounding Unit 7.0
Select Output 1.0
Select Input 1.2

300 MHz

Registers 28.4
Multiplier Unit 60.0
Rounding Unit 8.0
Select Output 1.0
Select Input 1.1

400 MHz

Registers 27.0
Multiplier Unit 60.4
Rounding Unit 9.3
Select Output 0.9
Select Input 1.1

Table 4.4: Architecture one, 90nm CMOS building blocks power consump-
tion.
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(a) Power consumption at 200MHz.

(b) Power consumption at 300MHz.

(c) Power consumption at 400MHz.

Figure 4.1: Architecture one, 65nm CMOS power consumption.
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has been simulated and synthesized at 200MHz for only FP16 computations
several times to locate the reason for this strange behavior without luck.
The behavior is strange because this does not happen at either 300MHz or
400MHz clock frequency, where power consumption when performing FP16
computations are as expected. It may have happened because of insufficient
control in the synthesis process, because only power, area and timing con-
straints are set, unexpected optimizations may have occurred. Figure 4.1
shows that FP32 computations are the most power consuming, except the
strange case when performing FP16 computations at 200MHz. However,
what is important to remember is that switching activity information from
the simulation are included in the optimization process performed by Design
CompilerTM and the Power CompilerTM, which may lead to somewhat dif-
ferent circuits and hence power consumptions.

Figure 4.2 shows power consumption of architecture one at 200MHz,
300MHz and 400MHz in 90nm CMOS and for typical input data distri-
bution, only FP16 input data, only FP32 input data and only FP64 input
data. Figure 4.2 better highlights the effect of increasing clock frequency
than Figure 4.1 because the 90nm library is a general purpose library and
not optimized for low power. Figure 4.2 shows that for any of the three clock
frequencies, FP16 computations are the least power consuming. Typical in-
put data distribution is the second least power consuming, FP32 computa-
tions the second largest and FP64 computations the largest. Internal power
is significantly higher for typical input data distribution than for any other
because the capacitance switched internal to the multiplier unit is higher,
and switching power is significantly lower because several multipliers are now
driving the output. When performing only FP16, FP32 or FP64 computa-
tions the internal load capacitance is reduced because only some multipliers
are used, and hence internal power is reduced. Switching power is increased
because the output of the used multipliers have to drive a wide bus, and the
gates connected to the bus.

Figure 4.3 compares dissipated power by architecture one in 65nm and
90nm CMOS assuming typical input data distribution at 200MHz, 300MHz
and 400MHz. The differences are large. In 90nm CMOS, on average at
the different clock frequencies, 7.79 times more power is dissipated than in
65nm CMOS. It can also be seen that in 90nm CMOS, switching power
is a significantly larger part of the total dynamic power consumption. In
addition, leakage power is much higher in the 90nm circuit. However, many
of the differences are probably mostly due to that the 90nm library is a
general purpose library not optimized for low power, as the 65nm library
is. Hence, different optimizations are performed by the Synopsys tools to
meet the constraints of lowest possible total power consumption and smallest
possible area at a given clock frequency.
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(a) Power consumption at 200MHz.

(b) Power consumption at 300MHz.

(c) Power consumption at 400MHz.

Figure 4.2: Architecture one, 90nm CMOS power consumption.
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(a) Power comparison at 200MHz.

(b) Power comparison at 300MHz.

(c) Power comparison at 400MHz.

Figure 4.3: Architecture one, 90nm and 65nm CMOS power comparison.
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4.2.2 Area

Table 4.5 and 4.6 presents registers, significand multiplier unit, exponent
unit, rounding and exception unit and total area usage by architecture one
in 65nm and 90nm CMOS technology, with typical input data distribution.

Clock frequency Area

200 MHz

Registers 5347.6470 9.46 % of total area
Multiplier unit 42684.6992 75.50 % of total area
Exponent unit 827.8377 1.47 % of total area
Rounding unit 4378.4097 7.74 % of total area
Total 56536.7109 100 % of total area

300 MHz

Registers 5357.0068 8.96 % of total area
Multiplier unit 45084.0664 75.37 % of total area
Exponent unit 829.3976 1.39 % of total area
Rounding unit 5220.324 8.73 % of total area
Total 59816.4414 100 % of total area

400 MHz

Registers 5406.4063 8.6 % of total area
Multiplier unit 47699.4180 75.84 % of total area
Exponent unit 828.8778 1.32 % of total area
Rounding unit 5557.2886 8.84 % of total area
Total 62899.0469 100 % of total area

Table 4.5: Architecture one, 65nm CMOS area usage.

Differences in area usage for the four input data distributions considered
in Section 4.2.1 are small compared to differences in power consumption and
around 1% at the different clock frequencies. The registers, multiplier unit
and rounding and exception unit are the most area consuming building blocks
in architecture one when realized in both 65nm and 90nm CMOS technology.
Significand multipliers are by far the largest building block, which together
with registers and the rounding and exception logic accounts for over 90% of
total area. The ratio of registers to total area, multiplier unit to total area
and rounding and exception unit to total area does not change significantly
when realized in 65nm CMOS or 90nm CMOS. On average, at 200MHz,
300MHz and 400MHz, the 90nm circuit is 1.91 times larger than the 65nm
circuit. This is a bit larger than expected, because the gate length in 90nm
CMOS is approximately 1.4 times larger than in 65nm CMOS. However, area
is also dependent of available gates and marco blocks in the target library.
Area usage is, as power consumption, dependent on clock frequency, because
area is traded to meet the timing constraints, mainly in the 53-bit significand
multiplier. The increase in total area are more linearly increasing with clock
frequency in the 65nm circuit than the 90nm circuit.
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Clock frequency Area

200 MHz

Registers 9983.7744 9.17 % of total area
Multiplier unit 83370.6250 76.58 % of total area
Exponent unit 1564.0778 1.44 % of total area
Rounding unit 8086.0181 7.43 % of total area
Total 108863.2578 100 % of total area

300 MHz

Registers 9995.8486 8.59 % of total area
Multiplier unit 89636.4297 77.03 % of total area
Exponent unit 1571.7610 1.35 % of total area
Rounding unit 8897.1494 7.65 % of total area
Total 116362.0625 100 % of total area

400 MHz

Registers 9989.2627 8.47 % of total area
Multiplier unit 89948.2031 76.27 % of total area
Exponent unit 1568.4681 1.33 % of total area
Rounding unit 9979.4297 8.46 % of total area
Total 117933.8281 100 % of total area

Table 4.6: Architecture one, 90nm CMOS area usage.

4.3 Architecture Two

Architecture two trades power for area, and attempts to be an area and
throughput optimized vectorized floating-point multiplier. This Section in-
vestigates power consumption and area usage of architecture two, realized in
65nm and 90nm CMOS at 200MHz, 300MHz and 400MHz clock frequency.
As for architecture one, power units are given in mW, and area units in µm2.

4.3.1 Power

Table 4.7 and 4.9 presents internal-, switching-, leakage- and total power dis-
sipated by architecture two realized in a 65nm low-power CMOS and 90nm
CMOS, with typical input data distribution as described in Section 4.1.3.

In the 65nm circuit, power is mostly dissipated by charging and dis-
charging of capacitances internal to the cells, and charging and discharging
of capacitances at the output of the cells. Leakage power is very low, and
the ratio of leakage power to total power decreases with increasing clock fre-
quency because the dynamic power component grows faster than the static
power component. The estimated leakage power is over 90 times larger on
average, at the different clock frequencies. Table 4.8 shows which building
blocks in the design that dissipates the most power. The registers, signifi-
cand multipliers and the rounding and exception logic accounts for approx-
imately 95% of total power consumption, where the multiplier unit is the
most power consuming building block. The average increase in power is
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Clock frequency Power

200 MHz

Internal 2.4660 57.46 % of dynamic power
Switching 1.8260 42.54 % of dynamic power
Leakage 0.0168 0.39 % of total power
Total 4.3088 100 % of total power

300 MHz

Internal 4.2240 57.59 % of dynamic power
Switching 3.1100 42.41 % of dynamic power
Leakage 0.0229 0.31 % of total power
Total 7.3569 100 % of total power

400 MHz

Internal 5.3430 56.61 % of dynamic power
Switching 4.0950 43.39 % of dynamic power
Leakage 0.0215 0.23 % of total power
Total 9.4595 100 % of total power

Table 4.7: Architecture two, 65nm CMOS total power consumption.

Clock frequency Power % of total power

200 MHz

Registers 36.2
Multiplier Unit 52.9
Rounding Unit 6.8
Select Output 1.6
Select Input 1.2

300 MHz

Registers 35.3
Multiplier Unit 54.8
Rounding Unit 7.2
Select Output 1.5
Select Input 1.1

400 MHz

Registers 33.2
Multiplier Unit 54.2
Rounding Unit 8.1
Select Output 1.5
Select Input 1.1

Table 4.8: Architecture two, 65nm CMOS building blocks power consump-
tion.
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Clock frequency Power

200 MHz

Internal 6.4050 64.16 % of dynamic power
Switching 3.5780 35.84 % of dynamic power
Leakage 0.9980 9.09 % of total power
Total 10.9810 100.00 % of total power

300 MHz

Internal 10.5920 64.97 % of dynamic power
Switching 5.7120 35.03 % of dynamic power
Leakage 1.1600 6.64 % of total power
Total 17.4640 100.00 % of total power

400 MHz

Internal 14.1970 64.08 % of dynamic power
Switching 7.9570 35.92 % of dynamic power
Leakage 1.3100 5.58 % of total power
Total 23.4620 100.00 % of total power

Table 4.9: Architecture two, 90nm CMOS total power consumption.

Clock frequency Power % of total power

200 MHz

Registers 26.8
Multiplier Unit 63.2
Rounding Unit 5.7
Select Output 1.3
Select Input 1.1

300 MHz

Registers 25.1
Multiplier Unit 61.3
Rounding Unit 7.8
Select Output 1.4
Select Input 1.0

400 MHz

Registers 25.4
Multiplier Unit 63.0
Rounding Unit 7.8
Select Output 1.3
Select Input 1.0

Table 4.10: Architecture two, 90nm CMOS building blocks power consump-
tion.
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2.5735mW/100MHz.

Table 4.9 presents internal-, switching-, leakage- and total power dissi-
pated by architecture two realized in 90nm CMOS. Compared to the 65nm
circuit, the 90nm circuit has significantly higher total power consumption
at all clock frequencies. The internal power percentage is higher, while the
switching power percentage is lower. Leakage power is also increased com-
pared to the 65nm circuit, and on average responsible for 7.10% of total
power consumption. The ratio leakage to total power is reduced as clock
frequency increases, because internal and switching power grows faster than
leakage power. Leakage power is independent of clock frequency but pro-
portional to area. As clock frequency increases, larger area are required
by mainly the significand multipliers as a tradeoff between area, timing and
power. Average increase in power is 6.2405mW /100MHz, which is 3.6670mW
higher than the 65nm circuit. Table 4.10 shows which part of the circuit
that dissipates most power. Compared to the 65nm circuit, less power is
consumed by the registers, and more power is consumed by the multiplier
unit. Average increase in power consumed by the multiplier unit is 8.53%,
and average reduction in power consumed by the registers are 9.13%. As for
the 65nm circuit, the rounding unit is the third most power consuming unit.
The differences in leakage-, internal- and switching power of the 65nm circuit
and the 90nm circuit are probably due to different optimizations performed
by the Synopsys tools based on available cells in the target library.

Figure 4.4 shows power consumption of architecture two at 200MHz,
300MHz and 400MHz in 65nm CMOS and for typical input data distribu-
tion, only FP16 input data, only FP32 input data and only FP64 input data.
Internal-, switching-, leakage- and total power are included to show how in-
put data distribution affects power consumption of architecture two. FP16
computations dissipates the least amount of power at all clock frequencies,
mostly because of less charging and discharging of load capacitances both
internal in multiplier cells and at their outputs. The differences of the four
input data distributions increases with clock frequency, and are clearest at
400MHz. Figure 4.5 shows power consumption of architecture two realized
in 90nm CMOS, which shows even larger differences in power consumption
at increasing clock frequency compared to the 65nm circuit. The effect of
which data format used are somewhat different in the 65nm circuit and the
90nm circuit. The most significant difference are the internal- and switching
power component of the two circuits. In the 65nm circuit, the internal power
are almost equal for typical input data, FP32 input data and FP64 input
data, however in the 90nm circuit, the internal power is significantly larger
for typical input data than for FP32- and FP64 input data. In both circuits,
the internal power are smallest for FP16 input data. In the 65nm circuit,
the switching power are almost equal for typical input data, FP32- and FP64
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(a) Power consumption at 200MHz.

(b) Power consumption at 300MHz.

(c) Power consumption at 400MHz.

Figure 4.4: Architecture two, 65nm CMOS power consumption.
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(a) Power consumption at 200MHz.

(b) Power consumption at 300MHz.

(c) Power consumption at 400MHz.

Figure 4.5: Architecture two, 90nm CMOS power consumption.
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(a) Power comparison at 200MHz.

(b) Power comparison at 300MHz.

(c) Power comparison at 400MHz.

Figure 4.6: Architecture two, 90nm and 65nm CMOS power comparison.
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input data as well, but in the 90nm circuit typical input data has the lowest
switching power, then FP16- input data, and FP32- and FP64 input data
have almost equal switching power. These differences are probably due to
available cells in the target library, and hence optimization performed in the
datapaths. In the simplified power estimation methodology used to compare
the architectures, architecture two was estimated to have equal power con-
sumption for only FP16, only FP32 and only FP64 computations. This is not
the case. In the estimation methodology, is was assumed that every bit in the
multipliers had equal switching for all formats. As seen from Figure 4.4 and
Figure 4.5, FP16 computations have both less switching and internal power
compared to FP32 and FP64 computations. This should be considered if the
power estimation methodology is to be improved. Concerning total power,
both circuits have power consumptions where FP16 computations requires
the least amount of power, then typical input data computations, and FP32-
and FP64 computations have almost equal total power consumptions.

Figure 4.3 compares dissipated power by architecture two in 65nm and
90nm CMOS assuming typical input data distribution. Power consumption
by the 90nm circuit is on average 10.26mW higher than the 65nm circuit,
at 200MHz, 200MHz and 400MHz clock frequency. Differences in leakage
power of the two circuits are well highlighted in Figure 4.3. Internal- and
switching power are closer to equal for the 65nm circuit than the 90nm cir-
cuit. This is due to more switching internal in the cells in the 90nm circuit,
and less switching of outputs. These differences are probably due to different
optimizations because of available cells in the target library.

4.3.2 Area

The area usage of architecture two is presented in Table 4.11 and 4.12, where
area required by registers, the multiplier unit, the exponent unit and the
exception and rounding unit, in addition to total area are included.

Differences in area usage for the four input data distributions are small
compared to differences in power consumption and around 1 % at the dif-
ferent clock frequencies. The significand multiplier unit is by far the largest
unit in both the 65nm circuit and the 90nm circuit. The ratio of multi-
plier unit area to total area is approximately 2% larger in the 90nm circuit,
compared to the 65nm circuit. The 90nm circuit are on average 1.93 times
larger than the 65nm circuit and 200MHz, 300MHz and 400MHz clock
frequency. The area usage of architecture two increases more linearly with
clock frequency when realized in the 90nm general purpose library. When
realized in the 65nm low-power library, the largest increase in area occurs
when going from 200MHz to 300MHz clock frequency. When going from
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Clock frequency Area

200 MHz

Registers 5739.7617 12.27 % of total area
Multiplier unit 33117.7344 70.77 % of total area
Exponent unit 656.7595 1.40 % of total area
Rounding unit 3883.3469 8.30 % of total area
Total 46796.8789 100 % of total area

300 MHz

Registers 5775.6426 11.36 % of total area
Multiplier unit 36380.5391 71.55 % of total area
Exponent unit 659.3595 1.30 % of total area
Rounding unit 4614.4980 9.08 % of total area
Total 50843.0000 100 % of total area

400 MHz

Registers 5800.0767 11.53 % of total area
Multiplier unit 35370.0977 70.30 % of total area
Exponent unit 675.4794 1.34 % of total area
Rounding unit 4896.8638 9.73 % of total area
Total 50314.1602 100 % of total area

Table 4.11: Architecture two, 65nm CMOS area usage.

Clock frequency Area

200 MHz

Registers 10668.7070 11.7 % of total area
Multiplier unit 66626.7500 73.06 % of total area
Exponent unit 1250.1659 1.37 % of total area
Rounding unit 6541.7031 7.17 % of total area
Total 91194.0938 100 % of total area

300 MHz

Registers 10696.1465 11.23 % of total area
Multiplier unit 68993.0703 72.44 % of total area
Exponent unit 1247.9708 1.31 % of total area
Rounding unit 8062.9741 8.47 % of total area
Total 95242.0469 100 % of total area

400 MHz

Registers 10759.8096 10.81 % of total area
Multiplier unit 71746.6641 72.10 % of total area
Exponent unit 1255.6536 1.26 % of total area
Rounding unit 8995.9385 9.04 % of total area
Total 99506.2188 100 % of total area

Table 4.12: Architecture two, 90nm CMOS area usage.
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300MHz to 400MHz, area is reduced somewhat for the 65nm circuit. This
is probably because at 300MHz, the 65nm circuit has traded area for better
power results.

4.4 Power Comparison

Because architecture one trades area for better power results, and architec-
ture two trades power for better area results, different power and area results
were expected, as estimated in Section 2.2 and 2.3. This Section will compare
the power results of the implemented architectures. In addition, because the
65nm circuits are realized using a low-power CMOS process, and the 90nm
circuits are realized using a general purpose CMOS process, differences in
target process will be highlighted. Figure 4.7 compares dissipated power
by architecture one and two at 200MHz, 300MHz and 400MHz for typical
input data distribution realized in a 65nm low-power CMOS process, and
Figure 4.8 compares dissipated power by the two architectures realized in a
90nm general purpose CMOS process.

From Figure 4.7 it can be seen that architecture one has much better
power results than architecture two. On average, at 200MHz, 300MHz and
400MHz, power consumed by architecture two is 5.1104mW larger than
by architecture one. Both internal power and switching power are signif-
icantly lower in architecture one, due to reduced switching inside the cells
and switching at the their outputs. Hence, to obtain the best power results
architecture one should be chosen. The difference in power consumption by
the two architectures grows larger as clock frequency increases. However, be-
cause the vectorized floating-point multipliers are reaching the limit of how
much clock frequency can be increased without introducing pipeline registers
in the significand multipliers, or multicycle multipliers, power results may be
different at higher frequencies. Because of the surprising result that registers
are more power consuming the 65nm circuit of architecture one, power may
be further reduced if low-power registers are used, assuming this is the cause
for the result.

If the two architectures are realized in a 90nm general purpose CMOS
process, the differences between architecture one and architecture two are less
distinct, as seen in Figure 4.8. On average, at the different clock frequen-
cies, architecture two consumes 2.2200mW more power than architecture
one. The difference in power consumption of the two architectures are much
less when realized in a general purpose process than if a low-power process
is used. However, the difference grows larger as clock frequency increases
because dynamic power becomes more dominant over leakage power. At
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(a) Power comparison at 200MHz.

(b) Power comparison at 300MHz.

(c) Power comparison at 400MHz.

Figure 4.7: 65nm architecture power comparison.
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(a) Power comparison at 200MHz.

(b) Power comparison at 300MHz.

(c) Power comparison at 400MHz.

Figure 4.8: 90nm architecture power comparison.
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400MHz, the difference in power consumption of the two architectures equals
approximately 4mW, while at 200MHz the difference is approximately 1mW.
As for the 65nm circuits, to obtain the best power result, architecture one
should be chosen.

(a) Estimated vs. real power, only FP16 input data.

(b) Estimated vs. real power, only FP32 input data.

(c) Estimated vs. real power, only FP64 input data.

Figure 4.9: Estimated vs. real power comparison.

Architecture one and two was selected for implementation based on esti-
mations performed in Chapter 2. Figure 4.9 compares the estimated power
consumption of architecture one and two to the real power consumption ob-
tained from synthesis, for only FP16 input data, only FP32 input data and
only FP64 input data. The numbers for the real power consumption are
from the 65nm circuits at 300MHz, but the same relative difference between
the architectures would be obtained at 200MHz and 400MHz, and by the
90nm circuits, except at 200MHz in the 65nm architecture one circuit where
power consumption is surprisingly high when computing only FP16 input
data. As seen from Figure 4.9, the estimated power consumption gives a
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good picture of the relative difference between the two architectures, except
when only FP64 input data are computed. When only FP64 input data are
computed, architecture one is estimated to have higher power consumption
than architecture two. This is because static power was assumed to be 30%
of total power consumption, which is much higher than in both the 65nm
and the 90nm circuits, where average static power is less than 1.5% and less
10%, respectively. In addition, significand multipliers are not implemented
as array multipliers as assumed in the estimation methodology but parallel-
prefix multipliers which exploits low-power features in the target library to
obtain better power results. The relative estimated difference in power con-
sumption by the two architectures, is largest when only FP16 input data is
computed, and decreases when only FP32 data is computed. But, as seen
in Figure 4.9, the real difference in power consumption grows larger larger
when only FP32 and only FP64 input data is computed compared to only
FP16 input data. Hence, the estimation methodology predicted correctly in
two of three cases, and has a fidelity of 66%.

4.5 Area Comparison

Architecture one trades area for better power results, and architecture two
trades power for better area results. By using multipliers, adders and sub-
tractors, and rounding and exception logic that exactly fit the width of the
operands being computed, architecture one reduces total power consumption
at the cost of additional multipliers, adders and subtractors, and rounding
and exception logic. This additional logic increases total area significantly,
compared to architecture two. Figure 4.10 compares the 65nm circuits con-
cerning area usage, and Figure 4.11 compares the 90nm circuits. The relative
difference in area usage of the two architectures are approximately equal in
the 65nm and 90nm circuits. On average, in the 65nm realization of archi-
tecture one and two, architecture one is 10432.7200 µm2 larger than archi-
tecture two. In the 90nm realization, architecture one is 19072.2630 µm2

larger than architecture two. On average, at different clock frequencies, the
multiplier unit in architecture two accounts for approximately 70% of total
area in 90nm CMOS, and approximately 72% in 65nm CMOS. In architec-
ture one, the multiplier unit accounts for approximately 76% of total area
in both 65nm and 90nm CMOS. Hence, the multiplier unit is the largest
unit in both architectures. Figure 4.10 and 4.11 shows that the differences
in the multiplier unit accounts for almost all the difference between the ar-
chitectures. The difference in area usage by registers, exponent unit and
rounding and exception unit is very small. As discussed in Section 4.2.2,
area of architecture one increases more linearly with clock frequency in the
65nm circuits than in the 90nm circuits. For architecture two, area increases
more linearly with increasing clock frequency in the 90nm circuits than in
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the 65nm circuits. This is probably due to the nature of the architectures
and optimization performed by the Synopsys tools based on target library.

As can be seen from Table 4.5, 4.6, 4.11 and 4.12, significand multipliers
accounts for more than 70% of total area, and registers for more than 9%
of total area. The estimations performed in Section 2.3 is based on transis-
tors used in significand multipliers, exponent adders and registers, assuming
multipliers implemented as array multipliers. In the synthesized circuits,
significand multipliers are implemented as parallel-prefix multiplier from the
DesignWare R© library provided by Synopsys. In the estimations performed
in Section 2.3, architecture one is estimated to require approximately 15%
larger area than architecture two. In the 90nm realization of the two ar-
chitectures, architecture one requires, on average at the different clock fre-
quencies, 16.7% larger area than architecture two. In the 65nm circuits, on
average, architecture one requires 17.5% larger area than architecture two.
Hence, the estimation methodology has a fidelity of 100%, even if significand
multipliers are implemented differently than assumed. This is because the
multipliers are by far the largest building blocks of the design, and together
with the registers accounts for approximately 80% of total area at different
clock frequencies and target technologies.
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(a) Area usage at 200MHz.

(b) Area usage at 300MHz.

(c) Area usage at 400MHz.

Figure 4.10: 65nm CMOS architecture area comparison.
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(a) Area usage at 200MHz.

(b) Area usage at 300MHz.

(c) Area usage at 400MHz.

Figure 4.11: 90nm CMOS architecture area comparison.



Chapter 5

Conclusions

This Chapter concludes the thesis. Four, partially IEEE compliant, pipelined,
vectorized floating-point multipliers supporting FP16, FP32 and FP64 input
data was proposed in [7], and evaluated concerning area, power, latency and
throughput. A methodology for estimating power has been developed to help
choosing the best architecture to implement given a set of constraints. Two
architectures with different area usage and power consumption have been
implemented in RTL. Architecture one trades area for better power results,
and architecture two trades power for smaller area. The two architectures
have equal latency and throughput. The implemented architectures have a
latency of five clock cycles, and a throughput of 38400Mbit/s at 300MHz
clock frequency.

The architectures have been tested with 500,000 testcases for each sup-
ported format and rounding mode to ensure correct behavior according to
the IEEE standard for binary floating-point arithmetic. The simulations re-
vealed an error in the rounding logic, which in rare cases rounds the product
to zero when it should be rounded to the smallest representable normalized
number in round-to-nearest even and round-to positive infinity mode. The
error is believed to be format independent, but has only been detected when
performing FP16 computations.

Architecture one and two have been synthesized at 200MHz, 300MHz and
400MHz clock frequency, and for typical input data distribution, assuming
20% FP16 computations, 60% FP32 computations and 20% FP64 compu-
tations. In addition, the architectures have been synthesized for only FP16
computations, only FP32 computations and only FP64 computations to see
how input data distribution affects power consumption. The architectures
have been synthesized using a 65nm low-power standard cell library, and
a 90nm general purpose standard cell library, to see how target technology
affects the architectures concerning power.

67
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5.1 Estimation Methodologies

An area estimation methodology was developed in [7], and a power estima-
tion methodology has been developed in this thesis. The estimation method-
ologies have been used to select architecture one and two for implementation.

Power is estimated based on power dissipated by the significand mul-
tipliers, and simulation results from [1] and [2]. Static power consumed
by a Full-Adder cell was computed using results from [1]. Assuming 30%
static power consumption, in accordance with simulations performed in [2],
dynamic power was computed from static power. The total power dissi-
pated by the significand multipliers in the four proposed architectures was
computed assuming multipliers implemented as array multipliers, using full-
adders. Because static power is strongly technology dependent, and varies
between process technologies, this estimation methodology has several uncer-
tainties and sources of error. The power estimation methodology predicted
architecture one to have the lowest power consumption for FP16 and FP32
input data, and architecture two to have the lowest power consumption for
FP64 input data. From synthesis power reports it is seen that architecture
one has lower power consumption than architecture two for all input data
distributions, clock frequencies, and in both 65nm and 90nm technology.
Hence, the power estimation methodology predicted correctly in two of the
three estimated input data cases and has a fidelity of 66%.

Because area required by registers and significand multipliers accounts
for the larger part of the vectorized floating-point multipliers proposed in [7],
this is used to compare the architectures concerning area. Area estimations
are performed based on the transistor count in significand multipliers and
registers. The ratio of number of transistors in a Full-Adder cell to number
of transistors in a 1-bit register, is used to compute the area required by
the significand multipliers and registers of the different architectures. This
gives a good picture of the the relative difference in area usage by the four
architectures. Architecture one was estimated to be 15% larger than archi-
tecture two. From synthesis area reports it is seen that architecture one is
16.7% larger than architecture two in 90nm technology, and 17.5% in 65nm
technology, on average at 200MHz, 300MHz and 400MHz clock frequency.
Hence, the estimation methodology predicted a quite accurate relative dif-
ference between the architectures, and has a fidelity of 100%.

5.2 Power Results

The implemented architectures are designed to have different power con-
sumptions, independent of target technology. But, because the 65nm li-
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brary is a low-power process, and the 90nm library is a general purpose
process, this highlights the differences in power consumption by the two
architectures depending on target technology, in addition the the architec-
tural differences. When realized in a 65nm low-power library, architecture
one has a total power consumption of 1.9200mW at 300MHz, and architec-
ture two a total power consumption of 7.3569mW. The average increase in
total power consumption is 0.6505mW /100MHz for architecture one, and
2.5735mW /100MHz for architecture two. When realized in a 90nm gen-
eral purpose library, architecture one has a total power consumption of
15.4090mW at 300MHz, and an average increase in total power consumption
equal to 5.1850mW /100MHz. Architecture two has a total power consump-
tion of 17.4640mW, and an average increase of 6.2405mW /100MHz.

The difference in power consumption by the two architectures are higher
when realized in a low-power process than in a general purpose process tech-
nology. The difference in power consumption at 300MHz is 5.4369mW. This
is because the synthesis tools exploits the low-power properties of the library
when performing circuit optimization. When realized in a general purpose
library, the difference in total power consumption is 2.0550mW at 300MHz.
Hence, to fully obtain the best power result, architecture one should be re-
alized in a low-power process.

5.3 Area Results

Because architecture one trades area for better power results it was estimated
to use 15% larger area than architecture two. When realized in the 65nm
library, architecture one area usage is 59816.4414µm2 at 300MHz, architec-
ture two area usage is 50843.0000µm2. When realized in the 90nm library,
architecture one area usage is 116362.0625µm2, and architecture two area
usage is 95242.0469µm2. Area is affected by clock frequency because area is
traded to meet timing constraints, mainly in the 53-bit significand multiplier.
In the 65nm circuits, architecture one is 17.5% larger than architecture two,
and in the 90nm circuits, architecture one is 16.7% larger than architecture
one. Hence, the relative difference in area usage are approximately equal
when realized in a low-power library and a general purpose library.

5.4 Future Work

The implemented architectures have several improvements. Sticky excep-
tions, and clearing of exceptions have not been implemented properly. The
implemented vectorized floating-point multipliers generates exceptions ac-
cording to the IEEE standard for binary floating-point arithmetic, but the
standard requires that exceptions shall be sticky and explicitly cleared by



70 CHAPTER 5. CONCLUSIONS

user. By writing to a clear-register, exceptions should be cleared. This has
not been implemented according to the standard, and should be implemented
to comply the IEEE standard.

An error in the rounding logic has been detected when simulating only
FP16 input data in rounding-to-nearest even and round-to positive infinity
mode. The error is believed to be format independent, but is only success-
fully detected by the FP16 input vectors. Result should be rounded to the
smallest representable normalized number, but is rounded to zero. This er-
ror also has to be corrected to make the vectorized floating-point multipliers
IEEE compliant. Rounding could be performed more effectively if the QFT
algorithm presented in [20] is used. This requires the sum and carry form
the significand multipliers to be delivered as carry-save encoded vectors. The
DesignWare R© library provides a multiplier with carry-save encoded sum and
carry output [29], which could be used when implementing this algorithm.

Because the power estimation methodology did not predict correct rela-
tive difference in power consumption in all cases, this should be improved.
To improve the power estimation methodology, target technology has to be
taken into account, because static power differs significantly for a low-power
library and a general purpose library. In addition, power consumption of ar-
chitecture two is are not equal for FP16 computations, FP32 computations
and FP64 computations as estimated. As seen from the 65nm synthesis
results of architecture one, the multiplier unit is not the most power con-
suming. This should be investigated further. If this is the case, the power es-
timation methodology can not be based on the significand multipliers alone,
power dissipated by registers also have to be included. A weight-function
should be developed, where input format distribution and target technology
are included when estimating power. Power, area and throughput should
be weighted for a given set of architectures and constraints to give a bet-
ter basis for choosing the best architecture to implement. Clock frequency
should perhaps be included in the methodology as well, because differences
in power consumption by the two architectures grows larger with increasing
clock frequency.

