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The world’s energy system is at a crossroads.
Current global trends in energy supply and consumption are patently

unsustainable - environmentally, economically, socially.
But that can - and must - be altered; there’s still time to change the road we’re on.

It is not an exaggeration to claim that the future of human prosperity depends on
how successfully we tackle the two central energy challenges facing us today:
securing the supply of reliable and affordable energy; and effecting a rapid

transformation to a low-carbon, efficient and environmentally benign system of
energy supply.

What is needed is nothing short of an energy revolution.

— International Energy Agency, 2008

Dedicated to those who have understood that happiness and prosperity are
inextricably binded to a clean and protected environment,

to those who fight for our future,
for more justice, fairness, equity and love in this world.
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A B S T R A C T

Residual stresses in directionally solidified silicon ingots are known to
increase the likelihood of material failure, leading to unnecessary costs and
material waste. These stresses develop during solidification and cooling,
owing to thermal gradients, the multicrystalline nature of the materials,
and its impurity content.

Silicon multicrystals (mc-Si) are simply aggregates of several, rather
large single crystals. Hence, building a model for mc-Si consists in the
development of accurate constitutive equations for SoG-Si monocrystals and
the construction of multicrystalline aggregates by Finite Element methods.

Constitutive models for solar-grade silicon monocrystals (SoG c-Si) of
various complexity are derived in this thesis. Their ultimate goal is to
allow the quantification of the residual stresses in SoG-Si materials given a
thermomechanical loading path.

A physical approach to modeling plasticity in semiconductors has been
consistently adopted: all equations are based on the introduction of dislo-
cation densities, carrying plastic flow and participating to material hard-
ening with deformation. Constitutive equations are implemented into a
rate-dependent crystal plasticity kinematical framework.

The benefits of this methodology are twofold: firstly, the models are
perfectly useable in the temperature range where silicon behaves as a
perfectly elastic material, but they excel at reproducing its particularly
temperature-sensitive plastic behavior. Secondly, final dislocation densities
can be predicted by the models. These are of great use for industrial
applications, since regions of large dislocation contents also exhibit poor
electrical performance.

Consequently, the constitutive models introduced in this Ph.D. thesis
are not limited to stress calculations, but can be coupled to other physical
analyses.

An exhaustive literature review has been written, covering the aspects of
plastic deformation over multiple scales. It lays the foundation for analysis
and improvement of existing constitutive models. Systematic identification
of constitutive parameters of traditional models calls for the introduction of
new internal variables, dislocations stored in dipolar structures. Account-
ing for these immobile dislocations enables an extension of the model of
Alexander & Haasen to correctly reproduce the steady-state of deformation
during uniaxial testing of silicon monocrystals oriented for single glide.

The influence of dissolved oxygen on the plastic behavior of silicon
monocrystals is successfully reproduced by the introduction of an effective
density of mobile dislocations. This model for extrinsic materials can be
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generalized to other impurity types, provided physical parameters related
to their diffusivity and dislocation locking effect are known.

Shortcomings of this extension are solved by deriving a completely new
constitutive model, arguably the most accurate one available for study of
covalent materials. The potentially rate-limiting dislocation motion mecha-
nisms of jog dragging and pinning by localized obstacles are introduced
in the velocity law. Dislocation populations are segmented by their char-
acter and potential mobility. An accurate dislocation multiplication law
for the yield region of silicon monocrystals is introduced. The model is
shown to reproduce correctly the experimentally observed steady-state of
deformation, stress overshoot, and strong linear hardening rate in stage II.

The experimentally characterized flexural strength of SoG mc-Si bars can
be used in the constitutive models to output the fracture probability of
silicon.

Application of the extended AH model to bending cases of intrinsic and
extrinsic mono- and multicrystals, to tension of a multicrystal containing
hard SiC inclusions and to directional solidification of an intrinsic mc-Si
ingot provide valuable information about the magnitude and various length
scales over which stress heterogeneities develop in impure mc-Si materials.

Finally, some guidelines for future work are given, both on practical and
theoretical aspects.
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N O M E N C L AT U R E

a lattice parameter (m)

Aαβ long-range elastic interaction coefficient coming from mobile dislo-
cations

aαβ interaction coefficient for forest interactions

b magnitude of the Burgers vector of perfect dislocations (m)

Bαβ long-range elastic interaction coefficient coming from immobile
dislocations

bp magnitude of the Burgers vector of partial dislocations (m)

ci concentration of impurity i at the dislocation (m−3)

c∞
i concentration of impurity i dissolved in the bulk (m−3)

c(s)i solubility of impurity i (m−3)

cj jog density along the dislocation line
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I N T R O D U C T I O N

This thesis is the result of more than four years research spent at the de-
partment of structural engineering of NTNU, developing on the mechanical
properties of silicon materials.

connecting the dots

Elkem Solar, a subsidiary of Elkem (fully owned since 2011 by China
National Bluestar), developed in the 2000’s a new metallurgical process
for purification of silicon. In 2006, then-owner Orkla invested 2.7 bn NOK
in the construction of a new plant for production of Solar-grade silicon
(SoG-Si) in Kristiansand, Norway. It was to be finished in 2009.

The silicon purification process chain developed by Elkem Solar in-
cludes three steps, starting from metallurgical silicon as a raw material:
slag treatment, leaching, and directional solidification. There are several
advantages to the use of SoG-Si produced by Elkem Solar: less energy
consumption per unit weight relative to standard purification techniques,
lower GHG emissions, and lower costs; the whole without detrimental
effect on the final efficiency of the solar cell.

The DESA project (standing for Design and scale-up of Solar-grade silicon
production) has concentrated exclusively on the directional solidification
step and aimed both at gaining an understanding of the mechanical prop-
erties of multicrystalline SoG-Si materials, and at improving the process
in order to reduce the occurence of ingot breakage, hence reducing costs.
Residual stresses developing during ingot solidification and cooling have
been identified as potentially critical drivers behind the occurence of ma-
terial fracture, and the ability to quantify them depending on the process
parameters could hopefully lead to their reduction.

This goal could be achieved by tackling three aspects:

1. Model the furnace and the silicon ingot during solidification and
cooling, in order to extract the temperature fields and study the
behavior of the silicon melt (for impurity segregation purposes).

2. Use the temperature field in a detailed model of the ingot & mould
system, to compute the shape of the solidification front, melt behavior,
and stress build-up due to thermal gradients.

3. Develop a relevant and accurate constitutive model for silicon to
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2 introduction

fail at providing an accurate description of the mechanical response
of this material. Moreover, no research had been done on the mechan-
ical behavior of multicrystalline aggregates and the associated stress
developments.

This Ph.D. work has concentrated on the latest aspect, developing a con-
stitutive model for SoG-Si. Choice has been made to concentrate almost
exclusively on the plastic behavior of this material; an alternative way to
proceed would have been to focus exclusively on the fracture properties of
SoG-Si at room temperature.

SoG-Si is almost pure silicon, although of higher impurity content than
its electronic-grade counterpart (EG-Si). Loosing on purity allows for sig-
nificant cost reductions, as the marginal purification cost increases with
the number of 9’s after the 99.9 % purity content figure. Solar PV applica-
tions do not require EG-Si to perform well, but electronic devices could
not be reliable enough were they made of SoG-Si. Indeed, developing a
SoG-Si production capacity benefits both electronic chips manufacturers
and the PV industry, by increasing the amount of silicon available on the
market (therefore lowering its price) and creating taylor-designed materials,
adapted specifically to customers’ needs.

At this point, it seems important to discuss the structural properties of
SoG-Si materials. Depending on the crystallization process, SoG-Si can be
grown either in a monocrystalline form (c-Si), or as multicrystals (mc-Si).
Polycrystals (p-Si) are of no use for PV applications: as a rule of thumb,
larger grains lead to a higher solar cell efficiency because grain boundaries
are detrimental to minority carrier diffusion. This rules out p-Si as a suitable
material for photovoltaics. The material produced by Elkem Solar is
multicrystalline.

A multicrystal is simply an aggregate of several and rather large single
crystals. Each constituent grain behaves obviously as a monocrystal, albeit
of potentially inhomogeneous plastic properties owing to the irregular
impurity and inclusion distribution that follows from 1) the presence of
grain boundaries and 2) its thermomechanical history during solidification
and cooling.

This means that the mechanical properties of a multicrystal ultimately
come down to the behavior of each individual monocrystal. Understanding
and modeling accurately the mechanics of intrinsic and extrinsic c-Si is
therefore the most important step taken during this work.

Once an adequate model has been derived for c-Si, multicrystals can be
studied by means of Finite Element analyses. This is done by reproducing
the different crystals (with respect to geometry, grain orientation, impurity
and dislocation content, etc.), aggregating them together by imposing com-
patibility requirements at the grain boundaries and observing the resulting
behavior.

The logic followed in this thesis is the following:
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introduction 3

1. Analyze the scientific knowledge about silicon mechanics, be it c-Si
or mc-Si of intrinsic or extrinsic nature

2. Identify the existing models for c-Si, assess their accuracy and appli-
cability, and improve them

3. Propose an entirely new model avoiding the pitfalls of traditional
ones

4. Apply such a constitutive model to mono- and multicrystals

Following this order, the thesis is made up of four Parts. Annexes provide
additional information and results.

Each Part can be read independently on the others, although frequent
cross-referencing allows easy jumps between sections and chapters. This
choice makes it easier for the reader to start directly from the Chapter of
his or her choice, but has the drawback of implying some repetitions. These
have been minimized as much as possible.

our knowledge about silicon mechanics

The first Part, the literature review, has been written in several steps. Started
during the first year, it has been enriched with time, and covers numerous
aspects of silicon mechanics:

• Crystallography, nanoscale and atomistic processes responsible for
dislocation motion

• Macroscopic observations of intrinsic and extrinsic silicon behavior
up to very large strains for the former type

• Properties of extrinsic crystals linked to the peculiar microprocesses
taking place at dislocations

• Brittle-to-ductile transition properties and the traditional models at-
tempting to explain it, elastic and fracture properties of silicon at
room temperature

This Part constitutes arguably the most complete state-of-the-art writ-
ten on the subject of silicon mechanics. This also means that it includes
knowledge that is not used in the rest of the book. Meanwhile, all areas
covered have been deemed interesting or relevant since they provide with a
holistic view of the micromechanisms responsible for the brittle and plas-
tic behavior of silicon materials. Hopefully, this state-of-the-art will be of
great help to mechanicans willing to learn about the microscopic processes
leading to plastic deformation of semiconductors.

If the sole purpose of reading Part i is to get enough background to
understand the work detailed in the rest of the thesis, the sections and
chapters indicated by a * can be disregarded.
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4 introduction

building extensions of classical models

As mentioned in Part i, several models are readily available in the literature,
the oldest of which derived in the late 1960’s. Interestingly, its constitutive
parameters have never been tested in wide temperature and strain rate
ranges. What more, no systematic attempt to assess and compare the
accuracy of various constitutive models had been performed. This is why
Part ii starts with such an analysis.

Two questions are raised: firstly, is there any kinematic framework al-
lowing any general loading situation rather than limiting simulations to
conveniently oriented monocrystals? Secondly, is it possible to enrich ex-
isting models in order to improve their applicability in a wide range of
temperature and strain rates?

Annex A is dedicated to the introduction of the powerful rate-dependent
crystal plasticity framework (RDCP) used all throughout this thesis. Chap-
ters 6 and 7 concentrate on the extension of the oldest constitutive model
for silicon crystals. The case of extrinsic crystals is investigated as well.
Ultimately, the extended model of Alexander & Haasen derived in Part ii
is the most suitable one for industrial applications, owing to its optimal
compromise between accuracy and numerical cost.

Note that kinematics and constitutive equations are not necessarily cou-
pled: the constitutive equations have for sole goal to update the stress state
and internal variables upon a given kinematical loading. The equations can
consequently be used in a purely scalar model, or in more complicated
frameworks such as RDCP. The advantage of the latter is a more realistic
representation of actual micromechanical processes taking place, in effect
allowing for couplings between the several "degrees of freedom" of a single
crystal through the constitutive equations.

deriving a novel constitutive model

Improvements brought to the model of Alexander & Haasen extend its
validity and accuracy, but do not correct its most fundamental shortcomings.
Although physically-based, its equations still rely on gross approximations
and combinations of micromechanisms.

Part iii constitutes the most important contribution of this Ph.D. work
to materials science. A novel constitutive model for semiconductors is de-
rived in this third Part, re-investigating methodically all model components.

Dislocation motion in these materials is usually considered to proceed by
the double kink mechanism. This vision is enriched by adding the effect of
localized obstacles and jog dragging. It is shown that contrary to the case
of fcc materials, dislocation velocity in dislocated semiconductors is not
likely to be governed by pinning onto forest obstacles. A model combining
jog dragging and the double-kink mechanism is derived, including the
transition between these two rate-limiting processes.
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likely to be governed by pinning onto forest obstacles. A model combining
jog dragging and the double-kink mechanism is derived, including the
transition between these two rate-limiting processes.
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Physically-based constitutive equations are then derived and calibrated.
Although of high complexity, the resulting model is shown to allow a correct
reproduction of the stress-strain behavior of silicon with a very limited
number of unknown parameters. In particular, both the stress overshoot,
existence of single slip in stage I of intrinsic crystals and strong hardening
in stage II are explained by jog dragging on secondary dislocations.

applications to mono- and multicrystals

The last Part seeks to show some applications of the constitutive models
derived in this thesis, both to mono- and multicrystals, intrinsic or oxygen-
contaminated. Modeling of various bending tests, investigation of the
effects of hard inclusions in a multicrystal and simulation of an ingot
casting process give a wide outlook of the insights that can be gained
from advanced constitutive models.

Multicrystals are characterized by the development of inhomogeneous
stress and dislocation density distributions with deformation. It is shown
that the study of such materials cannot disregard the local crystallographic
properties of the specimen, because of the stress increases due to grain
misorientation or the presence of inclusions.

This Ph.D. thesis covers many aspects of silicon mechanics. Several con-
stitutive models of various complexity are proposed; finite element models
of industrially-relevant problems are available for further study. It is hoped
that the results introduced in this book will lead to further research into
modeling of the mechanical properties of semiconductors and SoG-Si in
particular, ultimately helping the PV industry improve the quality of its
products.
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I N T R O D U C T I O N

The more we know about a given subject, the tougher it becomes for new-
comers to gain the knowledge required to dive into research and produce
new results. The mechanical behavior of silicon materials is a typical ex-
ample of such a case. Silicon is a semiconductor, covalent crystal, presents
analogies with fcc metals and can be produced with few or no intrinsic
defects; not to mention the ability we have to control the concentration of
impurities in the crystals. Intensive research has therefore been done on
this “ideal” material since the 1950’s with the aim of understanding what
the deformation mechanisms are, not only in silicon but in a broader class
of materials. The understanding we have of deformation mechanisms in
covalent crystals is not limited to high-temperature plasticity by means of
dislocation slip. The discovery of a sharp brittle-to-ductile transition delimit-
ing clearly the ductile and brittle domains has sparked further experimental
and modeling research. Observation of dislocations in deformed silicon
crystals led the researchers to study the effects of dislocation dissociation
on motion and multiplication mechanisms; the question of the structure
of the dislocation cores has also mobilized several scientists, and found in
the last decades a renewed interest with the explosion of computational
power making first principle calculations affordable. Still, in spite of our
constantly increasing knowledge about silicon mechanics, many questions
remain unanswered.

Modeling the mechanical behavior of silicon presents several challenges.
The first one met when coming to practical applications is the temperature
range to consider. Because silicon is ductile only at high temperatures,
above roughly 800°C, the experimental study of this material is uneasy.
Germanium has consequently been often prefered to silicon as it has a
lower melting temperature. Another issue arising at high temperatures is
the question of additional thermally activated mechanisms affecting the ma-
terial behavior. As a consequence, each crystallization method yields silicon
materials with peculiar mechanical properties, influenced among others by
the crystal orientations, the impurity nature, content and distribution, the
initial dislocation density, etc.

The only way to effectively understand and ultimately model such an
ideal -yet very quickly complicated- material is to dive deep into material
physics. Modeling silicon materials is a cross-disciplinary task, gathering
results coming from different communities and bridging an old gap be-
tween material physicists and mecanicians. The advent of crystal plasticity
models in the 1980’s marked a turning point for these two communities
as microscopic processes could be implemented into macroscopic models
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10 introduction to part i

with the help of an efficient mathematical framework that is reviewed in an
Annex of this book.

Unfortunately, there are still many solid physicists who do not know the
powerful mathematical tools offered by solid mechanics; and inversely, there
are too many mecanicians who often forget the fundamental mechanisms
of plasticity. The present Part has the ambition of reviewing the current
knowledge about the physics of silicon mechanics, and is therefore suited
to mecanicians. It has been written with one idea in mind: providing with
a holistic description of deformation mechanisms in silicon, citing as many
relevant references as possible for each subject touched upon that the reader
can refer to if needed. The bibliography is by no means exhaustive, but
covers the most popular works published in the peer-reviewed literature.

Modeling the mechanical behavior of multicrystalline aggregates, widely
used for photovoltaic applications, is the primary goal of the project. Un-
fortunately, little has been done on the mechanics of mc-Si. Its electrical
properties, as well as the impurity distribution and related effects on the
solar cell or wafer performance have been extensively studied, though. The
work achieved on the mechanics of mc-Si concerns principally wafers at
room temperature, and mainly experimental results have been derived. The
attempts to model mc-Si materials are based on a monocrystalline and
isotropic representation of the material, thus neglecting the influence of
grain boundaries and grain orientations. Simulations of growth of mc-Si
materials using these basic models provide with good qualitative values
of stress and dislocation densities, but the quantitative agreement with
experimental data is quite poor [Hässler 1999, Franke 2000, Franke 2002,
M’Hamdi 2005, M’Hamdi 2006, Meese 2006]. The residual stresses in the
material that are critical to fracture assessment can therefore hardly be
predicted with such models. The lack of accurate constitutive model for
silicon materials, and more generally for semiconductors is indeed the
raison d’être of this thesis.

Any attempt to model multicrystals must be based on a solid understand-
ing of the mechanical behavior of its constituent single crystals. A huge
work has been carried out on monocrystalline silicon (c-Si) since the early
1950’s. The present Part provides the reader with this knowledge. Its use
for the development of a constitutive model is the goal of the following
Parts of this book.

This literature review is articulated as follows. A description of the crys-
tallographic and physical properties of Si is given in Chapters 1 to 3. A
special emphasis is put on the properties of dislocations as these structural
defects are the carriers of plastic deformation and are detrimental to the
efficiency of solar cells. Chapter 1 is entirely dedicated to dislocation dy-
namics in the diamond cubic lattice when motion takes place by the double
kink mechanism.

Exposing the micromechanisms of plasticity naturally leads us to their
effects on the macroscopic behavior of intrinsic crystals deformed dynami-
cally or in creep; Chapter 2 covers both the experimental results and the
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basic constitutive models for silicon single crystals. These models are based
on the dislocation theory and allow a fairly good description of the plastic
behavior of Si at high temperatures in the early stages of deformation.
Various improvements, limitations and extensions brought to the original
model of Alexander and Haasen throughout the years are also introduced.

The influence of impurities both on the dislocation motion micromech-
anisms and on the macroscopic behavior of extrinsic single crystals is
reviewed in Chapter 3. The current ways of modeling dislocation locking at
high temperatures are described as well.

Looking at fracture mechanisms in silicon towards lower temperatures
leads naturally to a survey of the brittle-to-ductile transition phenomena
in Chapter 4. The elastic properties of silicon and fracture mechanisms at
room temperature are discussed as well. Wafering of silicon ingots relies on
fracture mechanisms in the brittle range that have been explored by means
of indentation and will also be described in this last Chapter of Part i.
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1
D I S L O C AT I O N S I N S I L I C O N

This Chapter is concerned with the microscopic scale of the deformation
mechanisms. An introduction to the crystallographic structure of silicon
crystals and of the dislocations in Section 1.1 is followed by the study of slip
at high temperatures and low stresses: both the structure of dislocation cores
and the models for dislocation slip in these temperature and stress condi-
tions will be described (Sections 1.2.1 to 1.2.4, respectively). Finally, the case
of dislocations at high stresses and low temperatures will be touched upon
in Section 1.3. The present work is concerned by deformation mechanisms
at high temperatures, so the literature survey will be more developed for the
relevant case. Available reviews related to the subjects of this Chapter are
[Alexander 1968, George 1987a, George 1987b, Siethoff 1999a, Rabier 2010]
among others.

1.1 crystallography

1.1.1 Lattice parameter and thermal expansion

Silicon is a covalent material, having a diamond cubic structure with a
face-cubic centered (fcc) Bravais lattice and a two atom basis, which means
that the structure can be understood as superposition of two fcc lattices
displaced by a

4 [111], as shown in Figure 1.1. The lattice parameter is found
to be roughly a�0.543 nm at 293 K [Hull 1999]. Temperature has an effect
on the lattice through the thermal expansion coefficient ϑ, given in its
isotropic form by Eq. 1.1 valid in the whole temperature range from 120 to
1500 K [Okada 1984]:

ϑ (T) = 3.725 × 10−6 (1 − exp (−5.88 ×10−3(T − 124)
))

+ 5.548 × 10−10T
(

K−1
) (1.1)

The exponential term becomes important at temperatures below 600 K,
where a marked deviation from the linear behaviour of the coefficient starts.
The engineering thermal strain εθ = Δl/l0 reads:

εθ =
∫ T

T0

ϑ(T′)dT′ (1.2)
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14 dislocations in silicon

1.1.2 Phase transformations*

The diamond structure is found at standard pressure of 1 bar and up to its
melting temperature of 1684 K. When the hydrostatic pressure is increased,
for example under the tip of an indenter, several phase transformations
are recorded. The observation of dislocations generated under indentation
showed that their structure and motion mechanisms are fundamentally
different than at high temperatures. Instead of screw and 60° dislocations,
it is 30° and short 60° segments that are observed on the {111} planes,
independently of the axis chosen for indentation. It was thought that under
the indenter, the stress conditions exceed the theoretical shear strength,
leading to block slip [Hill 1974]. Nanoindentation leads to high hydrostatic
and shear stresses in the specimen because of the stress concentration under
the indenter tip; phase transformations can take place, and the final surface
state depends on the loading and unloading parameters. If the loading
is strong enough, a phase transformation is recorded. Upon unloading, a
layer of either amorphous silicon (a-Si) or a mix of Si-III and Si-XII phases
remain on roughly 0.5 μm, depending on the loading rate (a-Si is preferred
for high loading rates above 1 mm/min). A layer of Si-IV is then present
underneath, and thereafter a region of plastic deformation is found, where
the deformation mechanisms are the one typical for low temperature and
high stress conditions: deformation takes place through slip and twinning.
Annealing at high temperature after indentation is required to go back to
the diamond cubic structure [Kailer 1997].

Modeling of phase transformation in monocrystalline silicon dates back
to the 1990’s [Pérez 1995]. This phenomenon has since then led the develop-
ment of an extensive literature. A recent review covering the different plastic
behaviors of silicon surfaces has been written by [Zhang 2004]. At the scale
of nanoindenters, the continuum theory cannot be applied any longer and
to understand the results, molecular dynamics studies are required, using
interaction potentials instead of continuum elastic constants.

Plasticity is then understood in a broader sense than the generation
and motion of dislocations through the material. Any rearrangement of
atoms is considered as a plastic transition of the material behavior. Differ-
ent loading conditions, representing the events happening during silicon
wafers manufacturing, have been explored by [Zhang 2000, Zhang 2001,
Zhang 2004, Vodenitcharova 2004]: indentation, scratching, grinding and
polishing. These different loadings lead to different material behaviors;
Table 1.1 summarizes the results available in [Zhang 2000]. The disloca-
tions generated during scratching and grinding, typical of dislocations
produced during silicon machining, are of a special character because of
their nucleation at high stresses (see Section 1.3). It has to be noticed that in
these experiments performed at room temperature, despite local tempera-
ture increases under loads (up to 200 K) that enhance dislocation activity,
the deformations caused by dislocations and planar defects are negligible
compared to plasticity induced by phase transformation. Twelve different
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Figure 1.1: Sketch of the diamond structure. The two interpenetrating lattices are
shown in black and red, respectively. Atom bonds form tetrahedrons
(blue lines).

phases have been detected [Hull 1999], some of them being metastable and
formed only during unloading, the loading rate being also of importance
for the appearance of different phases.

The first phase transformation, from a diamond structure to an amor-
phous silicon, remains upon unloading after indentation only if the hydro-
static stress at full load reaches a critical threshold of 8 GPa at its maximum,
and if the unloading rate is high [Kailer 1997]. The second transformation
to crystalline silicon β-Sn is observed above 8 GPa, but is still found after
unloading only if the hydrostatic stress reaches 15 GPa [Zhang 2004]. These
results can be visualized in Figure 1.2. Molecular dynamics simulations
using a Stillinger-Weber potential succeed in detecting the transformation
to amorphous silicon (a-Si), but fail to model further phase transformations
[Gannepalli 2001]. Only a mixed use of different potentials has recently
allowed a satisfying simulation of the transformations up to β-Sn. At high
stresses a mixture of different phases exist and is observed both experimen-
tally and through simulations [Sanz-Navarro 2004]. It is doubtful whether
these experiments can be used systematically for mc-Si, since they are done
on oriented surfaces of a monocrystal, in controlled conditions, and without
any interferences from the grain boundaries. The anisotropy effect is strong
as demonstrated in [Garcia-Manyes 2005], and if the mechanisms are the
same whatever the orientation of the crystal, their extent varies depending
on the orientation of the surface. We concentrate in this work exclusively
on the diamond cubic structure.

1.1.3 Dislocation slip: the shuffle or glide set controversy*

Due to its analogy to the fcc structure, the primary glide planes in the
diamond cubic structure are the {111} closed-packed planes, associated to
the 〈110〉 directions. This means that 12 primary slip systems are available
for Si. The Burgers vector is of the a

2 〈110〉 type and has a magnitude of
b = 0.384 nm. The structure of dislocations in the diamond lattice has been
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16 dislocations in silicon

Indentation Scratching Grinding Polishing

Phase transf. a-Si, �-Sn a-Si a-Si a-Si, thin (nm)

Dislocations no yes yes no

Chemical reactions no no yes yes

Planar defects yes yes no no

Table 1.1: Characteristics of plasticity in silicon for different loading condi-
tions [Zhang 2000].

Figure 1.2: Thresholds for phase transformation and remaining phases after unload-
ing [Zhang 2001].

discussed by [Hornstra 1958], who examined all the theoretically possible
types of dislocation in this structure in addition to the classical screw and
60° dislocations often considered (see next Section).

A direct effect of the diamond structure on the close-packed planes {111}
is to create a stacking sequence of the type Aa Bb Cc, ABC and abc being
the sequences of the first and second fcc lattices respectively, see Figure 1.6.
Indeed, the aB pairs are connected by an interplanar spacing which is one-
third the one between Aa pairs. This means that dislocation glide should
take place between the Aa planes, firstly because of the larger interplanar
spacing (where the bonds are easier to break. This set is called shuffle set),
and because dislocation motion in the shuffle set requires the breaking
of one covalent bond, compared to three in the glide set. In which planes
dislocations are located in silicon is more or less still debated, although the
weight of evidence shifts the balance in favor of the glide set.

Energetic considerations [Duesbery 1996] showed that at low stresses the
dislocations would lie preferentially in the glide set because the energy
barrier for nucleating kink pairs on dissociated glide dislocations would be
lower than the one for nucleating perfect shuffle dislocations. The difference
between these two energy barriers would decrease up to τDG−PS � 10−2μ
where a transition from the glide to the shuffle set should take place (perfect
dislocations are experimentally nucleated at 1.1-1.5 GPa at 573 K, above
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the stress predicted by Duesbery & Joós [Rabier 2010]). This argument has
been recently criticized in the light of experimental and theoretical results
on the energy barriers for kink nucleation and migration [Pizzagalli 2008],
and several alternative mechanisms have been proposed. The reason(s) for
the transition from are still left unsolved. However, it is commonly assumed
that dislocations at low stresses are in the glide set, whereas dislocations lie
in the shuffle set at high stresses.

The case of standard stress conditions is dealt with in Section 1.2. At
increasing stress, or when interactions between dislocations are weak or
inexistent, dislocations lie in the Peierls valleys along the 〈110〉 orientations
and form hexagonal loops with segments at 120° angles as shown in Fig-
ure 1.5. Two main types of perfect dislocations can be considered in such
ideal conditions: screw and 60° dislocations, depending on the orientation
of the dislocation line relatively to the Burgers vector [Hull 1999]. As will be
seen, for energetic reasons glide dislocations are dissociated into Shockley
partials following:

a
2
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6
[21̄1̄] +

a
6
[
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]
(1.3)

Plasticity mechanisms vary depending on the temperature and/or stress,
and several domains of dislocation motion can be identified. The next
Section is devoted to the case of high temperature, low stress dislocation
structure and slip.

The transition in the dislocation core structure from the glide to shuffle
set occurs at much higher stresses, reachable at low temperature under con-
fining hydrostatic pressure [Rabier 2001]. Shuffle dislocations are then ob-
served to be perfect (non-dissociated). The prefered dislocation orientations
at room temperature differ also from those observed at high temperatures.
The case of low temperature, high stress deformation will be touched upon
in Section 1.3.
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18 dislocations in silicon

1.2 slip of dissociated dislocations at low stresses

We consider in this Section dislocation motion on their slip planes only.
Other motion mechanisms such as climb or cross-slip, although observed
in Si, are not reviewed in this Chapter.

Silicon is a covalent crystal, the bonds between atoms being strong
and hard to break. Unlike in metals, the energy barrier opposing motion
of a dislocation from one valley to the other requires breaking covalent
bonds and is very high. Dislocation motion proceeds therefore by thermally
activated nucleation and propagation of double kinks over the primary
and secondary Peierls reliefs [Alexander 1968, Hirth 1992]. When internal
stresses are low or inexistant, or when the applied stress is high, dislocations
lie in the 〈110〉 oriented Peierls valleys and take the characteristic hexagonal
shape mentioned above. However, the connection between each segment
oriented in a 〈110〉 direction is not sharp, and bends can be observed at
the corners of the hexagons both at rest and in motion [Gottschalk 1983a,
Gottschalk 1983b], their curvature κ = 1/r (r radius of the curvature) being
determined by the line tension Γ compensating for the local stress level τ
as is the case in metals:

τb = Γκ =
Γ
r

(1.4)

The line tension Γ depends on the local orientation of the dislocation
segment [Hirth 1992] but is often given in the constant line tension approx-
imation by Γ = μb2/2 [Kocks 1975, Oueldennaoua 1988]. Eq. 1.4 implies
that the radius of curvature of dislocation bends tends to increase as the lo-
cal stress decreases, i.e. when the applied stress is low or when the internal
stress strongly reduces the applied stress. At constant dislocation length this
means that bowed segments take a larger fraction of the dislocation as the
stress is decreased. Bowing of dislocations is indeed commonly observed in
the literature (see e.g. [Alexander 1974, Nishino 1984, Oueldennaoua 1988,
Yonenaga 1993]). Alexander puts forward the hypothesis that even curved
dislocations follow a velocity rule similar to that valid for straight segments
introduced in Section 1.2.2 [Alexander 1981a].

As will be seen in Section 1.2.4, a change in the dislocation velocity activa-
tion energy has been observed at very high temperatures, when additional
diffusive mechanisms are active. The exact motion mechanisms of disloca-
tions in Si as function of the stress and temperature are therefore somehow
still subject to discussion. They vary with the deformation conditions (tem-
perature, strain rate) and the structural state of the crystal (presence of
defects such as impurities, high dislocation densities, etc.). Motion of bowed
dislocations segments pinned at point defects will be described in Part II.
We will consider in this Part only the case of straight dislocations.
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1.2.1 Dissociation of glide dislocations

Stacking faults and partial dislocations

In these stress conditions glide between the aB planes (the glide set) allows
dissociation of a dislocation into two Shockley partials separated by a
stacking fault, a phenomena which cannot take place in the shuffle set
under favorable energetic conditions [Ray 1971]. The Burgers vectors of the
partials become of the a

6 〈112〉 type, with a magnitude of bp = 0.222 nm
(see Eq. 1.3). The formation of a stacking fault can originate either from the
removal of a double layer of atoms in the Aa Bb Cc sequence (a so-called
intrinsic stacking fault), or by addition of such a double layer (the fault
is then extrinsic), see Figure 1.6. The stacking fault can be thought of as
a two-dimensional twin plane bounded by two one-dimensional defects,
partial dislocations. A partial dislocation is however not a perfect one, its
Burgers vector bp not being a lattice vector.

Two or more partial dislocations can therefore combine to form a perfect
dislocation. Since there is one partial on each side of the twin plane, each
stacking fault is bounded by two partial dislocations separated by the
stress-dependent dissociation width. The dissociation width at equilibrium
d0 is given by Eq. 1.5 where A = 3.36 × 10−7 mN characterizes the elastic
interaction between the partials1 [Alexander 1999], and γSF is the stacking
fault energy:

d0 =
A

γSF
(1.5)

The ratio of the dynamic dissociation width to the equilibrium one d/d0
depends on the applied stress, the stacking fault energy and the ration of
mobilities between the partials [Wessel 1977]. In silicon, d is observed to
vary2 from 3.5 to roughly 13 nm.

The sum of the Burgers vectors of the partial dislocations gives the
Burgers vector of a perfect dislocations as described above, or to the null
vector (in the latter case, the result is no dislocation). Motion of a dissociated
dislocation must proceed by simultaneous motion of both partials if the
width of the stacking fault is to be kept constant. At low stresses the partials
are hardly distinguishable from each other (Figure 1.3a). The stress acting
on each partial being different because of their different Burgers vectors
[Peach and Koehler 1950]. High stresses lead to a widening of the stacking
fault and eventually separation of the partials, see Figure 1.3b. The threshold

1 As an approximation A =
μb2

p
2π can be used, but the type of partials and crystal anisotropy

should be accounted for.
2 Dissociation width depends on the character of the total dislocation, i.e. of its constituent

partials [Ray 1971, Wessel 1977]. Using the mean dissociation width value can be found since
metastable configurations exist due to the high Peierls potential in which the partials are
moving. It is therefore more relevant to consider the most frequent dissociation width in
the experimental distributions rather than the mean value. A discussion can be found in
[Vanderschaeve 2005, Vanderschaeve 2007].
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removal of a double layer of atoms in the Aa Bb Cc sequence (a so-called
intrinsic stacking fault), or by addition of such a double layer (the fault
is then extrinsic), see Figure 1.6. The stacking fault can be thought of as
a two-dimensional twin plane bounded by two one-dimensional defects,
partial dislocations. A partial dislocation is however not a perfect one, its
Burgers vector bp not being a lattice vector.

Two or more partial dislocations can therefore combine to form a perfect
dislocation. Since there is one partial on each side of the twin plane, each
stacking fault is bounded by two partial dislocations separated by the
stress-dependent dissociation width. The dissociation width at equilibrium
d0 is given by Eq. 1.5 where A = 3.36 × 10−7 mN characterizes the elastic
interaction between the partials1 [Alexander 1999], and γSF is the stacking
fault energy:

d0 =
A

γSF
(1.5)

The ratio of the dynamic dissociation width to the equilibrium one d/d0
depends on the applied stress, the stacking fault energy and the ration of
mobilities between the partials [Wessel 1977]. In silicon, d is observed to
vary2 from 3.5 to roughly 13 nm.

The sum of the Burgers vectors of the partial dislocations gives the
Burgers vector of a perfect dislocations as described above, or to the null
vector (in the latter case, the result is no dislocation). Motion of a dissociated
dislocation must proceed by simultaneous motion of both partials if the
width of the stacking fault is to be kept constant. At low stresses the partials
are hardly distinguishable from each other (Figure 1.3a). The stress acting
on each partial being different because of their different Burgers vectors
[Peach and Koehler 1950]. High stresses lead to a widening of the stacking
fault and eventually separation of the partials, see Figure 1.3b. The threshold

1 As an approximation A =
μb2

p
2π can be used, but the type of partials and crystal anisotropy

should be accounted for.
2 Dissociation width depends on the character of the total dislocation, i.e. of its constituent

partials [Ray 1971, Wessel 1977]. Using the mean dissociation width value can be found since
metastable configurations exist due to the high Peierls potential in which the partials are
moving. It is therefore more relevant to consider the most frequent dissociation width in
the experimental distributions rather than the mean value. A discussion can be found in
[Vanderschaeve 2005, Vanderschaeve 2007].
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authors γSF (mJ.m−2) τ∞ (MPa)

[Ray 1971] 51 ± 5 230

[Gottschalk 1979] 58 ± 6 260

[Föll 1979] 69 ± 7 310

[Sato 1981] 47 ± 5.7 210

[Alexander 1981b] 58 ± 6 260

Table 1.2: Intrinsic stacking fault energy of silicon measured by different authors.

(a) Low stress, τ = 30 MPa (b) High stress, τ = 350 MPa > τ∞

Figure 1.3: TEM observations of dislocation loops in Si crystals [Gottschalk 1983a].

stress delimiting those low- and high-stress ranges for separated motion of
the partials is given by:

τ∞ =
γSF
bp

(1.6)

γSF being the stacking fault energy of silicon. The value obtained is τ∞ �
300 MPa, see Table 1.23.

Although Hornstra initially assumed that screw dislocations were un-
likely to dissociate into Shockley partials, it has been found that all types do
(not only screw and 60° segments as discussed here, but also edge disloca-
tions [Ray 1971, Ourmazd 1981], see Figure 1.4). In silicon the intrinsic type
of stacking fault seems to be prefered, although both types can be observed
on certain dislocation characters [Gomez 1975, Wessel 1977]. Dislocations
have moreover been found to dissociate both at rest and when moving
[Gomez 1977]. A screw dislocation dissociates in the glide set into two 30°

3 [Föll 1979]: this value is obtained from observations of stacking faults in double ribbons.
Results obtained on isolated dislocations give γSF = 60 ± 10 mJ.m−2, in closer agreement with
other authors. See [Alexander 1981b].
[Sato 1981]: γSF for 60° dislocations. n-type silicon crystals (doped with P) and CZ crystals
exhibit lower mean stacking fault energies.
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Figure 1.4: Dissocation width as a function of the dislocation line orientation
[Ray 1971].

partials, whereas a 60° dislocation splits into one 30° and one 90° (edge)
partial dislocation. In addition, a 60° dislocation can be decomposed either
in a 30°-90° or in 90°-30° couple depending on which partial moves into
the intrinsic crystal, implying two types of 60° dislocations characterized
by the type of their leading and trailing partials. See Figure 1.5 for an
illustration of the different types. These different partials have different
mobilities due to their core configurations, affecting the velocity of the
dissociated dislocations [Wessel 1977, Gottschalk 1979], see Section 1.2.3.

Constrictions are observed along the dislocation lines, where both partials
merge together [Ray 1971, Gomez 1975, Gottschalk 1979]. Such constriction
points might favor cross-slip of the screw dislocations during plastic de-
formation. Dislocations in pure crystals exhibit less constrictions than in
impurity-contaminated silicon samples [Gottschalk 1979], indicating that
the presence of impurities may affect the motion mechanisms. The role of
electrically active impurities on the dissociation width can be understood as
their effect on the partial cores, then the development of a Coulomb force
would explain variations of the stacking fault energy in doped crystals
[Hirsch 1980, Sato 1981, Ohno 2010].

The definition of a first stress dependency of dislocation motion stems
from the evaluation of τ∞. At applied shear stresses τ < τ∞ it is necessary
to move both partials simultaneously (at least on a macroscopic scale) in
order to set the dissociated dislocation into motion. We will call dislocation
motion on its glide plane and in these stress conditions slip at low stresses.
At τ > τ∞ each partial can then move independently of each other and
this regime will be refered to as slip at high stresses. We will see later that
additional stress domains for dislocation motion can be defined with the
help of such stress thresholds, often conditionally reached depending on
the temperature. Prior to the examination of dislocation slip, a brief review
of the knowledge about the glide dislocation core structure is given.
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Figure 1.5: An ideal hexagonal dislocation loop in silicon, and the partials of each
segment [Sumino 1999a].

Dislocation core configuration in the glide set*

Knowledge of the core structure of dislocations in silicon is of importance
for understanding several characteristics of their motion, such as the ef-
fect of doping on dislocation velocity or the influence of the secondary
Peierls potential as discussed in Section 1.2. The discovery of dislocation
dissociation led in the late 1970’s and early 1980’s to some speculations
[Hirsch 1980, Marklund 1980] about the possible core structure of the par-
tials. The advent of atomistic simulations applied to silicon has been a
significant step in the understanding of dislocation motion mechanisms
[Bulatov 1995]. The precise mechanisms of dislocation motion appear in-
deed much more complicated than initially thought. In addition to the
complexity raised by the appearance of perfect shuffle dislocations at very
high stresses revealed both by theoretical and experimental arguments (see
Section 1.3), the case study of dissociated glide dislocations has revealed
the existence of various types of core reconstructions, numerous types of
kinks, reconstruction defects, etc. A brief overview of the complexity of
this research area is given below. As will be seen, the calculated values of
kink formation and migration energies, as well as the formation energy of
defects on partials vary significantly between the groups, sometimes in clear
contradiction with experimental results. These discrepancies come from
the use of different modeling methods and potentials between atoms. For
example the group of Nunes et al. uses total-energy tight binding (TETB)
calculations.[Bulatov 1995] used initially a Stilling-Weber potential that was
shown not to be adequate for 90° partials, and refer later [Justo 1999] to an
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Figure 1.6: Two types of stacking faults: intrinsic fault (left), and extrinsic fault
(right) [Ray 1971].

EDIP potential. See [Bulatov 2001b] for a review of the results obtained by
different methods. Note that the energy barriers computed in the following
paragraphs are the Helmoltz free energies at 0 K i.e. the internal energies
alone; the barriers at finite temperatures must account for the entropy
contribution (see e.g. Section 1.2.3).

partial reconstruction Reconstruction of the core allows for a
lowering of its energy by binding together pairs of atoms belonging to the
same plane and having dangling bonds. Note that this differs from the
usual binding involving one Si atom from each layer (e.g. a and A); the array
of reconstructed bonds forms a one-dimensional superlattice along the core.
Reconstructing a dislocation core lowers its energy and thermodynamically
favors its existence, but propagating a kink in a reconstructed core is on the
other hand more difficult since it requires breaking the reconstructed bonds
at each interatomic distance [Bulatov 1995]. Figure 1.7 shows an example
of reconstructed and unreconstructed partials. Table 1.3 summarizes the
energy Erec gained by reconstructing the different partials. Most of the
core energy comes from the bond distortions of the reconstructed cores
[Nunes 1998a]. Simulations agree on the systematic reconstruction of the
30° partial as shown in Figure 1.7. Bond reconstruction leads to a doubling
of the period along the dislocation line from b to 2b.

The case of the edge partial is more tricky as a double-period (DP)
reconstruction seems energetically very close to a simpler, single-period (SP)
reconstruction [Nunes 1998b, Bulatov 2001b], the small energy difference
at 0 K (Table 1.3) actually increasing with temperature in favor of the DP
reconstruction [Miranda 2003]. See Figure 1.8 for a schematic of the two
types. The splitting of a SP into a DP structure actually means that kinks
on the 90° partial are dissociated, doubling the period as in the case of the
reconstructed 30° partial. In the same way that dissociation of dislocations
in silicon lower their energy in the glide set, dissocation of kinks eases
their propagation along the dislocation and increase the velocity of the 90°
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Partial type Erec (eV.b−1)

30° 1.04

SP 90° 0.42

DP 90° 0.62

Table 1.3: Reconstruction energy Erec for 30 and 90 partials in Si expressed in eV per
bond [Bulatov 2001b].

Figure 1.7: Core structure of the 30° and 90° partials in silicon, view normal to
the (111) plane. Atoms above the slip plane in black, atoms below in
white. No kinks are present. The cases of unreconstructed and (typical)
reconstructed partials are shown for each type. Solitons on reconstruction
defects (DSD on the 90° partial, PSD on the 30° one) are indicated by S
[Maeda 1994].

partials. It is unclear whether kink dissociation on DP 90° partials actually
takes place in Si [Bulatov 2001b].

reconstruction defects Reconstruction defects4 (RD) exist when
one dangling bond is left at the otherwise reconstructed core. These sites
are consequently electrically active. RDs on 30° partials are called phase-
switching defects (PSDs) [Nunes 1998a]. By analogy to the PSDs on 30° par-
tials, defects at the core of a SP 90° partial are called direction-switching
defects (DSDs) because they delimit the two degenerate ground states of the
SP configuration. Examples of PSDs and DSDs can be found in Figure 1.7.
Both PSDs and DSDs have rather high formation energies but are found
to migrate easily along the dislocation lines (see Table 1.4) [Nunes 1998a].
Recent work raises the potential importance of PSDs in generating and
propagating kink pairs [Choudhury 2010]. The dynamical aspect of dislo-
cation motion being computationally prohibitive (MD simulations require
models tens of thousands of atoms large over long simulation time), most
studies have until now considered only static configurations.

4 we use here the terminology of [Nunes 1998a]. Other authors [Hirsch 1980, Justo 1999] use
the denomination antiphase defects (ADP), others call them solitons [Heggie 1983].
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Figure 1.8: Example of core reconstructions of a 90° partial. (a) unreconstructed
core (b) Single-period reconstruction (c) Double-period reconstruction
[Bulatov 2001a].

RD FRD WRD

[Nunes 1998a] [Justo 1999] [Nunes 1998a]

PSD 1.32 0.49 0.3

DSD 1.45 0.65 0.03

Table 1.4: Formation FRD and migration WRD energies (expressed in eV) of recon-
struction defects in Si according to different authors.
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Partial Kink type Uk Um Uk Um Uk Um

[Nunes 1998a] [Justo 1999] [Oyama 2004]

30° LK 0.35 1.53 0.65 1.46 0.61 1.35

30° RK 1.24 2.1 0.39 0.89 0.61 1.47

SP 90° LR/RL 0.12 1.62 0.7 0.62 - -

Table 1.5: Formation and migration energies of pure kinks in Si according to dif-
ferent authors (in eV). The definition of left and right kink for the SP 90°
partial differs from the usual meaning, see e.g. [Nunes 1998a]. Methods
employed: [Nunes 1998a] TBTE, [Justo 1999] EDIP, [Oyama 2004] DFT.

kink types Different types of kinks are present on each partial, possibly
in combination with PSDs or PSDs in the case of a 30° or 90° partial5,
respectively. Each kink or kink+RD type has its own formation and migra-
tion energy (see Figure 1.9 for the simple example of pure left and right
kinks). Table 1.5 summarizes the results given by various groups using
different methods. It can be seen that strong disagreements can be found.
Experimental results give Fk � 0.7 eV and Wm � 1.2 eV (see Section 1.2.4).
It is interesting to note that even some methods reputed to be accurate
(DFT) applied to the SP 90° partial can give values extremely far from the
experimental ones, with Uk = 0.04 eV and Um = 1.09 eV [Valladares 1998].

Kink propagation along the dislocation line proceeds in the 30° partial
by an alternance between two stable configurations 2b away from each
other, with the passage through a metastable kink configuration in between
[Justo 1999, Oyama 2004], both for left and right kinks. The calculated
migration energy for this process varies with the method employed but
remains high because of a double bond switching. Propagation of kink+RD
complexes exhibits lower energy barriers [Bulatov 2001b], high temperature
and stress conditions influence considerably the dynamic properties of kink
motion [Wang 2008]. A similar double bond switching mechanism can be
deduced in the SP 90° partial. A recent review of the knowledge about
the formation and motion of complexes on SP 90° partial can be found in
[Valladares 2007].

Adding to these few points the case of the DP 90° partial, the overall
picture becomes highly complex [Bulatov 2001a], and we will not go further
into atomistic details of dislocation motion mechanisms. This research area
is still active; of interest for the present work is the actual strong partial
reconstruction that can explain the difference in partial velocities mentioned
in Section 1.2.3 and the influence of dopants on dislocation motion reviewed
in Section 3.2.

5 A kink+DSD complex on a 90° partial is unstable or weakly stable depending on the method,
the DSD detaching from the kink very fast [Nunes 1998a, Bulatov 2001b].
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Figure 1.9: Early work did predict the existence of different types of kinks on each
partial. Here the example of “pure” left and right kinks on a 30° partial
[Marklund 1984] (see e.g. [Nunes 1998a] for other types associated to
phase switching defects).

(a) Nucleation of one kink along the line (b) Propagation of two kinks along the line

Figure 1.10: Motion of a dislocation line by nucleation and propagation of kinks. h
is the potential period.

1.2.2 Motion of perfect dislocations in covalent crystals

For more details about the kink motion mechanisms, the reader is refered to
e.g. [Kocks 1975, Nagdornyi 1988, Hirth 1992, Caillard 2003]. The case of
perfect, undissociated dislocations is considered first, before generalization
of the model to dissociated configurations.

The double kink nucleation and propagation model

It has been long assumed and confirmed by atomic simulations that dislo-
cation glide in semiconductors proceeds by formation of double kinks of
height h, followed by their sideways migration along the dislocation line.
See Figure 1.10 for a depiction of nucleation of a single or double kink in a
planar view. Propagating kinks on partials have been indeed experimentally
observed [Kolar 1996]. The primary Peierls potential that has to be overcome
for nucleation EP(y) depends on the position y of the dislocation in the
plane. Assuming that the potential has a sinusoidal form6, EP(y) is given
per unit length of the dislocation by:

EP(y) =
τPbλ

2π

(
1 − cos

(
2π

λ
y
))

(1.7)

6 A sinusoidal potential is a good model for fcc metals. The Peierls potential in covalent crystals
is much sharper.
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Figure 1.11: Thermally activated nucleation of a kink pair of height h and length Δx
in the primary Peierls potential (τ < τP). The kink width w is assumed
small compared to Δx [Kocks 1975].

where τP = max
(

1
b

dEP
dy

)
is the Peierls stress and λ the period of the po-

tential, taken as equal to h =
√

3
2 b in the following7. The Peierls energy is

defined as the amplitude of the Peierls potential, in the case of a sinusoidal
potential it is EP = τPbλ

π . Different shapes of the potential can be chosen,
see e.g. [Kocks 1975]. In covalent crystals the Peierls stress is very high, of
the order of 10−2μ. This means that the transition from thermally activated
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with νD is the attack frequency, usually taken equal to the Debye frequency
of silicon (1.34 × 1013 s−1 [Dolling 1966]), x−1

c is the density of nucleation
sites for kink pairs, F(c)

kp (τ) is the stress-dependent critical free energy
for nucleation of the kink pair and kb is Boltzmann’s constant (8.617 ×

7 This approximation is valid at low stresses with respect to the Peierls stress, τ 	 τP. For the
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Figure 1.11: Thermally activated nucleation of a kink pair of height h and length Δx
in the primary Peierls potential (τ < τP). The kink width w is assumed
small compared to Δx [Kocks 1975].
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Figure 1.11: Thermally activated nucleation of a kink pair of height h and length Δx
in the primary Peierls potential (τ < τP). The kink width w is assumed
small compared to Δx [Kocks 1975].
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Figure 1.11: Thermally activated nucleation of a kink pair of height h and length Δx
in the primary Peierls potential (τ < τP). The kink width w is assumed
small compared to Δx [Kocks 1975].
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10−5 eV.K−1). Assuming the kinks have a rather low mobility once they
have reached their final height h, the dislocation velocity reads:

vdk = PkpXh (1.9)

where X is the mean free path of kink pairs before annihilation or disap-
pearance. A single kink crosses a distance X/2 in a time Δt = X/(2vk)
with vk the kink velocity. The time for kink nucleation along this segment is
2/(PkpX). The propagating kink will therefore annihilate by collision with
another one of opposite sign if X > Xc with

Xc = 2

√
vk
Pkp

(1.10)

Xc is the minimum dislocation length required for the dislocation to move
in the collision (or length-independent) mode. For X < Xc the propagating
kinks are stopped or disappear at the dislocation ends and the velocity is
length-dependent. Eqs. 1.9 and 1.10 give immediately the dislocation velocity
in both modes:

vdk =

⎧⎨⎩ PkpLh if L ≤ Xc

2h
√

Pkpvk if L > Xc
(1.11)

The next step is to derive the probability for kink pair nucleation Pkp and the
kink velocity vk. Dislocation motion proceeds therefore by the overcoming
of two barriers: nucleation and extension of a stable kink pair over the
linear primary Peierls relief affecting Pkp, and subsequent propagation of
this kink pair until it has reached a stable configuration (entering into
vk). The question of which process governs dislocation motion in silicon
depends on the relative importance of the activation energies for these two
steps. Two models are competing for modeling the kink mobility: either it
is governed by the presence of random localized obstacles along the line,
or kink diffusion in the secondary Peierls potential controls their velocity.
Both models are described in the following.

Kink mobility controlled by random obstacles

If there was very early an agreement on the presence of a strong primary
Peierls potential keeping the dislocation lines straight and hindering their
motion, it was believed for a long time that the kink pair propagation
along the Peierls valley, leading ultimately to a forward motion of the
whole dislocation line, would be impeded by the presence of impurities or
small obstacles of energy barrier Ud, whereas the intrinsic core structure
of dislocations would not play a significant role. Figure 1.12a shows the
shape of the energy of a kink pair at low stresses as function of its separa-
tion Δx. Models neglecting the secondary Peierls potential Wm have been
suggested accordingly [Celli 1963, Möller 1978], other thermally surmount-
able obstacles such as point defects at the core of the partials (intrinsic
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or impurities), jogs and constrictions along the lines impeding kink mo-
tion [Alexander 1981a]. The critical kink pair nucleation free energy F(c)

kp
corresponds to the maximum of the kink pair free energy Fkp(Δx). Fkp
depends on the single kink nucleation free energy Fk, the elastic interaction
energy between the kinks8 Fint(Δx) and the work done by the applied stress
(Eq. 1.12).

Fkp(Δx) = 2Fk − μh2b2

8πΔx
− hbΔxτ (1.12)

Assuming that the kink separation is large compared to their width, it is
possible to derive the kink concentration ck along the dislocation line at
zero stress:

ck =
1
l

exp
(
− Fk

kbT

)
(1.13)

with l the shortest crystal-symmetry repeat distance along the line [Hirth 1992].
The derivation of dFkp/dΔx = 0 under a small9 applied stress τ yields F(c)

kp
[Caillard 2003]:

F(c)
kp = 2Fk − hb

√
hb

μτ

2π
(1.14)

This maximum of interaction energy is reached for10 Δx = xc =
√

hbμ
8πτ (see

Figure 1.12). If the mobility of kinks were governed by random localized
obstacles along the Peierls valley of strength Ud � Wm the kink velocity
would be vk ∝ exp

(
− Ud

kbT

)
. Inserting Eq. 1.14 into Eq. 1.8 and the result

into Eq. 1.11 gives an effective activation energy for dislocation motion
F = (F(c)

kp + Ud)/2 in the length-independent mode and F = F(c)
kp in the

length-dependent one. According to [Celli 1963] Pkp itself would be altered
by the presence of obstacles.

If weak obstacles along the dislocation line are inexistent or have a
small effect on determining dislocation velocity, the mean free path of
kinks is rather controlled by the secondary Peierls potential, especially if
propagation of a kink involves the breaking and reconstruction of strong
covalent bonds. This is what the model of Hirth & Lothe accounts for.

The influence of the secondary Peierls potential

The thermally activated breaking of bonds at the core allowing propagation
of kinks over a length l is characterized by the activation free energy Wm,

8 the corresponding term in [Hirth 1992] (in the isotropic approximation) includes the effect of

Poisson’s ratio on Fint = − μh2b2

8πΔx
1+ν
1−ν . The correction term is of the order of unity in Si (∼ 1.5).

We follow here the approximation of [Caillard 2003].
9 This approximation of Fkp is valid at small stresses in metals only for τ 	 τP

2π2 . At higher
stresses the Coulomb interaction does not yield adequate results. [Celli 1963] assumed the
kink width to be large with respect to b, the kink pair looking like a bulge rather than sharp
kinks such as in Figure 1.10.

10 xc is the kink pair width for which the kink pair energy is maximum. This is not the stable

kink pair width x∗ [Hirth 1992]. x∗ is found by solving F(x∗) = F∗ = F(c)
kp − kbT, so that the

probability of kink pair shrinking by thermal fluctuations is small for Δx > x∗.
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10 xc is the kink pair width for which the kink pair energy is maximum. This is not the stable
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the total energy profile for kink-pair nucleation being shown in Figure 1.12b.
The velocity of kinks is given by the rate of successful jumps over the barrier
of height Wm under an applied stress τ providing the work τlbh during
each jump of distance11 l:

vk = lνD sinh
(

τlbh
kbT

)
exp

(
−Wm

kbT

)
� νD

τl2bh
kbT

exp
(
−Wm

kbT

)
(1.15)

The probability for kink-pair nucleation Pkp is given12 by Eq. 1.16, as derived
by [Hirth 1992] or, using an alternative method, by [Caillard 2003]:

Pkp = νD
τhb
kbT

exp

⎛⎝−
F(c)

kp (τ) + Wm

kbT

⎞⎠ (1.16)

with F(c)
kp given13 by Eq. 1.14. The two motion regimes can be distinguished

depending on the length of the dislocation segment. The critical segment
length Xc reads:

Xc = 2l exp

⎛⎝ F(c)
kp (τ)

2kbT

⎞⎠ (1.17)

11 This distance is the crystal periodicity along the dislocation line. It is usually considered to be
equal to the magnitude of a perfect Burgers vector l = b. Atomistic simulations tend to show
that l = 2b (see Section 1.2.1).

12 Note that the derivation of Pkp is the trickiest part of the model. An alternative model yielding
a sublinear stress dependence of v was used in [Iunin 2001], although its results do not fit the
experimental data.

13 contrary to the model of [Celli 1963], in covalent crystals the kink width is of the order of the
magnitude of one Burgers vector, and elastic interaction dominates the energy profile also at
high stresses. Fkp can then be used in the whole stress domain. See e.g. [Caillard 2003].
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and the velocity of a perfect dislocation in a crystal with high Peierls
potential depends on its length X as follows:

vdk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
νD

τh2bX
kbT exp

(
− F(c)

kp (τ)+Wm

kbT

)
if X ≤ Xc

2νD
τh2bl
kbT exp

(
−

1
2 F(c)

kp (τ)+Wm

kbT

)
if X > Xc

(1.18)

Note that these equations should include the entropy terms of the activation
(Helmoltz) free energies [Hirth 1992]. F(c)

kp and Wm can be decomposed into

internal energy and entropy terms, respectively F(c)
kp = 2(Uk − TSk) (the

entropy term in F(c)
kp coming solely from 2Fk) and Wm = Um − TSm. If the

activation entropies do not depend on the temperature, the temperature-
dependent exponential terms in Eqs. 1.18 identified from “macroscopic”
experiments do actually incorporate only Uk and Um. The effective activa-
tion energy for dislocation motion F is equal to 1

2 F(c)
kp + Wm or F(c)

kp + Wm

depending on the length regime.
This model is valid for perfect (undissociated) dislocations. The presence

of a stacking fault and the elastic interaction between the partials induce
additional internal stresses that must be accounted for in the derivation of
the velocity of dissociated dislocations. The influence of the partial Burgers
vector is also discussed in the following.

1.2.3 Motion of dissociated dislocations in Si*

Impacts of dissociation on the double kink model

Partial dislocations have a Burgers vector of magnitude bp = b√
3

and the
theory for perfect dislocations introduced previously remains valid for each
partial. The stress they feel is however influenced by the presence of the
stacking fault ribbon between them, so an effective stress τ

(p)
e f f (see below)

must be substituted to τ in the equations of Section 1.2.2. This gives for the
kink velocity of partials:

v(p)
k = νD

τ
(p)
e f f l(p)2hbp

kbT
exp

(
−W(p)

m
kbT

)
(1.19)

where l(p) is the crystal periodicity along the partial. The kink pair nucle-
ation probability on the partial P(p)

kp reads:

P(p)
kp = νD

τ
(p)
e f f hb

kbT
exp

⎛⎝−
F(c,p)

kp (τ
(p)
e f f ) + W(p)

m

kbT

⎞⎠ (1.20)
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The kink pair interaction energy is affected by the presence of the stacking
fault. With some approximations F(p)

kp differs from Fkp only by a term
proportional to Δx, that is, the additional term can be aggregated to the
effects of the applied stress τ. The definition of the effective stress τ

(p)
e f f

comes from this manipulation. The critical kink pair nucleation free energy
becomes

F(c,p)
kp = 2F(p)

k − hb

√√√√
hb

μτ
(p)
e f f

2π
(1.21)

and finally the partial velocity reads, depending on the length regime (h
replaced by its value):

v(p)
dk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
νD

3
4

τ
(p)
e f f b3X
kbT exp

(
− F(c,p)

kp +W(p)
m

kbT

)
if X ≤ X(p)

c

νD
33/4

2
τ
(p)
e f f b3l(p)

kbT exp

(
−

1
2 F(c,p)

kp +W(p)
m

kbT

)
if X > X(p)

c

(1.22)

The final step is to determine the velocity of the total dislocations given the
ones of its constituent partials. Let us distinguish between the leading and
trailing partials. Their velocities are noted v(l)dk and v(t)dk respectively. The
effective stress acting on each partial depends on the resolved shear stress on
each partial obtained by the Peach-Koehler law [Peach and Koehler 1950],
the stacking fault energy and the elastic interaction stress τi:

τ
(l)
e f f = τ(l) − γSF

bp
+ τi

τ
(t)
e f f = τ(t) + γSF

bp
− τi

(1.23)

Imposing v(l)dk = v(t)dk in the low stress regime of this Section gives an
expression for τi − γSF

bp
and finally

vdk =
Ml Mt

Ml + Mt
τb (1.24)

with Ml and Mt the mobilities of the leading and trailing partial disloca-
tions, that read Mp = v(p)

bpτ
(p)
e f f

. Screw dislocations are constituted of two 30°

partials, giving vdk,screw = 1
2 M30τb. On the other hand, 60° dislocations are

dissociated in 30° and edge partials and the 30° one being much slower
than the edge partial vdk,60° � M30τb.

Experimental observations of moving partials

Early experimental determination of dislocation velocity revealed the dif-
ferent mobilities of screw and 60° dislocations [Alexander 1968]. The dis-
crepancy has been consistently reported throughout the years whenever
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effects of the applied stress τ. The definition of the effective stress τ
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and finally the partial velocity reads, depending on the length regime (h
replaced by its value):
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The final step is to determine the velocity of the total dislocations given the
ones of its constituent partials. Let us distinguish between the leading and
trailing partials. Their velocities are noted v(l)dk and v(t)dk respectively. The
effective stress acting on each partial depends on the resolved shear stress on
each partial obtained by the Peach-Koehler law [Peach and Koehler 1950],
the stacking fault energy and the elastic interaction stress τi:
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Imposing v(l)dk = v(t)dk in the low stress regime of this Section gives an
expression for τi − γSF

bp
and finally

vdk =
Ml Mt

Ml + Mt
τb (1.24)

with Ml and Mt the mobilities of the leading and trailing partial disloca-
tions, that read Mp = v(p)

bpτ
(p)
e f f

. Screw dislocations are constituted of two 30°

partials, giving vdk,screw = 1
2 M30τb. On the other hand, 60° dislocations are

dissociated in 30° and edge partials and the 30° one being much slower
than the edge partial vdk,60° � M30τb.

Experimental observations of moving partials

Early experimental determination of dislocation velocity revealed the dif-
ferent mobilities of screw and 60° dislocations [Alexander 1968]. The dis-
crepancy has been consistently reported throughout the years whenever
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dislocation velocity measurements were done by etch-pitting, X-ray topog-
raphy or TEM methods [George 1972, George 1979a, Kolar 1996]. Using the
lower yield point to determine dislocation velocity parameters as done by
the group of Siethoff (see Chapter 2) does not allow for discrimination be-
tween both types and reveals only the activation energy for the rate-limiting
dislocation character [Siethoff 1969].

Early measurements of dislocation velocities used an intermittent tech-
nique, meaning that the samples were deformed at high temperatures,
analyzed by etch pitting or X-ray topography at room temperature, then
heated and deformed again, etc. This method has several drawbacks and
has led to the determination of approximate values for the quantitative
activation energy of dislocation motion and dependence of the velocity on
the stress. In situ X-ray topography has shed light on this issue [Imai 1983].

When dissociated dislocations move, one can distinguish the leading and
trailing partials, being separated by the ribbon of stacking fault. As noticed
previously, the two types of perfect dislocations present in silicon have a
slightly different velocity. This difference originates from the edge partial
of the 60° perfect dislocations, which has a higher mobility (three times
that of 30° partials [Kolar 1996, Alexander 1999]). The difference in velocity
between the partials varies with temperature and tends to fade out with
increasing temperature. This difference in mobility is thought to originate
from the higher energy barrier required to break a reconstructed bond at the
dislocation core in the 30° partials (see below). Early models [Wessel 1977]
assigned the different velocities to the influence of the stacking fault on the
partial mobility.

It was originally thought that the location of the partial, leading or trailing
with respect to the dislocation motion, would also influence the partial
mobility, since the presence of the stacking fault induces an additional
dragging force on the partials [Wessel 1977, Gottschalk 1979]. The leading
partial moves in a perfect lattice, whereas the trailing one has to overcome
the force induced by the stacking fault. Climb forces would then also
affect the activation energy for dislocation motion, meaning that Schmid’s
law would not be respected in silicon. The model introduced above does
not introduce any such dependency: recent investigations show that the
discrepancies found in earlier experiments come either from the limited
amount of measurements, not able to represent in a statistically correct way
the distribution inherent to the dissociation distance; or from the misuse
of a mean dissociation width [Vanderschaeve 2005, Vanderschaeve 2007].
Schmid’s law is therefore applicable in silicon.

Results from atomistic simulations

It can be seen in Table 1.3 that reconstruction of a 30° partial lowers signifi-
cantly more its core energy than it does for a 90° partial. The reconstruction
energy per bond is equal to the energy required to break it, for example
when attempting to propagate a kink along the dislocation. Breaking recon-
struction bonds is therefore more difficult on the 30° partial. This explains
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the lower mobility of this partial type, i.e. ultimately the one of screw
dislocations compared to 60° segments; dissociation of kinks might enhance
further this discrepancy between the 90° and 30° partials [Bulatov 2001b].
Dislocation mobility in silicon can be defined entirely by the evaluation of
the activation energies for these thermally activated processes that depend
intrically on the type of partial and of kink considered [Bulatov 1995]. Cor-
recting the equations for dislocation velocity derived above, one should in
addition have in the length-dependent regime [Nunes 1998a]:
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dk = νD
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A similar expression holds for the length-independent regime. Because
the kink nucleation and migration energies depend both on the partial
considered and the kink type ([Nunes 1998a, Justo 1999], see Table 1.5), the
mesoscopic Fk and Wm derived from experiments result from the contri-
bution of left and right kinks to the overall kink pair mobility. Obviously,
being able to determine theoretically the activation energies for the different
processes involved in dislocation motion, one should be able to deduce the
macroscopic value, an exercise that still has not been successfully performed.
Theoretical work on the partials of a screw dislocation has revealed that the
entropy contribution to the activation free energy for kink migration on the
30° partial might depend on the kink type (left or right) considered, adding
further to the complexity of the atomistic motion mechanisms [Jin 2010].

An additional interesting effect of the finite width of the stacking fault on
dislocation mobility, already predicted by [Möller 1978], has been discussed
by [Cai 2000]. Using as best estimates Fk = 0.7 eV, Wm = 1.2 eV and S = 3kb
allowing reproduction of the experimental data [George 1979a, Imai 1983],
the authors determine14 the existence of a nonlinear stress-dependent dislo-
cation mobility regime below 16.8 MPa in which the partials should move
in a perfectly correlated manner because of their mutual elastic interaction
on the kink pair nucleation and propagation mechanisms (Figure 1.13).
Note that this critical stress is of the same order of magnitude as the
20 MPa threshold of [George 1979a] and of the critical stress calculated by
[Möller 1978].

This domain would be detectable only if the actual stress-dependent
dissociation width were an integral multiple of the equilibrium dissociation
width d0. Stress dependence would then be enhanced at low stresses in order
to set partials into a correlated motion regime. d0 is expressed in the model
of [Cai 2000] as a function of the stacking fault energy γSF and a nonglide
stress acting on the dissociation width. Any variation in these parameters

14 Note that the model of [Cai 2000] does not account for the elastic interaction between kinks in
a pair entering into Fkp (Eq. 1.12). This is justified for small stresses, but has the consequence
of forcing the authors to define xc = 10b in order to limit the collapse of small kink pairs.
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Figure 1.13: Simulated effect of dissociation width d on screw velocity at 1000 K.
Circles: d is a non-integral multiple of d0, kinks on both 30° partials
can be nucleated without elastic interference and the total dislocation
velocity is linear up to low stresses. Diamonds: d is an integral multiple,
and partial motion must be fully correlated [Cai 2000].

(e.g. due to impurities affecting γSF, or particular stress conditions) would
influence dislocation velocity at low stresses. This phenomena has not been
observed experimentally yet [Jacques 2001].

The presence of a highly stress dependent dislocation velocity at low
stresses was indeed justified by [Imai 1983] as the consequence of impurity
pinning at the cores since the Japanese group did not observe any deviation
of the velocity vs stress curve down to 1 MPa. The existence of a correlated
kink pair motion regime on the partials is still unresolved.

1.2.4 Microscopic mechanisms governing dislocation mobility

The previous paragraphs have detailed several features of glide dislocations
in silicon potentially affecting their motion mechanisms: dissociation into
Shockley partials, motion in a lattice with strong covalent bonds leading
to a strong lattice friction opposing dislocation motion. Some questions
can be raised: firstly, concerning the mechanism limiting the propagation
of kinks along the partials. Answering this question allows for discrim-
ination between the approaches followed by [Celli 1963] (obstacles) and
[Hirth 1992] (secondary Peierls potential). Secondly, in which length regime
dislocation motion takes place. As seen previously, the activation energy
in both domains differs by F(c,p)

kp /2. Finally, one can wonder what happens
at very high temperatures. These three questions will be addressed in the
following.
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kp /2. Finally, one can wonder what happens
at very high temperatures. These three questions will be addressed in the
following.
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What mechanism governs kink migration?

acknowledging obstacles to kink migration Early calculations
showed that the activation energy for kink pair nucleation alone would
be close to the experimentally determined one [Labusch 1965]. The im-
mediate conclusion was therefore that kink pair nucleation was the sole
rate-limiting process for dislocation motion [Alexander 1968]. Some au-
thors [Kannan 1970, George 1972, Kulkarni 1976] noted however that kink
propagation -whatever the actual governing mechanism- should indeed
take a large share of the total activation energy for dislocation motion,
although without being able to quantify more precisely the share taken by
the kink migration energy. Assuming that barriers to kink propagation were
small would lead to a viscous, high velocity motion of the kinks along the
Peierls valleys. Something had to prevent them from reaching this viscous
mode. The models introduced above proposed respectively obstacles and
the presence of a strong secondary Peierls potential as candidates. Let
us call Fkm the energy barrier to kink motion; we do not know a priori
whether Fkm = Wm (diffusion of kinks in the secondary Peierls potential) or
Fkm = Ud (obstacles along the line).

Following the view that Fkm 	 1, [Möller 1978] noted that the exact
nature of weak obstacles along the line, separated by Δl �1 μm in his model
with Δl temperature-dependent, could not be easily identified. Constrictions
limiting the kink mean free path were tentatively designed as responsible.
[Alexander 1981a], trying to find obstacles opposing sideways motion of
the kinks, identified the possible influence of jogs and intrinsic point defects,
constrictions being actually coalesced thermal jogs [Cockayne 1979].

In situ observations by means of Transmission Electron Microscopy
[Hirsch 1981a, Louchet 1981b], as well as pulse loading experiments [Farber 1986,
Nikitenko 1987] allowed for a more accurate determination of Fkm and the
formation of a consensus around Fkm � 1.2 eV. It appeared that kink mi-
gration was indeed responsible for a large share, if not the majority, of
the activation energy for dislocation motion F � 2.2 eV. Table 1.6 lists the
values of Fkm derived experimentally by several authors15. See Table 1.5 for
theoretical determinations of Ukm.

attribution to the secondary peierls potential Once it was
acknowledged that the barrier to kink migration was not negligible, the
question remained to determine where such a barrier would come from.
Potential obstacles such as jogs, radiation-induced defects or impurities
could be ruled out [Hirsch 1981a, Louchet 1981a]. The influence of point

15 [Farber 1986, Nikitenko 1987]: consider that kink motion in the secondary Peierls potential is
strongly affected by point defects.
[Yamashita 1993]: it is assumed that the value F � 2.2 eV given by the authors has been
corrected for the effect of the high applied stress.
[Gottschalk 1993]: the authors assume that activation energy for motion of edge segments
constituted of densely packed geometrical kinks is equal to their motion activation energy.
They neglect kink mutual interactions, which could explain the high value derived.

1.2 slip of dissociated dislocations at low stresses 37

What mechanism governs kink migration?

acknowledging obstacles to kink migration Early calculations
showed that the activation energy for kink pair nucleation alone would
be close to the experimentally determined one [Labusch 1965]. The im-
mediate conclusion was therefore that kink pair nucleation was the sole
rate-limiting process for dislocation motion [Alexander 1968]. Some au-
thors [Kannan 1970, George 1972, Kulkarni 1976] noted however that kink
propagation -whatever the actual governing mechanism- should indeed
take a large share of the total activation energy for dislocation motion,
although without being able to quantify more precisely the share taken by
the kink migration energy. Assuming that barriers to kink propagation were
small would lead to a viscous, high velocity motion of the kinks along the
Peierls valleys. Something had to prevent them from reaching this viscous
mode. The models introduced above proposed respectively obstacles and
the presence of a strong secondary Peierls potential as candidates. Let
us call Fkm the energy barrier to kink motion; we do not know a priori
whether Fkm = Wm (diffusion of kinks in the secondary Peierls potential) or
Fkm = Ud (obstacles along the line).

Following the view that Fkm 	 1, [Möller 1978] noted that the exact
nature of weak obstacles along the line, separated by Δl �1 μm in his model
with Δl temperature-dependent, could not be easily identified. Constrictions
limiting the kink mean free path were tentatively designed as responsible.
[Alexander 1981a], trying to find obstacles opposing sideways motion of
the kinks, identified the possible influence of jogs and intrinsic point defects,
constrictions being actually coalesced thermal jogs [Cockayne 1979].

In situ observations by means of Transmission Electron Microscopy
[Hirsch 1981a, Louchet 1981b], as well as pulse loading experiments [Farber 1986,
Nikitenko 1987] allowed for a more accurate determination of Fkm and the
formation of a consensus around Fkm � 1.2 eV. It appeared that kink mi-
gration was indeed responsible for a large share, if not the majority, of
the activation energy for dislocation motion F � 2.2 eV. Table 1.6 lists the
values of Fkm derived experimentally by several authors15. See Table 1.5 for
theoretical determinations of Ukm.

attribution to the secondary peierls potential Once it was
acknowledged that the barrier to kink migration was not negligible, the
question remained to determine where such a barrier would come from.
Potential obstacles such as jogs, radiation-induced defects or impurities
could be ruled out [Hirsch 1981a, Louchet 1981a]. The influence of point

15 [Farber 1986, Nikitenko 1987]: consider that kink motion in the secondary Peierls potential is
strongly affected by point defects.
[Yamashita 1993]: it is assumed that the value F � 2.2 eV given by the authors has been
corrected for the effect of the high applied stress.
[Gottschalk 1993]: the authors assume that activation energy for motion of edge segments
constituted of densely packed geometrical kinks is equal to their motion activation energy.
They neglect kink mutual interactions, which could explain the high value derived.

1.2 slip of dissociated dislocations at low stresses 37

What mechanism governs kink migration?

acknowledging obstacles to kink migration Early calculations
showed that the activation energy for kink pair nucleation alone would
be close to the experimentally determined one [Labusch 1965]. The im-
mediate conclusion was therefore that kink pair nucleation was the sole
rate-limiting process for dislocation motion [Alexander 1968]. Some au-
thors [Kannan 1970, George 1972, Kulkarni 1976] noted however that kink
propagation -whatever the actual governing mechanism- should indeed
take a large share of the total activation energy for dislocation motion,
although without being able to quantify more precisely the share taken by
the kink migration energy. Assuming that barriers to kink propagation were
small would lead to a viscous, high velocity motion of the kinks along the
Peierls valleys. Something had to prevent them from reaching this viscous
mode. The models introduced above proposed respectively obstacles and
the presence of a strong secondary Peierls potential as candidates. Let
us call Fkm the energy barrier to kink motion; we do not know a priori
whether Fkm = Wm (diffusion of kinks in the secondary Peierls potential) or
Fkm = Ud (obstacles along the line).

Following the view that Fkm 	 1, [Möller 1978] noted that the exact
nature of weak obstacles along the line, separated by Δl �1 μm in his model
with Δl temperature-dependent, could not be easily identified. Constrictions
limiting the kink mean free path were tentatively designed as responsible.
[Alexander 1981a], trying to find obstacles opposing sideways motion of
the kinks, identified the possible influence of jogs and intrinsic point defects,
constrictions being actually coalesced thermal jogs [Cockayne 1979].

In situ observations by means of Transmission Electron Microscopy
[Hirsch 1981a, Louchet 1981b], as well as pulse loading experiments [Farber 1986,
Nikitenko 1987] allowed for a more accurate determination of Fkm and the
formation of a consensus around Fkm � 1.2 eV. It appeared that kink mi-
gration was indeed responsible for a large share, if not the majority, of
the activation energy for dislocation motion F � 2.2 eV. Table 1.6 lists the
values of Fkm derived experimentally by several authors15. See Table 1.5 for
theoretical determinations of Ukm.

attribution to the secondary peierls potential Once it was
acknowledged that the barrier to kink migration was not negligible, the
question remained to determine where such a barrier would come from.
Potential obstacles such as jogs, radiation-induced defects or impurities
could be ruled out [Hirsch 1981a, Louchet 1981a]. The influence of point

15 [Farber 1986, Nikitenko 1987]: consider that kink motion in the secondary Peierls potential is
strongly affected by point defects.
[Yamashita 1993]: it is assumed that the value F � 2.2 eV given by the authors has been
corrected for the effect of the high applied stress.
[Gottschalk 1993]: the authors assume that activation energy for motion of edge segments
constituted of densely packed geometrical kinks is equal to their motion activation energy.
They neglect kink mutual interactions, which could explain the high value derived.

1.2 slip of dissociated dislocations at low stresses 37

What mechanism governs kink migration?

acknowledging obstacles to kink migration Early calculations
showed that the activation energy for kink pair nucleation alone would
be close to the experimentally determined one [Labusch 1965]. The im-
mediate conclusion was therefore that kink pair nucleation was the sole
rate-limiting process for dislocation motion [Alexander 1968]. Some au-
thors [Kannan 1970, George 1972, Kulkarni 1976] noted however that kink
propagation -whatever the actual governing mechanism- should indeed
take a large share of the total activation energy for dislocation motion,
although without being able to quantify more precisely the share taken by
the kink migration energy. Assuming that barriers to kink propagation were
small would lead to a viscous, high velocity motion of the kinks along the
Peierls valleys. Something had to prevent them from reaching this viscous
mode. The models introduced above proposed respectively obstacles and
the presence of a strong secondary Peierls potential as candidates. Let
us call Fkm the energy barrier to kink motion; we do not know a priori
whether Fkm = Wm (diffusion of kinks in the secondary Peierls potential) or
Fkm = Ud (obstacles along the line).

Following the view that Fkm 	 1, [Möller 1978] noted that the exact
nature of weak obstacles along the line, separated by Δl �1 μm in his model
with Δl temperature-dependent, could not be easily identified. Constrictions
limiting the kink mean free path were tentatively designed as responsible.
[Alexander 1981a], trying to find obstacles opposing sideways motion of
the kinks, identified the possible influence of jogs and intrinsic point defects,
constrictions being actually coalesced thermal jogs [Cockayne 1979].

In situ observations by means of Transmission Electron Microscopy
[Hirsch 1981a, Louchet 1981b], as well as pulse loading experiments [Farber 1986,
Nikitenko 1987] allowed for a more accurate determination of Fkm and the
formation of a consensus around Fkm � 1.2 eV. It appeared that kink mi-
gration was indeed responsible for a large share, if not the majority, of
the activation energy for dislocation motion F � 2.2 eV. Table 1.6 lists the
values of Fkm derived experimentally by several authors15. See Table 1.5 for
theoretical determinations of Ukm.

attribution to the secondary peierls potential Once it was
acknowledged that the barrier to kink migration was not negligible, the
question remained to determine where such a barrier would come from.
Potential obstacles such as jogs, radiation-induced defects or impurities
could be ruled out [Hirsch 1981a, Louchet 1981a]. The influence of point

15 [Farber 1986, Nikitenko 1987]: consider that kink motion in the secondary Peierls potential is
strongly affected by point defects.
[Yamashita 1993]: it is assumed that the value F � 2.2 eV given by the authors has been
corrected for the effect of the high applied stress.
[Gottschalk 1993]: the authors assume that activation energy for motion of edge segments
constituted of densely packed geometrical kinks is equal to their motion activation energy.
They neglect kink mutual interactions, which could explain the high value derived.



38 dislocations in silicon

author Fkm (eV) T (K) τ (MPa) dislocation

[Hirsch 1981a] ≤ 1.2 693 270 90° P

[Louchet 1981b] 1.2 873 90 60°

[Vanderwalker 1984] 1.2 723 90° P

[Farber 1986] 1.58 873 7 60°

[Nikitenko 1987] 1.6 873 7 60°, screw

[Gottschalk 1987] ≤ 1.2 373 200 60°

[Gottschalk 1993] 1.8 693 50 60°, screw

[Farber 1993] 1.5 873 7 edge

[Yamashita 1993] 1.2 773 300 60°

[Kolar 1996] 1.24 403 275 90° P

[Alexander 1999] 1.7 873 110 90° P

[Vanderschaeve 2000] 1.3 813 550 60°, screw

Table 1.6: Kink migration energy barrier Fkm experimentally determined by differ-
ent authors. “dislocation” precises the dislocation character on which
parameter identification has been done. P: partial.

defects under electron beam irradiation is commonly reported16 and makes
it difficult to separate the intrinsic kink motion mechanism from pinning
artefacts at temperatures above ∼ 500 K, where kink pair nucleation can
proceed by thermal activation [Gottschalk 1987]. [Kolar 1996], using HREM,
could not determine if obstacles or diffusion were governing at 873 K be-
cause the moving partials were observed under beam irradiation enhancing
kink nucleation (so-called REDG, Radiation Enhanced Dislocation Glide
[Maeda 1996, Caillard 2003]) and promotes diffusion of point defects and
impurities. In this case, the authors observed unpinning by thermal acti-
vation at obstacles of height 2.4 eV; pinning was tentatively attributed to
the presence of oxygen at the reconstruction defects affected by irradiation.
It is however unclear what happens without the presence of the electron
beam. The same team [Alexander 1999] assign Wm = 1.24 eV preferentially
to the secondary Peierls potential. The higher value identified at 873 K is
attributed to a possible stress dependence of Wm.

Turning to atomistic simulations to help solve this issue, it seems that
kink migration is limited by the presence of the secondary Peierls potential
and not by obstacles. This is explained by the core reconstruction that
implies bond breaking, shifting and straining as fundamental processes
upon propagation of kinks [Bulatov 2001b]. The model of Hirth & Lothe
(HL model in the following) is therefore believed to be the relevant one to
consider.

