
June 2007
Andrew Perkis, IET
Yuan Lin, Q2S

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Feedback-based Error Control Methods
for H.264

Stian Selnes

Problem Description
Video traffic is expected to be an important component of packet network traffic. Quality of service
(QoS) guarantees are required in order to obtain persistent perceptual quality. However, video
codecs with fixed parameter settings do not adapt to time-varying network characteristics. Video
applications that are aware of channel characteristics will outperform those who are not, and
network feedback information through backward channels play an important role in improving
network QoS. The thesis is to develop an error resilience scheme for H.264 utilizing feedback from
the decoder. This implies an examination of both the feedback mechanism and how to employ the
received information in the video coding process, in order to improve the error robustness. The
former shall be the main focus of this thesis. It is desirable to apply techniques that conform to
existing standards and are applicable for video communication systems. The complete scheme,
including the feedback mechanism and encoder operations, shall be implemented in the H.264
reference software. The developed methods shall be evaluated by comparing them to existing
resilience schemes. The comparisons shall be carried out by real-time simulations in an IP
network test bed.

Assignment given: 24. January 2007
Supervisor: Andrew Perkis, IET

Summary

Many network-based multimedia applications transmit real-time media over un-
reliable networks, i.e. data may be lost or corrupted on its route from sender
to receiver. Such errors may cause a severe degradation in perceptual quality.
It is important to apply techniques that improve the robustness against errors,
in order to ensure that the receiver is able to playback the media with the best
attainable quality.

Today, most Error Robustness (ER) schemes for video employ proactive error
resilient encoding. These schemes add redundant information into the encoded
video stream in order to increase the robustness against potential errors. Be-
cause of this, most proactive schemes suffer from a significant reduction of the
coding efficiency. Another approach is to adjust the encoder operations based
on feedback information from the decoder, e.g. to repair corrupted regions based
on reports of lost data. Feedback-based ER schemes normally improves the cod-
ing efficiency compared with proactive schemes. Moreover, they adjust rapidly
to time-varying network conditions.

The objective of this thesis is to develop and evaluate a feedback-based ER

scheme conforming to the H.264/AVC standard and applicable for real-time low-
delay video applications. The scheme is referred to as Feedback-Based Intra
Refresh (FBIR). The performance of FBIR will be compared with an existing
proactive ER scheme, known as Intelligent Packet Loss Recovery (IPLR). Special
attention is given to the applied feedback mechanism, Extended RTP Profile for
RTCP-based Feedback (RTP/AVPF).

RTP/AVPF is a new (2006) feedback protocol. Basically, it specifies two mod-
ifications/additions to the Real-time Transport Control Protocol (RTCP): First,
it modifies the timing algorithm to enable early feedback, while not exceeding
the RTCP bandwidth constraint. Second, new RTCP message types are defined,
which provides information useful for error control purposes.

FBIR employs RTP/AVPF to provide timely feedback of lost packets from the
decoder to the encoder. Upon reception of this feedback, the encoder use a fast
error tracking algorithm to locate the erroneous regions. Finally, the regions

ii

that are assumed to be visually corrupted after decoding are intra refreshed.
IPLR is an ER scheme developed for use in a commercial video communication

system. It applies a motion-based intra refresh routine.
The comparison is carried out by online simulations with various network

environments (0, 1, 3 and 5% loss rate; 50 and 200 ms latency), bit rates (64, 144
and 384 kbit/s) and video sequences. First, the video is encoded and transmitted
in real-time to the decoder via a network emulator. This emulator generates the
desired network characteristics. The receiver decodes the video in real-time and
transmits feedback information back to the encoder. The encoder adjusts its
encoding process according to this feedback. The H.264/AVC reference software
is modified and used as codec. Finally, objective quality measures are obtained
by calculating the Peak Signal-to-Noise Ratio (PSNR) of the decoded videos. In
addition, some visual inspection is performed.

Isolated measures on the RTP/AVPF transmission algorithm are also per-
formed. These show that RTP/AVPF is able to provide timely feedback for error
control purposes for a great number of applications and network environments.
However, the experienced feedback delay may be increased by numerous factors,
e.g. the network latency, the packet loss rate, the session bandwidth, and the
number of receivers. This may decrease the performance of ER schemes utilizing
RTP/AVPF.

RTP/AVPF is fairly easy to implement since it only modifies the RTCP tim-
ing algorithm and adds new RTCP message types. RTP/AVPF may be used in
combination with other standards in order to extend the available feedback in-
formation. Hence, RTP/AVPF enables timely feedback for use in a wide range of
multimedia applications.

The PSNR measurements show that FBIR always obtains higher objective
quality than IPLR for error free transmissions. This does not, however, neces-
sarily affect the perceptual quality if the bit rate is high. FBIR achieves higher
PSNR in other situations as well, such as for very low loss rates, low or medium
bit rates, and for sequences with high or medium motion activity. Conversely,
IPLR performs better for low motion sequences encoded at high bit rates when
the loss rate exceeds a certain threshold, typically about 1%. It is also shown
that the performance of FBIR may be reduced if the network latency increases.
Visually, the main difference between the two schemes is that FBIR recovers all
corrupted regions at one instant, while IPLR performs a gradual refresh. The
average time before recovery is somewhat shorter for IPLR.

The differences between FBIR and IPLR are mainly caused by two factors.
First, using FBIR results in less intra coding and thus better coding efficiency.
Second, the FBIR scheme does not repair errors until the encoder receives the
feedback. Usually, this happens after IPLR has repaired most of the corrupted
region. In short, one can say that FBIR provides medium error robustness and
high coding efficiency, in contrast to IPLR’s high robustness and low coding
efficiency. While FBIR’s performance may be reduced by network characteristics
such as increased latency, IPLR is unaffected by these factors.

For error free transmissions, FBIR does not significantly reduce the coding
gain compared with a non-robust encoding scheme. Still, it provides a good
robustness against corruption in error-prone networks. Thus, all real-time video
systems that benefit from immediate feedback should strongly consider to em-
ploy FBIR or similar feedback-based ER schemes.

Preface

This master’s thesis was submitted to the Norwegian University of Science
and Technology (NTNU), Department of Electronics and Telecommunications
(IET). It represents the end of a five year study for the Master of Science Degree
in Communication Technology, Multimedia Signal Processing.

First, I would like to express my gratitude to Yuan Lin for being a dedicated
supervisor, for her ideas and guidance throughout the work of the thesis. Second,
I would like to thank Odd Inge Hillestad for his help on setting up the testing
environment and for feedback during the writing process. I would also like
to thank Arild Fuldseth at TANDBERG for providing details on their error
resilience scheme, IPLR. Finally, I would like to thank professor Andrew Perkis
for giving advices and supervising the process, and for defining some aspects of
the problem description according to my own professional interests.

Trondheim, June 21, 2007

Stian Selnes

Contents

Summary i

Preface iii

Contents vii

List of Figures ix

List of Tables xi

Acronyms xiii

1 Introduction 1

2 Background and theory 3
2.1 H.264/AVC . 3

2.1.1 The H.264 encoder . 4
2.1.2 H.264 over IP . 5

2.2 An introduction to error robustness 6
2.2.1 Error resilience . 7
2.2.2 Error concealment . 8
2.2.3 Feedback-based error control 9

2.3 Feedback mechanisms for H.264 over RTP 10
2.3.1 RTP/RTCP . 10
2.3.2 RTP/AVPF . 10
2.3.3 H.271 . 13
2.3.4 H.245 . 14

2.4 Related works . 14
2.5 A feedback-based error control scheme 15

2.5.1 Reporting errors . 15

vi

2.5.2 Tracking the corrupted area 15
2.5.3 Selective intra refresh . 16
2.5.4 Additional robustness tools 17

2.6 Intelligent Packet Loss Recovery 17
2.7 The H.264 reference software . 18
2.8 Measures for video quality . 19

3 Methodology 21
3.1 Research and planning . 21
3.2 Implementation . 22
3.3 Simulation . 22

3.3.1 Testing environment . 22
3.3.2 Sequences and parameter sets 23
3.3.3 The number of simulations 24

3.4 Evaluation . 24

4 Results 25
4.1 Objective comparison . 25
4.2 Visual inspection . 27
4.3 The temporal properties of RTP/AVPF 29

5 Discussion 31
5.1 On the performance of RTP/AVPF 31

5.1.1 The FB transmission interval 31
5.1.2 The feedback information 32

5.2 Evaluation of FBIR and IPLR 33
5.2.1 Coding efficiency and error free transmission 33
5.2.2 Visual artifacts . 33
5.2.3 Error recovery behaviour 34
5.2.4 The effect of increased bit rate 35
5.2.5 The effect of increased network latency 35
5.2.6 The effect of increased loss rate 36
5.2.7 The effect of motion characteristics 36

5.3 Sources of error . 37
5.4 Other considerations . 38

6 Future work 41

7 Conclusion 43

Bibliography 45

A Result details 49
A.1 Confidence intervals . 49

B Simulation details 53
B.1 Configuration parameters . 53

B.1.1 Encoder and decoder configuration 53
B.1.2 RTP/AVPF parameters 55

B.2 The procedure . 55
B.2.1 Prepare the software . 56

vii

B.2.2 The simulation . 57
B.2.3 Measure the objective quality 59
B.2.4 Perform numerous simulations 59
B.2.5 Alternative approach to test the encoder/decoder 59

C Implementation details 61
C.1 The encoder . 61
C.2 The decoder . 62

D Archives 63
D.1 Attached Zip-archive . 63
D.2 Online archive . 63

List of Figures

2.1 High-level H.264 encoder architecture. 4
2.2 The H.264 standard in transport environment. 6
2.3 Example of hybrid error concealment. 8
2.4 RTP/AVPF scenario. 12

3.1 Test bed overview. 23

4.1 Average PSNR with respect to packet loss rate. 26
4.2 Example recovery behaviour . 27
4.3 Visual artifacts and recovery behaviour. 29
4.4 CDF for the FB transmission delay. 30

5.1 Degradation of PSNR over time. 39

B.1 PacketSphere Network Emulator setup 57

List of Tables

A.1 Average Y-PSNR and confidence intervals. 51

B.1 Common encoder configuration parameters 54
B.2 Quantization parameters and bit rates. 54
B.3 Implementation-specific decoder parameters. 55
B.4 Simulation-specific settings/parameters. 56

Acronyms

ACK ACKnowledgement

ARQ Automatic Repeat reQuest

AVPF/CCM Codec Control in the RTP Audio-Visual Profile with
Feedback

CDF Cumulative Distribution Function

CR Contamination Ratio

ER Error Robustness

FB FeedBack

FBIR Feedback-Based Intra Refresh

FEC Forward Error Correction

fps frames per second

GOB Group Of Blocks

HVS Human Visual System

IETF Internet Engineering Task Force

IDR Instantaneous Decoding Refresh

IP Internet Protocol

IPLR Intelligent Packet Loss Recovery

JVT Joint Video Team

LAN Local Area Network

xiv

MB MacroBlock

MTU Maximum Transmission Unit

MV Motion Vector

NACK Negative ACKnowledgement

NAL Network Abstraction Layer

PSNR Peak Signal-to-Noise Ratio

QoS Quality of Service

RPS Reference Picture Selection

RR Receiver Report

RTCP Real-time Transport Control Protocol

RTP Real-time Transport Protocol

RTP/AVPF Extended RTP Profile for RTCP-based Feedback

SDES Source DEScription

SR Sender Report

TCP Transmission Control Protocol

UDP User Datagram Protocol

VBCM Video Back-Channel Message

VCL Video Coding Layer

Y-PSNR Luminance PSNR

CHAPTER 1

Introduction

There has been a tremendous development in the field of video coding and re-
lated technologies during the last one and a half decade. Since 1990 when H.261
was standardized, standards such as MPEG-1, H.262/MPEG-2, H.263, MPEG-
4 and H.264/MPEG-4 Part 10 has improved the video coding scheme. The
gain has primarily been with respect to coding efficiency, but also the resistance
to errors has been improved. Not only has this benefited existing services and
applications, but also spawned brand new industries and services. Video confer-
encing, video-on-demand, video streaming, high-definition TV, video recording
and video on mobile devices are examples of technologies that have gained from
this development. The importance of such services will grow even more in the
future. The performance and use of multimedia and entertainment devices, In-
ternet and computers in general will increase and more people will get access to
this technology.

Generally, users have a set of expectations and requirements to all services
they use. If a service fail to fulfill these requirements, the user will consider it
as being of poor quality. This applies also to multimedia services. The require-
ments for many of these, such as audio and video applications, are high since
they may be compared to “real-life quality”. For some systems, especially for
network-based systems utilizing real-time encoding and decoding of the media,
it may be difficult to meet these requirements. Therefore, it is often necessary
to take adequate measures in order to improve the end-user perceived quality.

A real-time video system involves several steps. First, the video is com-
pressed by an encoder to reduce the data rate while keeping an acceptable visual
quality. The compressed bit stream is then multiplexed, packetized and channel
encoded prior to transmission over a network. The receiver performs similar
reverse operations and feeds the resulting bit stream into the video decoder to
reconstruct the video. If the network does not guarantee error free transmission,

2 1. Introduction

data may be lost and cause the receiver to experience a degradation in quality.
It is desirable to either eliminate the probability of data loss, or to minimize the
effect of such losses to preserve a decent quality. The system’s ability to recover
from lost or corrupted data is known as error robustness.

Various robustness techniques exist for the different coding standards. How-
ever, they all fit in one of three main categories: proactive error resilient en-
coding, error concealment or feedback-based error control. Because real-time
multimedia applications suffer from very strict timing requirements, most exist-
ing error robust systems utilize a combination of proactive error resilient coding
and error concealment. The latter is performed within the decoder upon detec-
tion of errors in order to conceal and reduce their impact. Proactive techniques
add redundant information into the video stream. This improves the robustness
against potential errors but also decreases the compression efficiency. Herein
lies the main drawback of proactive Error Robustness (ER) schemes: they may
waste bits to protect information that is not a subject to error. The third group
of robustness techniques, feedback-based error control, address this problem.
Such techniques set up a feedback channel for the decoder to report information
about the received data and current network conditions. This helps the encoder
to rapidly adjust its operations according to the decoder’s status. For instance,
the feedback may be used to recover reported errors. Thus, the encoder may
choose to only use additional bits to recover from actual errors. This generally
improves the coding efficiency compared to proactive ER techniques, but with
respect to robustness the performance depends heavily on the tools applied.

The objective of this thesis is to develop and evaluate a feedback-based ER

scheme, referred to as Feedback-Based Intra Refresh (FBIR), conforming to the
H.264/AVC video coding standard [1] and applicable for real-time low-delay
video applications, such as conversational video systems. Its performance will
be objectively compared with an existing proactive scheme, known as Intelligent
Packet Loss Recovery (IPLR) [2] [3], and be subject to visual inspection. The
schemes are evaluated by performing online simulations in an IP testbed, con-
figured to simulate a various set of lossy network environments. The feedback
mechanism in particular will be subject for an in-depth examination.

Extended RTP Profile for RTCP-based Feedback (RTP/AVPF) [4], a modifi-
cation of Real-time Transport Control Protocol (RTCP) [5] allowing immediate
feedback within the RTCP bandwidth constraint, will be employed to report
lost data. The error propagation of reported losses will be tracked using a fast
tracking algorithm [6]. At last, intra refresh is performed on regions that are
assumed to not belong to a static area, since static areas normally are very well
concealed by the decoder.

The thesis is organized as follows. First, in Section 2, background theory for
the following experiments and discussion is presented. This includes theoretical
information about some properties of H.264/AVC and its tools of value for this
study, a presentation of error robustness in general, possible feedback methods,
and related research on feedback-based error control. The section continues with
a detailed description of the developed ER scheme, FBIR. Section 3 explains the
methodology of the study. In Section 4 the results from the simulations and
comparisons of the ER schemes are presented. Discussion of the obtained results
and an evaluation of FBIR and RTP/AVPF are given in Section 5. Finally, some
plans for future work are suggested before the report is concluded in Section 6
and 7, respectively.

CHAPTER 2

Background and theory

This section first provides a high-level overview of the digital video coding stan-
dard H.264/AVC, its encoding scheme and usage in packet-switched networks.
An introduction to general error robustness techniques is given. In addition, the
ER tools available for H.264/AVC that are relevant for this study are presented.
After this, different available feedback mechanisms are described. Then, related
works within the field of error resilience and feedback-based error control are
presented, before FBIR and IPLR are explained in detail. Finally, a brief descrip-
tion of the H.264/AVC reference software and the applied quality assessment,
Peak Signal-to-Noise Ratio (PSNR), is given.