The architectures are generically implemented, and can relatively easy
be changed to a 256-bit input vectorized floating-point multiplier. The dif-
ferences in area usage will be greater, and it might be interesting to look at
power consumption of the two architectures, especially in a general purpose
process where static power is a significant contributor to total power. Hence,
architecture two might have better power results than architecture two due
to lower static power dissipation, and because FP16, FP32 and FP64 compu-
tations have not equal dynamic power consumption as assumed in the power
estimation methodology.
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Appendix A

Architecture One Verilog
Sources

The defines file contains definitions used in the design files.
1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : d e f i n e s . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Wed May 14 11:45 :28 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Contains d e f i n i t i o n s used in the des ign f i l e s .
7 // Openrand widths , exponent widths , s i g n i f i c a n d widths ,
8 // b i a s va lue s and bus widths .
9 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10
11 ‘define FP16 0
12 ‘define FP32 1
13 ‘define FP64 2
14
15 ‘define FP16W 16
16 ‘define FP32W 32
17 ‘define FP64W 64
18
19 ‘define FP16SW 10
20 ‘define FP32SW 23
21 ‘define FP64SW 52
22
23 ‘define FP16EW 5
24 ‘define FP32EW 8
25 ‘define FP64EW 11
26
27 ‘define FP16BIAS 15
28 ‘define FP32BIAS 127
29 ‘define FP64BIAS 1023
30
31 ‘define FRACBUS 2∗( ‘FP64SW+1)
32 ‘define EXPBUS 4∗‘FP32EW
33 ‘define SIGNBUS 4
34
35 ‘define BUS 128
36
37 ‘define EVEN 0
38 ‘define PINF 1
39 ‘define NINF 2

73
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40 ‘define ZERO 3
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : vec_fp_mult . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 10:30 :15 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Vector i zed FP16/FP32/FP64 f l o a t i n g−po in t mu l t i p l i e r
7 // top module . Assembles the a r c h i t e c t u r e .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ‘ include " d e f i n e s . v"
11
12 module vec_fp_mult
13 (
14 s ta r t , // Input . S t a r t s computation .
15 vector s , // Input . FP vec t o r s to be computed .
16 format , // Input . Format o f v e c t o r s .
17 mode , // Input . Rounding mode .
18 c l ea r , // Input . Clears s p e c i f i e d excep t i ons .
19 products , // Output . Computed products .
20 except ions , // Output . Except ions ra i s ed .
21 ready , // Output . Output vec to r ready .
22 clk ,
23 reset_n
24 ) ;
25
26 // input ( s )
27 input c l k ;
28 input reset_n ;
29 input s t a r t ;
30 input [ ‘BUS−1:0 ] v e c t o r s ;
31 input [ 1 : 0 ] format ;
32 input [ 1 : 0 ] mode ;
33 input [ 1 5 : 0 ] c l e a r ;
34
35 // output ( s )
36 output [ ‘BUS−1:0 ] products ;
37 output [ 1 5 : 0 ] except i on s ;
38 output ready ;
39
40 // wire ( s )
41 wire r e s e t ;
42 wire [ ‘BUS/2−1:0] DRH_to_stage2 ;
43 wire [ ‘BUS/2−1:0] DRL_to_stage2 ;
44 wire [ 1 : 0 ] IR_to_stage2 ;
45 wire [ 1 : 0 ] IR_to_stage3 ;
46 wire [ 1 : 0 ] IR_to_stage4 ;
47 wire [ 1 : 0 ] M_to_stage2 ;
48 wire [ 1 : 0 ] M_to_stage3 ;
49 wire [ 1 : 0 ] M_to_stage4 ;
50 wire [ 1 5 : 0 ] S0_to_stage4 ;
51 wire [ ‘FRACBUS−1:0 ] DRF_to_stage3 ;
52 wire [ ‘FRACBUS−1:0 ] DRF_to_stage4 ;
53 wire [ ‘EXPBUS−1:0 ] DRE_to_stage3 ;
54 wire [ ‘EXPBUS/2+3:0] DRE_to_stage4 ;
55 wire [ ‘SIGNBUS−1:0 ] DRS_to_stage3 ;
56 wire [ ‘SIGNBUS/2−1:0] DRS_to_stage4 ;
57 wire start_to_stage1 ;
58 wire start_to_stage2 ;
59 wire start_to_stage3 ;
60 wire start_to_stage4 ;
61 wire load_ST0 ;
62
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63
64 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 // Module i n s t a n t i a t i o n .
66 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67
68 // Reg i s t e r s . Keep t rack o f s t a r t s i g n a l to s e t ready s i g n a l when
69 // needed .
70
71 reg_enable #(1) ST0
72 (
73 . d ( s t a r t ) , // Data in .
74 . q ( start_to_stage1 ) , // Data out .
75 . enable ( load_ST0 ) , // Enable b i t .
76 . c l k ( c l k ) ,
77 . r e s e t ( r e s e t )
78 ) ;
79
80 f f #(1) ST1
81 (
82 . d ( start_to_stage1 ) , // Data in .
83 . q ( start_to_stage2 ) , // Data out .
84 . c l k ( c l k ) ,
85 . r e s e t ( r e s e t )
86 ) ;
87
88 f f #(1) ST2
89 (
90 . d ( start_to_stage2 ) , // Data in .
91 . q ( start_to_stage3 ) , // Data out .
92 . c l k ( c l k ) ,
93 . r e s e t ( r e s e t )
94 ) ;
95
96 f f #(1) ST3
97 (
98 . d ( start_to_stage3 ) , // Data in .
99 . q ( start_to_stage4 ) , // Data out .

100 . c l k ( c l k ) ,
101 . r e s e t ( r e s e t )
102 ) ;
103
104 // Pipe l ine s tage 1 .
105 stage1 s tage1
106 (
107 . v e c t o r s ( v e c t o r s ) , // Input . Vectors .
108 . s t a r t ( s t a r t ) , // Input . S ta r t computing .
109 . format ( format ) , // Input . Data format .
110 .mode (mode) , // Input . Rounding mode .
111 .DRH0_out (DRH_to_stage2 ) , // Output . [ 1 27 : 64 ] o f input .
112 .DRL0_out (DRL_to_stage2 ) , // Output . [ 6 3 : 0 ] o f input .
113 . IR0_out ( IR_to_stage2 ) , // Output . Format .
114 .M0_out (M_to_stage2 ) , // Output . Rounding mode .
115 . c l k ( c l k ) ,
116 . r e s e t ( r e s e t )
117 ) ;
118
119 // Pipe l ine s tage 2 .
120 stage2 s tage2
121 (
122 .DRH0 (DRH_to_stage2 ) , // Input from input r e g i s t e r

DRH0.
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123 .DRL0 (DRL_to_stage2 ) , // Input from input r e g i s t e r
DRL0.

124 . format ( IR_to_stage2 ) , // Input from format r e g i s t e r
IR0 .

125 .mode (M_to_stage2 ) , // Input from mode r e g i s t e r M0.
126 .DRF0_out (DRF_to_stage3 ) , // Output to s i g n i f i c a nd mults .
127 .DRE0_out (DRE_to_stage3 ) , // Output to exponent adders .
128 .DRS0_out (DRS_to_stage3 ) , // Output to s i gn computation .
129 . IR1_out ( IR_to_stage3 ) , // Output .
130 .M1_out (M_to_stage3 ) , // Output .
131 . c l k ( c l k ) ,
132 . r e s e t ( r e s e t )
133 ) ;
134
135 // Pipe l ine s tage 3 .
136 stage3 s tage3
137 (
138 .DRF0 (DRF_to_stage3 ) , // Input from r e g i s t e r DRF0.
139 .DRE0 (DRE_to_stage3 ) , // Input from r e g i s t e r DRE0.
140 .DRS0 (DRS_to_stage3 ) , // Input from r e g i s t e r DRS0.
141 . format ( IR_to_stage3 ) , // Input from format r e g i s t e r .
142 .mode (M_to_stage3 ) , // Input from mode r e g i s t e r .
143 .DRS1_out (DRS_to_stage4 ) , // Output to s i gn r e g i s t e r .
144 .DRE1_out (DRE_to_stage4 ) , // Output to exponent r e g i s t e r .
145 .DRF1_out (DRF_to_stage4 ) , // Output to f r a c t i on r e g i s t e r .
146 . S0_out ( S0_to_stage4 ) , // Output to s p e c i a l r e g i s t e r .
147 .M2_out (M_to_stage4 ) , // Output to mode r e g i s t e r .
148 . IR2_out ( IR_to_stage4 ) , // Output to format r e g i s t e r .
149 . c l k ( c l k ) ,
150 . r e s e t ( r e s e t )
151 ) ;
152
153 // Pipe l ine s tage 4 & 5.
154 stage4 s tage4
155 (
156 . s t a r t ( start_to_stage4 ) , // Input .
157 .DRF1 (DRF_to_stage4 ) , // Input from r e g i s t e r DRF1.
158 .DRE1 (DRE_to_stage4 ) , // Input from r e g i s t e r DRE1.
159 .DRS1 (DRS_to_stage4 ) , // Input from r e g i s t e r DRS1.
160 . s p e c i a l s ( S0_to_stage4 ) , // Input form r e g i s t e r S0 .
161 . format ( IR_to_stage4 ) , // Input from r e g i s t e r IR2 .
162 .mode (M_to_stage4 ) , // Input from r e g i s e r M2.
163 . c lear_excps ( c l e a r ) , // Input . Clear excep t i ons .
164 . products ( products ) , // Output . Fina l r e s u l t .
165 . except i on s ( except i on s ) , // Output . Except ions .
166 . ready ( ready ) , // Output . Resu l t ready .
167 . c l k ( c l k ) ,
168 . r e s e t ( r e s e t )
169 ) ;
170
171
172 // In t e rna l a c t i v e h igh r e s e t .
173 assign r e s e t = ! reset_n ;
174 assign load_ST0 = s t a r t ;
175
176 endmodule // vec_fp_mult



78 APPENDIX A. ARCHITECTURE ONE VERILOG SOURCES

1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : s tage1 . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Fri Apr 18 16:11 :23 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Stage one in p i p e l i n e .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " d e f i n e s . v"

10
11 module s tage1
12 (
13 vector s , // Input . Vectors .
14 s ta r t , // Input . S ta r t computing .
15 format , // Input . Data format .
16 mode , // Input . Rounding mode .
17 DRH0_out , // Output . [ 1 27 : 64 ] o f input .
18 DRL0_out , // Output . [ 6 3 : 0 ] o f input .
19 IR0_out , // Output . Format .
20 M0_out , // Output . Rounding mode .
21 clk ,
22 r e s e t
23 ) ;
24
25 // input ( s )
26 input [ ‘BUS−1:0 ] v e c t o r s ;
27 input [ 0 : 0 ] s t a r t ;
28 input [ 1 : 0 ] format ;
29 input [ 1 : 0 ] mode ;
30 input c l k ;
31 input r e s e t ;
32
33 // output ( s )
34 output [ ‘BUS/2−1:0] DRH0_out ;
35 output [ ‘BUS/2−1:0] DRL0_out ;
36 output [ 1 : 0 ] IR0_out ;
37 output [ 1 : 0 ] M0_out ;
38
39 // wire ( s )
40 wire load_drh ;
41 wire load_drl ;
42 wire load_ir0 ;
43 wire load_m0 ;
44
45 // reg ( s )
46
47 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 // Module i n s t a n t i a t i o n .
49 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50
51 // Reg i s t e r s .
52 reg_enable #(‘BUS/2) DRH0
53 (
54 . d ( ve c t o r s [ ‘BUS−1:‘BUS /2 ] ) , // Data in .
55 . q (DRH0_out) , // Data out .
56 . enable ( load_drh ) , // Enable b i t .
57 . c l k ( c l k ) ,
58 . r e s e t ( r e s e t )
59 ) ;
60
61 reg_enable #(‘BUS/2) DRL0
62 (
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63 . d ( ve c t o r s [ ‘BUS/2−1:0]) , // Data in .
64 . q (DRL0_out) , // Data out .
65 . enable ( load_drl ) , // Enable b i t .
66 . c l k ( c l k ) ,
67 . r e s e t ( r e s e t )
68 ) ;
69
70 reg_enable #(2) M0
71 (
72 . d (mode) , // Data in .
73 . q (M0_out) , // Data out .
74 . enable ( load_m0) , // Enable b i t .
75 . c l k ( c l k ) ,
76 . r e s e t ( r e s e t )
77 ) ;
78
79 reg_enable #(2) IR0
80 (
81 . d ( format ) , // Data in .
82 . q ( IR0_out ) , // Data out .
83 . enable ( load_ir0 ) , // Enable b i t .
84 . c l k ( c l k ) ,
85 . r e s e t ( r e s e t )
86 ) ;
87
88 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
89 // Assigns .
90 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
91
92 assign load_drh = s t a r t & ( | format ) ;
93 assign load_drl = s t a r t ;
94 assign load_m0 = s t a r t ;
95 assign load_ir0 = s t a r t ;
96
97 endmodule // s tage1
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : s tage2 . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Fri Apr 18 16:29 :31 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Stage two of p i p e l i n e .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " d e f i n e s . v"

10
11 module s tage2
12 (
13 DRH0, // Input from input r e g i s t e r DRH0.
14 DRL0, // Input from input r e g i s t e r DRL0.
15 format , // Input from format r e g i s t e r IR0 .
16 mode , // Input from rounding mode r e g i s t e r M0.
17 DRF0_out , // Output to s i g n i f i c a nd mu l t i p l i e r s .
18 DRE0_out , // Output to exponent adders .
19 DRS0_out , // Output to s i gn computation .
20 IR1_out , // Output .
21 M1_out , // Output .
22 clk ,
23 r e s e t
24 ) ;
25
26 // input ( s )
27 input [ ‘BUS/2−1:0] DRH0;
28 input [ ‘BUS/2−1:0] DRL0;
29 input [ 1 : 0 ] format ;
30 input [ 1 : 0 ] mode ;
31 input c l k ;
32 input r e s e t ;
33
34 // output ( s )
35 output [ ‘FRACBUS−1:0 ] DRF0_out ;
36 output [ ‘EXPBUS−1:0 ] DRE0_out ;
37 output [ ‘SIGNBUS−1:0 ] DRS0_out ;
38 output [ 1 : 0 ] IR1_out ;
39 output [ 1 : 0 ] M1_out ;
40
41 // wire ( s )
42 wire [ ‘FRACBUS−1:0 ] f r a c s ;
43 wire [ ‘EXPBUS−1:0 ] exps ;
44 wire [ ‘SIGNBUS−1:0 ] s i g n s ;
45
46
47 // reg ( s )
48
49 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50 // Module i n s t a n t i a t i o n s .
51 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52
53 // Reg i s t e r s .
54 f f #(‘FRACBUS) DRF0
55 (
56 . d ( f r a c s ) , // Data in .
57 . q (DRF0_out) , // Data out .
58 . c l k ( c l k ) ,
59 . r e s e t ( r e s e t )
60 ) ;
61
62 f f #(‘EXPBUS) DRE0
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63 (
64 . d ( exps ) , // Data in .
65 . q (DRE0_out) , // Data out .
66 . c l k ( c l k ) ,
67 . r e s e t ( r e s e t )
68 ) ;
69
70 f f #(‘SIGNBUS) DRS0
71 (
72 . d ( s i gn s ) , // Data in .
73 . q (DRS0_out) , // Data out .
74 . c l k ( c l k ) ,
75 . r e s e t ( r e s e t )
76 ) ;
77
78 f f #(2) IR1
79 (
80 . d ( format ) , // Data in .
81 . q ( IR1_out ) , // Data out .
82 . c l k ( c l k ) ,
83 . r e s e t ( r e s e t )
84 ) ;
85
86 f f #(2) M1
87 (
88 . d (mode) , // Data in .
89 . q (M1_out) , // Data out .
90 . c l k ( c l k ) ,
91 . r e s e t ( r e s e t )
92 ) ;
93
94 // Input mux / s e l e c t o r .
95 se l_input se l_input
96 (
97 . drh (DRH0) , // Input from data−r e g i s t e r h igh (DRH0) .
98 . d r l (DRL0) , // Input from data−r e g i s t e r low (DRL0) .
99 . format ( format ) , // Input form in s t ruc i on ( format ) r e g i s t e r .

100 . s i gn s ( s i g n s ) , // Output to s i gn bus .
101 . exps ( exps ) , // Output to exponent bus .
102 . f r a c s ( f r a c s ) // Output to s i g n i f i c a nd bus .
103 ) ;
104
105 defparam se l_input .WIDTH = ‘BUS/2 ;
106 defparam se l_input .SIGNBUS = ‘SIGNBUS ;
107 defparam se l_input .EXPBUS = ‘EXPBUS;
108 defparam se l_input .FRACBUS = ‘FRACBUS;
109
110 endmodule // s tage2
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : s tage3 . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Fri Apr 18 16:51 :03 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Stage three o f p i p e l i n e .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " d e f i n e s . v"

10
11 module s tage3
12 (
13 DRF0, // Input from f r a c t i on r e g i s t e r .
14 DRE0, // Input from exponent r e g i s t e r .
15 DRS0, // Input from s ign r e g i s t e r .
16 format , // Input from format r e g i s t e r .
17 mode , // Input from rounding mode r e g i s t e r .
18 DRS1_out , // Output to s i gn r e g i s t e r .
19 DRE1_out , // Output to exponent r e g i s t e r .
20 DRF1_out , // Output to f r a c t i on r e g i s t e r .
21 S0_out , // Output to s p e c i a l va lue s r e g i s t e r .
22 M2_out , // Output to rounding mode r e g i s t e r .
23 IR2_out , // Output to format r e g i s t e r .
24 clk ,
25 r e s e t
26 ) ;
27
28 // input ( s )
29 input [ ‘FRACBUS−1:0 ] DRF0;
30 input [ ‘EXPBUS−1:0 ] DRE0;
31 input [ ‘SIGNBUS−1:0 ] DRS0 ;
32 input [ 1 : 0 ] format ;
33 input [ 1 : 0 ] mode ;
34 input c l k ;
35 input r e s e t ;
36
37 // output ( s )
38 output [ ‘FRACBUS−1:0 ] DRF1_out ;
39 output [ ‘SIGNBUS/2−1:0] DRS1_out ;
40 output [ ‘EXPBUS/2+3:0] DRE1_out ; // + over f l ow /underf low b i t s .
41 output [ 1 5 : 0 ] S0_out ;
42 output [ 1 : 0 ] M2_out ;
43 output [ 1 : 0 ] IR2_out ;
44
45 // wire ( s )
46 wire [ ‘FRACBUS−1:0 ] prods ;
47 wire [ ‘SIGNBUS/2−1:0] s i g n s ;
48 wire [ ‘EXPBUS/2+3:0] sums ;
49 wire [ 1 5 : 0 ] s p e c i a l s ;
50 wire [ 3 : 0 ] i n t s ;
51 wire [ 3 : 0 ] i n f s ;
52 wire [ 3 : 0 ] nans ;
53 wire [ 3 : 0 ] z e r o e s ;
54
55 // reg ( s )
56
57 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 // Module i n s t a n t i a t i o n s .
59 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60
61 // Reg i s t e r s .
62 f f #(‘FRACBUS) DRF1
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63 (
64 . d ( prods ) , // Data in .
65 . q (DRF1_out) , // Data out .
66 . c l k ( c l k ) ,
67 . r e s e t ( r e s e t )
68 ) ;
69
70 f f #(‘EXPBUS/2+4) DRE1
71 (
72 . d ( sums ) , // Data in .
73 . q (DRE1_out) , // Data out .
74 . c l k ( c l k ) ,
75 . r e s e t ( r e s e t )
76 ) ;
77
78 f f #(‘SIGNBUS/2) DRS1
79 (
80 . d ( s i gn s ) , // Data in .
81 . q (DRS1_out) , // Data out .
82 . c l k ( c l k ) ,
83 . r e s e t ( r e s e t )
84 ) ;
85
86 f f #(16) S0
87 (
88 . d ( s p e c i a l s ) , // Data in .
89 . q ( S0_out ) , // Data out .
90 . c l k ( c l k ) ,
91 . r e s e t ( r e s e t )
92 ) ;
93
94 f f #(2) IR2
95 (
96 . d ( format ) , // Data in .
97 . q ( IR2_out ) , // Data out .
98 . c l k ( c l k ) ,
99 . r e s e t ( r e s e t )

100 ) ;
101
102 f f #(2) M2
103 (
104 . d (mode) , // Data in .
105 . q (M2_out) , // Data out .
106 . c l k ( c l k ) ,
107 . r e s e t ( r e s e t )
108 ) ;
109
110 // Computational un i t s .
111 chk_spec ia l #(‘FRACBUS, ‘EXPBUS) chk_spec ia l
112 (
113 . f r a c s (DRF0) , // Input from s i g n i f i c a nd bus .
114 . exps (DRE0) , // Input from exponent bus .
115 . format ( format ) , // Input .
116 . i n f s ( i n f s ) , // Output .
117 . i n t s ( i n t s ) , // Output .
118 . nans ( nans ) , // Output .
119 . z e r o e s ( z e r o e s ) // Output .
120 ) ;
121
122 mult_unit mult_unit
123 (
124 . f r a c s (DRF0) , // Input from s i g n i f i c a nd bus .
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125 . format ( format ) , // Input from in s t r u c t i o n r e g i s t e r .
126 . prods ( prods ) // Output to s i g n i f i c a nd bus .
127 ) ;
128
129 exp_unit exp_unit
130 (
131 . exps (DRE0) , // Input from exponent bus .
132 . format ( format ) , // Input from in s t r u c t i o n r e g i s t e r .
133 . sums ( sums ) // Output to exponent bus .
134 ) ;
135
136 s ign_unit s ign_unit
137 (
138 . s i g n s (DRS0) , // Input s i gn s from s ign bus .
139 . signs_comp ( s i gn s ) // Output to s i gn bus .
140 ) ;
141
142 assign s p e c i a l s = { in t s , ze roes , i n f s , nans } ;
143
144 endmodule // s tage3
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : se l_output_tb . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Thu Apr 24 21:39 :26 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : For t e s t i n g s e l e c t output l o g i c .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " d e f i n e s . v"

10
11 module s tage4
12 (
13 s ta r t , // Input .
14 DRF1, // Input from f r a c t i on r e g i s t e r DRF1.
15 DRE1, // Input from exponent r e g i s t e r DRE1.
16 DRS1, // Input from s ign r e g i s t e r DRS1.
17 s p e c i a l s , // Input form s p e c i a l va lue s r e g i s t e r S0 .
18 format , // Input from format r e g i s t e r IR2 .
19 mode , // Input from rounding mode r e g i s e r M2.
20 clear_excps , // Input . Clear excep t i ons .
21 products , // Output . Fina l r e s u l t .
22 except ions , // Output . Except ions .
23 ready , // Output . Resu l t ready .
24 clk ,
25 r e s e t
26 ) ;
27
28 // Input ( s )
29 input s t a r t ;
30 input [ ‘FRACBUS−1:0 ] DRF1;
31 input [ ‘EXPBUS/2+3:0] DRE1; // + over f l ow /underf low b i t s .
32 input [ ‘SIGNBUS/2−1:0] DRS1 ;
33 input [ 1 5 : 0 ] s p e c i a l s ;
34 input [ 1 : 0 ] format ;
35 input [ 1 : 0 ] mode ;
36 input [ 1 5 : 0 ] c lear_excps ;
37 input c l k ;
38 input r e s e t ;
39
40 // Output ( s )
41 output [ ‘BUS−1:0 ] products ;
42 output [ 1 5 : 0 ] except i on s ;
43 output ready ;
44
45 // wire ( s )
46 wire [ ‘BUS−1:0 ] products ;
47 wire [ 1 5 : 0 ] exceptions_tmp ;
48 wire load_drh ;
49 wire load_drlh ;
50 wire l oad_dr l l ;
51 wire load_excep_l ;
52 wire load_excep_h ;
53 wire [ 1 5 : 0 ] ex ;
54 wire [ 1 5 : 0 ] c l e a r ;
55 wire [ 7 : 0 ] c l e a r_ l ;
56 wire [ 7 : 0 ] c lear_h ;
57 wire [ 7 : 0 ] ex_h_in ;
58 wire [ 7 : 0 ] ex_l_in ;
59 wire [ 7 : 0 ] ex_h_out ;
60 wire [ 7 : 0 ] ex_l_out ;
61 wire [ ‘BUS−1:0 ] prods ;
62 wire ready_tmp ;
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63 wire [ ‘BUS/2−1:0] r e s u l t ;
64 wire [ 7 : 0 ] exceps ;
65 wire [ 1 : 0 ] format ;
66
67 // reg ( s )
68
69
70 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71 // Module i n s t a n t i a t i o n .
72 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
73
74 // Product r e g i s t e r s .
75 reg_enable #(32) DRLL
76 (
77 . d ( prods [ 3 1 : 0 ] ) , // Data in .
78 . q ( products [ 3 1 : 0 ] ) , // Data out .
79 . enable ( l oad_dr l l ) , // Enable b i t .
80 . c l k ( c l k ) ,
81 . r e s e t ( r e s e t )
82 ) ;
83
84 reg_enable #(32) DRLH
85 (
86 . d ( prods [ 6 3 : 3 2 ] ) , // Data in .
87 . q ( products [ 6 3 : 3 2 ] ) , // Data out .
88 . enable ( load_drlh ) , // Enable b i t .
89 . c l k ( c l k ) ,
90 . r e s e t ( r e s e t )
91 ) ;
92
93 reg_enable #(64) DRH
94 (
95 . d ( prods [ 1 2 7 : 6 4 ] ) , // Data in .
96 . q ( products [ 1 2 7 : 6 4 ] ) , // Data out .
97 . enable ( load_drh ) , // Enable b i t .
98 . c l k ( c l k ) ,
99 . r e s e t ( r e s e t )

100 ) ;
101
102 // Exception r e g i s t e r s .
103 reg_enable #(8) EXCPL
104 // reg_excep #(8) EXCPL
105 (
106 . d ( ex_l_in ) , // Data in .
107 . q ( ex_l_out ) , // Data out .
108 . enable ( load_excep_l ) , // Enable b i t .
109 // . c l e a r ( c l ear_l ) ,
110 . c l k ( c l k ) ,
111 . r e s e t ( r e s e t )
112 ) ;
113
114 reg_enable #(8) EXCPH
115 // reg_excep #(8) EXCPH
116 (
117 . d ( ex_h_in ) , // Data in .
118 . q ( ex_h_out ) , // Data out .
119 . enable ( load_excep_h ) , // Enable b i t .
120 // . c l e a r ( clear_h ) ,
121 . c l k ( c l k ) ,
122 . r e s e t ( r e s e t )
123 ) ;
124
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125 // Clear r e g i s t e r . Written to in order to c l e a r excep t i ons .
126 // [ unf p3 . . p0 , ov f p3 . . p0 , inx p3 . . p0 , nan p3 . . p0 ]
127 f f #(16) CLEAR
128 (
129 . d ( c lear_excps ) , // Data in .
130 . q ( c l e a r ) , // Data out .
131 . c l k ( c l k ) ,
132 . r e s e t ( r e s e t )
133 ) ;
134
135 // Ready r e g i s t e r .
136 reg_set #(1) READY
137 (
138 . s e t ( ready_tmp) ,
139 . q ( ready ) ,
140 . c l k ( c l k ) ,
141 . r e s e t ( r e s e t )
142 ) ;
143
144 // Rounding un i t .
145 rne_unit rne_unit
146 (
147 . f r a c s (DRF1) , // Input from f r a c t i on bus .
148 . exps (DRE1) , // Input form exponent bus .
149 . s i gn s (DRS1) , // Input from s ign bus .
150 . format ( format ) , // Input from in s t ruc i on r e g i s t e r .
151 . s p e c i a l ( s p e c i a l s ) , // Input form check s p e c i a l .
152 .mode (mode) , // Input from mode r e g i s t e r .
153 . exceps ( exceps ) , // Output excep t i ons .
154 . r e s u l t ( r e s u l t ) // Output . Rounded r e s u l t .
155 ) ;
156
157 // Output s e l e c t o r .
158 sel_output sel_output
159 (
160 . r e s u l t ( r e s u l t ) , // Input from rounding l o g i c .
161 . exceps ( exceps ) , // Input from rounding l o g i c .
162 . format ( format ) , // Input from format r e g i s t e r .
163 . s t a r t ( s t a r t ) , // Input from s t a r t r e g i s t e r .
164 . products ( prods ) , // Output to output r e g i s t e r .
165 . load_drh ( load_drh ) , // Output to output r e g i s t e r .
166 . load_drlh ( load_drlh ) , // Output to output r e g i s t e r .
167 . l oad_dr l l ( l oad_dr l l ) , // Output to output r e g i s t e r .
168 . except i on s ( ex ) , // Output to excep t ion r e g i s t e r .
169 . load_excep_l ( load_excep_l ) , // Output to excep t ion r e g i s t e r .
170 . load_excep_h ( load_excep_h ) , // Output to excep t ion r e g i s t e r .
171 . r e s e t ( r e s e t ) ,
172 . c l k ( c l k )
173 ) ;
174
175 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
176 // Assigns .
177 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
178
179 assign ready_tmp =
180 ( format == ‘FP16 ) ? load_drlh&s t a r t : load_drh&s t a r t ;
181
182 assign c l e a r_ l =
183 { c l e a r [ 1 3 : 1 2 ] , c l e a r [ 9 : 8 ] , c l e a r [ 5 : 4 ] , c l e a r [ 1 : 0 ] } ;
184 assign clear_h =
185 { c l e a r [ 1 5 : 1 4 ] , c l e a r [ 1 1 : 1 0 ] , c l e a r [ 7 : 6 ] , c l e a r [ 3 : 2 ] } ;
186
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187 assign ex_l_in = ex [7 :0 ]&~ c l ea r_ l ;
188 assign ex_h_in = ex [15 :8 ]&~ clear_h ;
189
190 assign except i on s =
191 ( format == ‘FP64 ) ?
192 {1 ’b0 , 1 ’ b0 , ex_h_out [ 6 ] , ex_l_out [ 6 ] ,
193 1 ’ b0 , 1 ’ b0 , ex_h_out [ 4 ] , ex_l_out [ 4 ] ,
194 1 ’ b0 , 1 ’ b0 , ex_h_out [ 2 ] , ex_l_out [ 2 ] ,
195 1 ’ b0 , 1 ’ b0 , ex_h_out [ 0 ] , ex_l_out [ 0 ] } :
196
197 {ex_h_out [ 7 : 6 ] , ex_l_out [ 7 : 6 ] ,
198 ex_h_out [ 5 : 4 ] , ex_l_out [ 5 : 4 ] ,
199 ex_h_out [ 3 : 2 ] , ex_l_out [ 3 : 2 ] ,
200 ex_h_out [ 1 : 0 ] , ex_l_out [ 1 : 0 ] } ;
201
202 endmodule // s tage4
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : chk_spec ia l . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 11:30 :08 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Checks i f inpu t s equa l s s p e c i a l va lue s such as
7 // i n f i n i t y , nan , zero or i n t . Resu l t i s used fo r
8 // excep t ion genera t ion .
9 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10
11 ‘ include " d e f i n e s . v"
12
13 module chk_spec ia l
14 (
15 f r a c s , // Input from s i g n i f i c a nd bus .
16 exps , // Input from exponent bus .
17 format , // Input .
18 i n f s , // Output .
19 in t s , // Output .
20 nans , // Output .
21 z e r o e s // Output .
22 ) ;
23
24 parameter FRACBUS = ‘FRACBUS;
25 parameter EXPBUS = ‘EXPBUS;
26
27 // input ( s )
28 input [FRACBUS−1:0 ] f r a c s ;
29 input [EXPBUS−1:0 ] exps ;
30 input [ 1 : 0 ] format ;
31
32 // output ( s )
33 output [ 3 : 0 ] i n f s ;
34 output [ 3 : 0 ] i n t s ;
35 output [ 3 : 0 ] nans ;
36 output [ 3 : 0 ] z e r o e s ;
37
38 // wire ( s )
39 wire [EXPBUS/2−1:0] exponent_a ;
40 wire [EXPBUS/2−1:0] exponent_b ;
41 wire [FRACBUS/2−1:0] s i gn i f i c and_a ;
42 wire [FRACBUS/2−1:0] s i gn i f i cand_b ;
43
44 wire nan_a0 ;
45 wire nan_a1 ;
46 wire nan_b0 ;
47 wire nan_b1 ;
48 wire inf_a0 ;
49 wire inf_a1 ;
50 wire inf_b0 ;
51 wire inf_b1 ;
52 wire int_a0 ;
53 wire int_a1 ;
54 wire int_b0 ;
55 wire int_b1 ;
56 wire zero_a0 ;
57 wire zero_a1 ;
58 wire zero_b0 ;
59 wire zero_b1 ;
60
61
62 // reg ( s )
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63
64 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 // Combinational a s s i gn s .
66 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67
68 // f r a c s [1∗ ( ‘FP16SW+1)−2:0∗(‘FP16SW+1) because s i g n i f i c a n d s are
69 // now extended to 11 , 24 and 53 b i t s inc luded the imp l i c t b i t .
70
71 // Assign i n v a l i d inpu t s .
72 assign nan_a0 =
73 ( format == ‘FP16 ) ?
74 (&exps [ 1∗ ( ‘FP16EW) −1:0∗(‘FP16EW) ] ) &
75 ( | f r a c s [ 1∗ ( ‘FP16SW+1)−2:0∗(‘FP16SW+1) ] ) :
76 ( format == ‘FP32 ) ?
77 (&exps [ 1∗ ( ‘FP32EW) −1:0∗(‘FP32EW) ] ) &
78 ( | f r a c s [ 1∗ ( ‘FP32SW+1)−2:0∗(‘FP32SW+1) ] ) :
79 ( format == ‘FP64 ) ?
80 (&exps [ 1∗ ( ‘FP64EW) −1:0∗(‘FP64EW) ] ) &
81 ( | f r a c s [ 1∗ ( ‘FP64SW+1)−2:0∗(‘FP64SW+1) ] ) : 1 ’ b0 ;
82
83 assign nan_b0 =
84 ( format == ‘FP16 ) ?
85 (&exps [ 2∗ ( ‘FP16EW) −1:1∗(‘FP16EW) ] ) &
86 ( | f r a c s [ 2∗ ( ‘FP16SW+1)−2:1∗(‘FP16SW+1) ] ) :
87 ( format == ‘FP32 ) ?
88 (&exps [ 2∗ ( ‘FP32EW) −1:1∗(‘FP32EW) ] ) &
89 ( | f r a c s [ 2∗ ( ‘FP32SW+1)−2:1∗(‘FP32SW+1) ] ) :
90 ( format == ‘FP64 ) ?
91 (&exps [ 2∗ ( ‘FP64EW) −1:1∗(‘FP64EW) ] ) &
92 ( | f r a c s [ 2∗ ( ‘FP64SW+1)−2:1∗(‘FP64SW+1) ] ) : 1 ’ b0 ;
93
94 assign nan_a1 =
95 ( format == ‘FP16 ) ?
96 (&exps [ 3∗ ( ‘FP16EW) −1:2∗(‘FP16EW) ] ) &
97 ( | f r a c s [ 3∗ ( ‘FP16SW+1)−2:2∗(‘FP16SW+1) ] ) :
98 ( format == ‘FP32 ) ?
99 (&exps [ 3∗ ( ‘FP32EW) −1:2∗(‘FP32EW) ] ) &