16 The 90° partial is particularly affected by unidentified pinning points observed under beam
irradiation at intermediate temperatures. In extreme cases, dissociated dislocations form
“noses”, the 90° partial lagging far behind the 30° one [Wessel 1977, Gottschalk 1987].
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the crucial role of point defects It must be underlined in the
meantime that this does not prevent obstacles on the dislocation line to
play a role in affecting kink nucleation or migration processes, especially
at high temperatures where point defects come into play (the example
of [Kolar 1996] being flagrant). The Russian group (Farber, Nikitenko,
Petukhov and colleagues) developed a model in which the presence of
point defects could favor kink nucleation by distorting the core, but also af-
fect its migration [Farber 1986, Nikitenko 1989, Farber 1993]. The effective
stress acting on kink would be the applied stress τ reduced by a starting
stress τpd due to the inhomogeneous accumulation of point defects in the
dislocation stress field and at its core, estimated to range from 1.5 to 2.5 MPa
at 873 K [Farber 1993]. Such a model can explain their results obtained by
intermittent loading of samples. The increase of the effective activation
energy for dislocation motion observed at very high temperatures (see
below) is also thought to be closely linked to the role of point defects on
kink nucleation and migration processes.

A model based on locking of expanding kink pairs has also been sug-
gested, without any precise identification of the pinning obstacles [Maeda 1989].
These obstacles would then be strong enough to block the expansion of a
single kink, but weak enough to be overcome when a kink of opposite sign
collides the immobilized one.

More generally, the role of point defects is often mentioned in the liter-
ature as a potential candidate for alteration of the energy barriers to the
double kink mechanism. Atomistic calculations and molecular dynamics
have indeed stressed the role of reconstruction defects in promoting kink
migration and acting as nucleation centers for kink pairs. For example,
observations of a tremendous increase of the velocity of 60° dislocation seg-
ments upon reversal of the applied stress, dependent on the heat treatment
prior to backwards motion [Nikitenko 1984] were linked to the effects of
point defects left by the trailing dislocation on its glide plane, enhancing
the kink formation rate and diffusivity but also leading to strong pinning of
the kinks at obstacles separated by Δl �0.4 μm [Farber 1989]. Whether the
point defects are dragged along with the moving dislocation or left behind
in its glide plane is still unclear. Overall the picture seems quite intricated
and not completely solved yet.

Which length regime governs dislocation motion?

As seen previously, whatever the model chosen at small dislocation lengths
the activation energy for its motion should be increased. The question is
obviously what the critical length is for appearance of this motion mode.
It has traditionally been assumed that dislocation segments were long
enough to disregard the length-dependent regime. Early considerations
gave Xc ≤20 μm [George 1972]. Improvement of the experimental methods,
from double etching to X-ray topography and then HVEM observation of
dislocations, ultimately allowed for the observation of the length-dependent
motion regime in silicon.
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As seen previously, whatever the model chosen at small dislocation lengths
the activation energy for its motion should be increased. The question is
obviously what the critical length is for appearance of this motion mode.
It has traditionally been assumed that dislocation segments were long
enough to disregard the length-dependent regime. Early considerations
gave Xc ≤20 μm [George 1972]. Improvement of the experimental methods,
from double etching to X-ray topography and then HVEM observation of
dislocations, ultimately allowed for the observation of the length-dependent
motion regime in silicon.
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observations of length-dependent dislocation motion The
critical dislocation length Xc has been estimated by [Hirsch 1981a] to be
roughly 0.2 μm within a factor 2 or 3 whereas [Louchet 1981a] determined
independently from the former group Xc =0.4 μm at 873 K and τ = 90 MPa
[Louchet 1981b]. Similarly, relaxation of misfit strain in heteroepitaxial lay-
ers at 300 MPa and 773 K exhibited a length-effect for dislocation lengths
below roughly 0.85 μm [Yamashita 1993]. Using jogged edge dislocations at
low temperatures (693 K and 50 MPa), [Gottschalk 1993] could not observe
the existence of a length-dependent velocity regime, neither for edge nor for
screw or 60° segments. All in all it remained clear that the length-dependent
regime was limited to very small dislocation lengths. Identification of the
dislocation velocity parameters by means of macroscopic observations
would indeed require the use of the velocity expressions at X > Xc, since
all observations were done on segment lengths of several tens of microns
or more [George 1972, Imai 1983].

length-independent regime : entropy contribution If one com-
pares the value of the preexponential factor of the dislocation velocity
given by Eq. 1.18 in the length-independent regime to experimental re-
sults [Imai 1983], it appears clearly that the discrepancy of several orders
of magnitude poses a problem. Either the double kink mechanism is not
the actual reponsible for dislocation motion, or there might be another
unknown factor. Taking a large entropy term S � 8kb would bridge the
gap between experiment and theory, but this high value is suspicious. Re-
fined calculations yielded S � 5.5 kb, the largest share of the entropy term
coming from kink migration [Marklund 1985]. [Gottschalk 1993] derived
Sm = 3.7 kb from edge segments, and S = 2.5 kb. Although explaining the
inconsistency between those two values by the effect of point defects, it is
highly probable that it comes partly from the overestimation of Wm from
the velocity of edge dislocations. Recent atomistic computations, in addition
to approximating the entropy of kink migration on 30° partial dislocations
to � 2 kb [Jin 2010], raise the question of a kink type-dependency of Sm.

revival of the obstacle-controlled motion regime Some au-
thors pretend that dislocations in silicon propagate in the length-dependent
mode, with an apparent dislocation length of roughly 1 μm due to the
presence of impurities along the lines preventing further propagation of
the kinks. This has been shown by observing dislocations in epitaxial layers
and computing the activation energy for dislocation motion in the two ap-
parently distinct regimes [Yamashita 1993]. An additional argument is the
closer agreement between theoretical and experimental velocity prefactors
without invoking large entropy terms if one considers that motion always
proceeds in the length-dependent regime. Their model of kinks stopped
at obstacles overcome when an opposite kink collides [Maeda 1989] would
then explain the existence of an effective dislocation length. The atomistic
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computations of [Oyama 2004] support this hypothesis. The issue is still
debated.

Dislocation motion at very high temperatures

Additional diffusion processes at the core are believed to become rate-
controlling towards higher temperatures (T � 0.75 Tm, 1320 K in Si), as
translated by an increase in the apparent activation energy of the dislocation
motion at very high temperatures for 60° dislocations, from U � 2.2 eV
to U � 4 eV [Farber 1982, Siethoff 1999a, Siethoff 2002]. The transition tem-
perature increases as the stress is lowered, and strain rates larger than
� 10−3 s−1 seem to prevent the appearance of this deformation stage. Pre-
strained crystals do exhibit a different mechanical behavior with higher
U only closer to the melting point than virgin samples [Siethoff 1999a].
The exponential prefactor changing as well, dislocation velocity is actually
enhanced at very high temperatures. This temperature domain causes a
breakdown of the double kink model, and additional diffusion-controlled
mechanisms such as climb tend to govern dislocation motion. Such a
change of regime has also been observed in germanium crystals, although
accompanied with a decrease of the dislocation velocity evolution with tem-
perature [Siethoff 2002]. Note that such a significant change in the velocity
parameters has not been detected by analysis of the upper yield stress of
dislocation-free intrinsic and CZ silicon crystals [Yonenaga 1996b], leaving
some questions about what the conditions are for the appearance of a
special motion regime at very high temperatures.

At high homologous temperatures, lattice friction tends to disappear to
leave obstacles (as impurities, solute atoms, point defects...) and diffusion-
controlled processes (like climb and cross-slip) control the motion mecha-
nisms. Drag of thermally formed jogs along screw segments17 [Kannan 1970]
has been mentioned as causing local bowing of the dislocations, still without
becoming rate-controlling at 1323 K. All in all, the transition from vacancy
to interstitial self-diffusion is believed to cause such a large change in the
dislocation activation energy [Siethoff 1999a]. These changes in microscopic
processes have an influence on the macroscopic behavior of silicon crystals
as will be discussed in Section 2.1.1.

Slip in these conditions is commonly modeled in the literature of fcc
metals by the incorporation of a mechanical threshold acting on the stress
dependence of dislocation velocity, representing the effects of the disloca-
tion forest. The stress exponent increases also tremendously. This regime
is characterized by activation volumes much higher than in the case of
motion by means of kink pair nucleation and propagation [Kulkarni 1980].
A unified model exists but is not easy to implement because the expression
for the dislocation motion is not available in closed-form [Dour 2002]. As

17 The jog formation energy Uj was identified by measuring the mean spacing lj between pinning
points at 1323 K (assumed to be due to thermal jogs), varying as lj = b exp(Uj/kbT) and
Uj = 1.2 eV [Hirth 1992].
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mentioned previously, there is no single dislocation motion mechanism
ruling the whole temperature range from the melting point.

1.2.5 Dislocation generation

It is nowadays possible to produce virtually dislocation-free silicon crys-
tals, with the help of the FZ or CZ methods. When the crystal is initially
dislocation-free, surface defects act as favorable dislocation nucleation
sources as cross-slip is enhanced by the free surfaces leading to local
constriction of the screw segments (see e.g. [George 1973, Kirscht 1978]).
Clusters of defects in the bulk can also generate dislocations. When moving,
dislocations multiply through thermally activated double-cross slip mecha-
nism, as has been demonstrated in [Vallino 2001], or through activation of
Frank-Read sources that dominate at lower temperatures, or by activation of
secondary slip systems towards larger strains. When the dislocation density
increases in slip bands, dislocations move on to parallel planes and multi-
ply from there. Dislocation glide and flow is generally not homogeneous
at the onset of plasticity if the temperature is not close enough from the
melting point or the initial dislocation density is too low. Parallel glide
bands are formed that are separated by dislocation-free zones, as observed
in germanium crystals [Nyilas 2004].

The question of fixed dislocation sources still remains at the onset of
plastic deformation, since to form a stable source the poles have to be
stabilized, and merely unstable dislocation sources have been observed.
Only later can sources of the Frank-Read type be activated, although this
mechanism depends strongly on the stress and temperature conditions.
[Moulin 1999a] have studied extensively this type of source both for high
stress plasticity and for the low stress range [Moulin 1997, Moulin 1999b].
This mechanism was already suggested by[Alexander 1968]. The role of
impurities present in as-grown silicon crystals can be raised here, since they
can act as pinning points for dislocations and therefore act as potential sites
for nucleation of fixed and stable sources at lower strains than in intrinsic
crystals. These sources must nevertheless be submitted to a critical stress
in order to be activated. Dislocation multiplication mechanisms will be
discussed more thoroughly in the next Part of this work, as a prerequisite
to modeling the mechanical behaviour of silicon materials. The following
Section is dedicated to dislocation nucleation and motion at high stresses-
low temperatures.
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plastic deformation, since to form a stable source the poles have to be
stabilized, and merely unstable dislocation sources have been observed.
Only later can sources of the Frank-Read type be activated, although this
mechanism depends strongly on the stress and temperature conditions.
[Moulin 1999a] have studied extensively this type of source both for high
stress plasticity and for the low stress range [Moulin 1997, Moulin 1999b].
This mechanism was already suggested by[Alexander 1968]. The role of
impurities present in as-grown silicon crystals can be raised here, since they
can act as pinning points for dislocations and therefore act as potential sites
for nucleation of fixed and stable sources at lower strains than in intrinsic
crystals. These sources must nevertheless be submitted to a critical stress
in order to be activated. Dislocation multiplication mechanisms will be
discussed more thoroughly in the next Part of this work, as a prerequisite
to modeling the mechanical behaviour of silicon materials. The following
Section is dedicated to dislocation nucleation and motion at high stresses-
low temperatures.
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The study of high stress (or low temperature) plasticity in silicon is of inter-
est for specific situations e.g. wafer cutting or bulk material machining. The
plasticity mechanisms differ from high-temperature slip; for example twin-
ning gains some importance as the temperature is lowered, although the
formation of twins depends also on favorable crystallographic orientations.
Whereas many different research groups studied high temperature silicon
plasticity, we owe our knowledge about dislocations at low temperature
only to a handful of teams, almost exclusively to the French group based at
the University of Poitiers. The first articles reporting experimental results
obtained under a confining hydrostatic pressure date back the the early
1980’s [Castaing 1981]. Compared to the case of dislocations in the glide
set, this branch of silicon plasticity is therefore rather young. A review of
our knowledge of high stress plasticity in silicon is available [Rabier 2010];
the reader is refered to it for more details beyond the few points we will
touch upon in the following.

1.3.1 Low temperature plasticity under confining hydrostatic stress

High stresses can be only conditionally reached: if the temperature is too
high, silicon will yield at low stresses and stresses high enough to activate
the new mechanisms will never be reached. Two methods exist for solving
this issue, relying respectively on nanoindentation and the use of a high
confining pressure. Results derived from the former method have been
introduced in Section 1.1. Some drawbacks of using nanoindentation are
the lack of knowledge of the stress tensor under the indenter tip, the
very localized plastic region and the phase transitions that take place
above 12 GPa. The best method to observe these mechanisms is actually to
study silicon samples under high hydrostatic pressures, still below 12 GPa
in order to avoid transition to a β-Sn phase, so that brittle fracture is
prevented [Castaing 1981]. Increasing the confining pressure to 5 GPa, it
became possible to deform plastically dislocation-free silicon samples at
room temperature in the beginning of the 2000’s [Rabier 2000]. Table 1.7
summarizes the temperatures and strain rates that can be reached with
different pressures and sample preparations.

Core transformations: from glide dissociated to shuffle perfect and vice-versa

Prestraining of the samples at high temperatures leads to the generation of
dislocations able to carry the plastic flow imposed at lower temperatures,
and allows to lower further the temperature at which plasticity can be
observed. Prestraining has however the drawback of leaving the imprint of
high-temperature characteristics on the dislocations: these are observed to
be still dissociated at high stresses, although the motion of their partials is
uncorrelated [Castaing 1981, Demenet 1984].
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author T (K) γ̇ (s−1) P (GPa) sample type

[Castaing 1981] 673-873 5 × 10−5 − 5 × 10−6 1.5 〈100〉 disl.free

[Castaing 1981] 548-673 5 × 10−6 1.5 〈100〉 prestrained

[Demenet 1984] 660-923 2 × 10−5 10−4 〈123〉 prestrained

[Demenet 1987] 698 2 × 10−6 1.5 〈100〉 & 〈123〉 disl.free

[Rabier 2000] 293-323 5 × 10−5 5 〈123〉 disl. free

[Rabier 2001] 293 5 × 10−5 5 〈123〉 disl. free & prestrained

Table 1.7: Evolution of the observation temperature with increase of the hydrostatic
stress (P) with time. [Demenet 1984] used a three-stages deformation
protocol to be able to deform samples at atmospheric pressure.

The possibility of core transformation (from dissociated generated at high
temperatures to perfect when stressed at low temperature and vice-versa)
has been explored [Rabier 2005]. Cross-slip and climb are two mechanisms
allowing for moving a dislocation from a set to another. Since climb requires
the thermally activated diffusion of point defects to the core, it is thought
that at room temperature cross-slip should prevail. Cross-slip of perfect
dislocations is straightforward if the applied stress on the collinear slip
system is high enough; cross-slip of dissociated dislocations requires the
presence of constrictions to proceed. In spite of this, it appears that no core
transformation can take place. Notwithstanding the case of the applied
stress widening the stacking fault up to uncorrelated motion of the partials,
even a stress state bringing the partials closer to each other cannot transform
a dissociated dislocation back into a perfect one [Rabier 2001]. The opposite
transformation, from perfect to dissociated dislocations upon annealing at
high temperatures (up to 958 K), has not shown to be likely either, glide
dislocations being nucleated from crystalline defects (e.g. crack edges from
the low-temperature deformation stage) [Rabier 2005] and transformation
taking place locally at low rates [Rabier 2010]. Cross-slip of a perfect screw
dislocation has in addition been shown by atomistic simulations to be im-
possible, making the transition from perfect in the shuffle set to dissociated
in the glide set even harder [Rabier 2010, Rabier 2007]. Higher tempera-
tures could help dislocation climb by enhancing point defect concentration
and diffusion. These result show that the core structure of dislocations
does not only depend on the applied stress/temperature but also on the
thermodynamical state of the crystal prior to its deformation.

Characteristics of high stress deformation

Samples deformed at low temperatures contain microcracks, and are dis-
located. Those deformed under confining pressure after prestraining con-
tain dissociated dislocations whose partials have moved in an uncorre-
lated manner. Microtwins and twins are also observed in prestrained sam-
ples, provided the compressive crystallographic orientation is favorable
[Castaing 1981, Demenet 1987]. A phase change to an hexagonal structure
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Figure 1.14: Perfect dislocation half-loops nucleated at crack edges. Deformation
at room temperature, γ̇ � 5 × 10−5 s−1 and 5 GPa confining pressure
[Rabier 2001].

has been reported at low hydrostatic pressures (700 MPa), and is thought
to be stabilized by the presence of twins [Demenet 1987].

Perfect dislocations are emitted from microcracks that act as nucleation
sources under hydrostatic stresses around 5 GPa [Rabier 2000]. Observation
of the material after testing revealed the existence of perfect dislocations
(assumed to be in the shuffle set), on the {111} planes and Burgers vec-
tors a

2 〈110〉. Dislocations are aligned not only along the 〈110〉 directions
(screws) but also following Peierls valleys oriented along 〈112〉/30° and
〈123〉/41°, the characteristic hexagonal shape of high-temperature dissoci-
ated dislocations being lost (see Figure 1.14). Some short 60° segments are
however observed. These orientations specific to perfect dislocations are
also observed at scratches made on silicon surfaces at room temperature
and atmospheric pressure [Rabier 2000, Rabier 2010].

The 〈123〉/41° dislocations are thought to be reconstructed, made up of
geometrical kinks alternating between 30° and 60° segments. The other
dislocation orientations are less prone to reconstruction because the dan-
gling bonds of perfect dislocations are oriented along the normal to the
dislocation plane, a less favorable orientation for bond pairing. A direct
consequence of unreconstructed core is a lower Peierls stress opposing
dislocation motion. The motion of perfect dislocations has been investigated
by means of atomistic simulations for the sole case of the screw segments,
and very little is known about the other dislocation characters.

1.3.2 Twinning

In the high stresses-low temperatures domain, typically below 873 K, de-
formation of prestrained samples by dislocation glide progressively shifts
in favor of twinning [Yasutake 1987, Vanderschaeve 2005]. The twins and
microtwins detected in early confining pressure experiments are linked
only to 〈100〉 compression loading axes [Demenet 1987]; similarly twins
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In the high stresses-low temperatures domain, typically below 873 K, de-
formation of prestrained samples by dislocation glide progressively shifts
in favor of twinning [Yasutake 1987, Vanderschaeve 2005]. The twins and
microtwins detected in early confining pressure experiments are linked
only to 〈100〉 compression loading axes [Demenet 1987]; similarly twins
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Figure 1.14: Perfect dislocation half-loops nucleated at crack edges. Deformation
at room temperature, γ̇ � 5 × 10−5 s−1 and 5 GPa confining pressure
[Rabier 2001].
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appear in tension provided the loading is aligned in a 〈110〉 direction. This
means that twin planes can be formed on favorable crystallographic planes
only. Stresses required to let twinning overcome dislocation slip are larger
than τ∞. This deformation mode is characterized by a velocity law similar
to the standard slip deformation, but with a higher stress dependence and
slightly lower activation energies. Once again, the (twinning) partials show
a different velocity depending on their type.

The theoretical model of twin formation proposed by [Pirouz 1987] was
confirmed by simulations to work in certain stress/temperature conditions:
twin generation can take place through successive cross-slip and Frank-
Read mechanisms [Moulin 1999a]. Nevertheless, this model and the related
simulations imply that the partials have a different mobility depending
on their location with respect to the stacking fault. As noticed previously,
this might not be the case [Caillard 2003, Vanderschaeve 2005]. In addition,
the model of Pirouz assumes that a dissociated screw dislocation acting
as source for twin planes transforms its core from dissociated to perfect.
As seen above, such a transformation is very unlikely, so the formation of
twins in silicon might take place through another mechanism.
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1.4 conclusion on dislocation structure and motion

Intensive research on the structure and motion of dislocations in silicon has
brought to light several interesting aspects. At high temperatures, plastic
deformation is allowed by slip of glide dislocations that are dissociated for
energetic reasons. This dissociation of dislocations in the glide set has strong
consequences on the core of the partials, leading to their reconstruction and
the existence of a myriad of types of kinks. The influence of reconstruction
defects and other point defects on the motion of the partials is a crucial
point that still needs to be explored further, as the macroscopic dislocation
velocity directly depends on the microscopic mechanisms taking place at
the cores. Dissociation has also an influence on the ability of dislocations to
change their glide plane either by cross-slipping or climbing.

The thermally activated nucleation of kink pairs over the high primary
Peierls relief and subsequent kink pair expansion by migration through
the secondary potential, both due to strong covalent bonding and core
reconstruction, lead to a strongly temperature-dependent and weakly stress-
dependent dislocation velocity. Associated to very low as-grown dislocation
densities to carry plastic flow, these factors are translated in macroscopic
deformation experiments by a particular shape of the stress-strain curves
taht will be described in the coming Chapters. The existence of a stress
domain below roughly 20 MPa where the partials should move in a per-
fectly correlated manner depending on the stacking fault width has been
postulated by theoretical arguments but never directly observed experi-
mentally. Point defect diffusion to the dislocation core and formation of
an atmosphere around it at low stresses has however been shown to affect
dislocation mobility.

Slip of glide dislocations becomes more difficult as the temperature is
lowered. The applied stresses can no longer be relieved by plastic deforma-
tion, and defects at the surface and in the bulk can act as crack nucleation
sites. Unless a high confining pressure is applied, brittle fracture occurs
at temperatures below the brittle-to-ductile transition, typically 873 K in
standard strain rate conditions. Twinning can be observed in specimen de-
formed at such temperatures, provided cleavage does not occur. A change
of core configuration takes place in virgin materials deformed under high
hydrostatic stresses. Nucleation of perfect dislocations in the shuffle set is
observed, having different characteristic segment orientations than at higher
temperatures. Such a change is not observed in prestrained specimen, the
high shear stresses simply widening the stacking fault until the partials
move in an uncorrelated manner.

To summarize this discussion, it might be useful to gather the above-cited
results into a single graph that describes the different deformation domains
studied for silicon. Considering a fixed strain rate, and letting temperature
and stress vary, one obtains Figure 1.15. It is important to keep in mind that
the frontiers between the different domains are not sharply defined, especially
for impurity-containing and dislocated silicon. In this case, and as will be
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Figure 1.15: Plasticity domains of intrinsic silicon as function of shear stress on the
active slip plane and temperature.

discussed later, the brittle-to-ductile transition might not be abrupt and
would take place over a larger range of temperatures. The limiting stress
for high-stress plasticity is linked to the critical stress for separation of the
two partials bounding a stacking fault, and depends on the fault energy.
Now we have surveyed the microscopic motion mechanisms of dislocations,
it is high time to study their effect on the mechanical behavior of silicon
monocrystals on a macroscopic level. The next Chapter introduces the
experimentally recorded stress-strain curves of monocrystals deformed
uniaxially and the standard physically-based constitutive model used to
reproduce the characteristic behavior of as-grown crystals.
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2
M A C R O S C O P I C B E H AV I O R O F I N T R I N S I C S I L I C O N
M O N O C RY S TA L S

This Chapter introduces the experimental results of deformation tests per-
formed on silicon monocrystals at high temperatures, where plasticity is
allowed. The material of interest here is intrinsic silicon; the case of extrinsic,
impurity-containing materials is discussed in a later Chapter. The study of
pure silicon relies typically on the use of Floating-Zone (FZ) single crystals
that have very low concentrations of dopants and electrically inactive impu-
rities. Dislocation motion mechanisms are similar in silicon in germanium1.
Its lower melting temperature makes it more convenient to study, and some
results obtained on germanium crystals valid for silicon will be introduced.

2.1 experimental results at small strains : the yield region

2.1.1 General observations of stage 0

It has been very early observed that as-grown silicon single crystals de-
formed uniaxially at constant temperature T and strain rate ε̇ exhibit a
characteristic bell-shaped stress-strain behavior at small strains (below 10 %
resolved shear strain γ) [Patel 1963]. After an apparently2 elastic deforma-
tion stage leading to very high stresses as the temperature is lowered (and
to an early fracture of the crystal if cracks eventually nucleate), a sharp
drop of the flow stress happens at the upper yield stress (UYS), followed
by a rapid decrease of the applied stress until it starts again to increase at
the lower yield point (characterized by the lower yield stress, LYS). This
deformation stage is usually refered to as stage 0 as it is conditionally
reached depending on the initial thermodynamical state of the crystal. This
deformation stage is also considered to be a transition one towards the
steady-state of deformation reached during stage I [Sumino 1971].

Then deformation proceeds as for FCC metals: if the specimen orientation
favors single slip hardening proceeds starting from stage I; otherwise stage

1 Some differences exist however. One could for example mention the change in the temperature
dependency of dislocation velocity at very high temperatures [Siethoff 1999a, Siethoff 1999b].

2 plasticity understood as dislocation glide and multiplication actually takes place very early
during the initial linear stress increase, but this process does not give a macroscopic plastic
deformation [Patel 1963].
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Figure 2.1: Stress-strain curves of germanium monocrystals deformed uniaxially
in tension at different crystallographic orientations. T = 788 K, applied
strain rate ε̇ = 2 × 10−3 s−1 [Patel 1963]. Note the strong hardening rate
taking place right after the lower yield point for “hard” orientations.

II is directly observed. Figure 2.1 shows examples of yielding behaviors for
germanium crystals loaded in various crystallographic orientations.

Initially attributed to unpinning of dislocations from impurities, the yield
drop was later found to depend strongly on the initial dislocation density of
the specimen. This led to the conclusion, later confirmed, that such a char-
acteristic behavior is due to the rapid multiplication of dislocations at the
upper yield point and during the yield drop [Patel 1963, Alexander 1968].
The deficit of mobile dislocations able to carry plastically the applied strain
rate ε̇ in as-grown crystals, associated to their weakly stress-dependent
velocity (see Chapter 1), only exacerbates a phenomenon that is a priori
common to all materials deforming plastically by glide of dislocations
[Estrin 1986]. The upper yield stress is reproducible for dislocation-free
crystals only, the initial presence of dislocations leading to a strong re-
duction of both the UYS and of the magnitude of the yield drop. Because
the origin of the yielding behavior of semiconductors lies in the dynamic
properties of dislocations, several factors can influence it.
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upper yield point and during the yield drop [Patel 1963, Alexander 1968].
The deficit of mobile dislocations able to carry plastically the applied strain
rate ε̇ in as-grown crystals, associated to their weakly stress-dependent
velocity (see Chapter 1), only exacerbates a phenomenon that is a priori
common to all materials deforming plastically by glide of dislocations
[Estrin 1986]. The upper yield stress is reproducible for dislocation-free
crystals only, the initial presence of dislocations leading to a strong re-
duction of both the UYS and of the magnitude of the yield drop. Because
the origin of the yielding behavior of semiconductors lies in the dynamic
properties of dislocations, several factors can influence it.
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2.1.2 The factors influencing the yield region

Experimental observations

The parameters influencing both the magnitude of the yield stresses and
the yield drop are temperature, strain rate and the amount of disloca-
tions initially present in the crystal [Alexander 1968, Yonenaga 1978]. Fig-
ure 2.3 provides an overview of the variations of the mechanical behavior
of intrinsic silicon single crystals with those three factors. Their precise
influence on the magnitude of the yield points and of the yield drop, even-
tually with the help of mathematical models, has been discussed elsewhere
[Alexander 1968, Yonenaga 1978]. Figure 2.4 shows the effect of temper-
ature on the stress-strain behavior of dislocation-free crystals in a wide
range of T. While the upper yield stress and magnitude of the yield drop
depend sensitively on the initial thermodynamical state of the crystal, the
magnitude of the lower yield point remains rather insensitive to the initial
dislocation density as long as it can be observed [Kojima 1971]. The yield
stresses τyp at the upper or lower yield points of dislocation-free crystals
are experimentally observed to follow Eq. 2.1:

τyp = Cypγ̇
1

nyp exp
(

Uyp

kbT

)
(2.1)

where Cyp is a constant with respect to temperature and strain rate, nyp
and Uyp are parameters depending on the yield point considered and
found to be in the usual temperature range between 0.45 and 0.8 Tm
[Alexander 1968]: {

Uuyp = 1.1, nuyp = 2.1

Ulyp = 0.8, nlyp = 2.9
(2.2)

The prestrain and following heat treatment applied to virgin samples in
order to introduce a dislocation density prior to a dynamic test has been
observed to influence the temperature- and strain-rate dependence of the
lower yield point, so that Eq. 2.1 is not always valid for predeformed crystals.
The effect of trace impurities and other point-like defects is suspected to
influence dislocation motion in these cases [Siethoff 1992].

The reader will notice that the slopes of the elastic parts of the stress-strain
curves in Figure 2.3 seem to depend on temperature, initial dislocation
density and strain rate. This has also been observed in [Patel 1963]. This
effect, largely stronger than the sole temperature dependence of the shear
modulus, is due to the tensile apparatus. A harder testing machine will
lead to a more intense yield drop because of a sharper transition in the
evolution of the density of mobile dislocations in this region, see Figure 2.2.
This will be discussed in details in the next Part.

It is of interest to note that lower temperatures (or larger strain rates, or
lower initial dislocation densities) extend the yield region to larger strains
in addition to affecting the yield stresses [Omri 1987].

2.1 experimental results at small strains: the yield region 51

2.1.2 The factors influencing the yield region

Experimental observations

The parameters influencing both the magnitude of the yield stresses and
the yield drop are temperature, strain rate and the amount of disloca-
tions initially present in the crystal [Alexander 1968, Yonenaga 1978]. Fig-
ure 2.3 provides an overview of the variations of the mechanical behavior
of intrinsic silicon single crystals with those three factors. Their precise
influence on the magnitude of the yield points and of the yield drop, even-
tually with the help of mathematical models, has been discussed elsewhere
[Alexander 1968, Yonenaga 1978]. Figure 2.4 shows the effect of temper-
ature on the stress-strain behavior of dislocation-free crystals in a wide
range of T. While the upper yield stress and magnitude of the yield drop
depend sensitively on the initial thermodynamical state of the crystal, the
magnitude of the lower yield point remains rather insensitive to the initial
dislocation density as long as it can be observed [Kojima 1971]. The yield
stresses τyp at the upper or lower yield points of dislocation-free crystals
are experimentally observed to follow Eq. 2.1:

τyp = Cypγ̇
1

nyp exp
(

Uyp

kbT

)
(2.1)

where Cyp is a constant with respect to temperature and strain rate, nyp
and Uyp are parameters depending on the yield point considered and
found to be in the usual temperature range between 0.45 and 0.8 Tm
[Alexander 1968]: {

Uuyp = 1.1, nuyp = 2.1

Ulyp = 0.8, nlyp = 2.9
(2.2)

The prestrain and following heat treatment applied to virgin samples in
order to introduce a dislocation density prior to a dynamic test has been
observed to influence the temperature- and strain-rate dependence of the
lower yield point, so that Eq. 2.1 is not always valid for predeformed crystals.
The effect of trace impurities and other point-like defects is suspected to
influence dislocation motion in these cases [Siethoff 1992].

The reader will notice that the slopes of the elastic parts of the stress-strain
curves in Figure 2.3 seem to depend on temperature, initial dislocation
density and strain rate. This has also been observed in [Patel 1963]. This
effect, largely stronger than the sole temperature dependence of the shear
modulus, is due to the tensile apparatus. A harder testing machine will
lead to a more intense yield drop because of a sharper transition in the
evolution of the density of mobile dislocations in this region, see Figure 2.2.
This will be discussed in details in the next Part.

It is of interest to note that lower temperatures (or larger strain rates, or
lower initial dislocation densities) extend the yield region to larger strains
in addition to affecting the yield stresses [Omri 1987].

2.1 experimental results at small strains: the yield region 51

2.1.2 The factors influencing the yield region

Experimental observations

The parameters influencing both the magnitude of the yield stresses and
the yield drop are temperature, strain rate and the amount of disloca-
tions initially present in the crystal [Alexander 1968, Yonenaga 1978]. Fig-
ure 2.3 provides an overview of the variations of the mechanical behavior
of intrinsic silicon single crystals with those three factors. Their precise
influence on the magnitude of the yield points and of the yield drop, even-
tually with the help of mathematical models, has been discussed elsewhere
[Alexander 1968, Yonenaga 1978]. Figure 2.4 shows the effect of temper-
ature on the stress-strain behavior of dislocation-free crystals in a wide
range of T. While the upper yield stress and magnitude of the yield drop
depend sensitively on the initial thermodynamical state of the crystal, the
magnitude of the lower yield point remains rather insensitive to the initial
dislocation density as long as it can be observed [Kojima 1971]. The yield
stresses τyp at the upper or lower yield points of dislocation-free crystals
are experimentally observed to follow Eq. 2.1:

τyp = Cypγ̇
1

nyp exp
(

Uyp

kbT

)
(2.1)

where Cyp is a constant with respect to temperature and strain rate, nyp
and Uyp are parameters depending on the yield point considered and
found to be in the usual temperature range between 0.45 and 0.8 Tm
[Alexander 1968]: {

Uuyp = 1.1, nuyp = 2.1

Ulyp = 0.8, nlyp = 2.9
(2.2)

The prestrain and following heat treatment applied to virgin samples in
order to introduce a dislocation density prior to a dynamic test has been
observed to influence the temperature- and strain-rate dependence of the
lower yield point, so that Eq. 2.1 is not always valid for predeformed crystals.
The effect of trace impurities and other point-like defects is suspected to
influence dislocation motion in these cases [Siethoff 1992].

The reader will notice that the slopes of the elastic parts of the stress-strain
curves in Figure 2.3 seem to depend on temperature, initial dislocation
density and strain rate. This has also been observed in [Patel 1963]. This
effect, largely stronger than the sole temperature dependence of the shear
modulus, is due to the tensile apparatus. A harder testing machine will
lead to a more intense yield drop because of a sharper transition in the
evolution of the density of mobile dislocations in this region, see Figure 2.2.
This will be discussed in details in the next Part.

It is of interest to note that lower temperatures (or larger strain rates, or
lower initial dislocation densities) extend the yield region to larger strains
in addition to affecting the yield stresses [Omri 1987].

2.1 experimental results at small strains: the yield region 51

2.1.2 The factors influencing the yield region

Experimental observations

The parameters influencing both the magnitude of the yield stresses and
the yield drop are temperature, strain rate and the amount of disloca-
tions initially present in the crystal [Alexander 1968, Yonenaga 1978]. Fig-
ure 2.3 provides an overview of the variations of the mechanical behavior
of intrinsic silicon single crystals with those three factors. Their precise
influence on the magnitude of the yield points and of the yield drop, even-
tually with the help of mathematical models, has been discussed elsewhere
[Alexander 1968, Yonenaga 1978]. Figure 2.4 shows the effect of temper-
ature on the stress-strain behavior of dislocation-free crystals in a wide
range of T. While the upper yield stress and magnitude of the yield drop
depend sensitively on the initial thermodynamical state of the crystal, the
magnitude of the lower yield point remains rather insensitive to the initial
dislocation density as long as it can be observed [Kojima 1971]. The yield
stresses τyp at the upper or lower yield points of dislocation-free crystals
are experimentally observed to follow Eq. 2.1:

τyp = Cypγ̇
1

nyp exp
(

Uyp

kbT

)
(2.1)

where Cyp is a constant with respect to temperature and strain rate, nyp
and Uyp are parameters depending on the yield point considered and
found to be in the usual temperature range between 0.45 and 0.8 Tm
[Alexander 1968]: {

Uuyp = 1.1, nuyp = 2.1

Ulyp = 0.8, nlyp = 2.9
(2.2)

The prestrain and following heat treatment applied to virgin samples in
order to introduce a dislocation density prior to a dynamic test has been
observed to influence the temperature- and strain-rate dependence of the
lower yield point, so that Eq. 2.1 is not always valid for predeformed crystals.
The effect of trace impurities and other point-like defects is suspected to
influence dislocation motion in these cases [Siethoff 1992].

The reader will notice that the slopes of the elastic parts of the stress-strain
curves in Figure 2.3 seem to depend on temperature, initial dislocation
density and strain rate. This has also been observed in [Patel 1963]. This
effect, largely stronger than the sole temperature dependence of the shear
modulus, is due to the tensile apparatus. A harder testing machine will
lead to a more intense yield drop because of a sharper transition in the
evolution of the density of mobile dislocations in this region, see Figure 2.2.
This will be discussed in details in the next Part.

It is of interest to note that lower temperatures (or larger strain rates, or
lower initial dislocation densities) extend the yield region to larger strains
in addition to affecting the yield stresses [Omri 1987].





2.1 experimental results at small strains: the yield region 53

Figure 2.3: Resolved shear stress-strain curves of FZ silicon monocrystals deformed
in single glide at different: (a) temperatures, (b) strain rates, (c) initial
dislocation densities [Yonenaga 1978, Sumino 1999a].

Figure 2.4: Stress-strain curves of dislocation-free silicon crystals obtained at var-
ious temperatures and a resolved shear strain rate γ̇ = 2 × 10−5 s−1

[Omri 1987]. The appearance of a plateau of the lower yield stress at
high temperatures is attributed by [Siethoff 1988] to the effect of nitrogen
present in the deformation atmosphere (10 % H2, 90 % N2).

stemming only from internal stresses has been interpreted as the manifes-
tation of athermal dislocation motion mechanisms, higher temperatures
allowing even lower flow stresses thanks to additional diffusion processes
[Oueldennaoua 1988]. Siethoff later attributed this peculiar regime of the
lower yield point to the presence of nitrogen in the atmosphere on disloca-
tion motion mechanisms (see Chapter 3 for a discussion of the effects of
light impurities on the mechanical behavior of silicon crystals), insisting as
well on the modifications of the shape of the yield drop with the deforming
atmosphere [Siethoff 1988].

A so-called low temperature regime (between 0.45 Tm and 0.65 Tm) of
the yield points in silicon is revealed in n-type material, see Section 3.2.3
[Siethoff 2002].The results obtained in the high temperature regime can
therefore be extended down to the brittle domain for intrinsic silicon, where
plasticity becomes insignificant under no applied hydrostatic pressure.
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Figure 2.5: Values of the upper (plain) and lower (dashed) yield stresses at different
temperatures of undoped dislocation-free FZ silicon [Siethoff 2001].

The influence of the applied stress on U identified by the yield points
at temperatures between 923 and 1573 K has also been studied when τ is
kept below 45 MPa [Schröter 1983, Siethoff 2002]. It appears that U is not
significantly stress-dependent in intrinsic materials, see Figure 2.6.

Theoretical considerations

A straightforward method for determining which factors migh influence
the yield region and the reasons for that is to consider the evolution of
the applied (shear) stress τ. Considering the case of small deformations
only, the total resolved shear strain rate can be decomposed into an elastic
and a plastic terms: γ̇ = γ̇e + γ̇p. Writing μ∗ the effective shear modulus, a
combination of the specimen and machine stiffnesses, the rate equation for
the shear stress reads:

τ̇ = μ∗γ̇e = μ∗(γ̇ − γ̇p) (2.3)

This equation is called the machine equation [Alexander 1968]. Orowan’s
law bridges the gap between the macroscopic plastic strain rate and the
microscopic processes:

γ̇p = b
∫ ∞

0
ρ(v)vdv (2.4)

Where the distribution of dislocation densities as a function of their velocity
ρ(v) is used and all dislocations have the same Burgers vector3. The velocity
might depend among other factors on the applied stress τ and ρ itself. Here
a crucial assumption is made, namely that the behavior of all dislocations

3 this assumption is true if Orowan’s law is applied to dislocations belonging to a single slip
system. This is in particular true in the case considered here of uniaxial tensile testing of
monocrystals loaded in single glide. The more complicated cases of multiple slip require the
use of a crystal plasticity framework as introduced in the next Part.
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[Sumino 1971, Sumino 1979]. The exact expression of this internal stress
will be derived later. Combining Eqs. 2.3 and 2.7 yields

τ̇ = μ∗
(

γ̇ − bρmv0

(
τ − τint

τ0

)m0

exp
(
− U

kbT

))
(2.8)

which is a differential equation of the first order in τ. Its integration is how-
ever not straigthforward since both ρm and τint change with time. However
one sees immediately that the three extrinsic parameters influencing the
magnitude and evolution of the applied stress are

1. temperature through an exponential dependence of the dislocation
velocity,

2. the applied strain rate and

3. the density of mobile dislocations.

Integrating such an equation requires evolution laws for ρm and τint. The
combination of all these equations forms the basis of the model introduced
by [Alexander 1968] that has since then been widely used to model silicon
materials.

A yield point is found numerically by setting τ̇ = 0. An approximation
commonly done in order to differentiate the upper from the lower yield
point is to consider that τint 	 τ at the upper yield point. The lower
yield point is a minimum of τ(ρm) and of τ(γ); one needs as well a dif-
ferential equation ruling the evolution of the mobile dislocation density
[Alexander 1968].
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commonly done in order to differentiate the upper from the lower yield
point is to consider that τint 	 τ at the upper yield point. The lower
yield point is a minimum of τ(ρm) and of τ(γ); one needs as well a dif-
ferential equation ruling the evolution of the mobile dislocation density
[Alexander 1968].
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2.2 constitutive modeling of the yield region of silicon

For a detailed presentation of the original Alexander & Haasen model
(AH model in the following), the reader is referred to [Alexander 1968]. This
model is intended for the description of the very early stages of deformation
of silicon, typically to simulate the yield drop behavior up to the lower
yield point. The AH model has strongly influenced the study of dislocation
mobility and modeling of plasticity in silicon since its publication in 1968.
Many authors have performed experiments in order to validate or test
the hypothesis of this model and compute its associated parameters. Some
limitations have been established, and possible improvements are suggested.
The 1980’s saw the first attempts to generalize the applicability of the model
to three dimensional specimen with the help of the finite elements method.

2.2.1 Introduction to the AH model

Assumptions of the model

First, the basic equations will be reviewed. The model is based on some
assumptions, sometimes observed experimentally not to be always verified:

1. deformation proceeds homogeneously throughout the monocrys-
talline sample, so that the local equations remain valid for the whole
specimen

2. all dislocations in the crystal are mobile, i.e. they all carry plastic
flow and enter into Orowan’s law. This limits the validity of the AH
model to small strains. In addition the dislocations contributing the
the internal stress are precisely the mobile ones. This is justified by the
fact that immobilized dislocations tend to form dipoles, whose contri-
bution to the internal stress and effective stress is lower compared to
mobile dislocations.

3. the behavior of all dislocations exhibiting different mobilities and
velocities can be resumed to a single population of mobile dislocations
moving at the same speed

4. one single slip system is activated, and the influence of the 11 remain-
ing ones on the primary dislocations is negligible because of the low
density of forest dislocations.

5. no impurities or defects other than dislocations are present

These assumptions will be discussed in the following. At the end of the
1960’s the dependence of dislocation velocity on stress and temperature
had already been explored; although some uncertainty was still left on the
exact value of the parameters it was clear that dislocation velocity is weakly
dependent on stress, while temperature has a strong influence on this
velocity. This behavior is typical of semiconductors and not limited to silicon
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alone. Moreover, considering the two predominant types of dislocations,
i.e. screw and 60°, one can notice that their velocities are quite the same,
especially at high temperatures. This argument has been indeed refined
later on, and the screw dislocations have proved to be slightly slower than
the 60° ones, being therefore rate-limiting for the development of dislocation
loops [Alexander 1968, Suezawa 1979].

Equations of the AH model

In addition to relying on the set of equations deriving from Orowan’s law
introduced previously, the AH model provides the rate equation steering
dislocation multiplication:

dρm

dt
= Kρmv (2.9)

where K is a function characterizing the multiplication rate. To account
for results on germanium crystals, K is taken to be equal to δτe f f , with
δ constant at given temperature and strain rate conditions [Berner 1967].
Note that Eq. 2.9 implies that there is no sink for the dislocation density.

Finally, the effective stress exerted on the dislocations results from the
difference between the applied stress and a back stress stemming from the
mutual interaction between dislocations. To determine its value, Alexander
& Haasen computed the stress resulting from the interaction between N
parallel edge dislocations yielding a density ρm, τint = μbA

√
ρm, with

A = 1
2π(1−ν)

a constant derived from the theory of dislocations and ν

Poisson’s ratio. The effective stress becomes:

τe f f = 〈τ − μbA
√

ρm〉 (2.10)

where it is assumed that the effective stress is always larger than zero:
〈x〉 = max(x, 0).

The set of equations 2.3 to 2.10 allows to solve numerically the classic
stress-strain relationship either in creep (τ̇ = 0) or dynamical tests (in
which case γ̇ =cst). The initial condition required by the AH model is the
density of (mobile) dislocations ρm,0 which must be finite. The parameters of
the model are those related to dislocation velocity (v0, m0, U), dislocation
multiplication (δ) and internal stress (A). They have been measured or
computed by different authors throughout the years. Table 2.1 gathers
some results obtained5. Most of the research groups have concentrated on
the parameters for dislocation velocity, and very few have worked on the
determination of the parameters δ and A.

5 Some authors distinguish screws from 60° dislocation segments that have different mobilities.
The data taken from [George 1972, George 1979a] is related to 60° segments only. The latter
work is concerned by dislocation velocity at small stresses only, and the stress sensitivity
m is found to vary with τ. For an explanation of the high values of U found at very high
temperatures by [Farber 1982] or [Siethoff 1999a], see Section 1.2.4.
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authors U (eV) m v0 (m.s−1) A (N.m−1) δ (m.N−1)

[Chaudhuri 1962] 2.2 1.4

[Siethoff 1969] 2.3 ± 0.1 0.9 ± 0.1

[Kannan 1970] 1.8 ± 0.3

[George 1972] 2.01 - 2.51 0.88 - 1.6 3.2 × 103 - 9.3 × 104

[Kulkarni 1976] 2.1

[Yonenaga 1978] 2.64 ± 0.26 1.3 ± 0.1

[Suezawa 1979] 2.17 1.1 3.4 × 103 0.3 3.1 × 10−4

[George 1979a] 2.16 - 2.43 1.1 × 105 - 4.4 × 105

[Schröter 1983] 2.32 0.9

[Farber 1982] 4 ± 0.1 1010 - 1012 T � 1323 K

[Imai 1983] 2.35 or 2.2 1

[Siethoff 1999a] 2.25 ± 0.3 1 ± 0.3 T � 1373 K

[Siethoff 1999a] 4.1 ± 0.3 3.2 ± 0.3 T � 1373 K

Table 2.1: Parameters of the AH model for intrinsic silicon crystals found by different
authors.

2.2.2 Properties of the model: yield points

This model represents pretty well the typical yielding behavior of c-Si
deformed in single slip [Yonenaga 1978, Suezawa 1979]. It reproduces sat-
isfactorily semiconductors deformed in creep conditions, and is also suited
to dynamical tests. The latter are characterized by the yield points, and the
model can predict their magnitude with a good accuracy [Alexander 1968].
The AH model actually yields strain rate and temperature dependencies of
the yield points similar to Eq. 2.1 derived experimentally. An interesting
feature of this model is that the expression of the activation energy for
dislocation motion U follows the remarkable relationship:

U = Ulypnlyp (2.11)

A numerical analysis of the AH model enables the detailed computation
of the upper and lower yield stresses τuyp and τlyp and the density of
(mobile) dislocations at the yield points (respectively ρm,uyp and ρm,lyp).
The upper yield point is characterized by a maximum of the stress as a
function of ρm and an internal stress small compared to the applied one:
μbA√

ρm,uyp 	 τuyp. The lower yield point is obtained by assuming that
the applied strain rate is completely plastic (γ̇ = γ̇p) and goes through a
minimum as a function of the dislocation density (dγ̇/dρm = 0):⎧⎪⎪⎨⎪⎪⎩

τlyp =
(

1 + 2
m0

)(
μ2bA2m2

0τm
0

4v0

) 1
m0+2

γ̇
1

m0+2 exp
(

U
(m0+2)kbT

)
ρm,lyp =

(
2

m0+2

)2 ( τlyp
μbA

)2
(2.12)

The second equation can be inverted to link the lower yield stress to the
internal stress:

τlyp = μbA
√

ρm,lyp

(
1 +

m0

2

)
(2.13)
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authors U (eV) m v0 (m.s−1) A (N.m−1) δ (m.N−1)

[Chaudhuri 1962] 2.2 1.4

[Siethoff 1969] 2.3 ± 0.1 0.9 ± 0.1

[Kannan 1970] 1.8 ± 0.3

[George 1972] 2.01 - 2.51 0.88 - 1.6 3.2 × 103 - 9.3 × 104

[Kulkarni 1976] 2.1

[Yonenaga 1978] 2.64 ± 0.26 1.3 ± 0.1

[Suezawa 1979] 2.17 1.1 3.4 × 103 0.3 3.1 × 10−4

[George 1979a] 2.16 - 2.43 1.1 × 105 - 4.4 × 105

[Schröter 1983] 2.32 0.9

[Farber 1982] 4 ± 0.1 1010 - 1012 T � 1323 K

[Imai 1983] 2.35 or 2.2 1

[Siethoff 1999a] 2.25 ± 0.3 1 ± 0.3 T � 1373 K

[Siethoff 1999a] 4.1 ± 0.3 3.2 ± 0.3 T � 1373 K

Table 2.1: Parameters of the AH model for intrinsic silicon crystals found by different
authors.
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With m0 = 1 one gets τlyp = 3/2τint and

τe f f ,lyp = τlyp/3 (2.14)

Another characteristic of the AH model is consequently to predict that
Ulyp = U/(m0 + 2) and nlyp = m0 + 2. The experimental determination of
the variations of the lower yield stress with temperature and strain rate
combined with Eq. 2.12 allows for the identification of U, assuming that the
AH model correctly describes the yield region indeed. This methodology
provides with some information about the dislocation velocity parameters
without having to rely on their direct in situ observation. Such an approach
has been followed for example by the group of Siethoff.
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2.3 hardening and recovery stages

This Section aims at introducing the deformation stages that follow the
yield region (stage 0). Deformation of silicon to high strains, reachable at
high temperatures and low strain rates, reveals the existence of five stages:
after the easy glide stage (commonly named stage I) comes a first work
hardening stage (stage II), followed by a couple of relaxation and hardening
stages (III to V). See Figure 2.7 for a typical five-stages stress-strain curve.
There are two means of reaching such high strains experimentally: either
by deformation tests performed at a constant strain rate ε̇ (dynamic experi-
ments), or creep tests during which the applied stress is kept constant and
the variations of strain are recorded.

2.3.1 Dynamic experiments

Stage I

The first hardening stage follows the lower yield point. Stage I is visible only
in monocrystals loaded in single glide. In cases where the crystal is oriented
in a “hard” direction (corners and sides of the crystallographic triangle),
a yield region of lower intensity than in single slip is observed, followed
immediately by stage II of hardening. If the initial dislocation density is high
enough, or equivalently if the strain rate is low enough or the temperature
high enough, stage 0 and I disappear completely. Figure 2.8 shows the effect
of temperature on the stress-strain curves of silicon single crystals oriented
for multiple slip. If the orientation allows for stage I to set in, a steady-state
of deformation is observed [Sumino 1971, Yonenaga 1978], during which
the effective stress and the density of mobile dislocations remain constant,
and depend solely on temperature and the applied strain rate [Kojima 1971].
More details about stage I and the steady-state of deformation will be given
in the next Part of this work.

Stage II

Stage II sets in when secondary systems are activated because of lattice
rotation or simply because the sample is oriented for multiple slip right
from the beginning of deformation. The dislocation structure at the onset of
stage II has been described for example in [Oueldennaoua 1988]. Stage II is
characterized by interactions between dislocations belonging to different
slip systems and formation of sessile Lomer-Cottrell locks. [Siethoff 2004]
derived an expression from experiments on intrinsic and doped Si for
determination of the stress linking the first and second deformation stages
(Eq. 2.15, the exponent and activation energy are valid for intrinsic silicon
only). ⎧⎨⎩ τI I = CII γ̇

1
nII exp

(
UII

nII kbT

)
nII = 3.2, UII = 3.0 eV

(2.15)
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τI I exhibits different regimes depending on the temperature, the strain
rate and the dopant concentration, like the lower yield stress does (see
Section 2.1.2). Sumino et al. noticed that dislocation velocity in stage II of
deformation of germanium monocrystals did not exhibit the same activation
energy as during stages 0 and I [Sumino 1971]. The effect of jogs resulting
from dislocation intersections has been mentioned there as additional
obstacles to dislocation motion.

Stage III

The transition to the first recovery stage is governed by mechanisms that
depend both on temperature and strain rate.

• At high temperatures (above 1173 K and at least up to 1573 K) the
temperature dependence of the τI I I(T, γ̇) data (the stress defining the
onset of stage III, see Figure 2.7) can be fitted to an Arrhenius law with
an activation energy close to the one of monovacancy self-diffusion
(3.6 eV), see [Siethoff 1978, Siethoff 1983c, Shimizu 2007]. A power
law exists for determination of τI I I as a function of the strain rate.
The precise diffusion mechanism steering recovery during stage III is
believed to be climb of edge dislocations, prefered to jog dragging by
screws [Siethoff 1983a]. The final relationship τI I I(T, ε̇) is expressed
in eq. 2.16. ⎧⎨⎩ τI I I = CIII γ̇

1
nII I exp

(
UIII

nII I kbT

)
nII I = 3.5, UIII = 3.5 eV

(2.16)

A particularity of constant strain-rate deformation tests is that hard-
ening mechanisms are active before stage III reaches a steady-state
(i.e. a constant stress after recovery τI I Im). A steady-state value of
stage III stress τI I Im can be extrapolated using the reduced hardening
coefficient θI I I/μ (where θ = dτ

dγ ). This method applied by Siethoff
et al. to derive an expression for this theoretical stress equivalent to
Eq. 2.16 with very close parameters UIIIm = 3.7 eV and nIIm =3.4,
showing that the diffusion-controlled mechanism responsible for the
onset of stage III actually takes place during the whole recovery stage
[Siethoff 1983a].

• At lower temperatures or higher strain rates (meaning higher stresses),
deviations from the power law behavior of τI I I are observed. It is
actually explained by a shift in the mechanisms governing stage III
from a diffusion-controlled process (climb) to a cross-slip mechanism.
In the latter case, a very good agreement of the experimental data
with the Escaig model is reached [Siethoff 1983c, Siethoff 1984].

Therefore, two different mechanisms, either climb of edge dislocations or
cross-slip of screw dislocations can be responsible for this recovery stage.
The temperature and strain rate determine which one rules during this
stage.
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Stages IV and V

These late deformation stages were discovered in semiconductors at very
high temperatures above 0.8 Tm by the German group at the beginning of
the 1980’s [Brion 1981]. As the strain increases, the second hardening stage
(stage IV) begins and the mechanism that was not active during stage III
leads to the recovery stage V. Therefore, at low temperatures stage V is
controlled by a diffusion mechanism, whereas at high temperatures (above
1173 K) cross-slip takes over. Note that increasing the strain rate has the
same effect on the choice of governing recovery mechanism as decreasing
the temperature.

These two independent mechanisms, namely cross-slip and climb, are
both processes that can lead to recovery upon large deformations. Each one
of them dominates only one of the two recovery stages since they do not
affect the other type of dislocation.

2.3.2 Creep experiments

At stresses below roughly 100 MPa the creep curve of silicon crystals is
made up of three parts: strain rate increase, establishment of a steady-
state and finally decrease of the strain rate due to dislocation interactions
and formation of subgrains. However a breakdown of this behavior is
observed at stresses above 100 MPa where the creep behavior resembles
the one of fcc metals, with an increase of the strain rate in the last stage,
followed by sample fracture [Myshlyaev 1969]. The steady-state creep at
high temperature is characterized by an activation energy much higher than
the activation energy for monovacancy self-diffusion, and can be modeled6

using:

ε̇ = ε̇0 exp
(
−Uc − Vcσ

kbT

)
(2.17)

where Vc = 2.7 × 10−27 m3, Uc = 5.6 eV is the activation energy for steady-
state creep and ε̇0 a reference strain rate of 1011 s−1. Observation of thin
foils deformed during the steady state reveal the formation of tangles and
cells impeding dislocation movement; however dislocations still multiply
at a rate large enough to compensate for their immobilization, hence a
constant macroscopic strain rate. During steady-state creep subgrains form,
the interactions between dislocations and the subboundaries limiting their
motion.

Mechanism controlling the creep steady-state

At high creep stresses, a deviation from Eq. 2.17 is observed and an acti-
vation energy of 3.7 eV is found [Myshlyaev 1969]. This reflects the same

6 the model is valid for a compression stress lower than 100 MPa and specimen loaded in a
〈111〉 direction.
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the activation energy for monovacancy self-diffusion, and can be modeled6

using:
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where Vc = 2.7 × 10−27 m3, Uc = 5.6 eV is the activation energy for steady-
state creep and ε̇0 a reference strain rate of 1011 s−1. Observation of thin
foils deformed during the steady state reveal the formation of tangles and
cells impeding dislocation movement; however dislocations still multiply
at a rate large enough to compensate for their immobilization, hence a
constant macroscopic strain rate. During steady-state creep subgrains form,
the interactions between dislocations and the subboundaries limiting their
motion.

Mechanism controlling the creep steady-state

At high creep stresses, a deviation from Eq. 2.17 is observed and an acti-
vation energy of 3.7 eV is found [Myshlyaev 1969]. This reflects the same

6 the model is valid for a compression stress lower than 100 MPa and specimen loaded in a
〈111〉 direction.
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Stages IV and V

These late deformation stages were discovered in semiconductors at very
high temperatures above 0.8 Tm by the German group at the beginning of
the 1980’s [Brion 1981]. As the strain increases, the second hardening stage
(stage IV) begins and the mechanism that was not active during stage III
leads to the recovery stage V. Therefore, at low temperatures stage V is
controlled by a diffusion mechanism, whereas at high temperatures (above
1173 K) cross-slip takes over. Note that increasing the strain rate has the
same effect on the choice of governing recovery mechanism as decreasing
the temperature.

These two independent mechanisms, namely cross-slip and climb, are
both processes that can lead to recovery upon large deformations. Each one
of them dominates only one of the two recovery stages since they do not
affect the other type of dislocation.

2.3.2 Creep experiments
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T � 1173 K T � 1173 K

stage III cross-slip climb

stage V climb cross-slip

creep climb cross-slip

Table 2.2: Mechanisms governing stage III, stage V and steady-state creep in semi-
conductors as a function of temperature. Note that the effect of increasing
temperature is similar to decreasing the strain rate in dynamical experi-
ments, or to decrease the applied stress in creep tests.

phenomena as described previously in the case of constant strain rate ex-
periments: for high creep stresses climb of edge dislocations governs the
steady-state strain rate.

The underlying mechanism all along this dynamic recovery stage at
temperatures above 1173 K is believed to be cross-slip of screw dislocations,
and is reproduced correctly by the Escaig model [Siethoff 1983b]. It is
interesting to notice that the activation energy for steady-state creep is
very close to the one for self-diffusion at temperatures above ∼ 1200 K
(5.6 eV for an interstitial mechanism according to [Wu 1977], although more
recent results point to an activation energy for diffusion of self-interstitals
of 4.95 eV, see [Shimizu 2007]), hence a confusion about the mechanism
actually responsible prior to the analysis of Siethoff.

More generally and independently on the temperature, the mechanism
governing creep steady-state is the one responsible for stage V hardening
in constant strain-rate experiments. An hypothesis is that no steady-state of
deformation can be reached before both edge and screw dislocations have
been affected, neither in dynamic experiments nor in creep. The steady-state
observed in creep would then be the last mechanism affecting dislocations
in dynamic experiments, i.e. the same as in stage V [Siethoff 1984]. Note
that this cross-over of recovery mechanisms is also valid for germanium
[Siethoff 1984, Siethoff 1986]. Table 2.2 summarizes the results exposed in
this Section.

2.3.3 Modeling recovery stages*

These late deformation stages cannot be described using a physically based
formalism, since short-range interactions between dislocations as well as
non-Schmid effects gain importance and dislocation structures that cannot
be described by equations begin to form (subgrains, dislocation walls, etc.).
Closely linked to these interactions are the immobilization and annihila-
tion mechanisms responsible for the significant increase of the density of
immobile dislocations that is absent in the model of Alexander & Haasen
(see below) and never accounted for in the mechanical modeling of silicon
crystals. Alternative models exist though, but these are not connected to
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the dislocation density (for example, it is possible to use the creep law
described above) [Moon 2002].

Constitutive models for silicon materials are therefore limited to the
very first stage of deformation, the yield region described in Section 2.1.
The reason for this limited modeling capacity lies in the practical needs
of the silicon industry in the second half of the XXth century: materials
produced could be dislocated but large strains were never reached in
single crystals actually used. The case of monocrystals deformed in “hard”
crystallographic orientations is atypical: although relevant no attempt to
model their mechanical behavior has seen the light until now. Next Section
introduces the constitutive model that has traditionally been used for any
type of silicon material, in spite of its simplicity.
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2.4 limitations and improvements of the ah model

2.4.1 Assumptions of the model

The various explicit or implicit assumptions of the AH model are discussed
in light of experimental observations. The main critics concern deformation
homogeneity (assumption nr. 1), the assimilation of all dislocations to the
mobile ones (nr. 2) and the activation of a single slip system (nr. 4).

Deformation homogeneity

The first hypothesis of the AH model, namely that deformation is homo-
geneous throughout the sample, is far from always being valid. Inhomo-
geneities appear macroscopically by the propagation of Lüders bands in
the yield region, starting from the specimen end faces and propagating
inwards and associated to slip on the coplanar slip system at the propa-
gation front. Widening of the bands is believed to proceed by cross-slip
of screw dislocations located at the boundaries [Mahajan 1979]. The bands
form preferentially at regions submitted to higher stresses such as the ends
of a tensile specimen kept between the grips of the testing apparatus, where
multiple glide can be observed as well [Alexander 1968]. Figure 2.9a shows
etch pits of dislocation-free germanium crystals deformed at small strains:
in addition to inhomogeneous distribution of the dislocations several slip
systems are active.

Inhomogeneous plastic deformation is observed preferentially in dis-
location free crystals or crystals containing very little dislocations, some-
times even at temperatures close to the melting point as discussed by
[Yonenaga 1996b, Siethoff 2001]. The propagation of Lüders bands in dislocation-
free crystals leads to the development of Lüders strain in CZ materials, the
case of FZ crystals being unclear. High temperature annealing solves the
issue, indicating that impurities might play a role in the preferential devel-
opment of plastic inhomogeneities by pinning of the dislocation sources
[Mahajan 1979]. Doping favors the development of plastic inhomogeneities:
Figure 2.10 shows the macroscopic effects of the formation of Lüders bands
depending on the orientation of their propagation front with respect to the
primary glide plane [Siethoff 1973].

Prestrained crystals deform homogeneously on a macroscopic level
(Fig. 2.9b) [Yonenaga 1978]. Heat treated dislocation-free CZ crystals exhibit
similarly slip at a much finer scale than otherwise [Mahajan 1979]. Homo-
geneity at the lower yield point is nevertheless not straightforward at a mi-
croscopic scale, especially at high temperatures (see, e.g., [Oueldennaoua 1988]).
Low stresses tend to leave dislocations inhomogeneously distributed on a
microscale, with bundles of edge character separated by 10 to 50 μm de-
pending on the temperature and strain rate, connected with each other by
superjogs. Deformation at lower temperatures leads to a more homogeneous
distribution of the dislocations, even at the microscale. Finally, homogene-
ity at such a small scale in the yield region of prestrained samples is not
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(a) Dislocation-free crystal. (b) Prestrained crystal, ρm,0 = 5 × 109 m−2.

Figure 2.9: Etch pit observations of germanium crystals deformed at small strains
(∼ 0.1 %) [Patel 1963].

Figure 2.10: Stress-strain curves of heavily doped FZ silicon crystals. Type K bands:
propagation front of the Lüders bands perpendicular to the primary
plane. Type K: band front parallel to the primary plane. The insert
shows the mechanical behavior of undoped material [Siethoff 1973].
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guaranteed before the upper yield point [Allem 1989]. The consequences of
dislocation pinning by impurities such as oxygen will be discussed later.

Dislocation multiplication at the onset of plasticity

Closely linked to the homogeneity of plastic deformation is the location and
efficiency of dislocation sources in dislocation-free material. If these sources
are inhomogeneously distributed then odds are high that deformation will
localize in the yield region while the crystal is not yet filled with disloca-
tions. The question of what and where the sources are in intrinsic crys-
tals7 has been investigated by several authors [George 1973, George 1975,
Kirscht 1978, Vallino 2001]. The surfaces and edges of dislocation-free sam-
ples are preferential nucleation sites since polishing and sample preparation
cannot provide with atomically flat surfaces [Kirscht 1978]. A dislocation
nucleated at the surface can climb or cross-slip with the eventual help of
image forces. Cross-slipping can then results in dislocation multiplication
by the formation of a spiral Frank-Read source [George 1973]. Double cross-
slip at the surface or in the bulk allows dislocations to spread onto parallel
slip planes after their generation [George 1975, Vallino 2001]. These multi-
plication mechanisms take place preferentially at surface defects and can
therefore lead to inhomogeneous plastic deformation by strain localization.
Multiple slip is also observed at surface defects [Vallino 2001]. A detailed
discussion about the dislocation multiplication mechanisms is available in
the next Part of this work.

Presence of immobile and forest dislocations

The assumption that all dislocations are mobile in as-grown crystals of
low dislocation densities is experimentally verified prior to deformation,
as long as the material is intrinsic. Measurements of the effective stress
at the lower yield point combined with experimental determination of
the total dislocation density and the use of Orowan’s law allows for the
determination of the share of mobile dislocations, whereas etch pitting
on different planes gives the density of the eventual forest dislocations
generated during deformation.

Dislocation-free samples always deform on multiple slip systems, es-
pecially as the upper yield stress is enhanced by low temperatures or
high strain rates [Patel 1963, Alexander 1968]. The activation of secondary
slip systems is dampened by prestraining and annealing of the samples
[Yonenaga 1978]. The density of forest dislocations is one order of magni-
tude lower than the total density at the lower yield point. The fraction of
mobile dislocations depends on the deformation conditions and can reach
several tens percent [Sumino 1974a, Yonenaga 1978]. These observations
call indeed for adaptations of the AH model to real crystals.

The influence of a high initial dislocation density on the mechanical be-
havior of silicon crystals has been extensively studied by the Nancy group

7 the case of dislocation generation in extrinsic crystals is discussed in Chapter 3.
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[Omri 1987, Oueldennaoua 1988, Allem 1989] that worked on samples pre-
strained at 1323 K up to the end of the easy glide stage and subsequently
deformed at lower temperatures. Such a treatment leads to the buildup of a
population of immobile dislocations and shows that the AH model is not
valid for prestrained crystal.

Effective stress at the lower yield point

The prediction made by the AH model of an effective stress at the lower
yield point equal to one-third of the applied stress has been shown not to
hold in prestrained samples [Oueldennaoua 1988, Allem 1989]. The effec-
tive stress is then experimentally found to be almost equal to the lower yield
stress. It is noticed that the total dislocation density increases significantly
beyond the upper yield point, and that the density of mobile dislocations
becomes preponderant as the temperature is lowered. As a consequence, at
low temperatures and at the lower yield point the back stress is effectively
expressed as a sole function of the density of mobile dislocations, while
this becomes unclear at higher temperatures. The AH model fails hereby
to predict the accurate internal stress and overestimates it by predicting a
high density of mobile dislocations that is not found experimentally. On
the other hand, using the AH model to compute the lower yield stress
still yields satisfying results. The authors distinguish therefore two stress
regimes, temperature and strain rate deciding which one to be relevant:

• For τlyp � 10 MPa, the effective stress at the lower yield point is an
important fraction of the applied stress, and the mobile dislocation
density is a weak function of the deformation conditions. A steady-
state of the density of mobile dislocation density and of the effective
stress are observed after the upper yield point while the total disloca-
tion density still increases, also in agreement with the observations of
[Suezawa 1979]:

τe f f ,lyp � 0.75 τlyp (2.18)

• For τlyp � 10 MPa, the preferred <110> dislocation orientations dis-
appear, the mobile dislocation density becomes a small fraction of
the total dislocation density and the effective stress might be lower
than the lower yield stress. The relative lack of knowledge of the
conditions at high temperatures comes mainly from the increasing
difficulty of distinguishing mobile from immobile dislocations as they
loose their clearly defined shape and start to condense in tangles.
Note that this stress threshold actually depends on the microstructure
and its associated internal stress. A different prestraining would affect
the value of 10 MPa mentioned here.

2.4.2 Equations of the AH model

There are two ways of analyzing the AH model: either by assuming that
its characteristic equations (Eqs. 2.9 and 2.10) are right and checking the
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accuracy of its predictions, in which case the weaknesses of the simplifi-
cations done to build the model can be highlighted; or by questioning the
very expressions for dislocation multiplication and internal stresses.

Predictions of the yield stresses

plastic strain rate variations at the lower yield point The
condition used by Alexander and Haasen for analytical determination of the
lower yield point (Eq. 2.12) is two-fold: the derivative of the plastic strain
rate with respect to the dislocation density has to be zero, and the total
strain rate at the lower yield point is equal to the plastic strain rate, γ̇ = γ̇p.
Sumino and Yonenaga have questioned this assumption and showed that
the condition for lower yield point is different when taking into account the
variations of the plastic strain rate with the total strain in the yield region
[Suezawa 1979]. The appropriate condition would then be Eq. 2.19:

τyp = μbA
√

ρm,yp

⎛⎜⎝1 +
m0

2
1

1 −
(

∂ ln γ̇p
∂ ln ρm

)
yp

⎞⎟⎠ (2.19)

to compare to Eq. 2.13. Formally, Alexander & Haasen’s method of computa-
tion is consequently not valid; nevertheless the numerical results yielded by
Eq. 2.13 are quite similar to those obtained using the correction of Eq. 2.19.
This is due to the fact that computation of the density of dislocations at
the lower yield point ρm,yp in the alternative model of Suezawa leads to
a slightly higher value than using the original approximation of the AH
model. Those two combined effects compensate each other and the same
numerical value is found.

influence of initial dislocation density and forest disloca-
tions Some concerns have been emitted about the accuracy of the equa-
tions derived from the AH model which do not take into account the initial
dislocation density [Yonenaga 1978]. Siethoff showed that the lower yield
stress actually depends on the as-grown dislocation density of the sample
and the quality of the pre-deformation if applied [Siethoff 1992], in agree-
ment with the previous authors. This flaw leads to some discrepancies
between theoretical and experimental results of τyp at low initial dislocation
densities. An expression alternative to Eq. 2.2 has been suggested to relate
the yield stresses to the initial dislocation density:

τyp = C1 ln
ρm,0

C2
(2.20)

This equation is valid for ρm,0 < ρ0,max �109 m-2. C1, C2 as well as the
critical density ρ0,max are dependent on the temperature and the strain rate
[Suezawa 1979].

The magnitude of the lower yield point is influenced by the presence of
forest dislocations introduced during yielding: a higher magnitude of the
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upper yield point due to a small initial dislocation density causes activation
of secondary slip systems and indeed a higher lower yield point caused
by latent hardening. This contribution of secondary slip systems can be
neglected at high initial dislocation densities, though. The incorporation
of forest dislocations into the predicted yield stresses is simply done by
adding to Eq. 2.19 the internal stress they create.

Internal stress

The expression for the back stress exerted by the pile-ups initially used by
Alexander & Haasen has been found not to be accurate, as the value of
β has been identified by best fit both to experimental stress-strain curves
[Suezawa 1979] and to simulations [Moulin 1999b]. Sumino and Yonenaga
also mention the need for accounting for the contribution to the flow
stress of immobile dislocations, even at the yield points. This implies some
additional terms in the expression of the internal stress, Eq. 2.21.{

τi
int = τ0√γ − γ0

τ0 = τ0 (T, γ̇)
(2.21)

The observation of a steady state of deformation, where the density of mo-
bile dislocations and the effective stress reach constant values depending on
the deformation conditions, leads to results describing effectively the behav-
ior of silicon crystals after the lower yield point during the easy glide stage
[Sumino 1971]. The description of the steady-state cannot be done without
the introduction of the additional hardening term given by Eq. 2.21 coming
from the presence of immobile dislocations and the increasing short-range
interactions taking place in the crystal [Sumino 1974b, Suezawa 1979].

It has been observed more recently that the stress state at the lower yield
point is likely not to follow these assumptions: the effective stress at the
lower yield point of prestrained crystals seems to be closer to the applied
one. The flow stress into stage I at high temperatures is even recorded to be
much smaller than the addition of contributions from mobile dislocations
μbA

√
ρm and immobile ones τi

int [Oueldennaoua 1988]. This indicates a
change from an athermal mode of dislocation motion over the barriers to a
thermally activated one, that cannot be described by the current constitutive
models.

Multiplication law

influence of forest dislocations The multiplication law propor-
tional to the effective stress is questionable as it is purely empirical. Forests
dislocations have also been found to play a significant role in the yield
region, influencing the lower yield stress behavior and being able to act as
dislocation sources as is commonly observed in FCC metals. Generation of
dislocations from forest dislocations could explain partly the dependence
of the lower yield stress on the initial dislocation density up to a critical
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value [George 1987b]. [Suezawa 1979] indicate that the constant δ steering
dislocation multiplication (Eq. 2.9) should be dependent on the initial dis-
location density in order to represent correctly the yielding behavior of
silicon, a correction that could translate the additional dislocation density
nucleated by interaction of the primary dislocation with the trees of the
forest. It has actually been demonstrated on germanium single crystals
that an appropriate dislocation multiplication law should consider δ as a
free parameter that depends on the sample tested, and would translate the
influence of varying conditions such as inhomogeneity of the deformation
[Fikar 2005, Fikar 2006].

All experiments performed in the literature have been performed with
perfectly controlled crystal orientations, most often chosen so that only
one primary glide system was activated. In the case of multicrystals or
polycrystals, no such control is allowed a priori, and applying a strain on
a random orientation of a sample can lead to activation of several slip
systems. The mathematical formulation of this problem will be dealt in
the second Part; here we will concentrate on the model already existing.
Some discrepancies between experiments and simulations can be solved
through the adoption of a multiple slip formulation: both the multiplication
rates and expressions of effective stresses are affected [Sumino 1993]. The
evolution of dislocations on the slip system α reads:⎧⎪⎨⎪⎩
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sβρ
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m v(β) (2.23)

where the superscripts refer to the slip system. The parameters δ∗ and A∗
are experimentally found to be 4 × 10−8 MPa−1m−1 and 0.45, respectively.
They translate the influence of secondary dislocations on the multiplication
process (δ∗) and internal stress (A∗) on the primary system. The sβ’s are
coefficients related to the Schmid factors, relative to the primary slip system
and associated to the different slip systems β. This modification of the model
yields excellent results, in agreement with the experimental observations.

alternative multiplication laws [Moulin 1999b] have proposed
another multiplication law based on mesoscale simulations of dislocation
multiplication. They consider that there is no physical justification for the
stress dependence, as the law was determined to fit creep experiments on
germanium, and some doubts could be emitted about its validity. Their
simulations show that a multiplication law proportional to the swept area is
not adequate either and leads to errors of representation of the multiplica-

2.4 limitations and improvements of the ah model 73

value [George 1987b]. [Suezawa 1979] indicate that the constant δ steering
dislocation multiplication (Eq. 2.9) should be dependent on the initial dis-
location density in order to represent correctly the yielding behavior of
silicon, a correction that could translate the additional dislocation density
nucleated by interaction of the primary dislocation with the trees of the
forest. It has actually been demonstrated on germanium single crystals
that an appropriate dislocation multiplication law should consider δ as a
free parameter that depends on the sample tested, and would translate the
influence of varying conditions such as inhomogeneity of the deformation
[Fikar 2005, Fikar 2006].

All experiments performed in the literature have been performed with
perfectly controlled crystal orientations, most often chosen so that only
one primary glide system was activated. In the case of multicrystals or
polycrystals, no such control is allowed a priori, and applying a strain on
a random orientation of a sample can lead to activation of several slip
systems. The mathematical formulation of this problem will be dealt in
the second Part; here we will concentrate on the model already existing.
Some discrepancies between experiments and simulations can be solved
through the adoption of a multiple slip formulation: both the multiplication
rates and expressions of effective stresses are affected [Sumino 1993]. The
evolution of dislocations on the slip system α reads:⎧⎪⎨⎪⎩

ρ̇
(α)
m = τ

(α)
e f f ρ

(α)
m v(α)

(
δ + δ∗ ∑β 
=α ρ

(β)
m

)
τ
(α)
e f f = τ(α) − μb

(
A
√

ρ
(α)
m + A∗ ∑β 
=α

√
ρ
(β)
m

) (2.22)

γ̇
(α)
p = bρ

(α)
m v(α) + b ∑

β 
=α

sβρ
(β)
m v(β) (2.23)

where the superscripts refer to the slip system. The parameters δ∗ and A∗
are experimentally found to be 4 × 10−8 MPa−1m−1 and 0.45, respectively.
They translate the influence of secondary dislocations on the multiplication
process (δ∗) and internal stress (A∗) on the primary system. The sβ’s are
coefficients related to the Schmid factors, relative to the primary slip system
and associated to the different slip systems β. This modification of the model
yields excellent results, in agreement with the experimental observations.

alternative multiplication laws [Moulin 1999b] have proposed
another multiplication law based on mesoscale simulations of dislocation
multiplication. They consider that there is no physical justification for the
stress dependence, as the law was determined to fit creep experiments on
germanium, and some doubts could be emitted about its validity. Their
simulations show that a multiplication law proportional to the swept area is
not adequate either and leads to errors of representation of the multiplica-

2.4 limitations and improvements of the ah model 73

value [George 1987b]. [Suezawa 1979] indicate that the constant δ steering
dislocation multiplication (Eq. 2.9) should be dependent on the initial dis-
location density in order to represent correctly the yielding behavior of
silicon, a correction that could translate the additional dislocation density
nucleated by interaction of the primary dislocation with the trees of the
forest. It has actually been demonstrated on germanium single crystals
that an appropriate dislocation multiplication law should consider δ as a
free parameter that depends on the sample tested, and would translate the
influence of varying conditions such as inhomogeneity of the deformation
[Fikar 2005, Fikar 2006].

All experiments performed in the literature have been performed with
perfectly controlled crystal orientations, most often chosen so that only
one primary glide system was activated. In the case of multicrystals or
polycrystals, no such control is allowed a priori, and applying a strain on
a random orientation of a sample can lead to activation of several slip
systems. The mathematical formulation of this problem will be dealt in
the second Part; here we will concentrate on the model already existing.
Some discrepancies between experiments and simulations can be solved
through the adoption of a multiple slip formulation: both the multiplication
rates and expressions of effective stresses are affected [Sumino 1993]. The
evolution of dislocations on the slip system α reads:⎧⎪⎨⎪⎩

ρ̇
(α)
m = τ

(α)
e f f ρ

(α)
m v(α)

(
δ + δ∗ ∑β 
=α ρ

(β)
m

)
τ
(α)
e f f = τ(α) − μb

(
A
√

ρ
(α)
m + A∗ ∑β 
=α

√
ρ
(β)
m

) (2.22)

γ̇
(α)
p = bρ

(α)
m v(α) + b ∑

β 
=α

sβρ
(β)
m v(β) (2.23)

where the superscripts refer to the slip system. The parameters δ∗ and A∗
are experimentally found to be 4 × 10−8 MPa−1m−1 and 0.45, respectively.
They translate the influence of secondary dislocations on the multiplication
process (δ∗) and internal stress (A∗) on the primary system. The sβ’s are
coefficients related to the Schmid factors, relative to the primary slip system
and associated to the different slip systems β. This modification of the model
yields excellent results, in agreement with the experimental observations.

alternative multiplication laws [Moulin 1999b] have proposed
another multiplication law based on mesoscale simulations of dislocation
multiplication. They consider that there is no physical justification for the
stress dependence, as the law was determined to fit creep experiments on
germanium, and some doubts could be emitted about its validity. Their
simulations show that a multiplication law proportional to the swept area is
not adequate either and leads to errors of representation of the multiplica-

2.4 limitations and improvements of the ah model 73

value [George 1987b]. [Suezawa 1979] indicate that the constant δ steering
dislocation multiplication (Eq. 2.9) should be dependent on the initial dis-
location density in order to represent correctly the yielding behavior of
silicon, a correction that could translate the additional dislocation density
nucleated by interaction of the primary dislocation with the trees of the
forest. It has actually been demonstrated on germanium single crystals
that an appropriate dislocation multiplication law should consider δ as a
free parameter that depends on the sample tested, and would translate the
influence of varying conditions such as inhomogeneity of the deformation
[Fikar 2005, Fikar 2006].

All experiments performed in the literature have been performed with
perfectly controlled crystal orientations, most often chosen so that only
one primary glide system was activated. In the case of multicrystals or
polycrystals, no such control is allowed a priori, and applying a strain on
a random orientation of a sample can lead to activation of several slip
systems. The mathematical formulation of this problem will be dealt in
the second Part; here we will concentrate on the model already existing.
Some discrepancies between experiments and simulations can be solved
through the adoption of a multiple slip formulation: both the multiplication
rates and expressions of effective stresses are affected [Sumino 1993]. The
evolution of dislocations on the slip system α reads:⎧⎪⎨⎪⎩

ρ̇
(α)
m = τ

(α)
e f f ρ

(α)
m v(α)

(
δ + δ∗ ∑β 
=α ρ

(β)
m

)
τ
(α)
e f f = τ(α) − μb

(
A
√

ρ
(α)
m + A∗ ∑β 
=α

√
ρ
(β)
m

) (2.22)

γ̇
(α)
p = bρ

(α)
m v(α) + b ∑

β 
=α

sβρ
(β)
m v(β) (2.23)

where the superscripts refer to the slip system. The parameters δ∗ and A∗
are experimentally found to be 4 × 10−8 MPa−1m−1 and 0.45, respectively.
They translate the influence of secondary dislocations on the multiplication
process (δ∗) and internal stress (A∗) on the primary system. The sβ’s are
coefficients related to the Schmid factors, relative to the primary slip system
and associated to the different slip systems β. This modification of the model
yields excellent results, in agreement with the experimental observations.

alternative multiplication laws [Moulin 1999b] have proposed
another multiplication law based on mesoscale simulations of dislocation
multiplication. They consider that there is no physical justification for the
stress dependence, as the law was determined to fit creep experiments on
germanium, and some doubts could be emitted about its validity. Their
simulations show that a multiplication law proportional to the swept area is
not adequate either and leads to errors of representation of the multiplica-



74 macroscopic behavior of intrinsic silicon monocrystals

tion rate at the upper yield point. They suggest instead to use to following
equation to model the multiplication rate:

dρm

dt
= δM

√
τe f f ρmv exp

(
−ρm

ρs

)
(2.24)

where δM is a constant analogous to δ in the AH model and ρs is a saturation
term depending on the temperature and applied strain rate. The exponential
term is added to take into account the size effect due to saturation of the
simulated specimen. For an infinite crystal, this term can be considered to
be unity.

However, such a law has been derived for a constant number of disloca-
tion sources and planar glide only, the authors emphasizing that cross-slip
mechanisms have not been accounted for8. In addition, this law is valid for
temperatures between 800 and 1200 K, where the dislocation motion mecha-
nism is assumed to be governed by Peierls forces. The temperature domain
influenced by point defects is therefore excluded from the discussion.

In addition to this generation term, it might be relevant to raise the possi-
bility of an annihilation or immobilization term, since the AH model deals
only with mobile dislocations although experiments point to the buildup of
a population of immobile dislocations already at the lower yield point. Sev-
eral models exist for these terms, but for covalent crystals only one group
has conducted extensive research in this direction by performing transient
tests on germanium single crystals [Fikar 2002, Fikar 2005, Fikar 2006]. Sev-
eral immobilization laws have been tested and fitted to experimental results.
Disappearance of mobile dislocations at the surface of the samples has
also been modelled. The model accounting for dislocation immobilization
(Eq. 2.25) considers however single slip only:

ρ̇i = δimm(ρmbv)ρt (2.25)

where ρi and ρt are the density of immobile dislocations and total disloca-
tion density, respectively.