2.1 H.264/AVC
ITU-T H.264 / MPEG-4 (Part 10) Advanced Video Coding [1] (commonly re-
ferred to as H.264/AVC or only H.264; the latter will be used through the rest of
this thesis) was approved as a video coding standard by Joint Video Team (JVT)1

in mid 2003. Three of several imposed requirements for this standard were to
increase the compression performance, improve the network friendliness and en-
able enhanced error and packet loss resilience tools compared to previous stan-
dards [7]. H.264 is applicable in a wide range of applications, from real-time
communication to high quality consumer and broadcast systems. The following
description of the standard will focus on features relevant for real-time low-delay
applications, such as conversational video systems. It is important to be aware
of that only the central decoder is standardized by imposing restrictions on the
bit-stream and syntax. Thus, the encoder has great flexibility in how to apply
the various coding tools to achieve optimality for the current application.

1JVT is a collective partnership between ITU-T Video Coding Experts Group and the
ISO/IEC Moving Picture Experts Group (MPEG).

4 2. Background and theory

Figure 2.1: High-level H.264 encoder architecture [9].

2.1.1 The H.264 encoder

To efficiently compress a video the H.264 standard uses a design principle sim-
ilar to prior standards since H.261. These coders are commonly referred to as
hybrid coders because they exploit both temporal and spectral redundancy in
the encoding process. Moreover, H.264 utilizes spatial redundancy. Figure 2.1
illustrates the high-level architecture of an H.264 encoder. The encoding pro-
cess is block-based. That is, each video frame is divided into non-overlapping
MacroBlocks (MBs) of 16x16 luma samples and their corresponding chroma com-
ponents, which are used as the basic units in the compression scheme. The
following information is collected from [8] [9].

To reduce spatial redundancy intra-frame prediction is used. The encoder
predicts the current MB or its 4x4 sub-blocks from spatially neighboring samples.
A fixed set of different prediction modes are supported, and the one which gives
the least prediction error is chosen.

Temporal redundancy is reduced through inter-frame prediction. The en-
coder tries to estimate the current MB based on information in previous and/or
future frames. More precisely, motion estimation from allowed reference frames
is performed on the MB as a whole or on smaller blocks derived from the MB.
This estimation is calculated with quarter-sample accuracy. The best match
is then represented by the prediction error signal and motion data (Motion
Vectors (MVs) and reference frame parameters).

The decision on which prediction technique should be applied is normally
performed at MB level. However, there are some restrictions on this mode de-
cision process. Groups of MBs are logically segmented into slices, which may
contain as little as one MB or as much as a whole frame. The slice type, I
(intra), P (predicted) or B (bi-predicted), is decisive for if and how the inter
prediction may be performed. In I-slices none of the MBs are inter predicted.
P-slices allow inter prediction with at most one motion-compensated prediction
signal per prediction block besides the modes available for I-slices. B-slices allow
two prediction signals per prediction block, as well as the coding types available
for P-slices. Each slice is independently decodable from the other slices in the

2.1. H.264/AVC 5

same frame, assuming that the active sequence and picture parameter set along
with the reference pictures for the slice are available. This implies that intra
prediction is not allowed across slice boundaries. A frame that only consists of
I-slices is called an I-frame.

For both intra and inter prediction, the prediction error signal is transformed
to the spectral domain. This enables more efficient quantization and entropy
coding. For every coded frame, the encoder transmits the transformed coeffi-
cients, motion data and header information essential for decoding.

In addition to the prediction schemes above, special modes are available for
P- and B-slices, skip mode and direct mode, respectively. These are to be used for
picture areas with no change or constant motion, typically a static background
or slow panning. For such MBs, neither a quantized prediction error signal nor a
motion vector is transmitted. Instead, these MBs are decoded using only already
received information.

Despite the similar high-level design, there are many differences relative to
prior standards that add up and improve the coding efficiency for H.264 sig-
nificantly. Some of the most important ones are enhanced motion-prediction
capability, use of a small block-size exact-match transform, adaptive in-loop de-
blocking filter and enhanced entropy coding methods [8]. More precisely, the
motion compensation may use variable and small block-sizes, quarter-sample
accuracy, multiple reference pictures and weighted prediction; the transforma-
tion take advantage of 4x4 transforms instead of 8x8 as in prior standards and
integer transforms are used to avoid inverse-transform mismatch; an in-loop de-
blocking filter is applied to remove blocking artifacts which can improve both
objective and subjective quality and also improve the inter prediction; arith-
metic and context-adaptive entropy coding is included. For further description
of H.264 it is referred to [8] [9].

Similar to prior standards, the concept of profiles and levels is used in H.264.
These define subsets of available coding tools and constraints on key parame-
ters to enable efficient implementations and interoperability for a wide range of
applications [7]. Three profiles were originally defined in the first version of the
standard: Baseline, Main and Extended. The Baseline profile is suited for con-
versational services and supports some low-delay error resilience and coding tools
of relatively low complexity. For instance, it does not allow B-slices. The Main
profile is defined to allow tools that maximizes coding efficiency, which makes
it a good choice for typical video entertainment applications such as television
broadcasting. The Extended profile is a superset of Baseline and include tools
to support coding efficiency, error resilience and resynchronization. Streaming
services would probably utilize this or the Baseline profile. The Baseline profile
is assumed for the remaining text as this profile is most suitable for real-time
communication systems.

2.1.2 H.264 over IP

As already mentioned, one of the main goals for JVT when developing H.264 was
to improve the network friendliness. In order to achieve better flexibility and
customizability the design is divided into a Video Coding Layer (VCL) and a
Network Abstraction Layer (NAL), as illustrated in Figure 2.2. The VCL, which
is where the architecture in Figure 2.1 is located, consists of the core compression
algorithms and is designed to be as network independent as possible. The NAL

6 2. Background and theory

Figure 2.2: The H.264 standard in transport environment [9].

on the other hand, maps the VCL data to different transport layers [10]. In this
section, properties of H.264 when it is transmitted over Internet Protocol (IP)
are studied.

The Internet Protocol is a connectionless network protocol, where the sender
can not guarantee that there will be no loss, error insertion, misdelivery, dupli-
cation or out-of-sequence delivery of a packet. IP networks typically employ two
different transport protocols: User Datagram Protocol (UDP) and Transmission
Control Protocol (TCP). The latter is a connection-oriented protocol which guar-
antees reliable and in-order delivery of packets from sender to receiver. This is
accomplished by re-transmissions and timeout mechanisms. Consequently, there
is no guaranteed upper bound for delay and jitter. For services that decode the
media while it is being delivered over the network, it is critical to keep the delay
and jitter below an acceptable threshold [11]. Hence, UDP is normally employed
since it is faster and often more efficient than TCP. It is preferred despite the
fact that it offers only the same best-effort services as IP,

Real-time Transport Protocol (RTP) is usually utilized on top of UDP, to-
gether with RTCP. RTP carries the real-time data while RTCP monitors the
Quality of Service (QoS). The RTP-header contains information, e.g. sequence
number and timestamp, which enables the receiver to remove duplicate packets,
put the packets in correct order and detect packet losses. Packets which arrive
too late or not at all are considered lost [10]. By this, the receiver is able to
measure the QoS and report back to the sender using RTCP in order to adjust
the encoder according to the network conditions.

To summarize, IP/UDP/RTP is the most common protocol combination for
multimedia systems that consume the media while it is being delivered over the
network. No QoS guarantees are given. However, the encoder is able to receive
feedback in order to improve the QoS.

2.2 An introduction to error robustness
In a best-effort network environment as described in previous section, it is im-
portant to minimize the effect of errors when they occur. First and foremost,
the encoded video must still be decodable. Second, the visual quality should be

2.2. An introduction to error robustness 7

as good as possible. Many approaches exist that aim to improve the robustness
against loss and corruption of data in a video stream. In this section we divide
such techniques into three main categories: error resilient schemes applied in
the encoder, error concealment at the decoder side, and techniques that require
interaction between the decoder and encoder through a feedback channel. We
will describe some of the most common techniques within each category.

2.2.1 Error resilience

Error resilient encoding operates independently of the decoder. The idea is to
introduce extra information in the bit stream, also known as redundancy. When
there are transmission errors this additional information helps the decoder to
conceal and recover from the errors, hopefully without unacceptable distortion.
The design goal for such encoders is to achieve a maximum gain in error robust-
ness with the smallest amount of redundancy. However, compared to coders
optimized for coding efficiency, error resilient encoders typically are less effi-
cient. In other words, they use more bits to obtain the same video quality in
the absence of transmission errors.

Intra coded MBs is one of the most obvious and powerful error resilience
tools. It is performed either for a single MB or at slice or frame level. Historically,
intra coded MBs resynchronize the video for the part of the frame it is applied,
since it does not depend on previous frames. In H.264 however, this is only
partly true as intra prediction is allowed to be performed from inter predicted
MBs. This is good for coding efficiency, but there is a higher risk for errors to
propagate to neighboring blocks within the same frame. In order to improve the
resynchronization property for intra MBs, it is possible to use constrained intra
prediction [8]. This prevents intra MBs from being intra predicted from inter
MBs. Naturally, this increases the error robustness but decreases the coding
efficiency. Nevertheless, [12] suggests that constrained intra prediction should
always be used in erroneous environments because the quality degradation in
error-free environments are only small. The full resynchronization property
is achieved by applying an Instantaneous Decoding Refresh (IDR). This is an
intra-frame, but in contrast to regular intra-frames, an IDR indicates that that
no subsequent pictures in the stream will require reference to pictures prior to
the IDR.

It is important to remember that intra coded MBs use significantly more bits
than those which are inter predicted. For instance, P-slices are approximately
only 10% the size of I-slices [13]. Hence, it is important to not overdo the number
of intra coded MBs.

Slice mode is another resilience tool which forces a slice to contain a given
number of MBs or bytes. As described in Section 2.1.1, intra prediction can
only be carried out inside the slice segment. Thus, slice structuring avoids error
propagation across slice borders within the same frame. Forcing a higher num-
ber of slices within a frame therefore reduces the consequence of erroneous or
lost data in a slice. In addition, if the slice size exceeds the Maximum Trans-
mission Unit (MTU) of the network, the slice is divided into several fragments
(fragmentation). If one fragment is lost during transport, the complete slice
must be discarded. Also, the error probability in packet-switched best-effort
networks normally decreases when the packet-size gets smaller, which is possi-
ble when decreasing the slice size. As before, this degrades coding efficiency due

8 2. Background and theory

(a) Corrupted frame (b) Recovered frame

Figure 2.3: Recovered intra-frame using a hybrid error concealment strat-
egy [15].

to less efficient intra prediction and because more slice information needs to be
transmitted.

2.2.2 Error concealment

Error resilience techniques alone is normally not enough to retain an acceptable
quality. It is also necessary to minimize the effect errors on the decoder side.
The process of recovering and estimating the lost information due to error trans-
mission is referred to as error concealment. It is not a part of the H.264 standard
and many concealment algorithms exist. This thesis does not cover evaluation
of different concealment schemes. Thus, this section will only describe the main
concepts behind this group of robustness techniques.

Errors are detected by a violation in the defined syntax and/or semantics.
Upon detection, the missing or corrupted packets are simply discarded and a
robust decoder must resynchronize the stream and conceal the corruption [14].
The basic idea behind error concealment is to estimate lost portions of the pic-
ture from correctly received data. This can be achieved with temporal, spatial
or hybrid techniques where some sort of interpolation usually is applied. With
a temporal strategy, the values of a damaged MB is typically computed by inter-
polating pixels from a previously decoded frame. Often these schemes also use
available or estimated MVs to improve the concealment. Spatial interpolation
employs only pixels from neighboring areas in the same frame to recover from
the error. Various interpolation algorithms are available for both temporal and
spatial concealment and may have a large impact on the result. Hybrid tech-
niques are a combination of the previous ones. Figure 2.3 illustrates the effect
of adopting error concealment.

More complex schemes usually give better quality, but also higher processing
time. Hybrid schemes, for instance, are normally slower than techniques using
temporal replacement, but yield better results. In many systems, such as real-
time communication systems, processing time is a critical factor and suboptimal
solutions are preferred [15].

2.2. An introduction to error robustness 9

2.2.3 Feedback-based error control

Error resilience and concealment as presented thus far, let the encoder and de-
coder operate independently when it comes to combating transmission errors.
Feedback-based error control, on the other hand, requires the encoder and de-
coder to interact. If a feedback channel is available, the decoder can inform the
encoder about detected errors and the encoder can adapt its operations accord-
ingly to reduce or even eliminate the effect of these errors. There are several
aspects by such error control that need to be considered, such as the timing
rules of the feedback, what information the decoder should provide the encoder,
and how the encoder should adjust its encoding process. In this section we will
introduce the principles behind feedback-based error control. Section 2.3 pro-
vides a more detailed presentation of the most interesting feedback mechanisms
for video communications today.

The feedback messages contain information useful for both proactive actions
to prevent future transmission errors and/or reactive actions to recover from
reported corruption.2 An example of the former is to reduce the video bit
rate if network congestion is reported. This thesis, however, focuses on the
latter. For instance, the decoder may provide ACKnowledgements (ACKs) or
Negative ACKnowledgements (NACKs) about received data, either at transport
or application level. That is, either report packets or specific parts of the video
sequence as received or lost. Upon such feedback, the encoder acts to recover
from the damage that has occurred.

There are several ways the encoder could employ this information to im-
prove the error robustness. The simplest approach is to resend the lost packets
(Automatic Repeat reQuest (ARQ)), but this is not an option for low-delay
video systems because of the timing requirements. Instead, the encoder accepts
that some data have been lost, and adapts its operation to recover from the
errors as soon as possible. Traditionally, there are two main approaches to do
this: The current frame can be encoded by referencing only to previous frames
that are successfully received. This approach is referred to as Reference Picture
Selection (RPS) [16]. Or, the current frame may intra code the corrupted region
in order to stop the error propagation, commonly referred to as intra refresh [16].

RPS may either use ACK or NACK. If ACK is applied, the encoder always use
reference frames that are confirmed successfully received. This approach is very
robust as it entirely avoids error propagation. However, it lowers the coding
efficiency since the motion prediction becomes less efficient when older reference
frames are utilized. In addition, more bandwidth is used for feedback reports
compared with NACK. Hence, it is more common to apply NACK with RPS. With
NACK, the encoder operates as normal until it learns about damaged parts in
a previously coded frame. Then, even older frames than the damaged one, are
used as reference because these are assumed to have been received correctly.
Using this approach, transmission errors usually become visible in the decoded
video, but they will be corrected after a short while. The advantage is that the
coding efficiency is improved compared with using ACK, since newer reference
frames are applied as long as no errors are reported.

The second main approach is to intra refresh the corrupted regions. NACKs
are used to report losses to the encoder. By using stored MVs of previously

2Proactive actions are operations performed to minimize the effect of a possible future loss.
Reactive actions are performed after an error is registered.

10 2. Background and theory

coded frames, the encoder tracks how these losses have affected the decoded
video. Regions of the current frame that are subject to corruption are identified.
MBs that belong to these regions are forced to be intra coded in the current
frame. Hence, if the tracking is correct, all errors are repaired. The intra
refresh may lead to severely reduced coding efficiency of the current frame. For
other frames, however, the coding efficiency is unaffected. More information on
feedback-based error control may be found in [16].

The performance of a feedback-based ER scheme depends highly on the tim-
ing rules of the feedback mechanism. Timely arrival of feedback information is
crucial. If the encoder receives the feedback too late, it may result in an in-
creased temporal and spatial error propagation, which degrades the perceptual
quality. On the other hand, if all detected errors are to be reported instantly,
the feedback channel would require a large bandwidth if the error rate is high.
This may lower the bandwidth available for the video stream, which also leads
to decreased video quality. Obviously, it is desirable with feedback transmission
rules that balance these factors well.

2.3 Feedback mechanisms for H.264 over RTP

This section describes the most important standards for providing feedback use-
ful for error control in real-time low-delay video applications. These standards
define the content of the feedback and/or its temporal characteristics.