100 ( | f r a c s [ 3∗ ( ‘FP32SW+1)−2:2∗(‘FP32SW+1) ] ) :
101 ( format == ‘FP64 ) ? 1 ’ b0 : 1 ’ b0 ;
102
103 assign nan_b1 =
104 ( format == ‘FP16 ) ?
105 (&exps [ 4∗ ( ‘FP16EW) −1:3∗(‘FP16EW) ] ) &
106 ( | f r a c s [ 4∗ ( ‘FP16SW+1)−2:3∗(‘FP16SW+1) ] ) :
107 ( format == ‘FP32 ) ?
108 (&exps [ 4∗ ( ‘FP32EW) −1:3∗(‘FP32EW) ] ) &
109 ( | f r a c s [ 4∗ ( ‘FP32SW+1)−2:3∗(‘FP32SW+1) ] ) :
110 ( format == ‘FP64 ) ? 1 ’ b0 : 1 ’ b0 ;
111
112
113 // Assign i n f i n i t y inpu t s .
114 assign inf_a0 =
115 ( format == ‘FP16 ) ?
116 (&exps [ 1∗ ( ‘FP16EW) −1:0∗(‘FP16EW) ] ) &
117 (~ | f r a c s [ 1∗ ( ‘FP16SW+1)−2:0∗(‘FP16SW+1) ] ) :
118 ( format == ‘FP32 ) ?
119 (&exps [ 1∗ ( ‘FP32EW) −1:0∗(‘FP32EW) ] ) &
120 (~ | f r a c s [ 1∗ ( ‘FP32SW+1)−2:0∗(‘FP32SW+1) ] ) :
121 ( format == ‘FP64 ) ?
122 (&exps [ 1∗ ( ‘FP64EW) −1:0∗(‘FP64EW) ] ) &
123 (~ | f r a c s [ 1∗ ( ‘FP64SW+1)−2:0∗(‘FP64SW+1) ] ) : 1 ’ b0 ;
124
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125 assign inf_b0 =
126 ( format == ‘FP16 ) ?
127 (&exps [ 2∗ ( ‘FP16EW) −1:1∗(‘FP16EW) ] ) &
128 (~ | f r a c s [ 2∗ ( ‘FP16SW+1)−2:1∗(‘FP16SW+1) ] ) :
129 ( format == ‘FP32 ) ?
130 (&exps [ 2∗ ( ‘FP32EW) −1:1∗(‘FP32EW) ] ) &
131 (~ | f r a c s [ 2∗ ( ‘FP32SW+1)−2:1∗(‘FP32SW+1) ] ) :
132 ( format == ‘FP64 ) ?
133 (&exps [ 2∗ ( ‘FP64EW) −1:1∗(‘FP64EW) ] ) &
134 (~ | f r a c s [ 2∗ ( ‘FP64SW+1)−2:1∗(‘FP64SW+1) ] ) : 1 ’ b0 ;
135
136 assign inf_a1 =
137 ( format == ‘FP16 ) ?
138 (&exps [ 3∗ ( ‘FP16EW) −1:2∗(‘FP16EW) ] ) &
139 (~ | f r a c s [ 3∗ ( ‘FP16SW+1)−2:2∗(‘FP16SW+1) ] ) :
140 ( format == ‘FP32 ) ?
141 (&exps [ 3∗ ( ‘FP32EW) −1:2∗(‘FP32EW) ] ) &
142 (~ | f r a c s [ 3∗ ( ‘FP32SW+1)−2:2∗(‘FP32SW+1) ] ) :
143 ( format == ‘FP64 ) ? 1 ’ b0 : 1 ’ b0 ;
144
145 assign inf_b1 =
146 ( format == ‘FP16 ) ?
147 (&exps [ 4∗ ( ‘FP16EW) −1:3∗(‘FP16EW) ] ) &
148 (~ | f r a c s [ 4∗ ( ‘FP16SW+1)−2:3∗(‘FP16SW+1) ] ) :
149 ( format == ‘FP32 ) ?
150 (&exps [ 4∗ ( ‘FP32EW) −1:3∗(‘FP32EW) ] ) &
151 (~ | f r a c s [ 4∗ ( ‘FP32SW+1)−2:3∗(‘FP32SW+1) ] ) :
152 ( format == ‘FP64 ) ? 1 ’ b0 : 1 ’ b0 ;
153
154
155 // Assign zero inpu t s .
156 assign zero_a0 =
157 ( format == ‘FP16 ) ?
158 (~ | exps [ 1∗ ( ‘FP16EW) −1:0∗(‘FP16EW) ] ) &
159 (~ | f r a c s [ 1∗ ( ‘FP16SW+1)−2:0∗(‘FP16SW+1) ] ) :
160 ( format == ‘FP32 ) ?
161 (~ | exps [ 1∗ ( ‘FP32EW) −1:0∗(‘FP32EW) ] ) &
162 (~ | f r a c s [ 1∗ ( ‘FP32SW+1)−2:0∗(‘FP32SW+1) ] ) :
163 ( format == ‘FP64 ) ?
164 (~ | exps [ 1∗ ( ‘FP64EW) −1:0∗(‘FP64EW) ] ) &
165 (~ | f r a c s [ 1∗ ( ‘FP64SW+1)−2:0∗(‘FP64SW+1) ] ) : 1 ’ b0 ;
166
167 assign zero_b0 =
168 ( format == ‘FP16 ) ?
169 (~ | exps [ 2∗ ( ‘FP16EW) −1:1∗(‘FP16EW) ] ) &
170 (~ | f r a c s [ 2∗ ( ‘FP16SW+1)−2:1∗(‘FP16SW+1) ] ) :
171 ( format == ‘FP32 ) ?
172 (~ | exps [ 2∗ ( ‘FP32EW) −1:1∗(‘FP32EW) ] ) &
173 (~ | f r a c s [ 2∗ ( ‘FP32SW+1)−2:1∗(‘FP32SW+1) ] ) :
174 ( format == ‘FP64 ) ?
175 (~ | exps [ 2∗ ( ‘FP64EW) −1:1∗(‘FP64EW) ] ) &
176 (~ | f r a c s [ 2∗ ( ‘FP64SW+1)−2:1∗(‘FP64SW+1) ] ) : 1 ’ b0 ;
177
178 assign zero_a1 =
179 ( format == ‘FP16 ) ?
180 (~ | exps [ 3∗ ( ‘FP16EW) −1:2∗(‘FP16EW) ] ) &
181 (~ | f r a c s [ 3∗ ( ‘FP16SW+1)−2:2∗(‘FP16SW+1) ] ) :
182 ( format == ‘FP32 ) ?
183 (~ | exps [ 3∗ ( ‘FP32EW) −1:2∗(‘FP32EW) ] ) &
184 (~ | f r a c s [ 3∗ ( ‘FP32SW+1)−2:2∗(‘FP32SW+1) ] ) :
185 ( format == ‘FP64 ) ? 1 ’ b0 : 1 ’ b0 ;
186
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187 assign zero_b1 =
188 ( format == ‘FP16 ) ?
189 (~ | exps [ 4∗ ( ‘FP16EW) −1:3∗(‘FP16EW) ] ) &
190 (~ | f r a c s [ 4∗ ( ‘FP16SW+1)−2:3∗(‘FP16SW+1) ] ) :
191 ( format == ‘FP32 ) ?
192 (~ | exps [ 4∗ ( ‘FP32EW) −1:3∗(‘FP32EW) ] ) &
193 (~ | f r a c s [ 4∗ ( ‘FP32SW+1)−2:3∗(‘FP32SW+1) ] ) :
194 ( format == ‘FP64 ) ? 1 ’ b0 : 1 ’ b0 ;
195
196
197 // Assign i n t e g e r inpu t s .
198 assign int_a0 =
199 ( format == ‘FP16 ) ?
200 ( | exps [ 1∗ ( ‘FP16EW) −1:0∗(‘FP16EW) ] ) &
201 (~ | f r a c s [ 1∗ ( ‘FP16SW+1)−2:0∗(‘FP16SW+1) ] ) :
202 ( format == ‘FP32 ) ?
203 ( | exps [ 1∗ ( ‘FP32EW) −1:0∗(‘FP32EW) ] ) &
204 (~ | f r a c s [ 1∗ ( ‘FP32SW+1)−2:0∗(‘FP32SW+1) ] ) :
205 ( format == ‘FP64 ) ?
206 ( | exps [ 1∗ ( ‘FP64EW) −1:0∗(‘FP64EW) ] ) &
207 (~ | f r a c s [ 1∗ ( ‘FP64SW+1)−2:0∗(‘FP64SW+1) ] ) : 1 ’ b0 ;
208
209 assign int_b0 =
210 ( format == ‘FP16 ) ?
211 ( | exps [ 2∗ ( ‘FP16EW) −1:1∗(‘FP16EW) ] ) &
212 (~ | f r a c s [ 2∗ ( ‘FP16SW+1)−2:1∗(‘FP16SW+1) ] ) :
213 ( format == ‘FP32 ) ?
214 ( | exps [ 2∗ ( ‘FP32EW) −1:1∗(‘FP32EW) ] ) &
215 (~ | f r a c s [ 2∗ ( ‘FP32SW+1)−2:1∗(‘FP32SW+1) ] ) :
216 ( format == ‘FP64 ) ?
217 ( | exps [ 2∗ ( ‘FP64EW) −1:1∗(‘FP64EW) ] ) &
218 (~ | f r a c s [ 2∗ ( ‘FP64SW+1)−2:1∗(‘FP64SW+1) ] ) : 1 ’ b0 ;
219
220 assign int_a1 =
221 ( format == ‘FP16 ) ?
222 ( | exps [ 3∗ ( ‘FP16EW) −1:2∗(‘FP16EW) ] ) &
223 (~ | f r a c s [ 3∗ ( ‘FP16SW+1)−2:2∗(‘FP16SW+1) ] ) :
224 ( format == ‘FP32 ) ?
225 ( | exps [ 3∗ ( ‘FP32EW) −1:2∗(‘FP32EW) ] ) &
226 (~ | f r a c s [ 3∗ ( ‘FP32SW+1)−2:2∗(‘FP32SW+1) ] ) :
227 ( format == ‘FP64 ) ? 1 ’ b0 : 1 ’ b0 ;
228
229 assign int_b1 =
230 ( format == ‘FP16 ) ?
231 ( | exps [ 4∗ ( ‘FP16EW) −1:3∗(‘FP16EW) ] ) &
232 (~ | f r a c s [ 4∗ ( ‘FP16SW+1)−2:3∗(‘FP16SW+1) ] ) :
233 ( format == ‘FP32 ) ?
234 ( | exps [ 4∗ ( ‘FP32EW) −1:3∗(‘FP32EW) ] ) &
235 (~ | f r a c s [ 4∗ ( ‘FP32SW+1)−2:3∗(‘FP32SW+1) ] ) :
236 ( format == ‘FP64 ) ? 1 ’ b0 : 1 ’ b0 ;
237
238
239 // Assign outputs .
240 assign i n f s [ 0 ] = inf_a0 ;
241 assign i n f s [ 1 ] = inf_b0 ;
242 assign i n f s [ 2 ] = inf_a1 ;
243 assign i n f s [ 3 ] = inf_b1 ;
244 assign i n t s [ 0 ] = int_a0 ;
245 assign i n t s [ 1 ] = int_b0 ;
246 assign i n t s [ 2 ] = int_a1 ;
247 assign i n t s [ 3 ] = int_b1 ;
248 assign nans [ 0 ] = nan_a0 ;
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249 assign nans [ 1 ] = nan_b0 ;
250 assign nans [ 2 ] = nan_a1 ;
251 assign nans [ 3 ] = nan_b1 ;
252 assign z e r o e s [ 0 ] = zero_a0 ;
253 assign z e r o e s [ 1 ] = zero_b0 ;
254 assign z e r o e s [ 2 ] = zero_a1 ;
255 assign z e r o e s [ 3 ] = zero_b1 ;
256
257 endmodule // chk_spec ia l
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : exp_unit . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 11:40 :17 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Exponent adder un i t .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " d e f i n e s . v"

10
11 module exp_unit
12 (
13 exps , // Input from exponent bus .
14 format , // Input from in s t r u c t i o n r e g i s t e r .
15 sums // Output to exponent bus .
16 ) ;
17
18
19 // input ( s )
20 input [ ‘EXPBUS−1:0 ] exps ;
21 input [ 1 : 0 ] format ;
22
23 // output ( s )
24 output [ ‘EXPBUS/2+3:0] sums ;
25
26 // wire ( s )
27 wire [ ‘FP16EW−1:0 ] fp16_a_0 ;
28 wire [ ‘FP16EW−1:0 ] fp16_b_0 ;
29 wire [ ‘FP16EW−1:0 ] fp16_sum_0 ;
30 wire fp16_ovf_ab_0 ;
31 wire fp16_ovf_biased_0 ;
32 wire [ ‘FP16EW−1:0 ] fp16_a_1 ;
33 wire [ ‘FP16EW−1:0 ] fp16_b_1 ;
34 wire [ ‘FP16EW−1:0 ] fp16_sum_1 ;
35 wire fp16_ovf_ab_1 ;
36 wire fp16_ovf_biased_1 ;
37 wire [ ‘FP32EW−1:0 ] fp32_a_0 ;
38 wire [ ‘FP32EW−1:0 ] fp32_b_0 ;
39 wire [ ‘FP32EW−1:0 ] fp32_sum_0 ;
40 wire fp32_ovf_ab_0 ;
41 wire fp32_ovf_biased_0 ;
42 wire [ ‘FP32EW−1:0 ] fp32_a_1 ;
43 wire [ ‘FP32EW−1:0 ] fp32_b_1 ;
44 wire [ ‘FP32EW−1:0 ] fp32_sum_1 ;
45 wire fp32_ovf_ab_1 ;
46 wire fp32_ovf_biased_1 ;
47 wire [ ‘FP64EW−1:0 ] fp64_a_0 ;
48 wire [ ‘FP64EW−1:0 ] fp64_b_0 ;
49 wire [ ‘FP64EW−1:0 ] fp64_sum_0 ;
50 wire fp64_ovf_ab_0 ;
51 wire fp64_ovf_biased_0 ;
52
53 // reg ( s )
54
55 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 // Module i n s t a n t i a t i o n .
57 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 exp_add #(‘FP16EW, ‘FP16BIAS ) fp16_add_0
59 (
60 . a ( fp16_a_0 ) ,
61 . b ( fp16_b_0) ,
62 . sum ( fp16_sum_0) ,
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63 . ovf_ab ( fp16_ovf_ab_0 ) ,
64 . ovf_biased ( fp16_ovf_biased_0 )
65 ) ;
66
67 exp_add #(‘FP16EW, ‘FP16BIAS ) fp16_add_1
68 (
69 . a ( fp16_a_1 ) ,
70 . b ( fp16_b_1) ,
71 . sum ( fp16_sum_1) ,
72 . ovf_ab ( fp16_ovf_ab_1 ) ,
73 . ovf_biased ( fp16_ovf_biased_1 )
74 ) ;
75
76 exp_add #(‘FP32EW, ‘FP32BIAS ) fp32_add_0
77 (
78 . a ( fp32_a_0 ) ,
79 . b ( fp32_b_0) ,
80 . sum ( fp32_sum_0) ,
81 . ovf_ab ( fp32_ovf_ab_0 ) ,
82 . ovf_biased ( fp32_ovf_biased_0 )
83 ) ;
84
85 exp_add #(‘FP32EW, ‘FP32BIAS ) fp32_add_1
86 (
87 . a ( fp32_a_1 ) ,
88 . b ( fp32_b_1) ,
89 . sum ( fp32_sum_1) ,
90 . ovf_ab ( fp32_ovf_ab_1 ) ,
91 . ovf_biased ( fp32_ovf_biased_1 )
92 ) ;
93
94 exp_add #(‘FP64EW, ‘FP64BIAS ) fp64_add_0
95 (
96 . a ( fp64_a_0 ) ,
97 . b ( fp64_b_0) ,
98 . sum ( fp64_sum_0) ,
99 . ovf_ab ( fp64_ovf_ab_0 ) ,

100 . ovf_biased ( fp64_ovf_biased_0 )
101 ) ;
102
103 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 // Combinational a s s i gn .
105 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
106
107 // Input demux .
108 assign fp16_a_0 =
109 ( format == ‘FP16 ) ? exps [1∗ ‘FP16EW−1:0∗‘FP16EW] : 0 ;
110 assign fp16_b_0 =
111 ( format == ‘FP16 ) ? exps [2∗ ‘FP16EW−1:1∗‘FP16EW] : 0 ;
112 assign fp16_a_1 =
113 ( format == ‘FP16 ) ? exps [3∗ ‘FP16EW−1:2∗‘FP16EW] : 0 ;
114 assign fp16_b_1 =
115 ( format == ‘FP16 ) ? exps [4∗ ‘FP16EW−1:3∗‘FP16EW] : 0 ;
116 assign fp32_a_0 =
117 ( format == ‘FP32 ) ? exps [1∗ ‘FP32EW−1:0∗‘FP32EW] : 0 ;
118 assign fp32_b_0 =
119 ( format == ‘FP32 ) ? exps [2∗ ‘FP32EW−1:1∗‘FP32EW] : 0 ;
120 assign fp32_a_1 =
121 ( format == ‘FP32 ) ? exps [3∗ ‘FP32EW−1:2∗‘FP32EW] : 0 ;
122 assign fp32_b_1 =
123 ( format == ‘FP32 ) ? exps [4∗ ‘FP32EW−1:3∗‘FP32EW] : 0 ;
124 assign fp64_a_0 =
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125 ( format == ‘FP64 ) ? exps [ 1∗ ‘FP64EW−1:0∗‘FP64EW] : 0 ;
126 assign fp64_b_0 =
127 ( format == ‘FP64 ) ? exps [ 2∗ ‘FP64EW−1:1∗‘FP64EW] : 0 ;
128
129 // Output mux .
130 assign sums =
131 ( format == ‘FP16 ) ?
132 {fp16_ovf_ab_1 , fp16_ovf_biased_1 , fp16_sum_1 ,
133 fp16_ovf_ab_0 , fp16_ovf_biased_0 , fp16_sum_0} :
134 ( format == ‘FP32 ) ?
135 {fp32_ovf_ab_1 , fp32_ovf_biased_1 , fp32_sum_1 ,
136 fp32_ovf_ab_0 , fp32_ovf_biased_0 , fp32_sum_0} :
137 ( format == ‘FP64 ) ?
138 {fp64_ovf_ab_0 , fp64_ovf_biased_0 , fp64_sum_0} : 0 ;
139
140 endmodule // exp_unit
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : exp_add . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 10:44 :27 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Exponent adder . Adds the two inputs , and su b t r a c t s
7 // the b i a s .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ‘ include " d e f i n e s . v"
11
12 module exp_add
13 (
14 a , // Input operand .
15 b , // Input operand .
16 sum , // Output sum .
17 ovf_ab , // Overf low a f t e r add i t i on .
18 ovf_biased // Overf low a f t e r su b t r a c t i on .
19 ) ;
20
21 parameter WIDTH = 1 ;
22 parameter BIAS = ‘FP32BIAS ;
23
24 // input ( s )
25 input [WIDTH−1:0 ] a ;
26 input [WIDTH−1:0 ] b ;
27
28 // output ( s )
29 output [WIDTH−1:0 ] sum ;
30 output ovf_ab ;
31 output ovf_biased ;
32
33 // wire ( s )
34 wire [WIDTH: 0 ] a_plus_b_tmp ;
35 wire [WIDTH: 0 ] biased_tmp ;
36
37 assign a_plus_b_tmp = a + b ;
38 assign biased_tmp = a_plus_b_tmp − BIAS ;
39
40 assign sum = biased_tmp [WIDTH−1 : 0 ] ;
41 assign ovf_ab = a_plus_b_tmp [WIDTH] ;
42 assign ovf_biased = biased_tmp [WIDTH] ;
43
44 endmodule // exp_add
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : mult_unit . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 11:37 :56 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : S i gn i f i c and mu l t i p l i e r un i t .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " d e f i n e s . v"

10
11 module mult_unit
12 (
13 f r a c s , // Input from s i g n i f i c a nd bus .
14 format , // Input from in s t r u c t i o n r e g i s t e r .
15 prods // Output to s i g n i f i c a nd bus .
16 ) ;
17
18 // input ( s )
19 input [ ‘FRACBUS−1:0 ] f r a c s ;
20 input [ 1 : 0 ] format ;
21
22 // output ( s )
23 output [ ‘FRACBUS−1:0 ] prods ;
24
25 // wire ( s )
26 wire [ ‘FP16SW : 0 ] fp16_a_0 ;
27 wire [ ‘FP16SW : 0 ] fp16_b_0 ;
28 wire [ 2∗ ‘FP16SW+1:0] fp16_p_0 ;
29 wire [ ‘FP16SW : 0 ] fp16_a_1 ;
30 wire [ ‘FP16SW : 0 ] fp16_b_1 ;
31 wire [ 2∗ ‘FP16SW+1:0] fp16_p_1 ;
32 wire [ ‘FP32SW : 0 ] fp32_a_0 ;
33 wire [ ‘FP32SW : 0 ] fp32_b_0 ;
34 wire [ 2∗ ‘FP32SW+1:0] fp32_p_0 ;
35 wire [ ‘FP32SW : 0 ] fp32_a_1 ;
36 wire [ ‘FP32SW : 0 ] fp32_b_1 ;
37 wire [ 2∗ ‘FP32SW+1:0] fp32_p_1 ;
38 wire [ ‘FP64SW : 0 ] fp64_a_0 ;
39 wire [ ‘FP64SW : 0 ] fp64_b_0 ;
40 wire [ 2∗ ‘FP64SW+1:0] fp64_p_0 ;
41
42 // reg ( s )
43
44 //

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 // Module i n s t a n t i a t i o n s .
46 //

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

47
48 uns_mult #(‘FP16SW+1) uns_mult_fp16_0
49 (
50 . a ( fp16_a_0 ) ,
51 . b( fp16_b_0) ,
52 . p( fp16_p_0)
53 ) ;
54
55 uns_mult #(‘FP16SW+1) uns_mult_fp16_1
56 (
57 . a ( fp16_a_1 ) ,
58 . b( fp16_b_1) ,
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59 . p( fp16_p_1)
60 ) ;
61
62 uns_mult #(‘FP32SW+1) uns_mult_fp32_0
63 (
64 . a ( fp32_a_0 ) ,
65 . b( fp32_b_0) ,
66 . p( fp32_p_0)
67 ) ;
68
69 uns_mult #(‘FP32SW+1) uns_mult_fp32_1
70 (
71 . a ( fp32_a_1 ) ,
72 . b( fp32_b_1) ,
73 . p( fp32_p_1)
74 ) ;
75
76 uns_mult #(‘FP64SW+1) uns_mult_fp64_0
77 (
78 . a ( fp64_a_0 ) ,
79 . b( fp64_b_0) ,
80 . p( fp64_p_0)
81 ) ;
82
83 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84 // Combinaional a s s i gn s .
85 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86
87 // Input demux .
88 assign fp16_a_0 =
89 ( format == ‘FP16 ) ? f r a c s [ 1∗ ( ‘FP16SW+1)−1:0∗(‘FP16SW+1) ] : 0 ;
90 assign fp16_b_0 =
91 ( format == ‘FP16 ) ? f r a c s [ 2∗ ( ‘FP16SW+1)−1:1∗(‘FP16SW+1) ] : 0 ;
92 assign fp16_a_1 =
93 ( format == ‘FP16 ) ? f r a c s [ 3∗ ( ‘FP16SW+1)−1:2∗(‘FP16SW+1) ] : 0 ;
94 assign fp16_b_1 =
95 ( format == ‘FP16 ) ? f r a c s [ 4∗ ( ‘FP16SW+1)−1:3∗(‘FP16SW+1) ] : 0 ;
96
97 assign fp32_a_0 =
98 ( format == ‘FP32 ) ? f r a c s [ 1∗ ( ‘FP32SW+1)−1:0∗(‘FP32SW+1) ] : 0 ;
99 assign fp32_b_0 =

100 ( format == ‘FP32 ) ? f r a c s [ 2∗ ( ‘FP32SW+1)−1:1∗(‘FP32SW+1) ] : 0 ;
101 assign fp32_a_1 =
102 ( format == ‘FP32 ) ? f r a c s [ 3∗ ( ‘FP32SW+1)−1:2∗(‘FP32SW+1) ] : 0 ;
103 assign fp32_b_1 =
104 ( format == ‘FP32 ) ? f r a c s [ 4∗ ( ‘FP32SW+1)−1:3∗(‘FP32SW+1) ] : 0 ;
105
106 assign fp64_a_0 =
107 ( format == ‘FP64 ) ? f r a c s [ 1∗ ( ‘FP64SW+1)−1:0∗(‘FP64SW+1) ] : 0 ;
108 assign fp64_b_0 =
109 ( format == ‘FP64 ) ? f r a c s [ 2∗ ( ‘FP64SW+1)−1:1∗(‘FP64SW+1) ] : 0 ;
110
111 // Output mux .
112 assign prods =
113 ( format == ‘FP16 ) ? {fp16_p_1 , fp16_p_0} :
114 ( format == ‘FP32 ) ? {fp32_p_1 , fp32_p_0} :
115 ( format == ‘FP64 ) ? fp64_p_0 : 0 ;
116
117 endmodule // mult_unit



100 APPENDIX A. ARCHITECTURE ONE VERILOG SOURCES

1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : uns_mult . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 10:40 :36 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Unsigned mu l t i p l i e r used fo r s i g n i f i c a n d
7 // mu l t i p l i c a t i o n .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ‘ include " d e f i n e s . v"
11
12 module uns_mult
13 (
14 a , // Input , mu l t i p l i c and .
15 b , // Input , mu l t i p l i e r .
16 p // Output , product .
17 ) ;
18
19
20 parameter WIDTH = ‘FP64SW+1;
21
22 // input ( s )
23 input [WIDTH−1:0 ] a ;
24 input [WIDTH−1:0 ] b ;
25
26 // output ( s )
27 output [ 2∗WIDTH−1:0 ] p ;
28
29 assign p = a ∗ b ;
30
31 endmodule // uns_mult
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : s ign_unit . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 11:42 :25 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Sign computation un i t .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 module s ign_unit

10 (
11 s igns , // Input s i gn s from s ign bus .
12 signs_comp // Output to s i gn bus .
13 ) ;
14
15 parameter SIGNBUS = 4 ;
16
17 // input ( s )
18 input [ SIGNBUS−1:0 ] s i g n s ;
19
20 // output ( s )
21 output [ SIGNBUS/2−1:0] signs_comp ;
22
23 // wire ( s )
24
25 // reg ( s )
26
27 assign signs_comp [ 0 ] = s i gn s [ 0 ] ^ s i gn s [ 1 ] ;
28 assign signs_comp [ 1 ] = s i gn s [ 2 ] ^ s i gn s [ 3 ] ;
29
30 endmodule // sign_unit
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : rne_unit . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 12:19 :50 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Rounding , normal i z ing and excep t ion un i t .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " d e f i n e s . v"

10
11 module rne_unit
12 (
13 f r a c s , // Input from f r a c t i on bus .
14 exps , // Input form exponent bus .
15 s igns , // Input from s ign bus .
16 format , // Input from in s t ruc i on r e g i s t e r .
17 sp e c i a l , // Input form check s p e c i a l .
18 mode , // Input from mode r e g i s t e r .
19 exceps , // Output excep t i ons .
20 r e s u l t // Output . Rounded r e s u l t .
21 ) ;
22
23 // input ( s )
24 input [ ‘FRACBUS−1:0 ] f r a c s ;
25 input [ ‘EXPBUS/2+3:0] exps ;
26 input [ ‘SIGNBUS/2−1:0] s i g n s ;
27 input [ 1 : 0 ] format ;
28 input [ 1 : 0 ] mode ;
29 input [ 1 5 : 0 ] s p e c i a l ;
30
31 // output ( s )
32 output [ ‘BUS/2−1:0] r e s u l t ;
33 output [ 7 : 0 ] exceps ;
34
35 // wire ( s )
36 wire [ 2∗ ‘FP64SW+1:0] frac_rne_0 ;
37 wire sign_rne_0 ;
38 wire [ ‘FP64EW+1:0] exp_rne_0 ;
39 wire [ 7 : 0 ] spec ia ls_rne_0 ;
40 wire [ ‘FP64SW+‘FP64EW : 0 ] result_rne_0 ;
41 wire [ 3 : 0 ] exceps_rne_0 ;
42 wire [ 2∗ ‘FP64SW+1:0] frac_rne_1 ;
43 wire sign_rne_1 ;
44 wire [ ‘FP64EW+1:0] exp_rne_1 ;
45 wire [ 7 : 0 ] spec ia ls_rne_1 ;
46 wire [ ‘FP64SW+‘FP64EW : 0 ] result_rne_1 ;
47 wire [ 3 : 0 ] exceps_rne_1 ;
48 wire [ 1 : 0 ] fp16_overf low ;
49 wire [ 1 : 0 ] fp16_underflow ;
50 wire [ 1 : 0 ] fp16_inexact ;
51 wire [ 1 : 0 ] fp16_inva l id ;
52 wire [ 1 : 0 ] fp32_overf low ;
53 wire [ 1 : 0 ] fp32_underflow ;
54 wire [ 1 : 0 ] fp32_inexact ;
55 wire [ 1 : 0 ] fp32_inva l id ;
56 wire [ 1 : 0 ] fp64_overf low ;
57 wire [ 1 : 0 ] fp64_underflow ;
58 wire [ 1 : 0 ] fp64_inexact ;
59 wire [ 1 : 0 ] fp64_inva l id ;
60 wire [ 3 : 0 ] exceps_fp16_rne_0 ;
61 wire [ 3 : 0 ] exceps_fp16_rne_1 ;
62 wire [ 3 : 0 ] exceps_fp32_rne_0 ;
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63 wire [ 3 : 0 ] exceps_fp32_rne_1 ;
64 wire [ 3 : 0 ] exceps_fp64_rne_0 ;
65 wire [ 7 : 0 ] fp16_exceps ;
66 wire [ 7 : 0 ] fp32_exceps ;
67 wire [ 7 : 0 ] fp64_exceps ;
68 wire [ 2∗ ‘FP16SW+1:0] frac_fp16_rne_0 ;
69 wire [ 2∗ ‘FP16SW+1:0] frac_fp16_rne_1 ;
70 wire [ 2∗ ‘FP32SW+1:0] frac_fp32_rne_0 ;
71 wire [ 2∗ ‘FP32SW+1:0] frac_fp32_rne_1 ;
72 wire [ 2∗ ‘FP64SW+1:0] frac_fp64_rne_0 ;
73 wire [ ‘FP16EW+1:0] exp_fp16_rne_0 ;
74 wire [ ‘FP16EW+1:0] exp_fp16_rne_1 ;
75 wire [ ‘FP32EW+1:0] exp_fp32_rne_0 ;
76 wire [ ‘FP32EW+1:0] exp_fp32_rne_1 ;
77 wire [ ‘FP64EW+1:0] exp_fp64_rne_0 ;
78 wire [ ‘FP16W−1:0 ] result_fp16_rne_0 ;
79 wire [ ‘FP16W−1:0 ] result_fp16_rne_1 ;
80 wire [ ‘FP32W−1:0 ] result_fp32_rne_0 ;
81 wire [ ‘FP32W−1:0 ] result_fp32_rne_1 ;
82 wire [ ‘FP64W−1:0 ] result_fp64_rne_0 ;
83 wire [ 2∗ ‘FP16W−1:0 ] result_fp16_rne ;
84 wire [ 2∗ ‘FP32W−1:0 ] result_fp32_rne ;
85 wire [ 2∗ ‘FP64W−1:0 ] result_fp64_rne ;
86
87 // reg ( s )
88
89 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
90 // Module i n s t a n t i a t i o n .
91 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
92
93 rne #(‘FP16SW , ‘FP16EW) fp16_rne_0
94 (
95 . f r a c ( frac_fp16_rne_0 ) ,
96 . s i gn ( sign_rne_0 ) ,
97 . exp ( exp_fp16_rne_0 ) ,
98 . s p e c i a l s ( spec ia ls_rne_0 ) ,
99 .mode (mode) ,