2.4.3 3D-modeling

The need to simulate industrial processes has been investigated by sev-
eral authors for different semiconductors [Dillon 1986, Kim 1987, Tsai 1992,
Maroudas 1999], and a modification of the classical one-dimensional model
for its generalization to three dimensions has therefore been derived. Since
dislocation generation is reactive to shear stresses, a J2 plasticity formula-
tion is chosen (Eqs. 2.26 and 2.27). Fundamental assumptions related to
such a choice are that plasticity is isotropic and that only one fictious slip
system can be activated. {

ε̇ = f S

S = σ − 1
3 trσI

(2.26)

8 cross-slip mechanisms in the bulk are not fully understood yet, and never modelled directly in
the equations of the reviewed papers.
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Maroudas 1999], and a modification of the classical one-dimensional model
for its generalization to three dimensions has therefore been derived. Since
dislocation generation is reactive to shear stresses, a J2 plasticity formula-
tion is chosen (Eqs. 2.26 and 2.27). Fundamental assumptions related to
such a choice are that plasticity is isotropic and that only one fictious slip
system can be activated. {

ε̇ = f S

S = σ − 1
3 trσI

(2.26)

8 cross-slip mechanisms in the bulk are not fully understood yet, and never modelled directly in
the equations of the reviewed papers.
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⎧⎨⎩ f = ρmvb√
J2

J2 = 1
2 S : S

(2.27)

and the equations for the effective stress and dislocation multiplication are
similar to those of the AH model:

σe f f =
√

J2 − μbA
√

ρm (2.28)

ρ̇m = δσe f f ρmv = δσm0+1
e f f ρm

v0

τ0
exp

(
− U

kbT

)
(2.29)

Such a model has several drawbacks coming from the choice of the plas-
tic yield surface but give qualitatively good results for monocrystals or
polycrystals.
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2.5 conclusion on the macroscopic behavior of intrinsic sil-
icon monocrystals

More than thirty years after the pioneering review of Alexander & Haasen,
Siethoff et al. confirmed the validity of the expression for dislocation velocity
in FZ-grown silicon for temperatures up to 1573 K under certain conditions
of strain rate and initial dislocation density. To the knowledge of the author,
the additional velocity regimes at very high (or low) temperatures and low
strain rates have never been considered in simulations of silicon mechanical
behavior. This might be due to an appearance of these regimes that is not
clearly defined and depends on several factors such as the initial dislocation
density, temperature, strain rate, and other contributions from point defects
that are still not fully understood.

It can be concluded that the formalism of the AH model can be applied
to the modeling of the yield region of silicon crystals throughout the whole
temperature range 723-1323 K, and eventually up to 1573 K if the varia-
tions of the velocity parameters are accounted for in the low strain-rate
range (lower than 10−3 s-1 for an initially dislocation-free material). The
dislocation multiplication law must be adapted to account for thermally
activated immobilization and annihilation processes taking place at high
temperatures, and for the role played by forest dislocations on both mul-
tiplication mechanisms and the internal stress. A high initial dislocation
density must be carefully examined as well since the influence of immobile
dislocations and of the microscopic dislocation structure might lead to a
different mechanical behavior. The next Chapter deals with the effects of
impurities and other extrinsic species on the mechanical behavior of silicon
materials.
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3
I M P U R I T I E S A N D D E F E C T S I N S I L I C O N M AT E R I A L S

The presence of impurities and defects in silicon directly influence the
macroscopic behavior of the bulk material by affecting the microscopic
mechanisms of plasticity, namely motion and multiplication of dislocations.
Section 3.1 introduces the major impurities and defects found in silicon
materials of electronic and solar grades. Oxygen precipitates have special
effects on plasticity that will be described there. The macroscopic effects
of dissolved impurities will be discussed in Section 3.2. Finally, models for
dislocation pinning and formation of atmospheres around the dislocations
will be surveyed in Section 3.3. The literature about impurities in EG-Si
is very abundant and this Chapter aims only at giving a snapshot of the
complexity of this research field. In addition to the impurity type, content
and distribution that depends on the crystal growth technology, one must
account for the influence of thermal treatments on impurity precipitation
and the multiple interactions that can take place between the contaminants.
The case of the hydrogen impurity has not been reviewed.

3.1 defects in extrinsic silicon materials

3.1.1 Semiconductor-grade Si (EG-Si)

Impurities

The major impurities that can be found in EG-Si are oxygen, nitrogen and
carbon. Electronic applications require the use of monocrystalline materials,
therefore EG-Si is always found as single crystals (c-Si). EG-Si has very low
impurity contents and these can be controlled. Therefore such a material is
ideal for experimental investigation of the effects of given impurities on the
mechanical behavior of silicon materials. Undoped FZ crystals are usually
taken as representative of the intrinsic material.

The typical impurity content will vary depending on the method chosen
for crystal growth, Czochralski or Float-Zone (CZ or FZ, respectively). For
example, oxygen concentration in CZ silicon crystals is usually two to
three orders of magnitude higher than in FZ crystals. These impurities
can lead to varying macroscopic mechanical strengths of dislocated silicon
crystals, see next Section. Some other impurities are found, B and P being
of interest since they are used for doping. Electrically active impurities such
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78 impurities and defects in silicon materials

as dopants affect the activation energy for dislocation motion by affecting
the core structure of the dislocations. As a matter of fact, there are very few
impurities to consider in EG-Si, apart from the three electrically inactive
ones mentioned above and as long as this feedstock material is not used for
production of multicrystalline ingots, in which case additional impurities
must be considered (see below). This explains why literature about impurity-
related defects in silicon earlier than the 1990’s has concentrated almost
exclusively on oxygen and dopants, and to a less extent on nitrogen and
carbon.

CZ crystals doped with high boron concentrations are prone to the
formation of boron-oxygen complexes that form under illumination and
degrade the efficiency of the solar cell with time and ultimately determine
the lifetime of minority carriers in materials virtually free from metallic
impurities and other recombination centers. These defects result from the
complexation of interstitial oxygen dimers O2i and substitutional boron
Bs and the stable cell efficiency is reached in up to a few days at low B
concentrations [Bothe 2005].

Planar and extended defects: oxygen precipitates

Closely related to the impurity content in CZ-Si, oxygen precipitates (SiO2)
are observed to form in the bulk material that create a complex strain field
around them [Yonemura 1999], which in turn leads to the formation of
interstitial defects [Bolotov 1993] and can act as gettering centers for other
metallic impurities [Hielsmair 1998]. The solubility of O in silicon is given
by Eq. 3.1 [Mikkelsen 1986]:

c(s)O = 9 × 1022 exp
(
−1.52

kbT

)
cm−3 (3.1)

A very high supersaturation is required in defect-free crystals to nucleate
oxygen precipitates. The presence of dislocations or other extended defects
eases significantly the formation of precipitates [Freeland 1977]. Nitrogen
is also believed to enhance their formation [Yang 2003]. The density and
size of oxygen precipitates depends on the annealing temperature and time.
Three precipitation stages can be observed at different temperatures given
an annealing time; actually the three different morphologies result from
diffusion kinetics only as the ones observed at high annealing tempera-
tures can also be obtained by a long intermediate temperature annealing
[Sumino 1999b]. Below 923 K small spheres of diameter 2 nm are formed.
At intermediate temperatures between 1123 and 1273 K, square-shaped
platelets are obtained. Finally between 1373 and 1473 K octahedrons form,
eventually surrounded by extrinsic stacking faults. The formation of these
precipitates requires nucleation sites and high concentrations of dissolved
oxygen seem to increase their number, resulting in enhanced precipitation
in such crystals [Yonenaga 1984a].

Prismatic loops gathering impurities are actually punched out from the
square-shaped precipitates [Tan 1976, Tan 1977]. These loops can act in turn
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Figure 3.1: Effect of heat-treatment-induced oxygen precipitation on the mechanical
behavior of dislocation-free silicon monocrystals. (A) as-grown material
(B) 63 hours annealing at 1273 K (C) 134 hours annealign at 1273 K.
Deformation at 1073 K [Patel 1962].

as dislocation sources and enhance a homogeneous dislocation generation in
the crystal; the larger the precipitate the lower the required stress to generate
dislocations. Oxygen precipitates larger than 200 μm are therefore favorable
nucleation sites for dislocations, with the consequence of lowering the
yield stress of heat treated silicon materials in which oxygen precipitation
occurs (see Figure 3.1) [Yonenaga 1984a]. This softening phenomena has
been reported very early in research on semiconductors [Patel 1962]. This is
the reason why heat treated CZ crystals do deform homogeneously without
Lüders bands [Mahajan 1979].

Such precipitates can also pin dislocations if they are small enough
[Yang 2003], and oxygen atoms that have not precipitated during the
heat treatment also act as strong pinning agents (see Section 3.2.2), so
a competition exists between their ability to act as dislocation nucleation
centers on the one hand and as dislocation stoppers on the other hand
[Yasutake 1980, Yonenaga 1984a]. The resulting net effect of precipitates
when dissolved oxygen concentration is low is generally a softening of the
material, because large amounts of dislocations generated at large precip-
itates cannot be pinned at the smaller ones unless the latter are present
in sufficiently large numbers [Nishino 1982]. As mentioned earlier, the
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as dislocation sources and enhance a homogeneous dislocation generation in
the crystal; the larger the precipitate the lower the required stress to generate
dislocations. Oxygen precipitates larger than 200 μm are therefore favorable
nucleation sites for dislocations, with the consequence of lowering the
yield stress of heat treated silicon materials in which oxygen precipitation
occurs (see Figure 3.1) [Yonenaga 1984a]. This softening phenomena has
been reported very early in research on semiconductors [Patel 1962]. This is
the reason why heat treated CZ crystals do deform homogeneously without
Lüders bands [Mahajan 1979].

Such precipitates can also pin dislocations if they are small enough
[Yang 2003], and oxygen atoms that have not precipitated during the
heat treatment also act as strong pinning agents (see Section 3.2.2), so
a competition exists between their ability to act as dislocation nucleation
centers on the one hand and as dislocation stoppers on the other hand
[Yasutake 1980, Yonenaga 1984a]. The resulting net effect of precipitates
when dissolved oxygen concentration is low is generally a softening of the
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Figure 3.2: Optical image of silicon deformed at 900 K and etched to reveal trailing
extended defects (TED). AB correspond to the TED positions. Note the
TEDs starting exactly at the dislocation line (D) [Eremenko 2009].

heat treatment decides the size and distribution of these defects in the
bulk. Oxygen precipitates that form at the dislocation cores have different
atomic structures than those found in the silicon matrix [Sumino 1992] (see
Section 3.2).

Other planar and extended defects

Other planar defects are of course stacking faults, surrounded by the disloca-
tion partials, stacking faults generated by oxygen precipitates, Frank partials.
Deformation itself creates defects that behave differently with temperature
and annealing time, as well as with the extent of deformation: disloca-
tions, dislocation dipoles, small loops of dislocations, faulted dipoles, point
defects, etc. These are described and studied in [Yonenaga 1993]. Moving
dislocations themselves leave in their trail electrically active extended de-
fects as revealed by EBIC measurements [Eremenko 2007]. These defects are
generated from 60° dislocations only at very regular intervals along the lines
(1-5 μm) and form ridges aligned along a screw orientation as seen at the
surface of the etched crystal (see Figure 3.2) [Eremenko 2009]. Their exact
origin is not known yet. The atmosphere in which deformation takes place
is known to affect the mechanical behavior of silicon crystals as well. For
example, nitrogen present in forming gas has been mentioned to develop a
Si3N4 coating at the sample surface between 1273 and 1473 K, affecting the
properties of the stress-strain curve in the yield region [Siethoff 1988]; crack
healing is observed in oxygen-containing atmospheres (see Section 4.3.3).

3.1.2 Solar-grade Si (SoG-Si) and multicrystals (mc-Si)

Solar-grade silicon materials are used exclusively by the photovoltaic in-
dustry, hence their name. The impurity requirements for PV applications
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are lower than in the case of electronics, so that it becomes cost-effective
to purify raw metallurgical-grade silicon by means of ingot casting. Such
a process has the drawback of forming multicrystals (mc-Si) instead of
monocrystals, in addition to being less effective at purification than other
classical CZ or FZ methods.

Multicrystals differ from single crystals by the presence of grain bound-
aries that have particularly strong effects on the impurity and defect seg-
regation. When reading the literature it is easy to forget the fundamental
difference between the feedstock (SoG-Si) and the topology of the mate-
rials (mc-Si): it is possible to produce mc-Si from EG-Si feedstock and
vice-versa. For example one should notice that some wafer providers use
SoG-Si feedstock to grow large monocrystals using the CZ technology for
the PV market. Monocrystalline solar cells have indeed a higher efficiency
than their multicrystalline counterparts since no grain boundary and less
dislocations are present to trap minority carriers. In the following we will
concentrate on the defects and impurities traced in SoG-Si and in mc-Si
materials crystallized from such a feedstock. A review of the impurities in
SoG-Si is available [Macdonald 2007].

Oxygen, carbon and nitrogen

Oxygen, carbon and nitrogen are the main impurities in mc-Si, and their
distribution as well as interaction have been studied for example by the
groups of Möller and Yang [Möller 1999, Möller 2002, Yang 2002]. Oxygen
impurities come mainly from the crucible and its coating [Kvande 2005].
Oxygen can occupy interstitial sites, where it does not alter the performance
of the solar cell, but oxygen precipitates affect both cell efficiency and
mechanical strength. This is thought to be caused by impurity gettering at
precipitates that act as recombination centers. Oxygen can form a variety of
defects: clusters of a few atoms, SiO2 precipitates and donors that affect the
solar cell efficiency [Hässler 2000].

Which oxygen-related defect is preferably formed depends on the thermal
history of the material and on the presence of other impurities [Möller 1999,
Hässler 2000]. Depending on the temperature, plate-like defects or spher-
ical precipitates can be detected in the bulk, the critical temperature for
transition between the two shapes being 1323 K (See Figure 3.3). Their
formation in the bulk1 requires a concentration of interstitial oxygen larger
than 3 × 1017 cm−3 and is enhanced in the presence of high carbon concen-
trations. In the latter case, oxygen and carbon co-precipitate. Precipitation
of oxygen occurs mostly in the temperature range from 1073 to 1473 K, and
annealing at 1530 K for 1 hour dissolves all precipitates in as-grown mc-Si
wafers [Möller 1999].

Precipitation occurs during crystal growth and is enhanced at grain
boundaries and dislocations, although these intrinsic defects do not affect

1 precipitation at lower concentrations is possible at the dislocations by formation of clusters
[Möller 2002].
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(a) Spherical precipitate of amorphous na-
ture.

(b) Plate-like SiO2 precipitate. High-
resolution microscopy reveals that
defects are attached to the plate.

Figure 3.3: TEM images of oxygen precipitates in mc-Si material [Möller 1999].

the precipitation process. The decoration of most of the dislocations by
oxygen is of interest for dislocation mobility, as will be discussed later
[Möller 2002]. Dislocations can hence be used for impurity gettering, which
explains by the way why they act as recombination centers in the solar
cells in spite of their low intrinsic electrical activity due to their core
reconstruction (Chapter 1).

Carbon originates from from insulation and heating elements of the fur-
nace [Kvande 2005]. It has a strong influence on the precipitation of O at
temperatures below 1123 K, because of its associated lattice contraction
when dissolved in the bulk as a substitutional atom, providing effective pre-
cipitate nucleation centers. At higher temperatures, carbon diffuses to the
oxygen precipitates without enhancing their promotion. The enhanced oxy-
gen precipitation in presence of high carbon concentrations is not affected
by grain boundaries or dislocations [Yang 2002]. C can also precipitate as
SiC when its concentration exceeds the solubility limit, but its precipitation
is more dependent on its diffusion than on its supersaturation because of its
low diffusivity. Another source of SiC particles comes from their formation
in the melt and subsequent incorporation into the solidified silicon matrix
[Liu 2008].

Nitrogen introduced by the crucible coating Si3N4 forms N-O complexes
that are are electrically active and can be avoided by high temperature heat
treatments. They form preferentially in the bottom region of the ingot and
near its edges [Yang 1996].

Metallic contaminants

Metallic contaminants are also commonly found in concentrations in the
range 1010 to 1015 cm-3: Fe, Ni, Cu, Cr, Co, Mo, and to a lesser extent Mn,
Ti, Zn and V. Some species are present in the feedstock but some also come
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from the crucible [Macdonald 2007]. These atoms tend to be located at the
top of the mc-Si ingot because of segregation during crystallization, but
a backward solid diffusion occurs during the cooling time, leading to a
larger spreading of these impurities [Matinuzzi 2007]. Grain boundaries
and dislocations act as precipitation centers for these metals, reducing the
carrier lifetime and being hereby detrimental to the solar cell efficiency. Fast
diffusers Ni, Cu and Co almost always precipitate when their concentration
exceeds the solubility limit. Observation of the location of precipitation of
metallic impurities at grain boundaries reveals that they are likely to precip-
itate on boundaries with low atomic coincidence (high Σ) [Buonassisi 2006],
which is explained by the low level of bound distortions found in low-Σ
boundaries. Here, it might be interesting to increase the content of low-Σ
grain boundaries so as to decrease the sinks for metallic impurities, as
pointed out in [Buonassisi 2006].

Metallic impurities (e.g. iron and copper) have been much less studied
than dopants, principally because of their limited presence in silicon single
crystals. The extensive use of ingot casting in the last decades has led to
an increased interest in the field. Dislocations acting as gettering centers
for impurities, their decoration by metallic contaminants has an extremely
harmful effect on the solar cell efficiency as they act as recombination
centers.

Fe atoms diffuse to the dislocation cores where they aggregate without
forming precipitates as oxygen atoms do [Sumino 1999b]. Nickel can pre-
cipitate in dislocation-free silicon by forming NiSi2 platelets on the {111}
planes. Its precipitation at dislocation leads to the formation of tetrahedra
and octahedra as is the case for oxygen precipitates in the intermediate
temperature range [Seibt 2005]. Cu gettering at dislocations was used very
early to observe dislocation loops in bulk silicon [Dash 1956]. Copper pre-
cipitation depends on its concentration at high temperature and the cooling
rate. Dislocations in the crystal act as nucleation centers for Cu precipitates,
which then emit interstitials because of the strong lattice distortion follow-
ing their buildup, provoking climb of the dislocation segments and further
development of precipitates [Seibt 2005, Sumino 1999b].

Inclusions

Inclusions of SiC (Figure 3.4) and Si3N4 are also found in multicrystalline
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Figure 3.4: SEM of �-SiC particles [Søiland 2004].

Figure 3.5: SEM of clusters of �-SiC and �-Si3N4 particles [Søiland 2004].

cell efficiency but the accumulation of other impurities around them makes
them harmful for the minority carrier lifetime.

Grain boundaries and dislocations

These extended defects are fingerprints of mc-Si materials. They act as
segregation sites, especially for oxygen, and as such are generally detrimen-
tal to solar cell efficiency, although grain boundaries are less dangerous
than dislocations in this respect [Hässler 2000]. Diffusion of impurities to
the grain boundaries creates denuded zones free from contaminants and
leading to large minority carrier lifetimes, as shown in Figure 3.6. Regions
of high dislocation densities have been known for a long time to be harmful
to the solar cell efficiency [Pizzini 1988]. While individual dislocations can
act as gettering centers, clusters of dislocations are believed to cause serious
efficiency losses [Sopori 2005].

Distribution of impurities and inclusions in the ingots

The distribution of impurities in as-grown directionally solidified ingots is
not homogeneous and depends on two factors: segregation and diffusion.
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Figure 3.6: Minority carrier lifetime scan map in a mc-Si wafer. Note the de-
nuded zones along the grain boundaries exhibiting larger lifetimes
[Matinuzzi 2007].

Most impurities have low segregation coefficients, meaning that they are
more soluble in the liquid than in the solid phase. During ingot crystal-
lization these impurities are consequently pulled out from the solid/liquid
interface until they finally incorporate the solid phase when little melt is
left, i.e. at the top of the ingot. Diffusion is responsible for the appearance
of oxygen at the bottom and the edges of the ingots as it diffuses from the
crucible walls. Backward solid-state diffusion of the seggregated impurites
deeper into the crystal during the cooling phase of the ingot is also observed
and results in the extension of the “contaminated” region of the ingots that
must be discarded.

Vertically speaking, oxygen is therefore found preferably at the bottom
of the ingot, whereas the concentration of carbon and other impurities
increases from the bottom to the top [Möller 1999, Kvande 2005]. High
concentrations of dissolved interstitial oxygen favor its precipitation, and
more oxygen precipitates are observed at the bottom of the ingots and at
the ingot edges [Yang 2000, Möller 2002]. Although the oxygen content of
mc-Si materials is similar to the one of CZ monocrystals, the concentration
of interstitial oxygen Oi in the former varies a lot with the position in the
ingot and can be lower than in CZ Si by one order of magnitude. This is
due to enhanced oxygen precipitation in mc-Si. This particularity of mc-Si
materials limits the development of boron-oxygen complexes compared
to the case of CZ crystals, and implies that the minority carrier lifetime is
limited in mc-Si by other species than these complexes [Bothe 2005].

It has been found that the concentration of dissolved oxygen decreases
with increasing dislocation density, since they have the ability to act as pre-
cipitate nucleation sites. Moreover, less dissolved oxygen precipitates per
dislocation length with increasing dislocation density, because of increased
competition between dislocation segments for the available interstitial oxy-
gen [Möller 2002]. See also Section 3.3.
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The horizontal distribution of impurities stems directly from the tem-
perature gradients during ingot solidification and the curvature of the
solid/liquid interface. It is widely known that the edges of the ingots ex-
hibit low minority carrier lifetimes due to high concentrations of impurities
and other structural defects. Because the solubility limits are reached, higher
precipitation of oxygen is noticed in these regions as well [Rossberg 2005].
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3.2 influence of impurities on plasticity

We concentrate in this Section on the mechanical properties of silicon
crystals containing dissolved impurities only. The case of precipitates and
inclusions in the bulk has already been touched upon previously. Several
reviews have been published dealing with the complex subject of inter-
action between impurities and dislocations [Sumino 1983b, Sumino 1992,
Sumino 1999b, Sumino 2002]. This Section will expose the main results of
this research field.

Roughly speaking, one could say that dissolved impurities affect the
macroscopic behavior of dislocated crystals homogeneously whereas inclu-
sions and precipitates have more local effects2. The formation of precipitates
at the dislocations is of course possible, as will be seen below for the case
of oxygen.

3.2.1 Impurity gettering by dislocations

There are two ways for impurities to interact with dislocations: either by
forming a Cottrell atmosphere around the dislocation core (elastic binding),
or by diffusing directly to the core (chemical binding). Impurities segregate
around a dislocation or more generally at an extended defect because of
their associated strain fields, in which case the interaction energy between
an impurity and an extended defect is elastic in nature. The formation of an
impurity atmosphere requires additional stress to keep the dislocation into
motion as the atmosphere must be dragged along. Diffusion of impurities
at the core will be seen in the next Section to have a starker effect on
dislocation motion, resulting in an effective local pinning of the dislocation
as its velocity is lowered. This pinning effect can result in the complete
immobilization of the dislocation by dynamic ageing, ultimately preventing
the dislocation from carrying plastic flow and thereby enhancing elastic
deformation above the plastic one. Once impurities are segregated at the
dislocation core, precipitates can form by diffusion of the atoms along the
line.

Energetic considerations associated to the theoretical probability of forma-
tion of a Cottrell atmosphere lead to the conclusion that in semiconductors
with impurity concentrations of 10 ppm or less, the formation of such
atmospheres at high temperatures where dislocation locking is observed
is not possible (see Figure 3.7). Interaction energies Ei larger than 1.5 eV
are required at concentrations of 1 ppm to lead to the formation of an
atmosphere at 973 K, where the majority of impurities diffuse significantly.
However the maximum Ei is believed to be lower than 0.5 eV [Sumino 1992].
Therefore, impurities gettered by dislocations usually do not form Cottrell
atmospheres at high temperatures, but are rather diffused to the cores.

2 the case of oxygen precipitates obtained by annealing is different since they are more homoge-
neously distributed throughout the wafers
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2 the case of oxygen precipitates obtained by annealing is different since they are more homoge-
neously distributed throughout the wafers
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Figure 3.7: Occupation probability p in thermal equilibrium of an impurity at a site
with interaction energy Ei = 0.5 eV for various impurity concentrations
c0 (per atomic site) [Sumino 1999b].

The gettering efficiency at defects depends on several factors: defect
type (e.g. partial type), species and diffusion properties of the impurity, its
concentration in the matrix, morphology of the impurities already gettered
at the cores and temperature.

Impurities can affect dislocation motion, hence plasticity, by two means:
the first possibility is to affect their core structure, thereby modifying the
very process of double kink nucleation and propagation by effectively
changing the activation energy for dislocation motion. The second option is
to pin dislocations and preventing their motion by creating an additional
energy barrier to motion. We will distinguish in the following light from
electrically active impurities: the former pin dislocations whereas the latter
can both pin dislocations and influence their motion properties.

3.2.2 Light impurities

The qualitative macroscale effects of O, N and C have been studied exper-
imentally by Sumino et al. in the 1980’s and onwards at temperatures up
to 1073 K. More recently, Senkader et al. took on the challenge of studying
in more details the locking phenomena by O and N. Their results will be
summarized here.

Oxygen

The influence of dissolved oxygen atoms on the stress-strain curve of Si
crystals was carefully determined in the early 1980’s, and could explain
the higher mechanical strength of dislocated CZ crystals compared to
the pure FZ materials [Sumino 1980, Yonenaga 1984a]. The early stage of
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Figure 3.8: Influence of dissolved oxygen concentration [Oi] on the mechanical
behavior of dislocated silicon single crystals [Yonenaga 1984a]. T =
1073 K, γ̇ = 1.1 × 10−4 s−1, ρm,0 � 1010 m−2.

deformation of as-grown silicon is characterized to the appearance of
an upper yield point followed by a sharp yield drop due an intensive
dislocation multiplication following their motion under high stresses (see
Chapter 2). Preventing this multiplication process leads indeed to higher
upper yield points, i.e. materials less prone to plastic deformation. Figure 3.8
gives an example of the measured influence of the oxygen concentration
on the mechanical behavior of dislocated crystals. The pinning effect is
observed to stronger as [Oi] is raised.

No difference in the upper yield stresses can be detected when the crys-
tals are originally dislocation-free (Fig. 3.9) and no dislocation motion is
observed in prestrained CZ crystals unless very high stresses are applied:
this points out the pinning effect of oxygen atoms, preventing disloca-
tion multiplication by hindering their motion [Sumino 1980, Sumino 1981,
Yonenaga 1984a]. Significant effects of dissolved oxygen on dislocation mul-
tiplication are observed for concentrations [Oi] larger than ∼ 1016 cm−3.

Oxygen diffusion at the dislocation cores does not affect dislocation veloc-
ity when these are moving under high stresses, that is, when dislocations
cores are not affected by the presence of impurities. The activation energy
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Figure 3.9: Influence of dissolved oxygen concentration [Oi] on the mechanical
behavior of dislocation-free silicon single crystals [Sumino 1980]. T =
1173 K, γ̇ = 1.2 × 10−4 s−1.

for dislocation motion is then similar to the one in pure materials and the
same effective stress is found in the steady-state of deformation in stage
I (see Section 2.3.1) [Sumino 1980]. However, a divergence from the linear
stress-velocity relationship (Eq. 2.6) is detected as the stress is lowered,
simultaneoulsy as irregularities are observed in the shape of the intially
straight dislocation lines (see Figure 3.10). This is due to the local pinning
of dislocations by impurities and reflects the local phenomena taking place
along the dislocation line. Line tension still frees dislocations from the
impurity atoms provided that the applied stress is high enough to counter
the effect of impurities. If the stress is lowered further, dislocations are
immobilized at a locking stress τl that increases with [Oi] (Figure 3.11)
[Imai 1983]. τl depends as well on the diffusion kinetics, that is, on the
temperature at which locking takes place.

Immobilized dislocations see their core progressively contaminated by
an increasing amount of oxygen atoms, until the oxygen concentration
at the core is in thermodynamical equilibrium: as many atoms are trans-
ported to the core as are emitted by thermal excitation. The presence of
impurities increases the stress needed to free dislocations from the con-
taminants and set them back into motion, called the unlocking stress τu.
When the core is saturated, τu reaches a plateau, the magnitude of which
decreases with increasing temperature [Senkader 2000]. Precipitates form
at the core by pipe diffusion. Their size and separation increase with time
and affect the unlocking stress required to free dislocations from their
impurity decoration. τu depends again on the ageing time, because it is
associated to the formation of these aggregates of varying size and distribu-
tion [Sumino 1983a, Yonenaga 1996a].

Precipitates on dislocations form in their very early stage preferentially
on the 90° partial and therefore affect firstly the 60° dislocations, although
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Figure 3.12: Formation of oxygen precipitates along a screw dislocation during
ageing [Yonenaga 1996a].

Figure 3.13: Schematic evolution of the dislocation unlocking stress with annealing
time at two different temperatures T1 and T2 [Murphy 2006a].

to the progressive diffusion of impurities to the core: compare Figures 3.11
and 3.14 [Imai 1983, Sumino 1983a]. The absence of a mixed velocity regime
results in a reduced difference of the lower yield stresses between intrinsic
and nitrogen-doped FZ crystals compared to oxygen doping. In crystals
containing both dissolved O and N atoms, the mixed velocity mode is due
solely to the pinning effect of oxygen on the dislocations [Yonenaga 2005].
Finally, there is no formation of nitrogen precipitates in the bulk by anneal-
ing at very high temperatures, unlike in the case of oxygen contaminants
(see Section 3.1.1) [Sumino 1983c].

Dislocation ageing by additional diffusion of N to the core and formation
of nitrogen aggregates has the same effect as in the case of O, but no more
than two stages of the unlocking stress have been observed [Alpass 2009].
It has been observed in nitrogen-doped FZ-Si that N is able to lock firmly
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Figure 3.14: in situ determined velocity of 60° dislocations in N-doped FZ crystals
(solid circles) and intrinsic Si (open circles) at different temperatures as
a function of stress. The immobilization stresses are indicated by vertical
dashed lines when detected. [Ni] = 5.4 × 1015 cm−3 [Sumino 1983c].

dislocations in the whole range of temperature 973-1473 K, whereas O is
not able to attain such a locking capacity at high temperatures. At equal
concentrations, nitrogen has in addition a much stronger locking effect than
oxygen [Sumino 1983a]. This point to different chemical reactions between
the light impurities N and O and dislocation cores.

Rapid diffusion of N at the dislocation core3 creates a preferential site for
segregation of O: the co-presence of N and O impurities in dislocated silicon
crystals results in enhanced dislocation locking between 923 and 1173 K and
a decreased locking capacity beyond 1173 K [Yonenaga 2005]. Incorporation
of nitrogen in CZ crystals allows moreover a homogeneous distribution
of SiO2 precipitates by favoring oxygen precipitation at dislocations as
described above.

Carbon

Carbon in substitutional form does not affect the mobility of moving dislo-
cations, unlike O and N, and plays a little dislocation locking role by itself.
Carbon atoms at [Cs] � 1017 cm−3 actually play an important role when in

3 N diffuses more rapidly than O in silicon, see next Section.
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presence with atoms of oxygen [Oi] � 5 × 1017 cm−3 in dislocated crystals
between 1073 and 1173 K by favoring diffusion of oxygen at the dislocation
core and strengthening dislocation locking. An increase of the upper yield
stress is then detected linearly dependent on [Cs], whereas the lower yield
stress is not affected, as is the case for nitrogen [Yonenaga 1984b].

It is found that at low temperatures interstitial carbon atoms tend to bind
with substitutional immobile carbon atoms, suggesting a possible mecha-
nism for growth of carbon aggregates and probably to SiC precipitates. At
higher temperatures on the contrary, carbon is mobile and these aggregates
disappear. C is considered to be present as a substitutional species during
crystal growth, its diffusion taking then place under an interstitial form.
Very high concentrations of dissolved carbon, above 1019 cm−3, affects the
diffusivity of other species such as boron by affecting the amount of intrinsic
point defects in the bulk [Pinacho 2002].

3.2.3 Effects of electrically active impurities

The case of electrically active impurities (e.g. dopants) is more complex than
the previous one, because the dislocation pinning and locking effect can be
superimposed to a modification of the core structure of the dislocations and
an alteration of the activation energy for dislocation motion. This Section is
concerned by the influence of dopants onto dislocation motion. The case of
metallic impurities is dealt with in the following Section.

Silicon belongs to the 14th column4 of the periodic table of elements, and
has consequently four valence electrons usually used to build the covalent
bonds with its four Si neighbours in the intrinsic crystal. Insertion of
impurities belonging to one of the neighbouring columns in concentrations
large enough to affect the electrical properties of intrinsic Si is called
doping, and affects the concentration of holes or electrons (charge carriers)
in the material. Very high doping ends up making intrinsic semiconductors
conductors.

• n-type doping5 (n for negative) implies the use of donor species on the
15th column such as phosphorus (P), arsenic (As), and less commonly
antimony (Sb). These atoms have one more valence electron available
than Si and increase therefore the concentration of negative charges
in n-doped Si: four of their electrons are shared to make covalent
bonds while the fifth remains available to increase the conductivity of
the doped material by increasing the amount of electrons in the con-
duction band. The dominant carriers in n-doped Si are consequently
electrons.

4 it is also common to refer to the groups III, IV and V instead of groups 14, 15 and 16. This has
the advantage of indicating directly how many valence electrons the species have.

5 the name n+ (resp. p+) doping is also used to mean that the concentration of negative (resp.
positive) carriers is increased.
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96 impurities and defects in silicon materials

• p-type dopants belonging to the 13th column of the periodic table
are acceptors and possess on the contrary one valence electron less
than Si. Their insertion in the silicon matrix leads to the formation
of a broken bond (a hole) coming from an unpaired electron of an Si
atom, which is then available for conduction. p-type doping increases
consequently the hole concentration, which become dominant carriers.
Commonly used p dopants are boron (B), and gallium (Ga) to a lesser
extent.

When n- and p-type dopants are in equal concentrations in a semiconductor,
the resulting effect is no change in the electrical properties of intrinsic Si
since holes and electrons combine with each other. Compensation can be
done by injecting more of one doping species but has the drawback of
reducing the free carrier mobility, steered by the total concentration of
dopants and not the net doping concentration. Compensation is commonly
done in SoG-Si materials because of the high concentrations of (often
unwanted) electrically active impurities in as-grown materials. As we will
see in the following, doping not only affects the electrical properties of
silicon but also its mechanical behavior. In addition, the effect of dopants
on the activation energy for dislocation motion, that is on the mechanism
of double kink nucleation and propagation, does not depend on the exact
dopant species but solely on the group it belongs to (acceptor or donor), as
long as the locking effects are negligible [George 1979b].

Evolution of the stress-strain curve

Use of Eq. 2.1 at large strain rates shows that doping does not affect
the stress sensitivity of dislocation velocity m. The activation energy U is
reduced by n-doping and unaffected by p-doping at temperatures above
873 K. Low strain rates associated to high temperatures lead however to
the saturation of the yield points, a phenomena exacerbated as the doping
concentration (n-type or p-type) increases.

The lower yield stress seems then to be independent on the strain rate but
still to vary exponentially with temperature6 and linearly with the dopant
concentration7: the saturation of the lower yield stress is observed e.g. at
γ̇ �10−3 s−1 at 1473 K and [B] � 1020 cm−3, saturation being observed gen-
erally above dopant concentrations larger than 5× 1019 cm−3 independently
on the dopant [Siethoff 2001]. This has been understood as the lower yield
stress being the unlocking stress necessary to free dislocations from the
impurities gathered at the core. Eq. 3.2, based on the interaction between
dislocations and a short-range cloud of impurities around its core, has been

6 the lower yield point of boron-doped crystals becomes independent on temperature as well
provided its concentration is large enough [Siethoff 2003].

7 precipitation of boron affects the stabilization of the lower yield stress and its linear dependence
on [B] because of its low solubility [Siethoff 2003].
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found to correctly describe the temperature- and [P]-dependency of τlyp in
highly doped Si crystals [Brion 1971, Siethoff 2003]:

τlyp ∝ [P]
kbT
b3 exp

(
UP
kbT

)
(3.2)

Such an equation does not fit results obtained on B-doped crystals, indicat-
ing that the long-range elastic interaction between B atoms and dislocations
might influence impurity segregation as well [Siethoff 2003].

The upper yield stress seems less affected by high dopant concentrations
than the lower yield point does [Siethoff 1970, Siethoff 2001].

The deformation proceeds as propagation of Lüders bands when starting
from very low dislocation densities, especially at very high dopant concen-
trations. These Lüders bands can give rise to serrations in the stress-strain
curve or to the appearance of secondary yield peaks. Dynamic strain age-
ing (Portevin-LeChatelier effect) is also observed in the region beyond the
lower yield point [Siethoff 1970, Siethoff 1973]. The presence of dopants is
otherwise found to homogenize slip [George 1987b].

Motion of individual dislocations: change in dislocation motion parameters

Dislocation velocity studied by etch pitting methods has revealed that it is
affected only at dopant concentrations larger than the intrinsic carrier con-
centration, meaning that higher dopant concentrations are required as the
temperature is raised to affect dislocation motion. No change in the stress
dependency is detected for both doping types, but the disturbance from
straight dislocation lines and existence of starting stresses for dislocation
motion in doped crystals shows that electrically active impurities do also
diffuse to the dislocation cores and have a pinning ability, in agreement
with the deductions from the behavior of the lower yield stress mentioned
above [Kulkarni 1976, George 1979b].

A consensus has been formed that n-doping increases dislocation velocity
no matter the temperature8 and the dislocation character by affecting U,
an effect detectable at dopant concentrations larger than ∼ 1018 cm−3 and
increasing with the dopant concentration [Alexander 1968, Erofeev 1969,
Patel 1976, George 1979b]. A stress dependence of U for 60° dislocations in
P-doped Si observed in [George 1979b] is not detected by analysis of the
lower yield point through Eq. 2.1 [Siethoff 2002]. The velocity prefactor v0
is also affected to guarantee continuity at the frontier between the standard
and enhanced velocity regimes. The case of p-doping has led to several
controversies:

• some authors pretend that acceptor dopants do not affect dislocation
velocity at high temperatures (see e.g. Figure 3.15), whereas an ac-
celerating regime would exist below ∼ 873 K, where p-type dopants
would also ease dislocation motion (Figure 3.16) [Patel 1976].

8 as long as the dopant concentration is high enough compared to the intrinsic carrier concen-
tration. Dislocation velocity is the same as in intrinsic crystals otherwise [George 1979b].
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8 as long as the dopant concentration is high enough compared to the intrinsic carrier concen-
tration. Dislocation velocity is the same as in intrinsic crystals otherwise [George 1979b].
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Figure 3.15: Velocity of screw dislocations as a function of dopant concentration in
n-type and p-type silicon, at high temperatures (T = 873 K) and under
a stress τ = 3 MPa [Patel 1976].

• the French research group in Nancy signals on the contrary a slight
decelerating effect of boron on 60° dislocations only below ∼ 973 K
and no effect on dislocation velocity otherwise [George 1979b].

• others researchers detected accelerating effects in p-doped Si in all the
investigated temperature range [Erofeev 1969, Kulkarni 1976, Yonenaga 2001].

It seems that acceptor impurities slightly increase U at intermediate con-
centrations ∼ 5 × 1017 cm−3 before effectively reducing the activation en-
ergy until accelerating effects are detected at concentrations larger than
∼ 5 × 1018 cm−3 [George 1979b]. The effect of p dopants on dislocation
motion (accelerating or decelerating) is however one order of magni-
tude lower than in n-doped materials, showing that acceptor impurities
are much less effective at affecting dislocation motion than donors are
[Patel 1976, George 1979b].

The influence of doping impurities on dislocation velocity and dislocation
pinning at low stresses have been investigated by Sumino and his group
with in-situ X-ray topography and allowed to clarify the previous observa-
tions [Imai 1983, Sumino 1983a]. As previously, it was found that doping
by phosphorus atoms strongly enhances the velocity of moving dislocations
by lowering their activation energy, this effect increasing with [P]. It can be
seen in Figure 3.17 that B has little or no influence on the velocity of dislo-
cations at the considered concentration and temperatures (1.4 × 1019 cm−3

below 973 K). If anything, doping by acceptors slightly reduces the ac-
tivation energy. It has been long assumed that the accelerating effect of
dopants depends only on their concentration and not on the exact species
[Sumino 2002], but recent results question this [Yonenaga 2001], indicating
that the elastic interactions between dissolved dopants and dislocations
might also influence dislocation velocity under high stresses. Figure 3.18
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Figure 3.16: Velocity of screw dislocations (full symbols) and 60° dislocations (open
circles) as a function of dopant concentration in p-type silicon, at low
temperatures (T = 723 K) and under a stress τ = 12 MPa [Patel 1976].
Note the different magnitude of dislocation acceleration by dopants
compared to the case of n-doping (Figure 3.15).

summarizes the results obtained for n-type and p-type dopants. Finally, it
can be noted that interstitial Cu enhances dislocation motion as dopants do
[Vanderwalker 1984].

Atomic explanations of the doping effect*

The reasons for the modification of activation energy for dislocation motion
have been quickly identified as coming from the electrical properties of
dislocations. [Hirsch 1981b] proposes a review of the models developed by
the early 1980’s.

Patel et al. proposed a model based on two assumptions: firstly, that kinks
are nucleated at charged dislocation sites, and secondly that the dislocation
velocity enhancement by doping is proportional to the concentration of
charged sites along the dislocation line. Dislocations would be acceptors in
n-type materials and donors would then increase the kink concentration by
lowering the kink nucleation energy barrier Fk and thereby reduce the activa-
tion energy for dislocation motion. Dislocations in p-type materials would
then be donors to explain the experimental observations. A fundamental
result of their model is that the change in activation energy is equal to the
change of Fermi level induced by doping. This way, increasing the dopant
concentration would initially decrease U until saturation [Patel 1976].

[Kulkarni 1976] suggested on the contrary that kink migration would be
affected by the changes in the electronic state of the crystal and controlled by
electrically active impurities. They affect Fkm = 1.3 eV to Auger recombina-
tion and generation at the dislocation core, but do not distinguish between
the effects of n- and p-doping, in disagreement with results provided by
other authors [George 1979b].

Atomistic simulations have provided a deeper understanding of the rea-
sons behind dislocation velocity enhancement in doped silicon. Dislocation
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Figure 3.17: Influence of electrically active impurities on the dislocation velocity
dependence temperature for both types of dislocations. Crystal 1: in-
trinsic. Crystal 9: CZ, [P] = 6.2 × 1018 cm−3. Crystal 10: CZ, [P] =
1.5 × 1019 cm−3. Crystal 13: CZ, [B] = 1.4 × 1019 cm−3 [Imai 1983].

motion proceeding by double kink nucleation and migration necessitates
the breaking and reconstruction of covalent bonds at the core: the stronger
the reconstruction, the higher the activation free energy F. It has been
mentioned in Chapter 1 that the bond reconstruction energy is actually the
fundamental quantity determining the activation energy [Bulatov 2001b].
First-principle simulations have shown that the reconstructed cores of the
neutral 30° and 90° partials remain stable in p-type material, whereas the
negatively charged cores gain in stability in an n-type environment. Bond
reconstruction energy is however smaller in doped materials with respect
to intrinsic silicon, meaning that doping could ease bond breaking, hence
kink nucleation and propagation [de Araújo 2004].

The case study of phosphorus doping on a 90° partial revealed that P most
likely takes the place of solitons along the dislocation core (see Section 1.2.1),
as a threefold coordination there leads to a more stable configuration than a
fourfold one, with a binding energy of 1.5 eV. Its presence at a reconstructed
site of the core leads to the breaking of the reconstruction bond, so that
both the P and Si atoms take a threefold coordination. The presence of an
additional P atom gives a stable structure when a P pair forms at opposite
core sites with broken a bond, leaving the core once again electrically active
in the valence band and a stable configuration at a binding energy of 2.3 eV
[Heggie 1991]. The presence of these broken bonds at the core would then
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Figure 3.19: in situ measured velocity of 60° dislocations in intrinsic and extrinsic
crystals at low stresses as a function of stress. T = 920 K. Crystal 11: CZ,
[As] = 1.5 × 1019 cm−3. Crystal 12: CZ, [Sb] = 6.5 × 1018 cm−3. Other
crystals, see Figure 3.17 [Imai 1983].

suppression effect [Yonenaga 2002]. The origin of the strong interaction
of P with dislocations was initially thought to come from the electrical
properties of dopants, since the elastic misfit between phosphorus and
silicon is rather small [Sumino 1983a], but further investigations have ruled
out the possibility of electrostatic interactions, pinning being now supposed
to come from condensation of P at the dislocation cores as light impurities
do [Siethoff 2003].

The effects of other impurities (B, As, Sb) have been studied for concen-
trations up to 2.5 × 1020 cm-3 [Erofeev 1969, Yonenaga 2002]. The common
feature of dopants is indeed to induce a critical stress for generation of
dislocations, especially when in presence of high concentration of oxygen.
B interacts with oxygen by enhancing its transport through the lattice,
whereas the other electrical impurities have not been found to. This oxygen
diffusion enhancement is thought to originate in the electronic effects be-
tween B and O [Murphy 2006a]. A model for incorporation of the locking
effects generated by impurities into the AH model is exposed in Section 3.3.
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3.3 modeling dislocation locking by impurities

At the origin of both change in dislocation velocity parameters and disloca-
tion locking are diffusion and drift processes of impurities to the disloca-
tions. Slowly diffusing impurities can remain dissolved in the bulk, posing
no special problem for solar cell efficiency if these are not electrically active;
however fast diffusing species such as metals can affect dislocations and
precipitation in a wide range of temperatures. The concentration ci of an
impurity i at an immobile dislocation is obtained by solving a macroscopic
diffusion problem as given by Eq. 3.3 [Sumino 1983a] valid at a distance
r > r0: ⎧⎨⎩

∂ci
∂t = Di∇

(
∇ci +

ci
kbT∇ (ΔGi)

)
ΔGi(r ≥ r0, θ) =

(
ΔHmax

i − TΔSi
) b sin θ

r

(3.3)

where r0 is the core radius (of the order of a following [Maroudas 1991a,
Senkader 2000]), Di is the diffusion coefficient of the impurity in the sili-
con lattice, ΔGi is the interaction potential between the impurity and the
dislocation (the change in Gibbs free energy due to the presence of the dis-
location). ΔHmax

i and ΔSi are respectively the maximum binding enthalpy
and binding entropy, depending on the impurity. The first term on the
right-hand side of Eq. 3.3a is due to diffusion, whereas the second one is
linked to drift of the impurities in the presence of a dislocation. The latter
can have purely mechanical origins (interactions between the strain fields)
or electrostatic ones (if the impurity and dislocation are charged).

The diffusion problem is there simplified to the case of a cylindrical
geometry, which is appropriate at the usual dislocation densities met in sili-
con materials [Maroudas 1991a]. Such an equation associated to boundary
conditions (the impurity concentrations respectively at the core radius and
at the outer boundary of the studied cylinder, equal to the concentration in
the bulk c∞

i ) must be solved numerically with the help of e.g. finite elements.
The boundary condition at the dislocation core (r = r0) depends on the
authors. At high temperatures the formation of a Cottrell atmosphere is
very unlikely, and assuming that ci(r0) = c∞
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static diffusion Equation 3.3 has been solved by [Sumino 1983a] in
the case of static ageing of dislocations, that is for the first stage of evolution
of the dislocation unlocking stress, when impurities still diffuse to the
dislocation core and equilibrium is not reached (see Figure 3.13). The
concentration of oxygen atoms along the dislocation line cO is then found
numerically to evolve as:

cO ∝ c∞
O (DOt)0.787 (3.4)

a result close to the experimental results and almost linearly time-dependent.
[Sumino 1983a] solved Eq. 3.3 considering that dislocations are a perfect
sink for impurities, neglecting the thermally activated emission from the
core. [Senkader 2000] included on the other hand the emission term, equal
for each impurity atom at the core to the probability of overcoming the
energy barrier of height ΔG(r0, θ).

The diffusivity of oxygen has been measured by several authors and de-
pends on the diffusing species: monomers, dimers or trimers. Which species
dominates depends on the temperature as demonstrated by Senkader et
al. Diffusion of dissolved oxygen as monomers Oi has been found to take
place at high temperatures (973-1473 K), whereas at lower temperatures
(623-973 K) the dimer O2i takes over [Senkader 2001b].

• At high temperatures T ≥ 973 K, interstitial oxygen diffuses as
a monomer and DOi = 0.13 exp

(
− 2.53

kbT

)
cm2.s−1 [Mikkelsen 1986,

Senkader 2000]. Ab initio calculations find an activation energy for
diffusion between 623 and 1473 K of 2.59 eV, in agreement with the
experimental results in the high temperature regime [Gusakov 2005].

• below 973 K the effective diffusivity in cm2.s−1 depends on the oxygen
content in the matrix [Senkader 2001b, Senkader 2002]:

– [Oi] = 2.6 × 1017 cm−3: DO, e f f = 2.04 × 10−7 exp
(
− 1.51

kbT

)
– [Oi] = 6.3 × 1017 cm−3: DO, e f f = 7.33 × 10−7 exp

(
− 1.52

kbT

)
– [Oi] = 10.4 × 1017 cm−3: DO, e f f = 2.16 × 10−6 exp

(
− 1.55

kbT

)
The presence of dopants influences oxygen diffusivity at low temperatures.
The case of boron doping between 623 and 823 K has been investigated
by [Murphy 2006b] and has shown that the effective diffusion coefficient
of oxygen is extremely enhanced in the presence of p-type dopants. Its
activation energy is hardly affected whereas the prefactor is increased by a
factor 60. Sb does not show any similar influence, leaving DO, e f f unchanged.
The trimer species O3i is thought to become preponderant in the presence
of boron dopants [Murphy 2006a, Murphy 2006b]. Cluster formation when
the dislocations are at rest is not taken into account by any static ageing
model.
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dynamic diffusion Based on a model of point-defect migration in
cubic lattices, Maroudas & Brown derived the anisotropic diffusion tensor
of interstitials under stress in silicon and applied it to oxygen interstitials to
study the drag force of the impurity atmosphere on a moving dislocation
[Maroudas 1991a, Maroudas 1991b]. Their model assumes that oxygen dif-
fuses as a monomer and is consequently valid at high temperatures only.
Their early work disregards the mechanical effect of impurity segregation
at the dislocation core and is concerned solely by the influence of the Cot-
trell atmosphere on dislocation drag. Using an elastic interaction energy of
0.5 eV (that is actually shown not to lead to the buildup of any significant
atmosphere at the relevant temperatures, see Section 3.2.1), they determined
a critical dislocation velocity vc at which the dislocation-atmosphere inter-
action would reach its maximum, close to Cottrell’s approximation that
reads:

vc =
4kbTDOi

ΔHmaxb
(3.5)

where DOi is the isotropic diffusion coefficient of oxygen interstitials, and
ΔHmax � 0.5 eV defines the interaction potential (see Section 3.3.2 for a
better estimate). Coupling of their model to the AH constitutive model
(Chapter 2) qualitatively reproduces the alteration of dislocation velocity at
low stresses observed by [Imai 1983] (see Figure 3.10), but does not lead to
the appearance of a locking stress. The slowing effect of the atmosphere is
simulated to significantly reduce dislocation velocity at stresses of the order
of ∼ 0.5 MPa in the conditions of high oxygen contents considered by the
Japanese group, leaving some doubts about the importance of the drag of
an impurity atmosphere if ever present in real crystals. The incorporation
of oxygen atoms segregated at the core and their associated drag stress
allowed however to find back the experimental results and the hysteresis
characterizing the locking-unlocking process [Maroudas 1991c].

Another author that has developed a numerical model for dynamic
diffusion of impurities to dislocations and incorporated it to the AH model
is Petukhov [Petukhov 1990, Petukhov 2002]. The variation of the impurity
concentration at the dislocation core results from the competing processes
of oxygen gettering under motion and unlocking from the atmosphere (first
and second terms in the right-hand side of Eq. 3.6, respectively).

∂ci
∂t

=
v
a

(
rt

a
c∞

i − ci exp
(
− a

vtm

))
(3.6)

where a
v is the time required for the dislocation line to overcome the Peierls

barrier9, rt the radius of trapping of impurities, and tm is the time of
migration of impurities within the core10. An assumption of his model is

9 following Chapter 1, the period of the Peierls potential should rather be
√

3
2 b.

10 tm is proportional to a2

DO
exp

(
ΔGO

kT

)
, where DO is the diffusion coefficient of oxygen in silicon

and ΔGO the difference in binding energy between an oxygen atom on a dislocation compared
to as an interstitial species in the bulk [Petukhov 1990].
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where a
v is the time required for the dislocation line to overcome the Peierls

barrier9, rt the radius of trapping of impurities, and tm is the time of
migration of impurities within the core10. An assumption of his model is

9 following Chapter 1, the period of the Peierls potential should rather be
√

3
2 b.

10 tm is proportional to a2

DO
exp

(
ΔGO

kT

)
, where DO is the diffusion coefficient of oxygen in silicon

and ΔGO the difference in binding energy between an oxygen atom on a dislocation compared
to as an interstitial species in the bulk [Petukhov 1990].
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that the impurity concentration next to the dislocation core is equal to the
bulk concentration c∞

i .

Nitrogen

The diffusivity of interstitial N is five orders of magnitude higher than its
dimer form and the binding energy of nitrogen atoms to each other is very
high (between 3.67 and 4.3 eV). It is therefore expected that all interstitial N
atoms are paired (as interstitial N2i), complexed, or substituted really fast
[Stoddard 2005]. The diffusivity of nitrogen depends on the temperature
as the very diffusion mechanism (as monomer, dimer, etc.) depend on T
[Giannattasio 2003, Alpass 2009]. The effects of intrinsic point defects on
the diffusivity of nitrogen has been mentioned by [Fujita 2005] and could
lower the activation energy.

• Between 773 and 1023 K, [Alpass 2009] found from dislocation locking
experiments DN, e f f = 2 × 105 exp

(
− 3.24

kbT

)
cm2s−1. The diffusivity of

the monomer species is estimated to exhibit an activation energy of
roughly 1.4 eV.

• At higher temperatures and up to 1473 K, an activation energy
around 2.8 eV is found, and DN, e f f = 2.7 × 103 exp

(
− 2.8

kbT

)
cm2s−1

[Itoh 1988].

• Ab initio calculations yield for the dimer species DN2 = 67 exp
(
− 2.38

kbT

)
cm2s−1 between 1073 and 1673 K, or 117 exp

(
− 2.42

kbT

)
cm2s−1 between

573 and 973 K [Stoddard 2005]. The diffusivity of the monomer is as-
sumed to be very high, with an activation energy of 0.56 eV.

Other impurities

• carbon: DC, e f f = 0.95 × 10−4 exp
(
− 3.04

kbT

)
cm2s−1 from 1173 K up

to the melting temperature [Roller 1989], with dissolved atoms as
substitutionals.

• phosphorus: DP = 0.39 exp
(
− 3.12

kbT

)
cm2s−1 (1223-1473 K) following

[Makris 1973],
or DP = 1.245 exp

(
− 3.5

kbT

)
cm2s−1 (723-823 K) [Morinetti 1984].

3.3.2 Dislocation locking and unlocking processes

binding energy to the dislocations Dislocation locking by dif-
fused impurities is due to the strength of the dislocation-impurity binding:
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the transported impurities exert on the dislocation a force equal in magni-
tude to the one the dislocation exert on the impurities. This interaction can
be conveniently represented by a potential in which the impurity atoms
evolve, which expression depends ultimately on the nature of the interac-
tion [Hirth 1992]. Dislocations and impurities can interact by means of e.g.
chemical, electronic, elastic potentials. In the case of oxygen, the elastic term
is thought to dominate because of the interstitial nature of dissolved oxygen
atoms leading to strong strain fields, and a usually considered expression
for the potential is [Sumino 1983a, Senkader 2001a]:

ΔHO(r, θ) = ΔHmax
O

b sin θ

r
(3.7)

Resolution of the diffusion equation (Eq. 3.3) with a boundary condition
at the core radius incorporating impurity emission as well as absorption,
two temperature regimes for the binding enthalpy have been determined
[Senkader 2001a, Senkader 2002, Senkader 2004] that translate the change
in the diffusing oxygen species taking place around 973 K:

• ΔHmax
O = 0.74 eV at T ≥ 923 K

• ΔHmax
O = 0.23 eV at T ≤ 923 K

The binding entropy is calculated to be close to the Boltzmann’s constant,
ΔSO � kb.

The case of binding by nitrogen atoms is more complicated, with a locking
strength measured at 823 K peaking after annealing at around 900 K and
vanishing beyond 1273 K [Alpass 2009]. This can be interpreted in different
binding energies for the species diffusing to the dislocation cores.

dependencies of the unlocking stress on t and co Modeling
the locking effect of impurities at dislocations through equations is traced
back to Sumino and the observations his group made in situ in impurity-
containing silicon crystals [Sumino 1983a]. The authors calculated the ther-
mally activated overcoming of the energy barrier created by individual
oxygen atoms dispersed regularly along the dislocation line. The unlocking
stress is then given by:

τu = (ΔGmax
i − λ1ikbT)

πcir2
0

b2 (3.8)

In this equation λi is a prefactor logarithmically depending on ci. Such an
equation gives linear dependencies of the unlocking stress on temperature
and impurity concentration. This model is valid only up to saturation
of the locking stress (stages 1 and 2 of Figure 3.13) and is also satisfied
experimentally [Senkader 2004].

As has been described in Section 3.2.2, oxygen atoms tend to aggregate
in clusters along the dislocation with time, forming groups of n atoms. This
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can be modeled by using an alternative expression for the locking stress
(Eq. 3.9), which is found to increase rapidly with n.

τu(n) = (nΔGmax
i − (λi − ln n) kbT)

πcir2
0

nb²
(3.9)

Values of n and ΔGmax
i are givend for B, P, Ge and O in [Yonenaga 2002], for

N in [Yonenaga 2005]. Dislocation locking by oxygen is not very efficient at
temperatures larger than 1073 K; above this temperature N is more likely to
efficiently lock dislocations. Dissolved N actually exhibits a strong locking
ability up to 1473 K [Murphy 2006c].

The unlocking stress is almost proportional to the concentration of impu-
rities at the core, therefore a traditional way of writing τu is

τu = f (T)ci (3.10)

where f (T) is a prefactor depending linearly on temperature as long as the
impurity atoms are not aggregated along the dislocation line.

dislocation locking and the ah model Implementation of the
locking stress into the AH model is relatively straightforward if the internal
stresses are assumed additive. Then the internal stress stemming from
impurity diffusion consists in two terms, the first one due to the Cottrell
atmosphere and being essentially elastic in nature, the second one due
to the chemical binding of the impurities at the core [Maroudas 1991a].
Comparison of both terms shows that the elastic drag is negligible compared
to the chemical component τu [Maroudas 1991c]. The applied stress τ is
then considered to be reduced by the “dry friction” component τu linearly
proportional to the concentration of impurities at the dislocation core. The
effective stress of the AH model (Eq. 2.10) becomes:

τe f f = 〈τ − μbA
√

ρm − τu〉 (3.11)

What is important is that the contribution of each dislocation to the total
plastic deformation depends on its velocity through Orowan’s law, meaning
the effective stress acting on it, that is controlled by the concentration of
impurities at the core, which in turn depends on the age of the dislocation.

The final model succeeds in representing the unlocking stress observed in
experiments, and a new expression for the yield stresses is found to depend
on the stress rate. Cluster formation when the dislocations are at rest is not
taken into account and could be the object of a further improvement of the
model (this would principally affect the value of the dry friction coefficient).
For early stages of deformation, one neglects the backstress coming from
mutual interaction between dislocations τint. Solving these equations for
a steady state leads to two branches, representing either the dislocation
slowly moving and accumulating impurities, or its motion free from an
atmosphere, both regimes being limited by a critical shear stress τs. If one
assumes that in the early deformation stages, where locking occurs, τ = Eε,
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τe f f = 〈τ − μbA
√

ρm − τu〉 (3.11)
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and ε = ε̇t (constant strain rate), then the critical stress is directly connected
to a critical time ts.

• For τ ≤ τs, aging takes place through drag of impurities, and ∂c
∂t =

v
a² rc0 = B(T)(τ− f c)

a² rc0.

• For τ ≥ τs, the impurity drag can be disregarded.

The equations of the original model have then to be modified in order to
reflect the age of each dislocation. For large stresses, the dislocations move
without interference with the impurities, and the material behaves as an
intrinsic one, described by the classical equations of Alexander and Haasen.
As was noticed by Sumino et al., increasing impurity concentration has the
same effect as reducing the initial dislocation density; this phenomena is
directly translated in this model, and the whole problem can be reduced to
solving the classical equations with a modified initial dislocation density

ρ0i = ρ0 exp

(
−2 f rc0

a²
Bs +

2
3

B(T)
με̇
√

δ

(
2 f rc0

a²

) 3
2
)

(3.12)

A nice feature of the resulting model is that an analytical expression for
the updated upper yield stress is deduced. If the upper yield stress is
reached before the critical stress, then the impurities still affect dislocation
motion after yielding, and the equations have still to take into account the
modifications above-cited.

A limitation of this model is that the updated upper yield stress is not sys-
tematically dependent on the temperature. This has also been demonstrated
in [Petukhov 2005], where it was shown that according to this model, the
applied stress becomes:

τ = τint +

√
2 f rc0

δa²
(3.13)

and the temperature dependence disappears. This might be true for low-
mobile impurities, but as noticed earlier, oxygen and nitrogen diffuse fast
in silicon, especially at high temperatures, so the incorporation of diffusion
to the dislocations might be relevant. The work of Maroudas and Brown
[Maroudas 1991a, Maroudas 1991b, Maroudas 1991c] might be useful there,
although the implementation of such a model becomes increasingly more
complicated.

Secondly, pipe diffusion of impurities along the dislocation line is not
correctly reproduced. Following this model, their concentration would
simply increase linearly with time without formation of clusters. The re-
sulting modulation of the locking stress that eventually weakens after some
dislocation aging time is therefore not represented.

3.3.3 The case of electrically active impurities

Electrically active impurities diffusing to dislocations can pin the segments
in a similar way as for light impurities. However, their electrical charge
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affects the activation energy for dislocation motion.
Accounting for this effect on dislocation velocity could be done simply by
using the results introduced in Figures 3.15 and 3.16.
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3.4 conclusion on the mechanical properties of extrinsic sil-
icon materials

Extrinsic silicon materials are characterized by their inclusion and impurity
contents, the latter being either dissolved in the bulk as interstitial/substi-
tutional atoms or as precipitates.

Inclusions have a significant effect on the fracture properties of silicon
materials because of their relatively large size associated to their thermal
expansion properties that differ from those of the silicon matrix. At high
temperatures inclusions are potential dislocation sources; however as the
brittle-to-ductile transition is crossed the elastic mismatch is likely to in-
crease the risk of fracture.

The properties of precipitates on plasticity in semiconductors are more
subject to discussion, as their size and concentration determine their net
effect on dislocation motion: large amounts of small precipitates likely act
as locking agents whereas larger precipitates can both act as dislocation
sources and stoppers. The overcoming of precipitates by dislocation climb
is a mechanism allowed at very high temperatures and affects indeed the
net effect of these extended defects on the mechanical properties of covalent
crystals.

Impurites affect the mechanical properties of silicon materials because
of the influence they have on dislocation mobility. All impurities have the
ability to diffuse to the dislocation core or to gather around it, forming a
Cottrell atmosphere, because of the lattice distortion associated with the
presence of the dislocation. Such aggregation locks the dislocation in place
and prevents its motion; this results macroscopically in the extension of
the elastic region. It has been demonstrated that the formation of Cottrell
atmospheres is thermodynamically improbable at temperatures where
plastic deformation by dislocation glide is intrinsically allowed. At high
temperatures, the only significant locking mechanism is therefore due to
the diffusion of impurities directly at the dislocation core.

Which impurity will lock dislocations and to which extent depends both
on its diffusivity (how fast it diffuses to the core), its concentration in the
bulk and its intrinsic locking ability per atom at the core (its binding energy
to the dislocation). This explains why N has a stronger locking effect than
O even at bulk concentrations several orders of magnitude lower: its high
diffusivity is associated to a high binding energy, and few dissolved atoms
are necessary to effectively lock dislocations in place.

Two types of impurities can be distinguished, depending on their elec-
trical activity. Light impurities, or electrically inactive impurities, namely
O, N and C, have no effect on the dislocation core configuration, and do
not affect the velocity of dislocations already in motion. On the contrary,
electrically active impurities such as dopants modify the electronic state of
the dislocation core and alter the energy barriers for double kink nucleation
and propagation.
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Both the locking effect and alteration of the activation energy by dissolved
impurities can be modeled. Coupling with the model of Alexander &
Haasen has allowed some authors to successfully reproduce the stark
increase of the upper yield point at high concentrations.

As temperature is lowered dislocation glide looses its ability to relieve
the elastic stresses. Ultimately, the mechanical behavior of silicon crystals
become entirely brittle. The next Chapter is concerned with the study
and modeling of the transition between the ductile and brittle fracture
mechanisms, very marked in covalent crystals.
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4
T H E B R I T T L E - T O - D U C T I L E T R A N S I T I O N I N S I L I C O N

Silicon has the property of having its brittle-to-ductile (BDT) transition tem-
perature high enough to behave as a brittle material at room temperature,
which can pose some problems for example when silicon is sliced into
wafers that break without noticeable plastic deformation. Silicon is a ductile
material when grown from the melt, as has been exposed in last Sections. In-
deed, the brittle-to-ductile transition of silicon has received a lot of attention,
and it might be interesting to present some major results obtained, and the
established theories. Since the kink generation and migration mechanism
that rules dislocation mobility below 0.6Tm is thermally activated, reaching
too low temperatures leads to the occurrence of a competition between the
time required to generate mobile dislocations able to sustain plastic flow,
and the increase of stress that can lead to breakage.

4.1 bdt in silicon : experiments and modeling*

4.1.1 Basic principles of the BDT in intrinsic materials

Argon exposed recently the physical principles behind the BDT in intrinsi-
cally ductile and intrinsically brittle materials [Argon 2001]. Since silicon
can exhibit brittle behavior at low temperatures and high strain rates, it
belongs to the latter category. There exist large energy barriers to dislocation
emission from the crack tip, but temperature can help these barriers to be
overcome, which explains why silicon becomes ductile at higher temper-
atures. It appears that the key element to the transition involves atomic
processes at the core of the dislocation: as noticed in Chapter 1, the motion
of dislocations in silicon is due to the generation of kink pairs, which has
to be followed by motion of these pairs along the dislocation line; energy
barriers also oppose this propagation (for example, coming from interaction
with defects or impurities). Indeed, ductile behavior would basically be
controlled by the mobility of dislocations moving away from the crack
tip. When the loading rate results in a higher rate of stress increase in the
crack tip than the rate of stress relaxation resulting from dislocation activity,
then brittle fracture occurs. Experiments made on high purity single crys-
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tals, initially dislocation-free, yield the following expression for the BDT
temperature:

TBDT = T0/ ln
(

K̇0

K̇I

)
(4.1)

with T0 equal to 2.78 × 104 K and K̇0 equal to 1.42 × 1012 MPa.m1/2.s−1. In
reality, the BDT temperature is found to be lower than the one given by the
equation; this comes from the type of silicon used for these experiments
and the impurity content of the samples, among other factors that will be
exposed in the following.

Basically two experimental methods exist: tests performed on tapered
double-cantilever beams, and by the means of four-point bending tests. The
former method has been chosen by several research groups [Michot 1986,
Brede 1988] since the early work of [St John 1975], while the research group
of Hirsch in Oxford chose the indentation-four point bending method
[Hirsch 1987, Hirsch 1989a, Hirsch 1989b]. The results obtained by the latter
are qualitatively good, but have been criticized by Brede on the basis of
the discrepancies observed between the different testing methods. Since
each experimental method has lead to a singular model for brittle-to-ductile
transition, both will be exposed here. A third model for the BDT, proposed
by Khantha et al., was later analyzed by Hirsch and Roberts and shown not
to be relevant for silicon [Hirsch 1996]. It will therefore not be exposed in
this report.

4.1.2 Characteristics of the BDT in initially dislocation-free silicon

Experiments clearly show a sharp transition from the brittle to the duc-
tile deformation regimes, both in cantilever-like experiments and with
indentation-created crack tips. The transition occurs in a very narrow tem-
perature range, typically less than 10 K.

Dynamic experiments

Given a loading rate, the specimen behaves as brittle below the critical
temperature Tc, and no dislocations are observed on the fracture plane. At
the transition temperature, the specimen still breaks in a brittle manner,
but at a critical stress intensity factor that is 5 to 7 times higher than in
the perfectly brittle range; moreover some dislocation activity is revealed
by etch pit above a stress intensity factor close to the critical one. Above
the transition temperature, the specimen becomes ductile, and can be
deformed plastically before it breaks. In this case, its behavior is the same
as samples tested in compression or tension, meaning that it exhibits an
upper and lower yield stresses. The resulting curve of the critical stress
intensity factor vs the temperature is found in Figure 4.2 for an ideal
case. The critical temperature for transition Tc increases with the applied
loading rate K̇Ia, following a thermally activated law that has an activation
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energy approximately equal to the one for dislocation motion (2.2 eV,
equation 4.2), suggesting that the BDT is governed by dislocation velocity. In
this equation, A translates the effects of the crack geometry and the activity
of the dislocation nucleation sources; it varies a lot with the experimental
method used. The activation energy is lowered by doping.

K̇Ia = A exp
(
−UBDT

kbTbc

)
(4.2)

Static experiments

In static (creep) experiments at temperatures favorable to dislocation motion,
dislocation activity is observed at the crack tip for a loading between
KIn=0.25 and 0.3 MPa.m1/2 , as reported by Michot and George above
973 K [Michot 1986, George 1993]. This threshold might depend on the
temperature as noticed by Xin and Hsia [Xin 1996] who found it to be
0.394 MPa.m1/2 at 773 K. It was already observed in [Michot 1986] that
increasing the temperature would slightly lower the critical stress intensity
factor for dislocation nucleation at or close to the crack tip. Generation and
propagation of dislocations leads to the formation of a plastic zone ahead
of the crack tip, whose size grows up to a steady-state value (due to the
non-singular terms of the stress far from the crack tip) that increases with
the applied stress intensity factor but does not depend on the temperature;
see Figure 4.1 for an example at 1073 K.

Brede and Haasen in Germany, as well as Michot et al. in France, found
a critical stress intensity factor of KIc0 �0.9 MPa.m1/2 for propagation
of cracks at room temperature on double-cantilever beams on a (111)
plane [Michot 1982, Brede 1988]. See Section 4.3 for more details about
fracture toughness and propagation along other planes. From room tem-
perature and below the BDT temperature for propagation on a {111} plane,
fracture occurs between KIc = KIc0 and 2.5 KIc0, increasing with tempera-
ture and reaching a plateau before the BDT temperature. This is due to
the development of a plastic zone at the crack tip that shields it and in-
creases its fracture resistance. It has been observed that the development
of a plastic zone can be enhanced by a crack jump that always occurs at
KIc0 [Brede 1988].

4.1.3 The model of Brede and Haasen

In the original model of Brede and Haasen [Brede 1988], the transition from
perfectly brittle to partially ductile fracture was explained through the idea
of a “saturation zone” that dislocations emitted from the crack tip would
fill up. This zone is limited by the contour of the lowest stress required for
dislocation mobility (cf. the AH model, Eq. 2.10), itself depending on the
back stress acting on dislocations and of possible locking effects coming
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Figure 4.1: Evolution of the size of the plastic zone with time in double cantilever
beams, for various applied stress intensity factors (creep conditions). The
temperature is 1073 K and the crack plane {111} [Michot 1986].

from impurities of dopants. The formation of such a plastic zone is possible
only when dislocations can be moved out from the tip, meaning when
the stress intensity factor at the tip is larger than KIn. As noted above, the
size of the plastic zone does not depend on the temperature, although this
claim is based on observations performed in a restricted temperature range
(typically 100 K wide).

As temperature increases dislocations move faster and can reach the
far end of this zone, effectively shielding as much as possible the crack.
When the temperature is high enough to allow full saturation of the zone,
then the critical stress intensity factor does not depend any longer on
the temperature, thereby creating a plateau in the observed KIc. At the
transition temperature and in dynamic experiments, the size of the plastic
zone increases with the load and is found to be a linear function of the
applied loading rate. When a dislocation is emitted, it goes through a
dislocation-free zone where stresses are high enough to enable dislocation
motion, whatever the structure of the plastic zone might be.

Brede and Haasen explain the transition from brittle to ductile as follows:
if the dislocation velocity is too low to accommodate for the increase in the
applied stress intensity factor, then the maximum tensile stress achieved at
the crack tip becomes larger than the cohesive stress, and fracture occurs. At
the BDT temperature, dislocation motion compensates exactly the applied
K̇I, and σmax stays below its critical value. It is therefore assumed that
dislocations are nucleated at the crack tip since the early beginning of
testing as observed experimentally (for a stress intensity factor at the tip
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Figure 4.2: Perfect brittle-to-ductile transition [Brede 1993]. The sample tested was
an FZ-grown crystal, [B] = 5.2 × 1014 cm−3, [O] ≤ 1015 cm−3. Loading
rate 4583 MPa

√
m.s−1, Tc=1004 K.

above KIn), and that the existence of a critical shear stress for dislocation
propagation exists below Tc. Once this shear stress is reached, the formation
of a zone that is conditionally saturated begins, allowing an increase in
toughness up to a maximum value under the brittle-ductile transition
temperature. The thermally activated dislocation motion competes with
the stress intensity factor increase rate, and nucleation of dislocations is
determined merely by the speed of dislocations moving away from the tip,
thereby decreasing the back stress on the emitter. The principal equation of
the model [Brede 1988] is introduced below.

It is assumed that in mode I loading, dislocations emitted from the crack
tip and moving it this plane shield the tensile stress only through the
“vertical” component of their Burgers vector, perpendicular to the crack
plane. The spacing between each dislocation is taken as constant and written
Δ. The plastic zone has a length d. When filled up with screw dislocations,
the effective stress intensity factor at the tip becomes, when applying a
stress intensity factor KIa:

Ktip = KIa
3

2π

(
Δ
d

) 1
2
[

ln
4d
Δ

+
4
3

]
(4.3)

and the normal stress at the tip σ =
2Ktip√

πr , r being the radius of the tip, whose
growth rate is directly linked to the velocity of the emitted dislocations.
Using Eq. 2.6 for the dislocation velocity, it follows an equation linking the
BDT temperature to the strain rate (speed of the cantilever beam).

This model contains several flaws [Haasen 1991, Hirsch 1991]. First, the
spacing between dislocations is certainly not constant since they interact
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with each other. This is clearly shown in experiments, where the shape
of the plastic zone is an inverted pile-up from the crack tip [Hirsch 1987,
Hirsch 1989a, Warren 1989]. Therefore, the number of dislocations in the
plastic zone, and the size of the plastic zone, are not proportional to each
other. Secondly, the assumption that the plateau corresponds to a constant
resolved shear stress in the plastic zone is not consistent with the fact
that dislocations interact with each other and feel a different shear stress
depending on their location in the pile-up. Finally, the shear stress in the
dislocation-free zone is not equal to the starting stress. All these results
were obtained by simulation in [Brede 1993], which allowed furthermore to
provide more insights into the BDT:

• The semi-brittle transition observed, leading to a plateau, comes
directly from the mutual interactions between dislocations in the
pile-up. It becomes temperature-independent because the local shear
stress is no longer determined by dislocation velocity, but by the forces
dislocations generate.

• The resolved shear stress is found to be lowest at the outer boundary
of the dislocation-free zone, meaning in the inner part of the plastic
zone. It is controlled by the starting stress.

• Applying an initial load higher than KIc0 leads to the emission of
a single dislocation ahead of the plastic zone later created, because
prior to shielding the local shear stress is rather high in the considered
slip system. This has no influence on the final results, as is observed
experimentally.

• Mode II and III are activated by the different components of the
Burgers vectors of the dislocations, leading to activation of several
slip systems. The additional shielding coming from these slip systems
could lead to the sharp transition.

4.1.4 The model of Hirsch, Roberts and Samuels

[Warren 1989] showed tn indented specimens prepared for 4-point bending
testing that reducing the amount of dislocations close to the crack tip
prior to testing was leading to a less effective crack shielding (higher BDT
temperature), proving that the dislocations close from the crack tip before
deformation play a critical role in the transition process. His results are
correctly reproduced by the model of [Hirsch 1987] that explains the sharp
transition observed in silicon by the existence of a critical stress intensity
factor for a dislocation nucleation event at the crack tip, taking place at
K0 that is close to KIc0 (approximately 95 %) when the initial dislocation
density is low in the vincinity of the tip. The stress intensity factor for
dislocation generation once this threshold has been reached is nevertheless
significantly lower (KIn = 0.25 KI0c, in accordance with Brede and Haasen):
once K0 is reached, dislocations are emitted in large numbers from the tip,
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effectively shielding it and raising the effective KIc far above its theoretical
value.

This is in contradiction with the model of Brede and Haasen, who sup-
pose that dislocations are emitted from the crack tip without another
threshold than overcoming the critical shear stress for dislocation motion,
considered temperature-independent. Indeed, the four-point bending test
method used by the Oxford group has been severely criticized by Brede, as
will be seen later.

The mathematical model proposed by Hirsch, Roberts and Samuels
(HRS model) succeeds in providing with a potential explanation to the
BDT, and some emphasis will be put on it here. It was first introduced in
[Hirsch 1987], and used in a beautiful and elegant manner a couple of years
later [Hirsch 1989a, Hirsch 1989b]. A presentation of the generalized model
to line crack tips (called HR model) is found in [Hirsch 1991]; reviews
are available in [Hirsch 1996, Hirsch 1997]. In the following the variant for
indented cracks is introduced.

The HRS model is physically based on the emission of dislocations from
sources located close to the crack tip, at precise locations that are favorable
for cross-slip of screw dislocations, allowing their multiplication: along a
circular tip, four such locations exist, that can be found where the tangent
to the crack tip is parallel to one of the three <110> glide directions in the
{111} glide plane, taken as the plane of the crack in the experiments, see
Figure 4.3. On the other hand, computing the stress intensity factor along
such a geometry leads to the determination of the weakest point Z where
fracture should start, see Figure 4.4.

The HR model assumes a discrete distribution of nucleation sites along
the crack tip (this assumption agrees with the observations of different
research groups [George 1993, Xin 1996]). For simplicity of modeling, mode
III is assumed instead of mode I in the HRS model, and the curved crack
tip is represented as a line. The effective stress acting on a dislocation
situated at xiis given by 4.4. The more general case (HR model) is given by
equation 4.5:

τxi =
K√
2πxi

− αμb
xi

− μb
2π ∑

xj

( xj

xi

) 1
2 1

xj − xi
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The first term comes from the crack tip stress field, the second one represents
the image stress acting on the dislocation, and the third one arises from
the stress field created by the other dislocations. α is found to be 0.1 in
silicon [Hirsch 1996], f is a geometrical factor, μ is the shear modulus, b the
Burgers vector. Expressing the velocity as a function of the effective stress
and considering the ratio K̇

v0/τ0 exp(−U/kbT) independent of the temperature,
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Figure 4.3: Location of the nucleation sites along the crack tip [Hirsch 1989b].

Figure 4.4: Idealization of the crack tip. X and Y are the active dislocation sources,
Z is the point to shield to prevent fracture [Hirsch 1989b].

it is possible to simulate the successive generation of dislocations from a
source, given the stress intensity factor.

Nucleation proceeds as follows: when the shear stress at the source (ahead
of the tip, so the stress field can be computed from the stress intensity factor
at the tip) for motion is reached, a dislocation can move out of the source,
and shields it, preventing it from propagating another dislocation. The
distance between the source and the tip is adjusted so that the first emission
occurs at Ktip = KIn, in agreement with the experiments. As the dislocation
moves further away from the tip, its backstress acting on the tip diminishes,
the stress intensity factor at the tip increases with time and reaches once
again KIn, until the source can act and emit a second dislocation, which in
turn shields the source, etc... The process results in an inverted pile-up, see
Figure 4.5 and the creation of a dislocation-free zone (DFZ) that is due to
the stress fluctuations with distance from the crack tip: the effective stress
acting on dislocations stems from the crack tip stress and the backstress
of the dislocation pile-up ahead of the tip. [Michot 1994] computed for
example the evolution of the dislocation density and effective stress from
etch-pit observations, see Figure 4.6. These results are correctly represented
in the HRS model. Nucleation conditions are critical parameters for the
effectiveness of the model [Roberts 1994].
Dislocations are considered to shield the critical point on the tip Z only
when they have passed it. Therefore, the effective stress intensity factor
acting on Z is

KeZ = K − ∑
j, xj≥xZ

μb√
2πxj

(4.6)
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of the tip, so the stress field can be computed from the stress intensity factor
at the tip) for motion is reached, a dislocation can move out of the source,
and shields it, preventing it from propagating another dislocation. The
distance between the source and the tip is adjusted so that the first emission
occurs at Ktip = KIn, in agreement with the experiments. As the dislocation
moves further away from the tip, its backstress acting on the tip diminishes,
the stress intensity factor at the tip increases with time and reaches once
again KIn, until the source can act and emit a second dislocation, which in
turn shields the source, etc... The process results in an inverted pile-up, see
Figure 4.5 and the creation of a dislocation-free zone (DFZ) that is due to
the stress fluctuations with distance from the crack tip: the effective stress
acting on dislocations stems from the crack tip stress and the backstress
of the dislocation pile-up ahead of the tip. [Michot 1994] computed for
example the evolution of the dislocation density and effective stress from
etch-pit observations, see Figure 4.6. These results are correctly represented
in the HRS model. Nucleation conditions are critical parameters for the
effectiveness of the model [Roberts 1994].
Dislocations are considered to shield the critical point on the tip Z only
when they have passed it. Therefore, the effective stress intensity factor
acting on Z is
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Figure 4.5: (a) Computation of the pile-up created at the sources. (b) Stress intensity
factors at the sources, modulated by the shielding of emitted dislocations,
and emitting a new one once the effective stress intensity factor reaches
KIn; the stress intensity factor at Z reaches conditionally KIc0 if shielding
is not efficient enough to compensate the applied K [Hirsch 1989b].

Figure 4.6: Evolution of dislocation density (left), and of stresses (right) ahead of
the crack tip: curve (b) internal stress, (c) applied stress and (d) effective
stress [Michot 1994].

and this point is shielded if enough dislocations can reach it on time, before
KeZ ≥ KIc0.

Simulating the crack behavior at constant loading rates with different
values of K0 for the first emission of a dislocation, Hirsch et al. have shown
that the BDT is sharp only when K0 is close from KIc0. Therefore, the idea
of a critical nucleation event that has to be independent on temperature, or
of the same dependence as the dislocation velocity, governs the HRS model.
Once K0 is reached, the source emits dislocations, and continues to operate
at KIn 	 K0, resulting in an avalanche of dislocations shielding the crack.

When dislocations are initially present in the vincinity of the crack tip
(a situation that is not obvious in silicon), their multiplication proceeds
by successive cross-slip events only when they reach the crack tip, since
cross-slipping is not an easy process in the bulk. If dislocations are already
present in large numbers close from the tip, then the transition is not sharp
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(meaning lower values of K0) and follows the same pattern as observed in
the experiments.

The model agrees also on the size effect observed: the BDT temperature
increases with the crack size, since dislocations have to travel a longer
distance in order to shield the crack. The detailed experimental methods
and mathematical model are found in [Hirsch 1989a] and [Hirsch 1989b],
respectively. See the mentioned articles for a complete description.