2.3.1 RTP/RTCP

As explained in Section 2.1.2 RTP/RTCP [5] is the most common protocol to
transport time critical audio and video over the Internet today. RTCP provides
a way for the encoder and decoder to exchange out-of-band control information
for the RTP flow, in both directions. Several packet types are available, but
RTCP’s primary function, that is to provide feedback on the overall reception
quality, is carried out through Sender Reports (SRs) and Receiver Reports (RRs).
Network characteristics such as packet loss ratio, round-trip delay and jitter are
made available by these reports. Utilizing this knowledge the encoder can adapt
its coding scheme and transmission behaviour to the observed network quality.
For instance, in the case of a high packet loss ratio the encoder should apply
some ER scheme to make the video stream more robust to errors.

To ensure a good balance between the bandwidth used for media data and
feedback it is recommended that an additional 5% of the session bandwidth is
used for RTCP packets [5]. It is also recommended a fixed minimum transmission
interval of five seconds between each RTCP packet to avoid feedback bursts in
special situations. In order to obtain more accurate statistics, SRs and RRs
should be sent as often as allowed within these constraints in a near periodic
fashion.

2.3.2 RTP/AVPF

The Extended RTP Profile for RTCP-based Feedback (RTP/AVPF) [4] specifies
modifications and additions to RTCP. It enables more immediate feedback to
the senders without violating the RTCP bandwidth constraint. Furthermore,

2.3. Feedback mechanisms for H.264 over RTP 11

it has the ability to provide more useful information in terms of error control,
e.g. what data are missing. This allows the encoder to implement short-term
adaption techniques and efficient repair mechanisms.

To achieve timely feedback suitable for error recovery, the report interval
in [5] is changed and a new RTCP packet type is added, namely the FeedBack
(FB) message. This message may, for instance, indicate loss or reception of
particular pieces of a video stream. FB messages are classified in three categories:
transport layer FB messages, payload-specific FB messages and application layer
FB messages. The FB message is only a new RTCP packet type and is transmitted
as a compound RTCP packet together with other RTCP messages, such as the
RR. Hence, both reception statistics and information for immediate repair of a
video stream is provided to the sender.

The transport layer FB messages are independent of the particular codec
or application in use. RTP/AVPF currently defines only one such message, a
generic NACK, that may be used to report which RTP packets the receiver did
not receive. The ER scheme described in Section 2.5 applies this message.

Payload-specific FB messages may provide more detailed feedback since these
are tailored the video stream payload types. They may for instance be used to
indicate loss or corruption of one or several MBs in scan order, or report which
pictures may safely be used as reference pictures (if multiple reference pictures
is employed in the encoder).

Application layer FB messages is used to transport application-defined data
directly from the receiver’s to the sender’s application. The content of these are
not defined by [4], except for the message format to identify such messages.

The various FB messages described above are of most use if they are sent
early after an error is detected. RTP/AVPF defines a modified RTCP transmis-
sion algorithm that allows immediate feedback as long as the RTCP bandwidth
constraint is not exceeded. The standard [4] outlines the general behaviour as
follows:

As long as no FB messages have to be conveyed, compound RTCP

packets are sent following the rules of RTP, except that the five sec-
ond minimum interval between RTCP reports is not enforced. Hence,
the interval between RTCP reports is only derived from the average
RTCP packet size and the RTCP bandwidth share available to the
RTP/RTCP entity.

If a receiver detects the need to send an FB message, it may
do so earlier than the next regular RTCP reporting interval. (. . .) It
checks whether it is allowed to send Early feedback. If sending Early
feedback is permissible, the receiver sends the FB message as part of
a minimal compound RTCP packet. The permission to send Early
feedback depends on the type of the previous RTCP packet sent by
this receiver and the time the previous Early feedback message was
sent.

These rules become more understandable by looking at a typical scenario
illustrated in Figure 2.4. Various events may be defined to generate the need of
FB messages, but in this scenario we use the loss of one or several RTP packets
as such an incident.

12 2. Background and theory

Figure 2.4: RTP/AVPF scenario. The time for the occurrence of
events/actions increase vertically downwards. The horizontal
axis illustrate when a scheduled action is planned to be ex-
ecuted. The figure should be read by going vertically down
through points 1 to 7. Events/actions that are on the diagonal
dotted line occur/are executed at this time. Actions to the
right of this line are scheduled to a future time.

1. At the beginning of the session a regular RTCP packet is scheduled for
transmission following the rules of RTP/RTCP, except that the five second
minimum interval between RTCP reports is not enforced.

2. As long as no FB messages have to be conveyed before the scheduled
time, i.e. no loss needs to be reported, the regular RTCP report scheduled
at point 1 is sent as normal. Then a new RTCP packet is scheduled for
transmission according to the same algorithm. The interval is derived from
the average RTCP packet size and the RTCP bandwidth share available to
the RTP/RTCP entity (except for a randomization factor).

3. If the receiver experience a loss before the next regular RTCP report is
transmitted, an FB message is scheduled for transmission early after the
incident. The interval is random, but small, and its upper limit is bound
by an application-specific parameter.

2.3. Feedback mechanisms for H.264 over RTP 13

4. The FB message is sent at the scheduled time. Besides the feedback infor-
mation, other RTCP messages are added to the RTCP packet, such as an
RR. Because of the bandwidth constraint, the next scheduled regular RTCP

packet is rescheduled so that the transmission interval is doubled (except
for a randomization factor). Until this time is reached the receiver is not
allowed to send any FB messages or other types of RTCP packets.

5. If losses occur while Early feedback is forbidden, the receiver may choose
to add an FB message to the next scheduled regular RTCP report if it is
transmitted soon. This decision is made by an application-specific param-
eter that defines the upper bound for an FB message to an event to be
useful. If this upper bound is exceeded, the loss is simply ignored. This
may, for instance, cause the encoder to not being able to recover from the
error.

6. If the upper bound mentioned in point 5 is not exceeded, an FB message
is added to the next regular RTCP report. It is allowed to report several
lost packets in one RTCP packet. Thus, if further losses occur before the
transmission of this RTCP packet, additional FB messages may be added.

7. When the scheduled time for the regular RTCP report is reached, the RTCP

packet is sent containing an RR (and other RTCP message types) and the
added FB messages if any. From this time the receiver is allowed to send
Early FB messages again, and a new regular RTCP report is scheduled
using the same transmission interval algorithm as in point 1 and 2. The
state of the receiver is now the same as in point 2, i.e. if a new loss occur
and Early feedback may be sent.

As already mentioned, FB messages may contain other kind of information
than lost RTP packets. Besides the already described message types, there
is a work in progress aiming to provide more possible feedback information.
The IETF-draft Codec Control in the RTP Audio-Visual Profile with Feedback
(AVPF/CCM) [17] adds new FB message types, both payload-specific and trans-
port layer FB messages. Among the new features are the ability for the receiver
to request a temporary maximum media bit-rate; to request a temporal spa-
tial trade-off; to request a full intra refresh; and to send a Video Back-Channel
Message (VBCM) as described in the next section.

2.3.3 H.271

H.271 [18] specifies the format of VBCMs for conveyance of status information
and requests from a video receiver to a video sender. The syntax is applicable
for use with the majority of the existing video coding standards, e.g. H.261,
H.263 and H.264. There exists some overlap between H.271 messages and the
messages defined by RTP/AVPF and AVPF/CCM. For instance, reporting the loss
of MBs and/or pictures is possible using both VBCM as defined in H.271 and the
“native” FB messages [17]. But there are some differences, such as H.271 being
able to provide feedback about received parameter sets.

H.271 does not discuss any timing rules for the VBCMs. But as mentioned
in the previous section there is a draft [17] that allows VBCMs to be sent as
FB messages using RTP/AVPF. The timing rules described in previous section

14 2. Background and theory

must then be followed since the VBCM is nothing more but a payload-specific FB

message. Applying H.271 together with RTP/AVPF then extends the possibilities
of the feedback.

2.3.4 H.245

H.245 [19] is the control protocol for H.323-based systems3. It is used to ex-
change end-to-end control messages governing the operation of the H.323 end-
points. These control messages carry information related to exchange of capa-
bilities, opening and closing of logical channels used to carry media streams,
flow-control, and general commands and indications. The latter includes mes-
sages that may be used in QoS management. For instance, the spatial and
temporal location of erroneous MBs in the decoded video may be reported by
sending commands to the encoder, such as VideoFastUpdatePicture, Video-
FastUpdateGOB or VideoFastUpdateMB. The reader is referred to [21] for a full
list of commands used for QoS management.

The decoder may send the commands above in order to recover from errors.
However, this is not the primary function of H.245. Moreover, it may only be
used in H.323-based systems. Hence, in practice, H.245 is only an alternative
to a limited set of applications. Thus, other protocols are preferred in order to
develop a general feedback mechanism. In this regard, it should be noticed that
H.323 transmits media using RTP, which implies that both RTCP and RTP/AVPF

may be used in conjunction with H.245 for H.323-based systems.

2.4 Related works

Extensive research has been done in the field of error robustness for the latest
video coding standards. Wang et al. [22] give an introduction to robustness tech-
niques used for real-time video communication systems. They present general
robustness principles for both the encoder and decoder as well as feedback-based
techniques.

Kumar et al. [14] give a review of available robustness tools in H.264, and
summarize some of the experimental results obtained in other researches. Wenger [10]
simulates the performance of some error resilient encoding techniques applicable
for low-delay applications over best-effort IP networks.

A review of feedback-based error control approaches are found in [16]. Al-
though it was written with H.263 in mind, the techniques are generally valid for
H.264. A comparison of two feedback schemes, one using intra refresh and the
other RPS, is illustrated. It is shown that RPS performs better for high error
rates, while for low error probability the situation is reversed.

Several works have presented novel feedback-based ER methods. The least
complex scheme is probably adaptive intra-frame refreshment [23]. It reports
lost packets to the encoder, which codes the next frame in intra mode and
decreases the intra frame refreshment interval.

In [24], three RPS schemes are presented, all which use flexible reference
frames. This means that the encoder use only one frame that it knows has been

3H.323 [20] is an umbrella recommendation that specifies the components, protocols and
procedures to provide multimedia communication services (real-time audio, video, and data
communications) over packet networks.

2.5. A feedback-based error control scheme 15

received correctly as reference.
Yu et al. [25] developed another RPS scheme utilizing multiframe encoding.

In this scheme, several frames may be used as reference for a frame. When an
error is reported, only frames that are known to have been received correctly
are used as reference for the next frames.

The schemes referred to above are all interesting approaches on how to em-
ploy feedback information to improve the error robustness. However, they all
assume that feedback, primarily ACK and/or NACK, always is sent instantly
from the decoder. There are two main problems with this. First, in real-world
applications there are bandwidth limitations. If the feedback always shall be
transmitted instantly, the feedback mechanism can occupy a too high ratio of
the available bandwidth, which may cause a degrade in video quality. Second,
a standardized feedback scheme is necessary for interoperability between appli-
cations. Such a standard may provide other features than those assumed in the
above-mentioned studies. Hence, it is important to examine how feedback-based
error control schemes perform in realistic environments using standardized feed-
back mechanism.

2.5 A feedback-based error control scheme

The complete feedback-based ER scheme developed and employed in this thesis is
outlined in this section. The scheme utilizes RTP/AVPF as the feedback protocol
to report lost parts of the video stream. The encoder performs error tracking
using this information and eliminates the corruption by intra refreshing the
erroneous areas. The scheme is referred to as Feedback-Based Intra Refresh
(FBIR).

2.5.1 Reporting errors

RTP/AVPF in NACK mode is considered to provide adequate feedback information
for this scheme. If the encoder forces a fixed number of MBs in each slice (“slice
mode”), and one slice in each RTP packet, it is easy to identify lost portions of
the video given the sequence numbers of the lost RTP packets. The non-fixed
parameters that affect the timing intervals are set to a trade-off between instant
feedback and the ability to report possible burst losses. The actual interval will
depend on available RTCP bandwidth, the number of participants etc., and is
examined in Section 4.3 and 5.1.

2.5.2 Tracking the corrupted area

After the lost portions of the video are known, the encoder is able to calculate
the affected areas in the decoded video. This process is known as error tracking
and is necessary for any feedback-based ER scheme that utilizes intra refresh as
the recovery tool. Without perfect error tracking some errors may still persist
after the intra refresh has been applied and propagate further into the video.
That is, unless full intra refresh of the whole picture is used.

Error tracking is not a trivial task and may require too much processing
power for use in real-time low-delay video applications. Thus, our scheme em-
ploys an approximation of Chang and Lee’s fast error tracking algorithm [6].

16 2. Background and theory

Their fast algorithm is a compromise between precision and speed, hence only
near perfect error tracking is achieved. The fast algorithm is derived from a
precise error tracking scheme [6], which may be outlined as follows: When the
encoder becomes aware of one or more corrupted MBs in a prior frame, it loops
over all MBs in the current frame and computes a Contamination Ratio (CR)
for each MB. The CR reflects how many corrupted pixels there may be in that
MB. In order to decide if a pixel is corrupted, stored MVs are used to trace back
the temporal dependencies of the pixel in question. If the value of the pixel is
(in)directly predicted from a corrupted area, this pixel is also considered cor-
rupted. Based on the CR for the current MB, the encoder decides if it should
force it to be intra coded in order to recover from the error. This algorithm is
not able to track propagation caused by intra prediction. However, this is not
a problem since intra prediction is allowed only within one slice, as explained
in Section 2.1.1, and an integer number of slices are corrupted/lost. Thus, the
algorithm yields precise error tracking.

Applying the algorithm outlined above increases the memory requirements
of the encoder since the MVs of a fixed number of previous frames have to be
stored. It also requires more processing power than what may be desirable. For
a comprehensive description of these requirements the reader is referred to [6].
In order to reduce the computation requirements a“four-corner tracking approx-
imation” is applied [6]. The backward motion dependencies are first examined
for only four corners of an MB, instead of for each pixel. If any of the corners
are contaminated, precise error tracking is performed on this MB to obtain its
CR. The error tracking is no longer precise, but the computation complexity is
reduced by 64 folds without significant loss in precision.

2.5.3 Selective intra refresh

After the corrupted area has been disclosed, the encoder performs an intra
refresh of the affected MBs in order to eliminate the errors. But not all errors
are equally important to correct. For instance, corrupted MBs with very low CR

may not cause visible distortion. Thus, MBs with higher CR should be prioritized
in the recovery process. A more important case is when the lost information is
perfectly concealed by the decoder using techniques described in Section 2.2.2.
Then it is unnecessary to waste bits on intra refreshing that area. Most temporal
and hybrid concealment schemes conceal the parts of the video where there is
no motion at the time of the error perfectly.

In order to improve the performance of the FBIR scheme, a simple algorithm
for detecting static regions is developed and applied in the encoder. This detects
MBs that are unnecessary to correct, and thus reduces the number of bits used
in the recovery process. The procedure is shown in Algorithm 1 and can be
summarized as follows: For each MB in the picture, the last frame for which this
location was not considered“near static” is recorded. The“near static”condition
depends on the coding mode and MVs of the MB: If the MB is coded in skip
mode or its MVs is smaller than a defined threshold T , the MB is classified as
“near static”. This operation is performed for every encoded MB. The condition
includes small MVs because camera noise or similar effects may cause the encoder
to calculate negligible MVs, even if the area is visually static. Such areas are
also concealed very well and do not need to be refreshed. When an error is
reported and the error tracking indicates that an MB should be intra refreshed,

2.6. Intelligent Packet Loss Recovery 17

the encoder checks the “near static” history of this location. If the location has
been classified as “near static” for all frames since the error occurred, the intra
refresh is suppressed. This algorithm suppresses intra coding of regions that are
concealed near perfectly by the decoder, while still refreshing regions corrupted
by loss or error propagation. Hence, the coding efficiency is improved if the
video contains such static areas.

Algorithm 1 Detection of “near static” macroblocks

/* Execute for each coded frame */
for all MBs i in frame N do

if (modei 6= SKIP) and (abs(mvi) > T) then
last non nearstatici ← N

end if
end for

/* When errors occur, if last non nearstatici < error frame, */
/* do not force intra refresh. */

2.5.4 Additional robustness tools

Besides FBIR described in the previous sections, a couple of other robustness
tools (described in Section 2.2.1) are applied. First, “slice mode” is enabled
so that each slice contains exactly one Group Of Blocks (GOB) (one “row” of
MBs). This is to enable identification of the lost MBs based on the RTP sequence
numbers. Other slice sizes can also be applied, as long as there is a fixed
number of MBs in the slice. Second, the number of reference frames is set
to one, i.e the encoder is only allowed to perform intra prediction from the
previous frame. This is necessary in order to prevent reference to a corrupted
region after intra refresh is performed. Third, constrained intra prediction is
used as recommended by [12] to increase the resynchronization property of the
intra coded MBs. If not applied, an intra coded MB could in theory be intra
predicted from an erroneous inter predicted MB in the same slice.