100 . r e s u l t ( result_fp16_rne_0 ) ,
101 . exceps ( exceps_fp16_rne_0 )
102 ) ;
103
104 rne #(‘FP16SW , ‘FP16EW) fp16_rne_1
105 (
106 . f r a c ( frac_fp16_rne_1 ) ,
107 . s i gn ( sign_rne_1 ) ,
108 . exp ( exp_fp16_rne_1 ) ,
109 . s p e c i a l s ( spec ia ls_rne_1 ) ,
110 .mode (mode) ,
111 . r e s u l t ( result_fp16_rne_1 ) ,
112 . exceps ( exceps_fp16_rne_1 )
113 ) ;
114
115 rne #(‘FP32SW , ‘FP32EW) fp32_rne_0
116 (
117 . f r a c ( frac_fp32_rne_0 ) ,
118 . s i gn ( sign_rne_0 ) ,
119 . exp ( exp_fp32_rne_0 ) ,
120 . s p e c i a l s ( spec ia ls_rne_0 ) ,
121 .mode (mode) ,
122 . r e s u l t ( result_fp32_rne_0 ) ,
123 . exceps ( exceps_fp32_rne_0 )
124 ) ;
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125
126 rne #(‘FP32SW , ‘FP32EW) fp32_rne_1
127 (
128 . f r a c ( frac_fp32_rne_1 ) ,
129 . s i gn ( sign_rne_1 ) ,
130 . exp ( exp_fp32_rne_1 ) ,
131 . s p e c i a l s ( spec ia ls_rne_1 ) ,
132 .mode (mode) ,
133 . r e s u l t ( result_fp32_rne_1 ) ,
134 . exceps ( exceps_fp32_rne_1 )
135 ) ;
136
137 rne #(‘FP64SW , ‘FP64EW) fp64_rne_0
138 (
139 . f r a c ( frac_fp64_rne_0 ) ,
140 . s i gn ( sign_rne_0 ) ,
141 . exp ( exp_fp64_rne_0 ) ,
142 . s p e c i a l s ( spec ia ls_rne_0 ) ,
143 .mode (mode) ,
144 . r e s u l t ( result_fp64_rne_0 ) ,
145 . exceps ( exceps_fp64_rne_0 )
146 ) ;
147
148
149 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
150 // Combinalional a s s i gn .
151 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
152
153 // Inputs to rounding l o g i c .
154 assign frac_fp16_rne_0 = f r a c s [ 2∗ ( ‘FP16SW+1)−1:0∗(‘FP16SW+1) ] ;
155 assign frac_fp16_rne_1 = f r a c s [ 4∗ ( ‘FP16SW+1)−1:2∗(‘FP16SW+1) ] ;
156 assign frac_fp32_rne_0 = f r a c s [ 2∗ ( ‘FP32SW+1)−1:0∗(‘FP32SW+1) ] ;
157 assign frac_fp32_rne_1 = f r a c s [ 4∗ ( ‘FP32SW+1)−1:2∗(‘FP32SW+1) ] ;
158 assign frac_fp64_rne_0 = f r a c s [ 2∗ ( ‘FP64SW+1)−1:0∗(‘FP64SW+1) ] ;
159
160 // Two msb b i t s r ep r e s en t s the over f l ow b i t s during exponent
161 // add i t i on .
162 assign exp_fp16_rne_0 = exps [ 1∗ ( ‘FP16EW+1) : 0∗ ( ‘FP16EW+2) ] ;
163 assign exp_fp16_rne_1 = exps [ 2∗ ( ‘FP16EW+1)+1:1∗(‘FP16EW+2) ] ;
164 assign exp_fp32_rne_0 = exps [ 1∗ ( ‘FP32EW+1) : 0∗ ( ‘FP32EW+2) ] ;
165 assign exp_fp32_rne_1 = exps [ 2∗ ( ‘FP32EW+1)+1:1∗(‘FP32EW+2) ] ;
166 assign exp_fp64_rne_0 = exps [ 1∗ ( ‘FP64EW+1) : 0∗ ( ‘FP64EW+2) ] ;
167
168 assign sign_rne_0 = s i gn s [ 0 ] ;
169 assign sign_rne_1 = s i gn s [ 1 ] ;
170
171 assign spec ia ls_rne_0 =
172 { s p e c i a l [ 1 3 ] , s p e c i a l [ 1 2 ] , s p e c i a l [ 9 ] , s p e c i a l [ 8 ] ,
173 s p e c i a l [ 5 ] , s p e c i a l [ 4 ] , s p e c i a l [ 1 ] , s p e c i a l [ 0 ] } ;
174
175 assign spec ia ls_rne_1 =
176 { s p e c i a l [ 1 5 ] , s p e c i a l [ 1 4 ] , s p e c i a l [ 1 1 ] , s p e c i a l [ 1 0 ] ,
177 s p e c i a l [ 7 ] , s p e c i a l [ 6 ] , s p e c i a l [ 3 ] , s p e c i a l [ 2 ] } ;
178
179
180 // Outputs from rounding l o g i c .
181 assign result_fp16_rne = {result_fp16_rne_1 , result_fp16_rne_0 } ;
182 assign result_fp32_rne = {result_fp32_rne_1 , result_fp32_rne_0 } ;
183 assign result_fp64_rne = result_fp64_rne_0 ;
184
185 assign fp16_underflow =
186 {exceps_fp16_rne_1 [ 3 ] , exceps_fp16_rne_0 [ 3 ] } ;
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187 assign fp16_overf low =
188 {exceps_fp16_rne_1 [ 2 ] , exceps_fp16_rne_0 [ 2 ] } ;
189 assign fp16_inexact =
190 {exceps_fp16_rne_1 [ 1 ] , exceps_fp16_rne_0 [ 1 ] } ;
191 assign fp16_inva l id =
192 {exceps_fp16_rne_1 [ 0 ] , exceps_fp16_rne_0 [ 0 ] } ;
193
194 assign fp32_underflow =
195 {exceps_fp32_rne_1 [ 3 ] , exceps_fp32_rne_0 [ 3 ] } ;
196 assign fp32_overf low =
197 {exceps_fp32_rne_1 [ 2 ] , exceps_fp32_rne_0 [ 2 ] } ;
198 assign fp32_inexact =
199 {exceps_fp32_rne_1 [ 1 ] , exceps_fp32_rne_0 [ 1 ] } ;
200 assign fp32_inva l id =
201 {exceps_fp32_rne_1 [ 0 ] , exceps_fp32_rne_0 [ 0 ] } ;
202
203 assign fp64_underflow =
204 {1 ’b0 , exceps_fp64_rne_0 [ 3 ] } ;
205 assign fp64_overf low =
206 {1 ’b0 , exceps_fp64_rne_0 [ 2 ] } ;
207 assign fp64_inexact =
208 {1 ’b0 , exceps_fp64_rne_0 [ 1 ] } ;
209 assign fp64_inva l id =
210 {1 ’b0 , exceps_fp64_rne_0 [ 0 ] } ;
211
212 assign fp16_exceps =
213 { fp16_underflow , fp16_overf low , fp16_inexact , fp16_inva l id } ;
214 assign fp32_exceps =
215 { fp32_underflow , fp32_overf low , fp32_inexact , fp32_inva l id } ;
216 assign fp64_exceps =
217 { fp64_underflow , fp64_overf low , fp64_inexact , fp64_inva l id } ;
218
219 assign exceps =
220 ( format == ‘FP16 ) ? fp16_exceps :
221 ( format == ‘FP32 ) ? fp32_exceps :
222 ( format == ‘FP64 ) ? fp64_exceps : 0 ;
223
224 assign r e s u l t =
225 ( format == ‘FP16 ) ? result_fp16_rne :
226 ( format == ‘FP32 ) ? result_fp32_rne :
227 ( format == ‘FP64 ) ? result_fp64_rne : 0 ;
228
229 endmodule // rne_unit
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : rne . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 11:10 :54 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Rounding and excep t ion un i t . Rounds , normal i zes and
7 // pos tnorml i z e s the r e s u l t from the computation , and
8 // genera te s excep t i ons i f needed .
9 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10
11 ‘ include " d e f i n e s . v"
12
13 module rne
14 (
15 f rac , // Input . Frac t iona l par t from s i g n i f i c a nd

mu l t i p l i c a t i o n .
16 s ign , // Input . Sign from s ign computation .
17 exp , // Input . Biased exponent from exponent add i t i on .
18 s p e c i a l s , // Input . NaNs , i n f i n i t i e s , ze ros . .
19 mode , // Input . Rounding mode .
20 r e su l t , // Output . Rounded r e s u l t or s p e c i a l va lue .
21 exceps // Output . Except ions .
22 ) ;
23
24 parameter SW = 52 ;
25 parameter EW = 11 ;
26
27 // input ( s )
28 input [ 2∗SW+1:0] f r a c ;
29 input [EW+1:0] exp ;
30 input s i gn ;
31 input [ 7 : 0 ] s p e c i a l s ;
32 input [ 1 : 0 ] mode ;
33
34 // output ( s )
35 output [SW+EW: 0 ] r e s u l t ;
36 output [ 3 : 0 ] exceps ;
37
38 // wire ( s )
39 wire normal ize ;
40 wire postnormal i ze ;
41 wire l s b ;
42 wire round ;
43 wire s t i c ky ;
44 wire roundup ;
45 wire rounded ;
46 wire ovf_ab ;
47 wire ovf_biased ;
48 wire ovf_postnorm ;
49 wire round_to_nearest_even ;
50 wire round_to_inf in i ty ;
51 wire round_to_zero ;
52 wire nan_a ;
53 wire nan_b ;
54 wire int_a ;
55 wire int_b ;
56 wire inf_a ;
57 wire inf_b ;
58 wire zero_a ;
59 wire zero_b ;
60 wire int_times_inf ;
61 wire i n v a l i d ;
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62 wire over f l ow ;
63 wire overflow_tmp ;
64 wire underf low ;
65 wire underflow_tmp ;
66 wire i n exac t ;
67 wire exp_zero ;
68 wire [SW: 0 ] s i g n i f i c a n d ;
69 wire [SW: 0 ] s igni f icand_tmp ;
70 wire [SW: 0 ] s ign i f i cand_plus_ulp ;
71 wire [EW: 0 ] exponent ;
72 wire [SW+EW: 0 ] result_tmp ;
73 wire [SW+EW: 0 ] product_nan ;
74 wire [SW+EW: 0 ] product_zero ;
75 wire [SW+EW: 0 ] product_large ;
76 wire [SW+EW: 0 ] product_overf low ;
77
78 // reg ( s )
79
80 // Round and normal ize / Postnormal ize .
81 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82
83 // Normalize i f r e s u l t from mu l t i p l i e r l i e s in [2 ,4 )
84 assign normal ize = f r a c [ 2∗SW+1] ;
85
86 assign s igni f icand_tmp =
87 normal ize ?
88 f r a c [ 2∗SW:SW] >> 1 : f r a c [ 2∗SW:SW] ;
89
90 assign exponent =
91 normal ize ?
92 exp [EW−1:0 ] + 1 : exp [EW−1 : 0 ] ;
93
94
95 // Assign rounding b i t s .
96 assign l s b =
97 normal ize ?
98 f r a c [SW+1] :
99 f r a c [SW] ;

100
101 assign round =
102 normal ize ?
103 f r a c [SW] :
104 f r a c [SW−1] ;
105
106 assign s t i c ky =
107 normal ize ?
108 | f r a c [SW−1:0 ] :
109 | f r a c [SW−2 : 0 ] ;
110
111 // Reduce to three rounding modes .
112 assign round_to_nearest_even =
113 ( round & ( l s b | s t i c k y ) ) & ! ( | mode) ;
114
115 assign round_to_inf in i ty =
116 ( ! s i gn &(!mode [1 ]&mode [ 0 ] ) | s i gn&(mode [ 1 ]& !mode [ 0 ] ) ) &
117 ( round | s t i c k y ) ;
118
119 assign round_to_zero =
120 ( s i gn&(~mode [1 ]&mode [ 0 ] ) |~ s i gn&(mode[1]&~mode [ 0 ] ) ) |&mode ;
121
122 // Round−up i f necessary .
123 assign s ign i f i cand_plus_ulp = signi f icand_tmp + 1 ’ b1 ;
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124 assign roundup = round_to_inf in i ty | round_to_nearest_even ;
125 assign s i g n i f i c a n d =
126 roundup ?
127 s ign i f i cand_plus_ulp : s igni f icand_tmp ;
128
129 // Post−normal ize i f r e s u l t a f t e r rounding l i e s in [2 ,4 ) .
130 assign postnormal i ze = ! s i g n i f i c a n d [SW] & signi f icand_tmp [SW] ;
131 assign result_tmp =
132 postnormal i ze ?
133 { s ign , exponent [EW−1:0 ] + 1 ’b1 , s i g n i f i c a n d [SW: 1 ] } :
134 { s ign , exponent [EW−1 :0 ] , s i g n i f i c a n d [SW−1 : 0 ] } ;
135
136 // Inexac t i f r e s u l t was rounded .
137 assign rounded = round | s t i c ky ;
138
139 assign ovf_postnorm =
140 exponent [EW] | &exponent [EW−1:0]&( normal ize | pos tnormal i ze ) ;
141
142
143 // Generate excep t i ons .
144 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
145
146 assign ovf_ab = exp [EW+1] ;
147 assign ovf_biased = exp [EW] ;
148
149 // In va l i d inpu t s from chk_spec ia l .
150 assign nan_a = s p e c i a l s [ 0 ] ;
151 assign nan_b = s p e c i a l s [ 1 ] ;
152 assign inf_a = s p e c i a l s [ 2 ] ;
153 assign inf_b = s p e c i a l s [ 3 ] ;
154 assign zero_a = s p e c i a l s [ 4 ] ;
155 assign zero_b = s p e c i a l s [ 5 ] ;
156 assign int_a = s p e c i a l s [ 6 ] ;
157 assign int_b = s p e c i a l s [ 7 ] ;
158
159
160 // Generate excep t i ons .
161 assign int_times_inf = ( int_a&inf_b ) | ( int_b&inf_a ) ;
162
163 assign i n v a l i d =
164 (nan_a | nan_b) |
165 ( zero_a&inf_b | zero_b&inf_a ) |
166 ( inf_a | inf_b )&! int_times_inf ;
167
168 assign i n exac t =
169 ( rounded & ( ! i n v a l i d ) |
170 overflow_tmp |
171 round_to_zero&overflow_tmp |
172 underf low &(!( zero_a | zero_b ) ) )&! int_times_inf ;
173
174 assign underf low =
175 (~ovf_ab&ovf_biased ) |
176 (~ | result_tmp [SW+EW−1:SW] ) &!( ovf_ab&ovf_biased | ovf_postnorm ) &
177 ! over f l ow&! i n v a l i d | ( zero_a | zero_b ) &!(nan_a | nan_b | inf_a | inf_b ) ;
178
179 // I f over f l ow occurs and rounding mode equa l s round−to zero ,
180 // r e s u l t s h a l l be rounded to l a r g e s t r e p r e s en t a t i v e number .
181 // e . x 0111101111111111.
182
183 assign overflow_tmp =
184 ( ( ovf_ab&ovf_biased | ovf_postnorm&! underf low ) |
185 &result_tmp [SW+EW−1:SW]&! underf low )&! i n v a l i d ;
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186
187 assign over f l ow = overflow_tmp&!round_to_zero | int_times_inf ;
188
189
190 // Compute s p e c i a l r e s u l t s .
191 assign product_nan =
192 {1 ’b0 , {EW{1 ’ b1 }} , {(SW−1){1 ’ b0 }} , 1 ’ b1 } ;
193
194 assign product_zero =
195 { result_tmp [SW+EW] , {(SW+EW) {1 ’ b0 }}} ;
196
197 assign product_overf low =
198 { result_tmp [SW+EW] , {EW{1 ’ b1 }} , {(SW) {1 ’ b0 }}} ;
199
200 assign product_large =
201 { result_tmp [SW+EW] , {(EW−1){1 ’ b1 }} , 1 ’ b0 , {(SW) {1 ’ b1 }}} ;
202
203 // Final product dec ided by excep t i ons .
204 assign r e s u l t =
205 i n v a l i d ? product_nan :
206 over f l ow ? product_overf low :
207 underf low ? product_zero :
208 round_to_zero & overflow_tmp & ! int_times_inf ? product_large :
209 result_tmp ;
210
211 assign exceps [ 0 ] = i n v a l i d ;
212 assign exceps [ 1 ] = inexac t ;
213 assign exceps [ 2 ] = over f l ow ;
214 assign exceps [ 3 ] = underf low ;
215
216 endmodule // rne
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : se l_input . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 10:54 :28 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : S e l e c t s data from the input r e g i s t e r s and puts i t on
7 // the exponent , s i g n i f i c a n d and s i gn busses .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ‘ include " d e f i n e s . v"
11
12 module se l_input
13 (
14 drh , // Input from data−r e g i s t e r h igh (DRH0) .
15 dr l , // Input from data−r e g i s t e r low (DRL0) .
16 format , // Input form in s t ruc i on ( format ) r e g i s t e r .
17 s igns , // Output to s i gn bus .
18 exps , // Output to exponent bus .
19 f r a c s // Output to s i g n i f i c a nd bus .
20 ) ;
21
22 parameter WIDTH = ‘BUS/2 ;
23 parameter SIGNBUS = ‘SIGNBUS ;
24 parameter EXPBUS = ‘EXPBUS;
25 parameter FRACBUS = ‘FRACBUS;
26
27 // input ( s )
28 input [WIDTH−1:0 ] drh ;
29 input [WIDTH−1:0 ] d r l ;
30 input [ 1 : 0 ] format ;
31
32 // output ( s )
33 output [ SIGNBUS−1:0 ] s i g n s ;
34 output [EXPBUS−1:0 ] exps ;
35 output [FRACBUS−1:0 ] f r a c s ;
36
37 // wire ( s )
38
39 // reg ( s )
40 reg [ SIGNBUS−1:0 ] signs_tmp ;
41 reg [EXPBUS−1:0 ] exps_tmp ;
42 reg [FRACBUS−1:0 ] fracs_tmp ;
43
44
45 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 // Combinational l o g i c .
47 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48
49 always @ ( drh or d r l or format ) begin
50 signs_tmp = 0 ;
51 exps_tmp = 0 ;
52 fracs_tmp = 0 ;
53
54 case ( format )
55 ‘FP16 : begin
56 signs_tmp =
57 { d r l [ 4∗ ‘FP16W−1] , d r l [ 3∗ ‘FP16W−1] ,
58 d r l [ 2∗ ‘FP16W−1] , d r l [ 1∗ ‘FP16W−1]} ;
59
60 exps_tmp =
61 { d r l [ 4∗ ( ‘FP16W)−2:3∗‘FP16W+‘FP16SW ] ,
62 d r l [ 3∗ ( ‘FP16W)−2:2∗‘FP16W+‘FP16SW ] ,
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63 d r l [ 2∗ ( ‘FP16W)−2:1∗‘FP16W+‘FP16SW ] ,
64 d r l [ 1∗ ( ‘FP16W)−2:0∗‘FP16W+‘FP16SW ] } ;
65
66 fracs_tmp =
67 {1 ’b1 , d r l [ 4∗ ‘FP16W−‘FP16EW−2:3∗‘FP16W] ,
68 1 ’ b1 , d r l [ 3∗ ‘FP16W−‘FP16EW−2:2∗‘FP16W] ,
69 1 ’ b1 , d r l [ 2∗ ‘FP16W−‘FP16EW−2:1∗‘FP16W] ,
70 1 ’ b1 , d r l [ 1∗ ‘FP16W−‘FP16EW−2:0∗‘FP16W ] } ;
71 end
72 ‘FP32 : begin
73 signs_tmp =
74 {drh [2∗ ‘FP32W−1] , drh [1∗ ‘FP32W−1] ,
75 d r l [ 2∗ ‘FP32W−1] , d r l [ 1∗ ‘FP32W−1]} ;
76
77 exps_tmp =
78 {drh [ 2∗ ( ‘FP32W)−2:1∗‘FP32W+‘FP32SW ] ,
79 drh [ 1∗ ( ‘FP32W)−2:0∗‘FP32W+‘FP32SW ] ,
80 d r l [ 2∗ ( ‘FP32W)−2:1∗‘FP32W+‘FP32SW ] ,
81 d r l [ 1∗ ( ‘FP32W)−2:0∗‘FP32W+‘FP32SW ] } ;
82
83 fracs_tmp =
84 {1 ’b1 , drh [2∗ ‘FP32W−‘FP32EW−2:1∗‘FP32W] ,
85 1 ’ b1 , drh [1∗ ‘FP32W−‘FP32EW−2:0∗‘FP32W] ,
86 1 ’ b1 , d r l [ 2∗ ‘FP32W−‘FP32EW−2:1∗‘FP32W] ,
87 1 ’ b1 , d r l [ 1∗ ‘FP32W−‘FP32EW−2:0∗‘FP32W ] } ;
88 end
89 ‘FP64 : begin
90 signs_tmp =
91 {1 ’b0 , 1 ’ b0 , drh [1∗ ‘FP64W−1] , d r l [ 1∗ ‘FP64W−1]} ;
92
93 exps_tmp =
94 {drh [ 1∗ ( ‘FP64W)−2:0∗‘FP64W+‘FP64SW ] ,
95 d r l [ 1∗ ( ‘FP64W)−2:0∗‘FP64W+‘FP64SW ] } ;
96
97 fracs_tmp =
98 {1 ’b1 , drh [1∗ ‘FP64W−‘FP64EW−2:0∗‘FP64W] ,
99 1 ’ b1 , d r l [ 1∗ ‘FP64W−‘FP64EW−2:0∗‘FP64W ] } ;

100 end
101 endcase
102 end
103
104
105 assign s i gn s = signs_tmp ;
106 assign exps = exps_tmp ;
107 assign f r a c s = fracs_tmp ;
108
109 endmodule // se l_input
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : se l_output . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Thu Apr 24 23:42 :46 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Loads the co r r ec t l o c a t i on s in output r e g i s t e r and
7 // excep t ion r e g i s t e r .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ‘ include " d e f i n e s . v"
11
12 module se l_output
13 (
14 r e su l t , // Input from rounding l o g i c .
15 exceps , // Input from rounding l o g i c .
16 format , // Input from format r e g i s t e r .
17 s ta r t , // Input from s t a r t r e g i s t e r .
18 products , // Output to output r e g i s t e r .
19 load_drh , // Output to output r e g i s t e r .
20 load_drlh , // Output to output r e g i s t e r .
21 load_dr l l , // Output to output r e g i s t e r .
22 except ions , // Output to excep t ion r e g i s t e r .
23 load_excep_l , // Output to excep t ion r e g i s t e r .
24 load_excep_h , // Output to excep t ion r e g i s t e r .
25 r e s e t ,
26 c l k
27 ) ;
28
29
30 // input ( s )
31 input [ ‘BUS/2−1:0] r e s u l t ;
32 input [ 7 : 0 ] exceps ;
33 input [ 1 : 0 ] format ;
34 input s t a r t ;
35 input c l k ;
36 input r e s e t ;
37
38 // output ( s )
39 output [ ‘BUS−1:0 ] products ;
40 output [ 1 5 : 0 ] except i on s ;
41 output load_drh ;
42 output load_drlh ;
43 output l oad_dr l l ;
44 output load_excep_l ;
45 output load_excep_h ;
46
47
48 // wire ( s )
49
50 // reg ( s )
51 reg [ ‘BUS−1:0 ] products ;
52 reg [ 1 5 : 0 ] except i on s ;
53 reg load_drh ;
54 reg load_drlh ;
55 reg l oad_dr l l ;
56 reg load_excep_l ;
57 reg load_excep_h ;
58 reg counter ;
59
60
61 always @ (posedge c l k ) begin
62 i f ( r e s e t ) begin
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63 counter <= 0 ;
64 end
65 else begin
66 i f ( s t a r t ) begin
67 counter <= counter + 1 ;
68 end
69 else begin
70 counter <= 0 ;
71 end
72 end
73 end
74
75 always @ ( r e s u l t or exceps or format or counter or s t a r t ) begin
76 products = 0 ;
77 except i on s = 0 ;
78 load_drh = 0 ;
79 load_drlh = 0 ;
80 load_dr l l = 0 ;
81 load_excep_l = 0 ;
82 load_excep_h = 0 ;
83
84 case ( format )
85 ‘FP16 : begin
86 case ( counter )
87 0 : begin
88 products [ 3 1 : 0 ] = r e s u l t [ 3 1 : 0 ] ;
89 except i on s [ 7 : 0 ] = exceps ;
90 load_dr l l = 1 ;
91 load_excep_l = 1 ;
92 end
93 1 : begin
94 products [ 6 3 : 3 2 ] = r e s u l t [ 3 1 : 0 ] ;
95 except i on s [ 1 5 : 8 ] = exceps ;
96 load_drlh = 1 ;
97 load_excep_h = 1 ;
98 end
99 endcase

100 end
101 ‘FP32 : begin
102 case ( counter )
103 0 : begin
104 products [ 6 3 : 0 ] = r e s u l t [ 6 3 : 0 ] ;
105 except i on s [ 7 : 0 ] = exceps ;
106 load_dr l l = 1 ;
107 load_drlh = 1 ;
108 load_excep_l = 1 ;
109 end
110 1 : begin
111 products [ 1 2 7 : 6 4 ] = r e s u l t [ 6 3 : 0 ] ;
112 except i on s [ 1 5 : 8 ] = exceps ;
113 load_drh = 1 ;
114 load_excep_h = 1 ;
115 end
116 endcase
117 end
118 ‘FP64 : begin
119 case ( counter )
120 0 : begin
121 products [ 6 3 : 0 ] = r e s u l t [ 6 3 : 0 ] ;
122 except i on s [ 7 : 0 ] = exceps ;
123 load_dr l l = 1 ;
124 load_drlh = 1 ;
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125 load_excep_l = 1 ;
126 end
127 1 : begin
128 products [ 1 2 7 : 6 4 ] = r e s u l t [ 6 3 : 0 ] ;
129 except i on s [ 1 5 : 8 ] = exceps ;
130 load_drh = 1 ;
131 load_excep_h = 1 ;
132 end
133 endcase
134 end
135 endcase
136 end
137
138 endmodule // se l_output
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : reg_enable . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 10:31 :28 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Generic r e g i s t e r with synchronous r e s e t and enab le .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " d e f i n e s . v"

10
11 module reg_enable
12 (
13 d , // Data in .
14 q , // Data out .
15 enable , // Enable b i t .
16 clk ,
17 r e s e t
18 ) ;
19
20 parameter WIDTH = ‘BUS ;
21
22 // input ( s )
23 input [WIDTH−1:0 ] d ;
24 input enable ;
25 input c l k ;
26 input r e s e t ;
27
28 // output ( s )
29 output [WIDTH−1:0 ] q ;
30
31 // wire ( s )
32
33 // reg ( s )
34 reg [WIDTH−1:0 ] q ;
35
36 always @ (posedge c l k ) begin
37 i f ( r e s e t ) begin
38 q <= 0 ;
39 end
40 else i f ( enable ) begin
41 q <= d ;
42 end
43 end
44
45 endmodule // reg_enable
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : reg_set . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Thu Apr 24 23:07 :57 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Generic r e g i s t e r with syncrhonous s e t .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 module reg_set

10 (
11 set , // Input .
12 q , // Output .
13 clk ,
14 r e s e t
15 ) ;
16
17 parameter WIDTH = 1 ;
18
19 // input ( s )
20 input s e t ;
21 input c l k ;
22 input r e s e t ;
23
24 // output ( s )
25 output q ;
26
27 // wire ( s )
28
29 // reg ( s )
30 reg q ;
31
32 always @ (posedge c l k ) begin
33 i f ( r e s e t ) begin
34 q <= 0 ;
35 end
36 else i f ( s e t ) begin
37 q <= 1 ;
38 end
39 else begin
40 q <= 0 ;
41 end
42 end
43
44 endmodule // reg_set
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : f f . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 11:45 :16 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Generic r e g i s t e r with synchronous r e s e t .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 module f f

10 (
11 d , // Data in .
12 q , // Data out .
13 clk ,
14 r e s e t
15 ) ;
16
17 parameter WIDTH = 1 ;
18
19 // input ( s )
20 input [WIDTH−1:0 ] d ;
21 input c l k ;
22 input r e s e t ;
23
24 // output ( s )
25 output [WIDTH−1:0 ] q ;
26
27 // reg ( s )
28 reg [WIDTH−1:0 ] q ;
29
30 always @ (posedge c l k ) begin
31 i f ( r e s e t )
32 q <= 0 ;
33 else
34 q <= d ;
35 end
36
37 endmodule // f f





Appendix B

Architecture Two Verilog
Sources

Only sources that differs between the two architectures are included in this
Chapter, exponent unit building blocks, multiplier unit building blocks and
rounding and exception unit building blocks.