The HR model assumes furthermore that dislocations emitted from the
initial source trigger the activation of new sources as they propagate along
the crack tip, they . The transition from ductile to brittle follows from
a competition between the rising stress intensity factor at the weakest
Z points along the tip on the one hand, and the shielding provided by
the dislocations emitted from the initial sources on the other hand. If
dislocations propagate fast enough and reach Z before KIc0 is attained, then
the weakest point is shielded and ductile behavior results: the transition
temperature is reached. The role of the secondary sources is to govern the
sharpness of the transition; they are activated at a given stress intensity
factor K0. Close to Tc, the secondary source is activated at K0 ; between
this source and Z is a dislocation-free zone of width d f

crit. If the width is
too large, the resulting shielding will be weak and fracture may occur at a
stress lower than the macroscopic yield stress. The shorter this distance, the
sharper the transition.

These models are effective at predicting the BDT temperature and ma-
terial behavior, provided that the configuration (localization, type) of the
dislocation sources are known. Their critical assumptions are twofold: first,
the dislocation sources have to be discrete along the crack tip (verified
experimentally); second, there has to exist a threshold stress intensity factor
close to the critical one for activation of the sources that will ultimately pro-
voke the effective crack shielding (also observed in dynamical experiments).
They nevertheless suffer from their monodimensional aspect: improvements
would include full 3-dimensional and multislip modeling. These dynamical
models are discussed in [Roberts 1993, Roberts 1994].
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The most important result is that the transition to a ductile behavior is
not only governed by the kinetics of dislocation nucleation at the crack tip,
but also by the mobility of the dislocations, be it either to act as sources
or to move away from the crack tip. This was observed for example by
[Michot 1986] and justified by the observed activation energy of the stress
intensity factor rate, similar to the activation energy for dislocation motion
(see Section 4.1.2). The role of dislocation nucleation was studied later by
the same authors [George 1993]. Given a loading rate, several parameters
modulate the recorded transition temperature. They are described below.

4.2.1 Crack plane and nucleation conditions

It is emphasized by [Brede 1988] that the different orientations of the glide
systems at the crack tip could have an influence on the dislocation nucle-
ation, so the competition for dislocation motion/stress increase at the crack
tip might induce different results depending on the crack propagation plane,
even though the crack propagation always tends to happen on {111} planes
in macroscopic samples, as will be discussed later. It appears moreover that
cleavage on {110} planes is cleaner than on {111} slip planes as the crack
misorientation with respect to the <110> direction is reduced, because of
the absence of disruptive ledges along the tip in this case [Michot 1988].
[Brede 1993] noticed indeed in his simulations that dislocation generation
did not happen symmetrically on the same slip system if not on the same
lobe, and attributed this discrepancy to different resolved shear stresses.
The activation of several slip systems is critical to obtain a sharp transition,
as shown by simulations [Ferney 1999]. This is a feature that the HR/HRS
models do not take into account, these models finding the origin of the
sharp transition in other nucleation events. Indeed, activating several glide
systems allows for a more effective shielding at the tip, and is observed
experimentally.

The nucleation conditions are important to explain the sharp transition
observed, and using different crystallographic orientations leads to different
results coming from the nucleation and loop propagation conditions on this
plane. Nevertheless, the computation of the resolved shear stresses acting
on the slip planes is not sufficient to predict where propagation actually
occurs [George 1993], because activation of nucleation sources is critical for
further development of plasticity on a slip system.

Nucleation can happen on the free surfaces of the specimen, especially
when loaded at high rates. When nucleation occurs in the bulk, then it is
observed to be on a few sources along the crack tip only, and at rather low
loading rates. Ledges present at the crack tip are believed to be enhanced
nucleation centers, although in their experiments, [George 1993] observed
nucleation sometimes at sites where no ledge was visible, whereas the pres-
ence of a ledge did not guarantee an active dislocation source. Microdefects
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are obviously preferential nucleation sites, although these are not relevant
for FZ-grown crystals. Using AFM, they however observed that shallow
ledges are always present on the cleavage plane, sometimes a few ngströms
high only. Theoretical analysis shows that activation energies for dislocation
nucleation are realistic only at cleavage ledges, below the critical fracture
threshold, so they might be the preferential sites for dislocation nucleation
at low loading rates, free surfaces of the sample being the preferential
nucleation sites at high loading rates as pointed out above. These ledges are
likely to be the very reason for the existence of an increase in the toughness
observed below the transition temperature: static experiments done on
perfect crack tips have shown that no plastic activity at all is observed (and
indeed, fracture occurs always at KIc0 below Tc), even after several hours at
a constant load [Scandian 1999].

4.2.2 Specimen and crack geometry

The dependence on the specimen type and test method has been cited
previously, and a large scatter of BDT temperatures results [Hull 1999]. This
structure dependence has also been noticed and modelled by [Hirsch 1989a,
Hirsch 1989b], and can explain discrepancies between different authors for
given testing conditions, but using different crack shapes or sizes. Their
HRS model reflects this size dependence on the transition temperature: the
pre-existing dislocations need to travel varying distances before they reach
the crack and can multiply from there for further shielding.

Brede criticized strongly the four-points bending method used by Hirsch
et al.: among other factors, it was emphasized that indentation at room
temperature leads to residual dislocations at the vincinity of the indentation
mark, that do not disappear effectively upon annealing. This leads to
residual stresses that disturb the results, resulting for example in a higher
measured KIc0. Furthermore, when the intially semi-circular or ellipsoidal
crack propagates, it does not keep its initial shape and the stress distribution
in the sample is modified consequently, preventing from easy analysis.
Therefore, if this testing method allows for demonstration of the geometry
effect on the BDT, it might not be relevant to obtain intrinsic values of the
material fracture behavior [Brede 1993].

The presence of free surfaces in both sample types inevitably leads
to stress concentrations. These are lower in the case of tapered double-
cantilever beams, although it has been observed that for high loading rates,
dislocation nucleation takes place preferentially at the free surfaces in these
specimens. Ledges at the crack tip and imperfect sample preparation (crack
healing, crack tip not orthogonal to the free surfaces) lead to biased results
and a large scatter in the measured BDT temperatures results [George 1993].
Nevertheless, double-cantilever beams tend to reduce these errors, com-
pared to four-point bending samples. All these factors lead to the conclusion
that such specimens are more suitable for testing and further numerical
modeling of the BDT.
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previously, and a large scatter of BDT temperatures results [Hull 1999]. This
structure dependence has also been noticed and modelled by [Hirsch 1989a,
Hirsch 1989b], and can explain discrepancies between different authors for
given testing conditions, but using different crack shapes or sizes. Their
HRS model reflects this size dependence on the transition temperature: the
pre-existing dislocations need to travel varying distances before they reach
the crack and can multiply from there for further shielding.

Brede criticized strongly the four-points bending method used by Hirsch
et al.: among other factors, it was emphasized that indentation at room
temperature leads to residual dislocations at the vincinity of the indentation
mark, that do not disappear effectively upon annealing. This leads to
residual stresses that disturb the results, resulting for example in a higher
measured KIc0. Furthermore, when the intially semi-circular or ellipsoidal
crack propagates, it does not keep its initial shape and the stress distribution
in the sample is modified consequently, preventing from easy analysis.
Therefore, if this testing method allows for demonstration of the geometry
effect on the BDT, it might not be relevant to obtain intrinsic values of the
material fracture behavior [Brede 1993].

The presence of free surfaces in both sample types inevitably leads
to stress concentrations. These are lower in the case of tapered double-
cantilever beams, although it has been observed that for high loading rates,
dislocation nucleation takes place preferentially at the free surfaces in these
specimens. Ledges at the crack tip and imperfect sample preparation (crack
healing, crack tip not orthogonal to the free surfaces) lead to biased results
and a large scatter in the measured BDT temperatures results [George 1993].
Nevertheless, double-cantilever beams tend to reduce these errors, com-
pared to four-point bending samples. All these factors lead to the conclusion
that such specimens are more suitable for testing and further numerical
modeling of the BDT.
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4.2.3 Impurities

In n-doped silicon for example, the dislocation mobility is enhanced (Sec-
tion 3.2) and the transition occurs at lower temperatures1 than for intrinsic
silicon, although for low loading rates, a starting stress for dislocation
motion related to dislocation locking by the doping impurities perturbs
this motion enhancement. Indeed, dissolved oxygen increases the BDT
temperature by dislocation locking and lowering of dislocation mobility
[Michot 1986, Scandian 1999]. Precipitated oxygen in silicon has no clearly-
defined influence. It can lower the BDT temperature by allowing higher
generation of dislocations at the extended defects, but also raise it by lock-
ing dislocations. SiO2 platelets have in particular been noticed for their
effect on the BDT temperature, since the extrinsic stacking faults that are
connected to them act as dislocation sources [Behrensmeier 1987].

The inevitable presence of impurities also creates a “semi-brittle” tem-
perature domain, below the usual transition temperature, and where the
critical stress intensity factor for brittle fracture is higher than the one found
at room temperature (KIc0=0.9 MPa.m1/2, relatively independent on the
doping). In this case, a crack jump is observed at KIc0 and plastic activity is
revealed on the fractured specimen. Above a certain temperature, a plateau
effect is observed, as described in Section 4.1.3. Figure 4.7 gives an example
of such a semi-brittle behavior. This progressive change can begin 673 K
below the observed BDT, this behavior being thought to come partly from
the locking effect of impurities.

4.2.4 Pre-existing dislocations and grain boundaries

The singular characteristic of the brittle-to-ductile transition in intrinsic
silicon is that it occurs suddenly over a few degrees: the stress intensity
factor to fracture rises sharply in this interval. Nevertheless it is worth
noting that this result is valid only for initially dislocation-free silicon, as
pre-straining leads to smoother brittle-ductile transitions over a larger range
of temperatures. One of the first publications about the macroscopic me-
chanical behavior of silicon single crystals already noticed the existence of
a brittle-to-ductile transition depending on the initial dislocation density
[Patel 1963]. Indeed, dislocation shielding is very effective to raise the criti-
cal intensity factor because of crack shielding [Hirsch 1987, Warren 1989].
When comparing the results obtained by the different testing methods,
Brede pointed out that the lower critical stress intensity factors found
by the Oxford group were due to pre-existing dislocations in the sample
[Brede 1993]. It has been noticed that grain boundaries help to prevent
brittle fracture, by stopping the cleavage for a certain time, allowing dislo-

1 The authors in [Brede 1988] cite a 30% decrease in the BDT temperature in n-doped silicon.
More generally, the decrease in activation energy for dislocation mobility results in a lower BDT
temperature that is unlikely to exceed 100°C compared to the intrinsic material [Hirsch 1989a].
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Figure 4.7: Semibrittle behavior observed in As-doped CZ sample [Brede 1993].
[As] = 2.9 × 1019 cm−3, [O] = 6.7 × 1017 cm−3, loading rate 384
MPa

√
m.s−1, Tc=1077 K.

cations to propagate and relieve the high stresses in the vicinity of the crack
tip. This particular aspect will be dealt with in another report.
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4.3 silicon as a brittle material

The fracture of silicon wafers is mentioned here, since it provides results on
the propagation behavior of cracks at room temperature. Indentation tests
and indentation fracture mechanics will also be discussed here, since this
might be of interest in the case of wafering of silicon ingots, as shown in
Section 4.3.4. A review of the mechanical properties of silicon is available
in [Hull 1999].

4.3.1 Elastic properties of silicon

Silicon is an anisotropic material with a cubic structure, defined by three
elastic constant parameters as follows, at atmospheric pressure. These coeffi-
cients vary linearly with temperature above 673 K up to 1273 K [Burenkov 1974]:⎧⎪⎪⎨⎪⎪⎩

C11(T) = (16.552 − 0.0015 T)× 1010 Pa

C12(T) = (6.383 − 0.0006 T)× 1010 Pa

C44(T) = (8.1986 − 0.0006 T)× 1010 Pa

and the stiffness tensor can be written:

[
C
]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Compliances, as well as the bulk modulus can be obtained from the

elastic constants. In the isotropic approximation, one can obtain the shear
modulus μ, Poisson’s ratio ν and Young’s modulus E at room temperature
and standard atmosphere:⎧⎪⎪⎨⎪⎪⎩

μ = 6.8 × 1010 Pa

ν = 0.218

E = 16.56 × 1010 Pa

4.3.2 Indentation mechanics of ceramics

The mechanics of indentation of ceramics have been presented in [Lawn 1980,
Marshall 1982]. The pattern common to all ceramic materials is the forma-
tion of a median/radial crack system upon indentation, and possibly the
appearance of a lateral crack, parallel to the surface, which can reach the
surface and cause chipping of the material. This is the mechanism used for
wafering as will be seen Section 4.3.4.
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Figure 4.8: The median/radial cracks [Lawn 1980].

The median/radial crack system

When studying the effects of indentation on ceramics, it is important to con-
sider both loading and unloading phases, since the progressive relaxation of
the applied load can give freedom to the plastic zone beneath the indenter
to cause further crack opening and propagation in the material. The basic
model considers the superposition of two fields: a far field of an ideally
elastic material, and a residual field beneath the indenter, see Figure 4.8.
This results in a total stress intensity factor coming from contributions of
the two fields, and it appears that the radial crack continues its growth
until full unloading, whereas the median one reaches its full length at full
loading.
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Figure 4.9: Picture of the lateral crack system [Marshall 1982].

The lateral crack system

The lateral crack initiates near the base of the plastic deformation zone, and
spreads out on a plane parallel to the surface. Its growth occurs during
the unloading phase, and the residual stresses are thus identified as the
primary drivers. The cracks are modelled with the help of the plate theory
since they are located close to the surface, see Figure 4.9.

Measurement of fracture toughness

Two methods exist for evaluation of fracture toughness after indentation:
the direct observation of the indented surface, and the indirect one. The
former relies on measurement of the size of the crack systems, and assumes
that the crack is in equilibrium both during and after the event, which is
not always the case, since slow crack growth can take place after removal
of the indenter, even when oil is used to slow down this process. Moreover,
if the grain size is of the same order of magnitude as the cracks (100 μm),
then the fracture pattern is not useful to obtain a correct description of
the properties of the material [Anstis 1981]. In order to work, this method
requires in addition the pre-knowledge of E and H, Young’s modulus
and the hardness of the material, but these parameters can be obtained
from experiments with a good accuracy, see Eq. 4.7, where a is defined in
Figure 4.8. Drawbacks of this direct method are the need for a well-defined
radial/median system, with a deep radial crack. That means that loads high
enough to generate such a crack system are required; while too high loads
might lead to the formation of a lateral crack system which is to avoid.⎧⎪⎪⎨⎪⎪⎩

H = P
α0a²

P peak load

α0 constant

(4.7)
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The second method [Chantikul 1981] has the positive aspect not to require
accurate crack measurements, and it is moreover relatively insensitive to
slow crack growth effects, as compared to the direct method described
above. The theory is based upon a decomposition of the stress field into an
elastic and plastic part, leading to the expression of the concentration factor
in eq. 4.8. There, σa is the stress associated to the load Pr, shown as well as
c and P in Figure 4.8. ωc is a parameter defining the crack geometry, χr a
constant depending on E and H. Using the relationship K = Kc and dσa

dc = 0
for crack growth give the maximum stress σa = σm and crack length cm
for a full indentation. From these equations the toughness is extracted. A
limitation is that failure must occur under equilibrium conditions so as to
determine the right stress and load values at this point.

K = Ke + Kr = σa
√

πωc + χr
P

c
3
2

(4.8)

Indeed, this method is attractive for several reasons: no crack measure-
ment is needed, the crack size is replaced by the indentation load for
determination of the toughness; but it is necessary to establish that the
crack evolution is well behaved prior to identification of Kc.

4.3.3 Crack healing and toughness at room temperature

It has been observed that annealing of a cracked silicon surface in an at-
mosphere containing oxygen leads to crack healing [Yasutake 1986]. This is
not caused by rebonding between the Si atoms, but by formation of SiO2
at the crack tip, which induces a compressive stress and spreading of the
formation of such molecules through the whole crack length. Healing is not
homogeneous and is detrimental to a further controlled and regular spread-
ing of the crack during fracture experiments. Therefore, to prevent healing,
it is required to keep the specimen under load prior to experimentation.

Fracture tests have been performed both on crystalline and multicrys-
talline silicon crystals by [Chen 1980, Chen 1982]. In the crystalline material,
it appears that the flaw always deviates towards a {111} plane, which has
been found to have a fracture toughness of 0.93 MPa.m1/2, in accordance
with the results presented in Section 4. Table 4.1 summarizes the results ob-
tained by different authors at room temperature2. The results on mc-Si are
consistent with single crystal data, with a toughness of 0.82-0.93 MPa.m1/2.
This is due to the flaw size, smaller than the grain size. Since fracture
occurs within grains, the influence of grain boundaries and other defects is
minimized. These tests have been performed by means of 4-points bending
tests, after introduction of a flaw by Knoop indentation. Consequently, the
observed fracture mechanism in mc-Si might not be representative of the
situation in the bulk material, where fracture could also occur between or
close to the grains, where impurities and inclusions tend to segregate.

2 This relatively high fracture toughness of [Warren 1989] is due to residual stresses at the crack
tip created during indentation and not efficiently removed by annealing.
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Source KIc0 (MPa.m1/2) cleavage plane method

[St John 1975] 0.96 {111} DCB

[Brede 1988] 0.9±0.1 {111} DCB

[Michot 1982] 0.93 {111} DCB

[Warren 1989] 1.12 {111} 4PB

[Chen 1980] 0.93 {111} 4PB

[Xin 1996] 0.95±0.07 {110} 4PB

[Michot 1988] 0.89±0.04 {110} DCB

[Yasutake 1986] 0.91±0.09 {110} 4PB

[Yasutake 1986] 0.95±0.1 {100} 4PB

Table 4.1: Critical stress intensity factors in mode I loading at room temperature
as found by various authors. DCB: double-cantilever beam, 4PB: 4-point
bending test.

4.3.4 Application of brittle fracture to wire-sawing

The process of wafering silicon crystals with the help of saws has been
described and modelled in the recent years [Möller 2004, Möller 2006], and
some issues such as the defects induced by the presence of inclusions in
the bulk have been described [Du 2007]. For a detailed description of the
sawing mechanism, the reader is advised to look at the above references.
Basically, the sawing process relies on the creation of microcracks at the
surface of the crystal, by interaction between particles of SiC and the crystal
(“rolling-indenting model”). The material is progressively chipped away by
the formation of lateral cracks (see Section 4.3).

The sawing rate and the different detrimental effects (uneven sawing
for example) are determined by the combination of a mechanical model
(interaction slurry-crystal) and a hydrodynamic model, taking into account
the movement of the wire and flow of slurry between the wire and the ingot
surface. Uneven surfaces are partly due to the bowing of the wire caused by
the edges of the ingot; which leads in turn to varying slurry film thickness
and pressure along the wire. Hard inclusions (of SiC) have the drawback of
leading to unusable wafers, which have to be discarded, and might induce
an extra tensile stress in the wire, possibly leading to breakage.

Surface damage created by the wafering process has to be removed in
order to increase wafer strength [Möller 2005]. It is due to the presence of
the radial and median cracks at the surface of the wafer of depth typically
in the 10-15 μm range. This layer has to be removed by etching before
further processing [Stefancich 2001, Borchet 2006]. It increases both wafer
strength and its electrical properties.
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C O N C L U S I O N

The more research goes the more we know and the more we realize that
things aren’t that simple. [Jones 2000] entitled its publication “do we really
understand dislocations in semiconductors?”. After more than 60 years
of intense research the answer to this question still seems to be negative.
Although we have learnt a lot on the quantitative aspects of dislocation
motion since the first dislocation velocity measurements it still remains
unclear what the very fundamental mechanisms of dislocation mobility are,
even in such an ideal material as silicon.

Silicon presents several features making it an attractive mechanical ma-
terial to study. The possibility to produce virtually dislocation-free silicon
ingots enables the exploration of the multiplication mechanisms at the onset
of plasticity at intermediate and high temperatures. As typical for covalent
crystal, dislocations are sensitive to the testing temperature and strain rate,
resulting in a characteristic yield drop phenomena that increases in strength
as temperature is lowered, due to the explosion of the dislocation density
on the stressed slip system. Pursuing mechanical testing towards lower
temperatures reveals a sharp and almost perfect brittle-to-ductile transition
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134 conclusion to part i

increase of the stress intensity factor at the crack tip on the one hand, and
of the shielding provided by the stress fields of moving dislocations. These
have to reach a critical zone prior to multiplication in order to effectively
allow ductile fracture to occur. The nucleation and growth of cracks upon
indentation, that can rip off material from the surface, is commonly used in
wire-sawing techniques, although other mechanisms such as grinding lead
to other types of damage that can be of interest.

The way towards modeling of silicon multicrystals is almost already
paved. Crystal plasticity is a field that has been widely studied the last two
decades, due to a tremendous increase in available computational power.
The single crystal model needs further improvement in order to account
for interactions between dislocations on various slip systems. Incorporating
the influence of grain boundaries on dislocation motion and multiplication
is the last step prior to the establishment of a complete mechanical model
for silicon multicrystals and implementation in a commercial finite element
code. Only then is it possible to study accurately the effects of inclusions and
impurities on the internal stress build-up, as well as fracture mechanisms
in multicrystals, a subject still left unexplored in the literature.
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I N T R O D U C T I O N

motivations

The mechanical behavior of multicrystalline solar-grade silicon materials is
a complex subject. From a local perspective, the material is expected to be-
have like a common, albeit impure, monocrystal. Modeling the mechanical
behaviour of a silicon single crystal (c-Si) subjected to random thermome-
chanical loadings is in itself problematic due to the limited validity of the
constitutive models available in the literature. The loading cases that can be
studied with the existing numerical tools are very limited: small window of
temperatures and strain rates, controlled crystallographic orientation, small
strains and single glide.

This work is concerned with modeling the mechanics of silicon materials.
In other words, it aims at deriving a model, a set of equations whose solution
provides an approximation of reality, linking stresses to strains. Ultimately, we
want to know what the stress tensor is given the strain tensor history. Every
additional information provided by the model is icing on the cake. Because
of the particular interest the industry has in knowing the dislocation density
in solar cells, basing the model on these physical quantities is the ideal case.

An easy way of modeling the mc-Si aggregates would be to assume the
amount of grains to be large enough, and their respective crystallographic
orientations sufficiently varied to guarantee an isotropic -averaged- material
behaviour. This problem is known as homogeneization: bridging the scales
from micro to macro using averaging techniques that smoothen the local
variations. Unfortunately, the relatively large size of the grains typically
encountered in solar-grade silicon materials (SoG-Si), of the order of the
mm, would require a representative volume element, i.e. a representative
amount of grains, too large to be manageable. Crystal growth methods
might also lead favorite crystallographic orientations of columnar grains,
limiting the pertinence of an -isotropic- homogeneization.

A detailed description of the grain topology is consequently required to
study mc-Si, and modeling these materials comes down to the definition
of an adequate constitutive model for their constituent single crystals.
The role of grain boundaries during deformation is an issue to model as
well. Whatever the method chosen to develop the model, we need first to
understand how stresses develop in materials. Let us consider the case of a
multicrystal submitted to a given thermal field history.

Let us at first consider monocrystals only. We know that any temper-
ature variation leads to the development of isotropic thermal strains, the
magnitude of which depends on the temperature itself since the thermal
expansion coefficient is not constant. The “macroscopic” stresses that arise
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162 introduction to part ii

from such a field are however anisotropic since the stiffness matrix of silicon
presents a cubic symmetry. The extent of thermally-induced Von Mises
stresses in this ideal single crystal is very limited. Simulations of directional
solidification have shown that from the melting point down to room tem-
perature a stress of the order of 10 MPa can be calculated, depending on
the boundary conditions imposed.

Thermal stresses are completely hydrostatic. In this case no plastic flow
should set in, since the latter is produced by shear stresses. However, any
kinematic compatibility requirement develops the stress tensor further, very
likely with a finite non-hydrostatic component. The existence of thermal
gradients owing to the non-planarity of the solidification front in cast ingots
is a typical example of such a situation.

These conditions are also particularly relevant in the case of multicrystals,
where grain misorientations add kinematic constraints at the boundaries
that affect -likely increase- the stress level. This is why we expect larger
dislocation contents close to the grain boundaries. We can call these stresses
“mesoscopic” as their extent is limited by the shape and orientation of the
grains constituting a multicrystal. They are dependent on the topology of
the multicrystal (size, shape and crystallographic orientation of its grains).

On a microscopic scale, additional stress sources in SoG-Si are a large
number of impurities and inclusions. The former are known to influence
the dislocation behaviour by altering the activation energy for their motion
(either easing plastic flow or hardening it) or by locking them (in which
case plasticity is hindered). The latter are sources of strong stress concen-
trations that might lead to increased dislocation generation and increased
stress concentrations depending on the temperature; dislocation locking by
inclusions is also possible under certain size requirements.

It is therefore of importance to quantify the respective magnitude of the
following stresses:

• macroscopic stresses (on the scale of the whole ingot, or whole wafer),
thermally induced by thermal gradients or mechanical loads during
processing,

• mesoscopic stresses, typically on a length scale of the mm or the
average grain size, coming from the peculiar geometrical and crys-
tallographic arrangement of grains. Their relative size, shape and
orientation impose kinematic constraints that might lead to additional
stress concentrations.

• microscopic stresses, due to the very chemistry of the material. The
nature and size of hard inclusions, concentration of dopants (B, P,...)
and light impurities such as N and O, metallic contaminants (Fe, Ni,...)
affect dislocation generation and motion.

The combined effect of impurities, inclusions and of grain boundaries
likely leads to complex situations where the stress and strain fields strongly
differ from the ones predicted by traditional constitutive models. Modeling
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the mechanical behavior of SoG-Si materials would allow us to study the
effects of various thermomechanical loading paths (e.g., a solidification and
cooling process, or a bending test representative of mechanical loadings
applied on a solar cell during its processing) on the micromechanical and
structural state of the solids. This is of high relevance for the PV industry. If
stresses are to be avoided, then it is preferable to relieve them by plastic flow
(meaning, dislocation generation and multiplication) at high temperatures.
On the other hand, the dislocations thus generated are detrimental to
the solar cell efficiency and some other engineers might prioritize low
dislocation densities rather than stress relief.

At low temperatures, plasticity is not allowed any longer and any strain
leads to the development of elastic stresses that can ultimately lead to
brittle fracture of the material if stress concentrators are present. Such
losses are costly to the industry and ultimately to the consumer. Indeed,
the knowledge of the maximum stress induced by a given process step
allows for its validation upon comparison with the experimentally derived
material strength. A model able to quantitatively predict the mechanical
state of the crystals would help the industry achieve its quality goals and
improve cost efficiency. However, today’s models are not developed enough
to give us insightful results on the mechanical behavior of SoG-Si materials.
This work hopes to fill in that knowledge gap.

methodology

From this preliminary discussion, we can already infer that an advanced
constitutive model for pure silicon single crystals (c-Si) is required prior
to its extension to extrinsic materials. This task is done in the present Part,
taking as a starting point the work of Alexander & Haasen. Although pow-
erful, we show that the relevance of this model, even extended, is limited to
easy glide conditions, when one slip system only is active. Hence, a model
solving this issue is derived in the next Part of this thesis. Application of
such constitutive models to multicrystals represents the ultimate step of
this work.

Macroscopic stresses could be estimated by considering a mc-Si aggregate
as a monocrystal. As mentionned above, this approximation could yield
acceptable results owing to the large size of the grains encountered in such
a material: far from the grain boundaries, the loading most likely leads to
the activation of a single slip system.

The previous state-of-the-art has briefly described different ways of mod-
eling the mechanical behaviour of silicon single crystals in uniaxial tension
experiments. All models follow the assumptions made by Alexander &
Haasen, and differ by their choice of dislocation multiplication law. Chap-
ter 5 analyses the abilities and limitations of the classical models in the
yield region. We show that their constitutive parameters obtained by best fit
to experimental data are functions of temperature and strain rate, implying
physical processes badly accounted for by the models.
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Their basic assumptions, namely that all dislocations are mobile and
that only one slip system is active, are no longer valid as is experimentally
observed. Annex A is a companion to this Part and introduces a novel
kinematic framework allowing the application of any physically-based
constitutive model to random and potentially complex loading conditions.
The abilities of a RDCP framework are demonstrated there by the study
of the yield region of silicon crystals deformed in single glide using the
standard constitutive equations. Comparison with the results yielded by a
J2 formulation highlights the advantages of the RDCP framework.

The kinematics being established, two choices are left to improve the
accuracy and validity of the traditional models: either extending them,
or deriving a wholly new model. Chapter 6 starts with a review of the
knowledge we have of the different hardening and recovery stages, and
the physical mechanisms responsible for them. Dislocation motion mecha-
nisms and internal stresses will be dealt with. Building upon the existing
multiplication laws and the assumption of deformation in single glide
only, extentions of the model of Alexander & Haasen to a broad range of
temperature and strain rate conditions are introduced thereafter.

The influence of impurities on dislocations in semiconductors has been
extensively studied in the literature and reviewed in Part i. The implemen-
tation of additional equations into the constitutive model enables the study
of extrinsic crystals. Because all light impurities basically have the same
qualitative effect on dislocation motion, only oxygen is considered in this
work. This limitation is justified by the large amounts of oxygen found in
SoG-Si materials and the exhaustive literature available.

Extending the AH model will prove interesting by providing a physical
justification to the variations of its constitutive parameters. In the meantime,
many intrinsic limitations cannot be avoided by the choice of such simple
equations. Therefore, a novel physically-based constitutive model allowing
the study ov c-Si samples in the most general case will be derived in Part iii,
keeping in mind the knowledge gained through the Chapters of the present
one.
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5
A N A LY S I S O F T R A D I T I O N A L M O D E L S

Traditional constitutive models for modeling the mechanical behavior of silicon monocrystals
loaded in single glide in the yield region are introduced. We identify their parameters by
best fit to experimental data obtained on FZ-Si at different temperatures and strain rates.
Strong variations are shown to result. It is shown that all models can reproduce accurately
the stress-strain curves. They differ by their prediction of the dislocation density evolution
through deformation. It is concluded that improvements to the classical models must provide
with a physical explanation to the variations of the constitutive parameters, in addition to
allowing for more general loading conditions.

5.1 introduction

Some results introduced in this Chapter have been presented in [Cochard 2009].

5.1.1 Mathematical background

The existing models differ mainly by two features: the expression of the
internal stress and the law used for dislocation multiplication. All assume
that dislocation motion is thermally activated and follows an Arrhenius-like
law, given in Eq. 5.1:

v = v0

(
τe f f

τ0

)m0

exp
(
− U

kbT

)
(5.1)

Adopting such a law implies that no distinction is made between the
screw and 60° dislocations, although these have different velocities because
of the different partials they are constituted of ([Bulatov 2001]). From a
macroscopic point of view, the slowest dislocation segment will set a limit
to the velocity of the whole loop. Therefore, the standard method is to use
the parameters corresponding to the motion of screw dislocations in Eq. 5.1.
These have been identified accurately by [Imai 1983], and are valid for pure
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silicon crystals in the temperature range from 873 to 1050 K and at effective
stresses from 1.2 to 40 MPa:⎧⎪⎪⎨⎪⎪⎩

m0 = 1

v0τ−1
0 = 3.5 × 10−2 N−1.m3.s−1

U = 2.35 eV

(5.2)

These parameters are adopted in the following. The activation energy
has been found valid at temperatures up to 1323 K by [Siethoff 2001]. By
continuity the velocity prefactor is kept the same in the whole temperature
range. The stress dependency of U is neglected in our case, since the stresses
considered in our work remain small enough (see [Siethoff 2002]). A direct
limitation of this choice of parameters is the case of very high temperatures
(VHT, above 1323 K) where dislocation motion mechanisms differ, see Part I.
Nonetheless, it was found that in crystals containing as-grown dislocations,
this VHT regime is shifted towards higher temperatures. In the following,
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will be disregarded here. The effects of dissolved oxygen on dislocation
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The scalar models have been established to represent uniaxial straining
of silicon monocrystals activated in single slip; usually the tensile axis
is a 〈123〉 direction that favors such a deformation mode. Therefore, it is
possible to extract the shear stress-shear strain curves from the experimental
stress-strain data. This is achieved by projecting the stress and deformation
onto the active slip system. A small strains approximation is traditionally
chosen to study the yield region. Note that only one slip system is assumed
to be active in this Chapter, so that no distinction is done between the
twelve systems. This allows a relatively easy integration of the constitutive
equations. The classical machine equation linking the resolved shear stress τ
to the elastic shear strain γe reads in rate form:

τ̇ = μ∗γ̇e = μ∗ (γ̇ − γ̇p
)
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Where μ∗ is the effective shear modulus accounting for the effect of the
testing machine1. The plastic shear strain rate γ̇p is given by Orowan’s law
(Eq. 5.4) valid on any slip system [Orowan 1940]. The model is completed by
the expression of the effective stress and a differential equation describing
the evolution of the dislocation density:

τe f f = τ − τint (5.5)

1 Adopting an effective shear modulus implies that the effective strain rate acting on silicon γ̇ is
constant. This will be discussed in the following.
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ρ̇m = K
(

ρm, v, τe f f

)
(5.6)

All models exposed in the following adopt the same expression for the
average internal stress τint, given as a function of the total dislocation
density assumed to be equal to the density of mobile dislocations: ρ = ρm.
It is also assumed that interactions between dislocations were only caused
by long-range internal stresses, since their density was too low to generate
significant short-range elastic interactions. The internal stress is calculated
here as the stress caused by a density of mobile edge dislocations ρm,
considered to be infinitely long:

τint =
μb

2π(1 − ν)

√
ρm (5.7)

Further investigations have shown that this approximation can be refined
by using a multiplicative parameter A, usually found to lie between 0.1 and
1 (see, e.g., [Alexander 1968, Suezawa 1979, Moulin 1997a] and Part I):

τint = Aμb
√

ρm ∝
μb

2π(1 − ν)

√
ρm (5.8)

All models introduced in this Chapter consider Eq 5.8 as valid. The
shear modulus is computed using the geometrical average (Eq. 5.9) and the
data for temperature dependence of the elastic constants (Eq. 5.10, from
[Burenkov 1974]). The set of Eq. 5.10 is valid from 673 to 1273 K, but we
assume here that its validity extends to the whole temperature range.

μ =

√
C44(C11 − C12)

2
(5.9)⎧⎪⎪⎨⎪⎪⎩

C11(T) = (16.552 − 0.0015 T)× 1010 N.m−2

C12(T) = (6.383 − 0.0006 T)× 1010 N.m−2

C44(T) = (8.1986 − 0.0006 T) × 1010 N.m−2

(5.10)

Note that the density of dislocations used is the total density of dislocations
in the whole crystal, not only the one on the activated slip system. In
as-grown silicon of low initial dislocation density, this approximation is
justified because the density of (mobile) dislocations on the active primary
system (α) is by far larger than the density on the latent systems (β) after
small amounts of plastic strain as discussed by [Yonenaga 1978]. In the case
of dislocation-free crystals deformed uniaxially, only a small fraction of
the total dislocation density after straining in the yield region is found on
secondary systems, typically 10 % as mentioned by [Oueldennaoua 1988]:

ρ
(α)
m � ρ

(β)
m , β 
= α

The models analyzed here differ by their choice of dislocation multiplication
law. For the sake of simplicity, they will be numbered instead of being called
by their name.
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5.1.2 Methodology

Experimental data

The models are fitted to experimental data coming from the work of
[Yonenaga 1978]. This choice is justified by the quality of the experiments
performed in controlled conditions, and because of the special care that
was taken to master the initial dislocation density of the samples prior to
deformation. Taking experimental results from other authors would also
have been possible, but most often the crystals were initially dislocation-free,
a case that the models cannot account for. An equivalent initial dislocation
density that represents the nucleation sources (such as Frank-Read sources
as was done by [Moulin 1997a, Moulin 1999]) could be taken, but its value
is generally unknown. Another factor favoring this choice of data set is
the large range of testing conditions explored by the Japanese group, al-
lowing for determination of the influence of each factor on the mechanical
behaviour of silicon.

A first issue noticed when gathering experimental data is the discrepancy
observed between two stress-strain curves recorded for the same tempera-
ture, strain rate and initial dislocation density conditions and published in
two different articles (Figures 1 in [Yonenaga 1978] and 1 in [Sumino 1993]).
After correspondence with Professor Yonenaga it appeared that the discrep-
ancy comes from the brittleness of silicon even at temperatures as high as
1073 K. The higher upper yield point reported in [Sumino 1993] is actually
believed to be more representative of the ideal response of silicon in these
deformation conditions. The stress-strain curves available in this work have
therefore been scanned and sampled at a number of points sufficient to
ensure a good quality of the reproduced data. No error margin has been
published. It must be kept in mind however that the upper yield point is
very much more sensitive to the initial dislocation density than the lower
yield point is. The range of strains considered is limited to the yield re-
gion only. In practice, the points considered for the fitting procedure are
those sampled up to the lower yield point. Fig. 5.1 shows the original data,
whereas Fig. 5.2 is a plot of the sampled data that is used in the present
work. Fig. 5.3 introduces the experimental data relied upon to study the
effect of oxygen on the yield region, as detailed in the next Chapter.

The reference conditions used in the following are defined as a temperature
of 1073 K, a shear strain rate of 1.2 × 10−4 s−1 and an initial dislocation
density of 2 × 108 m−2.

Actual strain rate

It is quite difficult to estimate what the real shear strain rate (or resolved
shear strain rate) the silicon crystal is subjected to in the early stages of
deformation when plasticity is not fully developped in the specimen: at low
strains the experimental setup does not guarantee a fully fixed specimen.
Measuring displacements (or strains, or strain rate) at the cross-head is
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Figure 5.1: Experimental data used for parameter identification on intrinsic crystals,
from [Sumino 1993].

a potential source of errors since it does not record the actual specimen
deformation. This is translated in the recorded stress- strain results by
an initial slope that is well below the actual Young’s modulus (or shear
modulus) of the material. In [Yonenaga 1978, Suezawa 1979] this effect is
refered to as the “relaxation at the contact between the specimen and the
machine”. Further issues of strain rate stem from the softening taking place
in the yield region, as will be discussed below.

For fitting procedures such an effect is usually dealt with by ignoring the
elastic part of the experiment. The plastic part is then translated towards
lower strains, the initial modulus being corrected (see Fig. 5.4 for an ideal-
ized example). Once plasticity sets in, deformation is considered to develop
entirely by means of plastic dissipation in the specimen. Two issues arise in
the case of silicon. First, it is tricky to determine when plasticity actually is
significant enough to consider the further results as relevant. In a strict way
one could argue that plasticity sets in extremely early in silicon crystals,
although the macroscopic effects are detectable only beyond the upper yield
point (see Part i). Still, the transition between those local and macroscopic
dimensions of plasticity is not clearly defined, leaving the question of the
cut-off strain unanswered2.

Elastic region

The obvious issue is the actual strain rate acting on the silicon specimen in
the “elastic” (in the macroscopic sense) domain. Since strain measurements
are deduced from the cross-head displacement of the tensile equipment,
the actual strain rate acting on the silicon sample is not known and a
contribution from the remaining parts of the tensile apparatus cannot be

2 In particular, the question of what happens during the yield drop is worth mentioning.
This “mixed” or transition region is clearly dominated by silicon plasticity but the elastic
deformation of the tensile equipment could still play a non-negligible role. To be rigorous one
should consider the lower yield point as the relevant limit. Unfortunately the yield region is
precisely what we are interested in here.
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excluded. It is easily conceivable that the effective strain rate acting on
the specimen during its elastic loading is lower than the measured one,
the elastic deformation of the machine components accounting for the
remaining deformation. This could mean that the upper yield point is
reached at lower stresses than what would be attained if a constant strain
rate was applied all throughout the experiment.

The classical approach that considers an effective shear modulus in place
of the actual one is indeed questionable, as this method is not physically
right (especially when used in addition to Orowan’s law). Considering only
the silicon specimen, one can write in a general rate form:

τ̇ = μSi(γ̇ − γ̇p) (5.11)

Considering the macroscopically elastic region (before the upper yield
point), plastic strain can be neglected and Eq. 5.11 reads:

τ̇ = μSiγ̇ (5.12)

and the resolved shear strain rate acting on the primary slip system can
be calculated by inversion of the relation. Applying this formula to the
reference stress-strain results, the resolved shear strain rate the specimen
is subjected to before yielding is found to be of the order of 10−11 s−1,
extremely far from the assumed 10−4 s−1. The assumption of constant
strain rate during the experiment is consequently not verified. If the model
parameters are rate-dependent, their identification might be tedious because
of such variations in the yield region.

Yield region

A yield point is defined by τ̇ = 0, or γ̇ = γ̇p = ρmbv. At the upper yield
point we can assume in addition that the internal stress is small compared
to the applied stress: τ|uyp � τe f f

∣∣∣
uyp

. Combining Eqs. 5.3 to 5.7 in the case

of a constant strain rate at the upper yield point gives:

γ̇ = ρm,uypbv0

(
τuyp

τ0

)m0

exp
(
− U

kbT

)
(5.13)

Eq. 5.13 can be used to determine a range of actual shear strain rates
at the upper yield point, given the upper yield stress and the measured
dislocation densities. Using the shear strain/shear stress results in the case
of deformation at 1073 K at an apparent shear strain rate of 1.2 × 10−4 s−1

on samples of initial dislocation densities of 2 × 108 m−2 [Yonenaga 1978],
the acceptable strain rates are

[
2 × 10−4, 5.6 × 10−4 s−1] with a mean at

3.9× 10−4 s−1. The standard deviations of the measured dislocation density
at the upper yield point [Yonenaga 1978] have been used here. Note that
the discrepancy might come from an approximative measurement of the
dislocation density at the upper yield point, due to the dynamical state of
deformation. The orders of magnitude are in agreement with each other.
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Discussion - Variations of the resolved shear strain rate

A possible scenario is as follows:

• During elastic deformation of the specimen of high Young’s modulus
(∼ 160 GPa) some machine components also deform elastically. The
strain rate is measured at the cross-head, and therefore accounts for
deformation of both the machine and silicon. The actual strain rate
acting on the specimen is much lower than the overall one in the
elastic region.

• As plasticity leads to material softening, the deformation concen-
trates on the specimen. This provokes a relaxation of the machine
components that behave like springs and tend to go back to their
initial undeformed shape. This plastic softening accompanied by the
springback effect of the components locally affects the applied strain
rate, consequently composed of the overall measured one and the
additional effects of the fixing components.

• As the yield region is passed deformation concentrates exclusively
on the tensile specimen and no additional disturbing effects can be
noticed.

A consequence of these remarks is that the (resolved) strain rate acting
on the specimen is not constant before the lower yield point, and of the
order of the applied strain rate at the upper yield point (from dislocation
density measurements). Silicon mechanical behaviour being significantly
dependent on the strain rate, the measured dislocation densities at the
upper yield point are the result of a strain rate history we do not know. It is
indeed tricky to guess the intrinsic upper yield stress given a constant strain
rate and an initial dislocation density. Only simulations would give the
relevant values, provided that model parameters can be identified correctly.
These ones should be calibrated using the plastic region of the stress-strain
experiments only, provided that the dislocation density at the upper yield
point (initial conditions for simulations) is known3.

A solution to this problem would be to perform either tensile tests but
measuring the specimen displacements instead of the cross-head ones.
Alternatively, compression tests would be a viable option, provided that
sufficent lubrication is guaranteed by the experimental setup to exclude
disturbing friction at the sample ends.

In spite of these remarks and because of the lack of experimental data
covering such a wide range of testing conditions, we will assume in this
Chapter that the strain rate is constant throughout the whole duration of the
experiments. The actual strain rate variations and parameter identification
as a function of strain rate will be derived with the help of a Finite Elements
model in Chapter 6.4.

3 If the cut-off for relevant data is the lower yield point as noted above then the study of the
yield region with the present experimental data does not make sense.
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ds1 1073 K 1123 K 1173 K 1223 K

μ∗ (109 N.m−2) 3.25 1.55 1.09 0.61

ds2 6 × 10−5 s−1 2 × 10−4 s−1 6 × 10−4 s−1

μ∗ (109 N.m−2) 1.3 1.65 2.22

ds3 2 × 109 m−2 9 × 109 m−2 2 × 1010 m−2

μ∗ (109 N.m−2) 1.63 1.38 not used

Table 5.1: Equivalent shear moduli μ∗ determined by best fit in different tempera-
ture, strain rate and initial dislocation density conditions.

Algorithm

The algorithm employed for integrating Eqs. 5.1 to 5.6 is based on small
strains assumptions and implemented into Matlab and Fortran. In ad-
dition, the internal stress is assumed to come solely from dislocations on
the primary slip plane, and no influence of the secondary slip systems
is accounted for. The integration procedure is purely explicit, the time
step being chosen small enough to guarantee convergence of the results.
In practice a time step of the order of 10−2 s was found to be sufficient.
Implementation in a Fortran routine guarantees extremely fast execution
of the program and easy coupling to the fitting algorithm as described
below.

Fitting procedure

For simplicity and unless specified otherwise, each model is fitted to one
set of reference experimental conditions. We consider that the announced
initial dislocation density is the one on the primary system. We adopt as
reference conditions the same set that was chosen by [Suezawa 1979] in
1979 to fit the model of Alexander & Haasen, so this choice allows for a
comparison of the parameters we find with the ones that have traditionally
been used in the literature. The effective shear modulus μ∗ entering into
Eqs. 5.3 is determined by best fit as well using the initial linear hardening
slope of the experimental data.

The program used for identification of the model parameters is an
adapted version of Pikatchou [Castelnau 2003]. The method chosen has
always been a simulated annealing, to ensure that local minima are avoided
as much as possible. When an initial set of parameters close to the actual
solution was known, a Powell method was prefered, for computation time
reasons.

This program uses optimization methods that do not require the compu-
tation of the gradient of the cost function cost to minimize. This somehow
simplifies the numerical procedure, but requires larger computation times
than the gradient alternative. The cost function is given by Eq. 5.14, where
the sums are performed on all the comparisons of all experiments (trials).

172 analysis of traditional models

ds1 1073 K 1123 K 1173 K 1223 K

μ∗ (109 N.m−2) 3.25 1.55 1.09 0.61

ds2 6 × 10−5 s−1 2 × 10−4 s−1 6 × 10−4 s−1

μ∗ (109 N.m−2) 1.3 1.65 2.22

ds3 2 × 109 m−2 9 × 109 m−2 2 × 1010 m−2

μ∗ (109 N.m−2) 1.63 1.38 not used

Table 5.1: Equivalent shear moduli μ∗ determined by best fit in different tempera-
ture, strain rate and initial dislocation density conditions.

Algorithm

The algorithm employed for integrating Eqs. 5.1 to 5.6 is based on small
strains assumptions and implemented into Matlab and Fortran. In ad-
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Comparisons for a given experiment can be, for example, the data describing
the evolution of the stress and the dislocation density with the strain. Thus,
comparisons are the evolutions of different observable variables within a
given trial. Trials are experiments performed in different conditions. For
example, trials would be the experimental data obtained from uniaxial
stressing of identical silicon crystals but at various temperatures, strain
rates or initial dislocation densities. The cost function of each comparison is
given by Eq. 5.15. yM is the maximum of the Np experimental data points

yexp,
(

yM
σc

)2
the user-defined weight of the comparison, and ymodel the

points computed by the model to calibrate. The model results are interpo-
lated by a first-order polynom in order to provide with the same points as
the experimental ones4. Constraints on the parameters to fit are applied by
giving the cost function an extremely high value if a solution violates the
restrictions imposed by the user. For example, if the optimization program
returns a negative value for a distance then the iteration step is severely
weighted in order to be disregarded by the algorithm.

cost = 1 + ∑
trials

∑
comparisons

fc (5.14)

fc =

(
yM
σc

)2 1
Np

∑
points

(
ymodel − yexp

)2

y2
M

(5.15)

The equivalent shear modulus μ∗ are determined by considering the initial
linear slope of the stress-strain curves only. They are given in Table 5.1.

4 A second order interpolation is available but was found to often lead to crashes. Using a high
number of output points counterbalances the use of a linear interpolation.
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Figure 5.2: Sampled data sets (ds1 to ds3, intrinsic crystals) used for the fitting
procedures. Varying parameter from top to bottom: (1) temperature T,
(2) shear strain rate γ̇ and (3) initial dislocation density ρ0. The other
conditions are set by default respectively as (1) γ̇ = 1.2 × 10−4 s−1 and
ρ0 = 2 × 108 m−2, (2) T = 1173 K and ρ0 = 2 × 108 m−2, (3) T = 1073 K
and γ̇ = 1.2 × 10−4 s−1.
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Figure 5.3: Sampled data set (ds4, extrinsic crystals) used for model parameter
calibration. The thermodynamic conditions are set as T = 1073 K, γ̇ =
1.1 × 10−4 s−1 and ρ0 = 1010 m−2. From [Yonenaga 1984].
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Figure 5.4: Correction of the elastic slope of experimental data. In red, the raw data
recorded. The elastic part is suppressed and replaced by the material
intrinsic one, the plastic part translated (in blue, the final curve).
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recorded. The elastic part is suppressed and replaced by the material
intrinsic one, the plastic part translated (in blue, the final curve).
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5.2 the model of alexander & haasen (model 1)

This model relies on an empirical law for dislocation multiplication, found
to be valid for germanium crystals and derived by [Berner 1967]. The
multiplication law depends on one parameter δAH only:

ρ̇m = δAHτe f f ρmv (5.16)

Eq. 5.16 has been extended by [Suezawa 1979] who added one parameter,
the effective stress exponent λAH (see Part I. λAH = 1 in the original model):

ρ̇m = δAHτ
λAH
e f f ρmv (5.17)

5.2.1 Reference conditions

Fitting the model parameters δAH , λAH and AAH (see Eq. 5.8) to the refer-
ence curve yields the parameters introduced in Table 5.2. Since it makes
more sense to take λAH = 1 (at least from a historical point of view), an-
other fit has been executed, setting this parameter to unity. The results are
presented besides the former ones.

The cost discrepancy between the two sets of parameters is quite signif-
icant. The model is sensible to slight changes in the parameters. As seen
here, varying the stress exponent by 5 % leads to a variation of δAH of a
factor two. This will be discussed in Section 5.5. The results of the fitting
procedure are plotted in Figure 5.5 for λAH = 1 only since there is no
remarkable difference between both cases.

δAH 1.11 × 10−4 2.46 × 10−4

λAH 1.05 1

AAH 9.23 × 10−1 9.18 × 10−1

Cost 10.6 10.8

Table 5.2: Parameters of model 1 obtained by best fit in the reference conditions.
λAH is set to be an independent parameter in the second case. δAH is
expressed in m2λAH−1.N−λAH . The equivalent shear modulus μ∗ is found
to be 1.36 × 109 N.m−2.

5.2.2 Parameters dependency on the testing conditions

Individual fits

Individual fits have been performed for each experimental curve available,
letting λAH be a free parameter. All results point out to λAH ≈ 1 (see
Table 5.3 for various temperatures) and a strong dependency of the disloca-
tion multiplication prefactor δAH on λAH is noticed. Letting the (resolved)
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Table 5.3 for various temperatures) and a strong dependency of the disloca-
tion multiplication prefactor δAH on λAH is noticed. Letting the (resolved)
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Figure 5.5: Fit of model 1 to the reference conditions (1073 K, resolved shear strain
rate 1.2 × 10−4 s−1, initial dislocation density 2 × 108 m−2). The stress
exponent λAH = 1 is an independent parameter.

shear strain rate and initial dislocation vary, we get the results of Tables 5.4
and 5.5 with λAH = 1 set as an independent parameter.

AAH seems to decrease with increasing temperature and increasing initial
dislocation density, but not to depend on the strain rate. If the internal
stress is assumed to come from long-range elastic interactions between
dislocations, no dependence on the temperature should be found other than
through the weak variations of μSi. The influence of the initial dislocation
density on AAH could be explained as more homogeneous dislocation pat-
terns that smoothen the density gradient and therefore reduce the internal
stress acting on individual dislocations (see next Chapter for a discussion).
Another possibility is that the total dislocation density is not equal to the
one on the primary slip system and that the secondary systems have non-
zero initial densities. A decrease of AAH at higher ρ0 would compensate for
an overestimation of the dislocation density on the principal slip system.

A suggestion is that dislocation immobilization favored by high tempera-
tures enhances the formation of dipoles and multipoles in the yield region
at high temperatures or low strain rates. These microstructures having
no long-range elastic stress fields, they do not enter the internal stress
expression and lead to a decrease of its magnitude through AAH .

The significant increase of δAH with the initial dislocation density is
ought to translate the increasing importance of forest dislocations on the
multiplication mechanisms. Its variations with temperature point to the
thermally activated nature of multiplication processes such as double cross
slip events.

Simultaneous optimization

The software Pikatchou (see [Castelnau 2003]) allows for simultaneous
comparison of a model to several experimental curves. It is therefore pos-
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T (K) 1123 1173 1223

δAH 1.41 × 10−4 1.34 × 10−4 1.24 × 10−4

λAH 1.05 1.07 1.12

AAH 7.91 × 10−1 6.39 × 10−1 5.87 × 10−1

Cost 1 0.5 0.5

T (K) 1123 1173 1223

δAH 3.37 × 10−4 3.83 × 10−4 7.42 × 10−4

λAH 1 1 1

AAH 7.9 × 10−1 6.37 × 10−1 5.82 × 10−1

Cost 1.2 0.6 0.7

Table 5.3: Best fits at γ̇ = 1.2 × 10−4 s−1 and ρ0 = 2 × 108 m−2. δAH is expressed in
m2λAH−1.N−λAH .

γ̇ (s−1) 6 × 10−5 1.2 × 10−4 2 × 10−4 6 × 10−4

δAH 2.06 × 10−4 3.83 × 10−4 2.8 × 10−4 3.43 × 10−4

λAH 1 1 1 1

AAH 8.08 × 10−1 6.37 × 10−1 8.49 × 10−1 8.79 × 10−1

Cost 4.1 0.6 1.6 1.3

Table 5.4: Best fits for different resolved shear strain rates at T = 1173 K and ρ0 =
2 × 108 m−2. δAH is expressed in m2λAH−1.N−λAH . λAH is set to unity.

ρ0 (m−2) 2 × 108 2 × 109 9 × 109

δAH 2.46 × 10−4 8.29 × 10−4 3.91 × 10−3

λAH 1 1 1

AAH 9.18 × 10−1 6.44 × 10−1 4.63 × 10−1

Cost 10.8 0.9 0.6

Table 5.5: Best fits at T = 1073 K and γ̇ = 1.2 × 10−4 s−1. δAH is expressed in
m2λAH−1.N−λAH . λAH is set to unity. No fit was performed for ρ0 =
2 × 1010 m−2 since no yield drop is correctly observed.
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δAH 3.58 × 10−4

λAH 1

AAH 6.78 × 10−1

Cost (total) 493

Table 5.6: Simultaneous optimization of the parameters (δAH , AAH) of model 1, for
various temperatures and at γ̇ = 1.2 × 10−4 s−1 and ρ0 = 2 × 10 m−2.
Assumption of constant parameters.
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Figure 5.6: Comparison of experimental data ds1 (full curves) with model 1 (dashed
curves), using the parameters AAH(T) and δAH(T) as given by Eq. 5.19
at different temperatures.

sible to optimize the set of parameters to, for example, the experimental
results obtained at different temperatures. In this case, the four total cost of
each fitting attempt is the sum of the costs of the individual simulations.
The software then optimizes the set of parameters (δAH , AAH), λAH being
set to unity. Considering these parameters as constants independent on the
temperature does not yield satisfying results, as their variations are quite
large considering the results shown in Table 5.3. Table 5.6 gives the detailed
results of this fitting procedure, rejected because giving a too large total
cost.

Another trial has been done, using this time a linear variation of the
internal stress prefactor AAH with temperature: a linear regression of the
data of Table 5.3 gives:

AAH(T) = 3.4 − 2.3 × 10−3T (5.18)

which is indeed valid up to 1473 K only because of its linear form. In
this case δAH = 3.86 × 10−4 yields the best result but still leads to a large
aggregated cost of the objective function (245), affecting mainly the results
at the lowest temperature (1073 K).
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The last option left is to account for the temperature variations of the dis-
location multiplication prefactor δAH . Assuming that a thermally activated
process enhances dislocation multiplication at high temperatures (for exam-

ple, double cross-slipping events), a law of the form δAH = δ1 exp
(
−UAH

kbT

)
gives δ1 = 1.77 and UAH = 0.83.

Such an approach yields excellent results, with a total cost of 44 as
depicted in Figure 5.6 for a comparison between the experimental results
and the predictions of the model. Note that the underlying assumption of a
linear variation of AAH with the temperature is not physically justified and
should be used with caution in a limited temperature range. Note also that
these parameters are valid for a resolved shear strain rate of 1.2 × 10−4 s−1

only. A strain rate dependence of δAH can be expected for example.
The analysis of experimental data at temperatures from 1073 to 1223 K

yields the following model parameters, obtained by best fit and valid for an
initial dislocation density of 2 × 108 m−2 and a resolved shear strain rate of
1.2 × 10−4 s−1: ⎧⎨⎩ AAH(T) = 3.4 − 2.3 × 10−3T

δAH(T) = 1.77 exp
(
− 0.83

kbT

) (5.19)
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should be used with caution in a limited temperature range. Note also that
these parameters are valid for a resolved shear strain rate of 1.2 × 10−4 s−1

only. A strain rate dependence of δAH can be expected for example.
The analysis of experimental data at temperatures from 1073 to 1223 K

yields the following model parameters, obtained by best fit and valid for an
initial dislocation density of 2 × 108 m−2 and a resolved shear strain rate of
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5.3 the model of moulin (model 2)

[Moulin 1999] has studied the yield points of silicon crystal using disloca-
tion dynamics simulations. It has been found that the dislocation multipli-
cation law suggested in model 1 would not fit correctly to the computed
evolution of the dislocation density with time. An improved law has been
derived from the dislocation dynamics simulations, given in Eq. 5.20 where
ρS is a saturation density that models the size effect of their fictious small
crystal. For real crystals this density should tend to infinity; this has been
checked during the fitting experiments:

ρ̇m = δM
√

ρmτe f f v exp
(
−ρm

ρS

)
(5.20)

Using the reference conditions only, it was possible either to consider
the same value for the effective shear modulus as determined previously
(μ∗ = 1.36× 109 N.m−2), or to set it as a free parameter. Allowing this extra
degree of freedom improves the quality of the fit but does not have any
physical meaning as the effective shear modulus is uniquely determined by
the slope of the stress-strain curve at the origin. The discrepancy between
both slopes is nonetheless small.

The resulting sets are shown in Table 5.7. The computed stress-strain
curve for μ∗ = 1.36 × 109 N.m−2 is shown in Figure 5.7. The position of
the lower yield point is not affected significantly by setting the effective
shear modulus as a free parameter, whereas the upper yield point strongly
depends on the choice of the parameter set. It is interesting to note that the
internal stress prefactor AM is very close to the one obtained with model 1.

δM(m−1.N−1/2) 9.53 × 104 1.06 × 105

AM 8.17 × 10−1 8.04 × 10−1

μ∗(N.m−2) 1.57 × 109 1.36 × 109

Cost 7.3 23.4

Table 5.7: Parameters of model 2 obtained by best fit in the reference conditions. μ∗
is an independent parameter in the second case (right hand side column).
δM is expressed in m−1.N−1/2.
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Figure 5.7: Best fit of model 2 parameters to the projection of the experimental data
(reference conditions) onto the primary slip system.
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The choice of a dislocation multiplication law depending on τe f f is typ-
ical of covalent crystal, and has not found any physical justification yet.
[Moulin 1997a] has mentioned the possible effect of cross-slip at the sur-
face of the specimen that would enhance dislocation multiplication and
lead to a surface-to-volume dependency of the evolution law. The effective
stress term entering into the dislocation multiplication law would disap-
pear for infinitely large specimen. Nevertheless, this hypothesis has never
been tested out, but we can consider the case where this assumption is
actually right. This yields Eq. 5.21 for the dislocation multiplication law,
classical for fcc metals. It derives from a Johnston-Gilman hardening mech-
anism that assumes dislocation multiplication by double cross-slip events
([Johnston 1959, Gilman 1960]).

It simply expresses that the increase in dislocation density is proportional
to the area swept by a dislocation loop during a small time interval and
corresponds to dislocation multiplication by cross-slip breeding. Note that
this case is similar to model 1 with λAH = 0. The results are given in
Table 5.8 and the corresponding simulated curve compared to the sampled
experimental one in Figure 5.8. Although the upper yield point is correctly
represented, the sharp yield drop that follows leads to an early lower yield
point and further hardening.

ρ̇m = δJGρmv (5.21)

δJG 4.87 × 103

AJG 7.64 × 10−1

Cost 26.6

Table 5.8: Parameters of model 3 obtained by best fit in the reference conditions. δJG
is expressed in m−1.
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Figure 5.8: Best fit of model 3 with the experimental curve in the reference condi-
tions.
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Figure 5.8: Best fit of model 3 with the experimental curve in the reference condi-
tions.
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Figure 5.8: Best fit of model 3 with the experimental curve in the reference condi-
tions.
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Figure 5.8: Best fit of model 3 with the experimental curve in the reference condi-
tions.
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Model 1 has been established on an experimental basis, but fails to be
generalized to a wide range of testing conditions with constant constitutive
parameters, although taken individually it is possible to adequately fit
every single experimental data set analyzed here. Model 2 is justified by
dislocation dynamics simulations but still weakly describes the yield drop
in our reference case. Model 3 has the advantage of being widely used
and to have a physical meaning, but its validity is limited to the yield
drop region and it poorly represents the smooth transition from the yield
region to stage I. Based on these observations, one can draw three main
conclusions:

• There does not seem to be any dislocation multiplication law with
constant parameters that describes accurately the yield region in all
deformation conditions considered here.

• The internal stress prefactor A depends on the model considered, but
remains of the same order of magnitude.

We proposed in this Section a dislocation multiplication law for the yield
region that depends on three free parameters δF, λF and βF and written as:

ρ̇m = δFρ
βF
m τλF

e f f v (5.22)

The expression of the internal stress is kept as previously. Such an approach
has already been applied by [Fikar 2005] on germanium. Their results show
that these parameters depend strongly on the specimen considered. From
this expression we can find back model 1 (βF = 1 and λF = 1), model 2
(βF = λF = 0.5) and model 3 (βF = 1 and λF = 0).

It has been verified that the optimal parameters vary strongly with the
deformation conditions and that no general law could be drawn from the
fitting procedures. In the following only the reference experimental data
is considered. The main feature differenciating the previous models is the
value of the stress exponent λF. Therefore, several fits have been performed
using the Equation 5.22 with λF ∈ [0, 5]. For each value of λF set as an
independent parameter the optimal set of free parameters (δF, βF, AF)
that minimizes the cost function is computed. The results are shown in
Figure 5.9.

An interesting feature is the perfect logarithmic variation of the parameter
δF with λF, given by Eq. 5.23. The parameter βF remains approximately
constantly between 0.7 and 0.8 in all simulations, whereas AF depends
slightly on λF but stays in the [0.7, 0.9] interval. The region of low costs
(best fits) is quite extended. This is translated graphically by simulated
stress-strain curves that all fit well the experimental curve, see Figure 5.10
for some examples. Due to the approximate scan of the experimental data
and the inevitable uncertainty that comes with the experiment, it is not
possible to decide which set is closest to the actual behaviour of silicon. It
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Figure 5.9: Variations of the set of optimal parameters of model 4 in the reference
conditions (δF, βF, AF) with the stress exponent λF.

δF 5 × 10−16

λF 2.87

βF 7.89 × 10−1

AF 8.24 × 10−1

Cost 1.96

Table 5.9: Parameters of model 4, obtained by best fit of the experimental data at
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could hence be assumed a priori (without any consideration of the physical
relevance of the parameters) that any of those sets represents satisfactorily
the actual mechanical behaviour of silicon.

Larger discrepancies are observed when it comes to the evolution of the
dislocation density, as depicted in Figure 5.11. None of the sets can actually
reach the experimentally measured dislocation density at the lower yield
point, reported to be approximately 6 × 1011 m−2 by [Yonenaga 1978]. This
leads to the conclusion that such a model cannot accomodate for both the stress
and the dislocation density data simultaneously. Reaching higher densities at
the lower yield point requires low values of λF that do not fit with the
stress data.

It seems nevertheless from this numerical experiment that almost any
choice of λF can give a satisfying fit of the stress-strain data, the parame-
ter δF balancing the evolution of the dislocation density. The dislocation
densities predicted by the models are of the same order of magnitude as
the experimental value. Adopting λF = 2.87 yields the best results as given
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Figure 5.10: Stress-strain curves obtained by model 4 in the reference conditions.
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Figure 5.11: Evolution of the density of mobile dislocations for different values of
λF (model 4). The experimental value measured at the lower yield point
is 6 × 1011 m−2 [Yonenaga 1978].

in Table 5.9. Such a set has no physical meaning but represents almost
perfectly the yield drop up to the lower yield point.

log(δF) = −7.31 × λF + 5.61 (5.23)

Note that these results are valid only for the reference conditions (1073 K,
resolved shear strain rate 1.2 × 10−4 s−1, initial dislocation density 2 ×
108 m−2) and depend strongly on them.
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5.6 discussion

Using these models beyond the lower yield point is in general not recom-
mended since they rely on assumptions that are not verified towards large
strains. Firstly, considering that the total dislocation density is equal to the
density of mobile dislocations is wrong in stage I of deformation. It is known
from observations in silicon that trapping of mobile dislocations, formation
of dipoles or multipoles, multiplication of dislocations by forest interactions,
as well as annihilation of screw segments by cross-slip are active processes
responsible for the hardening in easy glide (see [Oueldennaoua 1988] and
Chapter 6). The current models do not incorporate any density of such
immobile dislocations. This is also a reason for the simulated dislocation
density being too low at the lower yield point, where a non-negligible share
of the total measured density is bound to be immobile.

Secondly, long-range elastic stress fields created by the dislocations stored
in dipolar and multipolar structures does contribute to the flow stress.
Therefore the internal stress should account for such interactions. In partic-
ular, a steady-state of the internal stress and a saturation of the density of
mobile dislocations have been observed beyond the lower yield point (see
[Yonenaga 1978, Oueldennaoua 1988]). Models 1 to 3 consider this density
to increase with further deformation (see Fig. 5.13 for the evolution of the
density of mobile dislocations predicted by the models), a fact disproven
experimentally. Model 4 yields such a steady state after the upper yield
point, but at a value significantly below the actual one. Figure 5.12 shows
the predictions of the stress-strain curves by the different models introduced
in this Chapter up to 10 % deformation. None is able to represent the first
hardening stage, even less on a physical basis5. From this discussion it
remains unclear which constitutive equations are best suited to study the
yield region.

• If model evaluation is based solely on the best fit to experimental
stress-strain curves and disregards the physical meaning of the evolu-
tion laws, thenthe model of Alexander & Haasen or a generic model
allow for the best approximation of the yield drop. Care must anyway
be taken to fit the parameters to the experimental conditions (temper-
ature, strain rate and initial dislocation density). The accuracy and
applicability of such a standard model is anyway very limited by the
thermodynamical state of deformation.

• If a physical basis is prefered to a pure perfect fit of the experimental
data, the model of Moulin seems to be the most appropriate for
silicon, although it stems from numerical simulations only and has
not been observed to fit the experimental data. Model 3 is valid for fcc
metals and could be a good candidate for silicon crystals, provided

5 The accuracy of the predictions by the models is limited by the small deformations framework
implemented in the routine, so care should be taken when analyzing the stress-strain curves
and other outputs from these models at large strains.
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Figure 5.12: Simulations of the stress-strain behaviour of silicon at 1073 K, a resolved
shear strain rate of 1.2 × 10−4 s−1 and an initial dislocation density of
2 × 108 m−2, by models 1 to 4.

its accuracy could be improved in the yield region. This could be
achieved by accounting for the possible strain rate dependency of its
parameters, or by including additional multiplication sources such as
forest dislocations.

• All models will have a tendency to fail towards very high tempera-
tures, where dislocation velocity is not ruled by the same equation
parameters as introduced previously. They will also be less accurate
and loose their physical basis as the initial dislocation density is in-
creased. Indeed, studying highly predeformed silicon samples with
such models has no meaning since dislocation patterns are observed
when deformation progresses in stage I. No formulation introduced
here can predict the activation of secondary slip systems and the
(slight) evolution of the dislocation densities on these ones, as ob-
served experimentally for low initial densities by [Yonenaga 1978].

• Most importantly, no constant set of parameters valid in all the in-
vestigated temperature and strain rate ranges seems to be reachable
from the results of the different fitting procedures performed in this
Chapter. The parameters depend strongly on the experimental con-
ditions and may vary as deformation proceeds. As has already been
mentionned in the literature ([Fikar 2005]), these parameters might as
well vary during deformation and with the sample considered.

• The constitutive parameters derived in this Chapter differ from what
is gathered in the literature, although remain at the same order of
magnitude. The most surprising discrepancy is the values fitted for
the internal stress prefactor A, found here to be much higher than the
usually reported one (≈ 0.3). Setting this parameter as independent
could not give satisfying results. Remarkable is the redundancy of
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Figure 5.13: Simulations of the evolution of the density of mobile dislocations at
1073 K, a resolved shear strain rate of 1.2 × 10−4 s−1 and an initial
dislocation density of 2 × 108 m−2, by models 1 to 4.

this discrepancy with the four different models. Fits of different
experimental curves (see Tables 5.3, 5.4 and 5.5) are consistent with
this observation. The following explanation is suggested.

– dislocation interactions stem from long-range interactions com-
ing from both mobile and immobile dislocations. As the disloca-
tion density increases, some dislocations are stored. The effect of
the predeformation in the experiments with high initial densities
might has been to create a (relatively) high density of immo-
bile dislocations that have more local stress fields and do not
contribute strongly to the long-range stresses individually. Their
high number would however lead to a significant contribution to
the flow stress. It is also possible that higher dislocation densities
mean a more homogeneous distribution of dislocations on the
microscopic scale that ends up in lower density gradients and
therefore lower internal stresses.

– The unphysical decrease of A with increasing temperature (see
Table 5.3) could be also ascribed to the development of another
dislocation population enhanced at high temperatures.

These attempts point out to limitations of these simple models that cannot
account for high initial dislocation densities and high temperatures. Mod-
eling the yield region should be done in a holistic manner, accounting for
the mechanisms that are visible only in the subsequent deformation stages.
The results obtained by these models might differ when immobilization
and annihilation of dislocations are taken into account. However, before de-
riving a new physically-based constitutive model based on the equations of
Alexander & Haasen in Chapter 6, a mathematical framework allowing its
implementation in Finite Elements package is required. Annex A introduces
such a framework allowing a more realistic simulation of the mechanical
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behavior of silicon crystals by generalizing the pointwise models of this
Chapter to a three-dimensional case. This way, complex loadings can be
accounted for, freeing us from the limitation to the very special case of
uniaxial tensile testing of single crystals.
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6
E X T E N S I O N S O F T H E M O D E L O F A L E X A N D E R &
H A A S E N

Based on the results from the analysis of the traditional models and using a RDCP framework,
a constitutive model for intrinsic silicon crystals is derived based on the equations of
Alexander & Haasen. The physical processes responsible for the mechanical behavior of
silicon crystals through the different hardening stages are reviewed first. Constitutive
equations are derived on physical arguments. A model for extrinsic crystals is suggested,
taking oxygen as a reference impurity.

6.1 introduction

It has always been argued that interactions between dislocations in silicon
monocrystals during the early stage of deformation are due to their long-
range elastic stress fields only [Alexander 1968, Alexander 1986]. This is
justified by several theoretical and experimental observations. The theoreti-
cal argument considers that the low dislocation densities of silicon crystals
prevent from the dominance of any short-range interactions. In silicon crys-
tals of low dislocation densities, the dislocations are observed to be widely
separated from each other. No dipole or multipole that have short-range
stress fields are found. Experimentally, it is observed that structures similar
to pile-ups were forming in deformed crystals, and the expression for the
resulting stress acting on the leading dislocation has been computed using
the standard elastic theory, although considering an ideal case of infinite
edge dislocations [Alexander 1968]. The study of dislocation curvatures also
allows for computation of the internal stress, and such an analysis clearly
yielded stresses emanating from long-range stresses only, at least in silicon
crystals of low dislocation densities (see [Nishino 1984, Alexander 1986]
and references therein). Indeed, the hexagonal shape of dislocation loops at
low temperatures and/or high stresses is a proof that internal stress fields
in weakly deformed crystals are not always strong enough to overtake the
Peierls potential.

All these observations consider the case of crystals with low dislocation
contents, most often deformed in single slip and with -if present- extremely
low densities on the secondary slip systems. Therefore, all dislocations can
be considered to be mobile and present on the primary slip system. This is
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194 extensions of the model of alexander & haasen

based on these premices that Alexander and Haasen derived their consti-
tutive model introduced in the previous Part of this thesis and analyzed
in Chapter 5 of the present one. The core of their model is the dislocation
multiplication law, and we have seen that its parameters must be adapted
to the temperature and strain rate considered in order to correctly fot to
the experimental data.

It can be argued that the sole originality of the AH model is the dislo-
cation multiplication law, along with its rather limiting assumptions. The
remaining model equations (namely, Orowan’s law and the definition of
the internal stress) are classical and have been used independently by many
other authors.

The interaction mechanisms beyond the yield region of covalent crystals
differ from the particular case of stage 0, and can give us some hints about
the physical mechanisms responsible for the variations of the constitutive
parameters of the AH model. In the following a complementary view of
dislocation interactions is given, that is helpful to model the large strain
behaviour of silicon crystals and allows to partially relieve the limitations
of the AH model in the yield region.

A distinction is done between so-called mobile and immobile dislocations.
The former are the dislocations that are free to move under a sufficently
high applied stress but remain at rest otherwise. In other words, mobile
dislocations are those carrying plastic flow under a finite effective stress.
The immobile or stored dislocations are those that have been trapped in
dipoles, multipoles or tangles, and that exhibit mainly short-range elastic
stress fields. Their mobility is negligible compared to mobile dislocations,
and it is considered in this work that stored dislocations do not carry plastic
flow. The distinction consequently does not refer to the actual velocity of
dislocations, but to the ability dislocations have to move. A single dislocation
can and will in practice change its status several times during deformation,
but we consider here averaged behaviours only.

Section 6.2 is concerned with the micromechanisms responsible for the
mechanical behavior of single crystals in different deformation stages rel-
evant for this work. It provides with a complementary view of Part i, by
using results from the literature about f.c.c. crystals. Based on these physics,
an extension of the constitutive model of Alexander & Haasen is proposed
in Section 6.3, where its ability to correctly reproduce the stress-strain be-
havior of intrinsic silicon monocrystals in a wide range of temperature and
strain rate is demonstrated.

Dislocation locking by impurities is a well-known phenomena reviewed in
Part i. Oxygen is taken in Section 6.4 as a model impurity and its progressive
effect on preventing plastic flow as its concentration is increased in the bulk
is successfully modeled.
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Definitions and notations

The total dislocation density on the slip system α is noted ρ
(α)
t and is

decomposed into a density of mobile ρ
(α)
m and immobile ρ

(α)
i dislocations:

ρ
(α)
t = ρ

(α)
m + ρ

(α)
i

The forest density is the density of dislocations that cut the plane of a given
slip system; it is the sum of the total dislocation densities on all slip systems
located on the remaining slip planes (in the case of silicon or fcc crystals,
there are 9 systems constituting a forest). The dislocations belonging to the
forest are called trees. Mathematically, a dislocation belonging to the forest
of a given slip system α has a non-coplanar Burgers vector. Writing fα the
forest and ρ

(β)
t the dislocations belonging to a slip system β characterized

by a plane normal nβ, one can write:

fα =
{

ρ
(β)
t , nβ ∧ nα 
= −→

0
}

ρ
(α)
f = ∑

β∈ fα

ρ
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6.2 physics of hardening stages

Silicon has often been compared to fcc metals because of the similarity of
its deformation mechanisms with such materials, at least at intermediate
and high temperatures. The twelve slip systems of silicon at standard
pressure are actually the same as those of fcc metals, identified by the
four {111} planes and their associated <110> directions (see Part i, Fig. A.1
and Annex A). Understanding the physics of the hardening and recovery
stages following the initial yield peak of silicon crystals can be done by
looking at the extended literature on fcc metals. In the following, the case
of a uniaxial tensile test performed on a single crystal is considered to
describe the successive hardening mechanisms. Experiments in double slip
allow for the exploration of hardening mechanisms due to short-range
dislocation interactions (junction formation and unzipping). Note that this
section considers hardening mechanisms valid in the temperature range
below 0.8 Tm, since diffusional mechanisms (e.g. overcoming of obstacles by
climb and point defects migration) tend to gain in importance above this
threshold [Aseev 1975, Farber 1982].

6.2.1 The yield region

Dislocation multiplication and forest interactions

the yielding phenomena The presence of a stage 0 of hardening,
the yield region of silicon studied in Chapter 5, is not typical of cova-
lent crystals but could be theoretically observed in any type of material
that plastically deforms by means of nucleation and multiplication of slip
dislocations1. [Estrin 1986] predicted the existence of such an instability
in materials presenting a deficit of mobile dislocations in the very early
stages of deformation. The lack of mobile dislocations prevents the material
from accomodating smoothly the imposed deformation rate, and an intense
multiplication follows. Once the number of mobile dislocations is sufficient
to ensure normal plastic flow, the classical hardening stages can set in.
Of importance is that this softening behaviour does not depend on the
availability of fixed dislocations, but on the relative initial density of mobile
dislocations compared to their saturation density, which in turn depends
on the total dislocation density, linked to the density of dislocation sources.
Of course, deformation conditions (temperature, strain rate) influence the
saturation density as well.

dislocation multiplication The very early deformation stage of as-
grown silicon crystals presenting extremely low dislocation densities is char-
acterized by an intense multiplication that proceeds mainly by activation of

1 The strong dependence of the yield stresses and yield drop on temperature and strain rate
is nonetheless a characteristic of covalent crystals, due to the highly thermally activated
dislocation velocity combined to its low stress sensitivity.
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Frank-Read sources and to a much lesser extent by double cross-slip in the
bulk. The former mechanism has been observed for a long time [Dash 1956]
and modeled by [Moulin 1997a, Moulin 1997b]. The latter mechanism has
been observed in situ by X-ray topography, especially at the surfaces where
image forces are thought to enhance stress-assisted cross-slip events (see
[Siethoff 1973, Kirscht 1978a]). Pioneering articles also mentionned this pos-
sibility [Alexander 1968]. The question of whether cross-slip actually takes
place in bulk material of low (or no) forest density posed by [Michel 1986]
has been solved by X-ray observations of [Vallino 2001] that confirmed it is
the case. Increasing temperature eventually eases the cross-slip probability
as postulated [Aseev 1975] and confirmed by the dislocation dynamics
simulations of [Moulin 1997a]. However at the intermediate temperatures
considered in this Chapter, [Moulin 1997a] has shown that dislocation mul-
tiplication by double cross-slip is a rather limited phenomenon.

forest obstacles The influence of forest dislocations on the yield
region has been noticed by [Suezawa 1979]. Higher values of the lower
yield stresses in crystals containing lower initial dislocation densities can
be explained by the activation of secondary slip systems at low strains.
Dislocations would hence multiply on these systems and increase the flow
stress of the primary system. This process is known as latent hardening and
is introduced in Section 6.3.2.

In addition to the effect of forest dislocations on the flow stress, their
contribution to multiplication of primary dislocations has been mentioned
and modelled later by [Sumino 1993, Sumino 1999]. Point-like obstacles
such as jogs or forest trees can act as anchoring points for the creation
of Frank-Read sources. Dislocation multiplication from forest trees and
superjogs has actually been observed in silicon by [Louchet 1980].

In spite of the different dislocation motion mechanisms at very high
temperatures, the yield phenomena is still observed by [Yonenaga 1996]
in pure dislocation-free silicon crystals up to 1573 K deformed uniaxially.
The initial presence of dislocations leads to the disappearance of the upper
yield point, in agreement with observations at lower temperatures.

Stored dislocations

The dislocation dynamics (DD) simulations of [Moulin 1997a] point to a
building-up of a density of immobile, stored dislocations on the primary
slip plane in the yield region, although this phenomena has been deemed by
simulations to be quite marginal and noticeable only in the vincinity of the
lower yield point. His simulations nevertheless considered crystals of very
low initial densities (7.5 × 107 m−2) and no multiple slip was accounted for,
so that the phenomena suggested by [Suezawa 1979] could not take place
and no effect of the forest could be studied.

Of interest is that self-interaction between dislocations on the primary
system is actually responsible for the appearance of immobile dislocations.
Trapping of dislocations into dipoles or multipoles described next can be
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an explanation. The presence of a forest would definitely enhance this
evolution by creation of sessile junctions and other dislocation reactions.

The fraction of immobile dislocations at the lower yield point and be-
yond seems to be quite high from experimental results. Compression of
prestrained silicon samples shows that the density of mobile dislocations
at the lower yield point is weakly dependent on the deformation con-
ditions, suggesting that it reaches a steady state value upon the initial
loading of virgin samples [Omri 1987]. Observations in germanium indi-
cate a rather low percentage of mobile dislocations at the lower yield point
[Sumino 1974]. This is in agreement with the TEM observations in silicon
of [Oueldennaoua 1988], with less than 15 % mobile dislocations at the end
of stage I.

6.2.2 Hardening stage I

The yield region is characterized by high flow stresses enhanced by low
temperatures or high strain rates. In conjunction with the intrinsic low
dislocation densities of silicon crystals preventing the existence of short-
range interactions, this leads to dislocation loops having their characteristic
hexagonal shape, with segments having a screw or 60° character and lying
in Peierls valleys. The junction between those straigth segments is actually
curved and made up of an accumulation of geometrical kinks; the effective
stress acting on dislocations can be deduced from the curvature as discussed
by [Louchet 1980, Gottschalk 1983a, Gottschalk 1983b].

As the flow stress diminishes beyond the upper yield point and the
total dislocation density increases, dislocation interactions gain in impor-
tance and the hexagonal shape disappears to let a more classical, edge-
dominated dislocation population develop [Alexander 1968, Aseev 1975].
Figs. 6.1 and 6.2 show TEM images of dislocations in germanium deformed
at 520°C at the upper and lower yield points respectively ([Alexander 1986]).
This transition between hexagonal and curved dislocations is enhanced by
high temperatures and high forest densities [Wagatsuma 1971]. From the
beginning of stage I, dislocation interactions and hardening mechanisms
resemble those of fcc metals ([Alexander 1986] and references therein). See
also [Allem 1989] for observations of dislocation structure in the yield re-
gion of silicon and [Omri 1987] for numerous foil observations at the end
of stage I that confirm the analogy between both material classes. The
literature related to fcc crystals is indeed a valuable source of knowledge.

Evolution of dislocation densities

dipole formation Two dislocation segments belonging to the same
slip system but gliding on parallel planes and having opposite Burgers
vectors can trap each other if they get close enough to allow their stress fields
to lock them. The formation of such a dipole structure is a first source of
storage of previously mobile dislocations. Dislocations trapped in dipoles
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tend to rotate in order to minimize the dipole energy [Amodeo 1990];
dipoles of mixed nature (that is neither edge nor screw) rotate towards an
edge orientation for the same reason [Hoc 2004]. The maximum edge dipole
height hmax,e depends on the effective stress and reads [Hähner 1996]:

hmax,e =
μb

8π (1 − ν) τe f f
(6.1)

Such an expression can be found for screw dipoles as well, replacing
8π (1 − ν) by 4π and yielding hmax,s.

dislocation annihilation The components of a dipole can anni-
hilate each other by cross-slip climb, depending on their nature. A newly
formed dipole can either be destroyed by the application of a larger stress,
strenghtened by the insertion of a new dislocation in between the two
original ones, or disappear if its components are close enough to annihilate.