2.6 Intelligent Packet Loss Recovery

This section describes a simplified version of TANDBERG’s4 solution for error
robustness in H.264. It is designed for use in video communication systems at
relatively high packet loss rates. The scheme is called Intelligent Packet Loss
Recovery (IPLR).

IPLR [2] [3] is a proactive error resilience scheme. It forces intra refresh of
MBs according to a motion-based routine, which spreads the intra MBs over
several frames. The scheme is outlined in Algorithm 2. A counter is assigned
to each MB and is updated based on the MB’s coding mode for every frame.
The mode of the MB at the same location in the next frame may be overruled
forced to intra based on the value of this counter. MBs which often are in skip

4TANDBERG is one of the world’s largest manufacturers of video conferencing systems
for the business market.

18 2. Background and theory

Algorithm 2 IPLR

/* Execute for each coded frame */
for all MBs i in frame N do

if modei = SKIP and mvi = 0 then
counteri ← −10

else if modei = INTER then
counteri ← counteri + 1

else
counteri ← 0

end if
if counteri > 1 then

ForceIntraMB(N + 1, i)
counteri ← 0

end if
end for

mode and have motion vectors set to null are considered static (and are usually
a part of a static background). These will not be intra updated as often as other
parts of the frame, if at all. Conversely, parts of the frame with high motion
activity which normally are coded as inter MBs, will more often be subject to
intra refresh. Hence, error robustness is only introduced in the parts of the
frame where there is motion. IPLR is also compliant with the H.261 and H.263
standards [2].

2.7 The H.264 reference software

The H.264/AVC reference software [26], commonly referred to as JM, is devel-
oped to“aid users of the video coding standard to establish and test conformance
and interoperability, and to educate users and demonstrate the capabilities of
the standard” [27]. Its source code is available for free [26]. It implements
the normative decoding process defined by the standard, but also a flexible en-
coder and non-normative error concealment techniques. The encoding/decoding
process is configurable through a configuration file [28]. Several options for in-
creased error resilience are accessible, such as the intra-frame period, random
intra refresh of MBs, constrained intra prediction, slice structuring and more.

The JM decoder implements both a temporal and spatial error concealment
scheme [27]. The temporal scheme is applied when parts of an inter-frame is
missing. It tries to estimate the MVs for the missing MBs based on the MVs of its
successfully decoded neighboring MBs. It uses this estimation and information
from already decoded frames to conceal the error. For missing parts of an
intra frame, the missing MBs are spatially predicted from neighboring MBs using
weighted sample averaging. If a whole frame is missing, two options are available
for the user; either copy the entire previous frame (frame copy), or copy its
motion vectors and predict the missing frame (motion copy).

2.8. Measures for video quality 19

2.8 Measures for video quality
When analyzing different video sequences it is necessary to produce some quan-
tifiable results which can be used for comparison. This section outlines the
idea behind subjective testing and explains more in detail the most widespread
objective measure: Peak Signal-to-Noise Ratio (PSNR).

Subjective quality assessments are generally generated by having many view-
ers (preferably experts) evaluate several test sequences. They rate the videos
subjectively according to some predefined rating system. These ratings are then
used for statistical calculations of the quality. Assessments using this approach
achieve good results regarding how the quality is perceived by humans. How-
ever, this process is not only time-consuming but also tedious and expensive to
perform. Hence, objective measures are often preferred.

Objective assessments are usually easier and faster to apply. However, they
do not coincide with perceptual quality as well as subjective techniques do.
This is because it is hard to develop algorithms that imitate the properties of
the Human Visual System (HVS). This is also the case for PSNR. PSNR may
be used for both images and video sequences. It derives the distortion between
the original and reconstructed image/video pixel by pixel. A higher PSNR value
corresponds to better quality. For a monochromatic video sequence of T frames
and pictures of size MxN , the measure is defined as [29]

PSNRdB = 10log
(2b − 1)2

1
TMN

∑
t

∑
m

∑
n[I(t, m, n)−K(t, m, n)]2

, (2.1)

where either I or K is the original sequence and the other one is the impaired
sequence, and b is the number of bits used to represent a pixel value (and is
normally 8). For colored images/videos it is common to calculate the PSNR of
the luminance component only, denoted Y-PSNR, as this is the most important
component for the HVS.

A great deal of effort has been made to develop objective quality assessments
that incorporates perceptual quality measures by considering HVS characteris-
tics [29]. However, these methods are far more complex than PSNR and are not
widely used yet.

CHAPTER 3

Methodology

This section deals with the methodology of the study. It provides an outline of
the research and planning process, the implementation and necessary simplifi-
cations, the simulation set-up and approach for evaluation of the ER schemes.
Some of the methods used may not be optimal regarding quality and reliabil-
ity. However, after careful consideration of the trade-off between complexity,
duration and accuracy, the chosen methods were preferred.

The study can be divided into four main parts: research on related topics
and planning of the following implementation and simulation process; imple-
mentation of the feedback mechanism and the corresponding ER scheme; online
simulations schemes utilizing a network emulator; and finally, measurements
and evaluation of the decoded video quality.

3.1 Research and planning
The research performed in [3] served as a ground for some of the topics covered
in this study. These topics were H.264, proactive error resilience including IPLR,
error concealment, and network characteristics of real-time multimedia traffic.
The research performed in this study covered mainly the topics on various feed-
back mechanisms and how to employ this information in the encoder. This
included an in-depth study of the RTP/RTCP and RTP/AVPF standards and un-
derstanding the alternative feedback schemes. Prior research on feedback-based
error control was important to decide how the encoding process could utilize
the available feedback information. Information was gathered through reading
scientific papers, relevant standards, and discussing with employees at Q2S1.

1Q2S - The Centre for Quantifiable Quality of Service in Communication Systems [30] is
a Norwegian Centre of Excellence at The Norwegian University of Science and Technology in
Trondheim.

22 3. Methodology

3.2 Implementation

JM 11.0 [26] was used for encoding and decoding of the video sequences. The
previously modified encoder with IPLR support [3] was employed. JM does not
initially support real-time encoding and network transmission, so this feature
was also added. Only the necessary features of RTP was implemented for the en-
coder to be able to send the coded bit stream to one single decoder in real-time.
The RTP implementation allowed packets to be out of sequence and duplicated,
but if they were 50 ms later than expected they were considered lost. As de-
scribed in Section 2.5, RTP/AVPF was selected as the feedback protocol. All
mandatory parts of this standard, such as RRs and Source DEScription (SDES)
with CNAME items, was implemented in addition to the NACK FB messages.
Implementation-specific constants were set to wait for detection of loss bursts
while preserving a relatively instant feedback. The maximum time to hold an
Early feedback was set to 150 ms. Appendix C lists other implementation-
specific constants and their values.

The error tracking and selective intra refresh was implemented according to
the algorithms described in Section 2.5 except from one approximation. In the
JM encoder, the decision to force an MB to be intra coded is made before the
MVs are calculated. This implies that the MVs for the current MB were not
available at the time error tracking and intra mode selection was performed.
Hence, a prediction2 of these MVs was used instead. (But exact values of earlier
MVs was of course available and used.)

For more details regarding the implementation the reader is referred to Ap-
pendix C.

3.3 Simulation

3.3.1 Testing environment

Online simulations were needed for the encoder to adapt its procedure according
the feedback provided by the decoder. The test bed for IP networks described by
Hillestad et. al. [31] was redesigned to allow both online encoding and decoding.
Figure 3.1 shows the resulting test bed setup. The encoder sent the compressed
video as an RTP stream, via a network emulator and a packet capture device,
to the decoder. The PacketSphere Network Emulator by Empirix [32] was em-
ployed. It imitates the behaviour of a real-world network and is configurable
through several network attributes. Only the loss rate and network delay was
altered in our tests. The resulting data stream was sent through a network
monitoring interface card. This device saved the captured packets to file to en-
able offline inspection of the packet flow at a later time. An Endace DAG3.5E
card [33] was used. Finally, the encoded video arrived at the decoder and was
processed in real-time. The received video was saved to file for measuring and
visual inspection at a later time. While decoding, the decoder generated feed-
back according to the RTP/AVPF standard. These packets were transmitted to
the encoder using the reverse route, except that no loss were introduced by the
emulator. This was to reduce the number of free variables in the simulations and

2The prediction algorithm was already implemented in JM for use in the encoding process.

3.3. Simulation 23

Figure 3.1: Test bed overview.

because there are means to ensure near error free transmission of RTCP3. The
network elements were connected in a 100 MBit/s Local Area Network (LAN),
so the amount of uncontrolled loss and delay was negligible.

3.3.2 Sequences and parameter sets

Three video sequences were used for testing: Conversation contains little mo-
tion, has a static background and describes a typical video conference setting;
Foreman is widely used and has a medium motion level; and Soccer has a high
motion level. The H.264 reference software is not optimized with respect to
computation efficiency and is very slow. Hence, the sequences had to be con-
verted to QCIF format and 10 frames per second (fps) to be able to encode
them in real-time. This conversion was performed with the tools AviSynth [34]
and VirtualDub [35]. The “Common Conditions for wire-line, low delay IP/UD-
P/RTP packet loss resilient testing” [36] use sequences of minimum 4000 frames
to avoid the influence of distribution errors in its error patterns. Thus, our test
sequences were also extended to 4000 frames by joining them with reversed ver-
sions of themselves in a loop. This approach did not introduce any scene cuts
into the video clip, which is desirable for realistic simulations since there usually
are no cuts in the video sent from one endpoint in a conversational system.

The simulation parameter sets were chosen to reflect a wide set of realistic
network environments, but also to test the ER schemes in more extreme condi-
tions. Loss rates of 0, 1, 3, 5% with bursts of 1–3 packets were chosen, partly
based on information from [37]. The network delay was set to be fixed to reduce
the number of free variables. Two delays were tested: 50 ms and 200 ms. 50 ms
because it has been shown to be a typical network delay over long distances [38],
while 200 ms has been defined to be the maximum tolerable delay in interac-
tive multimedia applications [11]. The RTP session bandwidth were set to 144
and 64 kbit/s according to [36]. In addition, simulations were performed at 384
kbit/s to compare when the distortion introduced by the encoder was negligi-
ble. These bit rates include the IP/UDP/RTP-headers, which are 40 bytes per
packet. Hence, the source coding bit rates, excluding the packet overhead, are
28.8 kbit/s lower than the listed rates.4

The encoder configuration parameters were set up according to the baseline
profile. The parameters were set to improve the coding speed at the cost of
reduced coding efficiency to manage real-time encoding. Appendix B.1 summa-
rizes the most important parameters. In order to keep the bit rate at approx-
imately the defined RTP session bandwidth, the quantization parameters were
adjusted for each ER scheme and parameter set. These quantization parameters

3Near error free transmission of RTCP packets may be obtained, for instance, by adding
error protection like Forward Error Correction (FEC) or by employing a connection-oriented
protocol for the feedback.

440 byte/packet ∗ 8 bit/byte ∗ 9 packet/frame ∗ 10 frame/second = 28.8 kbit/s

24 3. Methodology

and the corresponding bit rates are found in Appendix B.1, in addition to other
configuration parameters.

3.3.3 The number of simulations
For each sequence and parameter set, several simulations were performed ac-
cording to the method described in Section 3.3.1 in order to ensure results of
statistical significance. Video streams that experienced loss in the sequence or
picture parameter set or in the first frame were discarded. This was because
loss of such information have a major negative effect on the decoded video [3].
Consider the case where parts of a static background is lost in the first frame.
The error concealment would in this case be poor since the decoder has no pre-
vious frames to use as reference for the temporal/hybrid concealment. FBIR

would repair this corruption because the encoder learns that the first frame was
damaged. IPLR, however, would not since it never refreshes a static background
after the first frame. Hence, to include such simulations would introduce a high
variance in the measurements and thus insecurity in the obtained results.

The variances were first used as an indication of statistical significance. 5
“valid” simulations for each parameter set were considered adequate for the
Foreman and Soccer sequences. For Conversation 10 “valid” simulations were
performed for each parameter set because of higher variances in the measured
results. Appendix A shows the resulting 95% confidence intervals.

3.4 Evaluation
The PSNR of the luminance components, denoted Y-PSNR, between the original
and decoded video sequences was used as the quality measure. It was chosen
because of its simplicity and widespread use. For each test case the average
of these Y-PSNR values were calculated to obtain the final objective quality
measure. For some simulations the temporal development of the Y-PSNR was
also examined.

In addition to Y-PSNR, some information on the performance of the feedback-
based ER scheme were extracted from the log-files generated by the encoder and
decoder. This information was primarily used to detect implementation errors
in the specific components of the scheme, e.g. the error tracking algorithm and
the RTP/AVPF timing algorithm. These will not be reproduced in this text,
except for results on the temporal properties of RTP/AVPF, which were used to
evaluate the performance and potential of the feedback scheme.

The simulation process was executed and supervised manually, while the
generation and extraction of evaluation information was carried out automat-
ically. The Y-PSNR was calculated using a small C-program from the EvalVid
tool set [39]. For the rest several ad hoc Python-scripts were developed and
used.

CHAPTER 4

Results

This section provides the results obtained in the simulations. First, the objec-
tive measures on video quality are presented. Second, some important visual
characteristics and differences for the various experiments are described. Fi-
nally, some measures on the transmission behaviour of RTP/AVPF are shown.
This section only reproduces the obtained results, while Section 5 provides the
analyses.

4.1 Objective comparison
The measured average Y-PSNR values for IPLR and FBIR for 50 ms and 200 ms
network latency are compared in Figure 4.1. Figure 4.1(a)- 4.1(c) illustrate
their performance for Conversation at 64, 144 and 384 kbit/s. For error free
transmission, FBIR is always severely better. At 144 and 384 the difference is
approximately 3.5 dB. For 64 kbit/s FBIR is about 1.0 dB higher. At 64 kbit/s
FBIR performs better than IPLR for all loss rates. In fact, the difference seems
to increase slightly for increased loss rate. Conversely, IPLR outperforms FBIR

at 144 and 384 kbit/s when the loss rate exceeds a certain ratio. This threshold
is near 1% for 144 kbit/s and 0.5% for 384 kbit/s. From the plots it is evident
that, for this sequence, the performance of IPLR is much better than FBIR above
this threshold.

Figure 4.1(d) and 4.1(e) shows the measured Y-PSNR values for the Foreman
and Soccer sequences at 144 kbit/s, respectively. FBIR yields far better results
for these sequences, relative to IPLR, than it does for Conversation at the same
bit rate. For Soccer and Foreman FBIR with 50 ms latency is always at least 1
dB higher than IPLR, which is very different from Conversation at 144 kbit/s.

Another important difference between Soccer/Foreman and Conversation, is
that the performance of FBIR is clearly reduced when the network latency is

26 4. Results

0 1 2 3 4 5

Loss rate (%)

25

30

35

40

45

50

Y
-P

S
N

R
 (

d
B

)

Conversation, 64 kbit/s

FBIR 50 ms
FBIR 200 ms
IPLR

(a) Conversation at 64 kbit/s.

0 1 2 3 4 5

Loss rate (%)

25

30

35

40

45

50

Y
-P

S
N

R
 (

d
B

)

Conversation, 144 kbit/s

FBIR 50 ms
FBIR 200 ms
IPLR

(b) Conversation at 144 kbit/s.

0 1 2 3 4 5

Loss rate (%)

25

30

35

40

45

50

Y
-P

S
N

R
 (

d
B

)

Conversation, 384 kbit/s

FBIR 50 ms
FBIR 200 ms
IPLR

(c) Conversation at 384 kbit/s.

0 1 2 3 4 5

Loss rate (%)

25

30

35

40

45

50

Y
-P

S
N

R
 (

d
B

)

Foreman, 144 kbit/s

FBIR 50 ms
FBIR 200 ms
IPLR

(d) Foreman at 144 kbit/s.

0 1 2 3 4 5

Loss rate (%)

25

30

35

40

45

50

Y
-P

S
N

R
 (

d
B

)

Soccer, 144 kbit/s

FBIR 50 ms
FBIR 200 ms
IPLR

(e) Soccer at 144 kbit/s.

Figure 4.1: Measured average Y-PSNR values with respect to packet loss
rate.