1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : d e f i n e s . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Wed May 14 11:45 :28 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Contains d e f i n i t i o n s used in the des ign f i l e s .
7 // Openrand widths , exponent widths , s i g n i f i c a n d widths ,
8 // b i a s va lue s and bus widths .
9 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10
11 ‘define FP16 0
12 ‘define FP32 1
13 ‘define FP64 2
14
15 ‘define FP16W 16
16 ‘define FP32W 32
17 ‘define FP64W 64
18
19 ‘define FP16SW 10
20 ‘define FP32SW 23
21 ‘define FP64SW 52
22
23 ‘define FP16EW 5
24 ‘define FP32EW 8
25 ‘define FP64EW 11
26
27 ‘define FP16BIAS 15
28 ‘define FP32BIAS 127
29 ‘define FP64BIAS 1023
30
31 ‘define FRACBUS 2∗( ‘FP64SW+1)
32 ‘define FRACBUSOUT 154
33 ‘define EXPBUS 4∗‘FP32EW
34 ‘define EXPBUSOUT 20
35 ‘define SIGNBUS 4
36

119
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37 ‘define BUS 128
38
39 ‘define EVEN 0
40 ‘define PINF 1
41 ‘define NINF 2
42 ‘define ZERO 3
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : exp_unit . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 11:40 :17 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Exponent adder un i t .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " d e f i n e s . v"

10
11 module exp_unit
12 (
13 exps , // Input from exponent bus .
14 format , // Input from in s t r u c t i o n r e g i s t e r .
15 sums // Output to exponent bus .
16 ) ;
17
18
19 // input ( s )
20 input [ ‘EXPBUS−1:0 ] exps ;
21 input [ 1 : 0 ] format ;
22
23 // output ( s )
24 output [ ‘EXPBUSOUT−1:0 ] sums ;
25
26 // wire ( s )
27 wire [ ‘FP32EW−1:0 ] fp32_a_0 ;
28 wire [ ‘FP32EW−1:0 ] fp32_b_0 ;
29 wire [ ‘FP32EW−1:0 ] fp32_sum_0 ;
30 wire fp32_ovf_ab_0 ;
31 wire fp32_ovf_biased_0 ;
32 wire [ ‘FP64EW−1:0 ] fp64_a_0 ;
33 wire [ ‘FP64EW−1:0 ] fp64_b_0 ;
34 wire [ ‘FP64EW−1:0 ] fp64_sum_0 ;
35 wire fp64_ovf_ab_0 ;
36 wire fp64_ovf_biased_0 ;
37
38 // reg ( s )
39
40 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41 // Module i n s t a n t i a t i o n .
42 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43
44 exp_add8 #(‘FP32EW) fp32_add_0
45 (
46 . a ( fp32_a_0 ) ,
47 . b ( fp32_b_0) ,
48 . sum ( fp32_sum_0) ,
49 . format ( format ) ,
50 . ovf_ab ( fp32_ovf_ab_0 ) ,
51 . ovf_biased ( fp32_ovf_biased_0 )
52 ) ;
53
54 exp_add11 #(‘FP64EW) fp64_add_0
55 (
56 . a ( fp64_a_0 ) ,
57 . b ( fp64_b_0) ,
58 . format ( format ) ,
59 . sum ( fp64_sum_0) ,
60 . ovf_ab ( fp64_ovf_ab_0 ) ,
61 . ovf_biased ( fp64_ovf_biased_0 )
62 ) ;
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63
64 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 // Combinational a s s i gn .
66 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67
68 // Input demux .
69
70 assign fp32_a_0 =
71 ( format == ‘FP16 ) ?
72 {{(‘FP32EW−‘FP16EW) {1 ’ b0 }} , exps [ 1∗ ‘FP16EW−1:0∗‘FP16EW]} :
73 ( format == ‘FP32 ) ?
74 exps [ 1∗ ‘FP32EW−1:0∗‘FP32EW] : 0 ;
75 assign fp32_b_0 =
76 ( format == ‘FP16 ) ?
77 {{(‘FP32EW−‘FP16EW) {1 ’ b0 }} , exps [ 2∗ ‘FP16EW−1:1∗‘FP16EW]} :
78 ( format == ‘FP32 ) ?
79 exps [ 2∗ ‘FP32EW−1:1∗‘FP32EW] : 0 ;
80
81 assign fp64_a_0 =
82 ( format == ‘FP16 ) ?
83 {{(‘FP64EW−‘FP16EW) {1 ’ b0 }} , exps [ 3∗ ‘FP16EW−1:2∗‘FP16EW]} :
84 ( format == ‘FP32 ) ?
85 {{(‘FP64EW−‘FP32EW) {1 ’ b0 }} , exps [ 3∗ ‘FP32EW−1:2∗‘FP32EW]} :
86 ( format == ‘FP64 ) ?
87 exps [ 1∗ ‘FP64EW−1:0∗‘FP64EW] : 0 ;
88
89 assign fp64_b_0 =
90 ( format == ‘FP16 ) ?
91 {{(‘FP64EW−‘FP16EW) {1 ’ b0 }} , exps [ 4∗ ‘FP16EW−1:3∗‘FP16EW]} :
92 ( format == ‘FP32 ) ?
93 {{(‘FP64EW−‘FP32EW) {1 ’ b0 }} , exps [ 4∗ ‘FP32EW−1:3∗‘FP32EW]} :
94 ( format == ‘FP64 ) ?
95 exps [ 2∗ ‘FP64EW−1:1∗‘FP64EW] : 0 ;
96
97 // Output mux .
98 assign sums =
99 ( format == ‘FP16 ) ?

100 {fp64_ovf_ab_0 , fp64_ovf_biased_0 , fp64_sum_0 [ ‘FP16EW−1 :0 ] ,
101 fp32_ovf_ab_0 , fp32_ovf_biased_0 , fp32_sum_0 [ ‘FP16EW−1:0 ]} :
102 ( format == ‘FP32 ) ?
103 {fp64_ovf_ab_0 , fp64_ovf_biased_0 , fp64_sum_0 [ ‘FP32EW−1 :0 ] ,
104 fp32_ovf_ab_0 , fp32_ovf_biased_0 , fp32_sum_0 [ ‘FP32EW−1:0 ]} :
105 ( format == ‘FP64 ) ?
106 {fp64_ovf_ab_0 , fp64_ovf_biased_0 , fp64_sum_0 [ ‘FP64EW−1:0 ]} :
107 0 ;
108
109 endmodule // exp_unit
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : exp_add8 . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 10:44 :27 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Exponent adder . Adds the two inputs , and su b t r a c t s
7 // the b i a s .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ‘ include " d e f i n e s . v"
11
12 module exp_add8
13 (
14 a , // Input operand .
15 b , // Input operand .
16 format , // Input .
17 sum , // Output sum .
18 ovf_ab , // Overf low a f t e r add i t i on .
19 ovf_biased // Overf low a f t e r su b t r a c t i on .
20 ) ;
21
22 parameter WIDTH = ‘FP32EW;
23
24 // input ( s )
25 input [WIDTH−1:0 ] a ;
26 input [WIDTH−1:0 ] b ;
27 input [ 1 : 0 ] format ;
28
29 // output ( s )
30 output [WIDTH−1:0 ] sum ;
31 output ovf_ab ;
32 output ovf_biased ;
33
34 // wire ( s )
35 wire [WIDTH: 0 ] a_plus_b_tmp ;
36 wire [WIDTH: 0 ] biased_tmp ;
37
38 // Exponent1 + exponent2
39 assign a_plus_b_tmp = a + b ;
40
41 // Sub t rac t b i a s .
42 assign biased_tmp =
43 ( format == ‘FP16 ) ? a_plus_b_tmp − ‘FP16BIAS :
44 ( format == ‘FP32 ) ? a_plus_b_tmp − ‘FP32BIAS : 0 ;
45 // Se l c e t par t o f sum .
46 assign sum =
47 ( format == ‘FP16 ) ? biased_tmp [ ‘FP16EW−1:0 ] :
48 ( format == ‘FP32 ) ? biased_tmp [ ‘FP32EW−1:0 ] : 0 ;
49
50 // Compute over f l ow / underf low de t e c t i on b i t s .
51 assign ovf_ab =
52 ( format == ‘FP16 ) ? a_plus_b_tmp [ ‘FP16EW] :
53 ( format == ‘FP32 ) ? a_plus_b_tmp [ ‘FP32EW] : 0 ;
54
55 // Compute over f l ow / underf low de t e c t i on b i t s .
56 assign ovf_biased =
57 ( format == ‘FP16 ) ? biased_tmp [ ‘FP16EW] :
58 ( format == ‘FP32 ) ? biased_tmp [ ‘FP32EW] : 0 ;
59
60
61 endmodule // exp_add8
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : exp_add11 . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 10:44 :27 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Exponent adder . Adds the two inputs , and su b t r a c t s
7 // the b i a s .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ‘ include " d e f i n e s . v"
11
12 module exp_add11
13 (
14 a , // Input operand .
15 b , // Input operand .
16 format , // Input .
17 sum , // Output sum .
18 ovf_ab , // Overf low a f t e r add i t i on .
19 ovf_biased // Overf low a f t e r su b t r a c t i on .
20 ) ;
21
22 parameter WIDTH = ‘FP64EW;
23
24 // input ( s )
25 input [WIDTH−1:0 ] a ;
26 input [WIDTH−1:0 ] b ;
27 input [ 1 : 0 ] format ;
28
29 // output ( s )
30 output [WIDTH−1:0 ] sum ;
31 output ovf_ab ;
32 output ovf_biased ;
33
34 // wire ( s )
35 wire [WIDTH: 0 ] a_plus_b_tmp ;
36 wire [WIDTH: 0 ] biased_tmp ;
37
38 // Exponent1 + exponent2
39 assign a_plus_b_tmp = a + b ;
40
41 // Sub t rac t b i a s .
42 assign biased_tmp =
43 ( format == ‘FP16 ) ? a_plus_b_tmp − ‘FP16BIAS :
44 ( format == ‘FP32 ) ? a_plus_b_tmp − ‘FP32BIAS :
45 ( format == ‘FP64 ) ? a_plus_b_tmp − ‘FP64BIAS : 0 ;
46
47 // Se l c e t par t o f sum .
48 assign sum =
49 ( format == ‘FP16 ) ? biased_tmp [ ‘FP16EW−1:0 ] :
50 ( format == ‘FP32 ) ? biased_tmp [ ‘FP32EW−1:0 ] :
51 ( format == ‘FP64 ) ? biased_tmp [ ‘FP64EW−1:0 ] : 0 ;
52
53 // Compute over f l ow / underf low de t e c t i on b i t s .
54 assign ovf_ab =
55 ( format == ‘FP16 ) ? a_plus_b_tmp [ ‘FP16EW] :
56 ( format == ‘FP32 ) ? a_plus_b_tmp [ ‘FP32EW] :
57 ( format == ‘FP64 ) ? a_plus_b_tmp [ ‘FP64EW] : 0 ;
58
59 // Compute over f l ow / underf low de t e c t i on b i t s .
60 assign ovf_biased =
61 ( format == ‘FP16 ) ? biased_tmp [ ‘FP16EW] :
62 ( format == ‘FP32 ) ? biased_tmp [ ‘FP32EW] :
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63 ( format == ‘FP64 ) ? biased_tmp [ ‘FP64EW] : 0 ;
64
65
66 endmodule // exp_add11
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : mult_unit . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 11:37 :56 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : S i gn i f i c and mu l t i p l i e r un i t .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " d e f i n e s . v"

10
11 module mult_unit
12 (
13 f r a c s , // Input from s i g n i f i c a nd bus .
14 format , // Input from in s t r u c t i o n r e g i s t e r .
15 prods // Output to s i g n i f i c a nd bus .
16 ) ;
17
18 // input ( s )
19 input [ ‘FRACBUS−1:0 ] f r a c s ;
20 input [ 1 : 0 ] format ;
21
22 // output ( s )
23 output [ ‘FRACBUSOUT−1:0 ] prods ;
24
25 // wire ( s )
26 wire [ ‘FP32SW : 0 ] fp32_a_0 ;
27 wire [ ‘FP32SW : 0 ] fp32_b_0 ;
28 wire [ 2∗ ‘FP32SW+1:0] fp32_p_0 ;
29 wire [ ‘FP64SW : 0 ] fp64_a_0 ;
30 wire [ ‘FP64SW : 0 ] fp64_b_0 ;
31 wire [ 2∗ ‘FP64SW+1:0] fp64_p_0 ;
32
33 // reg ( s )
34
35 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 // Module i n s t a n t i a t i o n s .
37 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38
39 uns_mult #(‘FP32SW+1) uns_mult_fp32_0
40 (
41 . a ( fp32_a_0 ) ,
42 . b( fp32_b_0) ,
43 . p( fp32_p_0)
44 ) ;
45
46 uns_mult #(‘FP64SW+1) uns_mult_fp64_0
47 (
48 . a ( fp64_a_0 ) ,
49 . b( fp64_b_0) ,
50 . p( fp64_p_0)
51 ) ;
52
53 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 // Combinaional a s s i gn s .
55 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56
57 // Input demux .
58
59 assign fp32_a_0 =
60 ( format == ‘FP16 ) ?
61 { f r a c s [ 1∗ ( ‘FP16SW+1)−1:0∗(‘FP16SW+1) ] ,
62 {(‘FP32SW−‘FP16SW) {1 ’ b0}}} :
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63 ( format == ‘FP32 ) ?
64 f r a c s [ 1∗ ( ‘FP32SW+1)−1:0∗(‘FP32SW+1) ] : 0 ;
65
66 assign fp32_b_0 =
67 ( format == ‘FP16 ) ?
68 { f r a c s [ 2∗ ( ‘FP16SW+1)−1:1∗(‘FP16SW+1) ] ,
69 {(‘FP32SW−‘FP16SW) {1 ’ b0}}} :
70 ( format == ‘FP32 ) ?
71 f r a c s [ 2∗ ( ‘FP32SW+1)−1:1∗(‘FP32SW+1) ] : 0 ;
72
73
74 assign fp64_a_0 =
75 ( format == ‘FP16 ) ?
76 { f r a c s [ 3∗ ( ‘FP16SW+1)−1:2∗(‘FP16SW+1) ] ,
77 {(‘FP64SW−‘FP16SW) {1 ’ b0}}} :
78 ( format == ‘FP32 ) ?
79 { f r a c s [ 3∗ ( ‘FP32SW+1)−1:2∗(‘FP32SW+1) ] ,
80 {(‘FP64SW−‘FP32SW) {1 ’ b0}}} :
81 ( format == ‘FP64 ) ?
82 f r a c s [ 1∗ ( ‘FP64SW+1)−1:0∗(‘FP64SW+1) ] : 0 ;
83
84 assign fp64_b_0 =
85 ( format == ‘FP16 ) ?
86 { f r a c s [ 4∗ ( ‘FP16SW+1)−1:3∗(‘FP16SW+1) ] ,
87 {(‘FP64SW−‘FP16SW) {1 ’ b0}}} :
88 ( format == ‘FP32 ) ?
89 { f r a c s [ 4∗ ( ‘FP32SW+1)−1:3∗(‘FP32SW+1) ] ,
90 {(‘FP64SW−‘FP32SW) {1 ’ b0}}} :
91 ( format == ‘FP64 ) ?
92 f r a c s [ 2∗ ( ‘FP64SW+1)−1:1∗(‘FP64SW+1) ] : 0 ;
93
94 assign prods = {fp64_p_0 , fp32_p_0 } ;
95
96 endmodule // mult_unit
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : uns_mult . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 10:40 :36 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Unsigned mu l t i p l i e r used fo r s i g n i f i c a n d
7 // mu l t i p l i c a t i o n .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ‘ include " d e f i n e s . v"
11
12 module uns_mult
13 (
14 a , // Input , mu l t i p l i c and .
15 b , // Input , mu l t i p l i e r .
16 p // Output , product .
17 ) ;
18
19
20 parameter WIDTH = ‘FP64SW+1;
21
22 // input ( s )
23 input [WIDTH−1:0 ] a ;
24 input [WIDTH−1:0 ] b ;
25
26 // output ( s )
27 output [ 2∗WIDTH−1:0 ] p ;
28
29 assign p = a ∗ b ;
30
31 endmodule // uns_mult
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : rne_unit . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 12:19 :50 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Rounding , normal i z ing and excep t ion un i t .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " d e f i n e s . v"

10
11 module rne_unit
12 (
13 f r a c s , // Input from f r a c t i on bus .
14 exps , // Input form exponent bus .
15 s igns , // Input from s ign bus .
16 format , // Input from in s t ruc i on r e g i s t e r .
17 sp e c i a l , // Input form check s p e c i a l .
18 mode , // Input from mode r e g i s t e r .
19 exceps , // Output excep t i ons .
20 r e s u l t // Output . Rounded r e s u l t .
21 ) ;
22
23 // input ( s )
24 input [ ‘FRACBUSOUT−1:0 ] f r a c s ;
25 input [ ‘EXPBUSOUT−1:0 ] exps ;
26 input [ ‘SIGNBUS/2−1:0] s i g n s ;
27 input [ 1 : 0 ] format ;
28 input [ 1 : 0 ] mode ;
29 input [ 1 5 : 0 ] s p e c i a l ;
30
31 // output ( s )
32 output [ ‘BUS/2−1:0] r e s u l t ;
33 output [ 7 : 0 ] exceps ;
34
35 // wire ( s )
36 wire sign_rne_0 ;
37 wire sign_rne_1 ;
38 wire [ 2∗ ‘FP32SW+1:0] frac_rne_0 ;
39 wire [ 2∗ ‘FP64SW+1:0] frac_rne_1 ;
40 wire [ ‘FP32EW+1:0] exp_rne_0 ;
41 wire [ ‘FP64EW+1:0] exp_rne_1 ;
42 wire [ ‘FP32W−1:0 ] result_rne_0 ;
43 wire [ ‘FP64W−1:0 ] result_rne_1 ;
44 wire [ 7 : 0 ] spec ia ls_rne_0 ;
45 wire [ 7 : 0 ] spec ia ls_rne_1 ;
46 wire [ 3 : 0 ] exceps_rne_0 ;
47 wire [ 3 : 0 ] exceps_rne_1 ;
48 wire [ 1 : 0 ] over f l ow ;
49 wire [ 1 : 0 ] underf low ;
50 wire [ 1 : 0 ] i n exac t ;
51 wire [ 1 : 0 ] i n v a l i d ;
52 // reg ( s )
53
54 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55 // Module i n s t a n t i a t i o n .
56 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
57
58 rne32 #(‘FP32SW , ‘FP32EW) rne_0
59 (
60 . f r a c ( frac_rne_0 ) ,
61 . s i gn ( sign_rne_0 ) ,
62 . exp ( exp_rne_0 ) ,
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63 . s p e c i a l s ( spec ia ls_rne_0 ) ,
64 .mode (mode) ,
65 . format ( format ) ,
66 . r e s u l t ( result_rne_0 ) ,
67 . exceps ( exceps_rne_0 )
68 ) ;
69
70 rne64 #(‘FP64SW , ‘FP64EW) rne_1
71 (
72 . f r a c ( frac_rne_1 ) ,
73 . s i gn ( sign_rne_1 ) ,
74 . exp ( exp_rne_1 ) ,
75 . s p e c i a l s ( spec ia ls_rne_1 ) ,
76 .mode (mode) ,
77 . format ( format ) ,
78 . r e s u l t ( result_rne_1 ) ,
79 . exceps ( exceps_rne_1 )
80 ) ;
81
82
83
84 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
85 // Combinalional a s s i gn .
86 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87
88 // Inputs to rounding l o g i c .
89 assign frac_rne_0 = f r a c s [ 2∗ ( ‘FP32SW+1) −1 :0 ] ;
90 assign frac_rne_1 = f r a c s [ ‘FRACBUSOUT−1:2∗(‘FP32SW+1) ] ;
91
92 // Two msb b i t s r ep r e s en t s the over f l ow b i t s during exponent
93 // add i t i on .
94 assign exp_rne_0 =
95 ( format == ‘FP16 ) ?
96 exps [ ‘FP16EW+1:0] :
97 ( format == ‘FP32 ) ?
98 exps [ ‘FP32EW+1:0] :
99 0 ;

100
101 assign exp_rne_1 =
102 ( format == ‘FP16 ) ?
103 exps [ ‘EXPBUSOUT−1:‘FP16EW+2] :
104 ( format == ‘FP32 ) ?
105 exps [ ‘EXPBUSOUT−1:‘FP32EW+2] :
106 ( format == ‘FP64 ) ?
107 exps [ ‘FP64EW+1:0] :
108 0 ;
109
110 assign sign_rne_0 = s i gn s [ 0 ] ;
111
112 assign sign_rne_1 =
113 ( format == ‘FP64 ) ?
114 s i gn s [ 0 ] :
115 s i gn s [ 1 ] ;
116
117 assign spec ia ls_rne_0 =
118 { s p e c i a l [ 1 3 : 1 2 ] , s p e c i a l [ 9 : 8 ] , s p e c i a l [ 5 : 4 ] , s p e c i a l [ 1 : 0 ] } ;
119
120 assign spec ia ls_rne_1 =
121 ( format == ‘FP64 ) ?
122 { s p e c i a l [ 1 3 : 1 2 ] , s p e c i a l [ 9 : 8 ] , s p e c i a l [ 5 : 4 ] , s p e c i a l [ 1 : 0 ] } :
123 { s p e c i a l [ 1 5 : 1 4 ] , s p e c i a l [ 1 1 : 1 0 ] , s p e c i a l [ 7 : 6 ] , s p e c i a l [ 3 : 2 ] } ;
124
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125
126 assign underf low =
127 ( format == ‘FP64 ) ?
128 {1 ’b0 , exceps_rne_1 [ 3 ] } :
129 {exceps_rne_1 [ 3 ] , exceps_rne_0 [ 3 ] } ;
130
131 assign over f l ow =
132 ( format == ‘FP64 ) ?
133 {1 ’b0 , exceps_rne_1 [ 2 ] } :
134 {exceps_rne_1 [ 2 ] , exceps_rne_0 [ 2 ] } ;
135
136 assign i n exac t =
137 ( format == ‘FP64 ) ?
138 {1 ’b0 , exceps_rne_1 [ 1 ] } :
139 {exceps_rne_1 [ 1 ] , exceps_rne_0 [ 1 ] } ;
140
141 assign i n v a l i d =
142 ( format == ‘FP64 ) ?
143 {1 ’b0 , exceps_rne_1 [ 0 ] } :
144 {exceps_rne_1 [ 0 ] , exceps_rne_0 [ 0 ] } ;
145
146 assign exceps = {underf low , over f low , inexact , i n v a l i d } ;
147
148 assign r e s u l t =
149 ( format == ‘FP16 ) ?
150 { result_rne_1 [ ‘FP16SW + ‘FP16EW: 0 ] ,
151 result_rne_0 [ ‘FP16SW + ‘FP16EW: 0 ] } :
152 ( format == ‘FP32 ) ?
153 { result_rne_1 [ ‘FP32SW + ‘FP32EW: 0 ] ,
154 result_rne_0 [ ‘FP32SW + ‘FP32EW: 0 ] } :
155 ( format == ‘FP64 ) ?
156 result_rne_1 [ ‘FP64SW + ‘FP64EW : 0 ] :
157 0 ;
158
159 endmodule // rne_unit
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : rne32 . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 11:10 :54 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Rounding and excep t ion un i t . Rounds , normal i zes and
7 // pos tnorml i z e s the r e s u l t from the computation , and
8 // genera te s excep t i ons i f needed .
9 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10
11 ‘ include " d e f i n e s . v"
12
13 module rne32
14 (
15 f rac , // Input . Frac t iona l par t from mu l t i p l i c a t i o n .
16 s ign , // Input . Sign from s ign computation .
17 exp , // Input . Biased exponent from exponent add i t i on .
18 s p e c i a l s , // Input . NaNs , i n f i n i t i e s , ze ros . .
19 format , // Input .
20 mode , // Input . Rounding mode .
21 r e su l t , // Output . Rounded r e s u l t or s p e c i a l va lue .
22 exceps // Output . Except ions .
23 ) ;
24
25 parameter SW = ‘FP32SW ;
26 parameter EW = ‘FP32EW;
27
28 // input ( s )
29 input [ 2∗SW+1:0] f r a c ;
30 input [EW+1:0] exp ;
31 input s i gn ;
32 input [ 7 : 0 ] s p e c i a l s ;
33 input [ 1 : 0 ] mode ;
34 input [ 1 : 0 ] format ;
35
36 // output ( s )
37 output [SW+EW: 0 ] r e s u l t ;
38 output [ 3 : 0 ] exceps ;
39
40 // wire ( s )
41 wire normal ize ;
42 wire postnormal i ze ;
43 wire l s b ;
44 wire round ;
45 wire s t i c ky ;
46 wire roundup ;
47 wire rounded ;
48 wire ovf_ab ;
49 wire ovf_biased ;
50 wire ovf_postnorm ;
51 wire round_to_nearest_even ;
52 wire round_to_inf in i ty ;
53 wire round_to_zero ;
54 wire nan_a ;
55 wire nan_b ;
56 wire int_a ;
57 wire int_b ;
58 wire inf_a ;
59 wire inf_b ;
60 wire zero_a ;
61 wire zero_b ;
62 wire int_times_inf ;



133

63 wire i n v a l i d ;
64 wire over f l ow ;
65 wire overflow_tmp ;
66 wire underf low ;
67 wire i n exac t ;
68 wire [SW: 0 ] s i g n i f i c a n d ;
69 wire [SW: 0 ] s igni f icand_tmp ;
70 wire [SW: 0 ] s ign i f i cand_plus_ulp ;
71 wire [EW: 0 ] exponent ;
72 wire [EW: 0 ] exponent_tmp ;
73 wire [SW+EW: 0 ] result_tmp ;
74 wire [SW+EW: 0 ] product_nan ;
75 wire [SW+EW: 0 ] product_zero ;
76 wire [SW+EW: 0 ] product_large ;
77 wire [SW+EW: 0 ] product_overf low ;
78
79 // reg ( s )
80
81
82 // Round and normal ize / Postnormal ize .
83 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84
85 // Normalize i f r e s u l t from mu l t i p l i e r l i e s in [2 ,4 )
86 assign normal ize = f r a c [ 2∗SW+1] ;
87
88 assign s igni f icand_tmp =
89 normal ize ?
90 f r a c [ 2∗SW:SW] >> 1 :
91 f r a c [ 2∗SW:SW] ;
92
93 assign exponent_tmp =
94 ( format == ‘FP16 ) ?
95 normal ize ?
96 exp [ ‘FP16EW−1:0 ] + 1 : exp [ ‘FP16EW−1:0 ] :
97 ( format == ‘FP32 ) ?
98 normal ize ?
99 exp [ ‘FP32EW−1:0 ] + 1 : exp [ ‘FP32EW−1:0 ] : 0 ;

100
101
102 // Assign rounding b i t s .
103 assign l s b =
104 ( format == ‘FP16 ) ?
105 normal ize ?
106 f r a c [ 3 7 ] :
107 f r a c [ 3 6 ] :
108 ( format == ‘FP32 ) ?
109 normal ize ?
110 f r a c [ 2 4 ] :
111 f r a c [ 2 3 ] : 0 ;
112
113
114 assign round =
115 ( format == ‘FP16 ) ?
116 normal ize ?
117 f r a c [ 3 6 ] :
118 f r a c [ 3 5 ] :
119 ( format == ‘FP32 ) ?
120 normal ize ?
121 f r a c [ 2 3 ] :
122 f r a c [ 2 2 ] : 0 ;
123
124 assign s t i c ky =
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125 ( format == ‘FP16 ) ?
126 normal ize ?
127 | f r a c [ 3 5 : 2 6 ] :
128 | f r a c [ 3 4 : 2 5 ] :
129 ( format == ‘FP32 ) ?
130 normal ize ?
131 | f r a c [ 2 2 : 1 ] :
132 | f r a c [ 2 1 : 0 ] : 0 ;
133
134 // Reduce to three rounding modes .
135 assign round_to_nearest_even =
136 ( round & ( l s b | s t i c k y ) ) & ! ( | mode) ;
137
138 assign round_to_inf in i ty =
139 ( ! s i gn &(!mode [1 ]&mode [ 0 ] ) | s i gn&(mode [ 1 ]& !mode [ 0 ] ) ) &
140 ( round | s t i c k y ) ;
141
142 assign round_to_zero =
143 ( s i gn&(~mode [1 ]&mode [ 0 ] ) |~ s i gn&(mode[1]&~mode [ 0 ] ) ) |&mode ;
144
145 // Round−up i f necessary .
146 assign s ign i f i cand_plus_ulp =
147 ( format == ‘FP16 ) ?
148 s igni f icand_tmp [SW:SW−‘FP16SW ] + 1 ’ b1 :
149 ( format == ‘FP32 ) ?
150 s igni f icand_tmp [SW:SW−‘FP32SW ] + 1 ’ b1 : 0 ;
151
152 assign roundup = round_to_inf in i ty | round_to_nearest_even ;
153 assign s i g n i f i c a n d =
154 ( format == ‘FP16 ) ?
155 roundup ?
156 s ign i f i cand_plus_ulp : s igni f icand_tmp [SW:SW−‘FP16SW ] :
157 ( format == ‘FP32 ) ?
158 roundup ?
159 s ign i f i cand_plus_ulp : s igni f icand_tmp [SW:SW−‘FP32SW ] : 0 ;
160
161 // Post−normal ize i f r e s u l t a f t e r rounding l i e s in [2 ,4 ) .
162 assign postnormal i ze =
163 ( format == ‘FP16 ) ?
164 ! s i g n i f i c a n d [ ‘FP16SW]& signi f icand_tmp [SW] :
165 ( format == ‘FP32 ) ?
166 ! s i g n i f i c a n d [ ‘FP32SW]& signi f icand_tmp [SW] : 0 ;
167
168 assign exponent =
169 postnormal i ze ?
170 exponent_tmp + 1 :
171 exponent_tmp ;
172
173 assign result_tmp =
174 ( format == ‘FP16 ) ?
175 postnormal i ze ?
176 { s ign , exponent [ ‘FP16EW−1 :0 ] , s i g n i f i c a n d [ ‘FP16SW−1:0 ]} :
177 { s ign , exponent [ ‘FP16EW−1 :0 ] , s i g n i f i c a n d [ ‘FP16SW−1:0 ]} :
178 ( format == ‘FP32 ) ?
179 postnormal i ze ?
180 { s ign , exponent [ ‘FP32EW−1 :0 ] , s i g n i f i c a n d [ ‘FP32SW−1:0 ]} :
181 { s ign , exponent [ ‘FP32EW−1 :0 ] , s i g n i f i c a n d [ ‘FP32SW−1:0 ]} : 0 ;
182
183
184 // Inexac t i f r e s u l t was rounded .
185 assign rounded = round | s t i c ky ;
186
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187 assign ovf_postnorm =
188 ( format == ‘FP16 ) ?
189 exponent [ ‘FP16EW] |
190 &exponent [ ‘FP16EW−1:0]&( normal ize | pos tnormal i ze ) :
191 ( format == ‘FP32 ) ?
192 exponent [ ‘FP32EW] |
193 &exponent [ ‘FP32EW−1:0]&( normal ize | pos tnormal i ze ) :
194 0 ;
195
196
197 // Generate excep t i ons .
198 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
199
200 assign ovf_ab =
201 ( format == ‘FP16 ) ?
202 exp [ ‘FP16EW+1] :
203 ( format == ‘FP32 ) ?
204 exp [ ‘FP32EW+1] : 0 ;
205
206 assign ovf_biased =
207 ( format == ‘FP16 ) ?
208 exp [ ‘FP16EW] :
209 ( format == ‘FP32 ) ?
210 exp [ ‘FP32EW] : 0 ;
211
212 // In va l i d inpu t s from chk_spec ia l .
213 assign nan_a = s p e c i a l s [ 0 ] ;
214 assign nan_b = s p e c i a l s [ 1 ] ;
215 assign inf_a = s p e c i a l s [ 2 ] ;
216 assign inf_b = s p e c i a l s [ 3 ] ;
217 assign zero_a = s p e c i a l s [ 4 ] ;
218 assign zero_b = s p e c i a l s [ 5 ] ;
219 assign int_a = s p e c i a l s [ 6 ] ;
220 assign int_b = s p e c i a l s [ 7 ] ;
221
222
223 // Generate excep t i ons .
224 assign int_times_inf = ( int_a&inf_b ) | ( int_b&inf_a ) ;
225
226 assign i n v a l i d =
227 (nan_a | nan_b) |
228 ( zero_a&inf_b | zero_b&inf_a ) |
229 ( inf_a | inf_b )&! int_times_inf ;
230
231 assign i n exac t =
232 ( rounded & ( ! i n v a l i d ) |
233 overflow_tmp |
234 round_to_zero&overflow_tmp |
235 underf low &(!( zero_a | zero_b ) ) )&! int_times_inf ;
236
237 assign underf low =
238 ( format == ‘FP16 ) ?
239 (~ovf_ab&ovf_biased ) |
240 (~ | result_tmp [ ‘FP16SW+‘FP16EW−1:‘FP16SW ] ) &
241 ! ( ovf_ab&ovf_biased | ovf_postnorm ) &
242 ! over f l ow&! i n v a l i d | ( zero_a | zero_b ) &
243 ! ( nan_a | nan_b | inf_a | inf_b ) :
244 ( format == ‘FP32 ) ?
245 (~ovf_ab&ovf_biased ) |
246 (~ | result_tmp [ ‘FP32SW+‘FP32EW−1:‘FP32SW ] ) &
247 ! ( ovf_ab&ovf_biased | ovf_postnorm ) &
248 ! over f l ow&! i n v a l i d | ( zero_a | zero_b ) &
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249 ! ( nan_a | nan_b | inf_a | inf_b ) : 0 ;
250
251 // I f over f l ow occurs and rounding mode equa l s round−to zero ,
252 // r e s u l t s h a l l be rounded to l a r g e s t r e p r e s en t a t i v e number .
253 // e . x 0111101111111111.
254 assign overflow_tmp =
255 ( format == ‘FP16 ) ?
256 ( ( ovf_ab&ovf_biased | ovf_postnorm&! underf low ) |
257 &result_tmp [ ‘FP16SW+‘FP16EW−1:‘FP16SW]&! underf low ) &
258 ! i n v a l i d :
259 ( format == ‘FP32 ) ?
260 ( ( ovf_ab&ovf_biased | ovf_postnorm&! underf low ) |
261 &result_tmp [ ‘FP32SW+‘FP32EW−1:‘FP32SW]&! underf low ) &
262 ! i n v a l i d : 0 ;
263
264 assign over f l ow = overflow_tmp&!round_to_zero | int_times_inf ;
265
266
267 // Compute s p e c i a l r e s u l t s .
268 assign product_nan =
269 ( format == ‘FP16 ) ?
270 {1 ’b0 , {‘FP16EW{1 ’ b1 }} , {( ‘FP16SW−1){1 ’ b0 }} , 1 ’ b1} :
271 ( format == ‘FP32 ) ?
272 {1 ’b0 , {‘FP32EW{1 ’ b1 }} , {( ‘FP32SW−1){1 ’ b0 }} , 1 ’ b1} :
273 0 ;
274
275 assign product_zero =
276 ( format == ‘FP16 ) ?
277 { result_tmp [ ‘FP16SW+‘FP16EW] , {( ‘FP16SW+‘FP16EW) {1 ’ b0}}} :
278 ( format == ‘FP32 ) ?
279 { result_tmp [ ‘FP32SW+‘FP32EW] , {( ‘FP32SW+‘FP32EW) {1 ’ b0}}} :
280 0 ;
281
282 assign product_overf low =
283 ( format == ‘FP16 ) ?
284 { result_tmp [ ‘FP16SW+‘FP16EW] ,
285 {‘FP16EW{1 ’ b1 }} , {( ‘FP16SW) {1 ’ b0}}} :
286 ( format == ‘FP32 ) ?
287 { result_tmp [ ‘FP32SW+‘FP32EW] ,
288 {‘FP32EW{1 ’ b1 }} , {( ‘FP32SW) {1 ’ b0}}} :
289 0 ;
290
291 assign product_large =
292 ( format == ‘FP16 ) ?
293 { result_tmp [ ‘FP16SW+‘FP16EW] ,
294 {(‘FP16EW−1){1 ’ b1 }} , 1 ’ b0 , {( ‘FP16SW) {1 ’ b1}}} :
295 ( format == ‘FP32 ) ?
296 { result_tmp [ ‘FP32SW+‘FP32EW] ,
297 {(‘FP32EW−1){1 ’ b1 }} , 1 ’ b0 , {( ‘FP32SW) {1 ’ b1}}} :
298 0 ;
299
300 // Final product dec ided by excep t i ons .
301 assign r e s u l t =
302 i n v a l i d ? product_nan :
303 over f l ow ? product_overf low :
304 underf low ? product_zero :
305 round_to_zero & overflow_tmp & ! int_times_inf ? product_large :
306 result_tmp ;
307
308 assign exceps [ 0 ] = i n v a l i d ;
309 assign exceps [ 1 ] = inexac t ;
310 assign exceps [ 2 ] = over f l ow ;