Screw segments eventually annihilate by cross-slip much easier than
edge segments do by climb, which explains the edge-dominated dislocation
population in stage I. These evolutions are also observed in silicon and
germanium crystals [Kojima 1971, Aseev 1975, Yonenaga 1993].

junction formation We now concentrate on short-range interactions
between dislocations belonging to different slip systems. It has been long
observed that forest dislocations contribute significantly to the flow stress
by formation of junctions [Schoeck 1972]. In addition, dislocation pinning
on forest obstacles can lead to the formation of additional dislocation
sources by a Frank-Read mechanism. Consequently, forest dislocations play
a significant role both on the flow stress and dislocation multiplication
mechanisms.

Short-range interactions between dislocations come mainly from two
contributions: the core interaction at their junction and the local elastic
stress fields created by the lattice defaults. Core interactions are actually
negligible compared to the strength of the elastic fields [Devincre 2001]. A
property of the latter is not to depend sensitively on the temperature, except
for the variations of the shear modulus.

Two intersecting dislocations can either attract or push back each other,
depending on their elastic stress fields. When the attractive forces are high
enough, a junction forms at the intersection and creates a “third” dislocation
segment, common to the first two. The nature of this junction segment (its
Burgers vector) is defined by its parents and defines whether the junction
is sessile or glissile. In order to destroy the junction, a stress high enough
to “unzip” it must be applied on its parents, leaving atomic jogs on them.
Fig. 6.3 shows such a junction formation for perfect dislocations; the case of
dissociated dislocations complicates slightly the picture [Rodney 1999].

Latent hardening experiments performed on copper and aluminium crys-
tals by [Franciosi 1982a, Franciosi 1982b] have revealed the importance of
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200 extensions of the model of alexander & haasen

A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6

A2 SH Co Co CS GJ GJ HL GJ LC HL LC GJ

A3 Co SH Co GJ HL LC GJ CS GJ LC HL GJ

A6 Co Co SH GJ LC HL LC GJ HL GJ GJ CS

B2 CS GJ GJ SH Co Co HL LC GJ HL GJ LC

B4 GJ HL LC Co SH Co LC HL GJ GJ CS GJ

B5 GJ LC HL Co Co SH GJ GJ CS LC GJ HL

C1 HL GJ LC HL LC GJ SH Co Co CS GJ GJ

C3 GJ CS GJ LC HL GJ Co SH Co GJ HL LC

C5 LC GJ HL GJ GJ CS Co Co SH GJ LC HL

D1 HL LC GJ HL GJ LC CS GJ GJ SH Co Co

D4 LC HL GJ GJ CS GJ GJ HL LC Co SH Co

D6 GJ GJ CS LC GJ HL GJ LC HL Co Co SH

Table 6.1: Types of interactions between dislocations on different slip systems.
SH: self-hardening; Co: coplanar systems; GJ: glissile junction; LC:
Lomer-Cottrell locks; HL: Hirth locks; CS: collinear systems. From
[Franciosi 1982a].

the type of interaction between different slip systems. Two intersecting dislo-
cations can interact in different ways, depending on the relative geometrical
orientation their respective slip systems and leading to different dislocation
reactions and junction types. The six possible types of interactions are:
self-interaction, coplanar interaction, collinear interaction between a system
and its cross-slip counterpart. In the case of forest interactions, the reactions
can lead to formation of glissile junctions, of Lomer-Cottrell locks and of
Hirth locks. Some of these interactions have indeed been observed in silicon
crystals [Kirscht 1978b]. Out of these only the last four are reactions, the
first two being dipolar interactions. Table 6.1 gives the type of interaction
between two given systems, using Schmid & Boas notation.

The relative strength of these interactions was initially measured by latent
hardening experiments [Franciosi 1982a, Franciosi 1982b, Franciosi 1985,
Wu 1991, Bassani 1991]. This method has however several drawbacks as
it requires backward extrapolation of the flow stress in order to define
the beginning of the hardening stage as discussed in [Nemat-Nasser 2004].
It has been also suggested by [Franciosi 1986] that the anisotropy of the
interaction coefficients matrix depends on the stacking fault energy of the
material. Literature on covalent crystals is extremely sparce, apart from
proceedings published by the Nancy research group [Michel 1986] and
experimental results obtained on germanium crystals [Alexander 2000].

More recently, the development of dislocation dynamics (DD) simulations
allowed for a detailed and quantitative description of the influence of
each interaction type. See for example [Kubin 1998, Devincre 2001] for a
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presentation of the method. In particular, the critical role of the collinear
interaction in hardening behaviour of fcc metals has been demonstrated
by [Madec 2003, Devincre 2005]. The strength of dislocation reactions is
governed by the junction length: the longer the unzipping arm the weakest
the junction [Devincre 2006]. This explains the strong collinear interaction
and the weak Hirth lock.

The formation of junctions with forest dislocations also immobilizes
primary dislocations. Although this mechanism was thought to dominate
hardening during stage I (the particular role of the Lomer lock being empha-
sized), DD simulations have recently shown that the collinear interaction
is a much better candidate to explain the hardening behaviour of fcc crys-
tals in easy glide [Madec 2003, Devincre 2005]. It allows for creation of a
three-dimensional microstructure, and when combined with annihilation
of screws leads to the creation of superjogs in the collinear system that
have a strong interaction force with primary glide dislocations. This also
explains stage I hardening in crystals with no forest density such as as-
grown semiconductors. These collinear segments control the transition from
stage I to II of hardening [Devincre 2005]. If the forest density is significant,
other types of junctions can form and lead to further storage of dislocations.
The influence of jogs on gliding dislocations in silicon crystals has been
mentioned in [Sumino 1971, Aseev 1975].

dislocation multiplication and storage Stress- or thermally
assisted double cross-slip allows for multiplication of dislocations from
a parallel slip plane, and creates dipolar loops having segments in the
collinear system as well [Hirth 1982]. Cross-slip can be enhanced by the
stress field of locked dislocations on parallel slip planes. Mobile dislocation
loops create this way other mobile loops as they expand. This phenomena
has been observed and modeled, and is known as the Johnston-Gilman
hardening model [Johnston 1959, Gilman 1960, Li 1961].

As mobile dislocations multiply, the probability of formation of dipoles or
other dislocation structures increases, leading to the appearance of a “sink”
for mobile dislocations. A density of stored dislocations builds up. This even-
tually allows for a steady state of the density of mobile dislocations, as ob-
served for example by [Sumino 1971, Yonenaga 1978, Oueldennaoua 1988,
Moulin 1997a] in silicon, and commonly in fcc crystals. A consequence is
the decrease of the relative density of mobile dislocations, while the total
density keeps on growing. Note that the total dislocation density increases
quite slowly during stage I, as translated by the relatively low harden-
ing coefficient of the stress-strain curves and confirmed experimentally
[Kojima 1971].

Internal stress

nature of the internal stress Stage I differs from stage 0 by the
presence of short-range elastic interactions due to junction formation that
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overwhelm progressively the long-range elastic stresses. Trapping of dislo-
cations and formation of edge dipoles or multipoles, as well as intersection
of dislocations with the trees of the forest and creation of debris on the
cross-slip system create strong short-range interactions that hinder further
dislocation movement and increase hardening of the crystal. It has been
calculated that short-range interactions are responsible for roughly 80 % of
the flow stress in fcc crystals, independently of temperature and strain rate
[Devincre 2001, Kubin 2008a].

Meanwhile, the stress sensitivity of dislocation velocity in fcc crystals
is much higher than in as-grown covalent crystals. Consequently, at the
relatively low dislocation densities observed in stage I of semiconductors,
short-range interactions are expected to influence less the flow stress than
they do in fcc crystals. This is not expected to be true in stage II of hardening,
where dislocation densities are much higher and Lomer locks are observed
to form.

long-range internal stresses Considering dislocation motion to
proceed in one direction only, some authors have tried to determine the
nature of long-range elastic interactions. The motion of dislocation segments
is affected by the presence of internal stresses and the applied stress τ is
reduced by the athermal internal stress field τint, leading to the definition
of a local effective stress τe f f = τ − τint. The effective stress is usually
fluctuating along a given dislocation line and between dislocations, as the
wavelength of the microscopic internal stress ought to be much shorter
than the one of the macroscopic applied stress. Locally only, the dislocation
velocity in silicon is proportional to the effective stress v ∝ τ − τint because
of its linear stress sensitivity. The use of a mean velocity v for macroscopic
applications requires the definition of the mean effective stress τe f f .

Considering a dislocation moving one-dimensionally under an athermal
internal stress τint(x) between two obstacles separated by a distance lv (see
[Kocks 1975]) the mean velocity reads:

v =
lv∫ lv

0
dx

v(x)

(6.2)

where
∫ lv

0
dx

v(x) is the time required for the dislocation to move between
the obstacles. Solving this equation requires the knowledge of the one-
dimensional spatial variations of the internal stress. A usual assumption is
that:

τint(x) = τb + τmax sin (2πx/lv) (6.3)

The internal stress is additively decomposed into a constant component
τb and a quickly fluctuating one τmax sin (2πx/lv). Neglecting the stress
dependency of the activation energy, Eq. 6.2 leads to v ∝ τe f f with τe f f =√
(τ − τb)

2 − τ2
max.

Dislocation motion requires that τ > τb + τmax; the effective stress and
mean velocity are null otherwise. In the absence of forest dislocations and
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using experimental results obtained on germanium crystals, [Sumino 1971,
Sumino 1974] demonstrated that in a dynamical state τmax 	 τb. This yields
τe f f = τ − τb. The elastic, long-range interactions between dislocations in
easy glide are consequently constant along the slip plane.

The low curvatures of mobile dislocation lines observed in silicon by
[Oueldennaoua 1988] have led these authors to conclude that the mean
effective stress acting on dislocations at the lower yield point and beyond
in predeformed specimen is very close to the applied stress. They con-
clude hereby that τb 	 τmax, in disagreement with the results obtained by
the Japanese group. This applies to isolated dislocations, located between
tangles and in regions suitable for observations. This apparent contradic-
tion can be solved by remembering that the French group has studied
pre-deformed samples in which the density of immobile dislocations is not
negligible. It is therefore possible that short-range interactions take on a
larger role than long-range elastic stress fields screened by high dislocation
densities. In a dynamical state, the results of [Sumino 1971, Sumino 1974]
should hold.

6.2.3 Late deformation stages

As deformation proceeds the lattice rotates with respect to the tensile
axis and the projections of the applied stress on the slip systems change.
These variations of the Schmid factors eventually lead to the activation of
previously latent systems. A multislip deformation mode sets in. Junctions
and interactions between the different slip systems are generated during
stage II. Its athermal nature is translated in fcc crystals by an almost constant
strain hardening rate θ = dτ/dγ � μ/250 [Kocks 2003]. This is also valid
in semiconductors [Kojima 1971, Siethoff 1978]. Long-range interactions
progressively gain importance because of the formation of pile-ups from
the junctions and the development of an early spatial structure.

A complex dislocation network progressively builds up until stage III
sets in, when the applied stresses become high enough to overcome the
long-range internal stresses and allow cross-slip or climb to relax the local
stress peaks and form dislocation patterns [Louchet 1988, Kocks 2003] .
Internal stress peaks are noticed in complex dislocation structures (walls)
and locally enhance cross-slip and annihilation of dislocation segments
in a thermal manner. The collinear interaction assists athermally this dy-
namic recovery by allowing for annihilation of segments of all natures
[Madec 2002b, Devincre 2005]. This late recovery stage and its followers
(stages IV and V) have been described in Part i of this book for the case of
silicon. Note that dynamic recovery is a process that is depending on the
stacking fault energy of the material and is therefore intimately related to
core properties of dislocations.

It must be noted that in the cases where multiple slip is active straight
from the beginning of deformation, dislocation interactions and patterning
similar to the stage II described above are observed immediately. Such

6.2 physics of hardening stages 203

using experimental results obtained on germanium crystals, [Sumino 1971,
Sumino 1974] demonstrated that in a dynamical state τmax 	 τb. This yields
τe f f = τ − τb. The elastic, long-range interactions between dislocations in
easy glide are consequently constant along the slip plane.

The low curvatures of mobile dislocation lines observed in silicon by
[Oueldennaoua 1988] have led these authors to conclude that the mean
effective stress acting on dislocations at the lower yield point and beyond
in predeformed specimen is very close to the applied stress. They con-
clude hereby that τb 	 τmax, in disagreement with the results obtained by
the Japanese group. This applies to isolated dislocations, located between
tangles and in regions suitable for observations. This apparent contradic-
tion can be solved by remembering that the French group has studied
pre-deformed samples in which the density of immobile dislocations is not
negligible. It is therefore possible that short-range interactions take on a
larger role than long-range elastic stress fields screened by high dislocation
densities. In a dynamical state, the results of [Sumino 1971, Sumino 1974]
should hold.

6.2.3 Late deformation stages

As deformation proceeds the lattice rotates with respect to the tensile
axis and the projections of the applied stress on the slip systems change.
These variations of the Schmid factors eventually lead to the activation of
previously latent systems. A multislip deformation mode sets in. Junctions
and interactions between the different slip systems are generated during
stage II. Its athermal nature is translated in fcc crystals by an almost constant
strain hardening rate θ = dτ/dγ � μ/250 [Kocks 2003]. This is also valid
in semiconductors [Kojima 1971, Siethoff 1978]. Long-range interactions
progressively gain importance because of the formation of pile-ups from
the junctions and the development of an early spatial structure.

A complex dislocation network progressively builds up until stage III
sets in, when the applied stresses become high enough to overcome the
long-range internal stresses and allow cross-slip or climb to relax the local
stress peaks and form dislocation patterns [Louchet 1988, Kocks 2003] .
Internal stress peaks are noticed in complex dislocation structures (walls)
and locally enhance cross-slip and annihilation of dislocation segments
in a thermal manner. The collinear interaction assists athermally this dy-
namic recovery by allowing for annihilation of segments of all natures
[Madec 2002b, Devincre 2005]. This late recovery stage and its followers
(stages IV and V) have been described in Part i of this book for the case of
silicon. Note that dynamic recovery is a process that is depending on the
stacking fault energy of the material and is therefore intimately related to
core properties of dislocations.

It must be noted that in the cases where multiple slip is active straight
from the beginning of deformation, dislocation interactions and patterning
similar to the stage II described above are observed immediately. Such

6.2 physics of hardening stages 203

using experimental results obtained on germanium crystals, [Sumino 1971,
Sumino 1974] demonstrated that in a dynamical state τmax 	 τb. This yields
τe f f = τ − τb. The elastic, long-range interactions between dislocations in
easy glide are consequently constant along the slip plane.

The low curvatures of mobile dislocation lines observed in silicon by
[Oueldennaoua 1988] have led these authors to conclude that the mean
effective stress acting on dislocations at the lower yield point and beyond
in predeformed specimen is very close to the applied stress. They con-
clude hereby that τb 	 τmax, in disagreement with the results obtained by
the Japanese group. This applies to isolated dislocations, located between
tangles and in regions suitable for observations. This apparent contradic-
tion can be solved by remembering that the French group has studied
pre-deformed samples in which the density of immobile dislocations is not
negligible. It is therefore possible that short-range interactions take on a
larger role than long-range elastic stress fields screened by high dislocation
densities. In a dynamical state, the results of [Sumino 1971, Sumino 1974]
should hold.

6.2.3 Late deformation stages

As deformation proceeds the lattice rotates with respect to the tensile
axis and the projections of the applied stress on the slip systems change.
These variations of the Schmid factors eventually lead to the activation of
previously latent systems. A multislip deformation mode sets in. Junctions
and interactions between the different slip systems are generated during
stage II. Its athermal nature is translated in fcc crystals by an almost constant
strain hardening rate θ = dτ/dγ � μ/250 [Kocks 2003]. This is also valid
in semiconductors [Kojima 1971, Siethoff 1978]. Long-range interactions
progressively gain importance because of the formation of pile-ups from
the junctions and the development of an early spatial structure.

A complex dislocation network progressively builds up until stage III
sets in, when the applied stresses become high enough to overcome the
long-range internal stresses and allow cross-slip or climb to relax the local
stress peaks and form dislocation patterns [Louchet 1988, Kocks 2003] .
Internal stress peaks are noticed in complex dislocation structures (walls)
and locally enhance cross-slip and annihilation of dislocation segments
in a thermal manner. The collinear interaction assists athermally this dy-
namic recovery by allowing for annihilation of segments of all natures
[Madec 2002b, Devincre 2005]. This late recovery stage and its followers
(stages IV and V) have been described in Part i of this book for the case of
silicon. Note that dynamic recovery is a process that is depending on the
stacking fault energy of the material and is therefore intimately related to
core properties of dislocations.

It must be noted that in the cases where multiple slip is active straight
from the beginning of deformation, dislocation interactions and patterning
similar to the stage II described above are observed immediately. Such

6.2 physics of hardening stages 203

using experimental results obtained on germanium crystals, [Sumino 1971,
Sumino 1974] demonstrated that in a dynamical state τmax 	 τb. This yields
τe f f = τ − τb. The elastic, long-range interactions between dislocations in
easy glide are consequently constant along the slip plane.

The low curvatures of mobile dislocation lines observed in silicon by
[Oueldennaoua 1988] have led these authors to conclude that the mean
effective stress acting on dislocations at the lower yield point and beyond
in predeformed specimen is very close to the applied stress. They con-
clude hereby that τb 	 τmax, in disagreement with the results obtained by
the Japanese group. This applies to isolated dislocations, located between
tangles and in regions suitable for observations. This apparent contradic-
tion can be solved by remembering that the French group has studied
pre-deformed samples in which the density of immobile dislocations is not
negligible. It is therefore possible that short-range interactions take on a
larger role than long-range elastic stress fields screened by high dislocation
densities. In a dynamical state, the results of [Sumino 1971, Sumino 1974]
should hold.

6.2.3 Late deformation stages

As deformation proceeds the lattice rotates with respect to the tensile
axis and the projections of the applied stress on the slip systems change.
These variations of the Schmid factors eventually lead to the activation of
previously latent systems. A multislip deformation mode sets in. Junctions
and interactions between the different slip systems are generated during
stage II. Its athermal nature is translated in fcc crystals by an almost constant
strain hardening rate θ = dτ/dγ � μ/250 [Kocks 2003]. This is also valid
in semiconductors [Kojima 1971, Siethoff 1978]. Long-range interactions
progressively gain importance because of the formation of pile-ups from
the junctions and the development of an early spatial structure.

A complex dislocation network progressively builds up until stage III
sets in, when the applied stresses become high enough to overcome the
long-range internal stresses and allow cross-slip or climb to relax the local
stress peaks and form dislocation patterns [Louchet 1988, Kocks 2003] .
Internal stress peaks are noticed in complex dislocation structures (walls)
and locally enhance cross-slip and annihilation of dislocation segments
in a thermal manner. The collinear interaction assists athermally this dy-
namic recovery by allowing for annihilation of segments of all natures
[Madec 2002b, Devincre 2005]. This late recovery stage and its followers
(stages IV and V) have been described in Part i of this book for the case of
silicon. Note that dynamic recovery is a process that is depending on the
stacking fault energy of the material and is therefore intimately related to
core properties of dislocations.

It must be noted that in the cases where multiple slip is active straight
from the beginning of deformation, dislocation interactions and patterning
similar to the stage II described above are observed immediately. Such



204 extensions of the model of alexander & haasen

situations arise either because of complex loading conditions or because the
tensile axis (in the case of uniaxial tensile testing) is on a high-symmetrical
orientation. Indeed in multi- or polycrystals the geometrical configura-
tions and compatibility between grains might lead frequently to multislip
deformation.

6.2.4 Very high temperatures (T>0.8 Tm)

The case of very high temperature deformation is worth mentioning, as
solidification of silicon ingots proceeds from the melting temperature. Dis-
location velocity has been observed to be thermally activated even at very
high temperatures, a transition operating above 1323 K in pure, dislocation-
free crystals2 [Farber 1982, Siethoff 2001]. Apart from the change of the
activation energy for dislocation mobility detected above this limit, climb of
dislocation segments allows for relaxation of the sources of internal stress.
Short range obstacles are easily overcome and a significantly less marked
spatial structure is observed [Aseev 1975]. The formation of subgrain walls
and subcells is actually active in silicon crystals after only 50 minutes of
creep at 20 MPa.

As mentioned previously, some experiments in uniaxial tension of silicon
monocrystals conclude on similar deformation mechanisms at very high
and high temperatures [Yonenaga 1996]. This does not exclude quantitative
variations in the velocity parameters and does not give detailed information
about the hardening mechanisms beyond the yield region.

6.2.5 Model requirements

The model we are about to develop does not aim at describing the hardening
and recovery stages beyond stage III, characterized by strong dislocation
patterning that continuum models cannot represent. It should describe
accurately the yield region and stage I, as well as activation of secondary
systems during stage II and the transition into stage III. In addition to these
qualitative features, it should as well be able to represent correctly the
variation of the mechanical behaviour of silicon crystals with temperature
and strain rate. The model should indeed be based on physical principles,
namely the generation, multiplication, storage and annihilation of dislo-
cations responsible for plastic flow. The activation of several slip systems
and their mutual interactions leading to enhanced hardening should be
accounted for.

These requirements pose problems. An example is the extremely wide
temperature (or equivalently, strain rate) range that we want to cover. It
is believed that nucleation and propagation of double kinks along the
dislocation line is the main mechanism steering dislocation motion below

2 This transition temperature applies at relatively high applied (or effective) stresses, above
10 MPa. Lower stresses shift this transition to higher temperatures.
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2 This transition temperature applies at relatively high applied (or effective) stresses, above
10 MPa. Lower stresses shift this transition to higher temperatures.
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temperatures of approximately 0.8 Tm, that is 1200 K. [Moulin 1997a] actu-
ally points out the limits of his model beyond such a temperature. This is
unfortunately the temperature range where most experiments have been
performed, so the equations founding the models used until now (see Chap-
ter 5) might not be relevant at very high temperatures. With lattice friction
disappearing forest hardening might play an important role, bringing the
mechanical behaviour of covalent crystals close to the one of fcc metals.
The existence of a mixed mode, where lattice friction and other internal
stress sources have the same magnitude, is bound to complicate our task.
We disregard in this work the case of very high temperature hardening
mechanisms.

Dislocation velocity

As for dislocation velocities, all expressions introduced until now in the
literature consider isolated dislocations moving in a perfect lattice, exempt
from forest trees or impeding obstacles.

On the other hand, it can be easily conceived that when the forest density
builds up the averaged dislocation velocity might differ from Eq. 5.1 which
represents the ideal case of free flight of dislocations moving by the double
kink mechanism. In the presence of localized obstacles the movement of a
dislocation line would be a succession of “stop-and-go” events between
the trees or point obstacles. [Sumino 1971] noticed for example a change
of the dislocation velocity activation energy in stage II of deformation of
germanium crystals. Note that this mode of motion is similar to what is
commonly observed in fcc crystals and therefore relies on the absence of any
strong lattice friction that would govern dislocation velocity. See Figure 6.4
for a brief outlook of the various domains to cover.

Internal stresses

The nature of obstacles to dislocation motion is closely linked to the deriva-
tion of dislocation velocity. Each obstacle affects dislocation motion either
in an athermal way, e.g. by the long-range stress fields it generates, or by
creating thermally overcomable barriers. The former type of internal stress
should enter directly into the definition of the effective stress: dislocation
motion is simply impossible if the applied stress is lower than the internal
stress. On the other hand, thermally activated barriers can be overcome
with the help of temperature and the application of a finite stress. Example
of such obstacles are small precipitates, junctions, etc.

Evolution of dislocation densities

At low densities, typically in as-grown crystals, multiplication of dislo-
cations is found to follow a law given by one of the models introduced
in Chapter 5. Keeping in mind that these laws have been experimentally
verified at temperatures below 1273 K and low dislocation densities, one
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immediately notices that their validity might be severly compromised even
in the case of such intermediate temperatures but high dislocation densities
(that is, when forest interactions ought to increase the dislocation density by
creation of new Frank-Read sources, as exemplified by a percolation model
[Cuitiño 1992, Kocks 2003]). A model that covers both low and high densi-
ties should account for all mechanisms and possibly discriminate between
domains where the occurence of one is more likely than the other. The
case of bcc crystals has once again emphasized the difficulty of accurately
modeling hardening mechanisms in the thermal range [Tang 1999].

Storage of dislocations into tangles or multipoles that have short-range
elastic stress fields, annihilation of screw segments by cross-slip should
also be taken into account. The influence of temperature (or strain rate)
is double-fold: it first enhances storage of dislocations and increases the
occurence of thermally activated recovery mechanisms such as climb or
cross-slip. In practice this should be translated by a dependence of some
coefficients of the model with the deformation conditions.

Conclusions

All requirements introduced above cannot be easily fulfilled by a simple
model as derived in this Part. Some aspects must consequently be left aside.

Building on the work of [Alexander 1968], we neglect the possible influ-
ence of secondary dislocations on dislocation multiplication. Next Section
details extensions brought to the original model enhancing its accuracy and
physical validity to a broad range of temperatures and strain rates. As will
be seen, some simplifications are done to the internal stress and disloca-
tion velocity, in order to keep the constitutive model light and numerically
efficient.
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Figure 6.1: TEM of the primary slip plane of germanium deformed at 520°C at the
upper yield point (τ = 40 MPa) [Alexander 1986].
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Figure 6.2: TEM of the primary slip plane of germanium deformed at 520 °C at the
lower yield point (τ = 6.9 MPa) [Alexander 1986].

Figure 6.3: Formation of a junction of Burger’s vector bj after intersection of two
dislocations of respective Burger’s vectors b1 and b2.
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Figure 6.4: Different motion mechanisms as a function of temperature and disloca-
tion density. Motion is always thermally activated because of the (low)
stress level considered in this work, see Part i for details.
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6.3 constitutive equations for intrinsic crystals

We introduce in this Section the equations of a constitutive model for
silicon, assuming that the dislocation multiplication law of [Berner 1967,
Alexander 1968] is valid into stage I of deformation. As seen previously, any
constitutive model requires expressions of the dislocation velocity, internal
stress and the laws that rule the evolution of the dislocation densities. The
dislocation velocity law being at the heart of the definition of the plastic
behavior of a material, it is introduced first. The results of this Section and
the following ones have been published in [Cochard 2010a, Cochard 2010b].

6.3.1 Average dislocation velocity

Theoretical aspects

A fundamental issue that prevents from a straightforward determination
of dislocation velocity is the nature of motion mechanisms. It is widely
accepted that at rather low temperatures (below 0.6 to 0.75 Tm) disloca-
tion motion in covalent crystals having a strong Peierls potential proceeds
by means of nucleation and propagation of double kinks along the dis-
location line [Alexander 1968, Hirth 1982, Iunin 2001]. The existence of a
stress-dependent regime due to the dissociation of dislocations modelled by
[Möller 1978] has been ruled out by [Imai 1983] who observed no appear-
ance of a new regime towards low applied stresses (of the order of 1 MPa).
Hence, we disregard the possible existence of this low-stress regime.

Experimental results

The collective velocity of screw dislocations in an intrinsic silicon crystal
is experimentally given by Eq. 6.4, with v0 = 3.5 × 104 m.s−1, m0 = 1,
τ0 = 1 MPa, and U = 2.35 eV ([Imai 1983]). The effective stress τ

(α)
e f f on a

slip system α is the difference between the resolved shear stress and the
back stress τ

(α)
int which can also be assimilated to a kinematic hardening

term: τ
(α)
e f f =

〈∣∣∣τ(α)
∣∣∣− τ

(α)
int

〉
, where 〈x〉 = 0 if x ≤ 0 and 〈x〉 = x otherwise.

In practice, this back stress is the long-range elastic stress field acting on
moving dislocations.

v(α) = v0

⎛⎝τ
(α)
e f f

τ0

⎞⎠m0

exp
(
− U

kbT

)
(6.4)

Double kink model - comparison of theory to experimental results

In Eq. 6.4 U is the apparent activation regime equal to Ukp + Um in the
low stress approximation (see Part I and [Caillard 2003]). The velocity
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Figure 6.5: Velocity of screw dislocations in silicon using the experimental law
(Eq. 6.4, law 1) [Imai 1983] and the double-kink theory (Eq. 6.5, law 2)
[Hirth 1982, Caillard 2003], as a function of effective shear stress at a
temperature of 1073 K. Xc = 0.7 μm.

expression stemming from the double kink theory is given by Eq. 6.5,
where Xc = 1 μm according to [Caillard 2003]:

v(α) =

(
3
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Figs. 6.5 and 6.6 show the velocities obtained from Eqs. 6.4 and 6.5 as
a function of effective stress and temperature, respectively. No significant
difference can be noticed between the two formulations in the temperature
and stress range of interest. The double kink theory using an apparent
dislocation segment Xc = 1 μm predicts too high velocities. This discrepancy
arises from the value of the apparent length that is not clearly defined; using
Xc = 0.7 μm instead yields better agreement, as seen in the Figures.

Dislocation velocity at very high temperatures

What happens beyond 1200 K is not clear enough. X-ray topography has
allowed for observation of dislocations in bulk specimen at temperatures
as high as 1273 K, and the activation energy was calculated to be of 2.2 eV
or 2.4 eV for 60° and screw dislocations respectively [Nishino 1984], the
same as at lower temperatures. Diffusion-like mechanisms are believed
to progressively become the rate-limiting motion mechanism, translated
by an increased activation energy observed in dislocation-free crystals
[Farber 1982, Siethoff 2002]. Since the presence of as-grown dislocations
shifts this very high temperature regime towards even higher homologous
temperatures, we ignore it here and assume that Eq. 6.4 is valid up to the
melting point.
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Figure 6.5: Velocity of screw dislocations in silicon using the experimental law
(Eq. 6.4, law 1) [Imai 1983] and the double-kink theory (Eq. 6.5, law 2)
[Hirth 1982, Caillard 2003], as a function of effective shear stress at a
temperature of 1073 K. Xc = 0.7 μm.
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Figure 6.6: Velocity of screw dislocations in silicon using the experimental law
(Eq. 6.4, law 1) [Imai 1983] and the double-kink theory (Eq. 6.5, law 2)
[Hirth 1982, Caillard 2003], as a function of temperature and under an
effective shear stress of 1 MPa and Xc = 0.7 μm.

Influence of forest dislocations on the mean dislocation velocity

The influence of forest dislocations has never been taken into account in
constitutive models for covalent crystals, and traditionally excluded from
the quantitative discussions on dislocation velocity in silicon crystals. The
reason is probably that the motivation for research has been its applications
in the semiconductor industry requiring virtually dislocation-free crystals.
Silicon deformed beyond stage 0 would not appeal the modeling sense of
physicians. As mecanicians dealing with solar-grade materials we must
find a way to fill this gap.

At large forest densities, dislocation motion is hindered by the presence
of short-range obstacles along the dislocation lines and is similar to motion
in fcc crystals, as discussed above. Motion is then a succession of pinning
and unpinning events, dislocations moving freely between the anchoring
points (junctions at the trees). The average velocity of dislocations can
be written using the formalism of thermally activated glide [Kocks 1975,
Nemat-Nasser 2004]:

v = lvνe f f exp

(
−ΔG(τe f f , T)

kbT

)
(6.6)

with lv the average distance that dislocations move on the slip plane be-
tween consecutive barriers, and νe f f the effective frequency of attempts to
overcome short-range barriers of height ΔG. In the case of forest hardening,
the mean free path lv is roughly given by the inverse of the square root of
the forest density.

lv ∝
1√
ρ f

(6.7)
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(Eq. 6.4, law 1) [Imai 1983] and the double-kink theory (Eq. 6.5, law 2)
[Hirth 1982, Caillard 2003], as a function of temperature and under an
effective shear stress of 1 MPa and Xc = 0.7 μm.
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The expression of the mean free path of dislocations is nevertheless more
complicated to calculate and should incorporate the effects of self-interaction
and coplanar interactions as well, see [Kubin 2008b] for more details.

Simple models for dislocation velocity in fcc metals assume v to be highly
stress-sensitive, motion setting in only at effective stresses close to the
unlocking stress τc (see next Section):

v ∝
(

τe f f

τc

)m
(6.8)

with m � 1. Such an approximation stemming from a Taylor development
of Eq. 6.6 close to τc is not directly applicable to silicon, as the influence of
the double kink mechanism must be accounted for. This will be done in the
next Part.

Conclusion: dislocation velocity expression

Two aspects seem clear from the previous discussion.

• First, motion of isolated dislocations in silicon is a thermally activated
process characterized by an (almost) linear effective stress dependency
and an apparent activation energy of roughly 2.3 eV in the whole
temperature range where plasticity is macroscopically observed. The
case of very high temperatures and diffusion-like motion mechanisms
is ruled out from our model.

• Secondly, the influence of forest dislocations, impurities or other
defects interacting with moving dislocations has a direct effect on
their mobility by reducing their mean free path, increasing the internal
stress and ultimately changing the rate-limiting motion mechanism.

Given that we develop a constitutive model for silicon based on the work of
Alexander & Haasen we adopt in this Chapter the classical velocity expres-
sion given by Eq. 6.4. Additional effects such as the influence of thermally
overcomable localized obstacles on the slip plane will be considered in the
next Part of this work. As a simplification, forest obstacles are considered in
the present Chapter to be athermal in nature and included in the expression
of the internal stress (see next Section).

The activation energy for 60° dislocations U = 2.2 eV is chosen in the
following instead of the one related to screw segments because we do not
limit the applicability of the model to stage 0. In stage I the density of
screw dislocations is observed to be reduced as they can annihilate easily
by cross-slip; the majority of segments exhibit an edge character.

A simple model for edge dislocations can be derived by considering the
projection of the velocity vector of a 60° segment onto the edge orientation,
yielding a factor 1/2. As an approximation we can take v0 = 0.5× 104m.s−1.

The exact value of v0 is actually not important. Considering Orowan’s
law, at a given plastic strain rate the mobile dislocation density will adapt
to v0 in order for ρmbv to equal γ̇. Incidentally, v0 = 5 × 103 m.s−1 and

6.3 constitutive equations for intrinsic crystals 213

The expression of the mean free path of dislocations is nevertheless more
complicated to calculate and should incorporate the effects of self-interaction
and coplanar interactions as well, see [Kubin 2008b] for more details.

Simple models for dislocation velocity in fcc metals assume v to be highly
stress-sensitive, motion setting in only at effective stresses close to the
unlocking stress τc (see next Section):

v ∝
(

τe f f

τc

)m
(6.8)

with m � 1. Such an approximation stemming from a Taylor development
of Eq. 6.6 close to τc is not directly applicable to silicon, as the influence of
the double kink mechanism must be accounted for. This will be done in the
next Part.

Conclusion: dislocation velocity expression

Two aspects seem clear from the previous discussion.

• First, motion of isolated dislocations in silicon is a thermally activated
process characterized by an (almost) linear effective stress dependency
and an apparent activation energy of roughly 2.3 eV in the whole
temperature range where plasticity is macroscopically observed. The
case of very high temperatures and diffusion-like motion mechanisms
is ruled out from our model.

• Secondly, the influence of forest dislocations, impurities or other
defects interacting with moving dislocations has a direct effect on
their mobility by reducing their mean free path, increasing the internal
stress and ultimately changing the rate-limiting motion mechanism.

Given that we develop a constitutive model for silicon based on the work of
Alexander & Haasen we adopt in this Chapter the classical velocity expres-
sion given by Eq. 6.4. Additional effects such as the influence of thermally
overcomable localized obstacles on the slip plane will be considered in the
next Part of this work. As a simplification, forest obstacles are considered in
the present Chapter to be athermal in nature and included in the expression
of the internal stress (see next Section).

The activation energy for 60° dislocations U = 2.2 eV is chosen in the
following instead of the one related to screw segments because we do not
limit the applicability of the model to stage 0. In stage I the density of
screw dislocations is observed to be reduced as they can annihilate easily
by cross-slip; the majority of segments exhibit an edge character.

A simple model for edge dislocations can be derived by considering the
projection of the velocity vector of a 60° segment onto the edge orientation,
yielding a factor 1/2. As an approximation we can take v0 = 0.5× 104m.s−1.

The exact value of v0 is actually not important. Considering Orowan’s
law, at a given plastic strain rate the mobile dislocation density will adapt
to v0 in order for ρmbv to equal γ̇. Incidentally, v0 = 5 × 103 m.s−1 and

6.3 constitutive equations for intrinsic crystals 213

The expression of the mean free path of dislocations is nevertheless more
complicated to calculate and should incorporate the effects of self-interaction
and coplanar interactions as well, see [Kubin 2008b] for more details.

Simple models for dislocation velocity in fcc metals assume v to be highly
stress-sensitive, motion setting in only at effective stresses close to the
unlocking stress τc (see next Section):

v ∝
(

τe f f

τc

)m
(6.8)

with m � 1. Such an approximation stemming from a Taylor development
of Eq. 6.6 close to τc is not directly applicable to silicon, as the influence of
the double kink mechanism must be accounted for. This will be done in the
next Part.

Conclusion: dislocation velocity expression

Two aspects seem clear from the previous discussion.

• First, motion of isolated dislocations in silicon is a thermally activated
process characterized by an (almost) linear effective stress dependency
and an apparent activation energy of roughly 2.3 eV in the whole
temperature range where plasticity is macroscopically observed. The
case of very high temperatures and diffusion-like motion mechanisms
is ruled out from our model.

• Secondly, the influence of forest dislocations, impurities or other
defects interacting with moving dislocations has a direct effect on
their mobility by reducing their mean free path, increasing the internal
stress and ultimately changing the rate-limiting motion mechanism.

Given that we develop a constitutive model for silicon based on the work of
Alexander & Haasen we adopt in this Chapter the classical velocity expres-
sion given by Eq. 6.4. Additional effects such as the influence of thermally
overcomable localized obstacles on the slip plane will be considered in the
next Part of this work. As a simplification, forest obstacles are considered in
the present Chapter to be athermal in nature and included in the expression
of the internal stress (see next Section).

The activation energy for 60° dislocations U = 2.2 eV is chosen in the
following instead of the one related to screw segments because we do not
limit the applicability of the model to stage 0. In stage I the density of
screw dislocations is observed to be reduced as they can annihilate easily
by cross-slip; the majority of segments exhibit an edge character.

A simple model for edge dislocations can be derived by considering the
projection of the velocity vector of a 60° segment onto the edge orientation,
yielding a factor 1/2. As an approximation we can take v0 = 0.5× 104m.s−1.

The exact value of v0 is actually not important. Considering Orowan’s
law, at a given plastic strain rate the mobile dislocation density will adapt
to v0 in order for ρmbv to equal γ̇. Incidentally, v0 = 5 × 103 m.s−1 and

6.3 constitutive equations for intrinsic crystals 213

The expression of the mean free path of dislocations is nevertheless more
complicated to calculate and should incorporate the effects of self-interaction
and coplanar interactions as well, see [Kubin 2008b] for more details.

Simple models for dislocation velocity in fcc metals assume v to be highly
stress-sensitive, motion setting in only at effective stresses close to the
unlocking stress τc (see next Section):

v ∝
(

τe f f

τc

)m
(6.8)

with m � 1. Such an approximation stemming from a Taylor development
of Eq. 6.6 close to τc is not directly applicable to silicon, as the influence of
the double kink mechanism must be accounted for. This will be done in the
next Part.

Conclusion: dislocation velocity expression

Two aspects seem clear from the previous discussion.

• First, motion of isolated dislocations in silicon is a thermally activated
process characterized by an (almost) linear effective stress dependency
and an apparent activation energy of roughly 2.3 eV in the whole
temperature range where plasticity is macroscopically observed. The
case of very high temperatures and diffusion-like motion mechanisms
is ruled out from our model.

• Secondly, the influence of forest dislocations, impurities or other
defects interacting with moving dislocations has a direct effect on
their mobility by reducing their mean free path, increasing the internal
stress and ultimately changing the rate-limiting motion mechanism.

Given that we develop a constitutive model for silicon based on the work of
Alexander & Haasen we adopt in this Chapter the classical velocity expres-
sion given by Eq. 6.4. Additional effects such as the influence of thermally
overcomable localized obstacles on the slip plane will be considered in the
next Part of this work. As a simplification, forest obstacles are considered in
the present Chapter to be athermal in nature and included in the expression
of the internal stress (see next Section).

The activation energy for 60° dislocations U = 2.2 eV is chosen in the
following instead of the one related to screw segments because we do not
limit the applicability of the model to stage 0. In stage I the density of
screw dislocations is observed to be reduced as they can annihilate easily
by cross-slip; the majority of segments exhibit an edge character.

A simple model for edge dislocations can be derived by considering the
projection of the velocity vector of a 60° segment onto the edge orientation,
yielding a factor 1/2. As an approximation we can take v0 = 0.5× 104m.s−1.

The exact value of v0 is actually not important. Considering Orowan’s
law, at a given plastic strain rate the mobile dislocation density will adapt
to v0 in order for ρmbv to equal γ̇. Incidentally, v0 = 5 × 103 m.s−1 and



214 extensions of the model of alexander & haasen

U = 2.2 eV are values very close to the ones chosen by [Suezawa 1979] to
identify the constitutive parameters of the classical AH model. This allows
a direct comparison of our results with theirs, see Section 7.3.

6.3.2 Flow stress and internal stress

The flow stress τ is the stress required to apply on the specimen to keep
deforming it at given thermodynamic conditions. The flow stress usually
increases with deformation, this phenomena being called strain hardening.
In the athermal regime τ is made of the internal stress only. The latter
can be divided into two components, as in Eq. 6.9. The former term (τlr)
is related to long-range stress fields characterized by a slow spatial decay
proportional to r−1. The second term aims at representing other sources of
internal stress exhibiting short-range behaviors (∝ r−2, τsr).

τint = τlr + τsr (6.9)

Using the athermal and thermal parts of the flow stress gives Eq. 6.10.
τint is the internal stress above-mentioned, whereas τe f f is the effective
stress, required to overcome the thermal barriers, e.g., formation of double
kinks and their subsequent propagation. It is sometimes written τ∗ in the
literature, and assimilated to the thermal part of the flow stress that depends
on temperature and strain rate. The goal of this Section is to determine the
expression for the internal stress.

τ = τe f f + τint (6.10)

Long-range internal stress

The classical approach for silicon crystals has always been to consider that
only mobile dislocations contribute to the internal stress, because their stress
field vanishes proportionally to the inverse of the distance compared to a
quadratic dependence for dipoles [Alexander 1968, Hirth 1982]. Dipoles or
multipoles are characterized by an elastic stress field of shorter range than
the one created by mobile segments. Consequently, we consider immobile
dislocations not to participate to the expression of the long-range elastic
stress as is usually done.

The traditional way of describing the long-range elastic stresses stem-
ming from dislocations is to use a proportionality of the critical resolved
shear stress to the square root of the dislocation density, Eq. 6.11 being
commonly chosen in constitutive models of silicon crystals [Alexander 1968,
Suezawa 1979, Alexander 1986, Dillon 1986] (see Chapter 5). No distinction
is made between the different slip systems, as this equation is valid for
uniaxial deformation of as-grown crystals that have low densities on the
secondary systems.

Note that this equation is extremely similar to the Taylor formula com-
monly used for fcc metals, that relates the critical resolved shear stress
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stress, required to overcome the thermal barriers, e.g., formation of double
kinks and their subsequent propagation. It is sometimes written τ∗ in the
literature, and assimilated to the thermal part of the flow stress that depends
on temperature and strain rate. The goal of this Section is to determine the
expression for the internal stress.
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Long-range internal stress

The classical approach for silicon crystals has always been to consider that
only mobile dislocations contribute to the internal stress, because their stress
field vanishes proportionally to the inverse of the distance compared to a
quadratic dependence for dipoles [Alexander 1968, Hirth 1982]. Dipoles or
multipoles are characterized by an elastic stress field of shorter range than
the one created by mobile segments. Consequently, we consider immobile
dislocations not to participate to the expression of the long-range elastic
stress as is usually done.

The traditional way of describing the long-range elastic stresses stem-
ming from dislocations is to use a proportionality of the critical resolved
shear stress to the square root of the dislocation density, Eq. 6.11 being
commonly chosen in constitutive models of silicon crystals [Alexander 1968,
Suezawa 1979, Alexander 1986, Dillon 1986] (see Chapter 5). No distinction
is made between the different slip systems, as this equation is valid for
uniaxial deformation of as-grown crystals that have low densities on the
secondary systems.

Note that this equation is extremely similar to the Taylor formula com-
monly used for fcc metals, that relates the critical resolved shear stress
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to the square root of the forest density τc = μbA√
ρ f , with a prefactor

A � 0.35 ± 0.1. It is important to keep in mind that in the case of pure
silicon crystals in the early stages of deformation the forest is virtually
absent and that a Taylor expression would hence not be relevant.

τint = μbA
√

ρm (6.11)

A more advanced model, accounting for the presence of dislocations on
the secondary systems, has suggested an additivity of the stresses stemming
from the densities on the different systems (see [Sumino 1993] who adopted
Eq. 6.12):

τ
(α)
int = μbAα

√
ρ
(α)
m + μbA f

√
ρ
(α)
f (6.12)

If one chooses to add up the contributions of the secondary slip systems
to the internal stress, then it is not mathematically right to aggregate their
densities into a single one, since ∑i

√
xi 
=

√
∑i xi. One could argue that

the discrepancy is reduced when the xi are small, but we are looking for
a general law that could account for the case of large densities on the
secondary systems. Adopting such a law requires the computation of the
interaction coefficients, that are a priori geometrically determined only by
the relative orientation of the different slip systems. A more realistic expression
would then be Eq. 6.13, where the interaction coefficients

(
Aαβ

)
α,β=1,12 are

geometrically determined:

τ
(α)
int = μb

12

∑
β=1

Aαβ

√
ρ
(β)
m (6.13)

The Aαβ coefficients are derived based on the mean square of the stress
fields generated by a random array of dislocations. This method is prefered
to a standard averaging because the latter would yield a null mean stress at
any point in space. The set of Eq. 6.14 has been obtained by [Zarka 1972]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Aαβ = 1
8 if α = β

Aαβ = 1
16 for coplanar systems

Aαβ = 1
20 for colinear systems

Aαβ = 1
12 for remaining systems

(6.14)

Latent hardening stemming from long-range elastic stress fields, that is
the increase of the critical resolved shear stress on secondary systems due to
dislocations on the primary one, cannot exceed self-hardening. This is justi-
fied by the lower interaction coefficients for α 
= β. This fact is verified exper-
imentally on various fcc metals (see for example [Wu 1991, Bassani 1991]
for copper single crystals, and discussion in [Nemat-Nasser 2004]).

This expression models a back stress acting on mobile dislocations. It
must be understood that the back stress is considered in the present model
to be due to long-range elastic stress fields emanating from mobile disloca-
tions only. It determines the effective stress acting on dislocations as they
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move in the lattice, in the absence of other internal stress sources. This back
stress is also the starting stress for dislocations to move, and can be enriched
by other stress sources such as clouds of impurities (see Section 6.4) or
junction formation.

Short-range interactions

The long-range stress fields introduced previously depend on temperature
only through its influence on the shear modulus μ. In the case of short-
range interactions, thermal activation allows the incoming dislocation lines
to overcome more easily the short-range barriers. This explains the disap-
pearance of the thermal part of the flow stress above a critical temperature
[Nemat-Nasser 2004].

The following formulation of the critical stress required for unzipping the
junctions is taken from the work of [Madec 2003, Hoc 2004, Devincre 2006,
Kubin 2008b]. Simulations have allowed for determination of the strength
of the six different interaction mechanisms active in fcc crystals . The critical
stress reads:

τ
(α)
c = μb

√√√√ 12

∑
β=1

aαβρ
(β)
t (6.15)

where the aαβ coefficients related to junction formation depend non-linearly
on the dislocation density as they are made up of a long-range term and a
second one due to line tension effects:

aαβ =

⎛⎜⎜⎜⎝0.2 + 0.8
ln

(
b
√

a(re f )
αβ ρ

(β)
t

)
ln

(
b
√

a(re f )
αβ ρre f

)
⎞⎟⎟⎟⎠

2

a(re f )
αβ (6.16)

The reference interaction coefficients a(re f )
αβ taken from [Devincre 2006, Kubin 2008b]

are related to aαβ at a reference dislocation density ρre f = 1012 m−2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aSH = 6.4 × 10−3 (0.123)

aCopl = 6.4 × 10−3 (0.123)

aHL = 0.07

aGJ = 0.137

aLL = 0.123

aCS = 0.625

(6.17)

Hardening in single slip is not due to the pure self-interaction but to the
generation of a density of dislocation debris in the cross-slip system that
raises the self-interaction and coplanar coefficients significantly up to 0.123.
The nonlinearity of the coefficients [Madec 2002a, Devincre 2006] leads to a
difference of a factor two between the actual interaction strengths compared
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to the use of linear ones, at low forest densities. The logarithmic variation
of the coefficients is valid only for forest interactions and is due to line
tension effects3. The densities entering into Eq. 6.15 are the total densities
on the slip systems, no difference being done between mobile or immobile
dislocations.

High temperatures minimize the influence of the forest by allowing the
dislocations to overcoming the obstacles by cross-slip or climb [Louchet 1988].
More generally, thermal activation eases the unzipping process and the
critical stress defined in Eq. 6.15 should be considered as the one required
for passing the barriers at null temperature. Traditionally, such thermally
overcomable obstacles are accounted for by introducing τc into the velocity
law, as a normalizer to τe f f (see, e.g., [Kocks 1975, Nemat-Nasser 2004] and
the previous Section). Forest obstacles are then assumed to govern dislo-
cation mobility. High stress sensitivity of the dislocation velocity in f.c.c.
crystals guarantees that significant motion takes place at τe f f � τc only, the
latter playing therefore the role of a threshold stress.

Dislocation motion in covalent crystals almost free from forst dislocations
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6.3.3 Dislocation evolution laws

All dislocations are assumed to be mobile when their density is low. It
increases as dislocation loops expand, screw segments double cross-slip
and Frank-Read sources are activated, the latter saturating quite rapidly
[Alexander 1968, Moulin 1997a, Vallino 2001]. These mechanisms that take
place mainly on the primary slip system are valid up to the lower yield
point and as long as the density is low enough to prevent any significant
interaction between dislocations. As the density of mobile dislocations
increases they eventually interact with each other by forming dipoles or
multipoles. The increase in dislocation density on the secondary systems
also gives rise to forest hardening, that is storage of dislocations by forest
interactions. Therefore, the generation mechanisms are supplemented by
the trapping of mobile dislocations, leading to the creation of dipoles
tangles and other structures made of realtively immobile dislocations. The

3 Line tension effects have also been mentionned for the case of bcc crystals [Tang 1999] as
critical for the correct expression of the forest hardening at low temperatures. The same remark
is valid for silicon crystals at low homologous temperatures and with relatively low forest
densities, when the Peierls valleys are strong enough to compete with dislocation reactions.
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immobile dislocations can annihilate by cross-slip or through the collinear
interaction.

We distinguish primarily two types of dislocations, namely the “mo-
bile” and “immobile” ones. The evolution rate of the former is governed
by two terms, corresponding to generation and disappearance of mobile
dislocations. At this stage, we consider that mobile dislocations can be-
come immobile through formation of dipoles only. The density of immobile
dislocations increases as mobile dislocations are stored.

Mobile dislocation multiplication

Since we base the model on the equations of Alexander & Haasen we
obviously adopt the same dislocation multiplication law as their model,
and assume it to be valid on each slip system:

ρ̇
(α)
m = δτ

(α)
e f f

γ̇(α)

b
(6.19)

Storage of mobile dislocations: dipole formation

We assume that trapping of dislocations leading to the formation of dipoles
occurs when two segments belonging to the same system but located on
parallel planes cross each other and are separated by a distance smaller that
a capture diameter 2rc:

ρ̇
(α)
m = −

(
2rcρ

(α)
m

) γ̇(α)

b
(6.20)

The capture radius should depend on the temperature and strain rate, as no-
ticed in [Oueldennaoua 1988] and already modeled in [Ashmawi 2000]. Its
order of magnitude should be of some tenths of micron [Oueldennaoua 1988,
Amodeo 1990]. The trapping of mobile dislocations is equivalent to their
storage and the build-up of a density of immobile dislocations.
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) γ̇(α)

b
(6.21)

Annihilation of dislocations

Two dislocations having opposed Burgers vectors coming close enough
from each other can annihilate. The occurence of cross-slip, be it by thermal
activation or because the resolved shear stress on the collinear system is
finite, allows for annihilation of screw segments initially mobile or stored as
screw dipoles. Annihilation of segments that are not screws is also possible
by, e.g., climb, but the capture radius is actually found to be much smaller:
screw annihilation takes place on distances of the order of micrometers
[Amodeo 1990] while edge components cross only a couple of nanometers
by climb. Dynamic recovery is neglected in this model for simplicity.
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6.3.4 Summary

Constitutive Equations

The model we have set up is a simple extension of the equations of
[Alexander 1968] to all slip systems of silicon and accounting for the build-
up of a population of immobile dislocations. The internal stress is enriched
as well and incorporates short-range interactions. The basic equation bridg-
ing the gap between the microscopic and macroscopic levels is Orowan’s
law (Eq. 6.22). It implies in turn a velocity law (Eq. 6.23) and an evolution
equation for mobile dislocations (set of Eqs. 6.24). These two last com-
ponents lead naturally to the question of the internal stress influencing
dislocation motion, multiplication and storage. It is given in Eq. 6.25. Note
that the definition of the internal stress assumes the additivity of both
short-range and long-range components.

• Orowan’s law
γ̇
(α)
p = ρ

(α)
m bv(α) (6.22)

• Dislocation velocity
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• Effective and internal stress⎧⎨⎩ τ
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Remarks and limits of the model

This model considers that plastic deformation takes place by means of
dislocation generation and glide on their slip systems only. Deformation
mechanisms such as twinning, or high temperatures allowing easy climb or
cross-slip are also ruled out. Diffusion-like mechanisms are excluded from
our formalism.

The definition of the internal stress relies on the additivity of contri-
butions from both athermal and thermal obstacles. This is obviously not
in agreement with the standard theory of thermally activated glide (see,
e.g., [Kocks 1975]), as the component stemming from junction formation
should be considered as a critical stress that needs not be reached before
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should be considered as a critical stress that needs not be reached before
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dislocations unzip. This choice is due to the simple dislocation velocity law
chosen in this work. Eq. 6.23 intrinsically assumes that no forest obstacles
are present and adding the critical stress τc (Eq. 6.15) to τint is equivalent to
assuming that thermal excitation does not help obstacle overcoming at all.
Note that such an approach has already been used in the literature for mod-
eling the effects of dissolved impurities at the core: instead of modifying
the velocity law, the internal stress is simply reduced further.

The evolution of the total dislocation density ρ
(α)
t is exactly equal to

the multiplication law of Alexander & Haasen: ρ̇
(α)
t = δρ

(α)
m τ

(α)
e f f v(α). Con-

sequently our model should yield similar results than the original one in
the yield region and as long as ρ

(α)
i 	 ρ

(α)
m . At larger strains, the present

model should predict a steady-state of deformation defined by ρ̇
(α)
m = 0,

the density of immobile dislocations still increasing as is experimentally
observed.

This similarity also implies that the multiplication mechanisms are as-
sumed to generate as many dislocations in the yield region as beyond. Such
an assumption will be shown as fundamentally limiting the validity of our
constitutive model, as it underestimates the generation rate at intermediate
to large strains, or in multiple slip conditions.

More developed models of dislocation multiplication have been pub-
lished recently, based on the analysis of the different dislocation segments
constituting the loops [Arsenlis 2002, Cheong 2004]. The analysis leads to
multiplication laws that involve terms similar to the ones of Eqs. 6.24, spe-
cialized to each type of dislocation on a given slip system (for example,
different laws exist for screw and edge dislocations). The present model
does not distinguish between the different dislocation characters.

Finally, it might be interesting to note that this model can be simplified
if one is interested by uniaxial straining of single crystals involving one
slip system only. The computational framework has not been fixed yet: it
is still left to the user to decide whether a scalar formulation as done in
Chapter 5 satisfies his needs. Adopting a crystal plasticity formulation as
introduced in Annex A increases the computation time and requires more
implementing efforts.
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6.4 modeling oxygen-contaminated silicon crystals

Let us now concentrate on modeling the dislocation locking effect that
dissolved impurities have. Oxygen has been the subject of extended research
as it is the main contaminant in CZ crystals (see Part i of this thesis for
more details). Consequently, this impurity only is considered in this Section.
Application of the model to other impurities is straightforward, provided
the many physical parameters it is based on are known.

Oxygen is a light impurity and therefore does not affect the activation
energy of moving dislocations. As shown by [Sumino 1999], the formation
of a Cottrell atmosphere at temperatures where a plastic deformation is
significant is very unlikely, as the binding energy of individual impurity
atoms to dislocations is quite low. The additional back stress created by
such an atmosphere and the evolution of the impurity cloud around a mov-
ing dislocation (see [Maroudas 1991a, Maroudas 1991b]) are consequently
neglected in the following. Furthermore, only the first two stages of the
dislocation locking stress evolution are considered. Impurity aggregation
and cluster formation by pipe diffusion is neglected.

6.4.1 Internal stress

Diffusion of light impurities to the dislocation core has the effect of tremen-
dously raising the upper yield stress. Dislocated CZ crystals exhibit a
behavior in the yield region that reminds of dislocation-free FZ crystals.
The presence of oxygen actually prevents dislocations from moving and
results in keeping crystals apparently virgin from dislocations. A traditional
way of modeling the locking effect has been to add a back stress τO to τint,
eventually proportional to the concentration of oxygen that has diffused to
the impurity core by a factor dependent on temperature [Sumino 1983]:

τ
(α)
O = f (T) c(α)O (6.26)

Such an approach is far from sufficient if one aims at reproducing the
increase of the upper yield stress, as a large fraction of τuy is made up of
the effective stress (see, e.g., [Kalan 2001, Miyazaki 2007]). An additional
enhancement of the constitutive model for extrinsic crystals is to consider
that in average, only a fraction of the density of mobile dislocations is in
motion.

6.4.2 Effective density of mobile dislocations

Both experimental observations and theoretical considerations show that
only a minor fraction ρm,e f f of the mobile dislocation density ρm is actually
carrying plastic flow in the yield region - where the density of immobile
dislocations ρi can be neglected anyway and ρt � ρm. [Petukhov 2004] has
shown that this is due to dynamic ageing of dislocations as the impurity

6.4 modeling oxygen-contaminated silicon crystals 221

6.4 modeling oxygen-contaminated silicon crystals

Let us now concentrate on modeling the dislocation locking effect that
dissolved impurities have. Oxygen has been the subject of extended research
as it is the main contaminant in CZ crystals (see Part i of this thesis for
more details). Consequently, this impurity only is considered in this Section.
Application of the model to other impurities is straightforward, provided
the many physical parameters it is based on are known.

Oxygen is a light impurity and therefore does not affect the activation
energy of moving dislocations. As shown by [Sumino 1999], the formation
of a Cottrell atmosphere at temperatures where a plastic deformation is
significant is very unlikely, as the binding energy of individual impurity
atoms to dislocations is quite low. The additional back stress created by
such an atmosphere and the evolution of the impurity cloud around a mov-
ing dislocation (see [Maroudas 1991a, Maroudas 1991b]) are consequently
neglected in the following. Furthermore, only the first two stages of the
dislocation locking stress evolution are considered. Impurity aggregation
and cluster formation by pipe diffusion is neglected.

6.4.1 Internal stress

Diffusion of light impurities to the dislocation core has the effect of tremen-
dously raising the upper yield stress. Dislocated CZ crystals exhibit a
behavior in the yield region that reminds of dislocation-free FZ crystals.
The presence of oxygen actually prevents dislocations from moving and
results in keeping crystals apparently virgin from dislocations. A traditional
way of modeling the locking effect has been to add a back stress τO to τint,
eventually proportional to the concentration of oxygen that has diffused to
the impurity core by a factor dependent on temperature [Sumino 1983]:

τ
(α)
O = f (T) c(α)O (6.26)

Such an approach is far from sufficient if one aims at reproducing the
increase of the upper yield stress, as a large fraction of τuy is made up of
the effective stress (see, e.g., [Kalan 2001, Miyazaki 2007]). An additional
enhancement of the constitutive model for extrinsic crystals is to consider
that in average, only a fraction of the density of mobile dislocations is in
motion.

6.4.2 Effective density of mobile dislocations

Both experimental observations and theoretical considerations show that
only a minor fraction ρm,e f f of the mobile dislocation density ρm is actually
carrying plastic flow in the yield region - where the density of immobile
dislocations ρi can be neglected anyway and ρt � ρm. [Petukhov 2004] has
shown that this is due to dynamic ageing of dislocations as the impurity

6.4 modeling oxygen-contaminated silicon crystals 221

6.4 modeling oxygen-contaminated silicon crystals

Let us now concentrate on modeling the dislocation locking effect that
dissolved impurities have. Oxygen has been the subject of extended research
as it is the main contaminant in CZ crystals (see Part i of this thesis for
more details). Consequently, this impurity only is considered in this Section.
Application of the model to other impurities is straightforward, provided
the many physical parameters it is based on are known.

Oxygen is a light impurity and therefore does not affect the activation
energy of moving dislocations. As shown by [Sumino 1999], the formation
of a Cottrell atmosphere at temperatures where a plastic deformation is
significant is very unlikely, as the binding energy of individual impurity
atoms to dislocations is quite low. The additional back stress created by
such an atmosphere and the evolution of the impurity cloud around a mov-
ing dislocation (see [Maroudas 1991a, Maroudas 1991b]) are consequently
neglected in the following. Furthermore, only the first two stages of the
dislocation locking stress evolution are considered. Impurity aggregation
and cluster formation by pipe diffusion is neglected.

6.4.1 Internal stress

Diffusion of light impurities to the dislocation core has the effect of tremen-
dously raising the upper yield stress. Dislocated CZ crystals exhibit a
behavior in the yield region that reminds of dislocation-free FZ crystals.
The presence of oxygen actually prevents dislocations from moving and
results in keeping crystals apparently virgin from dislocations. A traditional
way of modeling the locking effect has been to add a back stress τO to τint,
eventually proportional to the concentration of oxygen that has diffused to
the impurity core by a factor dependent on temperature [Sumino 1983]:

τ
(α)
O = f (T) c(α)O (6.26)

Such an approach is far from sufficient if one aims at reproducing the
increase of the upper yield stress, as a large fraction of τuy is made up of
the effective stress (see, e.g., [Kalan 2001, Miyazaki 2007]). An additional
enhancement of the constitutive model for extrinsic crystals is to consider
that in average, only a fraction of the density of mobile dislocations is in
motion.

6.4.2 Effective density of mobile dislocations

Both experimental observations and theoretical considerations show that
only a minor fraction ρm,e f f of the mobile dislocation density ρm is actually
carrying plastic flow in the yield region - where the density of immobile
dislocations ρi can be neglected anyway and ρt � ρm. [Petukhov 2004] has
shown that this is due to dynamic ageing of dislocations as the impurity

6.4 modeling oxygen-contaminated silicon crystals 221

6.4 modeling oxygen-contaminated silicon crystals

Let us now concentrate on modeling the dislocation locking effect that
dissolved impurities have. Oxygen has been the subject of extended research
as it is the main contaminant in CZ crystals (see Part i of this thesis for
more details). Consequently, this impurity only is considered in this Section.
Application of the model to other impurities is straightforward, provided
the many physical parameters it is based on are known.

Oxygen is a light impurity and therefore does not affect the activation
energy of moving dislocations. As shown by [Sumino 1999], the formation
of a Cottrell atmosphere at temperatures where a plastic deformation is
significant is very unlikely, as the binding energy of individual impurity
atoms to dislocations is quite low. The additional back stress created by
such an atmosphere and the evolution of the impurity cloud around a mov-
ing dislocation (see [Maroudas 1991a, Maroudas 1991b]) are consequently
neglected in the following. Furthermore, only the first two stages of the
dislocation locking stress evolution are considered. Impurity aggregation
and cluster formation by pipe diffusion is neglected.

6.4.1 Internal stress

Diffusion of light impurities to the dislocation core has the effect of tremen-
dously raising the upper yield stress. Dislocated CZ crystals exhibit a
behavior in the yield region that reminds of dislocation-free FZ crystals.
The presence of oxygen actually prevents dislocations from moving and
results in keeping crystals apparently virgin from dislocations. A traditional
way of modeling the locking effect has been to add a back stress τO to τint,
eventually proportional to the concentration of oxygen that has diffused to
the impurity core by a factor dependent on temperature [Sumino 1983]:

τ
(α)
O = f (T) c(α)O (6.26)

Such an approach is far from sufficient if one aims at reproducing the
increase of the upper yield stress, as a large fraction of τuy is made up of
the effective stress (see, e.g., [Kalan 2001, Miyazaki 2007]). An additional
enhancement of the constitutive model for extrinsic crystals is to consider
that in average, only a fraction of the density of mobile dislocations is in
motion.

6.4.2 Effective density of mobile dislocations

Both experimental observations and theoretical considerations show that
only a minor fraction ρm,e f f of the mobile dislocation density ρm is actually
carrying plastic flow in the yield region - where the density of immobile
dislocations ρi can be neglected anyway and ρt � ρm. [Petukhov 2004] has
shown that this is due to dynamic ageing of dislocations as the impurity



222 extensions of the model of alexander & haasen

concentration on “old” segments increases, while newly generated disloca-
tions can move free from locking agents for a while. The averaged behavior
of the dislocation population can be retraced by considering the initial
dislocation density to be reduced by a factor which is a function of the
locking stress τO.

The model derived by [Petukhov 2004] assumes that the crystal is de-
formed at a constant strain rate, allowing him to derive an analytical
expression for ρm,e f f . In the most general case however no analytical ex-
pression can be derived. A simple way of modeling the effect of oxygen is
to replace ρ

(α)
m by ρ

(α)
m,e f f in Eqs. 6.22 and 6.24, with

ρ
(α)
m,e f f = η

(
τ
(α)
O

)
ρ
(α)
m (6.27)

and η (τO) ≤ 1 a function left to derive.

6.4.3 Dislocation multiplication

[Maroudas 1991c] consider that impurities at the dislocation core hinder
their multiplication by adding an additional energy barrier to overcome
prior to cross-slip events. The dislocation multiplication prefactor δ (see
Eq. 6.24) becomes δO:

δO = δ exp

(
−τ

(α)
O b2l
kbT

)
(6.28)

Where l is a mean jog spacing, taken as constant and equal to 10−7 m.

6.4.4 Diffusion of impurities to and from the dislocation cores

Finally, the knowledge of c(α)O is required as τ
(α)
O and ultimately ρ

(α)
m,e f f

depend on this variable. Let us consider first the case of a dislocation at
rest. Neglecting the presence of a Cottrell atmosphere and setting the core
radius r0 = a, then the concentration of oxygen outside the core is constant
and equals the bulk dissolved concentration c∞

O . The diffusion problem is
extremely simplified and reads:

ċ(α)O

∣∣∣
v(α)=0

=
DO

2πr0b

[
c∞

O − c(α)O exp
(
−ΔGO

kbT

)]
(6.29)

where DO is the effective diffusion coefficient in the bulk and ΔGO the
binding energy of oxygen to dislocations. The former depends both on tem-
perature and the oxygen concentration (see [Senkader 2001, Murphy 2006]).
We consider in this work the case of high temperatures only, which yields:

DO = 0.13 × 10−4 exp
(
−2.53

kbT

)
(6.30)
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ΔGO can be expressed as a function of the enthalpy change ΔHO and en-
tropy change ΔSO, as ΔGO = ΔHO − TΔSO. Experimental observations
give ΔSO � kb and ΔHO = 0.74 eV above 923 K (see [Senkader 2002,
Murphy 2006]).

The case of a moving dislocation has been investigated by [Petukhov 1990,
Petukhov 2004], who derived Eq.6.31:

ċ(α)O

∣∣∣
v(α)>0

= ċ(α)O

∣∣∣
v(α)=0

+
v(α)

a

[
r0

a
c∞

O − c(α)O exp
(
− a

v(α)tm

)]
(6.31)

with tm = λO
a2

DO
exp (−ΔGO/kbT) the time of oxygen migration from the

bulk back onto the dislocation core. The factor λO > 1 translates the effect of
the lattice distortion close to the dislocation core on the impurity diffusivity.
Its influence is discussed later.
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Its influence is discussed later.
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6.5 conclusion: the extended ah model

Constitutive equations for intrinsic silicon materials have been introduced,
based on the model of Alexander & Haasen. Attempts to account for
physical mechanisms taking place during deformation have been done:

• The dislocation velocity law does not account for short-range inter-
actions, and dislocations are assumed to move by the double kink
mechanism

• Short-range interactions are voluntarily overestimated by their inte-
gration in the critical stress for dislocation motion. Latent hardening
is also included in the model

• The total dislocation population on each slip system is decomposed
into mobile and immobile segments. The former are inserted into
Orowan’s law, whereas the latter only contribute to the internal stress
buildup

• Mobile segments are stored into the immobile population by the use
of an effective capture radius

The case of intrinsic materials has also been considered. Dissolved oxygen
is taken as a basis for derivation of the related equations, given its significant
contents in SoG-Si on the one hand, and the extensive knowledge we have
on this species on the other. It is suggested that oxygen atoms diffused at
the dislocation core have three different effects:

• They increase the internal stress opposing the applied stress, owing
to the dragging effect of pinning impurities

• Oxygen atoms hinder dislocation multiplication by creating an addi-
tional barrier to cross-slip

• When contaminated dislocations are set into motion, only a fraction
η of the total population actually carries plastic flow, owing to dy-
namic ageing. The η function depends on the maximum impurity
concentration reached at the core.

This extended AH model is calibrated and discussed in the next Chapter.
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7
C A L I B R AT I O N O F T H E E X T E N D E D A H M O D E L A N D
D I S C U S S I O N

The physically-based extended AH model can explain to some extent the temperature and
strain rate sensitivity of the stress-strain curves in the yield region. The existence and unicity
of the steady state of deformation in stage I is guaranteed by the extended model for intrinsic
materials. Its generalization to oxygen-contaminated crystals extends further its applicability
to extrinsic silicon. Derivation of the consistent tangent moduli for implementation of the
model for intrinsic materials in implicit finite element codes is proposed. The limitations of
constitutive models based on the dislocation multiplication law of Alexander & Haasen are
discussed.

7.1 implementation into a finite element software

The constitutive equations derived in Chapter 6 can be implemented both
into a stand-alone routine, where a single integration point is considered, or
into a finite element software. Kinematics must be choosen either way; we
use the RDCP framework as its ability to account for several slip systems
surpasses a J2 formulation (see Annex A).

The kinematics of large deformations have been described in Section A.3,
based on the multiplicative decomposition of the deformation gradient.
The constitutive model introduced above is implemented in a user subrou-
tine called VUMAT. Abaqus/Explicit works in the corotational system,
rotating with the material point, and only details specific to this particular
formulation are given in the following.

7.1.1 Implementation into Abaqus/Explicit

Working in the corotational system means that the Cauchy stress must be
updated and rotated into this system at each time increment. Care must
also be taken to account correctly for the rotation of the material point
caused by plastic shearing, as discussed by [Amirkhizi 2007]. Although
leaving the lattice undeformed, the application of Fp induces a rotation Rp

that can be obtained by polar decomposition Fp = RpUp, where Up is the
plastic stretch gradient. [Amirkhizi 2007] update the rotational part of the
plastic deformation gradient with an incremental scheme. Instead of this
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226 calibration of the extended ah model and discussion

approximation, we use the (exact) polar decomposition of the updated Fp

to obtain Rp at each time increment.
Calling Qt the matrix allowing the coordinate transformation from the

MECS to the CACS at the time t (see Section A.3), a tensor T written in
MECS can be expressed into CACS as follows:

T̃ = QtTQT
t (7.1)

Tensors and vectors expressed in the CACS are written with a˜superscript.
Q needs to be updated upon plastic deformation as Rp induces a rotation of
the material element: writing Q0 = Q(t = 0) then Qt+Δt = Rp

t+ΔtQ0. The
initial relative orientation of CACS with respect to MECS can be defined
by three successive rotations associated to three Euler angles (ψ, θ, φ) as
defined in Fig. A.4, Q0 being given by Eq. A.43. The Euler angles at t +
Δt are extracted from R̃t+ΔtQt+Δt, with Rt+Δt obtained from the polar
decomposition F = RU at the end of the time increment.

7.1.2 Derivation of the consistent tangent moduli for Abaqus/Standard

The advantage of Abaqus/explicit is that it does not iterate at each time
increment in order to find the solution to the BVP. Small time increments
are required in order to keep the solution stable and accurate. On the
contrary, relying on an implicit solver for the boundary value problem adds
in accuracy and stability, but is computationally more expensive because
potentially large time increments lead to an iterative process in order to
reach equilibrium. The convergence speed of these iterations is at best
quadratic and depends on the accuracy of the consistent tangent moduli
Cep (CTM) defined as:

Cep =
∂Δσ

∂Δε
(7.2)

Using a vector notation for Δσ and Δε allows for writing this fourth-order
tensor as a 6x6 matrix with components Cij = ∂Δσi/∂Δε j. This CTM must
be derived at each integration point each time the user-defined constitutive
model routine (UMAT) is called. A critical issue is that the CTM depends
directly on the constitutive model chosen, and each modification brought
to any of the consitutive equations introduced previously has a direct effect
on Cep and therefore the convergence speed. An example of derivation
is given in Annex B, where the extended AH model with temperature-
dependent parameters is considered only. Unless stated otherwise only
Abaqus/Explicit is used in this work.

7.1.3 Finite element model

The finite element model used for parameter identification aims at repro-
ducing the silicon specimen attached to the tensile apparatus as used by
[Yonenaga 1978] to obtain the experimental data. The tensile apparatus
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7.1 implementation into a finite element software 227

strongly affects the yield region as the combined stiffness of the specimen
and machine differs from the one of the silicon sample alone and varies
with the testing conditions. Such an effect is usually accounted for in scalar
models by the use of the machine equation including an equivalent shear
modulus such as done by [Alexander 1968, Suezawa 1979] and introduced
in Chapter 5. However, this approach disregards the strong variations
of the strain rate in the tensile specimen upon loading as discussed in
[Cochard 2010a].

In the linear elastic region the very low machine stiffness leads to a
concentration of deformation in the tensile apparatus. [Yonenaga 1978]
mention the relaxation at the grips. The onset of plastic flow during the
yield drop results in the localization of deformation and a local increase of
the strain rate in the silicon sample as softening proceeds. Overall, the strain
rate acting on the gauge section of the specimen exhibits strong variations in
the yield region, thereby requiring the modeling of the whole apparatus for
parameter calibration. This makes the identification of a possible strain rate
dependency of the constitutive parameters difficult as even tests performed
at constant cross-head speed do not lead to a constant strain rate in the
gauge (see [Cochard 2010b] and Section 7.2).

The whole finite element model includes the actual silicon sample of
gauge dimensions of 3 × 2 × 30 m3. It is bounded by two isotropic elastic
blocks representing the effect of the tensile apparatus (see Fig. 7.1). A total
of 888 C3D8R elements are used for the mesh. This mesh size is sufficient
to obtain converged results with λO = 102 (see [Cochard 2010b] in case λO
is taken smaller).

The material behaviour of the specimen is defined by the VUMAT. The
initial conditions required are the dislocation densities, the crystallographic
orientation of the tensile specimen and its dissolved oxygen content. The
apparatus elastic blocks have a Poisson’s ratio of 0.3 and a Young’s mod-
ulus Eblocks set as a free parameter for optimization in each experimental
curve. Eblocks is found by fitting its value to the initial elastic slope of the
experimental curves. Elastic blocks of low stiffness Eblocks are used to fit the
parameters affecting the yield region only.

The experimentally determined dislocation density ρ0,exp is assumed
entirely mobile and located on the primary slip system D4. The initial
mobile dislocation density on each secondary system is assumed equal to
0.01 × ρ0,exp. On all systems ρi = 0 at the beginning of the simulations.

When present, dissolved oxygen is assumed to have diffused to disloca-
tion cores and reached its maximum allowed value prior to deformation:
c(α)O = c∞

O exp (ΔGO/kbT).
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Figure 7.1: Finite element mesh used for parameter identification. The silicon sample
is in light grey, the elastic bounding blocks modeling the tensile machine
in dark grey. The force at the nodes of the white elements is used for
comparison of the model output with the experimental data.
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7.2 model calibration

7.2.1 Preliminary discussion

The (α) superscripts are dropped here for readability.

definition of the steady-state of deformation It is commonly
observed that both ρm and τe f f reach steady-state values in stage I (resp. ρ∗m
and τ∗

e f f ) [Yonenaga 1978, Sumino 1979, Oueldennaoua 1988]. Assuming
the extended model correctly describes the dislocation evolution in silicon,
Eq. 6.24a yields for ρ̇m = 0:

ρ∗m =
δτ∗

e f f

2rc
(7.3)

Experimental results obtained at temperatures from 983 to 1273 K by
[Yonenaga 1978, Yonenaga 1981] give:

ρ∗m
τ∗

e f f
=

δ

2rc
� 548.6 γ̇0.26 exp

(
0.76
kbT

)
(7.4)

The combined use of Orowan’s law and Eq. 7.3 at the steady-state of
deformation (i.e. at a constant resolved shear strain rate) yields:

(ρ∗m)
2 ∝

δ

rc
exp

(
U

kbT

)
(7.5)

It can similarly be found that
(

τ∗
e f f

)2
∝ rc

δ exp
(

U
kbT

)
. This shows that the

steady state of deformation is entirely defined as soon as the extended
model is adopted, whatever the value assigned to δ

rc
. Fixing this ratio to,

e.g., its experimental value as given in Eq. 7.4 actually ensures that the
simulated steady-state is similar to the experimental one1. In other words,
the extended AH model guarantees the existence and unicity of the steady state
variables.

temperature dependency of parameters Experiments yield for
γ̇ = 1.2 × 10−4 s−1 at steady-state:

τ∗
e f f = 1.13 × 103 exp

(
0.72
kbT

)
(7.6)

The applied strain rate being temperature-independent, insertion of the dis-
location velocity law into Orowan’s law implies that ρ∗m ∝ exp ((U − 0.72)/kbT)
with U activation energy for dislocation motion. Insertion of this relation-
ship into Eq. 7.6 and use of the velocity parameters given by [Suezawa 1979]
yields Eq. 7.7 for the temperature dependency of ρ∗m:

ρ∗m = 5.93 × 104 exp
(

1.48
kbT

)
(7.7)

1 This remark is valid only of the velocity parameters v0 and U used to analyze the experimental
data are similar to those of the numerical model.
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Assuming the steady-state of deformation and neglecting the dislocations
on the secondary slip systems in stage I, the flow stress evolution reads:

τ̇ = τ̇int =
μb
2

√
aαα

ρt
ρ̇t (7.8)

with ρ̇t = δτ∗
e f f γ̇/b and ρt = ρ0

t + δτ∗
e f f (γ − γ0) /b with ρ0

t total dislocation

density at γ0. Taking γ0 large enough so we can assume ρ̇tΔt 	 ρ0
t and

noting the athermal nature of the hardening rate in stage I ( ∂
∂T

(
dτ
dγ

)
I
� 0)

gives:

δ ∝
(

τ∗
e f f

)−1
(7.9)

This second relationship leads to the complete description of the variations
of δ and rc with temperature:⎧⎨⎩ δ ∝ exp

(
− 0.72

kbT

)
rc ∝ exp

(
− 1.48

kbT

) (7.10)

Agreement between the constitutive model and experimental data should
therefore be reached with the help of two independent parameters only:
the self-interaction coefficient for long-range elastic interactions Aαα and
either δ or rc, the temperature dependency of the two last ones being readily
known. This relationship implies that the two constitutive parameters δ and
rc are dependent and simplifies their identification.

the case of strain rate parameter dependency A limitation
of this model is the absence of dependency of the constitutive parame-
ters on the strain rate. It is experimentally observed that doubling the
strain rate results in a significantly different mechanical response of silicon
monocrystals. Considering solely temperature-dependent parameters is an
approximation made for the sake of simplicity. The large variations of the
strain rate in the yield region are bound to influence the values of δ and
rc. A complementary approach is obviously to consider the general case of
strain-rate dependent parameters using Eq. 7.4.

Assuming that δ = β(γ̇p/γ̇0)
θ with γ̇0 = 1 s−1, then following Eq. 7.4

rc ∝ γ̇θ−0.26
p and θ ≤ 0.26. The sign of θ determines the sharpness of

the yield drop. An accelerating plastic strain rate leads to an increased
dislocation generation if θ > 0, precipitating the occurence of the lower
yield point and sharpening the yield drop. On the other hand, a negative θ
tends to smooth the yield region by slowing down the dislocation generation
as the plastic strain rate increases. Because the plastic strain rate in the
yield region is not constant (see below) the choice of θ influences the
representation of the yielding phenomena.

Both approaches are considered next, either setting θ = 0 and considering
that only temperature influences δ and rc, or by inserting a strain rate
dependency.
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7.2.2 Variations of the shear strain rate in the yield region

The influence of the tensile apparatus is visible at low strains. It is translated
in the experimental stress-strain results by an initial slope that is well below
the actual Young’s modulus (or shear modulus) of the material. The shear
strain rate acting on the silicon specimen during the initial linear loading
in the reference conditions, γ̇e = τ̇/μSi � 10−11 s−1, is then several orders
of magnitude lower than the announced values.

At the upper yield point, the relation τ̇ = 0, or γ̇ = γ̇p = ρmbv holds
and it can be assume that the internal stress is small compared to the ap-
plied stress: τ|uyp � τe f f

∣∣∣
uyp

[Alexander 1968, Suezawa 1979]. Combining

Orowan’s law and the dislocation velocity expression gives:

γ̇uyp = ρm|uyp b
v0

τ0
exp

(
− U

kbT

)
τ|uyp (7.11)

Eq. 7.11 can be used to calculate the resolved strain rate at the upper
yield point given the upper yield stress and the measured dislocation
density. Using the experimental data in the reference conditions ρm|uyp �
1.5 × 1011 m−2 and τ|uyp = 30 MPa [Yonenaga 1978], the shear strain rate
at the upper yield point is found to be roughly 5 × 10−4 s−1. This value
is of the same order of magnitude as the 1.2 × 10−4 s−1 refered to. The
discrepancy might come from an over-estimation of the dislocation density
in such a dynamical state.

These observations point towards a variable effective strain rate in the
yield region due to the tensile apparatus. The output from the FE model
confirms this discussion and indicates a higher shear strain rate during the
yield drop, before its value stabilizes at 1.2 × 10−4 s−1 beyond the lower
yield point as shown in Fig. 7.2. Such a phenomena leads to a sharper
yield drop than if a constant strain rate were applied throughout the yield
region. In spite of this variable strain rate, the resolved shear strain in
the following Figures assumes a perfect proportionality between time and
strain to facilitate the readability of the results.

7.2.3 Parameter identification - intrinsic crystals

Temperature-dependent parameters

The constitutive parameters obtained by individual best fits of the yield
region2 in Table 7.1, where the relations derived in Section 7.2.1 are tem-
porarily ignored. The self-interaction coefficient Aαα is fixed in this first
approach and equal to its value given by [Zarka 1972]. δ increases with
temperature, but one can note that the ratio δ/2rc follows the opposite
evolution with temperature than the requirement of Eq. 7.4.

2 It must be kept in mind that these best fits are obtained over the whole yield region and as
such are not best fits of the upper yield stresses.
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Figure 7.2: Plastic shear strain rate acting on the tensile specimen output by the FE
model at 1073 K and a theoretical shear strain rate γ̇ = 1.2 × 10−4 s−1.
The positions of yield points are indicated.