4.2. Visual inspection 27

increased for both Soccer and Foreman. This is not the case for Conversation.
For error free transmissions the obtained Y-PSNR when using FBIR is independent
on the network latency, of course. But when a loss rate above 1% is experienced,
FBIR with 200 ms latency has a lower Y-PSNR compared with 50 ms latency. At
5% loss the difference is about 1.5 dB, both for Foreman and Soccer. For Soccer,
this degradation causes FBIR with 200 ms latency to perform worse than IPLR

for loss rates above 1%. For Foreman, on the other hand, FBIR still achieves
higher Y-PSNR for all loss rates.

In general, it can be seen that FBIR performs better than IPLR for low bit
rates, low loss rates, and for sequences with a medium motion level or more.

It is also interesting to analyze the temporal development of the Y-PSNR for
the FBIR and IPLR. Figure 4.2 shows the behaviour when the three bottom
GOBs of the 8th frame in the Conversation sequence are lost. FBIR starts out
with a significantly higher Y-PSNR until the loss occurs. Then there is a sudden
drop in quality for both schemes. Already in the 9th frame IPLR recovers the
Y-PSNR to a decent level. From this point it slightly increases until it levels
off near the 16th frame. FBIR experience a different behaviour. After the loss,
the Y-PSNR continues at its minimum until it suddenly is recovered. With a
latency of 50 ms this occurs at the 11th frame, whereas with 200 ms latency the
sequence is recovered at frame 14. Notice, however, that the recovered Y-PSNR

is somewhat lower than the initial Y-PSNR for both FBIR and IPLR. The reason
for this non-perfect recovery is discussed in Section 5.2.3.

0 5 10 15 20 25 30

Frame no.

25

30

35

40

45

50

Y
-P

S
N

R
 (

d
B

)

Recovery behaviour

FBIR 50 ms
FBIR 200 ms
IPLR

Figure 4.2: Example of the recovery behaviour. The three bottom GOBs
of frame 8 is lost. Conversation at 144 kbit/s.

4.2 Visual inspection

Visual inspection confirms many of the objective measures. However, some of
the objective results are shown to be misleading with respect to perceptual
quality.

28 4. Results

For the error free case, sequences encoded with FBIR encounter less distortion
than sequences employing IPLR. However, in contrast to the Y-PSNR measure-
ments, the distortion is more visible for low bit rates than for high bit rates.
This source coding distortion is seen by loss of small details in low frequency
areas. For Conversation at 64 kbit/s there is a clear visual difference between
the schemes. Using the IPLR scheme, some of the face features is smeared and
disappear, whereas for FBIR these are mostly preserved. There are distortion in
other areas as well, but these are not as important for the visual quality as the
distortion in the face region. At 144 and 384 kbit/s the source coding distortion
in Conversation is not visible for neither FBIR nor IPLR. On the other hand, for
Soccer and Foreman at 144 kbit/s there is still some coding distortion for IPLR,
though barely noticeable, which is not present when using FBIR.

Corruption caused by packet loss is usually only visible in non-static parts
of the picture. Errors caused by packet loss is easy to recognize and distinguish
from coding distortion. Their appearance have the same characteristics for FBIR

and IPLR. Typically, adjacent blocks with clearly unnatural texture suddenly
appear. Although they may seem somewhat random at first, the texture of
the erroneous blocks have a high correlation with adjacent and previous blocks.
The corruption often propagate both temporally and spatially to neighboring
regions. This usually coincides with the motion in the video.

There is a distinct difference between FBIR and IPLR regarding the recovery
of corrupted areas and thus the error propagation. The FBIR scheme recovers
all MBs at the same frame. For 50 ms and 200 ms network latency this normally
happens after 2–4 and 5–7 frames, respectively. The exact number of frames is
random but also dependent on the bit rate. Larger bit rate decreases the time
before recovery, but this is not very noticeable when watching the video in real-
time. IPLR refreshes the majority of the corrupted MBs within 1–3 frames. This
implies that the FBIR scheme experiences more temporal error propagation, and
thus also more spatial propagation. However, some MBs may take a considerably
longer time to recover with IPLR. The speed of this process depends on the
motion characteristics in the erroneous location before and after the loss occurs.
If there is continuously motion in the given area the video is recovered fast.
Conversely, if the motion is of a sporadic character, the loss may take a longer
time to recover from.

The video is not always recovered perfectly. Both FBIR and IPLR sometimes
experience that one or more MBs are not refreshed within a reasonable number
of frames. Which blocks experience this are different for FBIR and IPLR and
is difficult to generalize. Its duration depends primarily on the motions in the
video. The effect seems to appear more frequently when IPLR is employed.

Figure 4.3 demonstrates the behaviour described in previous paragraphs.
The sequence experience a loss of the three bottom GOBs of frame 8. For FBIR,
the corruption is very obvious in frame 9. Using IPLR on the other hand, most of
the errors are already repaired one frame after the loss occurred. Only a couple
of MBs in the upper part of the corrupted region are still damaged. By accident,
this area is not repaired before frame 32. FBIR refreshes the whole corrupted
region at frame 12, except for a tiny block which is accidentally recovered after
frame 18.

The recovery behaviour is similar for all three test sequences, but the amount
of error propagation is different. Conversation encounters less propagation com-
pared with the other two, especially Soccer. In Soccer the errors propagate

4.3. The temporal properties of RTP/AVPF 29

(a) Frame 9, FBIR 50 ms (b) Frame 12, FBIR 50 ms

(c) Frame 9, IPLR (d) Frame 12, IPLR

Figure 4.3: Visual artifacts and recovery behaviour. Three bottom GOBs
of frame 8 is lost. Conversation, 144 kbit/s.

quickly to a large area and appear more scattered. It is seen that for the FBIR

scheme, it is more difficult to recover all corrupted blocks in one instant when
the errors propagate like this. However, corrupted regions that fail to intra re-
fresh are recovered accidentally early after because of the motion characteristics
of the video.

Increased loss rate naturally has a negative impact on the visual quality for
all sequences. It is hard to quantify how bad the effect of increased loss is.
However, at 5% loss, Conversation at 64 kbit/s, Foreman and Soccer at 144
kbit/s, it can be seen from visual inspection that the perceived video quality is
near unacceptable.

A selection of video examples are provided for the reader in the online
archives (see Appendix D).

4.3 The temporal properties of RTP/AVPF

The previous results illustrate the FBIR and IPLR schemes as a whole, i.e. the
total effect of the algorithms for compression, concealment, error tracking, re-
covery etc.. This section presents the performance of RTP/AVPF alone with
respect to timely feedback.

Figure 4.4 shows some Cumulative Distribution Functions (CDFs) for the

30 4. Results

interval between a loss is detected before the decoder transmits the FB message
that reports this loss. No additional delay is included, only the delay generated
by the transmission algorithm of RTP/AVPF. The total delay before the encoder
receives the FB message consists of this FB transmission delay, two times the
network latency (2 ∗ 50 ms or 2 ∗ 200 ms), and the delay until an RTP packet is
considered lost (set to 50 ms).

The CDF of FB transmission delays at a 3% loss rate are shown in Fig-
ure 4.4(a) for all three session bandwidths. It is evident that as the session
bandwidth decreases, the FB transmission delay is statistically increasing. At
384 kbit/s, all FB messages are sent before the defined Early FB maximum
delay of 150 ms (see Section 3.2). In fact, all loss reports are sent within ap-
proximately 85 ms after the loss detection. At 144 kbit/s, approximately 98%
of the FB messages are transmitted before 150 ms. At 64 kbit/s, less than 85%
are transmitted before 150 ms. Some FB messages are not sent until 7-800 ms
after the loss detection.

Figure 4.4(b) illustrates how the FB transmission delay depends on the packet
loss rate at 64 kbit/s. It is clear that the average delay is larger for higher loss
rates. For 1, 3 and 5% loss, there is approximately 95%, 84% and 77% of the FB

messages, respectively, that are transmitted before 150 ms after the loss detec-
tion. However, the maximum delay does not increase noticeably. By comparing
this result to equivalent measures for higher bit rates (not illustrated), it is seen
that the differences in FB transmission delays are less. At 384 kbit/s the effect
of increased loss rate is negligible for loss rates up to 5%.

0 100 200 300 400 500 600 700 800

Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e
 p

ro
b

a
b

il
it

y

CDF: FB transmission delay, 3% loss

384 kbit/s
144 kbit/s
64 kbit/s

(a) Various bit rate, 3% packet loss

0 100 200 300 400 500 600 700 800

Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e
 p

ro
b

a
b

il
it

y

CDF: FB transmission delay, 64 kbit/s

1% loss
3% loss
5% loss

(b) 64 kbit/s, various packet loss

Figure 4.4: CDF for the FB transmission delay, i.e. the interval between
the decoder’s detection of a loss and its transmission of the FB
message.

CHAPTER 5

Discussion

This section evaluates the results obtained in Section 4. First, RTP/AVPF and
its temporal properties and potential as part of feedback-based ER schemes are
analyzed. Then, the performance of FBIR and IPLR is compared and discussed.
Finally, sources of error and how they may have affected the results are consid-
ered. This also includes suggestions for improvement of the FBIR scheme and
implementation.

5.1 On the performance of RTP/AVPF
In this section the performance of RTP/AVPF as the feedback protocol in FBIR is
evaluated. A general discussion on the usage of this protocol in feedback-based
error control is also carried out.

5.1.1 The FB transmission interval

RTP/AVPF, as described in Section 2.3.2, is responsible for sending timely feed-
back with helpful information to the encoder. From the results in Section 4.3
it is seen that the transmission of FB messages is affected by the RTP session
bandwidth and the packet loss rates. There are also other variables that influ-
ence the feedback transmission intervals, e.g. the number of senders/receivers.
Some of them will be discussed later in this section.

From Figure 4.4(a) it is evident that the average transmission delay decreases
when the RTP session bandwidth is increasing. This is expected since the feed-
back bandwidth is set to a fixed ratio of the session bandwidth. Hence, when
the session bandwidth increases the transmission rules allow shorter intervals
between each FB message (or regular RTCP packet). A more frequent feedback
is of course advantageous since it enables errors to be repaired faster.

32 5. Discussion

The above observation can also be seen by inspecting the timing interval
algorithm [4] [5]. In practice, this interval affects the maximum number of RTCP

packets (early or regular) that are allowed to be transmitted over a period of
time. On the average, only one packet may be sent each interval. The calculated
interval is proportional according to the formula

t ∝ avg rtcp size ∗members
rtp bw ∗ rtcp frac

, (5.1)

where avg rtcp size is the moving average size of the last 16 RTCP packets,
members is the sum of senders and receivers in the current RTP session (or
only the number of receivers if receivers > 4 ∗ senders), rtp bw is the RTP

session bandwidth, and rtcp frac is the fraction of the session bandwidth used
for RTCP. The standard recommends that rtcp frac is fixed at 5%. If this is to
be followed, rtcp frac may be considered a constant. avg rtcp size depends on
which RTCP packet types are included in the RTCP packets and their contents.
This is application specific and should be kept at a minimum to gain short timing
intervals. When the number of senders and/or receivers increase, it means that
more endpoints must share the available RTCP bandwidth. Hence, an increase of
members leads to longer timing intervals. However, only simulations assuming
one sender and one receiver was performed in this study. At last, as already
stated, increased RTP session bandwidth rtp bw yields shorter timing intervals
and enables more frequent feedback.

Figure 4.4(b) shows that the average FB transmission delay also increase
when the loss rate increases, even though the packet loss rate does not have any
direct impact on the timing algorithm. When more losses occur, the number of
needed FB messages grows. Since the timing interval remains unchanged and
maximum one RTCP packet is sent each interval on the average, a lower ratio
of the losses is allowed to be reported with Early FB messages. Those which
are not reported with Early FB messages must wait until the next regular RTCP

packet. Hence, the average transmission delay increases. Figure 4.4(b) clearly
shows this effect at 64 kbit/s. However, it has been stated earlier that the effect
is negligible at 384 kbit/s. This is because at high rates the FB transmission
interval is short enough to report most losses almost immediately. Either as
Early FB message or as part of a regular RTCP packet that is transmitted before
the maximum Early FB transmission delay (which was set to 150 ms in this
implementation).

5.1.2 The feedback information
The NACK FB message applied in the FBIR scheme is very general as it is inde-
pendent of the RTP payload. It is easy to implement, but limits the possibilities
within the ER scheme. However, RTP/AVPF also provides other sorts of feedback
information which may be useful for error control.

When using NACK, it is necessary to map the received NACKs to MB and
frame numbers. This is only possible by having a fixed number of MBs in each
RTP packet (“slice mode”). As described in Section 2.5, this is employed in
the FBIR scheme. However, this degrades the coding efficiency and may not
be desired. RTP/AVPF provides some payload-specific FB message types that
solve this matter, such as Picture Loss Indication, Slice Loss. Since both FBIR

and IPLR applied “slice mode” in the simulations, their relative performance

5.2. Evaluation of FBIR and IPLR 33

should not be affected by the reduced coding efficiency. Hence, the performed
comparisons is expected to be valid for similar FB message which do not enforce
“slice mode”.

As described in Section 2.3 there are other types of feedback information that
can be provided, either by RTP/AVPF alone or in combination other standards
such as AVPF/CCM and H.271. These will not be repeated here. Together these
standards enable information that should be sufficient for all feedback-based ER

schemes. If the“native”message types do not provide the necessary information,
RTP/AVPF’s application-specific FB messages can always be employed to send
custom feedback information.

5.2 Evaluation of FBIR and IPLR

The number of implementation-specific parameters, testing parameter sets, and
different test sequences make comparison of FBIR and IPLR a complex task. For
a clearer comparison the evaluation is broken down in sections. Each section
examines the effect of one or a few parameters while keeping the others fixed.
The discussion is based on the objective measures as well visual observations.

5.2.1 Coding efficiency and error free transmission

The FBIR scheme always achieve higher Y-PSNR than IPLR in error free envi-
ronments, as seen from Figure 4.1. This is expected since IPLR adds redundant
error protection, while FBIR does not enforce extra intra coded MBs when no
errors are reported. Naturally, network latency does not matter in this case.

The severe difference in Y-PSNR between FBIR and IPLR does not always
correspond to the difference in perceptual quality. The difference is more visible
at low bit rates1. This is because PSNR does not consider characteristics of
the HVS. Apparently, the type of distortion generated at high bit rates and
not visible to the human eye, is still detected by PSNR and causes the objective
measurements to differ from perceptual quality. This occurs for Conversation at
144 and 384 kbit/s. Based on this observation, one can say that the redundancy
added by IPLR does not reduce the perceptual quality as long as the bit rate is
sufficiently high so that the coding distortion described in Section 4.2 does not
appear. However, if this is not the case, FBIR performs noticeably better for
error free transmissions.

5.2.2 Visual artifacts

The artifacts generated by packet losses were described in Section 4.2. In order
to explain the appearance of this distortion, it is necessary to look at both the
encoding and decoding scheme. First, MBs are the basic building units of the
coding process. Thus, an error affect at least a whole MB. Second, each RTP

packet is forced to contain exactly one GOB. Hence, at least one whole “row”
of MBs is lost for each packet loss. In the case of bursts, consecutive GOBs are
corrupted. This is why the corruption appear as adjacent block shaped regions.

1“Low bit rate” is, of course, a relative concept which depends on video format and char-
acteristics.

34 5. Discussion

Third, errors usually appear in motion active regions because JM’s hybrid con-
cealment scheme normally conceals lost data on static areas perfectly. Finally,
the spatial and temporal error propagation are caused by inter prediction. Obvi-
ously, when the decoder predict a block based on erroneous values the predicted
block will also become corrupted.

5.2.3 Error recovery behaviour

Before evaluating the total performance of FBIR and IPLR in error prone environ-
ments, the recovery behaviour of the two schemes is presented. The awareness
of this temporal behaviour is important to understand the differences in perfor-
mance discussed later.

As evident from Figure 4.2, the FBIR scheme preserves a higher quality while
the video is error free, because of the advantageous coding efficiency described
previously. When an error occur, here in frame 8, FBIR and IPLR experience a
sudden drop in quality. Since FBIR and IPLR loose the same information and
use the same concealment strategy, the damage is almost the same for the two
schemes. This corruption is more prominent than the coding distortion. Hence,
FBIR and IPLR encounter approximately the same quality in the frame where
the loss occurs.