137

311 assign exceps [ 3 ] = underf low ;
312
313 endmodule // rne32
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1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : rne64 . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 15 11:10 :54 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Rounding and excep t ion un i t . Rounds , normal i zes and
7 // pos tnorml i z e s the r e s u l t from the computation , and
8 // genera te s excep t i ons i f needed .
9 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10
11 ‘ include " d e f i n e s . v"
12
13 module rne64
14 (
15 f rac , // Input . Frac t iona l par t from mu l t i p l i c a t i o n .
16 s ign , // Input . Sign from s ign computation .
17 exp , // Input . Biased exponent from exponent add i t i on .
18 s p e c i a l s , // Input . NaNs , i n f i n i t i e s , ze ros . .
19 format , // Input .
20 mode , // Input . Rounding mode .
21 r e su l t , // Output . Rounded r e s u l t or s p e c i a l va lue .
22 exceps // Output . Except ions .
23 ) ;
24
25 parameter SW = 52 ;
26 parameter EW = 11 ;
27
28 // input ( s )
29 input [ 2∗SW+1:0] f r a c ;
30 input [EW+1:0] exp ;
31 input s i gn ;
32 input [ 7 : 0 ] s p e c i a l s ;
33 input [ 1 : 0 ] mode ;
34 input [ 1 : 0 ] format ;
35
36 // output ( s )
37 output [SW+EW: 0 ] r e s u l t ;
38 output [ 3 : 0 ] exceps ;
39
40 // wire ( s )
41 wire normal ize ;
42 wire postnormal i ze ;
43 wire l s b ;
44 wire round ;
45 wire s t i c ky ;
46 wire roundup ;
47 wire rounded ;
48 wire ovf_ab ;
49 wire ovf_biased ;
50 wire ovf_postnorm ;
51 wire round_to_nearest_even ;
52 wire round_to_inf in i ty ;
53 wire round_to_zero ;
54 wire nan_a ;
55 wire nan_b ;
56 wire int_a ;
57 wire int_b ;
58 wire inf_a ;
59 wire inf_b ;
60 wire zero_a ;
61 wire zero_b ;
62 wire int_times_inf ;
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63 wire i n v a l i d ;
64 wire over f l ow ;
65 wire overflow_tmp ;
66 wire underf low ;
67 wire underflow_tmp ;
68 wire i n exac t ;
69 wire exp_zero ;
70 wire [SW: 0 ] s i g n i f i c a n d ;
71 wire [SW: 0 ] s igni f icand_tmp ;
72 wire [SW: 0 ] s ign i f i cand_plus_ulp ;
73 wire [EW: 0 ] exponent ;
74 wire [EW: 0 ] exponent_tmp ;
75 wire [SW+EW: 0 ] result_tmp ;
76 wire [SW+EW: 0 ] product_nan ;
77 wire [SW+EW: 0 ] product_zero ;
78 wire [SW+EW: 0 ] product_large ;
79 wire [SW+EW: 0 ] product_overf low ;
80 wire [SW+EW: 0 ] product_min ;
81
82 // reg ( s )
83
84
85 // Round and normal ize / Postnormal ize .
86 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87
88 // Normalize i f r e s u l t from mu l t i p l i e r l i e s in [2 ,4 )
89 assign normal ize = f r a c [ 2∗SW+1] ;
90
91 assign s igni f icand_tmp =
92 normal ize ?
93 f r a c [ 2∗SW:SW] >> 1 : f r a c [ 2∗SW:SW] ;
94
95 assign exponent_tmp =
96 ( format == ‘FP16 ) ?
97 normal ize ?
98 exp [ ‘FP16EW−1:0 ] + 1 : exp [ ‘FP16EW−1:0 ] :
99 ( format == ‘FP32 ) ?

100 normal ize ?
101 exp [ ‘FP32EW−1:0 ] + 1 : exp [ ‘FP32EW−1:0 ] :
102 ( format == ‘FP64 ) ?
103 normal ize ?
104 exp [ ‘FP64EW−1:0 ] + 1 : exp [ ‘FP64EW−1:0 ] : 0 ;
105
106
107 // Assign rounding b i t s .
108 assign l s b =
109 ( format == ‘FP16 ) ?
110 normal ize ?
111 f r a c [ 9 5 ] :
112 f r a c [ 9 4 ] :
113 ( format == ‘FP32 ) ?
114 normal ize ?
115 f r a c [ 8 2 ] :
116 f r a c [ 8 1 ] :
117 ( format == ‘FP64 ) ?
118 normal ize ?
119 f r a c [ 5 3 ] :
120 f r a c [ 5 2 ] : 0 ;
121
122
123 assign round =
124 ( format == ‘FP16 ) ?
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125 normal ize ?
126 f r a c [ 9 4 ] :
127 f r a c [ 9 3 ] :
128 ( format == ‘FP32 ) ?
129 normal ize ?
130 f r a c [ 8 1 ] :
131 f r a c [ 8 0 ] :
132 ( format == ‘FP64 ) ?
133 normal ize ?
134 f r a c [ 5 2 ] :
135 f r a c [ 5 1 ] : 0 ;
136
137 assign s t i c ky =
138 ( format == ‘FP16 ) ?
139 normal ize ?
140 | f r a c [ 9 3 : 8 4 ] :
141 | f r a c [ 9 2 : 8 3 ] :
142 ( format == ‘FP32 ) ?
143 normal ize ?
144 | f r a c [ 8 0 : 5 9 ] :
145 | f r a c [ 7 9 : 5 8 ] :
146 ( format == ‘FP64 ) ?
147 normal ize ?
148 | f r a c [ 5 1 : 1 ] :
149 | f r a c [ 5 0 : 0 ] : 0 ;
150
151 // Reduce to three rounding modes .
152 assign round_to_nearest_even =
153 ( round & ( l s b | s t i c k y ) ) & ! ( | mode) ;
154
155 assign round_to_inf in i ty =
156 ( ! s i gn &(!mode [1 ]&mode [ 0 ] ) | s i gn&(mode [ 1 ]& !mode [ 0 ] ) ) &
157 ( round | s t i c k y ) ;
158
159 assign round_to_zero =
160 ( s i gn&(~mode [1 ]&mode [ 0 ] ) |~ s i gn&(mode[1]&~mode [ 0 ] ) ) |&mode ;
161
162 // Round−up i f necessary .
163 assign s ign i f i cand_plus_ulp =
164 ( format == ‘FP16 ) ?
165 s igni f icand_tmp [SW:SW−‘FP16SW ] + 1 ’ b1 :
166 ( format == ‘FP32 ) ?
167 s igni f icand_tmp [SW:SW−‘FP32SW ] + 1 ’ b1 :
168 ( format == ‘FP64 ) ?
169 s igni f icand_tmp [SW:SW−‘FP64SW ] + 1 ’ b1 : 0 ;
170
171 assign roundup = round_to_inf in i ty | round_to_nearest_even ;
172 assign s i g n i f i c a n d =
173 ( format == ‘FP16 ) ?
174 roundup ?
175 s ign i f i cand_plus_ulp : s igni f icand_tmp [SW:SW−‘FP16SW ] :
176 ( format == ‘FP32 ) ?
177 roundup ?
178 s ign i f i cand_plus_ulp : s igni f icand_tmp [SW:SW−‘FP32SW ] :
179 ( format == ‘FP64 ) ?
180 roundup ?
181 s ign i f i cand_plus_ulp : s igni f icand_tmp [SW:SW−‘FP64SW ] : 0 ;
182
183 // Post−normal ize i f r e s u l t a f t e r rounding l i e s in [2 ,4 ) .
184 assign postnormal i ze =
185 ( format == ‘FP16 ) ?
186 ! s i g n i f i c a n d [ ‘FP16SW]& signi f icand_tmp [SW] :
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187 ( format == ‘FP32 ) ?
188 ! s i g n i f i c a n d [ ‘FP32SW]& signi f icand_tmp [SW] :
189 ( format == ‘FP64 ) ?
190 ! s i g n i f i c a n d [ ‘FP64SW]& signi f icand_tmp [SW] : 0 ;
191
192 assign exponent =
193 postnormal i ze ?
194 exponent_tmp + 1 :
195 exponent_tmp ;
196
197
198 assign result_tmp =
199 ( format == ‘FP16 ) ?
200 postnormal i ze ?
201 { s ign , exponent [ ‘FP16EW−1 :0 ] , s i g n i f i c a n d [ ‘FP16SW−1:0 ]} :
202 { s ign , exponent [ ‘FP16EW−1 :0 ] , s i g n i f i c a n d [ ‘FP16SW−1:0 ]} :
203 ( format == ‘FP32 ) ?
204 postnormal i ze ?
205 { s ign , exponent [ ‘FP32EW−1 :0 ] , s i g n i f i c a n d [ ‘FP32SW−1:0 ]} :
206 { s ign , exponent [ ‘FP32EW−1 :0 ] , s i g n i f i c a n d [ ‘FP32SW−1:0 ]} :
207 ( format == ‘FP64 ) ?
208 postnormal i ze ?
209 { s ign , exponent [ ‘FP64EW−1 :0 ] , s i g n i f i c a n d [ ‘FP64SW−1:0 ]} :
210 { s ign , exponent [ ‘FP64EW−1 :0 ] , s i g n i f i c a n d [ ‘FP64SW−1:0 ]} :
211 0 ;
212
213 // Inexac t i f r e s u l t was rounded .
214 assign rounded = round | s t i c ky ;
215
216 assign ovf_postnorm =
217 ( format == ‘FP16 ) ?
218 exponent [ ‘FP16EW] |
219 &exponent [ ‘FP16EW−1:0]&( normal ize | pos tnormal i ze ) :
220 ( format == ‘FP32 ) ?
221 exponent [ ‘FP32EW] |
222 &exponent [ ‘FP32EW−1:0]&( normal ize | pos tnormal i ze ) :
223 ( format == ‘FP64 ) ?
224 exponent [ ‘FP64EW] |
225 &exponent [ ‘FP64EW−1:0]&( normal ize | pos tnormal i ze ) :
226 0 ;
227
228
229 // Generate excep t i ons .
230 //

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

231
232 assign ovf_ab =
233 ( format == ‘FP16 ) ?
234 exp [ ‘FP16EW+1] :
235 ( format == ‘FP32 ) ?
236 exp [ ‘FP32EW+1] :
237 ( format == ‘FP64 ) ?
238 exp [ ‘FP64EW+1] : 0 ;
239
240 assign ovf_biased =
241 ( format == ‘FP16 ) ?
242 exp [ ‘FP16EW] :
243 ( format == ‘FP32 ) ?
244 exp [ ‘FP32EW] :
245 ( format == ‘FP64 ) ?
246 exp [ ‘FP64EW] : 0 ;
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247
248 // In va l i d inpu t s from chk_spec ia l .
249 assign nan_a = s p e c i a l s [ 0 ] ;
250 assign nan_b = s p e c i a l s [ 1 ] ;
251 assign inf_a = s p e c i a l s [ 2 ] ;
252 assign inf_b = s p e c i a l s [ 3 ] ;
253 assign zero_a = s p e c i a l s [ 4 ] ;
254 assign zero_b = s p e c i a l s [ 5 ] ;
255 assign int_a = s p e c i a l s [ 6 ] ;
256 assign int_b = s p e c i a l s [ 7 ] ;
257
258
259 // Generate excep t i ons .
260 assign int_times_inf = ( int_a&inf_b ) | ( int_b&inf_a ) ;
261
262 assign i n v a l i d =
263 (nan_a | nan_b) |
264 ( zero_a&inf_b | zero_b&inf_a ) |
265 ( inf_a | inf_b )&! int_times_inf ;
266
267 assign i n exac t =
268 ( rounded & ( ! i n v a l i d ) |
269 overflow_tmp |
270 round_to_zero&overflow_tmp |
271 underf low &(!( zero_a | zero_b ) ) )&! int_times_inf ;
272
273 assign underf low =
274 ( format == ‘FP16 ) ?
275 (~ovf_ab&ovf_biased ) |
276 (~ | result_tmp [ ‘FP16SW+‘FP16EW−1:‘FP16SW ] ) &
277 ! ( ovf_ab&ovf_biased | ovf_postnorm ) &
278 ! over f l ow&! i n v a l i d | ( zero_a | zero_b ) &
279 ! ( nan_a | nan_b | inf_a | inf_b ) :
280 ( format == ‘FP32 ) ?
281 (~ovf_ab&ovf_biased ) |
282 (~ | result_tmp [ ‘FP32SW+‘FP32EW−1:‘FP32SW ] ) &
283 ! ( ovf_ab&ovf_biased | ovf_postnorm ) &
284 ! over f l ow&! i n v a l i d | ( zero_a | zero_b ) &
285 ! ( nan_a | nan_b | inf_a | inf_b ) :
286 ( format == ‘FP64 ) ?
287 (~ovf_ab&ovf_biased ) |
288 (~ | result_tmp [ ‘FP64SW+‘FP64EW−1:‘FP64SW ] ) &
289 ! ( ovf_ab&ovf_biased | ovf_postnorm ) &
290 ! over f l ow&! i n v a l i d | ( zero_a | zero_b ) &
291 ! ( nan_a | nan_b | inf_a | inf_b ) : 0 ;
292
293 // I f over f l ow occurs and rounding mode equa l s round−to zero ,
294 // r e s u l t s h a l l be rounded to l a r g e s t r e p r e s en t a t i v e number .
295 // e . x 0111101111111111.
296 assign overflow_tmp =
297 ( format == ‘FP16 ) ?
298 ( ( ovf_ab&ovf_biased | ovf_postnorm&! underf low ) |
299 &result_tmp [ ‘FP16SW+‘FP16EW−1:‘FP16SW]&! underf low )&! i n v a l i d :
300 ( format == ‘FP32 ) ?
301 ( ( ovf_ab&ovf_biased | ovf_postnorm&! underf low ) |
302 &result_tmp [ ‘FP32SW+‘FP32EW−1:‘FP32SW]&! underf low )&! i n v a l i d :
303 ( format == ‘FP64 ) ?
304 ( ( ovf_ab&ovf_biased | ovf_postnorm&! underf low ) |
305 &result_tmp [ ‘FP64SW+‘FP64EW−1:‘FP64SW]&! underf low )&! i n v a l i d :
306 0 ;
307
308 assign over f l ow = overflow_tmp&!round_to_zero | int_times_inf ;
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309
310
311 // Compute s p e c i a l r e s u l t s .
312 assign product_nan =
313 ( format == ‘FP16 ) ?
314 {1 ’b0 , {‘FP16EW{1 ’ b1 }} , {( ‘FP16SW−1){1 ’ b0 }} , 1 ’ b1} :
315 ( format == ‘FP32 ) ?
316 {1 ’b0 , {‘FP32EW{1 ’ b1 }} , {( ‘FP32SW−1){1 ’ b0 }} , 1 ’ b1 } :
317 ( format == ‘FP64 ) ?
318 {1 ’b0 , {‘FP64EW{1 ’ b1 }} , {( ‘FP64SW−1){1 ’ b0 }} , 1 ’ b1} :
319 0 ;
320
321 assign product_zero =
322 ( format == ‘FP16 ) ?
323 { result_tmp [ ‘FP16SW+‘FP16EW] , {( ‘FP16SW+‘FP16EW) {1 ’ b0}}} :
324 ( format == ‘FP32 ) ?
325 { result_tmp [ ‘FP32SW+‘FP32EW] , {( ‘FP32SW+‘FP32EW) {1 ’ b0}}} :
326 ( format == ‘FP64 ) ?
327 { result_tmp [ ‘FP64SW+‘FP64EW] , {( ‘FP64SW+‘FP64EW) {1 ’ b0}}} :
328 0 ;
329
330 assign product_overf low =
331 ( format == ‘FP16 ) ?
332 { result_tmp [ ‘FP16SW+‘FP16EW] ,
333 {‘FP16EW{1 ’ b1 }} , {( ‘FP16SW) {1 ’ b0}}} :
334 ( format == ‘FP32 ) ?
335 { result_tmp [ ‘FP32SW+‘FP32EW] ,
336 {‘FP32EW{1 ’ b1 }} , {( ‘FP32SW) {1 ’ b0 }}} :
337 ( format == ‘FP64 ) ?
338 { result_tmp [ ‘FP64SW+‘FP64EW] ,
339 {‘FP64EW{1 ’ b1 }} , {( ‘FP64SW) {1 ’ b0}}} :
340 0 ;
341
342 assign product_large =
343 ( format == ‘FP16 ) ?
344 { result_tmp [ ‘FP16SW+‘FP16EW] ,
345 {(‘FP16EW−1){1 ’ b1 }} , 1 ’ b0 , {( ‘FP16SW) {1 ’ b1}}} :
346 ( format == ‘FP32 ) ?
347 { result_tmp [ ‘FP32SW+‘FP32EW] ,
348 {(‘FP32EW−1){1 ’ b1 }} , 1 ’ b0 , {( ‘FP32SW) {1 ’ b1 }}} :
349 ( format == ‘FP64 ) ?
350 { result_tmp [ ‘FP64SW+‘FP64EW] ,
351 {(‘FP64EW−1){1 ’ b1 }} , 1 ’ b0 , {( ‘FP64SW) {1 ’ b1}}} :
352 0 ;
353
354 assign product_min =
355 ( format == ‘FP16 ) ?
356 { result_tmp [ ‘FP16SW+‘FP16EW] ,
357 {(‘FP16EW−1){1 ’ b0 }} , 1 ’ b1 , {( ‘FP16SW) {1 ’ b0}}} :
358 ( format == ‘FP32 ) ?
359 { result_tmp [ ‘FP32SW+‘FP32EW] ,
360 {(‘FP32EW−1){1 ’ b0 }} , 1 ’ b1 , {( ‘FP32SW) {1 ’ b0 }}} :
361 ( format == ‘FP64 ) ?
362 { result_tmp [ ‘FP64SW+‘FP64EW] ,
363 {(‘FP64EW−1){1 ’ b0 }} , 1 ’ b1 , {( ‘FP64SW) {1 ’ b0}}} :
364 0 ;
365
366 // Final product dec ided by excep t i ons .
367 assign r e s u l t =
368 i n v a l i d ? product_nan :
369 over f l ow ? product_overf low :
370 underf low ? product_zero :
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371 round_to_zero & overflow_tmp & ! int_times_inf ? product_large :
372 result_tmp ;
373
374 assign exceps [ 0 ] = i n v a l i d ;
375 assign exceps [ 1 ] = inexac t ;
376 assign exceps [ 2 ] = over f l ow ;
377 assign exceps [ 3 ] = underf low ;
378
379 endmodule // rne64



Appendix C

Test Data Generator

1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // Author : Espen Stenersen .
3 // Date : Spring 2008.
4 // Descr ip t ion : Generates FP16 , FP32 and FP64 t e s t v e c t o r s in c l ud ing
5 // "random" s p e c i a l inpu t s such as i n f i n i t y x zero ,
6 // nans . . . T e s t f i l e s are wr i t t en to f p 1 6 t e s t f i l e s . t x t ,
7 // f p 3 2 t e s t f i l e s . t x t and f p 6 4 t e s t f i l e s . t x t .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 #include <s td i o . h>
11 #include <stdarg . h>
12 #include <s t r i n g . h>
13 #include <x l o c a l e . h>
14 #include <s t d l i b . h>
15 #include <unis td . h>
16
17 #define FP16 0
18 #define FP32 1
19 #define FP64 2
20 #define FP16WIDTH 16 ;
21 #define FP32WIDTH 32 ;
22 #define FP64WIDTH 64 ;
23 #define FP16EXPONENT 5 ;
24 #define FP32EXPONENT 8 ;
25 #define FP64EXPONENT 11 ;
26
27 void usage ( ) ;
28 void generate ( int format , int t e s t c a s e s ) ;
29 void generate_nan ( int width , int exponent ) ;
30 void generate_zero ( int width , int exponent ) ;
31 void g en e r a t e_ in f i n i t y ( int width , int exponent ) ;
32 void gene ra t e_spec i a l ( int width , int exponent ) ;
33 void generate_random ( int width , int exponent ) ;
34
35 FILE ∗ f ;
36
37 int main ( int argc , char const ∗argv [ ] )
38 {
39 int format ;
40
41 // I n i t i a l i z e s the random generator .
42 srand ( time (0 ) ∗ getp id ( ) ) ;
43

145
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44 i f ( argc < 3) usage ( ) ;
45 else
46 {
47 i f ( strcmp ( "−fp16 " , argv [ 1 ] ) == 0 ) format = FP16 ;
48 else i f ( strcmp ( "−fp32 " , argv [ 1 ] ) == 0 ) format = FP32 ;
49 else i f ( strcmp ( "−fp64 " , argv [ 1 ] ) == 0 ) format = FP64 ;
50 else usage ( ) ;
51
52 generate ( format , a t o i ( argv [ 2 ] ) ) ;
53 }
54 return 0 ;
55 }
56
57 void generate ( int format , int t e s t c a s e s )
58 {
59 int i = 0 ;
60 int width = 0 ;
61 int exponent = 0 ;
62 int random = 0 ;
63
64 switch ( format )
65 {
66 case FP16 : width = FP16WIDTH; exponent = FP16EXPONENT; f = fopen

( " f p 1 6 t e s t c a s e s . txt " , "wt" ) ; break ;
67 case FP32 : width = FP32WIDTH; exponent = FP32EXPONENT; f = fopen

( " f p 3 2 t e s t c a s e s . txt " , "wt" ) ; break ;
68 case FP64 : width = FP64WIDTH; exponent = FP64EXPONENT; f = fopen

( " f p 6 4 t e s t c a s e s . txt " , "wt" ) ; break ;
69 }
70
71 // Genrates nan x nan .
72 generate_nan (width , exponent ) ;
73 generate_nan (width , exponent ) ;
74
75 // Generates zero x i n f i n i t y .
76 g en e r a t e_ in f i n i t y ( width , exponent ) ;
77 g en e r a t e_ in f i n i t y ( width , exponent ) ;
78
79 // Generates zero x zero .
80 generate_zero ( width , exponent ) ;
81 generate_zero ( width , exponent ) ;
82
83 // Generates zero z i n f i n i t y .
84 generate_zero ( width , exponent ) ;
85 g en e r a t e_ in f i n i t y ( width , exponent ) ;
86
87 // Generates i n f i n i t y x nan .
88 g en e r a t e_ in f i n i t y ( width , exponent ) ;
89 generate_nan (width , exponent ) ;
90
91 // Generates zero x nan .
92 generate_zero ( width , exponent ) ;
93 generate_nan (width , exponent ) ;
94
95 i = 12 ;
96 while ( i < t e s t c a s e s )
97 {
98 random = rand ( ) % 999 ;
99 i f ( random == 14)

100 {
101 gene ra t e_spec i a l ( width , exponent ) ;
102 }
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103 else
104 {
105 generate_random (width , exponent ) ;
106 }
107 i++;
108 }
109 f c l o s e ( f ) ;
110 }
111
112 void generate_random ( int width , int exponent )
113 {
114 int j = 0 ;
115 int normal ized = 0 ;
116 int b i t = 0 ;
117
118 while ( j < width )
119 {
120 b i t = rand ( ) % 2 ;
121 i f ( j < 1) f p r i n t f ( f , "%d" , b i t ) ;
122 else i f ( j < exponent )
123 {
124 i f ( b i t == 1) normal ized++;
125 f p r i n t f ( f , "%d" , b i t ) ;
126 }
127 else
128 {
129 i f ( j == exponent )
130 {
131 i f ( normal ized < 1)
132 f p r i n t f ( f , "%d" , 1) ;
133 else
134 f p r i n t f ( f , "%d" , b i t ) ;
135 }
136 else
137 f p r i n t f ( f , "%d" , b i t ) ;
138 }
139 j++;
140 }
141 f p r i n t f ( f , "\n" ) ;
142 }
143 // Generate random sp e c i a l input vec to s . e . x zero x i n f i n i t y .
144 void gene ra t e_spec i a l ( int width , int exponent )
145 {
146 int random = rand ( ) % 6 ;
147
148 // Genrates nan x nan .
149 i f ( random == 0)
150 {
151 generate_nan (width , exponent ) ;
152 generate_nan (width , exponent ) ;
153 }
154 // Generates zero x i n f i n i t y .
155 else i f ( random == 1)
156 {
157 g en e r a t e_ in f i n i t y ( width , exponent ) ;
158 g en e r a t e_ in f i n i t y ( width , exponent ) ;
159 }
160 // Generates zero x zero .
161 else i f ( random == 2)
162 {
163 generate_zero ( width , exponent ) ;
164 generate_zero ( width , exponent ) ;
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165 }
166 // Generates zero z i n f i n i t y .
167 else i f ( random == 3)
168 {
169 generate_zero ( width , exponent ) ;
170 g en e r a t e_ in f i n i t y ( width , exponent ) ;
171 }
172 // Generates i n f i n i t y x nan .
173 else i f ( random == 4)
174 {
175 g en e r a t e_ in f i n i t y ( width , exponent ) ;
176 generate_nan (width , exponent ) ;
177 }
178 // Generates zero x nan .
179 else i f ( random == 5)
180 {
181 generate_zero ( width , exponent ) ;
182 generate_nan (width , exponent ) ;
183 }
184 }
185
186 // Generate NaN vec t o r s .
187 void generate_nan ( int width , int exponent )
188 {
189 int i = 0 ;
190 int b i t = rand ( ) % 2 ;
191 while ( i < width )
192 {
193 i f ( i < 1) f p r i n t f ( f , "%d" , b i t ) ;
194 else i f ( i < exponent + 1) f p r i n t f ( f , "%d" , 1) ;
195 else i f ( i < width − 1) f p r i n t f ( f , "%d" , 0) ;
196 else f p r i n t f ( f , "%d" , 1) ;
197 i++;
198 }
199 f p r i n t f ( f , "\n" ) ;
200 }
201
202 // Generate zero vec t o r s .
203 void generate_zero ( int width , int exponent )
204 {
205 int i = 0 ;
206 int b i t = rand ( ) % 2 ;
207 while ( i < width )
208 {
209 i f ( i < 1) f p r i n t f ( f , "%d" , b i t ) ;
210 else f p r i n t f ( f , "%d" , 0) ;
211 i++;
212 }
213 f p r i n t f ( f , "\n" ) ;
214 }
215
216 // Generate i n f i n i t y v e c t o r s .
217 void g en e r a t e_ in f i n i t y ( int width , int exponent )
218 {
219 int i = 0 ;
220 int b i t = rand ( ) % 2 ;
221 while ( i < width )
222 {
223 i f ( i < 1) f p r i n t f ( f , "%d" , b i t ) ;
224 else i f ( i < exponent + 1) f p r i n t f ( f , "%d" , 1) ;
225 else f p r i n t f ( f , "%d" , 0) ;
226 i++;
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227 }
228 f p r i n t f ( f , "\n" ) ;
229 }
230
231 // Prints user in f o .
232 void usage ( )
233 {
234 p r i n t f ( "\nGenerates ␣ normal ized ␣IEEE␣ conforming ␣ t e s t v e c t o r s ␣ o f ␣

d e s i r ed ␣ format . \ n" ) ;
235 p r i n t f ( "\nUsage : ␣ g en e r a t e t e s t v e c t o r s ␣<format>␣<number␣ o f ␣ t e s t c a s e s

>\n" ) ;
236 p r i n t f ( "␣␣␣␣␣␣−fp16 : ␣16−b i t ␣ f l o a t i n g−point ␣ ve c t o r s . \ n" ) ;
237 p r i n t f ( "␣␣␣␣␣␣−fp32 : ␣32−b i t ␣ f l o a t i n g−point ␣ ve c t o r s . \ n" ) ;
238 p r i n t f ( "␣␣␣␣␣␣−fp64 : ␣64−b i t ␣ f l o a t i n g−point ␣ ve c t o r s . \ n" ) ;
239 p r i n t f ( "\n␣␣␣Ex : ␣ g en e r a t e t e s t v e c t o r s ␣−fp16 ␣10000\n\n" ) ;
240 p r i n t f ( "\n" ) ;
241 }