Parameter 1073K 1123K 1173K 1223K

δ
(
10−4 m.N−1) 3 5 6.5 14

rc
(
10−8 m

)
0.8 1.1 0.6 0.4

δ
2rc

(
104 N−1) 1.9 2.3 5.4 17.5

Aαα 0.125

Table 7.1: Best fitted parameters of the extended AH model (no strain rate depen-
dency).

The activation energies for rc and δ are now set dependent following
Eqs. 7.4 and 7.10. As mentioned previously, the simultaneous use of these
equations guarantees that the steady-state of deformation derived from
experimental data is reproduced by the constitutive model.

Long-range stresses from self-interactions are modulated by the free
parameter Aαα. Being the only free parameter affecting the magnitude of
the flow stress, it defines the value of the lower yield stress.

The sum of the cost functions for all four experimental data is then
minimized for the following values:⎧⎪⎪⎨⎪⎪⎩

Aαα = 0.21

δ(T) = 7.6 × 10−1 exp
(
− 0.72

kbT

)
rc(T) = 7.2 × 10−3 exp

(
− 1.48

kbT

) (7.12)

where δ is expressed in m.N−1 and rc in meters. The resulting simulated
stress-strain curves are plotted in Fig. 7.3. Note that although the parameters
have been identified using the yield region only, the simulated mechanical
behaviour is in quite good agreement with the experimental one throughout
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Figure 7.3: Comparison of experimental (dashed) and simulated (plain) stress re-
sponse of FZ silicon tensile specimen deformed at (top) various tempera-
tures and γ̇ = 1.2× 10−4 s−1, (bottom) various strain rates and T=1173 K.
Temperature-dependent constitutive parameters (Eq. 7.12).

stage I of deformation. This shows that the physical micromechanisms
modeled by Eqs. 6.19 and 6.21 explain to a certain extent the hardening
behavior of silicon in stage I.

The model predicts an absence of strong hardening when secondary
systems are activated and is consequently not appropriate for stage II or
multiple slip conditions. This could be foreseen by the absence of dislocation
storage on the forest in the dislocation evolution laws. The simulated stress-
strain curves become more accurate as temperature is increased.

The yield region at various strain rates is still well described by these
constitutive parameters, although the hardening rate in stage I remains well
below its experimental value.
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γ̇ (s−1) 6 × 10−5 2 × 10−4 6 × 10−4

θ = −0.22 β (10−5 m.N−1) 2.7 4.3 5.6

θ = 0 β (10−4 m.N−1) 3.8 4.7 5.2

θ = 0.26 β (10−3 m.N−1) 9 9 9

Table 7.2: Best fitted values of β at 1173 K, using the relationship δ = β(γ̇p/γ̇0)
θ to

retrieve the experimental upper yield stresses.
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Figure 7.4: Experimental (plain lines) and simulated stress-strain curves of silicon
crystals from ds2, with θ = −0.22 (dotted) or θ = 0.26 (dashed).

Insertion of strain rate dependency

The yield region of the experimental data ds2 can be reproduced very well
by the constitutive model using θ = −0.22. This value gives simulated yield
drops of the same intensity as the experimental ones (see Fig. 7.4).

However, the main drawback of choosing θ ≤ 0 is that the optimum3 θ
varies with temperature, its value increasing with T and likely translating
additional hardening mechanisms the model does not account for. At a
given temperature but various strain rates, β must be scaled for each
sample in order for the simulated upper yield points to coincide with the
experimental ones, see Table 7.2.

Setting θ = 0.26 sharpens the simulated yield drop but has the advantage
of requiring a unique β to reproduce accurately the upper yield stresses of
ds2 (Table 7.2). The hardening rate into stage I is not significantly affected
by the value chosen for θ (see Fig. 7.4). θ = −0.26 is consequently used in
the following. Accuracy in the yield region is therefore compromised for
the sake of generality.

As will be seen in the next Part, these compromises can be avoided by
adopting another multiplication law than the one of Alexander & Haasen
for the yield region.

3 That is, the θ value that reproduces best the slope of the yield drop.
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by the value chosen for θ (see Fig. 7.4). θ = −0.26 is consequently used in
the following. Accuracy in the yield region is therefore compromised for
the sake of generality.

As will be seen in the next Part, these compromises can be avoided by
adopting another multiplication law than the one of Alexander & Haasen
for the yield region.

3 That is, the θ value that reproduces best the slope of the yield drop.
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γ̇ (s−1) 6 × 10−5 2 × 10−4 6 × 10−4

θ = −0.22 β (10−5 m.N−1) 2.7 4.3 5.6

θ = 0 β (10−4 m.N−1) 3.8 4.7 5.2

θ = 0.26 β (10−3 m.N−1) 9 9 9

Table 7.2: Best fitted values of β at 1173 K, using the relationship δ = β(γ̇p/γ̇0)
θ to

retrieve the experimental upper yield stresses.
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Figure 7.4: Experimental (plain lines) and simulated stress-strain curves of silicon
crystals from ds2, with θ = −0.22 (dotted) or θ = 0.26 (dashed).

Insertion of strain rate dependency

The yield region of the experimental data ds2 can be reproduced very well
by the constitutive model using θ = −0.22. This value gives simulated yield
drops of the same intensity as the experimental ones (see Fig. 7.4).

However, the main drawback of choosing θ ≤ 0 is that the optimum3 θ
varies with temperature, its value increasing with T and likely translating
additional hardening mechanisms the model does not account for. At a
given temperature but various strain rates, β must be scaled for each
sample in order for the simulated upper yield points to coincide with the
experimental ones, see Table 7.2.

Setting θ = 0.26 sharpens the simulated yield drop but has the advantage
of requiring a unique β to reproduce accurately the upper yield stresses of
ds2 (Table 7.2). The hardening rate into stage I is not significantly affected
by the value chosen for θ (see Fig. 7.4). θ = −0.26 is consequently used in
the following. Accuracy in the yield region is therefore compromised for
the sake of generality.

As will be seen in the next Part, these compromises can be avoided by
adopting another multiplication law than the one of Alexander & Haasen
for the yield region.

3 That is, the θ value that reproduces best the slope of the yield drop.
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The experimental upper yield stresses obtained at various temperatures
are best fitted by setting δ ∝ exp(−0.42/kbT). Using these relationships we
obtain: ⎧⎨⎩ δ(T, γ̇p) = ζsp (γ̇p/γ̇0)

0.26 exp
(
−0.42
kbT

)
rc(T, γ̇p) = 9.11 × 10−4 ζsp exp

(
− 1.18

kbT

) (7.13)

where ζsp is a constant specific to the specimen set considered. It is identified
for FZ-crystals by fitting Eqs. 7.13 to the experimental data, ζsp determining
the magnitude of the upper yield stress.

For the experimental data set ds1 ζsp = 0.93 provides the best fit, whereas
ζsp = 0.56 yields better results for the set ds2 of specimen strained at 1173 K
and different strain rates, see Fig. 7.5 where the respective optimum ζsp
values have been used.

The role of forest dislocations on multiplication and storage mechanisms,
absent in the present constitutive model, is believed to explain most of the
variations of ζsp with respect to the set of samples considered. The discrep-
ancy could also come from different concentrations of trace impurities in
the sample sets, increasing the upper yield stresses of ds2.

7.2.4 Parameter identification - extrinsic crystals

It is always assume in simulations that oxygen has diffused to the disloca-
tions up to cmax

O prior to testing, so that c(α)O,t=0 = cmax
O on all slip systems.

The initial condition is therefore ρ
(α)
m,e f f

∣∣∣
t=0

= η(τO(cmax
O )) ρ

(α)
m

∣∣∣
t=0

. The case

ċ(α)O > 0 does not occur before the upper yield point as dislocations move
fast enough to be free from oxygen contaminants, and η can be identified
by best fit.

Identification of the parameter ζsp

Identification of the parameter η characteristic of extrinsic crystals requires
the prior knowledge of ζsp. The latter depends on the specimen and might
be influenced by several factors mentioned previously. ζsp is identified for
FZ-crystals by fitting the simulated stress-strain curves to the yield region.
Different methods suitable for CZ crystals, whose intrinsic upper yield
point is unknown, are suggested and assessed in the following.

• ζsp could be identified relying on the hardening rate in stage I, since
δO directly affects the slope of the stress-strain curve in the steady-
state of deformation (see [Cochard 2010b]). The present constitutive
model predicts in the meantime a systematically too low hardening
rate for us to rely on this identification method.

• Considering the lower yield stress τlyp only, since at this point most
impurities should have left dislocations. It is usually considered
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Figure 7.5: Comparison of experimental (dashed) and simulated (plain) stress-
strain curves of FZ-crystals (c∞

O = 0) deformed at (top) various tem-
peratures and γ̇ = 1.2 × 10−4 s−1, (bottom) various strain rates and
T=1173 K. Temperature- and strain-rate dependent constitutive parame-
ters (Eq. 7.13).

that in the absence of a significant forest density τlyp should de-
pend only on the deformation conditions (see, e.g., [Alexander 1968,
Suezawa 1979]). As seen later in this Chapter, large impurity concen-
trations do indeed affect slightly the value of the lower yield stress, all
other conditions being equal. This is partly because forest systems are
expected to be more activated at intense yield drops, exacerbated by
high cO. However, this method cannot discriminate definitely between
different values of ζsp, as τlyp is not significantly dependent on this
parameter (see Fig. 7.6).

• Experimental observations by [Yonenaga 1984] point to a fraction of
effectively mobile dislocations at c∞

O = 1.5 × 1017 cm−3 of 20%. Using
this information allows us to set η = 0.2 and identify ζsp in these
conditions.
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Figure 7.6: Stress-strain curves of uniaxial tension of a CZ-crystal in the reference
conditions (c∞

O = 1.5 × 1017 cm−3) using different values for ζsp.

cO,t=0 (1020 cm−3) 1.65 4.4 7.15 9.9

τO,t=0 (MPa) 3.6 9.6 15.5 21.5

η 2 × 10−1 3 × 10−2 6 × 10−3 1.5 × 10−4

Table 7.3: Optimum values of η for ζsp = 2.4 and T = 1073 K.

Fig. 7.6 shows results from simulations considering the CZ-crystal with
c∞

O = 1.5 × 1017 cm−3 and various values of ζsp. Setting it to 1 as for
ds2 provides with an estimation of the lower yield stress very close to
its experimental value. For the corresponding δO, it is found that η = 1
provides with the best fit of the upper yield stress. Namely, the identification
method relying solely on the best estimate of τlyp indicates that impurities
do not affect the mechanical behavior of silicon at c∞

O = 1.5 × 1017 cm−3.
This is in disagreement with the experimental data of [Yonenaga 1984] and
shows that relying solely on τlyp to identify ζsp is not sufficient. On the
other hand, setting η = 0.2, the upper yield stress is retrieved for ζsp = 2.4,
the lower yield stress still being correctly retrieved.

Determination of η(τO)

The optimum η reproducing the upper yield stresses of ds3 are given
in Table 7.3. The sample with c∞

O = 9 × 1017 cm−3 is representative of
very highly contaminated crystals in which inhomogeneity of the oxygen
distribution leads to an additional increase of the upper yield stress. In-
homogeneous distribution of the oxygen atoms along the dislocation line
enhances the formation of aggregates that increase further the unlocking
stress [Yonenaga 1984]. Since this nonlinear regime of the unlocking stress
is not considered in the present work we disregard the result obtained at
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enhances the formation of aggregates that increase further the unlocking
stress [Yonenaga 1984]. Since this nonlinear regime of the unlocking stress
is not considered in the present work we disregard the result obtained at
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of extrinsic silicon monocrystals deformed in the reference conditions
and different c∞

O .

9 × 1017 cm−3. Enforcing η(0) = 1, the results of Table 7.3 can be approxi-
mated fairly well by Eq. 7.14.
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where τ
re f
O = 2.91 MPa is a reference stress. Simulated stress-strain curves

are compared to the experimental results in Fig. 7.7. The simulated yield
drop is sharper than the experimentally observed one, owing to the strain
rate variations in the yield region and the choice of θ > 0 (see previous
Section).
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7.3.1 Model parameters

Internal stress and steady-state of deformation

Aαα = 0.21 found by best fit of the model to the stress-strain curves of the
whole yield region is a value is of the same order of magnitude as the 0.3
usually mentioned in the literature by, e.g., [Suezawa 1979, Moulin 1997a].

As mentioned in Section 7.2.1, the steady-state of deformation in stage I
is entirely defined by the adoption of the extended AH model. An excellent
agreement is indeed observed between the experimental and predicted
steady-state variables, independently of the parameter set chosen, either
with or without the introduction of a strain rate dependency. Figure 7.8
shows the simulated ρ∗m and τ∗

e f f at various temperatures and strain rates if
only a temperature dependency is introduced in the constitutive parameters
(set of Eqs. 7.12). Figure 7.9 shows the steady-state obtained by inserting a
strain rate dependency into δ and rc and using Eqs. 7.13.

It must be reminded here that the only experimentally measurable vari-
able is the effective stress τ∗

e f f by means of strain rate changes during
uniaxial tensile deformation. From Orowan’s law and knowing the dis-
location motion expression and parameters, the corresponding density
of mobile dislocation can be deduced. Therefore the agreement with ex-
perimental data reached by the model on both τ∗

e f f and ρ∗m is due to the
numerical values adopted in the velocity law (see Section 6.3.1), very close
to those chosen by [Suezawa 1979].

Another point worth mentioning is that there is no perfect steady state of
deformation corresponding to a constant shear strain rate. Namely, rotation
of the crystal lattice with respect to the tensile axis owing to plastic flow
affects the projected γ̇ throughout stage I. Figure 7.10 shows the evolution
of γ̇ with strain4for various applied strain rates. A slight increase of the
strain rate is noticed as stage I proceeds. This affects obviously both τe f f
and ρm in the "steady-state", so that the simulation data plotted in Figs. 7.8
and 7.9 actually are the τe f f and ρm observed in the middle of stage I and
can be considered representative of their value through stage I at ±10%.
Interestingly, the dislocation density is more affected by strain rate changes
during stage I than the effective stress is. The marked decrease of γ̇ at large
strains is due to the activation of secondary systems.

Dislocation multiplication

The numerical values of δ given by Eq. 7.12 are very close to the ones
introduced in Table 7.1. This was expected since this parameter determines
the magnitude of the upper yield point.

4 As in the rest of this work, the shear strain γ is assumed here proportional to time and
γ = γ̇th × t, with γ̇th the theoretically constant applied shear strain rate. Discussions both here
and in Section 7.2.2 show that this relationship is not valid as the actual γ̇ does vary with time.
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Figure 7.8: Steady-state values of τ∗
e f f and ρ∗m on the primary system as experimen-

tally found and from simulations. Temperature-dependent parameters
only (Eq. 7.12). Top: various temperatures at γ̇ = 1.2 × 10−4 s−1. Bottom:
various strain rates at 1173 K.

The strain rate dependent constitutive parameters given by Eq. 7.13 allow
for a good representation of the mechanical behavior of silicon monocrys-
tals deformed in single glide. ζsp is then the only parameter that needs
adjustments given a silicon specimen. Its variations with respect to the set
of samples might be due to e.g. approximations of the initial dislocation
density measurements, or to the influence of small impurity concentra-
tions in the bulk. Its large increase in the case of crystals containing an
inital dislocation density of 1010 m−2 shows that the variations of ζsp most
likely betray the effects of forest dislocations on the multiplication and
storage mechanisms that the constitutive model does not allow to represent
explicitely.

Dislocation storage

Observations of thin foils from silicon samples deformed at the end of stage
I at 1073 K by [Oueldennaoua 1988] yield for the maximum value of the
dipole half-width rmax

c = 6× 10−7 m. rc is an effective dipole half-width and
can be approximated via the average square dipole width [Hähner 1996]:

rc =
√
(e − 1) rmax

c ra (7.15)

where ra is the critical half-width for dipole annihilation, typically a couple
of Burgers vectors. Taking at 1073 K ra = 10−9 m gives rc = 3.2 × 10−8 m,
one order of magnitude larger than the result given by Eq. 7.12 but com-
parable to the individual best fits (Table 7.1). The capture radius found
by simultaneous fit of the extended model to experimental data is conse-
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only (Eq. 7.12). Top: various temperatures at γ̇ = 1.2 × 10−4 s−1. Bottom:
various strain rates at 1173 K.
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Figure 7.9: Steady-state values of τ∗
e f f and ρ∗m on the primary system as experimen-

tally found and from simulations. Temperature and strain rate dependent
parameters (Eq. 7.13). Top: various temperatures at γ̇ = 1.2 × 10−4 s−1.
Bottom: various strain rates at 1173 K.

quently much lower than its empirical values when the correct steady-state
of deformation is imposed through Eqs. 7.4 and 7.10. This has two main
consequences:

• Firstly, the ratio ρm
ρt

is overestimated, as way too few dislocations are
stored. This leads to disagreements with the experimental observa-
tions at the lower yield point (see below).

• Secondly, since not enough dislocations are stored there is no need to
generate more throughout deformation in order to maintain a steady
plastic flow. This results in a too low net generation rate, translated in
the stress-strain curves by a too low hardening rate in stage I.

The constitutive model introduced in this work cannot allow a correct
representation of both the yield region and the evolution of the flow stress
beyond the lower yield point. This most likely betrays additional dislocation
multiplication and storage mechanisms active from the lower yield point,
such as the influence of forest dislocations generated during yielding.

Strain rate dependency

The strain rate variations of the silicon specimen in the yield region during
experiments are not known. Simulations indicate that they depend strongly
on the stiffness of the machine Eblocks, itself varying with the specimen
considered. This leads to large uncertainties concerning the identification
of the parameter θ governing the strain rate dependency of the constitutive
parameters δ and rc.
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e f f and ρ∗m on the primary system as experimen-

tally found and from simulations. Temperature and strain rate dependent
parameters (Eq. 7.13). Top: various temperatures at γ̇ = 1.2 × 10−4 s−1.
Bottom: various strain rates at 1173 K.
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of deformation is imposed through Eqs. 7.4 and 7.10. This has two main
consequences:

• Firstly, the ratio ρm
ρt

is overestimated, as way too few dislocations are
stored. This leads to disagreements with the experimental observa-
tions at the lower yield point (see below).

• Secondly, since not enough dislocations are stored there is no need to
generate more throughout deformation in order to maintain a steady
plastic flow. This results in a too low net generation rate, translated in
the stress-strain curves by a too low hardening rate in stage I.

The constitutive model introduced in this work cannot allow a correct
representation of both the yield region and the evolution of the flow stress
beyond the lower yield point. This most likely betrays additional dislocation
multiplication and storage mechanisms active from the lower yield point,
such as the influence of forest dislocations generated during yielding.

Strain rate dependency

The strain rate variations of the silicon specimen in the yield region during
experiments are not known. Simulations indicate that they depend strongly
on the stiffness of the machine Eblocks, itself varying with the specimen
considered. This leads to large uncertainties concerning the identification
of the parameter θ governing the strain rate dependency of the constitutive
parameters δ and rc.
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Figure 7.10: Evolution of the shear strain rate γ̇ on the primary system throughout
deformation.

All dependency has been transfered on the dislocation multiplication
factor only, which leads to simulated yield drops sharper than the experi-
mental ones but yields an accurate hardening behaviour throughout stage
I.

Choosing the optimal θ so that the yield region is correctly represented
raises questions both about its temperature dependency, and the variations
of the optimum ζsp with the deformation conditions.

It will be seen in the next Part that an alternative dislocation multiplica-
tion law for the yield region can mitigate all these issues.

Stress and strain distribution

Deformation proceeds rather homogeneously throughout the sample gauge.
The crystallographic orientation of the sample has a direct influence on the
strain contours, as can be seen by development of plastic deformation from
two localization zones close to the sample fillets, as shown in Fig. 7.11. The
deformation isolines then propagate inwards and meet at the gauge center.

This localization phenomena is much less visible on the stress distribution
(see Fig. 7.12).

7.3.2 Influence of secondary slip systems and large ρ0

No dislocation multiplication or storage due to mutual interaction between
slip systems is introduced in the constitutive model. The only way for
secondary dislocations to be generated in simulations is by overcoming the
critical resolved shear stress for setting them into motion and fulfilling the

relation
∣∣∣τ(α)

∣∣∣ � τ
(α)
i + τ

(α)
b . This condition is realized mainly before the

lower yield point.
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(a) t=50 s

(b) t=100 s

(c) t=150 s

(d) t=200 s

(e) t=250 s

Figure 7.11: (left hand side) Maximum principal strain distribution and (right hand
side) isosurfaces in the silicon sample deformed at γ̇ = 2 × 10−4 s−1

and T=1173 K. The scale is recomputed for each figure. The localization
zones are indicated by arrows in figure b.
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(a) t=50 s

(b) t=100 s

(c) t=150 s

(d) t=200 s

(e) t=250 s

Figure 7.12: Von Mises stress distribution in the silicon sample deformed at γ̇ =
2 × 10−4 s−1 and T=1173 K. The scale is recomputed for each figure.
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Figure 7.13: Fraction of ρt present on the primary slip system, D4 using the Schmid
& Boas notation. Temperature-dependent parameters.

General remarks

Let us consider monocrystals oriented for single glide. As mentioned above,
several slip systems are activated in the yield region owing to the large
effective stress applied there. The secondary dislocation density continues
to grow beyond the lower yield point, but at a slow pace, remaining two to
three orders of magnitude below the primary density during stage I (see
Fig. 7.13).

It follows that virtually all dislocations are present on the primary slip
system throughout deformation. Secondary systems become active as the
lattice rotates with deformation around γ = 30 %. The constitutive model
looses its validity at this point.

It is experimentally observed at 1073 K that 10 % of the total dislocation
density is on secondary systems at the lower yield point, this fraction di-
minishing as temperature is highened (see [Yonenaga 1978]). The extended
models introduced in this Chapter cannot represent this phenomena.

Influence of large initial ρm

Turning to the case of large initial dislocation densities, Fig. 7.14 compares
the model outputs to the experimental data set ds3.

Although a progressive disappearance of the upper yield stress with in-
creasing ρ0 is predicted, a strong quantitative disagreement can be observed
between numerical and experimental results. This reveals a limitation of
the extended AH model, not able to accurately account for the enhanced
dislocation multiplication rate at larger initial densities.

Influence of sample orientation

All specimen considered until now are oriented for uniaxial tension along
a [123] axis. Let us compare the predicted behavior for orientations along
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Figure 7.14: Comparison of experimental (dashed) and simulated (plain) stress
response of FZ silicon tensile specimen deformed at various ρ0, with
γ̇ = 1.2 × 10−4 s−1 and T=1073 K. Temperature-dependent constitutive
parameters (Eq. 7.12).

[112], [110], [100] and [111]. The experimental results shown in Fig. 2.1 are
then used as reference.

The initial density is set to ρ0 = 1010 m−2, equally distributed among
the 12 slip systems. The applied strain rate is ε̇ = 2 × 10−3 s−1 and the
temperature T=1095 K, the equivalent for Si5 to the conditions used by
[Patel 1963]. Fig. 7.15 is then obtained.

Two remarks can be made:

1. The ordering of the upper yield stresses does not follow the exper-
imental one (see Fig. 2.1). Loading along symmetrical orientations
should lead to a lower τuy; simulations predict on the other hand an
increased τuy

2. No strong hardening rate is predicted beyond the lower yield point,
even in orientations such as [111] activating 8 slip systems

The first remark is potentially due to two factors: the effective stress
dependency of the multiplication law K on the one hand, and the absence
of dislocation generation following from forest interactions on the other.

The latter factor is also bound to explain the lack of strong hardening
rate beyond the lower yield point in symmetrical orientations.

Conclusions: dislocation generation rate

Adding a dislocation generation term proportional to the mean free path of
dislocations on their glide plane could improve the model outputs at large
dislocation densities. It could provide with answers to several questions

5 These experiments were obtained on Germanium crystals at a nominal temperature T/Tm =
0.65. This ratio gives for Si T=1095 K.
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parameters (Eq. 7.12).

[112], [110], [100] and [111]. The experimental results shown in Fig. 2.1 are
then used as reference.

The initial density is set to ρ0 = 1010 m−2, equally distributed among
the 12 slip systems. The applied strain rate is ε̇ = 2 × 10−3 s−1 and the
temperature T=1095 K, the equivalent for Si5 to the conditions used by
[Patel 1963]. Fig. 7.15 is then obtained.

Two remarks can be made:
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Adding a dislocation generation term proportional to the mean free path of
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5 These experiments were obtained on Germanium crystals at a nominal temperature T/Tm =
0.65. This ratio gives for Si T=1095 K.
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Figure 7.15: Stress-strain curves yielded by the extended AH model (temperature-
dependent parameters only) for samples of various initial crystallo-
graphic orientations. See text for details.

raised throughout this Chapter, indicating that dislocation multiplication
and storage mechanisms on the forest trees are active in silicon crystals
even at low densities.

The additional hardening provided by such a small percentage of forest
dislocations could also explain the discrepancy between the simulated
and experimental flow stresses at lower temperatures (Fig. 7.3), as well as
improving the hardening rate through stage I.

Another hint that additional generation mechanisms are active from the
yield drop is the the optimal capture radius obtained by best fit, way too
low compared to experimental observations. Increasing it to physically
more acceptable values would lead to an increased steady-state effective
stress if the dislocation generation rate were not increased accordingly.

7.3.3 Mechanical state at the lower yield point

Comparison of the model outputs with additional experimental data [Yonenaga 1981]
shows that it predicts successfully the effective resolved shear stress at the
lower yield point.

The model parameters nonetheless overestimate the fraction of mobile
dislocations ρm

ρt

∣∣∣
uyp

. Actually, given the too low storage radius rc stemming

from Eqs. 7.12 and 7.13, almost all dislocations are mobile through defor-
mation. [Yonenaga 1981] reports in the reference conditions fractions of
35-40 % in silicon.

A direct consequence of these remarks is that the extended model based
on the empirical generation law suggested by Alexander & Haasen can-
not guarantee full agreement between experimental data and simulations.
Increasing rc by one order of magnitude or more to bring its value closer
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to physical ones and to reduce ρm
ρt

∣∣∣
uyp

results, if Eq. 7.4 is to be strictly

enforced, in a multiplication prefactor too high to correctly represent any
yield phenomena. The multiplication law of Alexander & Haasen cannot
yield accurately mobile dislocation densities and the steady-state of defor-
mation simultaneously, if the experimental stress-strain curves are to be
correctly represented.

7.3.4 Extrinsic crystals

The introduction of an effective density of mobile dislocations ρm,e f f ≤ ρm
combined with an alteration of the dislocation multiplication rate δO ≤
δ increases the upper yield stress of extrinsic crystals. The fraction of
effectively mobile dislocations η is imposed by the constitutive model
only when oxygen diffuses to the dislocations. An exponential decay of
η with τO correctly reproduces the experimental results. The simulated
stress-strain behavior of extrinsic crystals is consistent with experimental
observations. The case of highly contaminated crystals in which the oxygen
distribution is no longer homogeneous cannot be correctly accounted for by
the constitutive model, resulting in an underestimation of the upper yield
stress when oxygen clusters form along the dislocation lines.

Relative contributions of model modifications

A closer look is taken at the relative contribution of both modifications to
the simulated mechanical behavior of extrinsic crystals. To achieve this, each
feature is disabled and a simulation launched while keeping the remaining
active. A CZ crystal is loaded at 1173 K, γ̇ = 1.1 × 10−4 s−1, with an initial
primary dislocation density of ρ

(D4)
m,0 = 1010 m−2 and bounded by elastic

blocks characterized by Eblocks = 4 × 109 N.m−2. Fig. 7.16 compares the
base result with stress-strain curves obtained after either an alteration of δ
or a reduction of the effective dislocation density.

Clearly setting δO = δ does not lead to significant divergences in the
results (red curve). On the other hand, using an effective mobile dislocation
density is a necessary modification of the present model for intrinsic crystals,
if the increase of the upper yield stress is to be reproduced.

Uncertainties on η(τO)

Any variation of ζsp affects the upper yield stress, and η must be adapted
accordingly to compensate for this drift under the constraint η ≤ 1. Based
on experimental observations on the CZ-crystal with c∞

O = 1.5 × 1017 cm−3

we have set ζsp = 2.4 to identify the variations of η(τO). Given that the
constitutive model cannot reproduce the hardening rate in stage I, no other
reliable option is available to identify ζsp.

An additional source of uncertainty in the identification of η is the
dependency of ζsp on the initial dislocation density. The latter is set to
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Figure 7.16: Influence of the modifications brought to the model for intrinsic crystals.
Base cases in blue (with or without oxygen), with both the dislocation
multiplication pre-factor δ and the effective density of mobile disloca-
tions ρm,e f f affected.

1010 m−2 on the primary system, but the actual one might differ from this
value by a factor two as mentioned by [Yonenaga 1984]. The individual
values for η given in Table 7.3 are however in excellent agreement with
experimental observations yielding at 1073 K η(cO = 4.4 × 1020 cm−3) �
4 % and η(cO = 6.5 × 1020 cm−3) � 1 % (see Fig. 3 in [Yonenaga 1984]).
Determining η(τO) from these three cases alone does not give η = 1 in
intrinsic crystals, therefore Eq. 7.14 only approximates the individual best
fits.

Inhomogeneous distribution of oxygen at high c∞
O leads to the formation

of impurity clusters along the dislocation line that increase significantly the
unlocking stress and reduce further the fraction of effectively mobile dislo-
cations. The present constitutive model cannot account for this phenomena
and underestimate the upper yield stress in highly contaminated silicon
crystals. A better determination of τO in the presence of oxygen aggregates
would improve this aspect.

Validation of the constitutive model for extrinsic crystals

The variations of the resolved upper yield stress τuy with c∞
O , temperature

and initial dislocation density are studied. The dependency of τuy on the
stiffness of the machine limits the exploitability of the simulated results.
However, it is interesting to compare the trends from experiments from
[Yonenaga 1984] and simulations. The Young’s modulus of the elastic blocks
are set to Eblocks = 4 × 109 N.m−2. The dislocation multiplication prefactor
is set to ζsp = 2.4, a choice appropriate for ρ

(D4)
m,t=0 = 1010 m−2 but decreasing

the upper yield stress of samples with an initial dislocation density ρ
(D4)
m,t=0 =

2 × 109 m−2.
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Figure 7.17 shows the values of τuy as a function of c∞
O , at different

temperatures and initial dislocation densities. The upper yield stresses of FZ-
crystals are represented as well. The agreement between the experimental
results and the model outputs is quite good given the many unknowns
and approximations. Overall, the constitutive model is able to reproduce
correctly the mechanical behaviour of oxygen-contaminated silicon crystals.

Influence of tm and mesh sensitivity

CZ-crystals deformed in the reference conditions are considered in the
following, with an oxygen content c∞

O = 9 × 1017 cm−3. The material pa-
rameter tm ∝ λO has a strong influence on the mechanical behavior of
extrinsic silicon crystals by influencing the preference for impurities to
leave the dislocation cores. Competition between dislocation velocity v and
the “backjumping speed” a/tm determines whether impurities tend to leave
the core or not. Impurity drag dominates if a/tm > v (see Eq. 6.31). Using
the expressions of tm, DO and v(τe f f ), this inequality can be reduced to a
simple condition for impurity drag to govern dislocation motion:

λO � 1.76 × 106

τe f f
exp

(
0.41
kbT

)
(7.16)

Eq. 7.16 can be used to determine the values of λO influencing the stress-
strain behaviour of silicon crystals deformed at 1073 K and γ̇ = 1.1 ×
10−4 s−1 in stage I. The latter is experimentally characterized by τ∗

e f f (T, γ̇),
and λO � 50 is obtained. The effects of λO on CZ-crystals are visible in
Fig. 7.18, where the behavior of a FZ-crystal is plotted for comparison.
The case λO = 10 affects significantly the mechanical behaviour in stage I,
whereas this is not the case for λO = 100, in agreement with our discussion.

The irregular hardening slope of extrinsic crystals beyond the lower yield
point does not come from oxygen atoms migrating to the dislocation core in
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Figure 7.17 shows the values of τuy as a function of c∞
O , at different

temperatures and initial dislocation densities. The upper yield stresses of FZ-
crystals are represented as well. The agreement between the experimental
results and the model outputs is quite good given the many unknowns
and approximations. Overall, the constitutive model is able to reproduce
correctly the mechanical behaviour of oxygen-contaminated silicon crystals.
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Figure 7.18: Influence of λO on the mechanical behavior of silicon. Full lines: stan-
dard mesh. Dashed lines: refined mesh.

the central elements used to plot the stress-strain curves. The locking effect
takes place inhomogeneously through the entire silicon specimen gauge
and leads to a slight mesh size dependency due to localization phenomena.
Fig. 7.18 shows the simulated behavior for the standard mesh introduced
in Sec. 7.1 and a refined one containing 8 times more elements. The mesh
sensitivity influences the simulated stress-strain behavior only into stage
I, and does not affect the validity of the results derived in this work. It
increases as λO is decreased or c∞

O increases. The actual magnitude of λO
is not known . Setting λO = 100 gives satisfying results while limiting the
mesh sensitivity.
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C O N C L U S I O N

This part has concentrated on analyzing and improving the constitutive
models available in the literature for the study of the yield region of silicon
crystals.

analysis of traditional models

We took in Chapter 5 a purely pragmatic approach and found the best fits
of each available model to experimental data obtained at various tempera-
tures. This has revealed that a temperature dependency of the constitutive
parameters, physically justified or not, must be introduced if the mechanical
behavior of silicon is to be reproduced accurately. A generic model for the
yield region, from which all three models formerly derived by various
research groups can be retrieved, has been proposed. Although without
any physical basis, such a model can be used to fit the yield region with a
very good accuracy.

From this preliminary study providing for the first time accurate param-
eters for the yield region of silicon in various thermodynamic conditions,
it has been concluded that the assessment of a given model should be
done on its predictive abilities both for the stress-strain and the mobile dislocation
density evolutions. Table 7.4 gives an overview of the conclusions drawn
from Chapter 5.

Some limitations of the traditional models have been exposed. We suggest
that they can be overcome by working on two fronts:

• Improving the kinematics used to model silicon monocrystals to allow
random loading situations

• In particular, the intrinsic elastic and plastic anisotropies must be
accounted for if monocrystals or aggregates of large single crystals
are to be studied

• Developing further the constitutive equations for the yield region
to provide with a physical basis to the temperature and strain rate
variations of the constitutive parameters.

Annex A details the rate-dependent crystal plasticity (RDCP) framework,
that accounts for the anisotropic nature of plastic deformation and provides
with a powerful numerical tool to explore the mechanical behavior of crys-
talline aggregates. Its abilities are compared to the standard J2 framework.
Although computationally less expensive, the latter barely accounts for
elastic anisotropy and limits the physics of crystal plasticity to a single slip
system.
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254 conclusion to part ii

Asset Limitation

Kinematics scalar

Cost cheap

Yield region very good

Stage I not valid

Multiple slip no

Extrinsic crystals no

Physical basis little, if any

Parameters variable

Table 7.4: Overview of the abilities of traditional models (Chapter 5) to represent
the mechanical behavior of silicon monocrystals.

improvements of the ah model

Improving the constitutive equations on a physical basis supposes to have
the knowledge of the very processes taking place during deformation.
Chapter 6 starts therefore with a review of the physical processes leading
to hardening and recovery during a uniaxial tensile test of a monocrystal.

Intrinsic crystals

Based on this information, a density of immobile dislocations is introduced
in the model of Alexander & Haasen. The evolution of this population
is assumed to stem from the storage of mobile dislocations as dipoles -
dislocation annihilation is ignored. This simple extension guarantees the
existence and unicity of the steady-state of deformation in stage I.

Two variations of this extended model have been introduced, accounting
either only for the sole effect of temperature on the steady-state or adapted
to the more general case of varying strain rate and temperature.

It follows significant improvements to the traditional model of Alexander
& Haasen:

• The variations of the yield stresses with temperature and strain rate
are correctly reproduced

• Insertion of experimental characterization of the steady-state allows
the model to retrieve the same observable values

However, enforcing the correct description of the steady-state leads to a
disagreement between the experimental and modeled magnitudes of the
dislocation storage parameter rc. The extended model does not predict
enough transfer of dislocation densities from the mobile to the immobile
populations owing to a small rc. This results in an overwhelming majority
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of mobile dislocations throughout deformation and a too low hardening
rate in steady-state.

• If the capture radius is to be increased closer to its experimental esti-
mations, the dislocation generation rate must be increased accordingly

The extended AH model also fails to reproduce quantitatively the ex-
perimental disappearance of the upper yield point with increasing initial
dislocation density. Study of its outputs at various crystallographic orienta-
tions reveals additional discrepancies with experimental data:

• The extended AH model predicts a sensible increase of τuy upon
uniaxial loading in symmetrical orientations and no subsequent sig-
nificant hardening beyond the lower yield point

It can be concluded from these observations that the extended AH model
lacks a mobile dislocation generation term, likely to be active in the presence of
forest obstacles, that could allow a larger rc and correct the shortcomings identi-
fied in multiple slip and at large dislocation densities. The effect of dislocation
generaton from Frank-Read sources on the forest is investigated in the next
Part.

Extrinsic crystals: dislocation locking

Based on experimental observations and theoretical arguments, an effective
density of mobile dislocations actually carrying plastic flow when dissolved
impurities are present in the crystal is introduced. It is shown that this
enables the correct reproduction of the increased upper yield stress at large
dissolved oxygen contents.

On the other hand, a reduction of the dislocation multiplication parameter
δ as done by [Maroudas 1991c] has no significant effec on the quantitative
evolution of the upper yield stress at high oxygen contents.

Table 7.5 summarizes shortly the present discussion. Note that the lim-
itation induced by the expensive cost of kinematics can be reduced by
implementing a small strain approximation of the RDCP framework.

Model applicability and limitations

What fundamentally defines the model of Alexander & Haasen and the
other ones introduced in this work is their dislocation multiplication law.
We have seen that these induce an inherent limitation to single glide, since
no effect of the forest on dislocation multiplication or storage is introduced.
A lack of dislocation generation at the lower yield point and beyond actually
leads to the underestimation of the dislocation capture radius in stage I,
and to a pathologic simulated behavior when two slip systems or more are
activated.
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lacks a mobile dislocation generation term, likely to be active in the presence of
forest obstacles, that could allow a larger rc and correct the shortcomings identi-
fied in multiple slip and at large dislocation densities. The effect of dislocation
generaton from Frank-Read sources on the forest is investigated in the next
Part.

Extrinsic crystals: dislocation locking

Based on experimental observations and theoretical arguments, an effective
density of mobile dislocations actually carrying plastic flow when dissolved
impurities are present in the crystal is introduced. It is shown that this
enables the correct reproduction of the increased upper yield stress at large
dissolved oxygen contents.

On the other hand, a reduction of the dislocation multiplication parameter
δ as done by [Maroudas 1991c] has no significant effec on the quantitative
evolution of the upper yield stress at high oxygen contents.

Table 7.5 summarizes shortly the present discussion. Note that the lim-
itation induced by the expensive cost of kinematics can be reduced by
implementing a small strain approximation of the RDCP framework.

Model applicability and limitations

What fundamentally defines the model of Alexander & Haasen and the
other ones introduced in this work is their dislocation multiplication law.
We have seen that these induce an inherent limitation to single glide, since
no effect of the forest on dislocation multiplication or storage is introduced.
A lack of dislocation generation at the lower yield point and beyond actually
leads to the underestimation of the dislocation capture radius in stage I,
and to a pathologic simulated behavior when two slip systems or more are
activated.
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Asset Limitation

Kinematics powerful

Cost expensive

Yield region very good

Stage I steady-state flow stress, hardening rate

Multiple slip no

Extrinsic crystals very good

Physical basis yes not enough

Parameters closed-form disagreement exp/sim

Table 7.5: Overview of the abilities of the extended AH model (Chapter 6) to repre-
sent the mechanical behavior of silicon monocrystals.

However, as long as used in single slip loading conditions, the constitutive
equations introduced in this Part bring significant improvements to the
simulated mechanical behavior of silicon materials. Their implementation
into a cheap J2 framework is actually fully acceptable when used in easy
glide conditions.

The next Part aims at deriving a wholly new constitutive model for
semiconductors, putting the classical multiplication laws aside. This lifts
the limitations of the present extended model, and gives further insights
into the processes taking place during deformation of silicon crystals.
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I N T R O D U C T I O N

The applicability of the models introduced and derived in the previous
Part has been shown limited to the case of easy glide conditions - with
only one active slip system - and indeed to cases where the dislocation
density on secondary systems is small enough not to play a significant role
on dislocation generation mechanisms. These limitations are potentially
important, since three dimensional loadings of a silicon monocrystal ought
to require the activation of several slip systems in order for the imposed
deformation to be accomodated by the material. Such a situation also
appears when a single crystal is loaded along a symmetrical direction right
from the beginning of deformation.

More importantly, deriving a model for multiple slip conditions is re-
quired in order to study multicrystals. Enforcement of kinematic compati-
bility at the grain boundaries associated to grain-to-grain misorientation
leads to complex loading cases that very likely require several slip systems
to be active. Strong hardening can be expected in these cases. As discussed
in the introduction of the previous Part, estimating the “mesoscopic”, or in-
tergranular, stresses supposes a constitutive model able to account correctly
for all loading situations.

The extensions brought to the original model of Alexander & Haasen do
not fulfill this condition. As mentioned in Section 7.3, a “missing” disloca-
tion generation term causes an underestimation of the capture radius with
respect to its theoretical value. In addition, no dislocation annihilation has
been accounted for although this phenomena is experimentally observed,
especially on screw dislocations as their mutual annihilation by cross-slip
can take place over relatively large distances.

The only characteristic of the model of Alexander & Haasen, besides its
many assumptions, is its dislocation evolution law. Reliance on Orowan’s
law to link a microstructural parameter (the density of mobile dislocations)
to the plastic strain rate is made possible by the knowledge of the dislocation
velocity law as a function of both stress and temperature and is common
practice in the literature.

The definition of the internal stress adopted by Alexander & Haasen
is, again, a standard one. Ultimately, what makes their model powerful is
their choice of dislocation multiplication law. As seen in Chapter 5, several
different laws could yield similar stress-strain behaviors in the yield region,
albeit associated to different mobile dislocation density evolutions. Their
common drawback comes from the strain rate and temperature dependency
of their constitutive parameters, that limit their applicability to restricted
thermodynamic conditions if accuracy is to be guaranteed.
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270 introduction to part iii

• We propose in this Part a dislocation multiplication law that accurately
reproduces the yield region of silicon crystals in the whole range of
strain rate and temperature experimentally covered with the help of a
single constant parameter.

The mechanical behavior of covalent crystals strained uniaxially beyond
the yield region is very similar to the one of fcc crystals. Dislocations move
then under lower stresses and loose their hexagonal shape: short-range dis-
location interactions tend to dominate the Peierls potential and dislocation
motion at large strains presents several common features with dislocation
dynamics in fcc crystals. After a stage of easy glide (stage I), whose extent
varies strongly with temperature and strain rate, secondary systems are
activated owing to lattice rotation. Strong short-range dislocation interations
lead to a strong and linear hardening rate in stage II. Additional recovery
and hardening stages have been observed beyond this, but these are not of
relevance for this work.

• The conflict that arose in the previous Part between the magnitude of
the best fitted constitutive parameter for dislocation storage and the
experimentally estimated ones is solved in the following. It is shown
that dislocation generation from the forest trees is indeed significant
in stage I and largely overwhelms the generation law active in the
yield region. Moreover, dislocation storage and annihilation laws
are derived on purely physical basis and do not require additional
calibration.

In crystals exhibiting large dislocation contents on a single slip system, the
applied stress τ is reduced by an internal stress τint stemming from the
long-range elastic strain fields of the dislocations. This internal stress is a
priori not constant on the slip plane.

[Sumino 1971, Sumino 1974a] have shown that the internal stress on the
slip plane is almost constant in a dynamical state throughout stage I of
hardening. Consequently, the velocity law derived for individual disloca-
tions can still be applied in stage I. Determination of the effective stress
during dynamic straining allows the derivation of the mean dislocation
velocity and ultimately the calculation of the density of mobile dislocations
by inverting Orowan’s law. This way the steady-state of deformation in
stage I has been characterized both for silicon and germanium crystals by
[Kojima 1971, Sumino 1974a, Yonenaga 1978, Yonenaga 1981].

The case of highly dislocated crystals is less studied. Semiconductors
have been historically used as virgin materials or with very low dislocation
densities, and high dislocation densities were not of practical interest.
Multicrystals contain large dislocation densities because of the combination
of thermal gradients during solidification and the presence of several grains
exhibiting different crystallographic orientations. Dislocations move on their
slip plane through an array of obstacles such as impurity clusters, small
precipitates, or forest dislocations. The creation of jogs during forest cutting
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processes affect the velocity of dislocations as well. The effect of secondary
dislocations on the velocity law has indeed received little attention in the
literature. The mean dislocation velocity might therefore differ significantly
from the standard law the traditional models rely on. In particular, the effect
of jog dragging on dislocation motion, suggested as possible rate-limiting
mechanism in stage II, has never been modeled for semiconductors.

• A dislocation velocity law generalizing their motion to glide in an
array of localized obstacles is derived. The influence of jog dragging
is explicitely modeled, and we show that the transition between
the double kink mechanism and jog-controlled motion is delayed in
covalent crystals exhibiting a high μb3 energy.

We distinguish explicitely the evolution of both screw and 60° dislocation
populations in this Part. Although complicating the constitutive model,
such an approach has several advantages a fortiori:

• Storage by formation of dipoles and dislocation annihilation by cross-
slip and climb can be explicitely accounted for for each dislocation
character: screws canot climb and we consider that 60° segments
behave like edges, that is, they cannot cross-slip. Each population
evolves following similar, albeit adapted, laws.

• The relative evolution of the dislocation characters can be studied
in detail. It is experimentally observed that most dislocations have
an edge character in stage I and beyond; our model can give an
estimation of the density ratio.

The particular case of extension of any model to SoG-Si materials deserves
a discussion. The difference between such materials and, say, crystals grown
from an EG-Si feedstock lies in their impurity and/or inclusion content.
How to account in a macroscopic model for the particular microscopic
characteristics of an inclusion content? How to model the macroscopic
effects of a given inclusion distribution that ought to change with the
location in the ingot? This is where experimentally determined fracture
strength of SoG-Si multicrystals can be used, translating in macroscopic
terms the microscopic -local- effects of the defects. Incorporation of the
expression of the cumulative fracture probability in the constitutive model
allows us to map this variable of high interest.

• The constitutive model outputs the cumulative fracture probability
at each point, based on experimental characterization of the material
considered.

Chapter 9 introduces a model for computation of the mean dislocation
velocity in dislocated crystals. The holistic constitutive model for extrinsic
silicon monocrystals is detailed and calibrated in Chapter 10 where the
internal stresses and dislocation evolution laws are derived. Chapter 11
suggests an adaptation of the constitutive model to Solar-grade silicon
materials and includes experimental results.
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is explicitely modeled, and we show that the transition between
the double kink mechanism and jog-controlled motion is delayed in
covalent crystals exhibiting a high μb3 energy.

We distinguish explicitely the evolution of both screw and 60° dislocation
populations in this Part. Although complicating the constitutive model,
such an approach has several advantages a fortiori:

• Storage by formation of dipoles and dislocation annihilation by cross-
slip and climb can be explicitely accounted for for each dislocation
character: screws canot climb and we consider that 60° segments
behave like edges, that is, they cannot cross-slip. Each population
evolves following similar, albeit adapted, laws.

• The relative evolution of the dislocation characters can be studied
in detail. It is experimentally observed that most dislocations have
an edge character in stage I and beyond; our model can give an
estimation of the density ratio.

The particular case of extension of any model to SoG-Si materials deserves
a discussion. The difference between such materials and, say, crystals grown
from an EG-Si feedstock lies in their impurity and/or inclusion content.
How to account in a macroscopic model for the particular microscopic
characteristics of an inclusion content? How to model the macroscopic
effects of a given inclusion distribution that ought to change with the
location in the ingot? This is where experimentally determined fracture
strength of SoG-Si multicrystals can be used, translating in macroscopic
terms the microscopic -local- effects of the defects. Incorporation of the
expression of the cumulative fracture probability in the constitutive model
allows us to map this variable of high interest.

• The constitutive model outputs the cumulative fracture probability
at each point, based on experimental characterization of the material
considered.

Chapter 9 introduces a model for computation of the mean dislocation
velocity in dislocated crystals. The holistic constitutive model for extrinsic
silicon monocrystals is detailed and calibrated in Chapter 10 where the
internal stresses and dislocation evolution laws are derived. Chapter 11
suggests an adaptation of the constitutive model to Solar-grade silicon
materials and includes experimental results.
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M O D E L I N G D I S L O C AT I O N V E L O C I T Y I N R E A L
S E M I C O N D U C T O R S

For historical reasons, models of the dislocation motion in semiconductors have most often
been based on the double kink mechanism. A quick review of this motion mode is followed by
the derivation of a holistic model for dislocation motion in dislocated, extrinsic crystals. Both
the cases of dislocation unpinning from localized obstacles (forest trees) and jog dragging
are modeled. Numerical aspects are exposed and discussed. It is shown that the former
mechanism is very unlikely to be rate-limiting in dislocated crystals with usual forest
densities, as the time spent overcoming the obstacles is negligible compared to the time of
free-flight. The latter can be determined either by the standard double kink theory, or by
accounting for the effects of jogs on dislocation velocity. In particular, we investigate the
motion of a mixed jogged dislocation in the Peierls potential. We show the existence of a
mixed-mode between the double-kink and jog-dragged motion domains that spans over a
wide range of effective stress values.

8.1 introduction

The dynamical properties of dislocations in silicon have been studied ex-
tensively since the first uniaxial tensile tests of [Patel 1963] revealed the
characteristic yield drop of the flow stress upon dynamical straining of
as-grown crystals. Initially believed to originate from dislocation unpin-
ning from impurities, the yield phenomena has been attributed a couple of
years later to the combined effect of low initial dislocation densities in as-
grown intrinsic semiconductors, and of the weak stress dependence of their
strongly thermally activated velocity. This behavior is a priori not limited
to semiconductors but to any material presenting a deficit of mobile dis-
locations upon loading as discussed by [Estrin 1986]. Too few dislocations
limited in their motion by the high Peierls potential of the diamond cubic
lattice cannot accomodate the imposed strain rate, resulting in an apparent
elastic behavior of the crystals until an explosive dislocation multiplication
allows for relief of the flow stress and the occurence of a yield drop (for
reviews see, e.g., [Alexander 1968, George 1987a, George 1987b]).

The properties of the yield region, also called stage 0 of deformation,
have been studied extensively by several authors throughout the years
([Patel 1963, Yonenaga 1978, Omri 1987] to mention but a few). Its ex-
tent and intensity are enhanced at low temperatures, high strain rates
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274 modeling dislocation velocity in real semiconductors

and low initial dislocation densities. The upper yield stress τuy is found
very sensitive to sample prestraining and its surface state, whereas the
lower yield stress τly is almost solely determined by the temperature and
strain rate, provided the initial dislocation density remains low enough to
avoid disturbing effects from the forest as mentioned by [Yonenaga 1978,
Suezawa 1979] and [Siethoff 1992]. The experimentally determined τly de-
pends on the applied strain rate γ̇ and the temperature T following the
equation ([Alexander 1968, Yonenaga 1978]):

τly = Cγ̇
1

m+2 exp
( Uly

(m + 2)kbT

)
(8.1)

where C, Uly and m are constant parameters depending on the semiconduc-
tor considered and kb = 8.617 × 10−5 eV.K−1 is Boltzmann’s constant.

The proper use of any physically-based constitutive model requires
the derivation of the distribution of the mobile dislocation density as a
function of its speed as discussed in [Sumino 1971]. A way to circumvent
this difficulty is to rely on the mean velocity v of the total mobile dislocation
density. Hence, an expression for the mean dislocation velocity is required.

The introduction of isolated dislocation loops in virgin silicon crystals is
possible by, e.g., indentation or scratching followed by high-temperature
expansion of the loops. Observation at high stresses has revealed very early
their characteristic hexagonal shape betraying the strong Peierls potential
keeping dislocation segments straight in the valleys (see Part i). In such
a configuration two types of dislocations can be distinguished depending
on their orientation with respect to the Burgers vector: either screws or
60° segments. The temperature- and stress dependencies of the dislocation
velocities have been determined experimentally and are best given by an
expression of the type:

v = v0

(
τ

τ0

)m0

exp
(
− U

kbT

)
(8.2)

where τ0 = 1 MPa is a normalizing stress, v0 is the velocity prefactor, m0
the stress exponent and U the apparent activation energy for dislocation
motion. The three last parameters depend on the dislocation character,
screws being slower than 60° segments.

Interestingly, the m and U parameters of Eqs. 8.1 and 8.2 are similar. This
allows for the identification of the (microscopic) velocity parameters directly
by observation of the (macroscopic) lower yield point. Such an approach
adopted by, e.g., [Siethoff 1969] and [Siethoff 1999] yields excellent results
in agreement with in situ observations. Note that Eq. 8.2 is valid as long as
dislocation motion proceeds by nucleation and propagation of double kinks
in a high Peierls potential. Diffusional effects at very high temperatures
affect the velocity expression as reported by [Farber 1982]; however the
occurence of this motion regime is not clearly understood yet. For example,
[Yonenaga 1996] observes no change of the motion mechanisms at 1573 K.
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We develop in this Chapter a model for dislocation velocity in dislocated
silicon crystals. The standard case of a virgin lattice free from forest obsta-
cles and impurities is very quickly reviewed, as more details have already
been given in the previous Parts of this thesis.

The influence of dislocation pinning by forest interactions is introduced
in Section 8.3 by calculating the time spent by dislocations waiting in a
bowed configuration before unpinning.

If jogs are present at concentrations high enough on the dislocation line,
then their drag can control dislocation velocity as discussed in Section 8.4.
The mathematical aspects of the effect of jog dragging on the double kink
mechanism and dislocation pinning are detailed in each respective Section.

Classical models for f.c.c. crystals (see, e.g., [Harder 1999]) rely on an
expression of the type v ∝ lv/tw to compute the mean dislocation velocity,
where lv is the mean free path swept after waiting a time tw at an obstacle.
Such models consider that the time of free flight t f from one obstacle to
the next can be disregarded as t f 	 tw. In covalent crystals a strong lattice
motion opposes dislocation glide. Hence, in this work we account explicitely
for t f in the derivation of the mean dislocation velocity v.

The use of Friedel statistics when t f cannot be neglected requires the
derivation of the stress-dependent mean free path as discussed by [Hiratani 2001],
but for simplicity in this work we neglect this aspect. If v is the dislocation
velocity in free flight then t f � lv/v and the mean velocity v reads:

v =
lv

tw + lv/v
(8.3)

The objectives of this Chapter and the following are to derive expressions
for v, tw and lv. If obstacles are neglected or tw 	 t f then v = v.
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8.2 the double kink mechanism

In a virgin lattice, that is in intrinsic crystals with no internal stress fields,
dislocation motion proceeds at low stresses by thermally-activated nu-
cleation and propagation of sharp double kinks over the primary and
secondary Peierls barriers as detailed in Chapter 1. The primary barrier is
due to the high Peierls potential of semiconductors, as motion of a dislo-
cation from one valley to another requires the breaking of covalent bonds.
The secondary barrier arises from core reconstruction ([Bulatov 2001]).

The model of [Hirth 1982] for motion of dislocations in a material with
high Peierls valleys is believed to be the most relevant for silicon. Other
models ([Celli 1963, Möller 1978]) relying solely on the presence of weak
obstacles along the dislocation line have been shown inappropriate through
the years. The influence of point defects both at the core and in the matrix on
the secondary barrier associated to kink propagation along the dislocation
line is however still unclear as discussed in [Nikitenko 1984, Farber 1993,
Choudhury 2010]. Adaptations of the HL model to dissociated dislocations
have been suggested by [Möller 1978, Caillard 2003]. The model for perfect
dislocations is considered here.

The HL model predicts two motion regimes depending on the dislocation
length X governed by the double kink mechanism. A length-independent
motion mode sets in if X ≥ Xc, with Xc a thermally activated critical
dislocation length; the dislocation velocity is proportional to X otherwise.
A general expression for the velocity vdk is given by Eq. 8.4:

vdk ∝ min (X, Xc) τ exp
(
−ULD

kbT

)
(8.4)

with ULD the effective activation energy for dislocation motion in the length-
dependent regime. With Xc thermally activated the effective activation
energy in the length-independent regime (see below), ULI < ULD. Similar
expressions of dislocation velocity are obtained for dissociated dislocations
by [Nunes 1998, Caillard 2003]. Values of the velocity parameters have been
derived in situ by [Imai 1983] for both screw and 60° dislocation segments.

Xc is defined in Eq. 8.5, where l is the crystal periodicity along the
dislocation line, shown by atomistic simulations to be l = 2b on the
30° partial because of its reconstruction. Theoretical calculations (e.g.,
[Nunes 1998, Miranda 2003]) point towards the same periodicity along
the 90° partial as well. F(c)

kp (τe f f ) is the stress-dependent critical energy
barrier for the nucleation of a stable kink pair and the free energy for kink
migration. More details are found in Chapter 1.

Xc = 2l exp

⎛⎝ F(c)
kp (τe f f )

2kbT

⎞⎠ (8.5)
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8.2.1 Mean dislocation velocity in presence of internal stresses

Dislocation motion is affected by the presence of internal stresses and
the applied stress τ is reduced by the athermal internal stress field τint,
leading to the definition of an effective stress τe f f = τ − τint. As discussed
in Section 6.2, although the dislocation velocity locally reads vdk ∝ τ − τint
this remains also true for the mean velocity v. With the mean effective stress

τe f f usually written τe f f =
√
(τ − τb)

2 − τ2
max, it can be shown that in a

dynamical state τmax 	 τb and τe f f = τ − τb.
Experiments performed by [Yamashita 1993] have detected no change of

the apparent activation energy upon crossing the critical segment length.
The model of [Maeda 1989] suggests that the dislocations always move in
the length-dependent regime, the mean free path of kinks Xmax < Xc being
limited by point defects along the line and independent on the temperature.
This is the assumption we adopt in this work. Dislocation velocity is then
given by Eq. 8.4 where Xc is replaced by an effective maximum kink mean
free path Xmax. The following approximation for vdk given a dislocation
length X moving by nucleation and propagation of double kinks is usually
adopted: ⎧⎨⎩ vdk = v0

Xe f f
L0

(
τe f f
τ0

)m0
exp

(
− U

kbT

)
Xe f f = min(X, L0), L0 = min(Xmax, Xc)

(8.6)

where Xmax = 10−7 m and τ0 = 1 MPa are used for normalizing purposes,
v0, m0 and U are experimentally determined and depend on the dislocation
character. If no obstacles limit the kink mean free path then τe f f = τe f f and
Eq. 8.6 is exactly the widely-used Eq. 8.2.

8.2.2 Continuous approximation of vdk

Such an expression for the dislocation velocity has the drawback of being
piecewise defined as a function of Xe f f . This might pose some numerical
issues since its first derivative is not continuous, and complicate its inte-
gration. [Dour 2002] choose to approximate vdk by a C∞ function. We show
in this Chapter that this step is not necessary, and using the exact velocity
function is actually computationally more efficient.

We adopt the following equation to approximate the dislocation velocity
by the double kink mechanism:

vdk = v0

(
τe f f

τ0

)m0

exp
(
− U

kbT

) [
1 − exp

[
−

(
X
L1

)m1
]]

(8.7)

where m1 = 1.75 and L1 = 6 × 10−8 m are obtained by best fit. A drawback
of such an equation is its high nonlinearity in X, that is be shown in the
next Section to lead to high computational cost if it is to be integrated.

Since m0 = 1, Eq. 8.7 can be written vdk = λdk(X, T) τe f f with λdk de-
pending on the dislocation character. Fig. 8.1 compares the velocity given
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Figure 8.1: Comparison of dislocation velocity by the double kink mechanism given
by the exact Eq. 8.6 and its approximation (Eq. 8.7). v∞

dk is given by Eq. 8.6
with X = L0.

by Eqs. 8.6 and 8.7. Note that the present formulation differs from the
less accurate one adopted by [Dour 2002]. It is shown in Section 8.4 that
the dislocation velocity in free flight can always be given by Eq. 8.7 even
when jog dragging governs dislocation motion, provided that X is correctly
computed.
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8.3 influence of localized obstacles

8.3.1 Preliminary discussion

The presence of localized obstacles on the slip plane such as forest dis-
locations, impurities or small precipitates, can temporarily pin moving
dislocations and delay their motion on the slip plane otherwise governed
by the kink pair mechanism (see, e.g., [Rauch 1994, Baufeld 1998]). The
present model for dislocation velocity in covalent crystals can be enhanced
to account for localized obstacles.

We suggest in the following a model that differs significantly from the
work of [Dour 2002]. The sole common point is the methodology chosen:
in such a framework dislocations break free from forest obstacles when
the cumulative unpinning probability reaches unity. Computation of this
probability Pobs(t) requires the derivation of the probability differential
over an infinitesimal time step, or dPobs/dt. The latter is defined thanks
to the theory of dislocation dynamics as presented in, e.g., [Kocks 1975,
Nagdornyi 1988].

Devil lies in the details, therefore the very equations adopted by [Dour 2002]
are questionable.

• The authors adopt for dislocation velocity at high forest densities a
power law (as a function of stress). The problem with such a law is
that it is valid at stresses close to the critical unlocking stress only. It is
actually an approximation at high stresses of Eq. 8.11. Unfortunately,
we show in this Section that forest trees impede dislocation motion
significantly at low stresses only, questioning hereby the validity of
their choice.

• Another questionable point is that they consider the attack frequency
(νe f f in this Section) to be proportional to the inverse of the dislocation
length L. The latter is assumed to behave as a vibrating chord. How-
ever, an unlocking attempt -the attack frequency- is a local process that
is not concerned by the dislocation length. In our model the effective
attack frequency is considered independent of L.

• Finally, [Dour 2002] adopt a rough estimate for the dislocation velocity
vdk as a function of the dislocation length. We show in the following
that it is possible and preferable for numerical reasons to adopt the
exact velocity expression, piecewise defined.

Let us consider an array of obstacles of density ρobs on the primary slip
plane, leading to a mean distance between obstacles lobs (see Section 9.5.1
for its derivation). At t = 0 a dislocation segment of length lobs is pinned
at its ends by two thermally overcomeable obstacles of height Fobs, and the
tangent to the dislocation at one pinning point makes an initial angle with
the velocity vector θ(t = 0) = π/2 (see Fig. 8.2). As the central segment
moves forward the cumulative unpinning probability increases, until it

8.3 influence of localized obstacles 279

8.3 influence of localized obstacles

8.3.1 Preliminary discussion

The presence of localized obstacles on the slip plane such as forest dis-
locations, impurities or small precipitates, can temporarily pin moving
dislocations and delay their motion on the slip plane otherwise governed
by the kink pair mechanism (see, e.g., [Rauch 1994, Baufeld 1998]). The
present model for dislocation velocity in covalent crystals can be enhanced
to account for localized obstacles.

We suggest in the following a model that differs significantly from the
work of [Dour 2002]. The sole common point is the methodology chosen:
in such a framework dislocations break free from forest obstacles when
the cumulative unpinning probability reaches unity. Computation of this
probability Pobs(t) requires the derivation of the probability differential
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• The authors adopt for dislocation velocity at high forest densities a
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Figure 8.2: Model for dislocation slip through an array of obstacles.

reaches unity at t = tw, or θ(tw) = θw. The mean dislocation velocity in the
presence of obstacles is then given by Eq. 8.3.

8.3.2 Mathematical aspects

Model definition

Let us consider Fig. 8.2. The straight central part of the segment of length
X(t) ruled by the double kink mechanism moves forward under an applied
stress τ and a long-range internal stress τint, coming from, e.g., other
dislocations on the primary plane, long-range stress component of the
forest, etc. In the meantime, the segment ends bow as these are kept fixed by
the obstacles. These curved parts are made up of an accumulation of kinks
and their curvature radii r depends on the effective stress τe f f = τ − τint
(see [Gottschalk 1983a, Gottschalk 1983b]), assumed constant during the
pinning-unpinning process (see Chapter 1):

r =
Γ

τe f f b
=

μb
2τe f f

(8.8)

where Γ is the line tension, considered for simplicity to be constant with
Γ = μb2/2 ([Kocks 1975, Omri 1987]). Geometrical considerations yield (see
Fig. 8.2):

X(t) = lobs − μb
τe f f

cos θ(t) (8.9)

{
h(t) = r (1 − sin θ(t))
ḣ(t) = vdk = −rθ̇ cos θ

(8.10)
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ḣ(t) = vdk = −rθ̇ cos θ

(8.10)

280 modeling dislocation velocity in real semiconductors

lv

lobs

h(t)

X(t) T (t)

r

Figure 8.2: Model for dislocation slip through an array of obstacles.

reaches unity at t = tw, or θ(tw) = θw. The mean dislocation velocity in the
presence of obstacles is then given by Eq. 8.3.

8.3.2 Mathematical aspects

Model definition

Let us consider Fig. 8.2. The straight central part of the segment of length
X(t) ruled by the double kink mechanism moves forward under an applied
stress τ and a long-range internal stress τint, coming from, e.g., other
dislocations on the primary plane, long-range stress component of the
forest, etc. In the meantime, the segment ends bow as these are kept fixed by
the obstacles. These curved parts are made up of an accumulation of kinks
and their curvature radii r depends on the effective stress τe f f = τ − τint
(see [Gottschalk 1983a, Gottschalk 1983b]), assumed constant during the
pinning-unpinning process (see Chapter 1):

r =
Γ

τe f f b
=

μb
2τe f f

(8.8)

where Γ is the line tension, considered for simplicity to be constant with
Γ = μb2/2 ([Kocks 1975, Omri 1987]). Geometrical considerations yield (see
Fig. 8.2):

X(t) = lobs − μb
τe f f

cos θ(t) (8.9)

{
h(t) = r (1 − sin θ(t))
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where vdk is the velocity of the dislocation segment moving in a perfect
lattice as derived1 in Sec. 8.2.2.

Unpinning probability

general expression Over an infinitesimal time increment dt the prob-
ability of breakaway from the pinning points reads:

dPobs = νe f f exp

(
−ΔGobs(τe f f )

kbT

)
dt (8.11)

with νe f f is the effective attempt frequency and ΔGobs = Fobs

(
1 −

(
τe f f /τc

)p)q

the activation energy, where τc is the athermal unlocking stress, 0 < p ≤ 1
and 1 ≤ q ≤ 2 are exponents characterizing the obstacle energy barrier (see
[Kocks 1975, Nagdornyi 1988, Kothari 1998]).

As the dislocation segment moves forward, the angle θ(t) decreases until
the segment tears apart from its pinning points. The athermal unlocking
stress is given as a function of the critical angle θc ≥ 0 with τclobs = μb cos θc.

At a finite temperature, unpinning can take place at θw ≥ θc and τe f f lobs =
μb cos θw. Between t = 0 and tw the unpinning probability reads:

Pobs(tw) =
∫ tw

0
νe f f exp

[
− Fobs

kbT

(
1 −

(
cos θ

cos θc

)p)q
]

dt (8.12)

Unpinning takes place when Pobs(θw) = 1. Eq. 8.12 must be solved for θw
numerically for θw ≤ θc by decomposing the interval [π/2, θc] into n steps
of individual length Δθ = (π/2 − θc)/n.

Once θw is determined, the waiting time tw can be computed by using
Eq. 8.10b. Free from the pinning points, the dislocation segment moves
in a defect-free lattice at a velocity vdk over a distance lv − h(tw) � lv,
until it meets another pinning point. Use of Eq. 8.10b allows to write the
cumulative probability as:

Pobs(θw) =
∫ π/2

θw
νe f f exp

[
− Fobs

kbT

(
1 −

(
cos θ

cos θc

)p)q
]

r cos θ

vdk(θ)
dθ (8.13)

effective attack frequency The effective attempt frequency at high
stresses is given by νe f f � 10−2νD ([Nagdornyi 1988]). At low effective
stresses the dislocation can attempt to jump back before the obstacle, conse-
quently νe f f becomes (see [Kocks 1975]):

νe f f = 10−2νD

(
1 − exp

(
−τe f f bA

kbT

))
(8.14)

1 Here, it does not matter whether the exact velocity equation (defined piecewise as a function
of X) or its approximation is used. The consequences of relying on a nonlinear approximation
of vdk are discussed below.
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where A = 1/ρobs is the area swept by the dislocation between two obsta-
cles.

Calculation of tw

There are two ways to proceed with the computation of the cumulative prob-
ability. Either the exact dislocation velocity equation (Eq. 8.6) is used, or an
approximation (Eq. 8.7) is relied upon. Mathematical details are introduced
in the following with the latter option, since it is more straightforward
and does not require to divide the θ interval into several subintervals, but
the principle remains general. We assume that the influence of jogs can be
disregarded. Then the integral to solve for θw is given by:

∫ π/2

θw
exp

[
− Fobs

kbT

(
1 −

(
cos θ

cos θc

)p)q
]

cos θ

1 − exp
[
−

(
Xobs
L1

)m1
]dθ

=
2τ2

e f f v0

μbνe f f τ0
exp

(
− U

kbT

) (8.15)

with Xobs = lobs − μb
τe f f

cos θ(t). A singularity shows up at Xobs = 0 and

therefore the integration is performed down to Xmin = X(θmin) = 3b only,
assumed to be the minimal segment length allowing for double kinks
to nucleate ([Caillard 2003]). The time spent at θw > θmin is found by
computing t(θw) using Eq. 8.10b:

t(θw) =
μbτ0

2τ2
e f f v0

exp
(

U
kbT

) ∫ π/2

θw

cos θ

1 − exp
[
−

(
Xobs
L1

)m1
]dθ (8.16)

If Pobs(θmin) < 1 then the dislocation waits in a completely bowed configu-
ration, and

tw = t(θmin) + tB =
μbτ0

2τ2
e f f v0

exp
(

U
kbT

) ∫ π/2

θmin

cos θ

1 − exp
[
−

(
Xobs
L1

)m1
]dθ

+
1 − Pobs(θmin)

νe f f exp
[
− Fobs

kbT

(
1 −

(
cos θmin
cos θc

)p)q
]

(8.17)

Accounting for the influence of jog dragging as introduced in Section 8.4
leads simply to alternative definitions of X(t) = min

(
Xj, Xobs

)
and Xmin =

min
(
3b, Xj

)
to insert in the above equations.
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If Pobs(θmin) < 1 then the dislocation waits in a completely bowed configu-
ration, and
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Accounting for the influence of jog dragging as introduced in Section 8.4
leads simply to alternative definitions of X(t) = min

(
Xj, Xobs

)
and Xmin =

min
(
3b, Xj

)
to insert in the above equations.
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Figure 8.3: Mean screw dislocation velocity through a square array of forest obstacles
of varying densities ρ f . T = 1073 K, Fobs = 4 eV.

8.3.3 Model results and discussion

Parameter sensitivity

This model has been implemented and tested at various parameter val-
ues. The influence of jogs is neglected in the following for simplicity. The
effective stress τe f f is assumed equal to the applied stress τ, and the crit-
ical stress for athermal dislocation unpinning taken as τc = 0.35μb√ρ f .
As discussed in Section 9.5.2 its actual expression is more complicated.
Finally, both lobs and lv are set equal to 1/√ρ f at first (i.e., dislocations
glide through a square array of obstacles). The exact value of these model
parameters is in the meantime not necessary in the following as we aim
solely at identifying the qualitative properties of the velocity model.

Setting Fobs = 4 eV, the temperature to 1073 K and letting the forest
density ρ f vary, Figure 8.3 is obtained for v(τe f f ). The influence of Fobs at
a fixed forest density ρ f = 1012 m−2 is shown in Figure 8.4. The following
conclusions can be drawn:

• Firstly, the lower the obstacle density ρ f , the lower the effective stresses
must be in order for the pinning-unpinning process to significantly
affect dislocation velocity. In other words, the model correctly re-
produces a progressive influence of the forest trees as their density
increases.

• Secondly, the influence of Fobs on the simulated dislocation velocity is
very important, and localized obstacles have no significant effect on
dislocation motion for Fobs � 3 eV.

Figure 8.5 assesses the effect of Friedel statistics on the computed mean
velocity. It can be seen that in this framework the influence of obstacles is
even lower than modeling the obstacles array in a square configuration.
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Figure 8.4: Mean screw dislocation velocity through a square array of forest obstacles
for varying obstacle heights Fobs. T = 1073 K, ρ f = 1012 m−2.
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Figure 8.5: Comparison of the computed mean dislocation velocity through an array
of localized obstacles using a square array or relying on Friedel statistics.
T = 1073 K, ρ f = 1012 m−2, Fobs = 4 eV.

Numerical aspects

An important issue stemming from the present model relying on Eq. 8.7
is that integration of the probability function (Eq. 8.13) requires a very
fine discretization of the integration interval [π/2, θmin] in order for the
solution to be continuous. Figure 8.6 shows the computed dislocation
velocity at various discretization widths, with n = 10, 100 or 1000. If
motion is considered to take place in a square array of localized obstacles
the precision required is still acceptable from a computational point of
view (n = 100 giving satisfying results). However, if Friedel statistics are
adopted and lobs is made dependent on τe f f (see Section 9.5.1) then a very
small integration step (i.e., a large n) is necessary in order to minimize the
occurence and magnitude of discontinuities.
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Figure 8.6: Influence of the integration step length Δθ onto the computed mean dis-
location velocity v̄(τe f f ) in an array of obstacles, basing integration of the
cumulative unpinning probability on Eq. 8.7. T = 1073 K, ρ f = 1012 m−2,
Fobs = 4 eV. Top figures: the dislocation velocity is approximated by
Eq. 8.7. Bottom figures: the piecewise definition of vdk (Eq. 8.6) is chosen.

The effect of n on the numerically derived mean dislocation velocity
can be reduced by taking the exact (linear piecewise) expression for the
dislocation velocity in free flight, namely Eq. 8.6, that is, by reducing the
nonlinearity of vdk(X). This is shown in Figs. 8.6c and d.

Discussion

The main unknown is the value of Fobs. As discussed previously, as long
as it remains below roughly 0.1μb3 (with μb3 � 22 eV in Si) the obstacles
likely do not play any significant role on the mean dislocation velocity as
long as the forest density remains below roughly 1013 m−2.

A way to estimate this parameter is to consider that forest interactions
lead to the formation of atomic jogs on the intersecting dislocations. A low
bound for Fobs is therefore 2Fjog with Fjog the jog formation free energy.
Following [Hirth 1982] 2Fjog should not differ significantly from 2Fk, or
approximately 1 eV. Taking a large margin we can set Fobs = 2.2 eV.

As seen later on, the effect of obstacles on the simulated mechanical
behavior of silicon materials is marginal as long as our model can tell,
and can be neglected. We find on the other hand that jog dragging is a
potentially better candidate to explain a change in the dislocation motion
mechanisms when forest interactions gain in importance.
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Figure 8.6: Influence of the integration step length Δθ onto the computed mean dis-
location velocity v̄(τe f f ) in an array of obstacles, basing integration of the
cumulative unpinning probability on Eq. 8.7. T = 1073 K, ρ f = 1012 m−2,
Fobs = 4 eV. Top figures: the dislocation velocity is approximated by
Eq. 8.7. Bottom figures: the piecewise definition of vdk (Eq. 8.6) is chosen.

The effect of n on the numerically derived mean dislocation velocity
can be reduced by taking the exact (linear piecewise) expression for the
dislocation velocity in free flight, namely Eq. 8.6, that is, by reducing the
nonlinearity of vdk(X). This is shown in Figs. 8.6c and d.

Discussion

The main unknown is the value of Fobs. As discussed previously, as long
as it remains below roughly 0.1μb3 (with μb3 � 22 eV in Si) the obstacles
likely do not play any significant role on the mean dislocation velocity as
long as the forest density remains below roughly 1013 m−2.

A way to estimate this parameter is to consider that forest interactions
lead to the formation of atomic jogs on the intersecting dislocations. A low
bound for Fobs is therefore 2Fjog with Fjog the jog formation free energy.
Following [Hirth 1982] 2Fjog should not differ significantly from 2Fk, or
approximately 1 eV. Taking a large margin we can set Fobs = 2.2 eV.

As seen later on, the effect of obstacles on the simulated mechanical
behavior of silicon materials is marginal as long as our model can tell,
and can be neglected. We find on the other hand that jog dragging is a
potentially better candidate to explain a change in the dislocation motion
mechanisms when forest interactions gain in importance.
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8.4 mobility of jogged mixed dislocations

8.4.1 General expression for jog-dragging dislocation motion

We show in the next Chapter that a change in the dislocation motion
mechanisms is responsible both for the observed stress overshoot and
a sustained decrease of the hardening rate in stage I. We suggest that
this change stems from the dragging of sessile atomic jogs on secondary
dislocations created by forest cutting throughout stage I. A model for
motion of jogged dislocations in the diamond cubic structure is proposed
in this Section.

Jogs on the screw component of a dislocation, with a mean spacing dj,
can affect dislocation motion if their drag becomes rate-limiting, owing to
their sessile nature2.

If dislocation bowing between jogs is neglected, the screw dislocation
velocity vjog reads (see [Hirth 1982, Messerschmidt 2010]):

vjog ∝
Dsd

b
sinh

(
τe f f Ωdj

bkbT

)
(8.18)

where Dsd = 2175.4 exp (−4.95/kbT) + 2.3 × 10−3 exp (−3.6/kbT) given
in cm2.s-1 is the self-diffusion coefficient taken from [Shimizu 2007] and
Ω = a3 the atomic volume, with a = 5.43 × 10−10 m. Dsd accounts for
the transition between a vacancy and interstital self-diffusion mechanism
around 1173 K. The prefactor is usually taken of the order of 4π (see, e.g.
[Milevskii 1977]).

Accounting for the influence of jogs on dislocation velocity requires
to distinguish explicitely between the dislocation populations based on
their character, since screws are more susceptible to jog dragging than 60°
segments. Jogs created on edge segments are indeed glissile.

8.4.2 Interaction between jog dragging and the double kink mechanism in cova-
lent crystals

The combined effect of jogs and a high Peierls potential must be accounted
for in order not to introduce discontinuities in the constitutive behavior at
the transition between both motion modes. We detail here the methodology
employed in order to compute the dislocation velocity v in free flight
when jogs affect their motion that proceeds otherwise by the double kink
mechanism (see Section 8.2). We consider here the steady-state motion of
the dislocation only.

Jog dragging leads to the bowing out of dislocations in a similar way as
pictured in Fig. 8.2, where lobs must be replaced by dj. The force exerted on
jogs includes a contribution from the line tension Γ (the latter assumed to

2 Jogs on screw dislocations move nonconservatively as motion does not proceed in their glide
plane. Their climb requires emission or absorption of point defects.
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Figure 8.7: Model for jog dragging of a dislocation segment oriented at an angle α

with respect to the Burger’s vector.

be constant and of magnitude μb2/2) in addition to the applied effective
stress τe f f .

Drag of a randomly oriented jogged dislocation

Let us consider a jogged dislocation segment having an α° orientation with
the the Burgers vector such as depicted in Fig. 8.7. Sessile jogs are separated
with a mean distance dj. Our model makes the following assumptions:

• Climb of sessile jogs proceeds by emission of a point defect every
jump of length b along the direction perpendicular to the Burger’s
vector.

• The energy barrier for point defect emission is similar for any random
orientation α to the reference case of screw segments. What differs,
however, is the work performed by various forces over the barrier
length, as seen below.

• Dislocation bowing is similar on each side of the jogs. This approxima-
tion implies that jog sliding along the dislocation line is not possible,
as long as mutual jog interaction is disregarded.

Geometrical considerations yield a total force acting on jogs due to the line
tension and helping overcome the thermal barrier:

F = μb2 cos θ cos α (8.19)

where θ is defined as in Section 8.3 and Fig. 8.7. A cos α factor is required
since Γ helps overcome the thermal barrier only when the jog moves in a
direction perpendicular to the Burger’s vector.
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For the same reason, the work performed by the line tension and the
applied stress when the jogs climb over a length b includes a cos α factor.
This leads to a modified Eq. 8.18:

vjog =
4πDsd

b
sinh

⎛⎝
(

τe f f djab + μb3 cos θ
)

cos α

kbT

⎞⎠ (8.20)

Bowing out of the dislocation segment accelerates the jog dragging pro-
cess because μb3 is large in Si, delaying somehow the appearance the
jog dragging-dominated motion regime. Changing the orientation of the
dislocation segment from screw towards edge allows for less work to be
performed by τe f f and Γ, increasing hereby the tendency of jog drag to
control dislocation motion3.

Combining motion mechanisms

The dislocation velocity is determined by the rate-limiting motion mech-
anism. If vjog (cos θ = 0) � vdk(dj), the bowing out has no effect and
v = vdk(dj).

The whole dislocation moves at a speed v ∈ ]0, vdk[, and the velocity of
the straight segment between jogs, of length Xj = dj − μb cos θ/τe f f (see
Eq. 8.9) equals vjog:

v0

(
τe f f

τ0

)m0
[

1 − exp

[
−

(dj − μb cos θ/τe f f

L1

)m1
]]

exp
(
− U

kbT

)

=
4πDsd

b
sinh

⎛⎝
(

τe f f djab + μb3 cos θ
)

cos α

kbT

⎞⎠ (8.21)

where the continuous approximation of vdk is chosen. Solving Eq. 8.21
for cos θ under the constraint Xj > 0 and insertion into Eq. 8.20 yields
the equilibrium Xj. The dislocation velocity is then given by Eq. 8.7 with
v = vdk(Xj). The influence of segment orientation on the jog dragging-
dominated motion domain is shown in Fig. 8.8.

Note that the present model does not rule out different rates of evolution
for the dj’s depending on the dislocation character. Indeed, jogs on edge
dislocations are glissile and limα→π/2 vjog = ∞. Therefore, a complete
model for drag of jogged mixed dislocations must include an evolution law
for dj that depends on the dislocation character and yields limα→π/2 dj = ∞.
This aspect is discussed in the next Chapter.

Discussion

mathematical considerations This approach yields a velocity law
v ∈ C∞. Adopting a more simple law for the motion of jogged dislocations

3 This remark is valid at a constant dj.
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v = vdk(dj).

The whole dislocation moves at a speed v ∈ ]0, vdk[, and the velocity of
the straight segment between jogs, of length Xj = dj − μb cos θ/τe f f (see
Eq. 8.9) equals vjog:
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(
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)m0
[

1 − exp
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(dj − μb cos θ/τe f f

L1

)m1
]]

exp
(
− U

kbT

)
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4πDsd

b
sinh

⎛⎝
(

τe f f djab + μb3 cos θ
)

cos α

kbT

⎞⎠ (8.21)

where the continuous approximation of vdk is chosen. Solving Eq. 8.21
for cos θ under the constraint Xj > 0 and insertion into Eq. 8.20 yields
the equilibrium Xj. The dislocation velocity is then given by Eq. 8.7 with
v = vdk(Xj). The influence of segment orientation on the jog dragging-
dominated motion domain is shown in Fig. 8.8.

Note that the present model does not rule out different rates of evolution
for the dj’s depending on the dislocation character. Indeed, jogs on edge
dislocations are glissile and limα→π/2 vjog = ∞. Therefore, a complete
model for drag of jogged mixed dislocations must include an evolution law
for dj that depends on the dislocation character and yields limα→π/2 dj = ∞.
This aspect is discussed in the next Chapter.