As seen from both the Y-PSNR measurements and the visual inspection, the
corruption propagates over several frames when using FBIR. This is because the
encoder assumes error free transmission, i.e. no MBs are intra refreshed, until
it receives the feedback. Naturally, longer network latency results in longer
delay before the loss is reported to the encoder. This postpones the video
recovery, which is seen in Figure 4.2 by the difference in time of recovery for
FBIR with 50 and 200 ms latency. The average response in this case increases
with (2 ∗ (200 ms − 50 ms)) = 300 ms = 3 frames. When the encoder becomes
aware of the error, it refreshes the whole corrupted area at once. This instantly
removes all corruption if the error tracking algorithm and the concealment of
static areas works perfectly.

IPLR, on the other hand, performs the same procedure regardless of network
latency, since it does not employ feedback. Contrary to FBIR, the recovery
process often lasts a few frames, as pointed out in Section 4.1 and 4.2. This is
because of IPLR’s motion-based intra refresh algorithm. Since (usually) not all
MB locations contain motion all the time, IPLR will intra refresh MBs on different
intervals. Hence, all MBs are not intra refreshed in the same frame. Instead, the
corrupted region encounters a gradual refresh.

The visual inspection revealed one problem with both FBIR and IPLR: Some
corrupted MBs are not recovered within the expected time. For FBIR this occurs
primarily when errors are not properly tracked. There are two reasons for this.
First, precision was reduced in favor of speed by using the fast error tracking
algorithm. Second, and probably more important, the implementation used
predicted MVs instead of the real MVs of the current frame since these were
not available. After the intra refresh, the encoder assumes that all errors are
corrected. Hence, untracked errors will persist until the corrupted MBs are
accidentally intra coded according to the normal encoding scheme, or until a
new error occurs at the same location and gets repaired.

In the case of IPLR, the reason for uncorrected errors is unlucky timing of
motion characteristics, “skipped” MBs and the occurrence of the errors. If an

5.2. Evaluation of FBIR and IPLR 35

erroneous MB becomes visible and is/was encoded in skip mode in the next/pre-
vious frame, the MB is probably not refreshed until many frames later since the
IPLR counter is reset to “-10” by the skip mode.

Examples of imperfect recovery as discussed here is seen in Figure 4.3(b)
and 4.3(d). This is also the reason why the Y-PSNR in Figure 4.2 is not as
high after recovery as it was before the error. By accident, FBIR seems to
experience less of this negative effect in when the network latency is 200 ms for
this particular example.

5.2.4 The effect of increased bit rate

Obviously, increased bit rate implies improved quality. But the relative perfor-
mance between schemes may change, in regards to both coding efficiency and
error robustness. From Figure 4.1(a)-4.1(c) it is evident that IPLR usually im-
proves its performance relative to FBIR when the bit rate increases and there is
loss.

For Conversation, 64 kbit/s is considered a medium to low bit rate. For this
rate and sequence FBIR performs better than IPLR. This is primarily because
FBIR encounters less source coding distortion. At high bit rates the source coding
distortion becomes very low, both for IPLR and FBIR. The corruption caused
by lost packets thus becomes (more) dominant to the source coding distortion.
Hence, it is more important to have high robustness, that is, to recover rapidly
from errors. IPLR is in general more robust than FBIR since it on average intra
refreshes corrupted MBs earlier than FBIR, as discussed in Section 5.2.3. This is
true even if higher bit rates implies shorter feedback delays for FBIR. Because
of this, IPLR performs better than FBIR at high bit rates when the loss rate is
greater than a certain value.

It is also interesting to note that the objective quality for Conversation when
using FBIR at 144 and 384 kbit/s, is almost equal for loss rates at 1% or higher.
This means that the reduced source coding distortion gained by increasing the
bit rate, may be insignificant for high rates when the loss exceeds a certain ratio.
This observation is another argument for stating that the corruption caused by
lost packets are dominant at high rates. It also indicates that the increased
feedback bandwidth, which results in feedback with less delay, does not improve
the performance of RTP/AVPF significantly in this low motion case. It may,
though, for other rates and sequences.

5.2.5 The effect of increased network latency

As already explained, if feedback is employed, larger network latency implies
higher average delay before the encoder receives the feedback information. This
obviously does not affect IPLR. For FBIR, however, this will in most cases
degrade the quality. It will take longer time before the corruption is repaired.
Consequently, the errors may also spread to a spatially larger area. An effect of
this is the difference in Y-PSNR between FBIR with 50 and 200 ms latency for the
Foreman and Soccer sequences (Figure 4.1(d) and 4.1(e)). However, this reduced
performance is not always notable. For Conversation (Figure 4.1(a)-4.1(c)) FBIR

obtains approximately the same Y-PSNR for both latencies. The reason for this
is the difference in motion characteristics of the sequences. Foreman and Soccer
has medium to high motion activity, which results in poor error concealment

36 5. Discussion

and severe error propagation. Conversation, on the other hand, has a limited
degree of motion and a large portion of the picture is static. Hence, errors are
often concealed well and propagate less. As a result, the extended feedback
delay does not lead to a significant quality reduction.

Surprisingly, for some parameter sets on the Conversation sequence, FBIR

achieves slightly better Y-PSNR with 200 ms latency. This is probably an effect
of the random loss patterns and the low motion activity in this sequence. This
source of error is discussed in Section 5.3.

5.2.6 The effect of increased loss rate

Naturally, increased loss rate degrades quality. It is more interesting to examine
the relative differences between FBIR and IPLR with respect to increased packet
loss.

For IPLR the measurements show that the reduction of Y-PSNR with respect
to increased loss rate is near constant. That is, the Y-PSNR encounters the same
degradation if the loss rate is increased from 0 to 1% or from 4 to 5%. This is
because the IPLR algorithm is independent of loss patterns and other network
statistics. It performs intra refresh only based on the motion characteristics of
the sequence. Hence, it roughly gains the same error robustness for all simulated
loss rates.

In contrast to IPLR, FBIR does not encounter a constant decrease in Y-PSNR

for increased loss rate, especially not for high bit rates. There is, for instance, a
higher drop in objective quality from 0 to 1% loss compared with from 4 to 5%
loss. This can be explained by considering the following very simplified scenario:
At low loss rates, most errors are allowed to be reported by Early FB messages.
Thus, most errors are corrected after approximately the same number of frames
and thus generate about the same amount C of corruption. A small increase
X in the number of losses will generate X ∗ C more corruption. When the
loss rate is high, the situation is different. Due to the calculated transmission
interval, the ratio of losses reported by Early FB becomes lower, as described
in Section 5.1.1. This implies that one FB message must report several losses,
on the average. Thus, each intra refresh repairs corruption caused by several
losses. Logically, each loss will then contribute to less than the amount C of
corruption, on the average. A small increase X in the number of losses will
thus reduce the quality less compared with the low loss rate case above. Hence,
changes in the loss rate affect FBIR less when the loss rate is high.

5.2.7 The effect of motion characteristics

The fact that the relative performance of FBIR and IPLR is different for the three
test sequences indicates that their motion characteristics are important for the
obtained quality.

In sequences with high motion activity the errors are harder to conceal and
the propagation is more severe. This applies for both FBIR and IPLR. The main
reason FBIR performs better than IPLR for some sequences and vice versa, is a
change in coding efficiency. Since IPLR is proactive and entirely motion-based,
it is more affected than FBIR when the test sequence is changed. For sequences
with a higher motion level, more MBs are frequently intra coded. Thus, IPLR

“wastes” even more bits on protection of information that may not be lost. FBIR

5.3. Sources of error 37

still only intra refreshes regions that actually are corrupted. Hence, it is expected
that FBIR performs better than IPLR for sequences with a motion activity above
medium. This is confirmed by comparing the results for Foreman, Soccer and
Conversation at 144 kbit/s in Figure 4.1. If Foreman and Soccer were encoded
on a higher rate, say 384 kbit/s, it is expected that the results would be more
similar to those for Conversation at 144 kbit/s. This is because sequences with
high motion activity, e.g. Foreman and Soccer, needs higher bit rate to encounter
the “high rate” effects described in Section 5.2.4.

To sum up the evaluation of FBIR and IPLR: Which one is better of the two
ER schemes depends on many factors, the most important being the motion
characteristics of the sequence, applied bit rate and the packet loss rate. FBIR

is a more general ER scheme than IPLR and is suited for many applications. It
always outperforms IPLR when the loss rate is very low. FBIR also yields better
results for sequences with a medium motion activity or higher, or if the bit rate
is low. IPLR, on the other hand, is better suited for sequences with low motion
activity, i.e. a large portion of the picture is static, as long as the bit rate is high
enough for IPLR to encode the video without severe coding distortion. The latter
is a typical setting for video communication systems, which IPLR was designed
for.

5.3 Sources of error

There are some insecurity in the generated results and observations. This section
explains the elements that contribute most to this.

As already stated in Section 2.8, PSNR does not coincide well with HVS

characteristics, and thus not always with perceptual quality; the HVS does not
evaluate a picture pixel by pixel. For a given video sequence, high PSNR indicates
good quality and vice versa, but the PSNR can not be used as an “absolute”
measure of perceptual quality. On the other, the FBIR and IPLR scheme produces
very similar corruption artifacts. Therefore the PSNR measure should at least
give a good indication on which scheme is visually better.

The randomness in the loss patterns generated by the network emulator may
also cause misleading results. Such stochastic processes require many simula-
tions to generate results of statistical significance. Appendix A provides a table
of the 95% confidence interval for the measured Y-PSNR values. The Soccer and
Foreman simulations were shown to generate a very narrow interval, especially
compared to the simulations on the Conversation sequence. Thus, the results
obtained for these two sequences may be considered very reliable. For Conversa-
tion, on the other hand, some confidence intervals are wider than desirable, i.e.
there are more insecurity in the results. A result that probably is erroneous as
a consequence of this effect were mentioned in Section 5.2.5: FBIR with 200 ms
latency performed better than with 50 ms latency for the Conversation sequence
at 144 kbit/s and 3% loss rate. This error is caused by the combination of Con-
versation’s motion characteristics and the spatial and temporal distribution of
lost data. A simulation that encounters most of its losses in the static area of
the picture will gain higher Y-PSNR compared with a simulation that experience
most losses in regions with high motion activity, despite the longer network la-
tency. More simulations for each parameter set would reduce the risk for such

38 5. Discussion

errors. Soccer and Foreman are not severely affected since their motion activity
is spread out over the entire picture. Hence, the spatial position of the lost data
is not equally important for these two sequences.

Some implementation-specific approximations of the error tracking algorithm
and the detection of static MBs were necessary. These were described in Sec-
tion 3.2. The use of predicted MVs instead of the real MVs of the current frame
clearly may introduce errors. This can cause some corrupted MBs to not be
recovered, even though they should according to the FBIR scheme. The effect is
that the Y-PSNR will be reduced over time. Some reduction of the Y-PSNR is ex-
pected during long sequences since we do not employ precise error tracking, but
the approximated implementation amplifies this effect. These are not errors in
the results, per se, but degrades the performance of the FBIR scheme, while IPLR

is unaffected. An example of this effect is illustrated in Figure 5.1. It is a plot
of the moving average (applying a window of 50 frames on all 10 simulations)
of Y-PSNR for Conversation at 144 kbit/s and 1% loss. It is obvious that FBIR

suffers from a significant reduction in performance over time. However, shorter
sequences would reduce this effect. But this would again amplify the uncertainty
introduced by using a random loss generator. It is difficult to say how much
of this degradation is caused by the implementation-specific approximations as
opposed to the intentional simplifications in the scheme. Without doubt, an
accurate implementation would improve the results of the FBIR scheme.

Figure 5.1 also shows the corresponding performance of an alternative FBIR

scheme, denoted FBIR-2. The difference from the regular FBIR scheme is that
the encoder insert an IDR picture every 300th frame. Thus, the video is com-
pletely resynchronized every 30th second, which severely reduces the effect of
the suboptimal error tracking. The bit rate increases with about 2.5 kbit/s on
average, which is acceptable compared to the gained quality. For Conversa-
tion at 144 kbit/s with 1% loss the gain in Y-PSNR by using FBIR-2 instead of
FBIR is more than 2 dB. Unfortunately, there was not enough time to perform
more simulations with FBIR-2. However, this result confirms that an accurate
implementation of the FBIR scheme would perform significantly better.

5.4 Other considerations

The simulations employed sequences of QCIF resolution and 10 frames per sec-
ond. Most video communication systems, however, at least on wire-line, trans-
mits video on CIF resolution or higher and may also use more frames per second.
Consequently, the bit rate is normally increased, more RTP packets are sent and
the packet size is larger. This should not have significant impact on IPLR.
The FBIR scheme could, however, experience some change in performance. This
statement is based on the fact more FB messages will be needed since the number
and frequency of losses increase (assuming that the packet loss rate is constant).
On the other hand, the available feedback bandwidth will also increase, which
enables more frequent transmission of FB messages. It is difficult to say the
exact effect of this without a more thorough examination. Unfortunately, the
resources available for this study did not enable such experiments.

Another factor to consider is that most real-life system utilize rate control
to prevent network congestion. An encoder that suddenly intra codes most MBs
of a frame will encounter a severe increase in the bit rate for a short period

5.4. Other considerations 39

0 500 1000 1500 2000 2500 3000 3500 4000

Frame number

37

38

39

40

41

42

43

44

Y
-P

S
N

R
 (

d
B

)
Y-PSNR vs time: Conversation, 144 kbit/s, 1% loss

FBIR 50 ms
FBIR-2 50 ms
IPLR

Figure 5.1: Development of Y-PSNR over time. FBIR-2 resynchronizes
the video every 300th frame, which significantly reduces the
degradation encountered by FBIR.

of time. This may lead to longer queuing delay and more packet losses in the
network. The rate control aims to minimize such rate bursts. Traditionally,
this is carried out by adapting encoding parameters such as quantization, frame
rate etc.. However, this approach may reduce the visual quality. For the FBIR

scheme an alternative may be to distribute the intra refresh over several frames
at the cost of a somewhat longer recovery interval. The FBIR scheme is more
prone to rate controlling actions than IPLR because of its sudden recovery of the
whole corrupted area.

CHAPTER 6

Future work

As explained in Section 5, the FBIR scheme suffered from an implementation-
specific approximation. It would be interesting to test how well FBIR is able
to perform with an implementation exactly like intended. That is, to alter the
encoding scheme to enable the use of only real MVs in the error tracking and
static MB detection. A significant increase in Y-PSNR is expected. Alternatively,
a gain in performance may also be achieved by periodically resynchronizing
the video, as shown in Section 5.3. Simulations should be performed to mea-
sure more thoroughly the effect of such resynchronizing, and to find an optimal
resynchronization interval.

This study did not experiment by tweaking the implementation-specific pa-
rameters in the RTP/AVPF standard. It is desirable to find more optimal param-
eters in order to increase the performance of feedback-based ER schemes utilizing
RTP/AVPF. Optimal parameters will depend on the application, but research
should be carried out to examine the effect of changing different parameters for
various applications.

Simulations utilizing sequences of higher resolution and more frames per
second are also desirable. This is to test how RTP/AVPF responds to increased
traffic and thus more frequent losses, and its effect on the ER scheme(s). In
order to enable such simulations it is necessary to either use a more powerful
processor for the encoder; use another encoder in place of JM that is faster;
or to use another testing framework which allows offline encoding while still
generating realistic feedback as if online simulation is performed.

Intra refresh is only one approach to utilize the available feedback informa-
tion using RTP/AVPF. As described, RTP/AVPF and its related protocols, e.g.
H.271, provides feedback information that may enable many novel feedback-
based ER schemes. In addition, the potential of already known ER schemes,
such as RPS, in combination with RTP/AVPF should be examined.

CHAPTER 7

Conclusion

In this study the new (2006) feedback protocol RTP/AVPF and its use in ER

schemes for real-time low-delay video systems have been evaluated. A feedback-
based intra refresh scheme, FBIR, utilizing RTP/AVPF was developed and com-
pared with IPLR. IPLR is a motion-based intra refresh scheme which does not
employ any feedback information. The two ER schemes were compared for var-
ious network environments, bit rates and video sequences.

RTP/AVPF is based on RTCP as the underlying feedback protocol, and may
thus be applied to all applications using RTP. It is fairly easy to implement since
it only modifies the RTCP timing algorithm and adds new RTCP message types.
RTP/AVPF may be used in combination with other standards, such as H.271, to
extend the available feedback information. The results prove that RTP/AVPF

is able to provide feedback early enough to be useful in error control for many
rates and network conditions. Hence, RTP/AVPF enables timely feedback for use
in a wide range of multimedia applications.