Appendix D

Simulation Sources

D.1 Vectorized DesignWare floating-point multiplier
Source

1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : dw_vec_fp16_mult . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Thu Apr 24 16:40 :38 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Vector i zed FP16 f l o a t i n g−po in t mu l t i p l i e r based on
7 // the DesignWare s imu la t ion model .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 ‘ include " d e f i n e s . v"
11
12 module dw_vec_fp_mult
13 (
14 dw_vectors , // Input from te s t b ench .
15 dw_mode, // Input from te s t b ench .
16 format , // Input from te s t b ench .
17 dw_products , // Output to t e s t b ench .
18 dw_exceptions // Output to t e s t b ench .
19 ) ;
20
21
22 // input ( s )
23 input [ 2∗ ‘BUS−1:0 ] dw_vectors ;
24 input [ 2 : 0 ] dw_mode ;
25 input [ 1 : 0 ] format ;
26
27 // output ( s )
28 output [ ‘BUS−1:0 ] dw_products ;
29 output [ 1 5 : 0 ] dw_exceptions ;
30
31 // wire ( s )
32 wire [ 7 : 0 ] fp16_mult0_status ;
33 wire [ 7 : 0 ] fp16_mult1_status ;
34 wire [ 7 : 0 ] fp16_mult2_status ;
35 wire [ 7 : 0 ] fp16_mult3_status ;
36 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult0_z ;
37 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult1_z ;
38 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult2_z ;
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39 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult3_z ;
40 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult0_a ;
41 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult0_b ;
42 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult1_a ;
43 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult1_b ;
44 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult2_a ;
45 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult2_b ;
46 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult3_a ;
47 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult3_b ;
48 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult0_z_tmp ;
49 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult1_z_tmp ;
50 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult2_z_tmp ;
51 wire [ ‘FP16SW+‘FP16EW : 0 ] fp16_mult3_z_tmp ;
52
53 wire [ 7 : 0 ] fp32_mult0_status ;
54 wire [ 7 : 0 ] fp32_mult1_status ;
55 wire [ 7 : 0 ] fp32_mult2_status ;
56 wire [ 7 : 0 ] fp32_mult3_status ;
57 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult0_z ;
58 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult1_z ;
59 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult2_z ;
60 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult3_z ;
61 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult0_a ;
62 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult0_b ;
63 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult1_a ;
64 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult1_b ;
65 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult2_a ;
66 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult2_b ;
67 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult3_a ;
68 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult3_b ;
69 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult0_z_tmp ;
70 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult1_z_tmp ;
71 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult2_z_tmp ;
72 wire [ ‘FP32SW+‘FP32EW : 0 ] fp32_mult3_z_tmp ;
73
74 wire [ 7 : 0 ] fp64_mult0_status ;
75 wire [ 7 : 0 ] fp64_mult1_status ;
76 wire [ ‘FP64SW+‘FP64EW : 0 ] fp64_mult0_z ;
77 wire [ ‘FP64SW+‘FP64EW : 0 ] fp64_mult1_z ;
78 wire [ ‘FP64SW+‘FP64EW : 0 ] fp64_mult0_a ;
79 wire [ ‘FP64SW+‘FP64EW : 0 ] fp64_mult0_b ;
80 wire [ ‘FP64SW+‘FP64EW : 0 ] fp64_mult1_a ;
81 wire [ ‘FP64SW+‘FP64EW : 0 ] fp64_mult1_b ;
82 wire [ ‘FP64SW+‘FP64EW : 0 ] fp64_mult0_z_tmp ;
83 wire [ ‘FP64SW+‘FP64EW : 0 ] fp64_mult1_z_tmp ;
84
85 // reg ( s )
86
87
88 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
89 // Module i n s t a n t i a t i o n .
90 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
91
92 dw_fp_mult #(‘FP16SW , ‘FP16EW, 1) fp16_mult0
93 (
94 . a ( fp16_mult0_a ) ,
95 . b ( fp16_mult0_b ) ,
96 . rnd (dw_mode) ,
97 . z ( fp16_mult0_z ) ,
98 . s t a tu s ( fp16_mult0_status )
99 ) ;

100 dw_fp_mult #(‘FP16SW , ‘FP16EW, 1) fp16_mult1
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101 (
102 . a ( fp16_mult1_a ) ,
103 . b ( fp16_mult1_b ) ,
104 . rnd (dw_mode) ,
105 . z ( fp16_mult1_z ) ,
106 . s t a tu s ( fp16_mult1_status )
107 ) ;
108 dw_fp_mult #(‘FP16SW , ‘FP16EW, 1) fp16_mult2
109 (
110 . a ( fp16_mult2_a ) ,
111 . b ( fp16_mult2_b ) ,
112 . rnd (dw_mode) ,
113 . z ( fp16_mult2_z ) ,
114 . s t a tu s ( fp16_mult2_status )
115 ) ;
116 dw_fp_mult #(‘FP16SW , ‘FP16EW, 1) fp16_mult3
117 (
118 . a ( fp16_mult3_a ) ,
119 . b ( fp16_mult3_b ) ,
120 . rnd (dw_mode) ,
121 . z ( fp16_mult3_z ) ,
122 . s t a tu s ( fp16_mult3_status )
123 ) ;
124
125 dw_fp_mult #(‘FP32SW , ‘FP32EW, 1) fp32_mult0
126 (
127 . a ( fp32_mult0_a ) ,
128 . b ( fp32_mult0_b ) ,
129 . rnd (dw_mode) ,
130 . z ( fp32_mult0_z ) ,
131 . s t a tu s ( fp32_mult0_status )
132 ) ;
133 dw_fp_mult #(‘FP32SW , ‘FP32EW, 1) fp32_mult1
134 (
135 . a ( fp32_mult1_a ) ,
136 . b ( fp32_mult1_b ) ,
137 . rnd (dw_mode) ,
138 . z ( fp32_mult1_z ) ,
139 . s t a tu s ( fp32_mult1_status )
140 ) ;
141 dw_fp_mult #(‘FP32SW , ‘FP32EW, 1) fp32_mult2
142 (
143 . a ( fp32_mult2_a ) ,
144 . b ( fp32_mult2_b ) ,
145 . rnd (dw_mode) ,
146 . z ( fp32_mult2_z ) ,
147 . s t a tu s ( fp32_mult2_status )
148 ) ;
149 dw_fp_mult #(‘FP32SW , ‘FP32EW, 1) fp32_mult3
150 (
151 . a ( fp32_mult3_a ) ,
152 . b ( fp32_mult3_b ) ,
153 . rnd (dw_mode) ,
154 . z ( fp32_mult3_z ) ,
155 . s t a tu s ( fp32_mult3_status )
156 ) ;
157
158 dw_fp_mult #(‘FP64SW , ‘FP64EW, 1) fp64_mult0
159 (
160 . a ( fp64_mult0_a ) ,
161 . b ( fp64_mult0_b ) ,
162 . rnd (dw_mode) ,
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163 . z ( fp64_mult0_z ) ,
164 . s t a tu s ( fp64_mult0_status )
165 ) ;
166 dw_fp_mult #(‘FP64SW , ‘FP64EW, 1) fp64_mult1
167 (
168 . a ( fp64_mult1_a ) ,
169 . b ( fp64_mult1_b ) ,
170 . rnd (dw_mode) ,
171 . z ( fp64_mult1_z ) ,
172 . s t a tu s ( fp64_mult1_status )
173 ) ;
174
175
176 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
177 // Input s e l e c t i o n s .
178 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
179 assign fp16_mult0_a = dw_vectors [ 1∗ ‘FP16W−1:0∗‘FP16W ] ;
180 assign fp16_mult0_b = dw_vectors [ 2∗ ‘FP16W−1:1∗‘FP16W ] ;
181 assign fp16_mult1_a = dw_vectors [ 3∗ ‘FP16W−1:2∗‘FP16W ] ;
182 assign fp16_mult1_b = dw_vectors [ 4∗ ‘FP16W−1:3∗‘FP16W ] ;
183 assign fp16_mult2_a = dw_vectors [ 5∗ ‘FP16W−1:4∗‘FP16W ] ;
184 assign fp16_mult2_b = dw_vectors [ 6∗ ‘FP16W−1:5∗‘FP16W ] ;
185 assign fp16_mult3_a = dw_vectors [ 7∗ ‘FP16W−1:6∗‘FP16W ] ;
186 assign fp16_mult3_b = dw_vectors [ 8∗ ‘FP16W−1:7∗‘FP16W ] ;
187 assign fp32_mult0_a = dw_vectors [ 1∗ ‘FP32W−1:0∗‘FP32W ] ;
188 assign fp32_mult0_b = dw_vectors [ 2∗ ‘FP32W−1:1∗‘FP32W ] ;
189 assign fp32_mult1_a = dw_vectors [ 3∗ ‘FP32W−1:2∗‘FP32W ] ;
190 assign fp32_mult1_b = dw_vectors [ 4∗ ‘FP32W−1:3∗‘FP32W ] ;
191 assign fp32_mult2_a = dw_vectors [ 5∗ ‘FP32W−1:4∗‘FP32W ] ;
192 assign fp32_mult2_b = dw_vectors [ 6∗ ‘FP32W−1:5∗‘FP32W ] ;
193 assign fp32_mult3_a = dw_vectors [ 7∗ ‘FP32W−1:6∗‘FP32W ] ;
194 assign fp32_mult3_b = dw_vectors [ 8∗ ‘FP32W−1:7∗‘FP32W ] ;
195 assign fp64_mult0_a = dw_vectors [ 1∗ ‘FP64W−1:0∗‘FP64W ] ;
196 assign fp64_mult0_b = dw_vectors [ 2∗ ‘FP64W−1:1∗‘FP64W ] ;
197 assign fp64_mult1_a = dw_vectors [ 3∗ ‘FP64W−1:2∗‘FP64W ] ;
198 assign fp64_mult1_b = dw_vectors [ 4∗ ‘FP64W−1:3∗‘FP64W ] ;
199
200
201
202 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
203 // Set excep t i ons .
204 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
205
206 // In va l i d . dw_status [ 2 ] .
207 assign dw_exceptions [ 0 ] =
208 ( format == ‘FP16 ) ?
209 fp16_mult0_status [ 2 ] :
210 ( format == ‘FP32 ) ?
211 fp32_mult0_status [ 2 ] :
212 ( format == ‘FP64 ) ?
213 fp64_mult0_status [ 2 ] :
214 0 ;
215
216 assign dw_exceptions [ 1 ] =
217 ( format == ‘FP16 ) ?
218 fp16_mult1_status [ 2 ] :
219 ( format == ‘FP32 ) ?
220 fp32_mult1_status [ 2 ] :
221 ( format == ‘FP64 ) ?
222 fp64_mult1_status [ 2 ] :
223 0 ;
224
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225 assign dw_exceptions [ 2 ] =
226 ( format == ‘FP16 ) ?
227 fp16_mult2_status [ 2 ] :
228 ( format == ‘FP32 ) ?
229 fp32_mult2_status [ 2 ] :
230 ( format == ‘FP64 ) ?
231 0 : 0 ;
232
233 assign dw_exceptions [ 3 ] =
234 ( format == ‘FP16 ) ?
235 fp16_mult3_status [ 2 ] :
236 ( format == ‘FP32 ) ?
237 fp32_mult3_status [ 2 ] :
238 ( format == ‘FP64 ) ?
239 0 : 0 ;
240
241 // Inexac t . dw_status [ 5 ] .
242 assign dw_exceptions [ 4 ] =
243 ( format == ‘FP16 ) ?
244 fp16_mult0_status [ 5 ] | fp16_mult0_status [ 3 ] :
245 ( format == ‘FP32 ) ?
246 fp32_mult0_status [ 5 ] | fp32_mult0_status [ 3 ] :
247 ( format == ‘FP64 ) ?
248 fp64_mult0_status [ 5 ] | fp64_mult0_status [ 3 ] :
249 0 ;
250
251 assign dw_exceptions [ 5 ] =
252 ( format == ‘FP16 ) ?
253 fp16_mult1_status [ 5 ] | fp16_mult1_status [ 3 ] :
254 ( format == ‘FP32 ) ?
255 fp32_mult1_status [ 5 ] | fp32_mult1_status [ 3 ] :
256 ( format == ‘FP64 ) ?
257 fp64_mult1_status [ 5 ] | fp64_mult1_status [ 3 ] :
258 0 ;
259
260 assign dw_exceptions [ 6 ] =
261 ( format == ‘FP16 ) ?
262 fp16_mult2_status [ 5 ] | fp16_mult2_status [ 3 ] :
263 ( format == ‘FP32 ) ?
264 fp32_mult2_status [ 5 ] | fp32_mult2_status [ 3 ] :
265 ( format == ‘FP64 ) ?
266 0 : 0 ;
267
268 assign dw_exceptions [ 7 ] =
269 ( format == ‘FP16 ) ?
270 fp16_mult3_status [ 5 ] | fp16_mult3_status [ 3 ] :
271 ( format == ‘FP32 ) ?
272 fp32_mult3_status [ 5 ] | fp32_mult3_status [ 3 ] :
273 ( format == ‘FP64 ) ?
274 0 : 0 ;
275
276 // Overf low . dw_status [ 1 ] .
277 assign dw_exceptions [ 8 ] =
278 ( format == ‘FP16 ) ?
279 fp16_mult0_status [ 1 ] :
280 ( format == ‘FP32 ) ?
281 fp32_mult0_status [ 1 ] :
282 ( format == ‘FP64 ) ?
283 fp64_mult0_status [ 1 ] :
284 0 ;
285
286 assign dw_exceptions [ 9 ] =
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287 ( format == ‘FP16 ) ?
288 fp16_mult1_status [ 1 ] :
289 ( format == ‘FP32 ) ?
290 fp32_mult1_status [ 1 ] :
291 ( format == ‘FP64 ) ?
292 fp64_mult1_status [ 1 ] :
293 0 ;
294
295 assign dw_exceptions [ 1 0 ] =
296 ( format == ‘FP16 ) ?
297 fp16_mult2_status [ 1 ] :
298 ( format == ‘FP32 ) ?
299 fp32_mult2_status [ 1 ] :
300 ( format == ‘FP64 ) ?
301 0 : 0 ;
302
303 assign dw_exceptions [ 1 1 ] =
304 ( format == ‘FP16 ) ?
305 fp16_mult3_status [ 1 ] :
306 ( format == ‘FP32 ) ?
307 fp32_mult3_status [ 1 ] :
308 ( format == ‘FP64 ) ?
309 0 : 0 ;
310
311 // Underflow . dw_status [ 0 ] | Â dw_status [ 3 ] ( underf low | denormal ) .
312 assign dw_exceptions [ 1 2 ] =
313 ( format == ‘FP16 ) ?
314 fp16_mult0_status [ 0 ] | fp16_mult0_status [ 3 ] :
315 ( format == ‘FP32 ) ?
316 fp32_mult0_status [ 0 ] | fp32_mult0_status [ 3 ] :
317 ( format == ‘FP64 ) ?
318 fp64_mult0_status [ 0 ] | fp64_mult0_status [ 3 ] :
319 0 ;
320
321 assign dw_exceptions [ 1 3 ] =
322 ( format == ‘FP16 ) ?
323 fp16_mult1_status [ 0 ] | fp16_mult1_status [ 3 ] :
324 ( format == ‘FP32 ) ?
325 fp32_mult1_status [ 0 ] | fp32_mult1_status [ 3 ] :
326 ( format == ‘FP64 ) ?
327 fp64_mult1_status [ 0 ] | fp64_mult1_status [ 3 ] :
328 0 ;
329
330 assign dw_exceptions [ 1 4 ] =
331 ( format == ‘FP16 ) ?
332 fp16_mult2_status [ 0 ] | fp16_mult2_status [ 3 ] :
333 ( format == ‘FP32 ) ?
334 fp32_mult2_status [ 0 ] | fp32_mult2_status [ 3 ] :
335 ( format == ‘FP64 ) ?
336 0 : 0 ;
337
338 assign dw_exceptions [ 1 5 ] =
339 ( format == ‘FP16 ) ?
340 fp16_mult3_status [ 0 ] | fp16_mult3_status [ 3 ] :
341 ( format == ‘FP32 ) ?
342 fp32_mult3_status [ 0 ] | fp32_mult3_status [ 3 ] :
343 ( format == ‘FP64 ) ?
344 0 : 0 ;
345
346 // Flush product to zero i f denormal output from dw_dp_mult .
347 assign fp16_mult0_z_tmp = fp16_mult0_status [ 3 ] ?
348 {fp16_mult0_z [ ‘FP16W−1] , fp16_mult0_z [ ‘FP16W−2:0]&1 ’b0} :
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349 fp16_mult0_z ;
350
351 assign fp16_mult1_z_tmp = fp16_mult1_status [ 3 ] ?
352 {fp16_mult1_z [ ‘FP16W−1] , fp16_mult1_z [ ‘FP16W−2:0]&1 ’b0} :
353 fp16_mult1_z ;
354
355 assign fp16_mult2_z_tmp = fp16_mult2_status [ 3 ] ?
356 {fp16_mult2_z [ ‘FP16W−1] , fp16_mult2_z [ ‘FP16W−2:0]&1 ’b0} :
357 fp16_mult2_z ;
358
359 assign fp16_mult3_z_tmp = fp16_mult3_status [ 3 ] ?
360 {fp16_mult3_z [ ‘FP16W−1] , fp16_mult3_z [ ‘FP16W−2:0]&1 ’b0} :
361 fp16_mult3_z ;
362
363 assign fp32_mult0_z_tmp = fp32_mult0_status [ 3 ] ?
364 {fp32_mult0_z [ ‘FP32W−1] , fp32_mult0_z [ ‘FP32W−2:0]&1 ’b0} :
365 fp32_mult0_z ;
366
367 assign fp32_mult1_z_tmp = fp32_mult1_status [ 3 ] ?
368 {fp32_mult1_z [ ‘FP32W−1] , fp32_mult1_z [ ‘FP32W−2:0]&1 ’b0} :
369 fp32_mult1_z ;
370
371 assign fp32_mult2_z_tmp = fp32_mult2_status [ 3 ] ?
372 {fp32_mult2_z [ ‘FP32W−1] , fp32_mult2_z [ ‘FP32W−2:0]&1 ’b0} :
373 fp32_mult2_z ;
374
375 assign fp32_mult3_z_tmp = fp32_mult3_status [ 3 ] ?
376 {fp32_mult3_z [ ‘FP32W−1] , fp32_mult3_z [ ‘FP32W−2:0]&1 ’b0} :
377 fp32_mult3_z ;
378
379 assign fp64_mult0_z_tmp = fp64_mult0_status [ 3 ] ?
380 {fp64_mult0_z [ ‘FP64W−1] , fp64_mult0_z [ ‘FP64W−2:0]&1 ’b0} :
381 fp64_mult0_z ;
382
383 assign fp64_mult1_z_tmp = fp64_mult1_status [ 3 ] ?
384 {fp64_mult1_z [ ‘FP64W−1] , fp64_mult1_z [ ‘FP64W−2:0]&1 ’b0} :
385 fp64_mult1_z ;
386
387
388 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
389 // Output mux .
390 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
391 assign dw_products = ( format == ‘FP16 ) ?
392 {fp16_mult3_z_tmp , fp16_mult2_z_tmp ,
393 fp16_mult1_z_tmp , fp16_mult0_z_tmp} :
394 ( format == ‘FP32 ) ?
395 {fp32_mult3_z_tmp , fp32_mult2_z_tmp ,
396 fp32_mult1_z_tmp , fp32_mult0_z_tmp} :
397 ( format == ‘FP64 ) ?
398 {fp64_mult1_z_tmp , fp64_mult0_z_tmp} : 0 ;
399 endmodule // dw_vec_fp_mult
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D.2 Testbench Sources

1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : vec_fp_mult_tb . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Thu Apr 17 13:49 :28 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Testbench fo r top module vec_fp_mult .
7 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 ‘ include " . . / r t l / d e f i n e s . v"

10
11 // ‘ t ime s c a l e
12 ‘define CLK_PERIOD 1
13
14 module vec_fp_mult_tb ;
15
16 ‘ include " . . / tb/ def ines_tb . v"
17 ‘ include " . . / tb/debug . v"
18
19 parameter W = ‘FP16W;
20 parameter SW = ‘FP16SW ;
21 parameter EW = ‘FP16EW;
22 parameter FORMAT = ‘FP16 ;
23 parameter MODE = ‘ZERO;
24 parameter VECTORS = 100000;
25
26 // wire ( s )
27 wire [ ‘BUS−1:0 ] products ;
28 wire [ 1 5 : 0 ] except i ons ;
29 wire ready ;
30 wire ex c ep t i on s_ fa i l ed ;
31 wire product s_fa i l ed ;
32 wire [ 3 : 0 ] nan , in f , ze ro ;
33
34 wire [ ‘BUS−1:0 ] dw_products ;
35 wire [ 1 5 : 0 ] dw_exceptions ;
36 wire [ 2∗ ‘BUS−1:0 ] dw_vectors ;
37
38 // reg ( s )
39 reg [W−1:0 ] testmem [ 0 :VECTORS−1] ;
40 reg [ ‘BUS−1:0 ] v e c t o r s ;
41 reg [W−1:0 ] A0 , B0 , A1 , B1 ;
42 reg [ 1 : 0 ] format ;
43 reg [ 1 : 0 ] mode ;
44 reg [ 1 5 : 0 ] c l e a r ;
45 reg s t a r t ;
46 reg c l k ;
47 reg reset_n ;
48
49
50 reg [ 2 : 0 ] dw_mode ;
51
52 // Counters .
53 integer i_vec , i_ans , i_passed , i_ fa i l ed , i_to ta l ;
54 integer i_nan , i_zero , i_inf , i_inf_times_zero ;
55 integer step , i_ovf , i_unf , i_inv , i_inx ;
56 integer i_nan_times_any ;
57
58
59 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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60 // Module i n s t a n t i a t i o n .
61 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
62 vec_fp_mult DUT
63 (
64 . s t a r t ( s t a r t ) , // Input . S t a r t s computation .
65 . v e c t o r s ( v e c t o r s ) , // Input . FP vec t o r s .
66 . format ( format ) , // Input . Format o f v e c t o r s .
67 .mode (mode) , // Input . Rounding mode .
68 . c l e a r ( c l e a r ) , // Input . Clears excep t i ons .
69 . products ( products ) , // Output . Computed products .
70 . except i on s ( except i on s ) , // Output . Except ions ra i s ed .
71 . ready ( ready ) , // Output . Output ready .
72 . c l k ( c l k ) ,
73 . reset_n ( reset_n )
74 ) ;
75
76 dw_vec_fp_mult dw_vec_fp_mult
77 (
78 . dw_vectors ( dw_vectors ) , // Input from te s t b ench .
79 .dw_mode (dw_mode) , // Input from te s t b ench .
80 . format ( format ) , // Input from te s t b ench .
81 . dw_products ( dw_products ) , // Output to t e s t b ench .
82 . dw_exceptions ( dw_exceptions ) // Output to t e s t b ench .
83 ) ;
84
85
86 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87 // I n i t i a l s .
88 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
89
90 // Generate s t imu l i .
91 i n i t i a l begin
92
93 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94 // Verbos i ty l e v e l s :
95 // 0 : Only f i n a l r epor t .
96 // 1 : S i gna l even t s and updates .
97 // 2 : Error messages .
98 // 3 : Elaborated error messages with product vec tors ,
99 // excep t ion vec t o r s and input v e c t o r s t ha t caused the

100 // error .
101 // 4 : 1 and 3 combined .
102 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
103
104 ve rbo s i t y (3 ) ;
105
106 i n i t i a l i z e ; // Ca l l to i n i t i a l i z e ta sk .
107
108
109 @ (posedge c l k ) // wait c y c l e .
110 @ (posedge c l k ) // wait c y c l e .
111 @ (posedge c l k ) reset_n = 1 ;
112 @ (posedge c l k ) // wait c y c l e .
113 @ (posedge c l k ) // wait c y c l e .
114
115 for ( i_vec = 0 ; i_vec < VECTORS; i_vec = i_vec + step ) begin
116 @ (posedge c l k ) begin
117 s t a r t = 1 ;
118
119 i f ( format == ‘FP16 ) begin
120 ve c to r s [ 1∗ ‘FP16W−1:0∗‘FP16W] <= testmem [ i_vec + 0 ] ;
121 ve c to r s [ 2∗ ‘FP16W−1:1∗‘FP16W] <= testmem [ i_vec + 1 ] ;
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122 ve c to r s [ 3∗ ‘FP16W−1:2∗‘FP16W] <= testmem [ i_vec + 2 ] ;
123 ve c to r s [ 4∗ ‘FP16W−1:3∗‘FP16W] <= testmem [ i_vec + 3 ] ;
124 A0 <= testmem [ i_vec + 0 ] ;
125 B0 <= testmem [ i_vec + 1 ] ;
126 A1 <= testmem [ i_vec + 2 ] ;
127 B1 <= testmem [ i_vec + 3 ] ;
128 end
129 else i f ( format == ‘FP32 ) begin
130 ve c to r s [ 1∗ ‘FP32W−1:0∗‘FP32W] <= testmem [ i_vec + 0 ] ;
131 ve c to r s [ 2∗ ‘FP32W−1:1∗‘FP32W] <= testmem [ i_vec + 1 ] ;
132 ve c to r s [ 3∗ ‘FP32W−1:2∗‘FP32W] <= testmem [ i_vec + 2 ] ;
133 ve c to r s [ 4∗ ‘FP32W−1:3∗‘FP32W] <= testmem [ i_vec + 3 ] ;
134 A0 <= testmem [ i_vec + 0 ] ;
135 B0 <= testmem [ i_vec + 1 ] ;
136 A1 <= testmem [ i_vec + 2 ] ;
137 B1 <= testmem [ i_vec + 3 ] ;
138 end
139 else i f ( format == ‘FP64 ) begin
140 ve c to r s [ 1∗ ‘FP64W−1:0∗‘FP64W] <= testmem [ i_vec + 0 ] ;
141 ve c to r s [ 2∗ ‘FP64W−1:1∗‘FP64W] <= testmem [ i_vec + 1 ] ;
142 A0 <= testmem [ i_vec + 0 ] ;
143 B0 <= testmem [ i_vec + 1 ] ;
144 end
145 else begin
146 ve c to r s <= 0 ;
147 A0 <= 0 ;
148 B0 <= 0 ;
149 A1 <= 0 ;
150 B1 <= 0 ;
151 end
152 end
153 end
154 // Empty p i p e l i n e .
155 @ (posedge c l k ) // wait c y c l e .
156 @ (posedge c l k ) // wait c y c l e .
157 s t a r t = 0 ;
158 @ (posedge c l k ) // wait c y c l e .
159 @ (posedge c l k ) // wait c y c l e .
160 @ (posedge c l k ) // wait c y c l e .
161 pr int_report ;
162 $finish ;
163 end
164
165 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
166 // Sequen t i a l t e s t l o g i c .
167 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
168
169 // c l o c k generator .
170 always #‘CLK_PERIOD c lk = ! c l k ;
171
172
173
174 // Monitor / checker .
175 always @ ( ready ) begin
176 i f ( reset_n == 0) begin
177 i_ans <= 0 ;
178 i_to ta l <= 0 ;
179 end
180
181 // When products and excep t i ons are ready at output .
182 i f ( ready == 1) begin
183 i_to ta l <= i_to ta l + 1 ;
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184
185 i f ( format == ‘FP64 ) begin
186 i_ans <= i_ans + 4 ;
187 end
188 else begin
189 i_ans <= i_ans + 8 ;
190 end
191
192
193 i f ( ( products != dw_products ) |
194 ( except i on s != dw_exceptions ) ) begin
195 i_ f a i l e d = i_ f a i l e d + 1 ;
196 end
197 else begin
198 i_passed = i_passed + 1 ;
199 end
200 end
201 end
202
203
204 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
205 // Combinaional t e s t l o g i c .
206 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
207
208 // Clears excep t i ons when ar i s ed .
209 /∗ always @ ( ready ) beg in
210 i f ( ready ) beg in
211 c l e a r = ’ h f f f f ;
212 end
213 e l s e i f ( ! ready ) beg in
214 c l e a r = ’ h0000 ;
215 end
216 end∗/
217
218
219 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
220 // Produces t e s t s t a t i s t i c s .
221 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
222 // Counts i n f i t y inpu t s .
223 integer i 0 ;
224 always @ ( i n f or s t a r t ) begin
225 for ( i 0 = 0 ; i 0 < 4 ; i 0 = i 0 + 1) begin
226 i f ( i n f [ i 0 ]& s t a r t ) i_ in f = i_ in f + 1 ;
227 end
228 end
229 // Counts zero inpu t s .
230 integer i 1 ;
231 always @ ( zero or s t a r t ) begin
232 for ( i 1 = 0 ; i 1 < 4 ; i 1 = i 1 + 1) begin
233 i f ( ze ro [ i 1 ]& s t a r t ) i_zero = i_zero + 1 ;
234 end
235 end
236 // Counts i n v a l i d inpu t s .
237 integer i 2 ;
238 always @ (nan or s t a r t ) begin
239 for ( i 2 = 0 ; i 2 < 4 ; i 2 = i 2 + 1) begin
240 i f ( nan [ i 2 ]& s t a r t ) i_nan = i_nan + 1 ;
241 end
242 end
243 // Counts i n f i n i t y t imes zero inpu t s .
244 integer i 3 ;
245 always @ ( i n f or zero or s t a r t ) begin
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246 for ( i 3 = 0 ; i 3 < 2 ; i 3 = i 3 + 2) begin
247 i f ( i n f [ i 3 ]& zero [ i 3+1]& s t a r t )
248 i_inf_times_zero = i_inf_times_zero + 1 ;
249 end
250 for ( i 3 = 0 ; i 3 < 2 ; i 3 = i 3 + 2) begin
251 i f ( i n f [ i 3+1]&zero [ i 3 ]& s t a r t )
252 i_inf_times_zero = i_inf_times_zero + 1 ;
253 end
254 end
255 // Counts i n v a l i d t imes any number ( not i n v a l i d t imes i n v a l i d ) .
256 integer i 4 ;
257 always @ (nan or s t a r t ) begin
258 for ( i 4 = 0 ; i 4 < 2 ; i 4 = i 4 + 1) begin
259 i f ( nan [ i 4 ]&! nan [ i 4+1]& s t a r t )
260 i_nan_times_any = i_nan_times_any + 1 ;
261 end
262 end
263 // Counts under f lows .
264 integer o0 ;
265 always @ ( ready or except i on s ) begin
266 for ( o0 = 0 ; o0 < 4 ; o0 = o0 + 1) begin
267 i f ( except i on s [ 12 + o0]&ready ) i_unf = i_unf + 1 ;
268 end
269 end
270 // Counts ove r f l ows .
271 integer o1 ;
272 always @ ( ready or except i on s ) begin
273 for ( o1 = 0 ; o1 < 4 ; o1 = o1 + 1) begin
274 i f ( except i on s [ 8 + o1]&ready ) i_ovf = i_ovf + 1 ;
275 end
276 end
277 // Counts in e xac t s .
278 integer o2 ;
279 always @ ( ready or except i on s ) begin
280 for ( o2 = 0 ; o2 < 4 ; o2 = o2 + 1) begin
281 i f ( except i on s [ 4 + o2]&ready ) i_inx = i_inx + 1 ;
282 end
283 end
284 // Counts i n v a l i d s .
285 integer o3 ;
286 always @ ( ready or except i on s ) begin
287 for ( o3 = 0 ; o3 < 4 ; o3 = o3 + 1) begin
288 i f ( except i on s [ 0 + o3]&ready ) i_inv = i_inv + 1 ;
289 end
290 end
291
292
293 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
294 // Assigns .
295 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
296
297 assign dw_vectors =
298 ( format == ‘FP16 ) ?
299 {testmem [ i_ans + 7 ] , testmem [ i_ans + 6 ] ,
300 testmem [ i_ans + 5 ] , testmem [ i_ans + 4 ] ,
301 testmem [ i_ans + 3 ] , testmem [ i_ans + 2 ] ,
302 testmem [ i_ans + 1 ] , testmem [ i_ans + 0 ]} :
303 ( format == ‘FP32 ) ?
304 {testmem [ i_ans + 7 ] , testmem [ i_ans + 6 ] ,
305 testmem [ i_ans + 5 ] , testmem [ i_ans + 4 ] ,
306 testmem [ i_ans + 3 ] , testmem [ i_ans + 2 ] ,
307 testmem [ i_ans + 1 ] , testmem [ i_ans + 0 ]} :
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308 ( format == ‘FP64 ) ?
309 {testmem [ i_ans + 3 ] , testmem [ i_ans + 2 ] ,
310 testmem [ i_ans + 1 ] , testmem [ i_ans + 0 ]} : 0 ;
311
312
313 assign nan [ 0 ] = (&A0 [W−2:SW] ) &(|A0 [SW−1 :0 ] ) ;
314 assign i n f [ 0 ] = (&A0 [W−2:SW] ) &(~|A0 [SW−1 :0 ] ) ;
315 assign zero [ 0 ] = (~ |A0 [W−2:SW] ) &(~|A0 [SW−1 :0 ] ) ;
316
317 assign nan [ 1 ] = (&A1 [W−2:SW] ) &(|A1 [SW−1 :0 ] ) ;
318 assign i n f [ 1 ] = (&A1 [W−2:SW] ) &(~|A1 [SW−1 :0 ] ) ;
319 assign zero [ 1 ] = (~ |A1 [W−2:SW] ) &(~|A1 [SW−1 :0 ] ) ;
320
321 assign nan [ 2 ] = (&B0 [W−2:SW] ) &(|B0 [SW−1 :0 ] ) ;
322 assign i n f [ 2 ] = (&B0 [W−2:SW] ) &(~|B0 [SW−1 :0 ] ) ;
323 assign zero [ 2 ] = (~ |B0 [W−2:SW] ) &(~|B0 [SW−1 :0 ] ) ;
324
325 assign nan [ 3 ] = (&B1 [W−2:SW] ) &(|B1 [SW−1 :0 ] ) ;
326 assign i n f [ 3 ] = (&B1 [W−2:SW] ) &(~|B1 [SW−1 :0 ] ) ;
327 assign zero [ 3 ] = (~ |B1 [W−2:SW] ) &(~|B1 [SW−1 :0 ] ) ;
328
329
330
331 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
332 // Tasks .
333 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
334
335
336 task i n i t i a l i z e ;
337 begin
338 set_mode (MODE) ; format = FORMAT;
339
340 c l k = 1 ; reset_n = 0 ; c l e a r = 0 ; s t a r t = 0 ;
341 A0 = 0 ; B0 = 0 ; B1 = 0 ; A1 = 0 ; ve c t o r s = 0 ;
342 i_vec = 0 ; i_ans = 0 ; i_passed = 0 ; i_ f a i l e d = 0 ;
343 i_nan = 0 ; i_zero = 0 ; i_ in f = 0 ; i_inf_times_zero = 0 ;
344 i_nan_times_any = 0 ; i_ovf = 0 ; i_unf = 0 ; i_inv = 0 ;
345 i_inx = 0 ;
346
347 // Opens cor r ec t t e s t c a s e r e a d f i l e .
348 i f ( format == ‘FP16 ) begin
349 step = 4 ;
350 $readmemb(‘FP16TESTCASES , testmem ) ;
351 end
352 else i f ( format == ‘FP32 ) begin
353 step = 4 ;
354 $readmemb(‘FP32TESTCASES , testmem ) ;
355 end
356 else i f ( format == ‘FP64 ) begin
357 step = 2 ;
358 $readmemb(‘FP64TESTCASES , testmem ) ;
359 end
360 $display ( "" ) ;
361 end
362 endtask
363
364
365 // Sets rounding mode fo r both f l o a t i n g−po in t mu l t i p l i e r s .
366 task set_mode ;
367 input [ 1 : 0 ] r_mode ;
368 begin
369 case ( r_mode)
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370 ‘EVEN: begin
371 mode = ‘EVEN;
372 dw_mode = ‘DW_EVEN;
373 end
374 ‘PINF : begin
375 mode = ‘PINF ;
376 dw_mode = ‘DW_PINF;
377 end
378 ‘NINF : begin
379 mode = ‘NINF ;
380 dw_mode = ‘DW_NINF;
381 end
382 ‘ZERO: begin
383 mode = ‘ZERO;
384 dw_mode = ‘DW_ZERO;
385 end
386 default : begin
387 $display ( "Not␣ va l i d ␣ rounding ␣mode ! " ) ;
388 $finish ;
389 end
390 endcase
391 end
392 endtask
393
394 endmodule // vec_fp_mult_tb