Discussion

mathematical considerations This approach yields a velocity law
v ∈ C∞. Adopting a more simple law for the motion of jogged dislocations

3 This remark is valid at a constant dj.
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Figure 8.8: Computed velocities of different dislocation characters when sessile jogs
are present along the line. T = 1073 K, dj = 10−7 m.

such as v = min
(
vjog, vdk

)
has the drawback of restraining continuity as in

this case v ∈ C0 only, which poses numerical problems at the transition be-
tween both motion modes. Fig. 8.10 shows the computed screw dislocation
velocity at T = 1073 K at various dj and τe f f .

computational cost There is a priori no interest in choosing the
exact, piecewise-defined velocity functon vdk when deriving Eq. 8.21. An
analytical function allows indeed to solve the nonlinear equation with a
fast-converging algorithm such as a Newton-Raphson (NR) solver requiring
the existence and continuity of the first derivative to perform correctly.

However, the constraint4 imposed on cos θ by the condition Xj > 0 is
observed most often to be violated during the first iterations of the NR solver.
It is therefore computationally more efficient to start readily with a solver
exhibiting a linear convergence rate (e.g., the bisection method). In this case,
adopting the highly nonlinear approximation for vdk is not necessary and
numerically risky, as a weak error on the converged Xj has then potentially
large consequences on the dislocation velocity. The computed dislocation
velocity v based on Eq. 8.6 is additionally indistinguishable from the one
derived with Eq. 8.7, as seen in Fig. 8.9.

Combined with the discussion of Section 8.3.3, this shows that using a
nonlinear C∞ approximation of vdk is not necessary and should actually be avoided
in order not to increase the computational cost of the model and divergence risks.

equivalent jog density The present model assumes that Eq. 8.18 is
applicable for any dislocation character. At a given dj, a dislocation with a
strong edge component will see its velocity severly affected by sessile jogs.
Disregarding the line tension contribution, Eq. 8.21 can be interpreted as if

4 It is equivalent to look for the solution in the interval
[
0, djτe f f /μb

[
, which exists by virtue of

the intermediate value theorem.
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Figure 8.9: Screw dislocation velocity resulting from the combined effect of jog
dragging and double kink mechanism: effect of the approximate vdk
function.

Figure 8.10: Screw dislocation velocity resulting from the combined effect of jog
dragging and double kink mechanism.
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Figure 8.11: Comparison of screw and 60° dislocation velocities at T = 1073 K for
different dj.

all dislocations were affected in a similar way by jogs, provided that dj is
modulated by a factor cos α. At a given τe f f , this means that if dj,60 = 2dj,s,
then screws and 60° segments have approximately the same velocity, as
shown in Fig. 8.11.

alternative solution An approximation of the solution shown in
Fig. 8.10 can be obtained by searching for the solution to vjog = vdkm,
reached for τe f f = τv given the mean jog spacing, and assuming the
following expression for v:

vapp = v
min(τe f f /τv ,1)
dkm × v

1−min(τe f f /τv ,1)
jog (8.22)

This approximation is far from perfect as shown in Fig. 8.12, but yields
results of the same order of magnitude as the exact solution over the whole
stress and jog spacing range considered.
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Figure 8.12: Ratio of dislocation velocity computed by the approximation of Eq. 8.22
to the exact one.
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8.5 influence of impurities on dislocation mobility

The influence of impurity atoms on the dislocation motion mechanisms de-
pends on their nature, as they constitute additional thermally overcomable
obstacles opposing dislocation motion.

They can ease kink nucleation if they are electrically active (e.g., dopants),
affecting U by changing the defect density at the dislocation cores (see, e.g.,
[Heggie 1991, De Araujo 2004] and Chapter 3).

Instead of affecting directly the activation energy for dislocation motion
the effect of dissolved electrically inactive impurities such as oxygen is
generally modelled by the incorporation of an additional internal stress
component stemming from their locking effect when present at the core (see
Section 6.4); formation of a Cottrell atmosphere in the temperature range
where plasticity actually takes place has been shown by [Sumino 1999] to
be thermodynamically unlikely.

Only a fraction of the potentially mobile dislocations is actually set
into motion upon loading, the remaining part representing the statisti-
cally locked segments [Yonenaga 1984, Petukhov 2004]. Modifications of
the model for intrinsic crystals introduced in Chapter 6 give excellent results
in the yield region as long as the concentration of dissolved impurities does
not lead to their inhomogeneous distribution in the matrix.
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8.6 conclusion - motion of dislocations in semiconductors

The constitutive parameters steering dislocation motion are given in Ta-
ble 8.1, where those specific to screw and 60° segments are detailed.

The refinements brought throughout this Chapter to the standard velocity
expression show that rate-limiting motion mechanisms in silicon, or more
generally in semiconductors, differ significantly from those active in f.c.c.
crystals. The most striking discrepancy lies in the absence of significant
influence of localized obstacles on the mean dislocation velocity. This is
understood by accounting for the strong lattice friction opposing dislocation
motion in free flight. In f.c.c. crystals t f 	 tw; the opposite relationship is
valid in semiconductors.

This is further strengthened by the low self-diffusion coefficient (or high
self-diffusion activation energy), so that when jog dragging takes over from
the double kink mechanism in free flight, the effect of localized obstacles
on v shrinks even more and one gets in practice v � v.

Jog dragging is a possible controlling mechanism for dislocation motion,
as the intrinsic constituent segments of any dislocation loop, screw and 60°
orientations, both have a screw component. However, owing to the large
μb3 energy in semiconductors, the transition from the double kink to jog
dragging mechanism is predicted by our model to be somehow delayed. In
the mixed mode, segment bowing between the atomic jogs eases dislocation
motion.

As seen in Fig. 8.8, the difference between the velocities of jogged screw
and 60° segments at equal effective mean sessile jog spacing is quite signifi-
cant, several orders of magnitude. This is explained by the smaller work
performed by the effective stress and line tension in helping overcoming
the thermal barrier of jog climbing when the dislocation is rotated towards
an edge orientation. Note that the present model does not rule out different
jog spacings on screws and 60° dislocations at a given deformation state.

screws 60°/edge

v0 (m.s-1) 3.5 × 104 104

τ0 (MPa) 1 1

m0 1 1

U (eV) 2.35 2.2

Xmax (m) 10−7

Fobs (eV) 2.2

p 2/3

q 3/2

Table 8.1: Model parameters related to dislocation velocity.
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influence of localized obstacles on the mean dislocation velocity. This is
understood by accounting for the strong lattice friction opposing dislocation
motion in free flight. In f.c.c. crystals t f 	 tw; the opposite relationship is
valid in semiconductors.

This is further strengthened by the low self-diffusion coefficient (or high
self-diffusion activation energy), so that when jog dragging takes over from
the double kink mechanism in free flight, the effect of localized obstacles
on v shrinks even more and one gets in practice v � v.

Jog dragging is a possible controlling mechanism for dislocation motion,
as the intrinsic constituent segments of any dislocation loop, screw and 60°
orientations, both have a screw component. However, owing to the large
μb3 energy in semiconductors, the transition from the double kink to jog
dragging mechanism is predicted by our model to be somehow delayed. In
the mixed mode, segment bowing between the atomic jogs eases dislocation
motion.

As seen in Fig. 8.8, the difference between the velocities of jogged screw
and 60° segments at equal effective mean sessile jog spacing is quite signifi-
cant, several orders of magnitude. This is explained by the smaller work
performed by the effective stress and line tension in helping overcoming
the thermal barrier of jog climbing when the dislocation is rotated towards
an edge orientation. Note that the present model does not rule out different
jog spacings on screws and 60° dislocations at a given deformation state.
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Figure 8.13: Screw dislocation velocity for the standard Dsd (plain curves) and
a diffusion coefficient 100 times larger (dashed curves). T = 1073 K,
dj = 10−7 m.

Our discussion has indeed shown that the evolution law for dj must depend
on the dislocation character.

The transition sharpness (that can be defined in mathematical terms as
the maximum ∂v/∂τe f f

∣∣∣
dj

) can be reduced by increasing the self-diffusion

coefficient Dsd in Eq. 8.18, as shown in Fig. 8.13. The presence of point
defects close to or at the dislocation core, or a modification of the diffusion
coefficient close to the core due to lattice distortion, could affect significantly
this parameter and help smoothen the transition between both modes
further. However, this aspect will not be discussed in this work.

Finally, we have shown that using a continuous analytical law for the
dependency of vdk on the dislocation length X leads to higher computational
costs and instability risks, by increasing the nonlinearity of the function.

The remarks that closed Part ii mentioned that any attempt to improve the
model of Alexander & Haasen should include the case of multiple slip, or
in other words the effects of forest on dislocation motion and multiplication
mechanisms. This Chapter has proposed a model for the former aspect.
The next Chapter introduces a constitutive model for silicon monocrystals
that incorporates the results derived here. It is shown that the simulated
mechanical behavior of silicon is extremely dependent on the law chosen
for dislocation velocity. Indeed, any approximation made in the derivation
of v has a potentially important consequence on the stress-strain curves
generated by a constitutive model.
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A H O L I S T I C C O N S T I T U T I V E M O D E L F O R E X T R I N S I C
E G - S I M O N O C RY S TA L S

A physically-based constitutive model for silicon crystals is built from scratch. Owing to the
physical processes we are aiming at reproducing, the total dislocation density on each of the
twelve slip systems of the d.c. structure is divided between mobile and immobile dislocations.
The former enter Orowan’s law, while the latter contribute to the internal stress build-up. An
additional refinement consists in distinguishing between screw and 60° dislocations for each
population. All internal and critical stresses required for the derivation of the dislocation
velocity are defined using the dislocation densities or impurity concentration as sole variables.
Differential equations ruling the evolution of the model variables (dislocation densities, jog
spacing, impurity concentration) are then proposed. Dislocation storage and annihilation
processes as a function of the effective stress are modeled based on physical observations only,
and are derived separately for screws and 60° dislocations. The present model is believed to
constitute a significant step forward in modeling the mechanical behavior of semiconductors,
albeit at a rather high complexity level.

introduction

Our previous model introduced in Chapter 6 presents some limitations: the
total dislocation density is underestimated, the share of mobile dislocations
is much larger than experimentally estimated, and the model is not valid in
stage II of hardening.

These shortcomings are solved in this Chapter, where a holistic consti-
tutive model for silicon monocrystals is introduced. We aim at deriving
a physically-based constitutive model, or discrete dislocation slip model, to
use the formulation of Section A.2. The kinematical framework of crystal
plasticity introduced in Annex A links the microscopic plastic strain rates
to the macroscopic deformation gradient.

Such a model must be based on Orowan’s law (derived in Section 9.1),
that in turn requires the knowledge of the dislocation velocity (modeled in
the previous Chapter). The latter requires calculation of the internal stress
τint in order to obtain the effective stress: this is achieved in Section 9.2.

Evolution laws are then required for the dislocation densities (Section 9.3).
Physical processes such as dipole formation and dislocation annihilations
are modeled in Section 9.4; dislocation interactions are dealt with in Sec-
tion 9.5 where parameters necessary to the computation of dislocation
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velocity and multiplication are defined. The jog density evolution laws
are derived in Section 9.6. Ultimately, the model for dislocation locking
by impurities, similar to the one introduced in Chapter 6, is reminded in
Section 9.7.

9.1 plastic strain rate

Dislocation motion is not limited to a single slip plane and from now on
we consider dislocation glide on each of the 12 slip systems of the glide
set of the diamond cubic lattice of silicon. The systems are identified using
Schmid & Boas notation, each plane being identified by a letter from A
to D, the slip directions refered to by a number from 1 to 6 (see Fig. A.1
for system numbering). Let us consider as a generic object an hexagonal
dislocation loop made up of screw and 60° segments, typically encountered
at high effective stresses (see Chapter 1). For simplicity dislocations are
considered as perfect. Under a finite effective stress the loop expands in a
volume V, and its area A increases at a rate Ȧ, leading to the plastic strain
rate:

γ̇p =
bȦ
V

(9.1)

The loop expansion increases its perimeter as shown in Fig. 9.1. Both screw
and 60° segments, of respective lengths ls and l60, are a priori affected.
Geometrical considerations yield:

dA
dt

=
√

3
(

l60
dls
dt

+ (l0 + l60)
dl60

dt

)
(9.2)

where the factor
√

3 stems from the orientation of the 60° segments. The
terms dls/dt and dl60/dt are derived as:⎧⎨⎩

dl60
dt = 2vs√

3
dls
dt = 2√

3
(2v60 − vs)

(9.3)

Figure 9.1: Calculation of γ̇p from the expansion of a hexagonal dislocation loop.
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where the computation of the mean screw (resp. 60°) dislocation velocity
vs (resp. v60) requires the derivation of the long-range internal stress τ

(α)
int

as discussed in the previous Chapter. Eq. 9.3 yields Ȧ = 4v60l60 + 2vsls.
Considering the whole loop, the total screw and 60° lengths are given by1

Ls = 2ls and L60 = 4l60. With ρm,s = Ls/V and ρm,60 = L60/V screw and
60° mobile dislocation densities respectively, one gets Orowan’s law on the
slip system α:

γ̇
(α)
p = γ̇

(α)
p,s + γ̇

(α)
p,60 = b

(
ρ
(α)
m,sv(α)s + ρ

(α)
m,60v(α)60

)
sign(τ(α)) (9.4)

Negative strain rates allowed by the introduction of sign(τ(α)) representing
slip in the direction of −s(α)0 .

1 We neglect any possible velocity difference between the different 60° segments, that could be
due to their different partial ordering (see Chapter 1).
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9.2 internal and critical stresses

9.2.1 Intrinsic crystals

Independently of the presence of obstacles on the slip plane, the exact
expression of the internal stress entering into Eq. 8.7 is necessary for the
derivation of the mean dislocation velocities v(α)s and v(α)60 . It has been
shown in [Sumino 1974b, Suezawa 1979] that the constant component of
the internal stress τb is made up of a contribution coming from the mo-
bile dislocations and an additional term proportional to the hardening
strain. The original works did not attempt to express explicitely the harden-
ing component as a function of dislocation densities. [Sumino 1993] have
generalized this equation to multiple slip systems and assume the direct
additivity of the internal stress stemming from mobile dislocations, but
these authors consider all dislocations to be mobile.

We distinguish in this work four dislocation populations, based on their
character -screws or 60°- and mobility potential.

As dislocations move on their slip plane, they meet dislocations of op-
posite sign gliding on parallel planes. If their elastic interaction is strong
enough as they pass each other, a dipole might form. This results in the
statistical trapping of dislocations into a population that cannot carry plas-
tic flow anymore, stored as dipolar or multipolar structures or as isolated
debris (see Section 6.2). Both edge and screw dipoles can form a priori. We
call these densities of stored dislocations the densities of immobile disloca-
tions, written ρ

(α)
i,s and ρ

(α)
i,60 depending on the dislocation character, with

ρ
(α)
i = ρ

(α)
i,s + ρ

(α)
i,60 .

A similar equation applies to the density of mobile dislocations ρ
(α)
m . The

total dislocation density ρ
(α)
t is equal to ρ

(α)
m + ρ

(α)
i .

Note that a dipole might be destroyed if the applied stress is large
enough; a given dislocation can consequently shift between mobile and
immobile configurations before it is annihilated. Immobile dislocations
differ from mobile dislocations at rest, since the latter can still carry plastic
flow if the effective stress takes a finite value. Dipole and multipoles exhibit
much weaker long-range stress fields than mobile dislocations do. It is
consequently necessary to distinguish both populations in the estimation
of the internal stress.

The model derived in this work is not limited to one slip plane, and
dislocations are assumed to be present on all the slip systems. Latent
hardening is accounted for by the introduction of constant interaction
parameters Aαβ and Bαβ characterizing the intensity of the long-range

elastic stress fields created by ρ
(β)
m and ρ

(β)
i respectively, onto dislocations

belonging to the slip system α. These interaction coefficients are derived on
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geometrical arguments only as discussed by [Zarka 1972] and the internal
stress reads:

τ
(α)
int = μb

12

∑
β=1

(
Aαβ

√
ρ
(β)
m + Bαβ

√
ρ
(β)
i

)
(9.5)

The effective stress reads:

τ
(α)
e f f =

〈∣∣∣τ(α)
∣∣∣− μb

12

∑
β=1

(
Aαβ

√
ρ
(β)
m + Bαβ

√
ρ
(β)
i

)〉
(9.6)

with 〈x〉 = max(x, 0). The absolute value of the resolved shear stress is
considered in Eq. 9.6 as we do not consider forward and backward motion
of dislocations on a slip system as two different slip mechanisms.

Finally, the critical stress τ
(α)
c for athermal overcoming of the localized

obstacles is required for the computation of the dislocation velocity (see
Section 8.3). It incorporates both long-range and short-range components
of the dislocation interactions, and includes all dislocation populations. The
critical stress resulting from dislocations on several slip systems are not
additive as demonstrated by [Franciosi 1982]:

τ
(α)
c = μb

√√√√ 12

∑
β=1

aαβρ
(β)
t (9.7)

The aαβ coefficients depend on the type of interaction between the slip
systems α and β and are derived in Section 9.5. Table 6.1 gives an overview
of the interactions between the 12 slip systems of silicon.

9.2.2 Influence of electrically inactive impurities at the cores

We consider in this work oxygen only as a model impurity. Dissolved
oxygen atoms that have diffused at the dislocation cores at a concentration
c(α)O exert an additional back stress τ

(α)
O opposing dislocation motion. To

set dislocations back into motion the applied stress must be large enough
to surmount the internal stress now incorporating the effect of impurities.
Because of the relatively weak interaction energy between an impurity and
a dislocation, the formation of Cottrell atmosphere around dislocations is
unlikely at the high temperatures of interest for plasticity [Sumino 1999].
The contribution of the Cottrell atmosphere to τ

(α)
O is therefore disregarded

and the internal stress reads:.

τ
(α)
O = f (T)c(α)O (9.8)

The temperature-dependent prefactor f (T) depends linearly on the temper-
ature as long as the impurity atoms at the core do not form aggregates or
impurity clusters.

Aggregation by pipe diffusion is however favored at high tempera-
tures, so a nonlinear dependency of f (T) can be expected at the tem-
peratures of interest in the present work. Experimental data is lacking on
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this point but extrapolation of the data by [Senkader 2004] gives f (T) =
9.44 × 10−22 exp (0.29/kbT) (see Chapter 6).

Note that distinguishing 60° from screw dislocations implies independent
oxygen concentrations and a priori different τ

(α)
O on each dislocation char-

acter. It should follow different effective stresses. This complicates further
the model, and for the sake of simplicity a single oxygen-generated back
stress is considered, taken as the mean value of the τ

(α)
O ’s on 60° and screw

dislocations.
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9.3 evolution of dislocation densities

The remaining components required in Orowan’s law are the densities
of mobile dislocations ρ

(α)
m,s and ρ

(α)
m,60. These microstructural parameters

are usually considered as constant in fcc crystals, and representing only a
minor fraction of the total dislocation density ρ

(α)
t (see, e.g., [Kothari 1998]).

Silicon materials are different as their very low as-grown dislocation con-
tent guarantees that all dislocations in the crystal are initially mobile.
[Alexander 1968] consider this approximation remains true throughout de-
formation when deriving their model. This has been shown experimentally
inaccurate. At the lower yield point immobile dislocations are estimated to
make up a significant part of ρt, with their share increasing through stage I
(see [Kojima 1971, Sumino 1974a, Yonenaga 1978, Oueldennaoua 1988]). A
correct representation of the mechanical behavior of silicon monocrystals
requires indeed the introduction of an additional population of immo-
bile dislocations, those that are statistically trapped in dipolar, multipolar
structures or bundles.

9.3.1 Intrinsic crystals

Multiplication of dislocations on their plane proceeds by means of the
athermal activation of Frank-Read sources observed, e.g., by [Dash 1956]
and modeled by [Moulin 1997]. The occurence of thermally activated dou-
ble cross-slip events is also experimentally observed ([Vallino 2001]), al-
though the extent of dislocation multiplication by this mechanism ought
to be very limited at the temperatures considered in this work, especially
if the crystallographic orientation of the samples favors single glide, as
discussed by [Moulin 1997]. Dislocation annihilation by cross-slip of screw
segments is however observed to proceed beyond the lower yield point,
as witnessed by the predominance of edge segments in stage I (see, e.g.,
[Alexander 1968, Oueldennaoua 1988]).

Rate of generation of mobile dislocations

Different multiplication laws for intrinsic semiconductors in the absence
of forest dislocations can be found in the literature. Eq. 9.9 makes use of
a generic function K1(τ

(α)
e f f , T, γ̇

(α)
p ). It can be proportional to τ

(α)
e f f as intro-

duced by [Alexander 1968] following the empirical results of [Berner 1967],

independent of τ
(α)
e f f ([Moulin 1997]) or proportional to

√
τ
(α)
e f f as derived by

[Moulin 1999] by means of dislocation dynamics simulations2. A powerful

2 Note that if dislocation velocity is linear in τe f f Orowan’s law gives ρm ∝ γ̇p/τe f f and

the multiplication law of [Moulin 1999] ρ̇m ∝
√

τe f f /ρmγ̇p is strictly equivalent to the in-

troduction of a strain rate dependency in the rate equation of [Alexander 1968] that reads
ρ̇m = δ(γ̇p)τe f f γ̇p with δ ∝ γ̇−0.5

p . A negative strain rate power dependency of δ has been
shown in [Cochard 2010b] to reproduce more accurately the yield drop.
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discussed by [Moulin 1997]. Dislocation annihilation by cross-slip of screw
segments is however observed to proceed beyond the lower yield point,
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Different multiplication laws for intrinsic semiconductors in the absence
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a generic function K1(τ
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p ). It can be proportional to τ
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e f f as intro-

duced by [Alexander 1968] following the empirical results of [Berner 1967],

independent of τ
(α)
e f f ([Moulin 1997]) or proportional to
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τ
(α)
e f f as derived by

[Moulin 1999] by means of dislocation dynamics simulations2. A powerful

2 Note that if dislocation velocity is linear in τe f f Orowan’s law gives ρm ∝ γ̇p/τe f f and

the multiplication law of [Moulin 1999] ρ̇m ∝
√

τe f f /ρmγ̇p is strictly equivalent to the in-

troduction of a strain rate dependency in the rate equation of [Alexander 1968] that reads
ρ̇m = δ(γ̇p)τe f f γ̇p with δ ∝ γ̇−0.5

p . A negative strain rate power dependency of δ has been
shown in [Cochard 2010b] to reproduce more accurately the yield drop.
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definition of K1 is proposed in Section 10.3. Dislocation multiplication by
creation of Frank-Read sources on the microstructure is proportional to
the inverse of the mean free path l(α)FR (see, e.g., [Stainier 2002]). The total
generation rate reads:

ρ̇
(α)
m =

⎛⎝K1(τ
(α)
e f f , T, γ̇

(α)
p ) +

K2(T, γ̇
(α)
p )

l(α)FR

⎞⎠ γ̇
(α)
p

b
(9.9)

K1 and K2 are a priori dependent on temperature and strain rate. Note
that at low effective stresses (for example at high temperatures or low
strain rates) or high dislocation densities K1 	 K2, showing that the first
term in the multiplication law dominates mainly in the yield region and at
low temperatures (resp. high strain rates). As mentioned above, cross-slip
breeding is disregarded and we set K2 = 1, the possible constant factors
being aggregated into l(α)FR (see Section 9.5).

Considering the generation of screw and 60° segments separately, the
dislocation generation rate reads⎧⎪⎪⎨⎪⎪⎩

ρ̇
(α)
m,s =
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K1 +

0.5
l(α)FR

)
γ̇
(α)
p
b
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(
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γ̇
(α)
p
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(9.10)

For each population, the first term on the right-hand side of Eq. 9.10 refers
to the increase in dislocation density due to the expansion of existing
dislocation loops, whereas the second one is related to the generation of
new loops as the segments meet obstacles on their slip plane.

Storage and annihilation rates of mobile dislocations

The derivation of the storage and annihilation rates of mobile dislocations
requires the knowledge of the dislocation density distribution as a function
of their sign. We assume that the density of positive dislocation segments
equals the density of negative segments for each character.

mobile dislocation storage Dislocation storage by immobilization
in dipolar, multipolar structures or bundles is considered in this work, a
process involving dislocations on the same slip system only. For the sake of
simplification we model only the formation of dipoles.

Let us consider only one dislocation character. A positive (or nega-
tive) dislocation segment moving at a velocity v meets 2hmax × ρm/2 × 2v
moving dislocations of opposite sign per unit time, potentially favorable
for the formation of a dipole maximum height hmax (2v being their rel-
ative velocity, see Figure 9.2). This yields a storage rate ρ̇m,+ = ρ̇m,− =
−2hmax × (ρm/2)2 × 2v, and finally ρ̇m = −2hmaxρ2

mv for each dislocation
character.
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The maximum dipole height depends on its nature and hmax,e = μb/8π(1−
ν)τe f f for edge dipoles (assumed to form by storage of 60° dislocations).
hmax,s = μb/4πτe f f for screw dipoles. It is shown in Section 9.4 that the ef-
fective maximum dipole heights (serving as capture radii) are not increased
by cross-slip or climb.

hmin is the minimum dipole height below which spontaneous annihilation
takes place, considered equal for screws and edge characters.

mobile dislocation annihilation Annihilation of a pair of mobile
screw segments by thermally activated cross-slip leads to an additional
sink for ρm,s. We make use of a capture radius r(0)a,m to model this process,

the derivation of which is detailed in Section 9.4. r(0)a,m depends indirectly
on temperature and strain rate through its nonlinear dependence on τe f f .
Following the same reasoning as above, the annihilation rate of screws is
consequently ρ̇m,s = −2r(0)a,mρ2

m,svs.
Annihilation of moving edge segments bypassing each other is shown

below not to be enhanced by τe f f , and this process occurs consequently at

a constant capture radius equal to r(90)
a,m = hmin.

Storage and annihilation of 60° segments is a priori more complex to
model, as these dislocations exhibit both a screw and edge component. In
order to simplify this treatment and setting re = max(hmax,e, hmin) storage
radius for edge segments, we define for a dislocation segment of random
orientation α:

rα = rsre/
√
(re cos α)2 + (rs sin α)2 (9.11)

rα is then by definition the polar equation of the ellipse centered on 0 having
re and rs as major and minor axis, respectively. This yields for α = π/3:

r60 =
rsre√

1
4 r2

e +
3
4 r2

s

(9.12)

The storage and annihilation rates of mobile dislocations finally read:⎧⎨⎩ ρ̇
(α)
m,60 = −2r60ρ

(α)
m,60

γ̇
(α)
p,60
b

ρ̇
(α)
m,s = −2rsρ

(α)
m,s

γ̇
(α)
p,s
b

(9.13)

with rs = max(hmax,s, r(0)a,m), with obviously r(0)a,m � hmin.

Evolution of immobile dislocations

storage of immobile segments The stored dislocations build up
a density of immobile dislocations ρ

(α)
i . Some of the dipoles formed an-

nihilate readily by climb or cross-slip, so that re (resp. rs) is reduced by
hmin (resp. r(0)a,m). Following Eq. 9.11, this results in r60 being reduced by

r(60)
a,m = r(0)a,mhmin/

√
h2

min/4 + 3r(0)2a,m /4.
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r60 =
rsre√
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4 r2
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3
4 r2
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The storage and annihilation rates of mobile dislocations finally read:⎧⎨⎩ ρ̇
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p,60
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ρ̇
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(α)
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(α)
p,s
b
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with rs = max(hmax,s, r(0)a,m), with obviously r(0)a,m � hmin.

Evolution of immobile dislocations

storage of immobile segments The stored dislocations build up
a density of immobile dislocations ρ

(α)
i . Some of the dipoles formed an-

nihilate readily by climb or cross-slip, so that re (resp. rs) is reduced by
hmin (resp. r(0)a,m). Following Eq. 9.11, this results in r60 being reduced by

r(60)
a,m = r(0)a,mhmin/

√
h2

min/4 + 3r(0)2a,m /4.
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Total dislocation evolution rate

If no difference is made between the dislocation characters, with K1 	
1/l(α)FR and assuming that ρ

(α)
m 	 ρ

(α)
i , one retrieves from the equations

introduced above the classical rate equation for the evolution of dislocation
density in metals which has been shown able to correctly reproduce the
mechanical behavior of fcc crystals up into stage III (see, e.g., [Harder 1999]):

ρ̇
(α)
t �

(
1

l(α)FR

− 2rρ
(α)
t

)
γ̇
(α)
p

b
(9.15)
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9.3.2 Alterations in the presence of impurities

Effective density of mobile dislocations

The density of mobile dislocations ρ
(α)
m is replaced in the above rate equa-

tions by an effective density ρ
(α)
m,e f f = η

(
τ
(α)
O

)
ρ
(α)
m with η ≤ 1 verifying

η(0) = 1 and η(∞) = 0.
This model aims at reproducing the experimental observations of the

yield region of CZ-crystals by [Yonenaga 1984] and is supported by the
theoretical calculations of [Petukhov 2004]. It has been shown in Chapter 6
that such a modification to the model for intrisinc crystals yields a successful
representation of the increase of τuy at large oxygen concentrations if

η(τ
(α)
O ) = exp

(
−τ

(α)
O /τ

re f
O

)
is used, where τ

re f
O is a reference stress. In

the present work we adopt Eq. 9.16 for η:

η(τ
(α)
O ) = exp

⎛⎝−
〈

τ
(α)
O − τmin

O

〉
τ

re f
O

⎞⎠ (9.16)

where τmin
O is the minimum locking stress required for impurities to have a

significant effect on the mobile dislocation density.

Dislocation multiplication

Impurities diffused at the dislocation cores likely create an additional
energy barrier to overcome prior to dislocation multiplication by cross-slip
as discussed in [Maroudas 1991c] and Section 6.4.3.

This effect is accounted for by reducing the dislocation multiplication
function K1, but in a different way than chosen by [Maroudas 1991c]. In-
stead of considering the activation volume to be dependent on the mean
jog spacing, it is made function of the impurity mean spacing along the
dislocations3 cO/ρ

(α)
m . With Eq. 9.8 this yields:

KO = K1 exp

(
− c(α)O f (T)b2

kbT

)
(9.17)

3 This choice seems physically more right. The additional obstacle compared to the intrinsic
case where jogged dislocations cross-slip anyway is the impurites diffused at the core, and
only them. As a sidenote, this complication of the constitutive model does not bring significant
improvement of the simulated behavior, as seen in the next Chapter.
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9.4 dipole formation and dislocation annihilation processes

We derive in this Section models for the capture radii ruling:

1. the formation of screw and edge dipoles (rs and re),

2. the annihilation of mobile screw dislocations by cross-slip r(0)a,m,

3. the annihilation of mobile edge dislocations by climb r(90)
a,m , and

4. the subsequent dipole annihilation by bypassing dislocations (respec-
tively r(0)a,i and r(90)

a,i for screw and edge dipoles).

These models are physically based, adapted to the case of silicon and do
not require further calibration.

It is assumed that cross-slipping takes place in the stress field generated
by isolated dislocations or screw dipole components, and that no obstacle
prevents subsequent dislocation annihilation once cross-slip has been ini-
tiated, since distances much smaller than the mean obstacle spacing are
considered for cross-slip. The same assumptions are taken for climb of edge
segments.

9.4.1 Annihilation of mobile screw dislocations

We apply in the following the methodology of [Stainier 2002] and adapt it
to the case of silicon. It is shown that the capture radius for dislocation an-
nihilation by cross-slip is strongly affected by the high cross-slip activation
energy in semiconductors.

Preliminary discussion

Let us consider a screw dislocation whose mobility is determined by the
double kink mechanism over a segment length X, moving in the primary
plane under an effective stress τe f f at a velocity v determined as described
in Chapter 8. This dislocation is at a distance r of an isolated screw dislo-
cation of opposite sign. The force per unit length exerted on the incoming
dislocation reads fr = K/r with K � μb2/2π [Hirth 1982]. Both segments
are assumed to cross-slip towards each other at a velocity vdk. Neglecting in
a first step the resolved shear stress and internal stresses on the cross-slip
system, the relative velocity of the cross-slipping segments reads:

vCS = 2λdk,s(X)
K
br

(9.18)

where the function λdk,s has been defined in Section 8.2.2. The time it takes
for the dislocations to annihilate is given by:

tCS =
∫ rmin

ra,m

−dr
vCS(r)

=
b

Kλdk,s(X)

r(0)2a,m − r2
min

4
(9.19)
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K
br

(9.18)

where the function λdk,s has been defined in Section 8.2.2. The time it takes
for the dislocations to annihilate is given by:

tCS =
∫ rmin

ra,m

−dr
vCS(r)

=
b

Kλdk,s(X)

r(0)2a,m − r2
min

4
(9.19)
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with rmin a cut-off radius below which cross-slipping always takes place
successfully, of the order of 10−9 m or a few b. We take rmin = 2× 10−9 m �
5b. The moving dislocation stays within the radius ra,m during a time
t � r(0)a,m/v. Consequently cross-slip is possible if tCS ≤ r(0)a,m/v. Including
the effects of jogs on dislocation velocity this yields:

r(0)a,m ≤ r(0,max)
a,m =

2λdk,s(X)K
bv(Xj)

+

√√√√(
2λdk,s(X)K

bv(Xj)

)2

+ r2
min (9.20)

For τe f f → 0 the critical radius for annihilation of mobile dislocations

r(0,max)
a,m diverges. An upper bound can be taken as 1/

√
ρt. Note that if jogs

have no influence on dislocation motion λdk,s/v = 1/τe f f .
In the presence of internal stresses on the collinear system, derivation of

the capture radius gives the same result as previously but adds a condition
on r(0)a,m. The incoming dislocation cross-slips at a velocity:

vCS = 2λdk,s(X)

(∣∣∣τ(CS)
∣∣∣+ K

br
− τ

(CS)
int

)
(9.21)

and cross-slip can occur only if
∣∣∣τ(CS)

∣∣∣+ K/br(0)a,m > τ
(CS)
int . If τ

(CS)
e f f > 0 this

is always verified; otherwise one must have r(0)a,m < K/
(

b(τ(CS)
int −

∣∣∣τ(CS)
∣∣∣)).

Assuming this relation holds, integration of this Eq. 9.21 yields

tCS =
1

2λs(X)τ
(CS)
e f f

⎡⎣r(0)a,m − rmin − K

bτ
(CS)
e f f

ln

⎛⎝ 1 + r(0)a,mbτ
(CS)
e f f /K

1 + rminbτ
(CS)
e f f /K

⎞⎠⎤⎦ (9.22)

with r(0)a,mbτ
(CS)
e f f /K 	 1 a second order Taylor expansion of the logarithmic

term gives after simplification tCS equal to Eq. 9.19 and the same r(0)a,m as

previously. Consequently, the upper bound for the critical radius r(0)a,m for
annihilation of two isolated dislocations by cross slip reads:

r(0,max)
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(
1√
ρt

, 2λdk,s(X)K
bv(Xj)

+

√(
2λdk,s(X)K

bv(Xj)

)2
+ r2

min, K
b
(

τ
(CS)
int −|τ(CS)|

)
)

(9.23)
where the last term has to be considered only if τ

(CS)
int −

∣∣∣τ(CS)
∣∣∣ > 0. Note

that because of latent hardening, τ
(CS)
int > 0 is always verified. Eq. 9.23 is

similar to the one derived by [Stainier 2002].

The case of silicon

A limitation of this model is that it considers cross-slip to take place as soon
as the dislocations are close enough from each other, without accounting
for the thermal barrier that must be overcome to initiate cross-slipping. This
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The case of silicon

A limitation of this model is that it considers cross-slip to take place as soon
as the dislocations are close enough from each other, without accounting
for the thermal barrier that must be overcome to initiate cross-slipping. This
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micromechanism is not easy in semiconductors because constrictions are
required for the dissociated dislocations to initiate their motion onto the
collinear system. Consequently it is expected that r(0)a,m < r(0,max)

a,m .
Integrating the effects of jog dragging on dislocation motion into this

model, the dislocation velocity in its plane v is given by vdk(Xj,s), with
Xj,s derived in Section 8.4. We assume that segments of length Xs =
min

(
L0, dj,s

)
are cross-slipping. [Moulin 1997] chose a fixed value L0 �

10−7 m similar to ours. We introduce the number of successful cross-slip

events per unit time PCS = νCS exp

(
−UCS−VCS(τ

(CS)
e f f +K/br)

kbT

)
with UCS =

6 eV and VCS = Xsb2, respectively activation energy taken from [Möller 1979]
and activation volume for cross-slip, and νCS = bνD/Xs the attempt fre-
quency. Owing to the large activation energy UCS, PCS remains extremely
small except for small r.

The mean time for cross-slip to successfully initiate is 1/PCS. Cross-slip
leads to dislocation annihilation when r/v > 1/PCS(r) + tCS(r), that is,
when the time spent in the capture area is larger than the mean time
required for cross-slip to take place added to the time for the dislocations
to annihilate. The equation to solve for r(0)a,m is therefore:

r(0)a,m − bvdk,s(Xj,s)

4Kλdk,s(dj,s)

(
r(0)2a,m − r2

min

)

− vdk,s(Xj,s)

νCS
exp

⎛⎝UCS − VCS(τ
(CS)
e f f + K/br(0)a,m)

kbT

⎞⎠ = 0

(9.24)
under the constraint r(0)a,m < r(0,max)

a,m .
Numerical estimates of the solution to Eq. 9.24 at different temperatures

and effective stresses are shown in Figure 9.3 for dj,s = 10−6 m. The solution
is extremely weakly sensitive to the effective stress, jog dragging affecting
the capture radius at low effective stresses only. Note that T does not
affect significantly r(0)a,m. The absence of significant difference between the
capture radii at 673 and 1673 K is due to the much larger velocity at high
temperatures that offsets the increased cross-slip probability.

If the influence of jogs and of τ
(CS)
e f f are neglected then r(0)a,m can be approx-

imated by:

r(0)a,m = 46.1

⎛⎝τ
(α)
e f f

τ0

⎞⎠−0.028

(9.25)

9.4.2 Annihilation of immobile screw dislocations

Now let us turn to the similar case of attrition of the immobile screw dis-
locations, defined by the capture radius r(0)a,i . We consider in our work
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Figure 9.3: Annihilation of mobile screw dislocations: r(0)a,m and r(0,max)
a,m from Eqs. 9.24

and 9.20 with rmin = 2 × 10−9 m and dj,s = 1 μm. The analytical approx-
imation neglecting the presence of jogs (Eq. 9.25) is shown as well.

immobile dislocations stored in dipolar structures of mean height he f f ,s =√
(e − 1) hmin,shmax,s (see [Hähner 1996]), with hmax,s = μb/4πτe f f and

hmin,s = r(0)a,m if hmax,s > r(0)a,m and 0 otherwise.
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Figure 9.4: Annihilation of stored dislocations: r(0)a,i and r(0,max)
a,i from Eqs. 9.29

and 9.27 with rmin = 2 × 10−9 m and dj,s = 1 μm. At large effective

stresses r(0)a,i is not defined as no dipole is created (indicated by an arrow).
The analytical approximation in the absence of jogs (Eq. 9.30) is shown
as well.

Insertion of the condition for a successful cross-slip, r(0)a,i is given by solving:

r(0)a,i − bvdk,s(Xj,s)

3K′λdk,s(dj,s)

(
r(0)3a,i − r3

min

)

− vdk,s(Xj,s)

νCS
exp

⎛⎝UCS − VCS(τ
(CS)
e f f + K′/br(0)2a,i )

kbT

⎞⎠ = 0

(9.29)
Figure 9.4 compares r(0)a,i derived from Eq. 9.29 to r(0,max)

a,i . Temperature has

again a very marginal direct effect on r(0)a,i , and affects the capture radius
mainly through τe f f . Again, an approximation of the solution that neglects
the presence of jogs and the effective stress on the collinear system reads:

r(0)a,i = 114.5

⎛⎝τ
(α)
e f f

τ0

⎞⎠−0.274

(9.30)

9.4.3 Formation of screw dipoles

The constitutive model assumes that formation of screw dipoles is possible
and relies on the maximum dipole height hmax,s = μb/4πτe f f to define the
capture radius rs. A fraction or all dislocations trapped in dipoles immedi-
ately annihilate by cross-slip. Screw dipoles are consequently formed by
dislocations contained within the radii hmax,s and r(0)a,m (see Eq. 9.14).
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The capture radius hmax,s could be increased as dislocations initially too
distant to form a dipole can still cross-slip as they pass by each other,
eventually coming closer and below hmax,s and triggering dipole formation.

In a material with a low UCS, the actual capture radius r(max)
s would be

given by Eq. 9.23 with rmin replaced by hmax,s. However it can be verified
that in silicon hmax,s is not increased, owing to the large UCS. As seen in
Fig. 9.4, at large effective stresses hmax,s < r(0)a,m, mobile screw dislocations
readily annihilate and no screw dipole is created.

9.4.4 Capture radii for edge dislocations and edge dipole annihilation

A similar approach as previously can be adopted to compute the influence
of climb on the capture radii for edge dipole formation and annihilation,
respectively re, r(90)

a,m and r(90)
a,i .

It is already known that the maximum dipole height hmax,e at a given ef-
fective stress reads hmax,e = μb/8π (1 − ν) τe f f . Dislocations initially distant
from each other by h > hmax,e can a priori still capture each other, provided
that they come closer by climb while passing by each other. Assuming
that the attractive force remains constant in the vincinity of the dipole
equilibrium configuration, the relative (diffusion-controlled) climb velocity
vcl in the absence of external stress reads:

vcl(h) =
DsdΩ
bkbT

(
μb

π (1 − ν) h

)
= −dh

dt
(9.31)

The time tCL necessary for dislocations to climb the distance h − hmax,e is
given by

tCL =
π (1 − ν) kbT

2DsdμΩ

(
h2 − h2

max,e

)
=

1
2β

(
h2 − h2

max,e

)
(9.32)

As for screw dislocations, a condition for trapping to occur is for edge
dislocations to verify tCL ≤ r(max)

e /vdk, or after simplification:⎧⎪⎨⎪⎩ r(max)
e = β

vdk
+

√(
β

vdk

)2
+ h2

max,e

β = DsdμΩ
π(1−ν)kbT

(9.33)

If climb is neglected (Dsd = 0) then r(max)
e = hmax,e is retrieved. Owing

to the small values of β, the correction brought by Eq. 9.33 is marginal
(β/vdk 	 hmax,e) and can be neglected. The same remark is valid when
a stress component normal to the glide plane of the edge dislocation is
applied.

A similar method can be used to check that r(90)
a,m = r(90)

a,i = hmin. Our
model shows that the capture radii for edge dipole formation and annihi-
lation is not affected significantly by climb at the temperatures of interest.
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π (1 − ν) h

)
= −dh

dt
(9.31)

The time tCL necessary for dislocations to climb the distance h − hmax,e is
given by

tCL =
π (1 − ν) kbT

2DsdμΩ

(
h2 − h2

max,e

)
=

1
2β

(
h2 − h2

max,e

)
(9.32)

As for screw dislocations, a condition for trapping to occur is for edge
dislocations to verify tCL ≤ r(max)

e /vdk, or after simplification:⎧⎪⎨⎪⎩ r(max)
e = β

vdk
+

√(
β

vdk

)2
+ h2

max,e

β = DsdμΩ
π(1−ν)kbT

(9.33)

If climb is neglected (Dsd = 0) then r(max)
e = hmax,e is retrieved. Owing

to the small values of β, the correction brought by Eq. 9.33 is marginal
(β/vdk 	 hmax,e) and can be neglected. The same remark is valid when
a stress component normal to the glide plane of the edge dislocation is
applied.

A similar method can be used to check that r(90)
a,m = r(90)

a,i = hmin. Our
model shows that the capture radii for edge dipole formation and annihi-
lation is not affected significantly by climb at the temperatures of interest.
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9.5 dislocation interactions

9.5.1 Obstacle density and mean free path

Computation of the dislocation velocity in the presence of localized obsta-
cles requires the knowledge of the effective forest spacing lobs and mean
free path lv. A dislocation density ρ

(β)
t belonging to a plane characterized

by its normal unit vector n(β)
0 has a projected density on the system α given

by ρ
(β)
t

√
1 −

(
n(β)

0 .n(α)
0

)2
. The obstacle density piercing the system α reads:

ρ
(α)
obs = ∑

β∈ fα

ρ
(β)
t

√
1 −

(
n(β)

0 .n(α)
0

)2
(9.34)

where fα is defined as fα =
{

β, n(β)
0 .n(α)

0 
= 1
}

, and pα such as pα ={
β, n(β)

0 .n(α)
0 = 1

}
. fα and pα are respectively the forest and coplanar sys-

tems relative to system α.

Mean free path of dislocation free flight

There can be two ways to derive the mean free path lv of dislocations. If the
derivation of lobs follows from Friedel statistics (see, e.g., [Kocks 1975]) then
this quantity depends on the effective stress as dislocations “see” more or
less obstacles as the stress is varied:

l(α)obs =

⎛⎝ μb

ρ
(α)
obsτ

(α)
e f f

⎞⎠1/3

(9.35)

and the mean free path is traditionally derived from the relationship lv =
lobs/ρobs. The critical stress for dislocation unlocking τc is also affected by
Friedel statistics:

τ
(α)
c,F =

√√√√√ τ
(α)3
c

μb
√

ρ
(α)
obs

(9.36)

Another way of deriving lv is to rely on dislocation dynamics simulations
from [Kubin 2008a, Kubin 2008b]. These authors have computed by means
of dislocation dynamics the mean free path of dislocations in fcc crystals
moving through a forest and creating junctions with the trees:

1

l(α)v

� 1
k f

∑β∈ fα

√aαβρ
(β)
t√

∑β aαβρ
(β)
t

+
1
kc

∑
β∈pα

√
aαβρ

(α)
t (9.37)

where the density of junctions is neglected, k f and kc are coefficients related

to fα and pα respectively. From this equation l(α)obs is retrieved from lv =
lobs/ρobs.
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It is physically more relevant to adopt the framework of Friedel statistics
when confronted to dislocation motion in a random array of localized
obstacles. As discussed in Section 8.3, combined with a potentially low Fobs,
this results in a marginal influence of the forest trees on dislocation motion.

Mean free path for dislocation mutliplication

The mean free path derived from Eq. 9.35 or Eq. 9.37 is used in our model
to compute l(α)v related to v. However, the mean free path l(α)FR controlling
dislocation generation by formation and activation of Frank-Read sources
is determined only by the immobile forest dislocation densities, since fixed
poles are required for such a source to be active. The dislocation densi-
ties ρ

(β)
i , β ∈ fα are assumed to contribute to this generation mechanism.

Neglecting the build-up of a junction density, the mean free path reads:

1

l(α)FR

� 1
kFR

∑β∈ fα

√aαβρ
(β)
i√

∑β aαβρ
(β)
t

(9.38)

Note that this formulation does not impose kFR = k f . The influence of
forest dislocations is decisive on the mean free path and at high dislocation
densities Eq. 9.38 can be approximated by l(α)FR ∝ 1/√ρ fα

, which is a well-
known relationship (see, e.g., [Mecking 1981, Kocks 2003]).

9.5.2 Interaction coefficients

The aαβ used in Eq. 9.38 are the same as introduced previously for the

definition of internal stresses, and depend nonlinearly on ρ
(β)
t as given by

[Devincre 2006, Kubin 2008b] if related to the junction-forming slip system
combinations:

√
aαβ =

⎡⎢⎢⎢⎣0.2 + 0.8
log

(
1/2b

√
a(re f )

αβ ρ
(β)
t

)
log

(
1/2b

√
a(re f )

αβ ρre f

)
⎤⎥⎥⎥⎦
√

a(re f )
αβ (9.39)

where the constant line tension approximation Γ = μb2/2 has been adopted
for consistency with Chapter 1 and Section 8.3. ρre f = 1012 m−2 is a ref-
erence forest density. The first term of the right-hand side of Eq. 9.39 is
related to elastic interactions, while the second one stems from line tension
effects.

We are thus left with three parameter sets related to dislocation interac-
tions to identify. To simplify the treatment of latent hardening4, we assume

4 Note that the assumption made by [Alexander 2000] to derive the supposed Aαβ coefficients
from latent hardening tests, namely that the flow stress of the latent system stems from
hardening by the long-range stress field of the primary dislocations, is in clear contradiction
with theoretical and experimental results showing that Aαβ ≤ Aαα (see, e.g., [Zarka 1972,
Nemat-Nasser 2004]). These relationships are obviously also valid for the Bαβ’s.
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Interaction Self Copl Col HL LL GJ

Aαβ Aαα Aαα/2 2Aαα/5 2Aαα/3 2Aαα/3 2Aαα/3

Bαβ Bαα Bαα/2 2Bαα/5 2Bαα/3 2Bαα/3 2Bαα/3

a(re f )
αβ 0.123 0.123 0.625 0.07 0.123 0.137

Table 9.1: Interaction coefficients for computation of the internal stress τ
(α)
b coming

from mobile dislocations, from immobile dislocations, and critical stress
τ
(α)
c (the anisotropy of the Aαβ and Bαβ’s is taken from [Zarka 1972], the

a(re f )
αβ ’s are adapted from [Kubin 2008b]).

that the ratios of long-range interaction coefficients Aαβ/Aαα and Bαβ/Bαα

provided by [Zarka 1972] are valid (see Table 9.1). The a(re f )
αβ coefficients are

adapted from [Kubin 2008b]. The self-interaction coefficient a(re f )
αα = 0.123 is

an equivalent one accounting for the influence of debris left in the collinear
slip system generated during deformation ([Madec 2003, Devincre 2007]),
observed in silicon crystals as well by [Yonenaga 1993]. Ultimately only two
parameters are left to identify, Aαα and Bαα.
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9.6 jog density evolution

Evaluation of the dislocation mobility requires the knowledge of the ef-
fective mean jog spacing d(α)j on the mobile dislocations belonging to the
slip system α, which varies throughout deformation. The number of jogs
per unit volume for the system α is defined as n(α)

j = ρ
(α)
m /d(α)j . The model

derived in this Section for jog density evolution an extension of the one
introduced by [Cuitiño 1997], here accounting for jog annihilation.

It is necessary to work with an effective jog density because, like for
impurities, dynamic ageing of dislocations takes place. Freshly generated
dislocations are less jogged than new ones and move consequently faster
at a given effective stress. Working with a single dislocation population
on each slip system, we cannot go into the details of dislocation density
distribution as a function of its jogged state, and simplify the problem to a
single nj.

9.6.1 Jog formation rate

We assume jogs to form solely during dislocation junction unzipping events.
Jog formation by double cross-slip is neglected. As is shown later on, this
approximation yields satisfying results.

Junction formation and unzipping leads to the formation of atomic jogs
on both interacting dislocations. The density of jog-producing obstacles on
the slip plane is taken as ρ

(α)
obs . The jog density increase rate reads then ṅ(α)

j =

κ
(α)
+ ρ

(α)
obs γ̇

(α)
p /b, where κ

(α)
+ is a dimensionless parameter characterizing the

effective jog density build-up.
The same number of jogs are created on the forest systems, so that for

each dislocation character on a given slip system the total increase rate
reads:

ṅ(α)
j = κ

(α)
+ ρ

(α)
obs

γ̇
(α)
p

b
+ ρ

(α)
m ∑

β∈ fα

√
1 −

(
n(β)

0 .n(α)
0

)2
κ
(β)
+

γ̇
(β)
p

b
(9.40)

9.6.2 Jog annihilation rate

The higher the linear jog density cj = a/dj along the dislocation line, the
higher their annihilation rate. Our model assumes that the jog disappear-
ance rate is proportional on the strain rate and makes use of an effective cap-
ture distance d(α)c . The jog annihilation rate reads then ċj = −cjd

(α)
c γ̇

(α)
p /b.

After simplification this gives for nj:

ṅ(α)
j = n(α)

j

(
ρ̇
(α)
m

ρ
(α)
m

− d(α)c
b

γ̇
(α)
p

)
(9.41)
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ṅ(α)
j = n(α)

j

(
ρ̇
(α)
m

ρ
(α)
m

− d(α)c
b

γ̇
(α)
p

)
(9.41)

318 a holistic constitutive model for extrinsic eg-si monocrystals

9.6 jog density evolution

Evaluation of the dislocation mobility requires the knowledge of the ef-
fective mean jog spacing d(α)j on the mobile dislocations belonging to the
slip system α, which varies throughout deformation. The number of jogs
per unit volume for the system α is defined as n(α)

j = ρ
(α)
m /d(α)j . The model

derived in this Section for jog density evolution an extension of the one
introduced by [Cuitiño 1997], here accounting for jog annihilation.

It is necessary to work with an effective jog density because, like for
impurities, dynamic ageing of dislocations takes place. Freshly generated
dislocations are less jogged than new ones and move consequently faster
at a given effective stress. Working with a single dislocation population
on each slip system, we cannot go into the details of dislocation density
distribution as a function of its jogged state, and simplify the problem to a
single nj.

9.6.1 Jog formation rate

We assume jogs to form solely during dislocation junction unzipping events.
Jog formation by double cross-slip is neglected. As is shown later on, this
approximation yields satisfying results.

Junction formation and unzipping leads to the formation of atomic jogs
on both interacting dislocations. The density of jog-producing obstacles on
the slip plane is taken as ρ

(α)
obs . The jog density increase rate reads then ṅ(α)
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(α)
c γ̇

(α)
p /b.

After simplification this gives for nj:
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The net jog evolution rate is the sum of Eqs. 9.40 and 9.41. One evolution
equation is required for each dislocation character, since we distinguish the
jog spacings dj,60 and dj,s on 60° and screw segments respectively.

9.6.3 Discussion

The present model remains simple, as jog annihilation has been shown
in [Messerschmidt 1970, Messerschmidt 1971] to result from the density of
point defects in the crystal. The evolution equations for the jog spacing
and point defects concentration are then coupled, resulting in an additional
complexity that we do not attempt to reproduce in the present work.

Writing d(α)c = κ
(α)
− b, the net jog evolution equation reads:

ṅ(α)
j =κ

(α)
+ ρ

(α)
obs

γ̇
(α)
p

b
+ ρ

(α)
m ∑

β∈ fα

√
1 −

(
n(β)

0 .n(α)
0

)2
κ
(β)
+

γ̇
(β)
p

b

+ n(α)
j

(
ρ̇
(α)
m

ρ
(α)
m

− κ
(α)
− γ̇

(α)
p

) (9.42)

Eq. 9.42 can be used to derive the steady-state jog density on a given
system α. Assuming that ρ̇

(α)
m 	 ρ

(α)
m , the model predicts a steady-state

value of n(α)
j proportional to the ratio κ

(α)
+ /κ

(α)
− . The ratio of the constitutive

parameters defines the equilibrium density (all other things being equal),
while their individual values affect the transition speed between two states.
The model exposed in this Section yields an effective jog spacing at steady-
state:

d(α)j � b
κ
(α)
−

κ
(α)
+

ρ
(α)
m γ̇(α)

ρ
(α)
obs γ̇(α) + ρ

(α)
m ∑β∈ f(α)

κ
(β)
+

κ
(α)
+

γ̇(β)

(9.43)

In particular, if γ̇(α) � γ̇(β), a situation typical of stage I, then Eq. 9.43
reduces to d(α)j � bκ

(α)
− ρ

(α)
m /κ

(α)
+ ρ

(α)
obs .

Experiments and simulations show (see, e.g., [Karthikeyan 2004] and
references therein) that jogs tend to annihilate with each other until their
spacing reaches the equilibrium Orowan bowing value of μb/τe f f , that is,
jog spacing is stress-dependent. It is therefore tempting to introduce a stress
dependency into the constitutive parameters κ

(α)
+ and κ

(α)
− . This aspect is

discussed in Section 10.4.2.
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9.7 diffusion of impurities to the dislocation cores

The same model as introduced in Chapter 6 is presented here. Only a
purely local diffusion phenomena is considered in this work, assuming
that the impurity concentration at the core boundary is similar to the one
in the bulk c∞

O and that the latter is not affected by impurity gettering.
This approximation is justified by the absence of development of Cottrell
atmosphere in the strain field of the dislocation at the high temperatures
considered in this work. It simplifies tremendously the numerical treatment
of the diffusion problem. Static diffusion follows the equation:

ċ(α)O

∣∣∣
v(α)=0

=
2DO
πr0b

(
c∞

O − c(α)O exp
(
−�GO

kbT

))
(9.44)

with DO the effective diffusion coefficient of oxygen in the silicon ma-
trix, r0 the core radius taken as the lattice parameter a = 5.43 × 10−10 m,
and �GO the binding energy of oxygen to the dislocation. �GO can
be expressed as a function of the enthalpy change �HO and entropy
change �SO, as �GO = �HO − T�SO. Experimental observations by
[Senkader 2002, Murphy 2006] give �SO � kb and �HO = 0.74 eV above
923 K. The diffusion coefficient of oxygen to the dislocations DO depends
on the temperature and the concentration of dissolved oxygen in the crystal
as different species exhibit affect DO as shown by [Senkader 2001]. Above
973 K DO is given by Eq. 9.45, expressed in m2.s-1 (see [Mikkelsen 1985]):

DO = 0.13 × 10−4 exp
(
−2.53

kbT

)
(9.45)

Diffusion to a moving dislocation has been modeled by [Petukhov 1990,
Petukhov 2003]:

ċ(α)O

∣∣∣
v(α)>0

= ċ(α)O

∣∣∣
v(α)=0

+
v(α)

a

(
r0

a
c∞

O − c(α)O exp
(
− a

v(α)tm

))
(9.46)

with tm = λO
a2

DO
exp (−ΔGO/kbT) the time of oxygen migration from the

bulk back onto the dislocation core. The prefactor λO translates the effect
of the lattice distortion close to the dislocation core and is taken as 102.
Its influence on the mechanical behavior of extrinsic materials has been
discussed in Chapter 6.
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This approximation is justified by the absence of development of Cottrell
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ċ(α)O

∣∣∣
v(α)=0

=
2DO
πr0b

(
c∞

O − c(α)O exp
(
−�GO

kbT

))
(9.44)

with DO the effective diffusion coefficient of oxygen in the silicon ma-
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change �SO, as �GO = �HO − T�SO. Experimental observations by
[Senkader 2002, Murphy 2006] give �SO � kb and �HO = 0.74 eV above
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The model equations introduced in this Chapter enrich significantly the
palette available for semiconductors. It has however a high numerical cost,
as there exists no closed-form for the dislocation velocity law. The present
model considers 24 systems of mobile dislocations, with two different
populations of mobile segments; up to 24 nonlinear equations must be
solved to determine their velocity only at each time increment.

The many insights provided by the novel constitutive equations, such
as differentiating the evolution of screw and 60° segments according to
their mobility, provide valuable information about the micromechanisms
responsible for the peculiar plastic behavior of silicon.

Our constitutive model is not restricted solely to silicon materials. Its
extension to other diamond cubic materials is quite straightforward, pro-
vided parameters such as the activation energies for cross-slip and double
kink motion mechanism are known. Its applicability to f.c.c. materials can
also be examined: the fundamental difference with semiconductors would
lie in the rate-limiting role of localized obstacles. The influence of Peierls
valleys on dislocation motion in the latter material class is namely neg-
ligible. Dislocation dynamics would be severely affected by a change in
the velocity law. However, the evolution laws and expressions for internal
stresses introduced in the present Chapter should be valid for f.c.c. metals
as well.

The model is calibrated to experimental data and discussed in the next
Chapter.
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M O D E L C A L I B R AT I O N A N D R E S U LT S

The holistic constitutive model derived in the previous Chapter is calibrated to experimental
data. Given the physical arguments relied on to establish the constitutive equations, a rather
limited amount of parameters need to be identified by best fit. A self-multiplication law for
the yield region of intrinsic silicon crystals is derived based on the absence of strain rate
dependency of its constitutive parameter. It is shown to be accurate at the usual strain rates
of interest. The model reproduces fairly well the increase of upper yield stress at large oxygen
contents. Localized obstacles are shown to lead neither to significant hardening in stage II
nor to experimentally observed overshoot. On the other hand, accounting for jog dragging
allows the reproduction of these features. Finally, the performances and limitations of the
model are discussed, and suggestions for future work given.

10.1 preliminary discussion

10.1.1 FE model

The model has been implemented in a VUMAT for Abaqus/Explicit only.
The numerical details of the kinematics are given in Annex A and Chapter 6.

Yield region

A finite element model similar as previously is used in the following. The
specimen design has been improved, however, to better reproduce the
original samples1, see Fig. 10.1.

Identification of the parameters related to the yield region is done by
applying a constant velocity to the outer nodes of an elastic bounding block
while keeping the second one fixed at its end.

Large strains

bounding blocks The study of large strains is done on the contrary
by removing the bounding blocks and applying a constant velocity to the
ends of the silicon specimen. This method is chosen because the relatively

1 The specimen used in Part ii have a fillet radius of 6 mm, whereas the actual tensile samples
have a fillet radius of 3 mm. This difference has no noticeable effect on the study of small
strains, but affects strongly deformation localization at large strains.
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Figure 10.1: Sketch of the tensile specimen used for identification of the constitutive
parameters of the constitutive model. The cross-section width is 2 mm.

low stiffness of the bounding blocks affects the stress-strain response at
high hardening rates such as the ones met in stage II. In other words,
the bounding blocks of Eblock 	 ESi absorb significantly the energy when
silicon is stiff, be it in the elastic range or in multiple slip situations.

Assuming that the bounding blocks always play a role at large strains
yields a strain rate- and temperature-dependence of the hardening rate in
stage II that is not detected experimentally. It can be concluded that the
influence of the tensile apparatus discussed in Chapter 6 fades out for good
from the upper yield point.

element formulation Abaqus/Explicit offers two types of linear
brick elements (8 nodes), either with full or reduced integration. Choosing
the former type gives poor results, as discussed in Annex C. Using C3D10M
elements leads to very large computational times, owing to the mesh
refinements necessary to study overshooting. Consequently, only first-order,
reduced integration elements C3D8R are left available.

This requires in turn a careful study of hourglassing, as a sustained
deformation in single glide and high strain rates propagates an instability
upon activation of secondary systems, leading to element hourglassing
and model instability. Abaqus/Explicit proposes several algorithms for
hourglass treatment, and stable results could be obtained only using the
integral viscoelastic approach (relax stiffness option).

For the study of overshoot some finer meshes are used, as shown in
Fig. 10.2. A coarse mesh can still yield stable results if automatic remeshing
is more affordable than the cost of a denser mesh. In practice, the mesh
density requirements for the study of extreme overshoot cases are so large
that it is numerically more efficient to opt for remeshing option.

10.1.2 Model parameters to identify

Analysis of the experimental data is made difficult by the strong influence
of the tensile apparatus in the yield region, as discussed in Section 7.2.
We show below that some of the unknown parameters and functions for
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10.2 experimental data and initial conditions

The experimental data sets used for calibration of the model parameters are
the same ones as introduced in Part ii and taken from the extensive work
of [Yonenaga 1978, Yonenaga 1981, Yonenaga 1984].

All tensile specimen are oriented in the [1̄2̄3] direction, with the [111] axis
in the width direction. This gives initial Euler angles in Bunge’s notation of
169.1°, 54.7° and 45°, respectively (see Annex A).

Data sets ds1, ds2 and ds3 have been obtained on intrinsic, Float-Zone
(FZ) grown silicon monocrystals. Experimental data set ds4 deals with
Czochralski extrinsic crystals of varying dissolved oxygen contents.

Initial dislocation densities

The initial dislocation densities ρ0,exp have been experimentally measured by
etch-pit counting on the [111] surfaces. This means that the values provided
in the works of Yonenaga et al. are the total densities of slip systems on
planes A, C and D using Schmid & Boas notation3 (see Fig. A.1).

In order to determine the initial dislocation densities on each of the
twelve slip systems, the following method is adopted:

1. Determine the optimal value of the variable parameter in K1 assuming
all dislocations to be initially present on the primary slip system
exclusively

2. Deform a virgin crystal (1173 K, γ̇ = 1.2 × 10−4 s−1) up to the lower
yield point4, extract the dislocation density percentages on each slip
system, with respect to ∑α ρ

(α)
m and ∑α ρ

(α)
i

3. Scale the densities so that ∑A,C,D ρt = ρ0,exp, by fixing the ratio of
mobile to immobile dislocation densities

4. optimize K1 to the yield region of experimental data sets, reiterate the
algorithm until convergence.

A virgin crystal is defined as having initial mobile dislocation densities
of 104 m−2 on all slip systems, and null immobile densities. At the lower
yield point, almost all dislocations (roughly 90 %) are immobile. How much
of immobile dislocations annihilate upon annealing depends on the final
density reached: the longer the annealing time, the lower the measured
initial density and the larger its relative content of mobile dislocations.

3 The plane B is actually the cross-slip system, which is not activated in the uniaxial tensile test
considered. Consequently, dislocation densities on this plane are negligible anyway.

4 The experimental prestrain is 10 %, into the early stage I. This leads to a larger immobile-to-
mobile dislocation ratio before annealing than the one resulting from deformation up to the
lower yield point.

326 model calibration and results

10.2 experimental data and initial conditions

The experimental data sets used for calibration of the model parameters are
the same ones as introduced in Part ii and taken from the extensive work
of [Yonenaga 1978, Yonenaga 1981, Yonenaga 1984].

All tensile specimen are oriented in the [1̄2̄3] direction, with the [111] axis
in the width direction. This gives initial Euler angles in Bunge’s notation of
169.1°, 54.7° and 45°, respectively (see Annex A).

Data sets ds1, ds2 and ds3 have been obtained on intrinsic, Float-Zone
(FZ) grown silicon monocrystals. Experimental data set ds4 deals with
Czochralski extrinsic crystals of varying dissolved oxygen contents.

Initial dislocation densities

The initial dislocation densities ρ0,exp have been experimentally measured by
etch-pit counting on the [111] surfaces. This means that the values provided
in the works of Yonenaga et al. are the total densities of slip systems on
planes A, C and D using Schmid & Boas notation3 (see Fig. A.1).

In order to determine the initial dislocation densities on each of the
twelve slip systems, the following method is adopted:

1. Determine the optimal value of the variable parameter in K1 assuming
all dislocations to be initially present on the primary slip system
exclusively

2. Deform a virgin crystal (1173 K, γ̇ = 1.2 × 10−4 s−1) up to the lower
yield point4, extract the dislocation density percentages on each slip
system, with respect to ∑α ρ

(α)
m and ∑α ρ

(α)
i

3. Scale the densities so that ∑A,C,D ρt = ρ0,exp, by fixing the ratio of
mobile to immobile dislocation densities

4. optimize K1 to the yield region of experimental data sets, reiterate the
algorithm until convergence.

A virgin crystal is defined as having initial mobile dislocation densities
of 104 m−2 on all slip systems, and null immobile densities. At the lower
yield point, almost all dislocations (roughly 90 %) are immobile. How much
of immobile dislocations annihilate upon annealing depends on the final
density reached: the longer the annealing time, the lower the measured
initial density and the larger its relative content of mobile dislocations.

3 The plane B is actually the cross-slip system, which is not activated in the uniaxial tensile test
considered. Consequently, dislocation densities on this plane are negligible anyway.

4 The experimental prestrain is 10 %, into the early stage I. This leads to a larger immobile-to-
mobile dislocation ratio before annealing than the one resulting from deformation up to the
lower yield point.

326 model calibration and results

10.2 experimental data and initial conditions

The experimental data sets used for calibration of the model parameters are
the same ones as introduced in Part ii and taken from the extensive work
of [Yonenaga 1978, Yonenaga 1981, Yonenaga 1984].

All tensile specimen are oriented in the [1̄2̄3] direction, with the [111] axis
in the width direction. This gives initial Euler angles in Bunge’s notation of
169.1°, 54.7° and 45°, respectively (see Annex A).

Data sets ds1, ds2 and ds3 have been obtained on intrinsic, Float-Zone
(FZ) grown silicon monocrystals. Experimental data set ds4 deals with
Czochralski extrinsic crystals of varying dissolved oxygen contents.

Initial dislocation densities

The initial dislocation densities ρ0,exp have been experimentally measured by
etch-pit counting on the [111] surfaces. This means that the values provided
in the works of Yonenaga et al. are the total densities of slip systems on
planes A, C and D using Schmid & Boas notation3 (see Fig. A.1).

In order to determine the initial dislocation densities on each of the
twelve slip systems, the following method is adopted:

1. Determine the optimal value of the variable parameter in K1 assuming
all dislocations to be initially present on the primary slip system
exclusively

2. Deform a virgin crystal (1173 K, γ̇ = 1.2 × 10−4 s−1) up to the lower
yield point4, extract the dislocation density percentages on each slip
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3. Scale the densities so that ∑A,C,D ρt = ρ0,exp, by fixing the ratio of
mobile to immobile dislocation densities

4. optimize K1 to the yield region of experimental data sets, reiterate the
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A virgin crystal is defined as having initial mobile dislocation densities
of 104 m−2 on all slip systems, and null immobile densities. At the lower
yield point, almost all dislocations (roughly 90 %) are immobile. How much
of immobile dislocations annihilate upon annealing depends on the final
density reached: the longer the annealing time, the lower the measured
initial density and the larger its relative content of mobile dislocations.

3 The plane B is actually the cross-slip system, which is not activated in the uniaxial tensile test
considered. Consequently, dislocation densities on this plane are negligible anyway.

4 The experimental prestrain is 10 %, into the early stage I. This leads to a larger immobile-to-
mobile dislocation ratio before annealing than the one resulting from deformation up to the
lower yield point.
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However, the exact mobile-to-immobile density ratio has little impact on
the results, and assuming that almost all dislocations (90 %) are mobile seg-
ments yields good results. Equal initial densities of screw and 60° segments
are assumed on all slip systems.

The forest densities have on the contrary more impact. The algorithm
described above shows that after prestraining, roughly 40 % of dislocations
are on the primary plane only. This leaves a relatively large density of trees
availabe for the generation of Frank-Read sources.

Temperature and strain rate

Temperature varies between 1073 and 1223 K by 50 K increments in ds1
while the crosshead speed is set so that the shear strain rate is γ̇ = 1.2 ×
10−4 s−1. The shear strain rate spans a decade from 6× 10−5 to 6× 10−4 s−1

in ds2 at a fixed temperature of 1173 K.

Extrinsic crystals

The deformation conditions for ds4 are as follows: temperature 1073 K,
shear strain rate γ̇ = 1.1 × 10−4 s−1 and the initial total dislocation density
ρ0,exp = 1010 m−2.

Jog density

The initial linear jog density on each slip system, when used, is set to
b exp (1.1/kbT), which is the jog density at thermal equilibrium assuming5

that Fjog = 1.1 eV.

Experimental data sets

The experimental data sets are shown in Fig. 10.3. The force-time (F − t)
simulation outputs are converted into shear strain-resolved shear stress
curves (τ − γ) to allow their comparison with the experimental data sets.
The following equations are used (see [Yonenaga 1981]):

ε =
vCHt

l0
=

√
(γ cos φ0 + cos λ0)

2 + sin2 λ0 − 1 (10.1)

τ =
F cos φ0

√
(1 + ε)2 − sin2 λ0

A0 (1 + ε)2 (10.2)

where ε is the engineering strain, vCH is the constant crosshead speed,
l0 = 30 mm and A0 = 6 mm2 the initial gauge length and cross-section area.

5 The exact Fjog is not known, but this value is chosen because it does not affect dislocation
motion in the early deformation stages, as is experimentally observed.
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Figure 10.3: Experimental data used for model calibration. See text for details.

φ0 and λ0 are the initial angles between the tensile direction and the primary
slip normal and direction, respectively: cos φ0 = 4/

√
42, cos λ0 = 4/

√
28

and sin λ0 =
√

3/7. Derivation of the experimental stress-strain curves
from the force-time curves assume vCH and ε̇ constants. As discussed in
Section 7.2, the latter assumption is not true in the yield region and propor-
tionality between time and strain is not verified throughout deformation.
However for readability all figures in the following assume ε(t) ∝ t.

Preference is given for the study of the large strains to the force-time
curves rather than to the resolved shear stress-shear strain because the
methodology employed by the experimentalists to compute τ and γ looses
accuracy at large strains.
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10.3 modeling the yield region

10.3.1 Intrinsic crystals

For bounding blocks of length 5 mm, the Young’s moduli Eblock giving good
fits with the experimental data are given in Tables 10.1 to 10.3.

Derivation of K1, effect of temperature and strain rate

traditional laws The yield region of silicon crystals sees a marginal
increase in the forest density as noticed by [Yonenaga 1978]. All dislocation
multiplication processes in the early stage 0 at intermediate temperatures
can be assigned to the influence of K1 as long as the forest obstacle density
is not large. This function can consequently be identified by considering
the upper yield point of ds1 and ds2.

Once the dislocation density has increased on all active slip systems
owing to K1, generation from forest trees can take place, the intensity of
which is steered by kFR. Therefore, the yield drop is governed both by K1
and kFR. Let us in a first time set kFR = 16 and assess the influence of the
K1 function on the yield region.

Writing K1 = δg(τe f f ), best fits of δ for various multiplication laws to ds2
are given in Table 10.4, assuming δ constant and taking the optimum6 Aαα

and Bαα (see below).

Athermal dislocation multiplication from Frank-Read sources should
lead to a constant δ, while multiplication by means of thermally activated
mechanisms such as double cross-slip should at worse decrease with the
strain rate. However δ is found to increase with the strain rate indepen-
dently of the model considered. This behavior is physically unprobable. An
increase of the cross-slip activity at large strain rates by the application of
stress on the collinear system is not possible since the latter is null given
the

[
123

]
orientation of the tensile axis.

All three multiplication laws for the yield region considered until now
in the literature do not fit correctly to experimental data at various strain
rates, as has already been mentioned in Chapter 5.

effect of kfr The influence of K1 fades out through the yield drop as
forest dislocations are generated on secondary systems owing to the large
effective stresses applied in the yield region. As shown in Fig. 10.4, the
intensity of the yield drop is strongly affected by kFR.

6 These two parameters have an extremely weak influence on the upper yield stress.

T (K) 1073 1123 1173 1223

Eblock (MPa) 750 360 250 140

Table 10.1: Best fits of Eblock for ds1.
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Writing K1 = δg(τe f f ), best fits of δ for various multiplication laws to ds2
are given in Table 10.4, assuming δ constant and taking the optimum6 Aαα

and Bαα (see below).
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orientation of the tensile axis.

All three multiplication laws for the yield region considered until now
in the literature do not fit correctly to experimental data at various strain
rates, as has already been mentioned in Chapter 5.

effect of kfr The influence of K1 fades out through the yield drop as
forest dislocations are generated on secondary systems owing to the large
effective stresses applied in the yield region. As shown in Fig. 10.4, the
intensity of the yield drop is strongly affected by kFR.

6 These two parameters have an extremely weak influence on the upper yield stress.

T (K) 1073 1123 1173 1223

Eblock (MPa) 750 360 250 140

Table 10.1: Best fits of Eblock for ds1.



330 model calibration and results

γ̇ (s−1) 6 × 10−5 2 × 10−4 6 × 10−4

Eblock (MPa) 320 380 520

Table 10.2: Best fits of Eblock for ds2.

ρ0,exp (109 m−2) 2 9 20

Eblock (MPa) 400 340 250

Table 10.3: Best fits of Eblock for ds3.

Given the multiplication law derived below, the yield drop is very well
reproduced by setting kFR = 16. Note that the optimal value is sensibly
larger than the one derived by means of DD for fcc crystals (8), and is
affected both by the hardening coefficients and the multiplication law
chosen.

hardening coefficients At the lower yield point the density of
immobile dislocations is significant and contributes to τly. Consequently, the
magnitude of the lower yield stress is affected by both Aαα and Bαα. These
parameters are identified using the experimental data at γ̇ = 2 × 10−4 s−1

from ds2 as a reference.
Observation of the hardening rate θ = d(τe f f + τint)/dγ beyond the

lower yield point allows for the identification of Bαα. With ρm near the
steady-state in stage I and dτe f f /dγ determined by the velocity law, θI in
early stage I is modulated solely by the increase of ρi through Bαα.

self-multiplication law Observation of the strain rate dependency
of the optimum δ parameter in Table 10.4 indicates that increasing the
power relationship between K1 and τe f f reduces the span covered by δ.
Based on this idea, the following multiplication law is found to represent
very well the yield region at all strain rates considered in ds2, with a strain
rate independent δ:

K1 = δτ
(α)1.25
e f f (10.3)

The introduction of a superlinear dependence on τ
(α)
e f f relieves the need

for adjusting δ to each experimental curve.

Inserting a proportionality to 1/
√

ρ
(α)
m in Eq. 10.3 as would do [Moulin 1999]

does not improve noticeably the model accuracy in the yield region. On the
contrary, such a term delays the yield drop by slowing down the dislocation
multiplication from the upper yield point.

Meanwhile, inserting a saturation term in the dislocation multiplication
law, function of the mobile dislocation density, has been observed to stabilize
the model output at large strains (see below). A square root dependency of
this term as suggested by [Moulin 1999] is however too sensitive because of
the marked yield drop delay that follows.
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K1 = δ
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K1 = δτe f f 1.2 × 10−4 1.4 × 10−4 1.6 × 10−4

Table 10.4: Best fits of δ to ds2 for classical dislocation multiplication laws for the
yield region, assuming δ constant and kFR = 16.
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Figure 10.4: Experimental (dashed line) and simulated (plain lines) stress-strain
curves in the yield region of the intrinsic crystal γ̇ = 2 × 10−4 s−1 of
ds2 for various kFR values.

A satisfying approximation of the yield region at all strain rates is then
obtained by setting: ⎧⎪⎪⎨⎪⎪⎩

Aαα = 0.27

Bαα = 0.065

δ = 2.5 × 10−6

(10.4)

Turning to ds1, we find that Eq. 10.3 still reproduces correctly the yield
region at all temperatures with the same δ, as shown in Figure 10.5.

Figure 10.6 compares the simulated and experimental yield stresses
of ds1 and ds2. A very good agreement is reached at various strain rates,
whereas some discrepancies appear as the temperature is changed. Inserting
a temperature dependency into δ could improve further the simulation
output in the yield region.

The simulated lower yield stresses of ds1 and ds2 can be fitted successfully
by Eq. 8.1 with: {

m = 1.1

Uly = 2.19
(10.5)
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Figure 10.5: Experimental (dashed lines) and simulated (plain lines) stress-strain
curves in the yield region of intrinsic crystals.

which is in agreement with the values usually derived and shows that the
constitutive model derived in this Part has the same ability as the AH model
in predicting the yield stresses7. The upper yield stresses can be fitted by
a similar law τuy ∝ γ̇1/n exp

(
Uuy/kbT

)
with n = 2.5 and Uuy = 1.08. Both

sets of parameters fall in the usual range found by experimentalists (see
Table 1 in [Yonenaga 1978]).

High initial dislocation densities

Finally, the influence of large initial (forest) dislocation densities is simulated
in Fig. 10.7. A fairly good agreement is reached between experimental
results and simulations for what concerns the progressive disappearance of

7 It should be indeed no surprise that m � 1 and U � 2.2 are retrieved since the influence of
jogs is neglected and all dislocation motion proceeds by the double kink mechanism.
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Figure 10.6: Comparison of experimental (dashed lines) and simulated (plain lines)

upper and lower yield stresses, respectively in blue and red. Left:
influence of temperature (ds1). Right: influence of strain rate (ds2).

the upper yield point with increasing initial dislocation density. However,
marked discrepancies are observed between the experimental and simulated
yield and flow stress values.

The delayed yielding is partially caused by the insertion of the saturation
term in Eq. 10.5. At large initial ρm, the extent of self-multiplication is
reduced and the sole influence of forest dislocations remains8.

This points to a limitation of the present constitutive model, which is not
able to reproduce quantitatively the evolution of the yield stresses at large
initial dislocation densities. Such a large quantitative difference of output
with respect to experimental data could be due to other factors related to
the sample batch set, such as temperature stability: attempts to reproduce
the stress-strain behavior at large initial dislocation densities with various
multiplication laws have not been successful either.

An almost linear relationship between τuy and ρ0,exp is simulated. Writing
τuy = a log

(
ρ0,exp/b

)
, the simulated data of ds3 can be well fitted by setting

a = −0.27 × 107 N.m−2 and b = 1013 m−2. This departs strongly from the
numerical values derived by [Yonenaga 1978], but shows that the influence
of the initial dislocation density on the upper yield stress can still be
approximated by a simple model.

10.3.2 Extrinsic crystals

dislocation multiplication We turn now to the case of oxygen-
contaminated samples. Table 10.5 gathers the best fits of Eblocks to the
experimental stress-strain curves from the data set ds4.

8 Extending the multiplication law by reducing the mean free path and using Eq. 9.37 instead of
Eq. 9.38 does not improve qualitatively the results.
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10.3.2 Extrinsic crystals

dislocation multiplication We turn now to the case of oxygen-
contaminated samples. Table 10.5 gathers the best fits of Eblocks to the
experimental stress-strain curves from the data set ds4.

8 Extending the multiplication law by reducing the mean free path and using Eq. 9.37 instead of
Eq. 9.38 does not improve qualitatively the results.
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the upper yield point with increasing initial dislocation density. However,
marked discrepancies are observed between the experimental and simulated
yield and flow stress values.

The delayed yielding is partially caused by the insertion of the saturation
term in Eq. 10.5. At large initial ρm, the extent of self-multiplication is
reduced and the sole influence of forest dislocations remains8.

This points to a limitation of the present constitutive model, which is not
able to reproduce quantitatively the evolution of the yield stresses at large
initial dislocation densities. Such a large quantitative difference of output
with respect to experimental data could be due to other factors related to
the sample batch set, such as temperature stability: attempts to reproduce
the stress-strain behavior at large initial dislocation densities with various
multiplication laws have not been successful either.

An almost linear relationship between τuy and ρ0,exp is simulated. Writing
τuy = a log

(
ρ0,exp/b

)
, the simulated data of ds3 can be well fitted by setting

a = −0.27 × 107 N.m−2 and b = 1013 m−2. This departs strongly from the
numerical values derived by [Yonenaga 1978], but shows that the influence
of the initial dislocation density on the upper yield stress can still be
approximated by a simple model.

10.3.2 Extrinsic crystals

dislocation multiplication We turn now to the case of oxygen-
contaminated samples. Table 10.5 gathers the best fits of Eblocks to the
experimental stress-strain curves from the data set ds4.

8 Extending the multiplication law by reducing the mean free path and using Eq. 9.37 instead of
Eq. 9.38 does not improve qualitatively the results.

10.3 modeling the yield region 333

9 10 11
1

1.5

2

2.5

3

3.5

1/k
b
T

lo
g(

τ
yp

)

−10 −9 −8 −7
1.5

2

2.5

3

3.5

log(dγ/dt)

lo
g(

τ
yp

)

Figure 10.6: Comparison of experimental (dashed lines) and simulated (plain lines)
upper and lower yield stresses, respectively in blue and red. Left:
influence of temperature (ds1). Right: influence of strain rate (ds2).

the upper yield point with increasing initial dislocation density. However,
marked discrepancies are observed between the experimental and simulated
yield and flow stress values.

The delayed yielding is partially caused by the insertion of the saturation
term in Eq. 10.5. At large initial ρm, the extent of self-multiplication is
reduced and the sole influence of forest dislocations remains8.

This points to a limitation of the present constitutive model, which is not
able to reproduce quantitatively the evolution of the yield stresses at large
initial dislocation densities. Such a large quantitative difference of output
with respect to experimental data could be due to other factors related to
the sample batch set, such as temperature stability: attempts to reproduce
the stress-strain behavior at large initial dislocation densities with various
multiplication laws have not been successful either.

An almost linear relationship between τuy and ρ0,exp is simulated. Writing
τuy = a log

(
ρ0,exp/b

)
, the simulated data of ds3 can be well fitted by setting

a = −0.27 × 107 N.m−2 and b = 1013 m−2. This departs strongly from the
numerical values derived by [Yonenaga 1978], but shows that the influence
of the initial dislocation density on the upper yield stress can still be
approximated by a simple model.

10.3.2 Extrinsic crystals

dislocation multiplication We turn now to the case of oxygen-
contaminated samples. Table 10.5 gathers the best fits of Eblocks to the
experimental stress-strain curves from the data set ds4.

8 Extending the multiplication law by reducing the mean free path and using Eq. 9.37 instead of
Eq. 9.38 does not improve qualitatively the results.