The comparison of the two ER schemes shows that FBIR always performs
better than IPLR for error free transmissions. FBIR achieves higher quality in
other situations as well, such as for very low loss rates, low or medium bit rates,
and for sequences with high or medium motion activity. Conversely, IPLR is
better suited for video sequences containing less motion, encoded at high bit
rates when the loss rate exceeds a certain threshold, typically about 1%. The
results are a consequence of that FBIR gains a medium robustness and high cod-
ing efficiency, in contrast to IPLR’s high robustness and low coding efficiency.
These properties are caused by differences in the intra refresh strategies. Basi-
cally, IPLR inserts a high number of intra coded MBs to improve the robustness
in case losses will occur. FBIR, on the other hand, reacts only to reported errors
and performs intra refresh only to correct these. Hence, IPLR usually repair the
erroneous regions faster, while FBIR introduce less redundancy and thus gains

44 7. Conclusion

better coding efficiency. FBIR’s performance may, however, be reduced by fac-
tors such as increased network latency and the number of receivers, because
these factors increase the feedback delay of RTP/AVPF.

In error free environments, FBIR does not decrease the coding efficiency
significantly compared with a non-robust encoding scheme. Thus, FBIR is a
good compromise between coding efficiency and error robustness. All real-time
video systems that benefit from immediate feedback should therefore strongly
consider to employ FBIR or similar feedback-based ER schemes.

Bibliography

[1] ITU-T Rec. H.264: Advanced video coding for generic audiovisual services;
also ISO/IEC 14496-10:2005, Coding of audio-visual objects Part 10: Ad-
vanced Video Coding, 2005.

[2] TANDBERG. TANDBERG and packet loss, D50165, Rev 2.0 edition.

[3] Stian Selnes. Evalution of IPLR and other error resilience schemes. An
in-depth report as part of the study for a master’s degree, December 2006.

[4] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey. Extended RTP
Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback
(RTP/AVPF). RFC 4585 (Proposed Standard), July 2006.

[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Trans-
port Protocol for Real-Time Applications. RFC 3550 (Standard), July
2003.

[6] Pao-Chi Chang and Tien-Hsu Lee. Precise and Fast Error Tracking for
Error-Resilient Transmission of H.263 Video. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 10(4):600–656, June 2000.

[7] Cristina Gomila and Peng Yin. New features and applications of the H.264
video coding standard. In International Conference on Information Tech-
nology: Research and Education, 2003. Proceedings. ITRE2003., pages 6 –
10. IEEE, August 2003.

[8] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard, and Ajay Luthra.
Overview of the H.264/AVC Video Coding Standard. IEEE Trans. Circuits
Syst. Video Techn., 13(7):560 – 576, 2003.

[9] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi. Video coding with H.264/AVC: tools, per-
formance, and complexity. Circuits and Systems Magazine, IEEE, 4(1):7 –
28, 2004.

46 BIBLIOGRAPHY

[10] Stephan Wenger. H.264/AVC over IP. Circuits and Systems for Video
Technology, IEEE Transactions on, 13(7):645–656, 2003.

[11] D. Ferrari. Client requirements for real-time communication services. RFC
1193 (Informational), November 1990.

[12] Till Halbach and Steffen Olsen. Error robustness evaluation of
H.264/MPEG-4 AVC. In Visual Communications and Image Processing
2004. Proceedings of the SPIE, Volume 5308, pp. 617-627 (2004), pages
617–627. SPIE, Janauary 2004.

[13] Till Halbach. The H.264 Video Compression Standard. In Proceedings of
Nordic Signal Processing Symposium (NORSIG). NORSIG, October 2003.

[14] Sunil Kumar, Liyang Xu, Mrinal K. Mandal, and Sethuraman Pan-
chanathan. Error Resiliency Schemes in H.264/AVC Standard. Journal
of Visual Communication and Image Representation, 17(2), April 2006.

[15] Franco Chiaraluce, Lorenzo Ciccarelli, Ennio Gambi, and Susanna Spin-
sante. Performance Evaluation of Error Concealment Techniques in H.264
Video Coding. In Picture Coding Symposium 2004. University of California
Davis, December 2004.

[16] B. Girod and N. Farber. Feedback-based error control for mobile video
transmission. Proc. IEEE, 87(10):1707–1723, October 1999.

[17] S. Wenger, U. Chandra, M. Westerlund, and B. Burman. Codec
Control Messages in the RTP Audio-Visual Profile with Feedback
(AVPF). Internet Draft, http://www.ietf.org/internet-drafts/
draft-ietf-avt-avpf-ccm-04.txt, March 2007.

[18] ITU-T Rec. H.271: Video back channel messages for conveyance of status
information and requests from a video receiver to a video sender, 2006.

[19] ITU-T Recommandation H.245: Control protocol for multimedia commu-
nication, 2006.

[20] ITU-T Recommandation H.323: Packet-based multimedia communications
systems, 2006.

[21] K. El Maghraoui and T. Rachidi. Towards building h.323-aware 3g wireless
systems: H.323 control loops and applications adaptation to wireless link
conditions. In Proceedings of the 5th World Multiconference on Systemics,
Cybernetics and Informatics (SCI 2001), volume 16, pages 106–113, July
2001.

[22] Y. Wang, S. Wenger, J. Wen, and A. Katsaggelos. Review of Error Resilient
Coding Techniques – Real-Time Video Communications over Unreliable
Networks. IEEE Signal Processing Magazine, 17(4), July 2000.

[23] Li Zhu, Hao Chen, and Xinyu Yang. An error control mechanism based on
adaptive intra-frame refreshment. In Second International Conference on
Image and Graphics,Proceedings of the SPIE Volume 4875 (2002). SPIE,
2002.

BIBLIOGRAPHY 47

[24] Ye-Kui Wang, Chunbo Zhu, and Houqiang Li. Error resilient video coding
using flexible reference frames. In Visual Communications and Image Pro-
cessing 2005. Proceedings of the SPIE, Volume 5960, pp. 691-702 (2005),
pages 691–702. SPIE, Jul 2005.

[25] Hong-Bin Yu, Ci Wang, and Songyu Yu. A novel error recovery scheme for
H.264 video and its application in conversational services. IEEE Transac-
tions on Consumer Electronics, 50(1):329–334, Feb 2004.

[26] H.264/AVC reference software JM 11.0. http://iphome.hhi.de/
suehring/tml/download.

[27] Keng-Pang Lim, Gary Sullivan, and Thomas Wiegand. Text Description of
Joint Model Reference Encoding Methods and Decoding Concealment Meth-
ods, JVT-N046. Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
VCEG, January 2005.

[28] Alexis Michael Tourapis, Karsten Sühring, and Gary Sullivan. Revised
H.264/MPEG-4 AVC Reference Software Manual, JVT-Q042. Joint Video
Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Rev. 5 edition, October
2005.

[29] Z. Wang, H. R. Sheikh, and A. C. Bovik. The Handbook of Video Databases:
Design and Applications, chapter “Objective video quality assessment”,
pages 1041–1078. CRC Press, September 2003.

[30] Q2S – Centre for Quantifiable Quality of Service in Communication Sys-
tems, NTNU. http://www.q2s.ntnu.no.

[31] Odd Inge Hillestad, Bjørnar Libak, and Andrew Perkis. Performance Eval-
uation of Multimedia Services Over IP Networks. In Proceedings of the
IEEE International Conference on Multimedia and Expo (ICME), pages
1464 – 1467, Amsterdam, The Netherlands, July 2005.

[32] Empirix PacketSphere Network Emulator. http://www.empirix.com.

[33] Endace. http://www.endace.com.

[34] AviSynth. http://www.avisynth.org.

[35] VirtualDub. http://www.virtualdub.org.

[36] Stephan Wenger. Common Conditions for wire-line, low delay IP/UD-
P/RTP packet loss resilient testing, September 2001. ITU-T VCEG Docu-
ment VCEG-N79r1.

[37] Stephan Wenger. Proposed Error Patterns for Internet Experiments, in-
cluding Appendix 11, October 1999. ITU-T VCEG Document Q15-I-16.

[38] Athina Markopoulou, Fouad Tobagi, and Mansour Karam. Loss and
Delay Measurements of Internet Backbones. Computer communications,
29(10):1590–1604, 2006.

[39] EvalVid 1.2. http://www.tkn.tu-berlin.de/research/evalvid/.

48 BIBLIOGRAPHY

[40] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye.
Probability & Statistics for Engineers & Scientists. Prentice Hall, 2002.

[41] Wireshark. http://www.wireshark.org/.

[42] Apple QuickTime. http://www.apple.com/quicktime.

[43] Stian Selnes. Online archive for “Feedback-based Error Control for H.264.
http://www.pvv.ntnu.no/~stianse/master. Username: master, pass-
word: thesis.

APPENDIX A

Result details

This appendix provides more details on the main results presented in Section 4.
The Y-PSNR numbers for each parameter set and test sequence are listed. These
were used to plot the performance of the ER schemes with respect to the en-
countered loss rate, in Figure 4.1. The statistical significance of these numbers
are illustrated by calculating the 95% confidence interval.

A.1 Confidence intervals

Table A.1 lists the calculated averages of the measured Y-PSNR values, which are
plotted in Figure 4.1. It also shows the corresponding 95% confidence intervals.

A confidence interval quantifies the uncertainty of estimates. The 95% in-
terval gives the range where one can be 95% certain that the true mean value
lies within. Analyzing the numbers in Table A.1 it is obvious that there is
more uncertainty related to some simulations compared to others. Especially
for the Conversation sequence the confidence interval is sometimes larger than
desirable. However, the simulations with highest uncertainty also have a large
difference between the Y-PSNR estimates of FBIR and IPLR. Hence, there should
be clear which of the two schemes are better for these parameters, even if the
estimated Y-PSNR is somewhat unreliable.

The confidence intervals were calculated by assuming the Y-PSNR values
to have a normal distribution. However, since only 5 or 10 simulations were
performed for each parameter set, the Student’s t-distribution was employed in
the calculations. The confidence interval was calculated according to [40]:

P (Y − tα/2,n−1
S√
n

< µ < Y + tα/2,n−1
S√
n

) = 1− α, (A.1)

50 A. Result details

where Y is the average Y-PSNR taken over n video sequences, S is the estimated
standard deviation, α corresponds to the confidence of 1−α (e.g. 1−0.05 = 0.95),
and tα/2,n−1 is a constant for the Student’s t distribution found by table look-up.

A.1. Confidence intervals 51

FBIR IPLR

Sequence Target rate Latency PLR Y-PSNR CI95% Y-PSNR CI95%
Conversation 64 kbit/s 50 ms 0 35.5 ± 0.0 34.6 ± 0.0

1 34.1 ± 0.4 33.5 ± 0.1
3 32.9 ± 0.4 31.6 ± 0.4
5 31.9 ± 0.3 29.9 ± 0.4

200 ms 0 35.6 ± 0.0 - -
1 34.1 ± 0.3 - -
3 32.8 ± 0.3 - -
5 31.7 ± 0.4 - -

144 kbit/s 50 ms 0 44.5 ± 0.0 40.9 ± 0.0
1 40.0 ± 0.3 39.7 ± 0.2
3 35.5 ± 0.9 37.7 ± 0.4
5 34.6 ± 0.5 36.2 ± 0.5

200 ms 0 44.5 ± 0.0 - -
1 39.7 ± 0.5 - -
3 36.0 ± 0.8 - -
5 34.4 ± 0.7 - -

384 kbit/s 50 ms 0 50.7 ± 0.0 47.5 ± 0.0
1 39.5 ± 0.9 45.9 ± 0.3
3 36.1 ± 0.7 43.4 ± 0.7
5 34.3 ± 0.6 41.7 ± 0.5

200 ms 0 50.7 ± 0.0 - -
1 39.9 ± 0.9 - -
3 35.2 ± 0.8 - -
5 34.0 ± 0.4 - -

Foreman 144 kbit/s 50 ms 0 36.6 ± 0.0 35.8 ± 0.0
1 35.4 ± 0.1 34.3 ± 0.2
3 33.9 ± 0.2 31.9 ± 0.3
5 32.3 ± 0.1 30.0 ± 0.4

200 ms 0 36.5 ± 0.0 - -
1 34.8 ± 0.1 - -
3 32.6 ± 0.1 - -
5 30.8 ± 0.2 - -

Soccer 144 kbit/s 50 ms 0 34.6 ± 0.0 34.0 ± 0.0
1 33.5 ± 0.1 32.9 ± 0.1
3 31.5 ± 0.2 30.9 ± 0.3
5 30.0 ± 0.2 29.2 ± 0.3

200 ms 0 34.6 ± 0.0 - -
1 32.9 ± 0.1 - -
3 30.3 ± 0.2 - -
5 28.4 ± 0.2 - -

Table A.1: Calculated average Y-PSNR values and their corresponding 95%
confidence interval.

APPENDIX B

Simulation details

This appendix provides details about the simulation parameters and how to
reproduce the simulation process. The text assumes a Linux platform to run
the modified JM software (found in the attached Zip-archive or online (see Ap-
pendix D)) and the testing environment described in Section 3.3.1.

B.1 Configuration parameters

This section gives a summary of the configuration parameters used in the sim-
ulations, both for the encoder and decoder. Parameters that are related to the
specific set up of the testing environment are not described here, but as part of
the simulation procedure described in Section B.2.

The implementation-specific parameters of RTP/AVPF are also listed in this
section. These could be regarded as part of the implementation. However, since
these are easily altered for new simulations (by changing the corresponding
constants in the source code), they are considered as part of the configuration.

B.1.1 Encoder and decoder configuration

Table B.1 lists the encoder parameters that are common for the FBIR and IPLR

schemes. Only the most important parameters are listed. The second block
in the table contains parameters that are set for optimal coding speed. The
third block lists parameters which affect the error robustness. In fact, most
of the encoder configuration parameters are equal for the two schemes. The
only two parameters that differ are those that enable FBIR and IPLR. For FBIR

FBIntraRefresh was set to 2 (use FBIR with selective intra refresh), and for
IPLR IPLRMode was set to 1.

54 B. Simulation details

Parameter Value Description

ProfileIDC 66 Baseline profile
LevelIDC 30 Level number 3
OutFileMode 2 Send as RTP stream to specified host

NumberBFrames 0 Disable B coded frames
NumberReferenceFrames 1 Store 1 frame in buffer for inter prediction
UseFME 2 Use fast motion estimation
RDOptimization 0 Disable RD-optimization
RateControlEnable 0 Disable rate control

MbLineIntraUpdate 0 No extra forced intra updates of GOBs
RandomIntraMBRefresh 0 No extra forced intra MBs per picture
PartitionMode 0 Disable partition mode
num_slice_groups_minus1 0 Disable FMO
SliceMode 1 Use a fixed number of MBs in each slice
SliceArgument 11 11 MBs (1 GOB) per slice
UseConstrainedIntraPred 1 Use constrained intra prediction

Table B.1: A selection of the encoder configuration parameters common
for FBIR and IPLR.

QP Bit rate

Sequence Target rate PLR FBIR IPLR FBIR IPLR

Conversation 64 kbit/s 0 28 29 61 63
1 28 29 62 63
3 28 29 63 63
5 28 29 64 63

144 kbit/s 0 17 21 143 141
1 17 21 144 141
3 17 21 146 141
5 17 21 149 141

384 kbit/s 0 9 13 361 364
1 9 13 364 364
3 9 13 365 364
5 9 13 367 364

Foreman 144 kbit/s 0 26 27 143 152
1 26 27 146 152
3 26 27 151 152
5 27 27 142 152

Soccer 144 kbit/s 0 28 29 139 145
1 28 29 140 145
3 28 29 142 145
5 28 29 143 145

Table B.2: All quantization parameters and the resulting bit rates for each
sequence and parameter set.

B.2. The procedure 55

Table B.2 lists the applied quantization parameters and the resulting bit
rates, including IP/UDP/RTP-packet overhead. Equal quantization was used
for both I and P slices. Naturally, there are small differences in the bit rates,
but the differences are so small that the obtained results are comparable. The
bit rates listed for the FBIR scheme are with 50 ms network latency. For 200 ms
latency there are normally a slight increase in rate, in the range 0–2 kbit/s.

For the decoder there are few parameters that are accessible through the
configuration file. All values were kept at their default values, except from“NAL
mode” which was set to 2 in order to receive RTP packets from the network,
and the error concealment strategy which was set to 1 (“motion copy”). A
parameter to indicate the RTP session bandwidth was made available through
the implementation and set to 64, 144, or 384, depending on the encoded bit
rate.