1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : debug . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Sat Apr 26 01:04 :00 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Tasks f o r debuging des ign . Reports e r ror s and s i g n a l
7 // s t a t u s at d i f f e r e n t v e r b o s i t y l e v e l .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 reg v1 ;
11 reg v2 ;
12 reg v3 ;
13 reg v4 ;
14
15 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 // Verbos i ty l e v e l s :
17 // 0 : Only f i n a l r epor t .
18 // 1 : S i gna l even t s and updates .
19 // 2 : Error messages .
20 // 3 : Elaborated error messages with product vec tors , excep t ion
21 // vec t o r s and input v e c t o r s t ha t caused the error .
22 // 4 : 1 and 3 combined .
23 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24
25 task ve rbo s i t y ;
26 input [ 2 : 0 ] v e rbo s i t y ;
27 begin
28 case ( v e rbo s i t y )
29 0 : begin
30 v1 = 0 ; v2 = 0 ; v3 = 0 ; v4 = 0 ;
31 end
32 // S igna l updates .
33 1 : begin
34 v1 = 1 ;
35 print_header ;
36 end
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37
38 // Error messages .
39 2 : begin
40 v2 = 1 ;
41 end
42
43 // Elaborated messages .
44 3 : begin
45 v3 = 1 ;
46 end
47
48 // Elaborated messages with s i g n a l updates .
49 4 : begin
50 v4 = 1 ;
51 end
52
53 default : begin
54 v1 = 0 ; v2 = 0 ; v3 = 0 ; v4 = 0 ;
55 end
56 endcase
57 end
58 endtask
59
60 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 // Prints error e l a bo ra t ed error messages .
62 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
63
64 always @ ( ready ) begin
65 i f ( ( v2 | v3 )&(ready == 1) ) begin
66 i f ( ( products != dw_products ) |
67 ( except i on s != dw_exceptions ) ) begin
68 pr in t_er ro r ;
69 end
70 end
71 end
72
73
74 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75 // Updates the s i g n a l s t a t u s pr int−out .
76 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77 always @ ( reset_n ) begin
78 i f ( v1 | v4 )
79 $display ( "@␣%0d\ t \ t | ␣ reset_n\ t \ t | ␣%b" , ( $time ) /2 , reset_n ) ;
80 end
81 always @ ( s t a r t ) begin
82 i f ( v1 | v4 )
83 $display ( "@␣%0d\ t \ t | ␣ s t a r t \ t \ t \ t | ␣%b" , ( $time ) /2 , s t a r t ) ;
84 end
85 always @ ( ready ) begin
86 i f ( v1 )
87 $display ( "@␣%0d\ t \ t | ␣ ready\ t \ t \ t | ␣%b" , ( $time ) /2 , ready ) ;
88 i f ( v4&ready ) pr in t_er ro r ;
89 i f ( v4&! ready )
90 $display ( "@␣%0d\ t \ t | ␣ ready\ t \ t \ t | ␣%b" , ( $time ) /2 , ready ) ;
91 end
92 always @ ( c l e a r ) begin
93 i f ( v1 | v4 )
94 $display ( "@␣%0d\ t \ t | ␣ c l e a r \ t \ t \ t | ␣%b␣%b␣%b␣%b" , ( $time ) /2 ,
95 c l e a r [ 1 5 : 1 2 ] , c l e a r [ 1 1 : 8 ] , c l e a r [ 7 : 4 ] , c l e a r [ 3 : 0 ] ) ;
96 end
97 always @ ( ready ) begin
98 i f ( ready == 1) begin
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99 i f ( ( v1 )&(products != dw_products ) )
100 $display ( "@␣%0d\ t \ t | ␣ products \ t \ t | ␣ERROR! " , ( $time ) /2) ;
101 end
102 end
103 always @ ( ready ) begin
104 i f ( ready == 1) begin
105 i f ( ( v1 )&( except i on s != dw_exceptions ) )
106 $display ( "@␣%0d\ t \ t | ␣ except i ons \ t \ t | ␣ERROR! " , ( $time ) /2) ;
107 end
108 end
109 always @ ( format ) begin
110 i f ( v1 | v4 ) begin
111 case ( format )
112 ‘FP16 : begin
113 $display ( "@␣%0d\ t \ t | ␣ format \ t \ t | ␣16−b i t ␣ f l o a t i n g−point ␣

(\ ’ b%b) " ,
114 ( $time ) /2 , format ) ;
115 end
116 ‘FP32 : begin
117 $display ( "@␣%0d\ t \ t | ␣ format \ t \ t | ␣32−b i t ␣ f l o a t i n g−point ␣

(\ ’ b%b) " ,
118 ( $time ) /2 , format ) ;
119 end
120 ‘FP64 : begin
121 $display ( "@␣%0d\ t \ t | ␣ format \ t \ t | ␣64−b i t ␣ f l o a t i n g−point ␣

(\ ’ b%b) " ,
122 ( $time ) /2 , format ) ;
123 end
124 endcase
125 end
126 end
127 always @ (mode) begin
128 i f ( v1 | v4 ) begin
129 case (mode)
130 ‘EVEN: begin
131 $display ( "@␣%0d\ t \ t | ␣mode\ t \ t \ t | ␣Round−to−nea r e s t ␣ even␣

(\ ’ b%b) " ,
132 ( $time ) /2 , mode) ;
133 end
134 ‘PINF : begin
135 $display ( "@␣%0d\ t \ t | ␣mode\ t \ t \ t | ␣Round−to−p o s i t i v e ␣

i n f i n i t y ␣ (\ ’ b%b) " ,
136 ( $time ) /2 , mode) ;
137 end
138 ‘NINF : begin
139 $display ( "@␣%0d\ t \ t | ␣mode\ t \ t \ t | ␣Round−to−negat ive ␣

i n f i n i t y ␣ (\ ’ b%b) " ,
140 ( $time ) /2 , mode) ;
141 end
142 ‘ZERO: begin
143 $display ( "@␣%0d\ t \ t | ␣mode\ t \ t \ t | ␣Round−to ␣ zero ␣ (\ ’ b%b) "

,
144 ( $time ) /2 , mode) ;
145 end
146 endcase
147 end
148 end
149 always @ ( except i on s ) begin
150 i f ( v4 ) begin
151 $display ( "@␣%0d\ t \ t | ␣ except i ons \ t \ t | ␣%b␣%b␣%b␣%b" , $time /2 ,
152 except i on s [ 1 5 : 1 2 ] , excep t i on s [ 1 1 : 8 ] , excep t i ons [ 7 : 4 ] ,

except i on s [ 3 : 0 ] ) ;
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153 end
154 end
155
156
157 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
158 // Prints error messages .
159 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
160
161 task pr in t_er ro r ;
162 begin
163 i f ( i_ f a i l e d == 1) print_header ;
164
165 i f ( ( products != dw_products ) ) begin
166 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
167 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
168 $display ( "@␣%0d\ t \ t | ␣ products \ t \ t | ␣ERROR: ␣Products ␣ f a i l d . "

,
169 $time /2) ;
170 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
171 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
172 end
173 else i f ( ( except i ons != dw_exceptions ) ) begin
174 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
175 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
176 $display ( "@␣%0d\ t \ t | ␣ except i ons \ t \ t | ␣ERROR: ␣Except ions ␣

f a i l e d . " ,
177 $time /2) ;
178 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
179 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
180 end
181 i f ( v4 ) begin
182 $display ( "@␣%0d\ t \ t | ␣ ready\ t \ t \ t | ␣%b" , $time /2 , ready ) ;
183 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
184 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
185 end
186 i f ( ( v3 | v4 ) ) begin
187 i f ( format == ‘FP64 ) begin
188 $display ( "A0\ t \ t | ␣%b" , testmem [4∗ i_to ta l + 0 ] ) ;
189 $display ( "B0\ t \ t | ␣%b" , testmem [4∗ i_to ta l + 1 ] ) ;
190 $display ( "A1\ t \ t | ␣%b" , testmem [4∗ i_to ta l + 2 ] ) ;
191 $display ( "B1\ t \ t | ␣%b" , testmem [4∗ i_to ta l + 3 ] ) ;
192 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
193 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
194 end
195 else begin
196 $display ( "A0\ t \ t | ␣%b" , testmem [8∗ i_to ta l + 0 ] ) ;
197 $display ( "B0\ t \ t | ␣%b" , testmem [8∗ i_to ta l + 1 ] ) ;
198 $display ( "A1\ t \ t | ␣%b" , testmem [8∗ i_to ta l + 2 ] ) ;
199 $display ( "B1\ t \ t | ␣%b" , testmem [8∗ i_to ta l + 3 ] ) ;
200 $display ( "C0\ t \ t | ␣%b" , testmem [8∗ i_to ta l + 4 ] ) ;
201 $display ( "D0\ t \ t | ␣%b" , testmem [8∗ i_to ta l + 5 ] ) ;
202 $display ( "C1\ t \ t | ␣%b" , testmem [8∗ i_to ta l + 6 ] ) ;
203 $display ( "D1\ t \ t | ␣%b" , testmem [8∗ i_to ta l + 7 ] ) ;
204 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
205 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
206 end
207 end
208
209 $display ( "DUT␣ [ 1 2 7 : 6 4 ] \ t | Â %b" , products [ 1 2 7 : 6 4 ] ) ;
210 $display ( "DUT␣ [ ␣ 63 :0 ␣ ] \ t | Â %b" , products [ 6 3 : 0 ] ) ;
211 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
212 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
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213 $display ( "DW␣␣ [ 1 2 7 : 6 4 ] \ t | Â %b" , dw_products [ 1 2 7 : 6 4 ] ) ;
214 $display ( "DW␣␣ [ ␣ 63 :0 ␣ ] \ t | Â %b" , dw_products [ 6 3 : 0 ] ) ;
215 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
216 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
217 $display ( "DUT␣ [ 1 5 : 0 ] \ t | Â %b␣%b␣%b␣%b␣ ( underf low␣ over f l ow ␣

inexac t ␣ i n v a l i d ) " ,
218 except i on s [ 1 5 : 1 2 ] , excep t i on s [ 1 1 : 8 ] , excep t i ons [ 7 : 4 ] ,

except i on s [ 3 : 0 ] ) ;
219 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
220 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
221 $display ( "DW␣␣ [ 1 5 : 0 ] \ t | Â %b␣%b␣%b␣%b␣ ( underf low␣ over f l ow ␣

inexac t ␣ i n v a l i d ) " ,
222 dw_exceptions [ 1 5 : 1 2 ] , dw_exceptions [ 1 1 : 8 ] , dw_exceptions

[ 7 : 4 ] , dw_exceptions [ 3 : 0 ] ) ;
223 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
224 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
225 end
226 endtask
227 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
228 // Prints f i n a l r epor t .
229 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
230
231 task pr int_report ;
232 begin
233 $display ( "\n\n" ) ;
234 $wr i t e ( "∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗" ) ;
235 $wr i t e ( "∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n" ) ;
236 $display ( "\nFINAL␣REPORT\n" ) ;
237 print_format ( format ) ;
238 print_mode (mode) ;
239 $display ( " Input ␣ s t a t i s t i c s " ) ;
240 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
241 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
242 $display ( "Total ␣ i n v a l i d ␣ inputs \ t \ t : ␣%0d" , i_nan ) ;
243 $display ( "Total ␣ zero ␣ inputs \ t \ t : ␣%0d" , i_zero ) ;
244 $display ( "Total ␣ i n f i n i t y ␣ inputs \ t \ t : ␣%0d" , i_ in f ) ;
245 $display ( "Total ␣ i n f i n t i y ␣ t imes ␣ zero \ t : ␣%0d" , i_inf_times_zero

) ;
246 $display ( "Total ␣ i n v a l i d ␣ t imes ␣any␣number\ t : ␣%0d" ,

i_nan_times_any ) ;
247 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
248 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
249 $display ( "Total ␣ input ␣ ve c to r s \ t \ t : ␣%0d" , VECTORS) ;
250 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
251 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
252 $display ( "" ) ;
253 $display ( "Ouput␣ s t a t i s t i c s " ) ;
254 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
255 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
256 $display ( "Total ␣ over f lowed ␣ products \ t : ␣%0d" , i_ovf ) ;
257 $display ( "Total ␣ underf lowed ␣ products \ t : ␣%0d" , i_unf ) ;
258 $display ( "Total ␣ i n v a l i d ␣ products \ t \ t : ␣%0d" , i_inv ) ;
259 $display ( "Total ␣ inexac t ␣ products \ t \ t : ␣%0d" , i_inx ) ;
260 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
261 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
262 i f ( format == ‘FP64 ) begin
263 // Times two because each product vec to r c on s i s t s o f
264 // two products
265 $display ( "Total ␣ products \ t \ t \ t : ␣%0d" , 2∗ i_to ta l ) ;
266 // $d i s p l a y (" Total products passed \ t \ t : %0d" , 2∗ i_passed ) ;
267 // $d i s p l a y (" Total products f a i l e d \ t \ t : %0d" , 2∗ i_ f a i l e d ) ;
268 // $wr i te("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
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269 // $wr i te("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n") ;
270 $display ( "Total ␣ product ␣ ve c to r s \ t \ t : ␣%0d" , i_to ta l ) ;
271 $display ( "Total ␣ products ␣ ve c to r s ␣ passed \ t : ␣%0d" , i_passed )

;
272 $display ( "Total ␣ products ␣ ve c to r s ␣ f a i l e d \ t : ␣%0d" , i_ f a i l e d )

;
273 end
274 else begin
275 // Times four because each product vec to r c on s i s t s o f
276 // four products
277 $display ( "Total ␣ products \ t \ t \ t : ␣%0d" , 4∗ i_to ta l ) ;
278 // $d i s p l a y (" Total products passed \ t \ t : %0d" , 4∗ i_passed ) ;
279 // $d i s p l a y (" Total products f a i l e d \ t \ t : %0d" , 4∗ i_ f a i l e d ) ;
280 // $wr i te("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
281 // $wr i te("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n") ;
282 $display ( "Total ␣ product ␣ ve c to r s \ t \ t : ␣%0d" , i_to ta l ) ;
283 $display ( "Total ␣ products ␣ ve c to r s ␣ passed \ t : ␣%0d" , i_passed )

;
284 $display ( "Total ␣ products ␣ ve c to r s ␣ f a i l e d \ t : ␣%0d" , i_ f a i l e d )

;
285 end
286 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;
287 $wr i t e ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ) ;
288 $display ( "\n\n" ) ;
289 i f ( i_ f a i l e d > 0) begin
290 $display ( "Test ␣ f i n i s h e d ␣without ␣ su c c e s s ! " ) ;
291 end
292 else begin
293 $display ( "Test ␣ f i n i s h e d ␣ s u c c e s s f u l l y ! " ) ;
294 end
295 $display ( "" ) ;
296 $wr i t e ( "∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗" ) ;
297 $wr i t e ( "∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n" ) ;
298 end
299 endtask
300
301
302 task print_header ;
303 begin
304 $wr i t e ( "=========================================" ) ;
305 $wr i t e ( "=========================================\n" ) ;
306 $display ( "Time␣ ( cy c l e ) \ t | ␣ S i gna l \ t \ t | Â Event" ) ;
307 $wr i t e ( "=========================================" ) ;
308 $wr i t e ( "=========================================\n" ) ;
309 end
310 endtask
311
312
313 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
314 // Prints rounding mode .
315 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
316 task print_mode ;
317 input [ 1 : 0 ] mode ;
318 begin
319 case (mode)
320 ‘EVEN: begin
321 $display ( "Rounding␣mode\ t \ t \ t : ␣Round−to−nea r e s t ␣ even\n"

) ;
322 end
323 ‘PINF : begin
324 $display ( "Rounding␣mode\ t \ t \ t : ␣Round−to−p o s i t i v e ␣

i n f i n i t y \n" ) ;
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325 end
326 ‘NINF : begin
327 $display ( "Rounding␣mode\ t \ t \ t : ␣Round−to−negat ive ␣

i n f i n i t y \n" ) ;
328 end
329 ‘ZERO: begin
330 $display ( "Rounding␣mode\ t \ t \ t : ␣Round−to ␣ zero \n" ) ;
331 end
332 endcase
333 end
334 endtask
335
336 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
337 // Prints data format t e s t e d .
338 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
339 task print_format ;
340 input [ 5 : 0 ] data_format ;
341 begin
342 i f ( data_format == ‘FP16 ) begin
343 $display ( "Data␣ format \ t \ t \ t : ␣16−b i t ␣ f l o a t i n g−point ␣ (FP16) "

) ;
344 end
345 else i f ( data_format == ‘FP32 ) begin
346 $display ( "Data␣ format \ t \ t \ t : ␣32−b i t ␣ f l o a t i n g−point ␣ (FP32) "

) ;
347 end
348 else i f ( data_format == ‘FP64 ) begin
349 $display ( "Data␣ format \ t \ t \ t : ␣64−b i t ␣ f l o a t i n g−point ␣ (FP64) "

) ;
350 end
351 end
352 endtask
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D.3 Switching Activity Simulation Source

1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // F i l e . . . . . . . : vec_fp_mult_stimuli_tb . v
3 // Author . . . . . : Espen Stenersen
4 // Date . . . . . . . : Tue Apr 29 14:19 :15 CEST 2008
5 // Revis ion . . . : 1 .0
6 // Descr ip t ion : Generates sw i t ch ing a c t i v i t y in format ion to the
7 // synopsys power ana lasys t o o l s .
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10
11 ‘ include " d e f i n e s . v"
12
13 ‘timescale 1ps /1ps
14 ‘define CLK_PERIOD 5000
15
16
17 module vec_fp_mult_stimuli_tb ;
18
19 parameter FP16STEP = 4 ;
20 parameter FP32STEP = 4 ;
21 parameter FP64STEP = 2 ;
22 parameter FP16VECTORS = 100 ;
23 parameter FP32VECTORS = 0 ;
24 parameter FP64VECTORS = 0 ;
25
26 // wire ( s )
27 wire [ 1 2 7 : 0 ] products ;
28 wire [ 1 5 : 0 ] except i on s ;
29 wire ready ;
30
31 // reg ( s )
32 reg s t a r t ;
33 reg [ 1 2 7 : 0 ] v e c t o r s ;
34 reg [ 1 : 0 ] format ;
35 reg [ 1 : 0 ] mode ;
36 reg [ 1 5 : 0 ] c l e a r ;
37 reg c l k ;
38 reg reset_n ;
39
40 reg [ ‘FP16W−1:0 ] fp16testmem [ 0 :FP16VECTORS ] ;
41 reg [ ‘FP32W−1:0 ] fp32testmem [ 0 :FP32VECTORS ] ;
42 reg [ ‘FP64W−1:0 ] fp64testmem [ 0 :FP64VECTORS ] ;
43
44 integer i_vec ;
45
46 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
47 // Module i n s t a n t i a t i o n .
48 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 vec_fp_mult DUT
50 (
51 . s t a r t ( s t a r t ) , // Input . S t a r t s computation .
52 . v e c t o r s ( v e c t o r s ) , // Input . FP vec t o r s to be computed .
53 . format ( format ) , // Input . Format o f v e c t o r s .
54 .mode (mode) , // Input . Rounding mode .
55 . c l e a r ( c l e a r ) , // Input . Clears excep t i ons .
56 . products ( products ) , // Output . Computed products .
57 . except i on s ( except i on s ) , // Output . Except ions ra i s ed .
58 . ready ( ready ) , // Output . Output vec to r ready .
59 . c l k ( c l k ) ,
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60 . reset_n ( reset_n )
61 ) ;
62
63
64 i n i t i a l begin
65 c l k = 1 ; reset_n = 0 ; s t a r t = 0 ; v e c t o r s = 0 ; c l e a r = 0 ;
66 format = 0 ; mode = ‘EVEN;
67 ‘ include " d1_t r a c e f i l e . v"
68 $dumpfi le ( " toggle1_200_fp16 . vcd" ) ;
69 $readmemb( " f p 1 6 t e s t c a s e s . txt " , fp16testmem ) ;
70 $readmemb( " f p 3 2 t e s t c a s e s . txt " , fp32testmem ) ;
71 $readmemb( " f p 6 4 t e s t c a s e s . txt " , fp64testmem ) ;
72
73 @ (posedge c l k ) // wait c y c l e .
74 @ (posedge c l k ) // wait c y c l e .
75 @ (posedge c l k ) reset_n = 1 ;
76 @ (posedge c l k ) // wait c y c l e .
77 @ (posedge c l k ) // wait c y c l e .
78
79 // Round−to−neares t even .
80 for ( i_vec = 0 ; i_vec < FP16VECTORS; i_vec = i_vec + FP16STEP)

begin
81 @ (posedge c l k ) begin
82 format = ‘FP16 ;
83 s t a r t = 1 ;
84 ve c to r s [ 1∗ ‘FP16W−1:0∗‘FP16W] <= fp16testmem [ i_vec + 0 ] ;
85 ve c to r s [ 2∗ ‘FP16W−1:1∗‘FP16W] <= fp16testmem [ i_vec + 1 ] ;
86 ve c to r s [ 3∗ ‘FP16W−1:2∗‘FP16W] <= fp16testmem [ i_vec + 2 ] ;
87 ve c to r s [ 4∗ ‘FP16W−1:3∗‘FP16W] <= fp16testmem [ i_vec + 3 ] ;
88 end
89 end
90 for ( i_vec = 0 ; i_vec < FP32VECTORS; i_vec = i_vec + FP32STEP)

begin
91 @ (posedge c l k ) begin
92 format = ‘FP32 ;
93 s t a r t = 1 ;
94 ve c to r s [ 1∗ ‘FP32W−1:0∗‘FP32W] <= fp32testmem [ i_vec + 0 ] ;
95 ve c to r s [ 2∗ ‘FP32W−1:1∗‘FP32W] <= fp32testmem [ i_vec + 1 ] ;
96 ve c to r s [ 3∗ ‘FP32W−1:2∗‘FP32W] <= fp32testmem [ i_vec + 2 ] ;
97 ve c to r s [ 4∗ ‘FP32W−1:3∗‘FP32W] <= fp32testmem [ i_vec + 3 ] ;
98 end
99 end

100 for ( i_vec = 0 ; i_vec < FP64VECTORS; i_vec = i_vec + FP64STEP)
begin

101 @ (posedge c l k ) begin
102 format = ‘FP64 ;
103 s t a r t = 1 ;
104 ve c to r s [ 1∗ ‘FP64W−1:0∗‘FP64W] <= fp64testmem [ i_vec + 0 ] ;
105 ve c to r s [ 2∗ ‘FP64W−1:1∗‘FP64W] <= fp64testmem [ i_vec + 1 ] ;
106 end
107 end
108 // Round−to−p o s i t i v e i n f i n i t y .
109 mode = ‘PINF ;
110 for ( i_vec = FP16VECTORS; i_vec < 2∗FP16VECTORS; i_vec = i_vec +

FP16STEP) begin
111 @ (posedge c l k ) begin
112 format = ‘FP16 ;
113 s t a r t = 1 ;
114 ve c to r s [ 1∗ ‘FP16W−1:0∗‘FP16W] <= fp16testmem [ i_vec + 0 ] ;
115 ve c to r s [ 2∗ ‘FP16W−1:1∗‘FP16W] <= fp16testmem [ i_vec + 1 ] ;
116 ve c to r s [ 3∗ ‘FP16W−1:2∗‘FP16W] <= fp16testmem [ i_vec + 2 ] ;
117 ve c to r s [ 4∗ ‘FP16W−1:3∗‘FP16W] <= fp16testmem [ i_vec + 3 ] ;
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118 end
119 end
120 for ( i_vec = FP32VECTORS; i_vec < 2∗FP32VECTORS; i_vec = i_vec +

FP32STEP) begin
121 @ (posedge c l k ) begin
122 format = ‘FP32 ;
123 s t a r t = 1 ;
124 ve c to r s [ 1∗ ‘FP32W−1:0∗‘FP32W] <= fp32testmem [ i_vec + 0 ] ;
125 ve c to r s [ 2∗ ‘FP32W−1:1∗‘FP32W] <= fp32testmem [ i_vec + 1 ] ;
126 ve c to r s [ 3∗ ‘FP32W−1:2∗‘FP32W] <= fp32testmem [ i_vec + 2 ] ;
127 ve c to r s [ 4∗ ‘FP32W−1:3∗‘FP32W] <= fp32testmem [ i_vec + 3 ] ;
128 end
129 end
130 for ( i_vec = FP64VECTORS; i_vec < 2∗FP64VECTORS; i_vec = i_vec +

FP64STEP) begin
131 @ (posedge c l k ) begin
132 format = ‘FP64 ;
133 s t a r t = 1 ;
134 ve c to r s [ 1∗ ‘FP64W−1:0∗‘FP64W] <= fp64testmem [ i_vec + 0 ] ;
135 ve c to r s [ 2∗ ‘FP64W−1:1∗‘FP64W] <= fp64testmem [ i_vec + 1 ] ;
136 end
137 end
138 // Round−to−nega t i v e i n i f i t y .
139 mode = ‘NINF ;
140 for ( i_vec = 2∗FP16VECTORS; i_vec < 3∗FP16VECTORS; i_vec = i_vec

+ FP16STEP) begin
141 @ (posedge c l k ) begin
142 format = ‘FP16 ;
143 s t a r t = 1 ;
144 ve c to r s [ 1∗ ‘FP16W−1:0∗‘FP16W] <= fp16testmem [ i_vec + 0 ] ;
145 ve c to r s [ 2∗ ‘FP16W−1:1∗‘FP16W] <= fp16testmem [ i_vec + 1 ] ;
146 ve c to r s [ 3∗ ‘FP16W−1:2∗‘FP16W] <= fp16testmem [ i_vec + 2 ] ;
147 ve c to r s [ 4∗ ‘FP16W−1:3∗‘FP16W] <= fp16testmem [ i_vec + 3 ] ;
148 end
149 end
150 for ( i_vec = 2∗FP32VECTORS; i_vec < 3∗FP32VECTORS; i_vec = i_vec

+ FP32STEP) begin
151 @ (posedge c l k ) begin
152 format = ‘FP32 ;
153 s t a r t = 1 ;
154 ve c to r s [ 1∗ ‘FP32W−1:0∗‘FP32W] <= fp32testmem [ i_vec + 0 ] ;
155 ve c to r s [ 2∗ ‘FP32W−1:1∗‘FP32W] <= fp32testmem [ i_vec + 1 ] ;
156 ve c to r s [ 3∗ ‘FP32W−1:2∗‘FP32W] <= fp32testmem [ i_vec + 2 ] ;
157 ve c to r s [ 4∗ ‘FP32W−1:3∗‘FP32W] <= fp32testmem [ i_vec + 3 ] ;
158 end
159 end
160 for ( i_vec = 2∗FP64VECTORS; i_vec < 3∗FP64VECTORS; i_vec = i_vec

+ FP64STEP) begin
161 @ (posedge c l k ) begin
162 format = ‘FP64 ;
163 s t a r t = 1 ;
164 ve c to r s [ 1∗ ‘FP64W−1:0∗‘FP64W] <= fp64testmem [ i_vec + 0 ] ;
165 ve c to r s [ 2∗ ‘FP64W−1:1∗‘FP64W] <= fp64testmem [ i_vec + 1 ] ;
166 end
167 end
168 // Round−to zero .
169 mode = ‘ZERO;
170 for ( i_vec = 3∗FP16VECTORS; i_vec < 4∗FP16VECTORS; i_vec = i_vec

+ FP16STEP) begin
171 @ (posedge c l k ) begin
172 format = ‘FP16 ;
173 s t a r t = 1 ;
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174 ve c to r s [ 1∗ ‘FP16W−1:0∗‘FP16W] <= fp16testmem [ i_vec + 0 ] ;
175 ve c to r s [ 2∗ ‘FP16W−1:1∗‘FP16W] <= fp16testmem [ i_vec + 1 ] ;
176 ve c to r s [ 3∗ ‘FP16W−1:2∗‘FP16W] <= fp16testmem [ i_vec + 2 ] ;
177 ve c to r s [ 4∗ ‘FP16W−1:3∗‘FP16W] <= fp16testmem [ i_vec + 3 ] ;
178 end
179 end
180 for ( i_vec = 3∗FP32VECTORS; i_vec < 4∗FP32VECTORS; i_vec = i_vec

+ FP32STEP) begin
181 @ (posedge c l k ) begin
182 format = ‘FP32 ;
183 s t a r t = 1 ;
184 ve c to r s [ 1∗ ‘FP32W−1:0∗‘FP32W] <= fp32testmem [ i_vec + 0 ] ;
185 ve c to r s [ 2∗ ‘FP32W−1:1∗‘FP32W] <= fp32testmem [ i_vec + 1 ] ;
186 ve c to r s [ 3∗ ‘FP32W−1:2∗‘FP32W] <= fp32testmem [ i_vec + 2 ] ;
187 ve c to r s [ 4∗ ‘FP32W−1:3∗‘FP32W] <= fp32testmem [ i_vec + 3 ] ;
188 end
189 end
190 for ( i_vec = 3∗FP64VECTORS; i_vec < 4∗FP64VECTORS; i_vec = i_vec

+ FP64STEP) begin
191 @ (posedge c l k ) begin
192 format = ‘FP64 ;
193 s t a r t = 1 ;
194 ve c to r s [ 1∗ ‘FP64W−1:0∗‘FP64W] <= fp64testmem [ i_vec + 0 ] ;
195 ve c to r s [ 2∗ ‘FP64W−1:1∗‘FP64W] <= fp64testmem [ i_vec + 1 ] ;
196 end
197 end
198 // Empty p i p e l i n e .
199 @ (posedge c l k ) // wait c y c l e .
200 @ (posedge c l k ) // wait c y c l e .
201 s t a r t = 0 ;
202 @ (posedge c l k ) // wait c y c l e .
203 @ (posedge c l k ) // wait c y c l e .
204 @ (posedge c l k ) // wait c y c l e .
205 $finish ;
206 end
207
208 // Toggles c l e a r i n g o f excep t i ons .
209 always @ ( ready ) begin
210 i f ( ready == 1) begin
211 c l e a r = 16 ’ b1111111111111111 ;
212 end
213 else begin
214 c l e a r = 16 ’ b0000000000000000 ;
215 end
216 end
217
218
219 // c l o c k generator .
220 always #(‘CLK_PERIOD/2) c l k = ! c l k ;
221
222 endmodule // vec_fp_mult_stimuli_tb
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