B.1.2 RTP/AVPF parameters

Since RTP/AVPF has many application-specific variables, the temporal behaviour
of the feedback scheme will depend on the implementation. Table B.3 lists the
values for all variables and constants used in this study that affect the timing
of the feedback. These are only relevant for the FBIR scheme, of course. For
simplicity, some variables were set to a fixed value, such as the number of senders
and receiver. These are also listed. For convenience, the table uses the same
variable names as in the standards [4] and [5]. Except from rtp_bw which is
accessible through the decoder configuration file, all parameters are set in the
source code. See Appendix C for details on how to access these.

Parameter Value Description

senders 1 Number of senders in RTP session
receivers 1 Number of receivers in RTP session
T_dither_max 150 ms Max additional delay for FB

T_max_fb_delay ∞ Upper bound for FB to be useful
T_rr_interval 5 sec Minimum interval between regular

RTCP packets with no FB message
rtcp_bw 0.05 ∗ rtp_bw Total available RTCP bandwidth for

all members
rtp_bw 64, 144 or 384 kbit/s Applied RTP session bandwidth
rtp_max_delay 50 ms Max delay before an RTP packet is

considered lost (not in standard)

Table B.3: Implementation-specific decoder parameters.

B.2 The procedure

First, this section explains the process of encoding and decoding a test sequence
using the setup from Section 3.3.1. In short, this implies real-time encoding
and decoding, where the encoded video is transmitted to the decoder through
a network emulator. Then, it is explained how to measure the objective quality
for the received video.

56 B. Simulation details

Setting/parameter Value

Test sequence Foreman
Bit rate 144 kbit/s
Encoder host 10.0.0.3
Decoder host 10.1.1.3
Encoder port, incoming RTCP 62003
Decoder port, incoming RTP 62002
Packet loss rate 1%
Network latency 50 ms
Network emulator address packetsphere.item.ntnu.no

Table B.4: Settings/parameters specific for each simulation and/or testing
environment setup.

The procedure is explained only for one parameter set since the steps are
equivalent for other parameter sets, but with other input parameters of course.
The example will simulate transmission of the Foreman sequence at 144 kbit/s
over a network with 1% packet loss rate and 50 ms latency. All settings/param-
eters that are specific to this particular example and test bed setup are listed
in Table B.4.

B.2.1 Prepare the software

The modified JM software is provided only as source code. In order compile
the software into executable files, the tools make and gcc are required. First,
get the modified JM source code, either from the attached Zip-file or the online
archive (see Appendix D). After extracting it, a directory called source/jm is
created. The encoder is found in the sub-directory source/jm/lencod and the
decoder in source/jm/ldecod. The encoder and decoder are provided with a
Makefile each, which lies in the respective directories. In order to compile the
encoder or decoder, execute the following commands

cd source/jm/lencod; make; cd -

or for the decoder

cd source/jm/ldecod; make; cd -

This will create executable files in source/jm/bin. The encoder and decoder
are named lencod.exe and ldecod.exe, respectively. They should be compiled
on two separate machines connected through a LAN with the network emulator
in the middle, according to the test bed setup. The encoder was installed on
kurt.q2s.ntnu.no and the decoder on manage.q2s.ntnu.no.

EvalVid’s PSNR program is installed with the same approach. The source
code for this program is found in the same Zip-archive as the codec, described
above. After extraction there should be a directory named source/psnr. It is
only necessary to compile the PSNR program at the machine where the decoder
was compiled:

cd source/psnr; make; cd -

B.2. The procedure 57

Figure B.1: PacketSphere Network Emulator configured to simulate a 1%
loss rate with a 50 ms latency.

PacketSphere is used as the network emulator. The emulator is controlled
by a software application which may be downloaded and installed from
http://packetsphere.item.ntnu.no/downloads.asp. This is a Windows-
only program. The usage of this program is very intuitive and will not be
explained in detail here. The main steps to connect and set up the emulator are
to first to add the emulator network address (packetsphere.item.ntnu.no) to
the list of PacketSphere Servers. Then, resources have to be reserved before the
emulator is started. Network parameters can be altered while the emulator is
running. (It will restart automatically.)

B.2.2 The simulation

In order to run the simulation, the emulator has to be started with the correct
parameters, the packet capture device needs to be activated, and the decoder
and encoder programs must be started with the correct configuration.

First, set up PacketSphere to randomly loose 1% of the packets transmitted
from the encoder to the decoder. The losses should be set to occur in bursts of
at least one packet, but no more than three. The back-channel from the decoder
to the encoder should be error free. Both the forward and backward channel
should be set to have a 50 ms constant latency. The resulting status of the
network emulator is shown in Figure B.1.

Second, the network monitoring interface card has to be activated. However,
this is optional as the captured packets only are used for analyzes of the network
flow and packet formats. The network protocol analyzer Wireshark [41] may be
used for this purpose. Since this is not necessary in order to measure the video
quality, the usage of the captured packets will not be explained any further. The
DAG card used in the simulations was pre-installed on q2s.uninett.ntnu.no
and activated by:

dagsnap -d /dev/dag1 -v -o capture.trace

The decoder must be started before the encoder because the decoder is able
to listen for incoming RTP packets, while the encoder starts the transmission
immediately. A default configuration file is provided along with the decoder. It

58 B. Simulation details

is named decoder_rtp.cfg and is found in the directory source/jm/bin. This
file must be modified according to the current test bed setup and the RTP session
bandwidth. The parameters that may need to be adjusted are the incoming RTP

port, the encoder’s IP-address, the encoder’s RTCP port, and the bit rate. The
decoder will both save the compressed bit stream received from the decoder and
the decoded uncompressed video. The default file names are received.264 and
received_dec.yuv, respectively, but can be changed in the configuration file.
Finally, to start the decoder and save the output log to dec.log (optional, but is
needed for inspection of RTP/AVPF’s temporal properties), run the commands

cd source/jm/bin

./ ldecod.exe decoder_rtp.cfg > dec.log

The decoder will quit if it does not receive any data before 10 seconds. The
commands above are performed for both FBIR and IPLR. This implies that for
the decoder will send feedback both for FBIR and IPLR, but when the encoder
is in IPLR mode the feedback will be ignored.

The encoder, on the other hand, must be configured according to the applied
ER scheme. A default configuration file, encoder.cfg is provided for the encoder
in the source/jm/bin directory. All encoding parameters that are common for
FBIR and IPLR are set as default. In contrast to the decoder, the encoder
configuration file does not need direct modification. Instead, the parameters
are easily altered from the command line. However, it could be convenient to
change the configuration file if several simulations are performed in order to
save some typing. The parameters are set according to Table B.2 and B.4.
Because of storage size considerations, the attached/downloaded Zip-archive
contains only the Foreman sequence with 300 frames. This file will be used
in this example. The full length test sequences used in the simulations can be
downloaded from the online archive (see Appendix D). The command to start
encoding the Foreman sequence at 144 kbit/s with the FBIR scheme is

cd source/jm/bin

./ lencod.exe -d encoder.cfg \

-p InputFile="foreman_qcif_10fps_300f.yuv" \

-p ReceiverHost =10.1.1.3 -p ReceiverPort =62002 \

-p FeedbackPort =62003 \

-p QPISlice =26 -p QPPSlice =26 \

-p FBIntraRefresh =2 -p IPLRMode =0

The corresponding command for IPLR is

cd source/jm/bin

./ lencod.exe -d encoder.cfg \

-p InputFile="foreman_qcif_10fps_300f.yuv" \

-p ReceiverHost =10.1.1.3 -p ReceiverPort =62002 \

-p FeedbackPort =62003 \

-p QPISlice =27 -p QPPSlice =27 \

-p FBIntraRefresh =0 -p IPLRMode =1

The decoder should now be decoding the file transmitted from the encoder.
However, if some of the packets containing the sequence or picture parameter
set are lost, the decoder may fail and the process must be restarted. To check
the progress of the decoding, inspect the output of the decoder which is being
dumped to dec.log.

B.2. The procedure 59

tail -f dec.log

After successfully decoding the transmitted video, several files have been
generated. The encoder logs information about the FBIR and IPLR algorithms in
fbir.log and iplr.log, respectively. These may be used to inspect the detailed
intra refresh behaviour for the encoder. Most important are the files generated
by the decoder. received.264 is the received packet stream, which may be
decoded (again) offline at a later time. received_dec.yuv is the decoded video.
Finally, dec.log contains information about the decoding and feedback process.

B.2.3 Measure the objective quality
In order to measure the objective quality for the decoded video, the PSNR pro-
gram is used to calculate the Y-PSNR value with the original video file as refer-
ence. Thus, the decoder must also have a copy of the original yuv-file. To easily
calculate the Y-PSNR and save the results to a file name received.psnr, run the
program while still having source/jm/bin as the current working directory:

../../ psnr/psnr 176 144 420 foreman_qcif_10fps_300f.yuv \

received_dec.yuv > received.psnr

B.2.4 Perform numerous simulations
The simulation procedure explained thus far generates one Y-PSNR measure for
one parameter set and sequence. For this study there were 5 or 10 simulations
for each parameter set. Therefore, some of the steps above was automated
to save time. Unfortunately, there is no easy way to synchronize and control
the encoder, decoder, network emulator, and network interface card. Thus,
the encoding/decoding process must be executed manually for each simulation.
However, the calculation of Y-PSNR is easy to automate.

The total simulation process carried out can be outlined as follows: First,
all encoding/decoding for all parameters sets were performed. The received
video (received.264) and generated log-files were stored according to a defined
directory structure. The decoded video received_dec.yuv was discarded since
it could be generated from received.264 at a later time. Second, an ad hoc
script were developed to calculate the Y-PSNR for all video files. This script
iterated through all simulations and decoded the compressed video, calculated
the Y-PSNR, and finally deleted the uncompressed video to save storage space.
Finally, other ad hoc scripts were created to extract and plot different sorts
of information from the log-files. The attached Zip-archive contains some of
these scripts, but they are not runnable since they require a specific directory
structure and/or Python modules.

B.2.5 Alternative approach to test the encoder/decoder
The simulation procedure described so far requires a testing environment that is
not widely accessible. There exists, however, an alternative approach to perform
real-time encoding and decoding with FBIR and IPLR. That is to

encode and transmit the packet over a“normal”network or through the loop-
back interface on the computer. Hence, the decoder may be running on another
machine or the same machine as the encoder. The latter will be assumed in the

60 B. Simulation details

following. A powerful processor is required. This approach does not simulate
network delay, but there exists a simple network simulator in the modified en-
coder, which is able to drop packets according to the Gilbert model [3]. The
encoder and decoder host must be set to 127.0.0.1 and the Gilbert network
simulator must be enabled. Besides this the procedure is mostly the same as
described before. The decoder command will remain unchanged (but the con-
figuration file must be changed). To simulate a packet loss rate of 1% with an
expected burst length of 2 packets, the encoder commands for FBIR become

cd source/jm/bin

./ lencod.exe -d encoder.cfg \

-p InputFile="foreman_qcif_10fps_300f.yuv" \

-p ReceiverHost =127.0.0.1 -p ReceiverPort =62002 \

-p FeedbackPort =62003 \

-p QPISlice =26 -p QPPSlice =26 \

-p FBIntraRefresh =2 -p IPLRMode =0 \

-p GilbertEnable =1 -p \

-p GilbertLossRate =1 -p GilbertBurstLength =2

For IPLR, just change the FBIntraRefresh and IPLRMode parameters.
Since this procedure does not introduce any network latency, the encoder

will receive feedback messages earlier and the performance of FBIR will increase.
However, this is accepted since this approach only should be used to test the
concept of the ER schemes, not their performance.

APPENDIX C

Implementation details

As mentioned in Section 3.2, the H.264 reference coder JM 11.0 was modified
to support FBIR and IPLR. This appendix provides an overview over main
modifications in the software and where to find the relevant parts of the ER

schemes. The intention is not to give a description of the code itself since the
reader may download and inspect the source code for himself (see Appendix D).
The coder is found in the directory source/jm. For details on compilation, see
Section B.2.1.

All modifications that affect the default behaviour of JM 11.0 is enclosed by
the preprocessor directives #if and #endif for conditional inclusion. Hence, it is
easy to extract the code written as part of this thesis from the rest. In addition,
it is easy to roll back to default JM behaviour by defining all macros that enable
the implemented features as 0. As an example, consider the following code

#i f FBIR

i f (input ->FBIntraRefresh != 0)

OpenRTCPConnection(input ->feedbackPort);

#endif

which only is included in the compilation if the macro FBIR is different from 0.
All macros that enables/disables added features are defined in defines.h, for
both the encoder and decoder.

C.1 The encoder

Many files are modified in the encoder. The most important files relevant for
the ER schemes described in Section 2 are lencod.c, mode_decision.c, rtp.c,
rtcp.c, fbir.c and iplr.c, in addition to the header file defines.h. These
files were created/modified in order to obtain the following:

62 C. Implementation details

defines.h: Modified to define the macros that enable/disable the added fea-
tures. These are FBIR, IPLR, RTP_OVER_NETWORK, RTP_BIG_ENDIAN_SUPPORT
and GILBERT_IN_ENCODER. (Not all are relevant for the functionality de-
scribed here.)

lencod.c: Modified to force the encoder to encode in real-time (if the proces-
sor is fast enough), i.e not encode more than the given frames per second.
Real-time encoding is enabled only in the cases where the encoder is con-
figured to transmit the encoded video over the network.

mode_decision.c: Modified to check if intra refresh should be performed for
each MB, both for FBIR and IPLR, and enforce intra coding if it should.
The code in this file is also responsible for updating the variables for “near
static” detection.

rtp.c: Modified to send RTP packets over the network to a given receiver ac-
cording to configuration parameters.

rtcp.c: Added to listen for incoming RTCP packets on a specified port. When
packets arrive they are decomposed and interpreted, and other parts of
the encoder are notified.

fbir.c: Added to do perform the main parts of the FBIR scheme, except from
the RTP/AVPF routines. This includes error tracking, to store MVs used
in the error tracking algorithm, and to store information about packets
reported lost.

iplr.c: Added to run the IPLR algorithm.

For further information the reader is referred to the source code itself.

C.2 The decoder
The modifications in the decoder add fewer additional features compared with
the encoder, but the features added are more complex and very important. The
files of interest are defines.h, rtp.c and rtcp.c. These files were created/-
modified in order to obtain the following:

defines.h: Modified to define the macros that enable/disable the added fea-
tures. These are RTP_OVER_NETWORK, RTCP_FEEDBACK and RTP_BIG_ENDIAN-
_SUPPORT.

rtp.c: Modified to receive RTP packets from the network on a specified port.
A reception buffer is implemented so that packets are allowed to be out
of sequence. A packet is considered lost when it is not received before an
expected time limit.

rtcp.c/rtcp.h: Added to create, compose and send RTCP packets according to
RTP/AVPF. This file contains all the transmission rules, packet formatting
etc.. All RTP/AVPF implementation-specific parameters are defined in the
header file.

For further information the reader is referred to the source code itself.

APPENDIX D

Archives

Archives with the source code and some video examples are provided for the
reader. This Appendix describes the contents of the attached Zip-archive and
the more extensive archive found online.

D.1 Attached Zip-archive

The Zip-archive submitted together with the thesis contains the source code for
the modified JM coder, the Y-PSNR program from EvalVid, some ad hoc scripts
used in the simulation process and finally, some video examples. For a more
detailed description the reader is referred to the file README.txt found in the
root directory of the archive.

The video examples are in the mp4-file format. This is done to make it easy
to view the videos, at least for Windows and Mac users. The files may be viewed
with Apple’s QuickTime [42]. The decoded video will not look exactly the
same as it would if decoded with the JM decoder, because QuickTime employs
another (and slightly improved) error concealment scheme. However, the visual
appearance are very close.

The provided videos are Conversation at 64 kbit/s with a 1% packet loss
and 50 and 200 ms latency, both for the FBIR and IPLR scheme; and Foreman at
144 kbit/s with a 3% packet loss and 50 and 200 ms latency for both schemes.

D.2 Online archive

The online archive [43] contains a comprehensive set of video examples, one
example for each combination of ER scheme, parameter set and test sequence.

64 D. Archives

It also contains the Zip-file described above where the source code may be
downloaded, and the full length test sequences used in the simulations.

The online archive is found at

http://www.pvv.ntnu.no/~stianse/master

The get access you must enter the following username and password:

username: master
password: thesis

For a more detailed description on the usage of this archive the reader is
referred to the file readme.txt found in the root directory of the archive.