334 model calibration and results

0 2 4 6 8
0

10

20

30

Shear strain γ (%)

R
es

ol
ve

d 
sh

ea
r 

st
re

ss
 τ

 (
M

Pa
)

 

 

2×109 m−2

9×109 m−2

2×1010 m−2

Figure 10.7: Experimental (dashed lines) and simulated (plain lines) stress-strain
curves in the yield region of intrinsic crystals of set ds3.

c∞
O (1016 cm−3) <1 1.5 4 6.5 9

Eblock (MPa) 300 675 850 900 950

Table 10.5: Best fits of Eblock for ds4.

However, as seen in Fig. 10.7 and discussed above, the present model
underestimates the enhanced dislocation generation at high initial densities.
This limitation is particularly relevant for the study of extrinsic crystals,
as the simulated upper yield stress of the proxy FZ-Si sample (ρ0,exp =

1010 m−2) is 75 % higher than the one experimentally observed.
If δ is increased in order to retrieve the experimental τuy on the intrinsic

crystal, a multiplicative factor 10 is required9. Subsequent analysis shows
that the effective mobile dislocation density ρm,e f f is then an extremely small
fraction of ρm, at rather low oxygen contents. This is in clear contradiction
with experimental observations of [Yonenaga 1984].

Instead of adjusting δ to the intrinsic crystal, we adopt the same method-
ology as in Section 7.2.4. Setting η(1.5 × 1017) to 20 %, δ = 6 × 10−6 is
derived.

parameter identification Table 10.6 shows the individual values
of η giving an optimal simulated upper yield point. At the largest oxygen
concentration no reasonable10 value could be derived, with generation from
forest sources systematically precipitating the sample yielding.

9 A similar discussion is valid for other multiplication laws.
10 η values leading to initial dislocation densities on the principal lower slip system lower than

1 m−2 are typically deemed unreasonable.
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Figure 10.8: Experimental (dashed lines) and simulated (plain lines) stress-strain
curves in the yield region of extrinsic crystals of set ds4.

c∞
O (1016 cm−3) <1 1.5 4 6.5 9

η 1 0.2 10−3 10−6 -

Table 10.6: Individual best fits of η to ds4, with δ = 6 × 10−6.

Given these data, Eq. 9.16 can be fitted by setting:{
τmin

O = 2.26 MPa

τ
re f
O = 0.97 MPa

(10.6)

As for the extended AH model, the case of very large oxygen contents has
been disregarded for the derivation of these parameters.

The resulting stress-strain curves are shown in Fig. 10.8. They are dis-
cussed in Section 10.5.
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10.4 modeling late deformation stages

No parameter fitting is immediately required to define stage I, as the physi-
cal processes of dislocation storage and annihilation are readily modeled.
Activation of the secondary system A2 at large strains should follow from
the rotation of the lattice with plastic flow.

Given that lattice rotation depends on the amount of plastic flow only
and not on temperature or strain rate, the experimentally observed shift
of secondary slip towards higher strains at large τe f f betrays a peculiarity
of semiconductors, especially when the very low stress sensitivity of the
dislocation velocity in virgin materials is taken into account.

This stress overshoot is traditionally attributed to the pinning of sec-
ondary dislocations in solid solutions. However, intrinsic crystals only are
considered here. In addition to a delayed onset, [Sumino 1971] detected
a change in the activation energy for dislocation motion in stage II and
mentioned high jog densities on the intersecting dislocations as a possible
rate-limiting mechanism.

10.4.1 Localized obstacles only

We find that it is impossible to reproduce the overshoot, keep a single slip system
active in stage I and simulate a strong hardening rate in stage II if only the
influence of localized obstacles is accounted for and jogs are disregarded, as shown
in Fig. 10.9.

The dislocation multiplication law adopted by our model leads to the
simultaneous activation of the slip systems D4 and A2 all throughout
what could be identified as stage I, characterized by a low hardening rate.
Secondary systems C3 and D6 are also active up to intermediate strains,
as seen in Fig. 10.10. This behavior is due both to the absence of obstacles
strong enough to pin secondary dislocations in stage I (be it forest trees
or jogs), and to the weak stress dependency of dislocation velocity in free
flight (m0 = 1) combined to a constant normalizing stress τ0.

An attempt to magnify the effect of forest obstacles by increasing Fobs
to 4.4 eV does not bring any significant improvement to the simulated
behavior of silicon monocrystals: the simulated hardening rate in stage II is
simply brought closer to the experimental one.

This could be expected from the analysis performed in Chapter 8, where
it is shown that forest obstacles have only a minor effect on dislocation
velocity (and therefore the potential variations of the effective stress), and
then only at low τe f f .

initial yielding The shape of the yield region is due both to the very
low initial dislocation contents and to the particular K1 function chosen. No
bounding block is included in the finite element model, so that all energy
applied is absorbed by the tensile specimen only. The initial slope of the
stress-strain curve is given by the elastic properties of silicon. Whatever
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Figure 10.9: Comparison of experimental and simulated stress-strain curves of ds2.
Jog dragging is not accounted for, and only localized obstacles affect
dislocation motion. The simulated curves are translated so the experi-
mental and simulated lower yield points coincide.

the K1 law, an initial stress peak at very high values and of extremely
short duration is simulated. It is caused by a first yielding of the specimen,
marked by an increase of the mobile dislocation density by a factor 100. A
sharp drop follows the generation of this first dislocation burst. The total
ρm available is then not large enough to sustain the applied strain rate, and
a second, more regular yielding follows.

Choosing K1 ∝ τ1.25
e f f leads to a rather high stress sensitivity of the genera-

tion rate; dislocations are easily generated and the secondary yield drop is
much lower than the one obtained if bounding blocks (the tensile appara-
tus) can absorb energy. Less immobile dislocations are generated and the
resulting lower yield point is lower than the experimental one. Note that
the yield stresses of Fig. 10.9 still follow Eq. 8.1 with the same nyp and Uyp
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tus) can absorb energy. Less immobile dislocations are generated and the
resulting lower yield point is lower than the experimental one. Note that
the yield stresses of Fig. 10.9 still follow Eq. 8.1 with the same nyp and Uyp
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Figure 10.9: Comparison of experimental and simulated stress-strain curves of ds2.
Jog dragging is not accounted for, and only localized obstacles affect
dislocation motion. The simulated curves are translated so the experi-
mental and simulated lower yield points coincide.
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marked by an increase of the mobile dislocation density by a factor 100. A
sharp drop follows the generation of this first dislocation burst. The total
ρm available is then not large enough to sustain the applied strain rate, and
a second, more regular yielding follows.

Choosing K1 ∝ τ1.25
e f f leads to a rather high stress sensitivity of the genera-

tion rate; dislocations are easily generated and the secondary yield drop is
much lower than the one obtained if bounding blocks (the tensile appara-
tus) can absorb energy. Less immobile dislocations are generated and the
resulting lower yield point is lower than the experimental one. Note that
the yield stresses of Fig. 10.9 still follow Eq. 8.1 with the same nyp and Uyp

10.4 modeling late deformation stages 337

0 10 20 30 40
0

10

20

30

Shear strain γ (%)

R
es

ol
ve

d 
sh

ea
r 

st
re

ss
 τ

 (
M

Pa
)

 

 

6×10−4 s−1

2×10−4 s−1

6×10−5 s−1

(a) Fobs = 2.2 eV

0 10 20 30 40
0

10

20

30

Shear strain γ (%)

R
es

ol
ve

d 
sh

ea
r 

st
re

ss
 τ

 (
M

Pa
)

 

 

6×10−4 s−1

2×10−4 s−1

6×10−5 s−1

(b) Fobs = 4.4 eV

Figure 10.9: Comparison of experimental and simulated stress-strain curves of ds2.
Jog dragging is not accounted for, and only localized obstacles affect
dislocation motion. The simulated curves are translated so the experi-
mental and simulated lower yield points coincide.

the K1 law, an initial stress peak at very high values and of extremely
short duration is simulated. It is caused by a first yielding of the specimen,
marked by an increase of the mobile dislocation density by a factor 100. A
sharp drop follows the generation of this first dislocation burst. The total
ρm available is then not large enough to sustain the applied strain rate, and
a second, more regular yielding follows.

Choosing K1 ∝ τ1.25
e f f leads to a rather high stress sensitivity of the genera-

tion rate; dislocations are easily generated and the secondary yield drop is
much lower than the one obtained if bounding blocks (the tensile appara-
tus) can absorb energy. Less immobile dislocations are generated and the
resulting lower yield point is lower than the experimental one. Note that
the yield stresses of Fig. 10.9 still follow Eq. 8.1 with the same nyp and Uyp



338 model calibration and results

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1x 10
−3

Shear strain γ (%)

Sh
ea

r 
st

ra
in

 r
at

e 
(s

−
1 )

 

 

A2
C3
D4
D6

Figure 10.10: Shear strain rate on the primary (D4) and secondary (A2, C3 and D6)
systems in the central elements of the specimen gauge. Only localized
obstacles are accounted for and Fobs = 2.2 eV. γ̇ = 6 × 10−4 s−1 from
ds2.

parameters. Beyond the yield region, the experimental and simulated flow
stresses evolve at the same rate.

Energy absorption by the tensile apparatus lowers τe f f in the specimen
gauge in the yield region, reducing hereby the mobile dislocation generation
rate. No secondary yielding is detected in this case, but more immobile
dislocations are generated during the yield drop. This explains the slight
differences between the τly simulated with and without elastic bounding
blocks.

10.4.2 Influence of jog dragging

Preliminary discussion

A qualitatively good behavior is obtained if nj 
= 0 and actually increases
on latent systems. Jog dragging completely offsets any influence of the
localized obstacles, as discussed in Section 8.6. The time of free flight t f
becomes much larger than the waiting time at obstacles tw as long as Fobs
remains in acceptable bounds for Friedel statistics to be valid (< 0.2μb3, see
[Kocks 1975]), and has reasonable values for a forest pinning obstacle type.

Two parameters control the jog evolution for each dislocation character,
κ+ and κ−. Some requirements are set on them for the model to produce
acceptable results.

• Primary dislocations must not be affected by jog dragging during
stage I, as experimental evidence shows that the activation energy for
their motion remains constant throughout easy glide and equal to the
one measured on jog-free dislocations (see [Sumino 1971]). This either
limits the magnitude of κ+, or poses additional constraints on κ−, that
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must eventually compensate for a large generation rate. The results
of Section 9.6.3 can provide with an estimate of the steady-state jog
density reached on the primary system in stage I.

• In particular, this observation implies that mobile dislocations tend
to have lower jog densities than immobile ones. This gives validity to
our constitutive equations that assume jog annihilation when γ̇ 
= 0.

• Secondary dislocations must be significantly affected by jog dragging
in order for overshoot to be detectable. Being at rest during stage I,
κ− has little or no influence on the jog density build-up of secondary
dislocations. This implies a lower bound for κ+.

• The magnitude of κ− ultimately defines the mechanical behavior of
the crystal at large strains, when both the primary and secondary
dislocations move by jog-dragging. This strain domain sees additional
microstructural changes such as cell formation, that our model cannot
account for. It is therefore quite awkward to base the identification of
κ− on the study of late deformation stages.

Rather, it can be considered that κ− should be large enough for
primary dislocations never to be affected by jog dragging in stage I,
and small enough not to lead to model instabilities11 at the transition
between stage I and II.

• The model considers dislocation loops to be made up of two dislo-
cation types, screw or 60°. Both have a screw component and are
affected by jog-dragging as discussed in Chapter 8.

It has been already emphasized that for physical reasons, the same
parameters cannot be used in the jog density evolution laws of screw
and 60° dislocations, i.e. one cannot have dj,s = dj,60 at any time.

A simple model distinguishing mixed (oriented at an angle α from
the Burger’s vector) from screw dislocations could assume that only
cos α jogs created are sessile and impede dislocation motion. Jog
annihilation relying on a capture radius and the actual jog density
on the line, this process then takes place 1/ cos α faster on mixed
segments. This translates for 60° dislocations as:{

κ+,60 = κ+,s/2

κ−,60 = 2κ−,s
(10.7)

Generation of jogs on secondary 60° dislocations must still be large
enough to prevent an early activation of the slip system. Note that
this simple model yields an infinite effective sessile jog spacing on
edge dislocations, which is the case.

11 Here, instability must be understood as a shift between the two motion modes. Upon activation
of secondary dislocations associated to a peak in the resolved shear strain rate, a high κ−
could lead to a transition period during which the jog density is so low that their drag does
not govern motion any longer.
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These assumptions reduce the number of unknown parameters, and only
the two κ related to screw dislocations are needed to define the behavior of
silicon in multiple slip.

An additional factor influencing the simulated mechanical behavior of
silicon in multiple slip is the actual value of the self-diffusion coefficient
Dsd. As mentionned in Section 8.6, an increase of this parameter due to, e.g.,
the presence of point defects at or lattice distortion close to the dislocation
cores, smoothens the transition between the velocity modes. We do not
investigate this possibility here.

hourglassing and mesh effects Large κ+,s values imply that sin-
gle slip is active over a larger strain range as dislocation motion on the
secondary systems is more impeded. Deformation in single slip leads to
significant element shearing. At large κ+,s the elements become very dis-
torted upon "release" of the secondary systems, and hourglassing becomes
a significant problem. Abaqus/Explicit responds by adding some hour-
glass stiffness, resulting in a facticious constitutive response of the model.
Ultimately, the secondary system is activated too early and significant
instabilities are propagated through the mesh.

A way to overcome this issue is to use the remeshing abilities of Abaqus/-
Explicit. Remeshing at frequent intervals guarantees that elements keep an
acceptable shape and reduces the influence of hourglassing on the solution.
However, this strategy increases significantly the computational cost and
forbids the use of parallelization to speed up the calculations.

Constant κ’s

Using constant jog evolution parameters allows the exploration of the
basic abilities of the model. Strain rate and temperature both affect the
effective stress necessary to set dislocations in motion, and experimental
observations show that the severity of overshoot increases with τe f f , but
such a behavior is not correctly retrieved when using constant κ’s.

The model of [Messerschmidt 1970] considers indeed that jog annihila-
tion is thermally activated and depends both on the availability of point
defects in the bulk (generated during deformation) and on the formation
rate of jog pairs. The equations of the present model do not attempt to
account for these phenomena.

Instead, we can assume an effective stress dependency of the jog genera-
tion parameter κ+,s. This would insert an indirect strain rate and tempera-
ture dependency in the overshoot extent. A linear τe f f dependency would
yield a mean jog spacing inversely proportional to the effective stress (see
Section 9.6.3).

Inserting a stress dependency into the annihilation parameter κ−,s only
would not be sufficient, as jog annihilation takes place when γ̇ > 0.
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Figure 10.11: Stress-strain behavior at T=1173 K and γ̇ = 6 × 10−4 s−1 for different
κ+,s = λτe f f /μ and κ−,s = 100.
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Figure 10.12: Stress-strain behavior at T=1173 K and γ̇ = 6 × 10−4 s−1 for λ = 300
and different κ−,s.

Stress-dependent κ+’s

Let us rewrite:

κ
(α)
+,s = λ

τ
(α)
e f f

μ
(10.8)

and keep κ−,s constant. Letting λ vary, Fig. 10.11 is obtained. The influence
of the jog annihilation parameter is then investigated in Fig. 10.12.

jog generation parameters The overshoot predicted by the con-
stitutive model becomes significant above a threshold value of κ+,s and
saturates at large jog generation rates: this is particularly visible in Fig. 10.11
where λ = 100 hardly leads to significant hardening in stage II; increas-
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ing λ above 300 does not extend the overshoot but simply increases the
unstabilities in the force outputs.

When simulated, the overshoot extent depends almost only on κ+,s; this
is clearly seen in Fig. 10.12. κ−,s affects the speed of transition between
stage I and II. It can also be noticed that as a rule of thumb, increasing the
annihilation parameter improves the stability of the result.

behavior at large strains Using high-order explicit solvers with
substepping to integrate the constitutive equations has no effect on the
solution stability. The unstabilities in the stress-strain curves noticed in the
early stage II at large λ/κ−, s ratios, e.g., for λ = 400 in Fig. 10.11, are
rather mesh-induced. They can be reduced to some extent by increasing the
amount of elements in the sample gauge and reducing the time increments.
However, such refinements have a prohibitive numerical cost.

Model abilities

The force output cannot be trusted beyond the transition between stage I
and II when strong mesh distortions are detected. Two aspects are therefore
tackled separately in the following:

• agreement between the experimental and simulated hardening be-
havior in stage II, by simulations of uniaxial tensile tests of samples
initially oriented for multiple slip.

• model ability to predict overshoot and its dependencies on strain rate
and temperature

hardening rate in multiple slip It will be seen from Figs. 10.15
and 10.16 that the hardening rate in stage II predicted by the constitutive
model is very close to the experimental one for κ−,s = 3λ = 1200 and does
not depend on the strain rate or on the temperature at large effective stresses.
In order to derive the optimal κ−,s/λ ratio and λ value, experimental results
from [Michel 1982] are used.

Tests performed on monocrystals loaded uniaxially along the [100] orien-
tation indicate a hardening rate dσ/dε � 1.4 GPa. Various cases are studied
in Fig. 10.13). The experimental slope is retrieved for κ−,s/λ ≥ 3. When this
condition is satisfied, the exact value of λ has no influence on the output
stress-strain curve whatsoever.

Setting κ−,s three times larger than λ provides a very good estimation of
the hardening rate in multiple slip when samples are initially oriented in
along [100]. Such a relationship actually leads to a small net jog generation
rate on primary dislocations, whose motion then proceeds by the double
kink mechanism.

Let us now turn to the model ability to reproduce the strain rate and
temperature dependencies of overshoot.
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Figure 10.13: Stress-strain behavior of [100] oriented samples at ε̇ = 2 × 10−3 s−1,
T=1095 K and ρ0 = 1010 m−2 for various κ−,s/λ ratios and λ values.
Eblocks = 1 GPa.
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overshoot Keeping the ratio κ−,s/λ constant, Fig. 10.14 is obtained.
At a given ratio, an overshoot saturation effect seems to develop as well,
although mesh effects precipitating the transition into stage II cannot be
ruled out at large λ’s12.

A first insight provided by Fig. 10.14 is that κ−,s has a slight but noticeable
influence on the strain overshoot. As the κ−,s/λ ratio is increased, a larger
λ is required for the simulated stage I to last longer. A second observation
is the particular shape taken by the stress-strain curve into stage II at large
κ−,s/λ ratios and low λ values.

Whatever the particular κ−,s − λ relationship imposed, as long as λ is
large enough to prevent significant dislocation motion on the secondary
slip systems in stage I, the model is able to reproduce overshoot.

Setting the jog parameters to κ−,s = 3λ for the reasons detailed on the
previous paragraph, a correct hardening slope in stage II is retrieved for
λ = 400, except at the largest temperature considered:⎧⎨⎩ κ

(α)
+,s = 400τ

(α)
e f f /μ

κ
(α)
−,s = 1200

(10.9)

The influence of the strain rate on the simulated behavior is shown in
Fig. 10.15. Interestingly, the model is able to reproduce the increasingly
delayed activation of secondary systems. The strains at which stage II sets
in are remarkably close to the experimental ones.

The effect of temperature on the stress-strain response is shown in
Fig. 10.16. Overshoot increases as temperature is lowered, as is experimen-
tally observed. The temperature dependency of the simulated overshoot
follows qualitatively the experimental one.

influence of sample orientation To assess the model abilities in
multiple slip conditions, uniaxial tensile tests are simulated for various
crystallographic orientations.

A specimen of total initial dislocation density ρ0 = 1010 m−2 is considered,
90 % of which being mobile, and equally distributed on the 12 slip systems.
Deformation proceeds at a strain rate ε̇ = 2 × 10−3 s−1 and a temperature
of 1095 K. These conditions are similar to those used in Section 7.3.2.

The crystallographic orientations considered are [123] (single slip), [112]
(double slip), [110] (4 slip systems active), [111] (6 slip systems) and [100]
(8 slip systems). Elastic bounding blocks (Eblock = 1 GPa) are included in
order to smooth out the initial yield peak from the simulations.

Simulations are run for 50 s, theoretically leading to a tensile strain of
ε = 10 %. Fig. 10.17 shows the results obtained with the present constitutive
model, discussed in the next Section.

12 At the largest values tested, simulations actually crash because of excessive element distortion,
and in spite of remeshing.

344 model calibration and results

overshoot Keeping the ratio κ−,s/λ constant, Fig. 10.14 is obtained.
At a given ratio, an overshoot saturation effect seems to develop as well,
although mesh effects precipitating the transition into stage II cannot be
ruled out at large λ’s12.

A first insight provided by Fig. 10.14 is that κ−,s has a slight but noticeable
influence on the strain overshoot. As the κ−,s/λ ratio is increased, a larger
λ is required for the simulated stage I to last longer. A second observation
is the particular shape taken by the stress-strain curve into stage II at large
κ−,s/λ ratios and low λ values.

Whatever the particular κ−,s − λ relationship imposed, as long as λ is
large enough to prevent significant dislocation motion on the secondary
slip systems in stage I, the model is able to reproduce overshoot.

Setting the jog parameters to κ−,s = 3λ for the reasons detailed on the
previous paragraph, a correct hardening slope in stage II is retrieved for
λ = 400, except at the largest temperature considered:⎧⎨⎩ κ

(α)
+,s = 400τ

(α)
e f f /μ

κ
(α)
−,s = 1200

(10.9)

The influence of the strain rate on the simulated behavior is shown in
Fig. 10.15. Interestingly, the model is able to reproduce the increasingly
delayed activation of secondary systems. The strains at which stage II sets
in are remarkably close to the experimental ones.

The effect of temperature on the stress-strain response is shown in
Fig. 10.16. Overshoot increases as temperature is lowered, as is experimen-
tally observed. The temperature dependency of the simulated overshoot
follows qualitatively the experimental one.

influence of sample orientation To assess the model abilities in
multiple slip conditions, uniaxial tensile tests are simulated for various
crystallographic orientations.

A specimen of total initial dislocation density ρ0 = 1010 m−2 is considered,
90 % of which being mobile, and equally distributed on the 12 slip systems.
Deformation proceeds at a strain rate ε̇ = 2 × 10−3 s−1 and a temperature
of 1095 K. These conditions are similar to those used in Section 7.3.2.

The crystallographic orientations considered are [123] (single slip), [112]
(double slip), [110] (4 slip systems active), [111] (6 slip systems) and [100]
(8 slip systems). Elastic bounding blocks (Eblock = 1 GPa) are included in
order to smooth out the initial yield peak from the simulations.

Simulations are run for 50 s, theoretically leading to a tensile strain of
ε = 10 %. Fig. 10.17 shows the results obtained with the present constitutive
model, discussed in the next Section.

12 At the largest values tested, simulations actually crash because of excessive element distortion,
and in spite of remeshing.

344 model calibration and results

overshoot Keeping the ratio κ−,s/λ constant, Fig. 10.14 is obtained.
At a given ratio, an overshoot saturation effect seems to develop as well,
although mesh effects precipitating the transition into stage II cannot be
ruled out at large λ’s12.

A first insight provided by Fig. 10.14 is that κ−,s has a slight but noticeable
influence on the strain overshoot. As the κ−,s/λ ratio is increased, a larger
λ is required for the simulated stage I to last longer. A second observation
is the particular shape taken by the stress-strain curve into stage II at large
κ−,s/λ ratios and low λ values.

Whatever the particular κ−,s − λ relationship imposed, as long as λ is
large enough to prevent significant dislocation motion on the secondary
slip systems in stage I, the model is able to reproduce overshoot.

Setting the jog parameters to κ−,s = 3λ for the reasons detailed on the
previous paragraph, a correct hardening slope in stage II is retrieved for
λ = 400, except at the largest temperature considered:⎧⎨⎩ κ

(α)
+,s = 400τ

(α)
e f f /μ

κ
(α)
−,s = 1200

(10.9)

The influence of the strain rate on the simulated behavior is shown in
Fig. 10.15. Interestingly, the model is able to reproduce the increasingly
delayed activation of secondary systems. The strains at which stage II sets
in are remarkably close to the experimental ones.

The effect of temperature on the stress-strain response is shown in
Fig. 10.16. Overshoot increases as temperature is lowered, as is experimen-
tally observed. The temperature dependency of the simulated overshoot
follows qualitatively the experimental one.

influence of sample orientation To assess the model abilities in
multiple slip conditions, uniaxial tensile tests are simulated for various
crystallographic orientations.

A specimen of total initial dislocation density ρ0 = 1010 m−2 is considered,
90 % of which being mobile, and equally distributed on the 12 slip systems.
Deformation proceeds at a strain rate ε̇ = 2 × 10−3 s−1 and a temperature
of 1095 K. These conditions are similar to those used in Section 7.3.2.

The crystallographic orientations considered are [123] (single slip), [112]
(double slip), [110] (4 slip systems active), [111] (6 slip systems) and [100]
(8 slip systems). Elastic bounding blocks (Eblock = 1 GPa) are included in
order to smooth out the initial yield peak from the simulations.

Simulations are run for 50 s, theoretically leading to a tensile strain of
ε = 10 %. Fig. 10.17 shows the results obtained with the present constitutive
model, discussed in the next Section.

12 At the largest values tested, simulations actually crash because of excessive element distortion,
and in spite of remeshing.

344 model calibration and results

overshoot Keeping the ratio κ−,s/λ constant, Fig. 10.14 is obtained.
At a given ratio, an overshoot saturation effect seems to develop as well,
although mesh effects precipitating the transition into stage II cannot be
ruled out at large λ’s12.

A first insight provided by Fig. 10.14 is that κ−,s has a slight but noticeable
influence on the strain overshoot. As the κ−,s/λ ratio is increased, a larger
λ is required for the simulated stage I to last longer. A second observation
is the particular shape taken by the stress-strain curve into stage II at large
κ−,s/λ ratios and low λ values.

Whatever the particular κ−,s − λ relationship imposed, as long as λ is
large enough to prevent significant dislocation motion on the secondary
slip systems in stage I, the model is able to reproduce overshoot.

Setting the jog parameters to κ−,s = 3λ for the reasons detailed on the
previous paragraph, a correct hardening slope in stage II is retrieved for
λ = 400, except at the largest temperature considered:⎧⎨⎩ κ

(α)
+,s = 400τ

(α)
e f f /μ

κ
(α)
−,s = 1200

(10.9)

The influence of the strain rate on the simulated behavior is shown in
Fig. 10.15. Interestingly, the model is able to reproduce the increasingly
delayed activation of secondary systems. The strains at which stage II sets
in are remarkably close to the experimental ones.

The effect of temperature on the stress-strain response is shown in
Fig. 10.16. Overshoot increases as temperature is lowered, as is experimen-
tally observed. The temperature dependency of the simulated overshoot
follows qualitatively the experimental one.

influence of sample orientation To assess the model abilities in
multiple slip conditions, uniaxial tensile tests are simulated for various
crystallographic orientations.

A specimen of total initial dislocation density ρ0 = 1010 m−2 is considered,
90 % of which being mobile, and equally distributed on the 12 slip systems.
Deformation proceeds at a strain rate ε̇ = 2 × 10−3 s−1 and a temperature
of 1095 K. These conditions are similar to those used in Section 7.3.2.

The crystallographic orientations considered are [123] (single slip), [112]
(double slip), [110] (4 slip systems active), [111] (6 slip systems) and [100]
(8 slip systems). Elastic bounding blocks (Eblock = 1 GPa) are included in
order to smooth out the initial yield peak from the simulations.

Simulations are run for 50 s, theoretically leading to a tensile strain of
ε = 10 %. Fig. 10.17 shows the results obtained with the present constitutive
model, discussed in the next Section.

12 At the largest values tested, simulations actually crash because of excessive element distortion,
and in spite of remeshing.
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Figure 10.14: Stress-strain behavior at T=1173 K and γ̇ = 6 × 10−4 s−1 at a constant
ratios κ−,s/λ.
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Figure 10.14: Stress-strain behavior at T=1173 K and γ̇ = 6 × 10−4 s−1 at a constant
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Figure 10.15: Stress-strain behavior at T=1173 K and various strain rates for κ−,s =
3λ and λ = 400.
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Figure 10.16: Stress-strain behavior at γ̇ = 1.2 × 10−4 s−1 and various temperatures
for κ−,s = 3λ and λ = 400.
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Figure 10.17: Influence of the specimen crystallographic orientation on the stress-
strain behavior for ε̇ = 2 × 10−3 s−1, T=1095 K and ρ0 = 1010 m−2.
λ = 400 and κ−,s = 1200.
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10.5 discussion and conclusion

10.5.1 Constitutive equations and parameters

Velocity law

The most important novelty of this model is the derivation of a velocity
law coupling dislocation motion by the double-kink mechanism and jog-
dragging. It has been shown that this mixed mode is the most likely reason
for observing a high hardening rate in stage II of [123]-oriented tensile
specimen, as well as overshoot.

In particular, the effect of localized obstacles on dislocation velocity is
likely marginal in silicon, owing to the relatively low dislocation speed in
free flight. The influence of point defects has been disregarded in this model,
but could ease jog dragging and help explain some model shortcomings, as
discussed below.

Breakdown of dislocation density

Apart from the velocity law, a particularity of this model is the distinction
made between mobile and immobile dislocations on the one hand, and
depending on their character on the other. This gives further insights and
allows the correct reproduction of constitutive behavior at large strains.

Such a segmentation of the total dislocation density is made necessary by
two factors: the strong variations of the mobile dislocation contents upon
loading of as-grown silicon crystals on the one hand; and the different
impacts jog dragging has on dislocations with various screw components
on the other.

Dislocation evolution

self-multiplication Remarks related to K1 are discussed below.

forest multiplication The model could be criticized for its choice of
dislocation multiplication law from forest dislocations, relying on ρi rather
than ρt (see Section 9.5.1).

In addition to the physical justification behind this choice, adopting such
a law leads to severe model unstabilities at the transition between stage I
and II, and to a very strong effective stress dependency of the hardening
rate in stage II. Furthermore, such a law does not improve significantly the
simulated behavior at large initial dislocation densities.

dislocation storage and annihilation The capture radii for
storage and annihilation of screw and 60° dislocations are entirely derived
on physical arguments. Their accuracy is discussed in the next Section.
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Internal stresses

The optimal hardening parameter Aαα is very close to the values usually
derived for the model of Alexander & Haasen. On the other hand, the Bαα

value derived by best fit is quite large. This was unexpected, since immobile
dislocations are usually considered not to lead to the development of
significant long-range internal stresses. With Bαα � 0.25× Aαα, the influence
of ρi on the total internal stress becomes quickly dominant.

Jog evolution

The most criticizable point of the model is the particular differential equa-
tions chosen to rule the evolution of jog densities on mobile dislocations.
The influence of point defects generated during deformation, in particular,
should affect jog dragging and lower the overwhelming dominance of this
rate-limiting mechanism at large temperatures.

Additional jog annihilation mechanisms such as temperature-dependent
pipe diffusion could as well play a role in inserting a potential stress
dependency in the annihilation parameter.

Furthermore, the exact effects of jogs on 60° dislocations are not known;
the set of equations 10.7 has been adopted for simplicity but poses some
problems. No relevant model could be found in the literature about motion
of jogged mixed dislocations.

Here it should be noted that leaving 60° dislocations jog-free leads to
the disappearance of overshoot and a behavior closer to the one obtained
with no jogs. This is due to the coupling between the mobile dislocation
generation equations and the various dislocation characters (namely, motion
of screws generates 60° dislocations, and vice-versa).

10.5.2 Model outputs

Yield region

intrinsic crystals The upper and lower yield stresses are very well
reproduced by the constitutive model, in the temperature and strain ranges
considered.

None of the numerous K1 laws tested satisfying the requirement of strain rate
independence of δ could follow the experimental disappearance of the upper yield
point as the initial dislocation density is increased (set ds3).

Decreasing kFR or even accounting for all forest dislocations in the multi-
plication law does not improve noticeably this aspect.

Multiplication from forest obstacles does not play any significant role
at small strains, and does not improve the (wrong) ordering of upper yield
points compared to the extended AH model, as seen by comparing Fig. 10.17 to
Fig. 7.15.

On the other hand, it is observed that the self-multiplication law K1
has a very strong influence on these results. The variations of the upper yield
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stress with the sample orientation are mostly influenced by K1 rather than kFR,
namely, the self-multiplication law has a significant impact on the simulated
behavior in the yield region both for specimen oriented for single glide or
in symmetrical orientations.

• The multiplication law K1 has a critical role in determining the depen-
dency of the yield stresses on the initial dislocation densities, as well
as their variations with the crystallographic orientation

An additional point worth mentioning is the double yielding predicted
by the constitutive model at high strain rates, especially visible in Fig. 10.17
and detectable in Fig. 10.5b. Its appearance is due both to the K1 function
chosen, and to the additional dislocation generation from forest densities
through kFR.

The combined effect of these two multiplication laws is self-reinforcing
at large effective stresses: initial generation on all slip systems is facilitated
by a non-saturating K1, and further strengthened by kFR. Accounting for
jog dragging does not improve this aspect.

The appearance of secondary yield points at large strain rates can be
avoided by the adoption of an alternative self-multiplication law K1. If
a saturation term is introduced, then a strain rate independency of δ is
reached by setting:

K1 = δ
τ
(α)1.5
e f f√

ρ
(α)
m

(10.10)

with δ = 1.5 × 10−3, Aαα and Bαα remaining unchanged.
As shown in Fig. 10.18, the double yieldings disappear. A drawback of this

formulation is a significantly delayed yield drop as the self-multiplication
function is reduced upon multiplication of primary dislocations.

Adopting such a K1 law also affects the yield region in various sample
orientations, as shown in Fig. 10.19.

• Some combinations of multiplication law K1 with dislocation gener-
ation from forest obstacles lead to the appearance of spurious sec-
ondary yield points at large effective stresses
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Figure 10.18: Experimental (dashed lines) and simulated (plain lines) stress-strain
curves in the yield region of intrinsic crystals, using a saturation term
in K1 (Eq. 10.10).
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Figure 10.19: Influence of the specimen crystallographic orientation on the stress-
strain behavior using Eq. 10.10 for K1. ε̇ = 2 × 10−3 s−1, T=1095 K and
ρ0 = 1010 m−2. λ = 400 and κ−,s = 1200.

[Maroudas 1991c] reduce the dislocation multiplication parameter δ. This
modification has been implemented in the present model, but improves
noticeably neither the value of τuy nor the inactivation of secondary systems.

The influence of jogs on dislocation motion has not been inserted into the
constitutive model for extrinsic crystals. It is not expected to play a signifi-
cant role in the strain range considered, although it could to some extent
hinder secondary dislocation motion and smoothen out the secondary yield
points.

Stage I

Intrinsic crystals only are considered in the following.

flow stress The deactivation of the secondary slip system C3 at in-
termediate strains (see Fig. 10.20) results in the increase of the strain rate
onto the primary system D4, and a subsequent increase of the flow stress,
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Figure 10.20: Shear strain rate on the primary (D4) and secondary (A2, C3 and D6)
systems in the central elements of the specimen gauge. Jog dragging
is accounted for. The change of rate-limiting motion mechanism of
screws and 60° dislocations on C3 are indicated by arrows. γ̇ =
6 × 10−4 s−1 from ds2.

particularly visible at high strain rates or low temperatures in Figs. 10.15
and 10.16.

This deactivation is due to the increase of jog density on the slip system,
resulting in the particular shape of the strain rate curve from γ � 5 %.
The arrows in Fig. 10.20 point to the strains at which screws, then 60°
dislocations on C3, change of rate-limiting mechanism from double kink to
jog dragging.

The change of hardening rate noticed in the stress-strain curves at these
strains is not observed experimentally. On the other hand, once plastic flow
stops on C3, the hardening rate flattens out, as observed in the experimental
curves before the onset of stage II.

This tends to indicate that in actual specimen, C3 is deactivated at large
strains, but in a much smoother way than what simulations predict.

A smoother deactivation due to the progressive take-over of the motion
mechanisms by jog dragging can be explained by two arguments:

1. The jog annihilation rate is actually larger than currently assumed

2. The dislocation generation rate is larger than currently assumed

Accounting for either of these remarks would lead to lower mean jog
spacing on ρ

(C3)
m .

Given the previous discussion about the too weak dislocation self-multiplication
law K1 at large dislocation densities, the second point seems the most prob-
able.

steady-state of deformation The steady-state of the primary effec-
tive stress τ

(D4)
e f f is determined by the magnitude of the capture radii expres-
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Figure 10.21: Effective shear stress τe f f on the primary system in the central ele-
ments of the specimen gauge during stage I (conditions of ds2).

sions derived in Section 9.4. Its comparison with data from [Yonenaga 1978]
allows consequently the validation of the physically derived capture radii.

Fig. 10.21 shows the evolution during stage I of τ
(D4)
e f f in the central

gauge elements of specimen from ds2. Note that the steady-state has been
experimentally characterized by means of strain rate changes. A rigorous
estimation of the simulated τ∗

e f f should require the reproduction of such
tests.

Still, the results indicate a rather good agreement between the simula-
tions and experiments, with numerical values within a factor two from
experimental data. Similar remarks are valid for the sample set ds1.

• This indicates that deriving the capture radii solely on physical argu-
ments gives very satisfying results.

Disaggregation of the primary dislocation density according to the dislo-
cation mobility and character gives interesting insights into the relative role
played by screws and 60° segments. As seen in Fig. 10.22, the total mobile
dislocation density ρm is roughly equally divided the two orientations. This
could be expected from the similarity of the dislocation generation laws.

On the other hand, the immobile density is clearly dominated by 60°
segments, owing to the very large capture radius for annihilation of screw
segments. This result is in very good agreement with experimental obser-
vations pointing to an overwhelming majority of edge segments in stage I.
The present model explains this tendency by the easy annihilation of screw
dipoles by cross-slip, in spite of the relatively low temperatures considered.

The strength of the constitutive model derived in this Part lies in the limited
amount of constitutive parameters left to identify by best fit. In particular, the
behavior of primary dislocations in stage I is entirely defined by physically-based
arguments.
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amount of constitutive parameters left to identify by best fit. In particular, the
behavior of primary dislocations in stage I is entirely defined by physically-based
arguments.
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Figure 10.22: Breakdown of the total primary dislocation density ρ
(D4)
t during stage

I, according to dislocation character and mobility. γ̇ = 6 × 10−4 s−1

from ds2.

specimen design As a side note, it has been observed that the extent
of stage I is affected by the gauge length: the shorter the specimen, the
less overshoot is observed. This aspect has not been investigated for time
reasons.

Multiple slip and large strains

from stage i to stage ii The model is able to reproduce overshoot and
a high hardening rate in the subsequent stage II only when jog dragging is ac-
counted for. A critical outcome of the study is that localized obstacles do not
seem to influence dislocation motion strongly enough to explain the experimental
observations.
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This remark is obviously unexpected, given the similarities between hard-
ening mechanisms in f.c.c. crystals and intrinsic semiconductors. It stems
directly from the particularly low dependency on τe f f of the dislocation
velocity in free flight in the latter material class, leading to much larger
travelling times than waiting times.

The significant overshoot measured in intrinsic crystals must be caused by
intrinsic defects affecting secondary dislocation motion. We have proposed
jogs as a possible explanation. Such a model runs into several limitations,
some of them already discussed above. Additional remarks related to
multiple slip situations are tackled in the following paragraphs:

• Simulating overshoot by a change in dislocation motion mechanisms
leads to severe numerical restrictions, given the explicit Finite Element
solver and particular element type relied upon

• The hardening rate in stage II is slightly temperature dependent, and
to a lower extent strain rate dependent, given the particular set of
constitutive parameters derived

• Jogs do not seem to influence dislocation motion when the specimen
is initially oriented for multiple slip

fem issues The first item imposes time constraints on the derivation of
the model: a limited amount of constitutive equations and parameters can be
studied. In spite of remeshing and time step reductions, unstabilities in the
internal variables are systematically detected at the transition between stage
I and stage II; this is particularly relevant for the shear strain rate evolution.
They are due to a sudden activation of secondary systems throughout the
specimen gauge, and are not reduced by using high-order explicit solvers
with substepping to integrate the constitutive equations.

Working with second-order fully integrated brick elements could help in this
respect. However, Abaqus/Explicit does not offer such an element type,
and time limitations have not allowed the coding of C3D20 elements into a
VUEL routine.

Another way of improving the model stability is to work with Abaqus/-
Standard, which requires in turn the derivation of the consistent tangent
moduli (CTM). The use of numerical methods to estimate the CTM would
relieve its heavy derivation.

hardening of [123] specimen As seen in Figs. 10.15, and especially
10.16, the model predicts a lower θI I than experimentally observed at low
effective stresses. This particular behavior is due partly to the relationship
between the constitutive parameters κ−,s = 3λ, and partly to the constitutive
equations ruling the jog density evolution themselves.

θI I is reduced at low effective stresses because the jog generation (propor-
tional to τe f f ) is not large enough relative to the (constant) annihilation rate.
As mentioned in the previous Section, using a constant κ+,s does not lead
to a satisfying behavior either: if the constitutive equations of Section 9.6
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are to be kept, then an effective stress dependency of the κ parameters is
to be expected. This discussion can be summarized as follows: Jogs must

be accounted for to explain the mechanical behavior of [123] specimen, and their
density on mobile dislocations should be larger than currently simulated at low
τe f f .

hardening of [100] specimen Another observation from Fig. 10.13
is that the simulated hardening rate of [100] samples is in agreement with
experimental observations only if the κ−,s/λ ratio is large enough for
primary dislocations not to be affected by jog dragging: Jogs should not have

a significant effect on dislocation motion in [100] samples.

Relieving the contradiction lifted by the former two conclusions can be
done by modifying the constitutive equations for the jog density evolution,
possibly accounting for the influence of point defects generated during
deformation: their number ought to be larger in [100] samples than [123]
ones, resulting in an increase of the dragging velocity by reducing the
self-diffusion coefficient Usd.

influence of specimen orientation An important remark that
can be made from Fig. 10.17 is that the simulated hardening rates in a [112]
double slip and [110] quadruple orientations are not significantly different
than in a [123] single slip one.

This seems to be in contradiction with experimental data, at least for the
[110] orientation13 (see Fig. 2.1), and might be due to the particular values
of latent hardening coefficients Aαα and Bαα.

Combining jog dragging and the influence of localized obstacles does not
improve this point.

Meanwhile, the present model predicts better the hardening rate in
multiple slip than the extended AH model introduced in Part ii. This can
be seen by comparing Figs. 7.15 and 10.17.

large strains The model looses its validity at large strains because
of the fundamental physical processes taking place during stage II and
leading to the appearance of stage III, such as patterning and cell formation,
are not included in the constitutive equations.

The decrease of the hardening rate at large strains simulated, e.g., for
γ̇ = 6 × 10−5 s−1 is due to a deformation localization phenomena. During
stage I, plastic slip is initiated close to the specimen fillets, and propagates
towards the central part of the gauge section. Into stage II, deformation
spreads from the central part of the specimen and is rather homogeneously
distributed in the gauge section.

However, the model predicts a progressive localization of deformation
back to the specimen fillets at large strains, resulting in a reduced hardening

13 The case of Ge investigated by [Patel 1963] might differ from Si, but no data specific to silicon
has been found.
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Figure 10.23: Contour plots of maximum principal deformation in the tensile spec-
imen at various time points. The color scale is computed for each
individual plot, in order to identify the regions of maximum deforma-
tion. γ̇ = 6 × 10−5 s−1 from ds2.

rate θI I . This localization effect is influenced by the constitutive parameters
ruling the jog density, and indicates a rather weak limitation of the model14.
Additional long-range internal stresses generated by cell formation could
perhaps increase the flow stress at large strains and inhibit this localization
tendency.

14 This is not a severe limitation since there is no practical need to study such large deformations.
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imen at various time points. The color scale is computed for each
individual plot, in order to identify the regions of maximum deforma-
tion. γ̇ = 6 × 10−5 s−1 from ds2.

rate θI I . This localization effect is influenced by the constitutive parameters
ruling the jog density, and indicates a rather weak limitation of the model14.
Additional long-range internal stresses generated by cell formation could
perhaps increase the flow stress at large strains and inhibit this localization
tendency.

14 This is not a severe limitation since there is no practical need to study such large deformations.





11
A D A P TAT I O N O F T H E C O N S T I T U T I V E M O D E L T O
S O G - S I M O N O C RY S TA L S

The flexural strength of solar-grade silicon multicrystals has been experimentally determined
at room temperature. Materials provided by Elkem Solar and SINTEF have been tested.
Only results related to the latter producer are introduced in the following. Given the brittle
nature of silicon at low temperatures, the Weibull theory is relied on to fit the cumulative
probability distribution as a function of the stress. Surface effects are investigated by
comparing the strengths of grinded specimen to the one of chemically polished bars. The
results presented here can be implemented into the constitutive models derived in the rest of
this thesis.

11.1 introduction

Adaptation to Solar-grade materials deserves a particular discussion. What
differs SoG-Si from EG-Si is the impurity and extrinsic defect content.

Dislocation locking by impurities can be dealt with as done in the pre-
vious Chapters. Electrically active species affect the activation energy for
dislocation motion, and such a phenomena can be modeled as well (see
Part i). SoG-Si contains high inclusion and precipitate densities, most often
inhomogeneously distributed throughout the material block. How can we
account for these inhomogeneities in a practical way?

It is worth remembering that the mechanical effects of inclusions is mainly
local: acting as stress concentrators, they promote dislocation generation
at high temperature and elastic stress increase at room temperature. A
study of the stress and dislocation density distribution in a fictious mc-Si
sample containing large inclusions is introduced in the next Part, but in
the following we are concerned with the overall -averaged- influence of
such contaminants. Furthermore, the effects of inclusions on plasticity is
disregarded, as only the brittle behavior of silicon is considered.

A way to avoid modeling explicitely inclusions in a finite element model
to study the fracture risk, a process that would be tedious and time-
consuming, is to rely on statistical fracture properties derived from ex-
perimental results performed on SoG-Si materials. The knowledge of the
cumulative fracture probability of a given material as a function of the
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360 adaptation of the constitutive model to sog-si monocrystals

applied stress can be incorporated into the constitutive model introduced
in the previous Chapters.

Fracture in Si materials takes usually place along the 〈111〉 planes. It is
possible to extract from the stress tensor the maximum stress normal to all
4 such planes, and from that compute the fracture probability. Given the
second Piola-Kirchoff stress tensor Se in the CACS, its projection onto the
four fracture planes identified by their normal n0 reads:

τ
(α)
⊥ = Se : sym(FeTFen(α)

0 ⊗ n(α)
0 ) (11.1)

where FeTFe can be approximated by the unity tensor as discussed in
Annex A, and therefore τ

(α)
⊥ = Se : n(α)

0 ⊗ n(α)
0 .

Silicon is a brittle material at room temperature, and because of the
fundamentally stochastic fracture process no definite strength (i.e. the stress
at which fracture occurs) can be attributed. The reasons for a silicon material
to break upon loading can be many: defects at the sample surface such
as grooves and microcracks coming from the sample preparation, internal
stresses left from the solidification process, or high stress localizations
caused by the presence of inclusions in the silicon matrix.

This Chapter introduces experiments aiming at identifying the flexural
strength of mc-Si bars deformed in a four-point bending (4PB) apparatus
up to fracture. Although imperfect, this method allows for a relatively
quick and straightforward identification of fracture parameters, namely the
Weibull stress and exponent. Ultimately a cumulative fracture probability
function P(σ) is derived and implemented in the constitutive model to
output P(maxα(τ

(α)
⊥ )).

Experiments have been performed both on material provided by Elkem
Solar and from SINTEF. All samples in a given test come from the same
mc-Si ingot. The Young’s modulus is computed from the recorded force-
deflection data and is shown to vary, owing to the anisotropy of the single
crystals constituting the multicrystalline bars. Two surface qualities have
been tested for the purpose of strength analysis of Elkem’s material: grinded
and chemically etched. We show that mechanical processing of silicon sam-
ples leads to a lower average flexural strength and a lower dispersion in
results than a chemical polishing. This is suggested to come from the domi-
nance of surface defects over the internal stress concentrators for grinded
specimen. Grinding being mechanically performed, the same defect size
is expected on these specimen, leading to a tighter distribution. Chemical
etching leads to results closer to the intrinsic strength of mc-Si silicon,
limited by the amount and nature of internal defects in turn defined by the
refining and solidification processes.
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11.2 methodology and sample preparation

11.2.1 4-point bending tests description

We used 4-point bending tests (4PBT) to characterize the flexural strength
of mc-Si silicon. A schematic description of this method is presented in
Figure 11.1. The mounted 4PB apparatus with a specimen ready for testing
is shown in Figure 11.2. A force F is applied on the two upper rollers
separated by a distance l. The external rollers have a span L. The deflection
d is measured by three extensometers and is given with a precision of the
order of the tenth of micrometer. This allows a precise determination of the
Young’s modulus of the specimen.

A 4PB apparatus creates a homogeneous moment in the specimen of
thickness t and width w between the two internal rods. Fracture happens
where the tensile stress is maximum, that is on the external, lower face of
the specimen. In an isotropic homogeneous material the fracture probability
is consequently the same on the external face between the outer rods. In
mc-Si materials this is not true any longer, since any stress concentrator
increases locally the stress level and the fracture probability. The inherent
material anisotropy, enhanced by grain misorientation, complicates the pic-
ture further. As mentioned in the introduction, the aim of these experiments
is not to determine what the local stress is at fracture, but rather at which
level of macroscopic stress it does occur.

11.2.2 Theoretical analysis

Determination of Young’s modulus

Analysis of the deformation of a rectangular-shaped bar loaded in a 4PB
apparatus is done using the linear elasticity theory. Let us assume in
addition that the material considered is homogeneous and isotropic. A bar
having a moment of inertia along the z-axis Iz and made up of a material
of Young’s modulus E, submitted to a moment M(x) will deform in pure
bending (see Figure 11.3).

The displacement of the mid-fiber v(x) along the y-axis is given by:

EIz
d2v
dx2 = −M(x) (11.2)

The moment between the inner rollers in a 4PB apparatus is constant and
equal to M(x) = F(L − l)/2 in this region. Integration of Eq. 11.2 gives two

constants, one of which is determined by the condition that dv
dx

∣∣∣
L/2

= 0.

This yields:

v(x) =
1

EIz

(
FL
16

(
x2 − Lx

)
+ C

)
(11.3)
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Figure 11.1: Schematic of the 4 point bending apparatus used in this work.

Figure 11.2: Mounted 4PB apparatus.

where the relationship l = L/2 has been used, and C is an integration
constant. The experimental setup measures the deflection defined as the
difference between v(L/2) and v(L/4):

d = v
(

L
2

)
− v

(
L
4

)
=

FL3

256EIz
(11.4)

The moment of inertia of a rectangular bar of width w and thickness t is
given by Iz = wt3/12. We finally obtain:

d =
3FL3

64Ewt3 (11.5)

Figure 11.3: 4PB of a bar: definitions.
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Recording F and d allows the determination of the Young’s modulus E by
inverting Eq. 11.5. The maximum stress in the sample is obtained using
Eq. 11.6:

σmax =
3FL
4wt3 (11.6)

Specimen strength

As mentioned in the introduction, no definite strength can be defined for
brittle materials as fracture events follow the weakest link rule: the fracture
probability varies with space as inclusions, grain misorientations and other
defects lead to local stress concentrations in the material. Surface flaws such
as microcracks might also play the role of stress concentrators and ease
fracture. Once a crack opens at the weakest point complete fracture follows.

Given a stress level the probability of fracture depends on the amount,
size and distribution of defects in the crystal. Weibull statistics allow a fairly
good estimation of brittle fracture (see, e.g., [Lawn 1993]). The cumulative
probability at a stress σ is:

P(σ) = 1 − exp
[
−

(
σ

σ0

)m]
(11.7)

with σ0 a scaling stress and m the Weibull modulus. The fracture probability
is given by:

f (σ) =
dP
dσ

=
mσm−1

σm
0

exp
[
−

(
σ

σ0

)m]
(11.8)

Weibull statistics predict a cumulative fracture probability of 66 % at the
scaling stress σ0, also called the Weibull stress. m and σ0 are found by
plotting ln

[
ln

(
1

1−P(σ)

)]
vs ln (σ), the slope being m and the intersect

−m ln (σ0). A normal distribution can be adopted as well, although the
Weibull approach traditionally yields better results for brittle materials. In
this case, the relevant values are the average strength σ̄ and its standard
deviation α. The probability function reads then:

f (σ) =
1√
2πα

exp

[
− (σ − σ̄)2

2α2

]
(11.9)

11.2.3 Specimen preparation

Material provided by Elkem Solar

The ASTM standard C1211-98a [ASTM a] has been used to define sample
size and surface state. Tracability has been kept of the location of the
samples through the ingot. 100 bars of rectangular section and dimensions
4x3x50 mm have been cut, 61 of them have used for room-temperature
testing. 30 bars have been etched with a CP4 solution for 60 seconds.
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Sample set 1: grinded Sample set 2: grinded, CP4 etched

Nr. of units 31 30

Ra (μm) 0.67 0.29

Table 11.1: Samples of Elkem Solar used for room temperature 4PB tests: amount
and surface roughness.

Figure 11.4: Etched specimen marked and tested. The vertical bars indicate the
approximate position of the inner and external rollers and allow to
validate the test.

This provides with two sets of samples of different surface qualities, see
Table 11.1.

The surface roughness has been measured on one sample of each set,
giving Ra values in the transversal direction of 0.76 μm for set 1 and 0.34
μm for set 2. Roughness in the longitudinal direction has been measured
slightly lower than the transversal one, 0.67 and 0.29 μm respectively. No
systematic roughness analysis has been done though, as the sole goal of
roughness measurements has been to estimate the efficiency of the etching.
Etching is seen to divide the roughness by a factor slightly larger than two.

The specimen have been marked at one corner to keep track of their
orientation in the 4PB apparatus before breaking (see Figure 11.4). One edge
has been marked black to ease reconstruction of specimen after fracture.
The dimensions of the samples have been measured at both ends with an
accuracy of 0.01 mm.

Material of SINTEF

A similar procedure has been adopted to prepare samples from a mc-Si
block provided by SINTEF Materials & Chemistry. The block from which
the samples have been cut was located in the middle part of a SoG-Si ingot
cast at NTNU. A slightly different ASTM standard, C1161-02c [ASTM b],
has been used to define the basic sample preparation1. The samples have
been polished mechanically down to 1200μ before etching. This time, the
effect of etching is seen to reduce the roughness by 75 % (see Table 11.2).

1 There is no significant difference between C1211 and C1161. The former is designed for high-
temperature testing, while the latter is concerned with experiements performed at ambient
temperatures. These standards differ solely by the roughness required after grinding (between
320 and 500 grit for C1211 and between 400 and 600 grit for C1161). C1211 gives naturally
additional guidelines related to high temperature measurements.
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Sample set 1: grinded Sample set 2: grinded, polished,

CP4 etched

Nr. of units 30 30

Ra (μm) 0.56 0.13

Table 11.2: Samples of SINTEF used for room temperature 4PB tests: amount and
surface roughness.

(a) Grain boundaries and remaining
surface defects after CP4 etching

(b) Close-up of remaining surface
defects

Figure 11.5: SEM pictures of some surfaces after mechanical polishing and etching
of samples from SINTEF.

The better surface state for this sample set is most certainly due to the better
sample preparation prior to etching.

SEM pictures taken after mechanical polishing and etching (see Fig-
ure 11.5) show that traces from the grinding process are still left visible on
some of the sample surfaces, as small ridges of low depth, but whose width
has been increased by the etchant. Observation of polished samples under
a light microscope reveals pointwise residual surface defects that ought
to be at the origin of these ridges (see Figure 11.6). These shallow defects
are not expected to play any significant role on the flexural strength of the
samples as their depth and orientation relative to the loading direction are
negligible compared to, e.g., microcracks and other stress concentrators.
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Figure 11.6: Surface of a silicon bar after polishing seen through a light microscope.
Some pointwise defects from the grinding process are still left.
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11.3 experimental

Specimen are numbered as follows: a letter identifying the material origin
(E for Elkem and S for SINTEF) followed by the sample number as provided
by Prematech, the company that has been relied on to cut the specimen.
Because of confidentiality agreements, only the experimental results of
samples cut from the material of SINTEF are presented in the following.

11.3.1 Experimental procedure

The specimen are introduced in the 4PB apparatus and an initial load of
maximum 1 N is applied. The rollers of the flexural apparatus are then
checked to be parallel and correctly spaced. A constant velocity of 8.33
μm/s is then applied to the upper rollers, corresponding to the 0.5 mm/min
recommended by the ASTM standard [ASTM a] to prevent any "slow crack
growth" that could take place when testing ceramics. Slow crack growth is
not a concern for silicon at room temperature, and any velocity could have
been chosen. 8.33 μm/s has been taken for convenience.

The force-deflection data is recorded for extraction of the Young’s mod-
ulus. The maximum applied force Fmax is noted after fracture to calculate
the sample strength with the help of Eq. 11.6. The samples are checked to
have fractured between the inner rods. Upon difficulties to locate the crack
initiation site the calculated sample strength is not accounted for in the
statistical analysis.

11.3.2 Results

Young’s modulus

The Young’s modulus of a silicon monocrystal depends on its orientation
because of the intrinsic anisotropy of the silicon lattice. Its lower and upper
values are roughly 130 and 190 GPa respectively at room temperature
[Wortman 1965]. In the case of multicrystals the overall Young’s modulus
is defined as the average of those of its constituent grains if their number
is large enough. However, this is not the case of the specimen used in this
study as their size usually limits the amount of grains in the transversal
direction to a couple of units. The measured Young’s modulus is therefore
dictated by the one of the largest grain present between the inner rods.

This results in a distribution of the Young’s modulus that depends on
factors such as the sample location in the ingot and orientation with respect
to the casting direction, preferred grain growth orientation, etc. It must be
kept in mind that the measured Young’s modulus corresponds to the one in
the transverse direction of the grain growth. The Young’s modulus of each
sample k is determined using the derivative of the force-deflection slope:

Ek =
3L3

64wkt3
k

(
ΔF
Δd

)
k

(11.10)
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not a concern for silicon at room temperature, and any velocity could have
been chosen. 8.33 μm/s has been taken for convenience.

The force-deflection data is recorded for extraction of the Young’s mod-
ulus. The maximum applied force Fmax is noted after fracture to calculate
the sample strength with the help of Eq. 11.6. The samples are checked to
have fractured between the inner rods. Upon difficulties to locate the crack
initiation site the calculated sample strength is not accounted for in the
statistical analysis.

11.3.2 Results

Young’s modulus

The Young’s modulus of a silicon monocrystal depends on its orientation
because of the intrinsic anisotropy of the silicon lattice. Its lower and upper
values are roughly 130 and 190 GPa respectively at room temperature
[Wortman 1965]. In the case of multicrystals the overall Young’s modulus
is defined as the average of those of its constituent grains if their number
is large enough. However, this is not the case of the specimen used in this
study as their size usually limits the amount of grains in the transversal
direction to a couple of units. The measured Young’s modulus is therefore
dictated by the one of the largest grain present between the inner rods.

This results in a distribution of the Young’s modulus that depends on
factors such as the sample location in the ingot and orientation with respect
to the casting direction, preferred grain growth orientation, etc. It must be
kept in mind that the measured Young’s modulus corresponds to the one in
the transverse direction of the grain growth. The Young’s modulus of each
sample k is determined using the derivative of the force-deflection slope:

Ek =
3L3

64wkt3
k

(
ΔF
Δd

)
k

(11.10)
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Figure 11.7: Example of force-deflection curve recorded during a 4PB test at room
temperature up to fracture. Sample nr. S138: E138 = 152 GPa, σmax =
150.5 MPa.
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Figure 11.8: Distribution of the Young’s moduli of the samples cut from the SINTEF
mc-Si ingot.

where wk and tk are the average width and thickness of the sample k,
respectively. The complete list of Young’s moduli for each sample coming
from SINTEF is given in Annex D. An example of recorded force-deflection
curve used to derive E is shown in Figure 11.7. A distribution of the moduli
of SINTEF silicon is shown in Figure 11.8: the average E is 166 GPa, with a
standard deviation of 7.6 GPa. This falls well into the 130 to 190 GPa range
mentioned earlier.

Flexural strength of grinded specimen

Specimen often broke at two or more different places, the elastic wave
propagated by the first crack opening leading to secondary crack generally
close to an inner roller. The higher the elastic energy stored at fracture (i.e.
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Figure 11.9: Example of discarded sample, in which fracture took place too close
from an inner roller (whose position is approximated by a vertical bar).
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Figure 11.10: Experimentally measured cumulative fracture probability and approx-
imations using the Weibull theory for SINTEF samples.

the higher the force fracture occurs at), the more the samples tend to break
into numerous pieces. Fig. 11.9 shows an example of sample discarded for
determination of the flexural strength, as fracture took place too close from
an inner roller.

The average strength and standard deviation of the flexural strength of
grinded specimen are: {

σgr = 152 MPa

αgr = 7.85 MPa
(11.11)

The strength distribution shown in Fig. 11.10 is best fitted by setting the
Weibull parameters as: {

σ0,gr = 156 MPa

mgr = 21.5
(11.12)

Flexural strength of chemically polished specimen

Chemical polishing smoothens the surface defects and leads to a much
better surface quality. As a result, the dominance of surface flaws on the
fracture behavior is reduced and the mechanical behavior of etched samples
is believed to be more representative of the intrinsic properties of the
material studied. The Weibull parameters are obviously affected by chemical
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polishing, the scaling stress increasing by 30 % and m being more than
halved: {

σet = 202 MPa

αet = 22.5 MPa
(11.13)

The strength distribution shown in Fig. 11.10 is best fitted by setting the
Weibull parameters as: {

σ0,et = 212 MPa

met = 9.82
(11.14)

11.3.3 Discussion: effect of surface treatment on the strength of SoG-Si

Comparison of the experimental results exposed above gives interesting
results. The average strength (or scaling stress) of the samples from batch 1
increases when chemically polished. This means that the dominant flaws
leading to fracture of grinded specimen are located on the surface. The low
dispersion of the results translates the homogeneity of the surface defects
induced by the grinder: the large Weibull parameter m (or low strength
deviation) indicates that the defects governing fracture have the same
properties. This results in a material with predictable fracture properties.
Internal defects play little role in the probability of fracture of grinded
specimen at room temperature.

On the other hand, chemical etching removes the grinding traces and
shifts the weakest link determining fracture from the sample surface to their
inner part. This is translated by a heightened value of the Weibull stress.
The lower Weibull modulus reveals instead a more random distribution
of defects in the samples, much larger than the dispersion of the surface
defect size left by grinding.

From an engineering point of view, grinded samples might be preferred
because of the higher concentration of the strength around its average (or
equivalently, of the fracture probability around the Weibull stress). Their
lower strength can however be detrimental. The etched samples are believed
to be more representative of the real strength of SoG-Si. The large result
dispersion likely betrays large variations of defect density such as inclusions
in the solidified ingots. The material strength is bound to vary with the
position of the sample in the ingot, as it is known that defect density varies
in space in directionally solidified mc-Si materials. Process parameters
might also have an influence on the inclusion distribution, type and density.
Given the small amount of samples tested in this study and the different
surface qualities, there is no point in trying to map the strength over the
mc-Si block and defining "weak" and "strong" regions. Such an analysis
would require all samples to be chemically polished.
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11.4 conclusion

11.4.1 Experimental results

The Young’s modulus of Solar-grade multicrystalline silicon material pro-
duced by SINTEF has been determined and is shown to depend on the
specimen. This is due to the anisotropy of the multicrystalline bars stem-
ming from the low amount of grains in the stressed region and their a
priori random relative crystallographic orientation after solidification of the
silicon ingot. The Young’s modulus in the transversal direction of the grains
seems however to follow a normal distribution centered on 166 GPa with a
standard deviation of 7.6 GPa. The Young’s modulus in the crystal growth
direction has not been determined.

Statistical analysis of the fracture strength of two types of specimen
having received different surface treatments shows that mechanical grinding
alone leads to weaker specimen of Weibull stress 156 MPa, but evens
the defect size at their surface, leading to a high Weibull modulus of
21.5. Chemically etched specimen exhibit a much larger strength at 212
MPa, but the results are more spread, as translated by a low Weibull
modulus of 9.82. The latter specimen are thought to be more representative
of the intrinsic behavior of SoG-Si multicrystals. More than 30 etched
samples could have been tested to guarantee the accuracy of the cumulative
probability distribution, as multiple flaw types are expected in SoG-Si
(inclusion types and shapes, grain size and misorientation, microcracks,
etc.).

11.4.2 Implementation into a constitutive model

The P(σ) function as derived in this Chapter for etched specimen, assumed
to represent the behavior of bulk material, can be interpreted as follows:
a macroscopically applied stress σ leads a local stress increase due to the material
flaws nature and distribution, which in turn results in brittle fracture with a
probability P(σ). Or equivalently, the likelihood of sample breakage at an
applied stress σ is P(σ).

Insertion of the results derived in this Chapter into any constitutive
model based on RDCP is relatively straightforward. Using Eq. 11.1, the
normal stresses are extracted on each of the 4 slip planes of the diamond
cubic lattice. The maximum absolute value is then selected and P(τ(max)

⊥ )
is computed with the help of the Weibull parameters derived for etched
specimen.

Adopting this methodology to assess fracture probability allows us to
skip the local, microscopic representation of the material flaws leading
to material breakage. This allows a mapping of the fracture probabilty
distribution througout a given specimen. Examples of applications are
given in the next Part.
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to represent the behavior of bulk material, can be interpreted as follows:
a macroscopically applied stress σ leads a local stress increase due to the material
flaws nature and distribution, which in turn results in brittle fracture with a
probability P(σ). Or equivalently, the likelihood of sample breakage at an
applied stress σ is P(σ).

Insertion of the results derived in this Chapter into any constitutive
model based on RDCP is relatively straightforward. Using Eq. 11.1, the
normal stresses are extracted on each of the 4 slip planes of the diamond
cubic lattice. The maximum absolute value is then selected and P(τ(max)

⊥ )
is computed with the help of the Weibull parameters derived for etched
specimen.

Adopting this methodology to assess fracture probability allows us to
skip the local, microscopic representation of the material flaws leading
to material breakage. This allows a mapping of the fracture probabilty
distribution througout a given specimen. Examples of applications are
given in the next Part.
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C O N C L U S I O N

numerical aspects

This Part has concentrated on the derivation of a new and original consti-
tutive model for silicon monocrystals. Entirely physically-based, its basic
constitutive equations differ slighty from the extended AH model intro-
duced in Part ii, with the addition of dislocation multiplication from forest
trees.

Its fundamental difference lies in the dislocation velocity law, enriched to
account for the possible effect of jog dragging on dislocations of random
orientation. This requires in turn the derivation of differential equations
for the evolution of the jog densities. The application of such a model
to silicon is done by distinguishing between screw and 60° dislocation
segments, following similar constitutive laws but with different constitutive
parameters.

Table 11.3 gives a quick overview of the model pros and cons.
The following insights have been gained from the study of the model

outputs:

• Localized obstacles seem to have a very limited effect on the mean
dislocation velocity at the standard forest densities encountered in
semiconductors, as opposed to the conventional case of f.c.c. crystals

• The experimentally observed stress overshoot and subsequent strong
hardening in stage II of [123] tensile specimen is very likely due to
jog dragging and cannot be reproduced otherwise

Asset Limitation

Kinematics powerful

Cost expensive

Yield region very good double yieldings

Stage I steady-state

Multiple slip yes ordering of τuy

Extrinsic crystals very good double yieldings

Physical basis yes cost

Parameters closed-form

Table 11.3: Overview of the abilities of the model introduced in this Part.
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374 conclusion to part iii

• The experimental hardening rate in specimen initially oriented for
multiple slip can be reproduced without accounting for jog dragging,
provided enough slip systems are activated

• Deriving capture radii for dislocation storage and annihilation on
physical arguments yields very satisfying results, with regards to the
steady state of deformation and the evolution of individual dislocation
densities, in agreement with experimental observations

• Self-multiplication laws K1 traditionally used to model the yield
region of intrinsic semiconductors systematically fail to reproduce
quantitatively the variations of the upper yield stress at various initial
dislocation contents

• When used in conjunction with dislocation generation from the forest
trees, such laws often lead to a double yielding phenomena at high
strain rates or very low temperatures

• The variations of the upper yield stress with the specimen orientation
at constant temperature and strain rate are almost entirely due to the
self-multiplication law K1

Further work on constitutive models for silicon should therefore concen-
trate on three aspects:

1. Derive a multiplication law K1 able to reproduce the yield region both
at various strain rates and temperatures, but also at various initial
dislocation densities and initial specimen orientation. A potential way
of improving the model results is to consider an increase of dislocation
sources with the build-up of the immobile density

2. Identify jog evolution laws that could lead to a better fit of the strain
overshoot in various conditions on the one hand, and to a correct
hardening rate in all situations on the other

3. Find a solution to stabilize the model at the transition between stage
I and II, and to relieve the need for remeshing that increases signifi-
cantly the computational cost.

insertion of experimental results

Relying on a powerful crystal plasticity framework for the implementation
of the constitutive equations into a finite element software allows the
incorporation of the experimentally derived cumulative fracture probability
P(σ) of SoG-Si materials.

The method used in this work relies on the derivation of P(σ) from
4-point bending tests of multicrystalline SoG-Si bars at room temperature.
A direct drawback is that the results do not give the local stress peak leading
to fracture, but only the macroscopic one that could be derived assuming
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conclusion to part iii 375

the specimen to be homogeneous and isotropic. Consequently, further work
is required to understand the local stress variations in mc-Si materials when
subjected to a macroscopic force.

Simulations of various loading cases in the following Part give quanti-
tative estimates of these local variations due either to the multicrystalline
structure of the samples, or to the presence of inclusions in the silicon
matrix.
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I N T R O D U C T I O N

The preceding two Parts have introduced improvements of existing models
and derivation of a new one for silicon materials. The present one aims
at giving some examples of applications to macroscopic models. Both
monocrystals and multicrystals are considered.

The simulations introduced in the following have been performed with
the extended Alexander & Haasen model. Although of limited validity in
multislip cases, this approach yields results interesting enough to provide
an insight into the effects of a multicrystalline nature on the extent of
hardening and dislocation generation at different positions within the
grains.

Therefore, the results presented in this Part must be considered as indica-
tive of the potential applications of the constitutive models derived in the
course of this Ph.D. work.

Simulations are articulated as follows: first, the study of silicon monocrys-
tals deformed in three-point or four-point bending tests is introduced in
Chapter 12, allowing for the effects of orientation and stress gradients to be
investigated. The case of a multicrystal deformed in a four-point bending
apparatus is then proposed as a follow-up in Chapter 13.

Turing solely to multicrystals, the uniaxial tension of a small aggregate
containing inclusions reveals the influence of grain misorientation and hard
inclusions on the stress and dislocation density distribution throughout the
material.

Finally, the extended AH model introduced in Chapter 6 is used in an
implicit Finite Elements solver to study the potential effect of a multicrys-
talline structure on the stress state of a solidified SoG-Si ingot. Overall, the
applications detailed in this Part are:

• 3 and 4-point bending of intrinsic and extrinsic silicon monocrystals
of various crystallographic orientations

• 4-point bending of intrinsic and extrinsic silicon multicrystals

• uniaxial tension of a small multicrystal containing inclusions

• simulation of solidification and cooling of an intrinsic multicrystalline
ingot
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12
B E N D I N G T E S T S O F M O N O C RY S TA L S

The extended AH model is applied to bending tests of intrinsic and extrinsic silicon monocrys-
tals. The effects of temperature, strain rate and crystallographic orientation on the stress,
strain and dislocaton density distributions are studied. Comparison of model outputs with
theoretical approaches reveals the extent of strain localization taking place at the specimen
surfaces. Deformation propagation mechanisms are touched upon.

12.1 introduction

This Chapter presents some results obtained by simulating bending tests,
either 4-point or 3-point (written respectively 4PB and 3PB in the following).
Only intrinsic monocrystals are considered. The goal of such simulations is
twofold: firstly, assess the applicability of the extended AH model in other
loading conditions than uniaxial tensile tests. This includes the study of
the influence of various factors such as temperature, strain rate or crystal
orientation on the simulated response. The particular stress fields generated
by 3PB or 4PB tests are also of interest.

An additional motivation behind this choice of setup is that NTNU
has the equipment required to perform 4PB tests at high temperature, as
described in Chapter 11 and Annex D. Similarly, a 3PB apparatus is used to
deform silicon monocrystals at Tohoku University by Professor I. Yonenaga.
Comparing results from ongoing experimental tests to simulations provides
valuable insights. The finite element models developed in this Chapter
can obviously be used with various user-defined constitutive behaviors
in the future, saving researchers the need to look for appropriate mesh
refinements and model parameters.

The Finite Element models adopted in the following are replicas of
the actual bending setups available in the Norwegian and Japanese labs.
Section 12.2 provides with some details about the technical aspects of
modeling, along with a discussion on the constitutive model used for
the simulations. Results for various loading cases are then presented in
Section 12.3.
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392 bending tests of monocrystals

12.2 finite element models

All simulations have been performed with Abaqus/Explicit. The actual
samples and bending rods are modeled, using contact algorithms made
available by the commercial FE package.

12.2.1 4-point bending

general considerations The specimen are 4 × 3 × 45 mm3 large,
the dimensions suggested by [ASTM a, ASTM b] and actually used for
room-temperature and high-temperature testing of mc-Si bars at NTNU.
The half-rods are made of silicon carbide, modeled as an isotropic perfectly
elastic material (E = 410 GPa, ν = 0.14). The contact between rods and the
sample includes friction (with a coefficient taken as 0.6).

The boundary conditions imposed on the half rods are similar to the
actual ones, with respect to their rotational degrees of freedom and dis-
placement constraints. The inner and outer spacings are respectively 20 and
40 mm.

mesh properties The elements relied upon are all C3D8R first-order
bricks. Given the particular loading created by a 4PB test, going from tension
at the bottom surface to compression at the top one, a fine discretization is
required in the Z-direction (see Fig. 12.1). Mesh convergence is reached for
20 element layers. This high amount is required by the strong stress gradient
through the thickness, and the subsequent material softening taking place
in the yield region.

44 elements span the bar length (45 mm), and the width is meshed with
8 layers. This gives a rather dense mesh for the silicon bar, made up of 7040
elements. Each half-rod is discretized in roughly 14000 elements. The finite
element model is shown in Fig. 12.1.

12.2.2 3-point bending

general considerations 3PB tests create a particular bending distri-
bution through the thickness and cross-section, that makes it difficult for
the mesh to converge towards a satisfying solution in the case of silicon.
Extreme stress concentrations are seen under the upper rod and at the
opposite sample face.

This would not be a tremendous issue had virgin silicon crystals not
exhibited a yield region. The instability the yielding phenomena represents
is particularly tricky to handle in 3PB tests. Localization takes place and
softening propagates throughout the thickness, preceded by a significant
stress gradient owing to the upper yield stress being quickly reached at the
interface of the strained area.

Specimen used for 3-point bending are bricks much thinner than those
deformed in 4PB, 1.2 mm only. Their width is 3 mm and length 16 mm.
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12.3.1 Cases studied

4pb tests Only a limited amount of cases is considered: 4 tempera-
tures and 3 strain rates. The temperatures considered are the same as in
[Yonenaga 1978, Yonenaga 1981], from 1073 to 1223 K by 50 K increments.

Following [ASTM a] and assuming the sample to be homogeneous and
isotropic, the strain rate1 ε̇ reads:

ε̇ =
6tv
L2 (12.1)

where t and L are the specimen thickness and outer span, and v the
crosshead speed. We aim at studying three strain rates: 10−4, 10−5 and
10−6 s−1. This gives crosshead speeds ranging from 8.89 × 10−6 to 8.89 ×
10−8 m.s−1, respectively. For numerical stability reasons, these crosshead
speeds are applied progressively over 10 seconds. The simulations are run
up to 0.5% deformation following Eq. 12.1.

Finally, 4 crystallographic orientations2 are investigated: the standard
[123] orientation promoting single slip, as well as [112], [110] and [111],
favoring multiple slip. Table 12.1 summarizes the cases studied.

3pb tests The original goal of 3PB simulations was to investigate the
possibility of double yield drop in silicon monocrystals, observed in certain
temperature and strain rate ranges by [Yonenaga 2009]. However, in spite
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4PB tests

stress dynamics The force-time results are converted into stress-strain
curves, assuming that time and strain at the center of the bottom surface
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reproduce. In particular, the effect of forest dislocations or point defects can be important in
the particular loading situation considered. Some alternative explanations are given in later.
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Case nr. T (K) γ̇ (s−1) ρm,0 (m−2) orientation

4-1 1073 10−5 108 [123]

4-2 1123 10−5 108 [123]

4-3 1173 10−5 108 [123]

4-4 1223 10−5 108 [123]

4-5 1073 10−6 108 [123]

4-6 1073 10−4 108 [123]

4-7 1073 10−4 108 [112]

4-8 1073 10−4 108 [110]

4-9 1073 10−4 108 [111]

Table 12.1: Simulated cases of 4PB tests. Initial dislocation density is per slip system.

Case nr. T (K) γ̇ (s−1) ρm,0 (m−2) orientation

3-1 1073 10−4 108 [123]

3-2 1073 10−4 108 [112]

3-3 1073 10−4 108 [110]

3-4 1073 10−4 108 [111]

Table 12.2: Simulated cases of 3PB tests. Initial dislocation density is per slip system.

are proportional to time and relying on Eq. 12.2 to compute the stress (see
[ASTM a]):

σ =
3FL
4wt2 (12.2)

With L = 40 mm, w = 4 mm and t = 3 mm this yields σ = 8.33 × 105F.
As shown in Fig. 12.3a, a perfectly linear relationship between time

and the maximum principal strain at the central elements on the tensile
surface is not respected because of plasticity setting in from the yield region:
Eq. 12.1 is only valid in the elastic domain. However, for simplicity in the
following all strains are computed from Eq. 12.1.

Similarly, Eq. 12.2 gives accurate results in the elastic domain only. This is
seen in Fig. 12.3b. Interestingly, the overall upper yield point observed from
the force output is reached slightly later than the one on the outer element
layer. As for the strain, we assume Eq. 12.2 to be valid all throughout
deformation.

Figs. 12.4 to 12.6 show the stress-strain simulation results. The behavior as
a function of temperature and strain rate is obviously qualitatively similar
to the one obtained in tension specimen.

A limitation of the extended AH model in multiple slip already men-
tioned in Section 7.3.2 appears in Fig. 12.6, where lower upper yield stresses
and higher lower yield stresses would be expected in symmetrical orienta-
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Figure 12.3: Comparison of 4PB simulation outputs with approximations given by
[ASTM a] for case nr. 4-1.
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Figure 12.4: Stress-strain plots from 4PB simulations at different temperatures, re-
spectively cases nr. 4-1 through 4-4 in Table 12.1.

tions. The ordering of the upper yield stresses is similar here as in Fig. 7.15.

Looking at a local scale, we can investigate how deformation propagates
through the sample. Fig. 12.7 indicates the elements considered, spanning
the sample in the X, Y and Z-directions. Only case nr. 4-1 is studied in the
following.

As a homogeneous bending moment is applied between the inner rods,
the central elements at the surface yield and softening takes place simultane-
ously in the Y-direction, propagating in the Z-direction. In the former case,
all elements yields more or less simultaneously, owing to the same stress
state at a given Z ordinate between the inner rods. The crystallographic
orientation plays a slight role by affecting the yielding propagation in the
X-direction. Fig. 12.8 shows the evolution of Von Mises stress σVM in all
three directions.

A similar pattern is obviously observed for the mobile dislocation density,
as shown in Fig. 12.9 for the Z-direction only.
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Figure 12.5: Stress-strain plots from 4PB simulations at different strain rates, cases
nr. 4-1, 4-5 and 4-6 in Table 12.1.
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Figure 12.6: Stress-strain plots from 4PB simulations at different crystallographic
orientations, cases nr. 4-6 to 4-9 in Table 12.1.

stress distribution at ε = 0.5% Let us now turn to the deformation
state at the end of the simulations. Figs. 12.10 to 12.12 show the distribution
of σVM through the specimen as a function of temperature, strain rate or
crystallographic orientation, respectively.

Interestingly, the stress distribution pattern as a function of, e.g., tem-
perature, is not the same at all T considered. The final stress state in the
specimen cannot be computed from a scaling of the values derived at a
given reference temperature. The same remark is valid when the strain rate
is varied. This can be understood as a direct consequence of the nonlinearity
of the constitutive model in τe f f .

Two bands of high stresses are formed towards close to the neutral axis
in case 6 (Fig. 12.11c). This pattern is due to our choice of investigating the
stress distribution at a given strain rather than at a given deformation stage.
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perature, is not the same at all T considered. The final stress state in the
specimen cannot be computed from a scaling of the values derived at a
given reference temperature. The same remark is valid when the strain rate
is varied. This can be understood as a direct consequence of the nonlinearity
of the constitutive model in τe f f .

Two bands of high stresses are formed towards close to the neutral axis
in case 6 (Fig. 12.11c). This pattern is due to our choice of investigating the
stress distribution at a given strain rather than at a given deformation stage.
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state at the end of the simulations. Figs. 12.10 to 12.12 show the distribution
of σVM through the specimen as a function of temperature, strain rate or
crystallographic orientation, respectively.

Interestingly, the stress distribution pattern as a function of, e.g., tem-
perature, is not the same at all T considered. The final stress state in the
specimen cannot be computed from a scaling of the values derived at a
given reference temperature. The same remark is valid when the strain rate
is varied. This can be understood as a direct consequence of the nonlinearity
of the constitutive model in τe f f .

Two bands of high stresses are formed towards close to the neutral axis
in case 6 (Fig. 12.11c). This pattern is due to our choice of investigating the
stress distribution at a given strain rather than at a given deformation stage.
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Figure 12.8: Von Mises stress evolution throughout the sample in the X, Y and
Z-directions (see Fig. 12.7 for definition), case 4-1.
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Figure 12.9: Evolution of the total mobile dislocation density through the sample
half-thickness, case 4-1.
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(d) T=1223 K (case 4-4)

Figure 12.10: Effect of temperature on the Von Mises stress distribution at ε = 0.5%.
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Figure 12.12: Effect of the crystallographic orientation on the Von Mises stress
distribution at ε = 0.5%.
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Figure 12.13: Effect of temperature on the total mobile dislocation density distribu-
tion at ε = 0.5%.

404 bending tests of monocrystals

(a) T=1073 K (case 4-1)

(b) T=1123 K (case 4-2)

(c) T=1173 K (case 4-3)

(d) T=1223 K (case 4-4)

Figure 12.13: Effect of temperature on the total mobile dislocation density distribu-
tion at ε = 0.5%.

404 bending tests of monocrystals

(a) T=1073 K (case 4-1)

(b) T=1123 K (case 4-2)

(c) T=1173 K (case 4-3)

(d) T=1223 K (case 4-4)

Figure 12.13: Effect of temperature on the total mobile dislocation density distribu-
tion at ε = 0.5%.

404 bending tests of monocrystals

(a) T=1073 K (case 4-1)

(b) T=1123 K (case 4-2)

(c) T=1173 K (case 4-3)

(d) T=1223 K (case 4-4)

Figure 12.13: Effect of temperature on the total mobile dislocation density distribu-
tion at ε = 0.5%.



12.3 results and discussion 405

(a) ε̇ = 10−6 s−1 (case 4-5)

(b) ε̇ = 10−5 s−1 (case 4-1)

(c) ε̇ = 10−4 s−1 (case 4-6)

Figure 12.14: Effect of ε̇ on the total mobile dislocation density distribution at ε =
0.5%.

12.3 results and discussion 405

(a) ε̇ = 10−6 s−1 (case 4-5)

(b) ε̇ = 10−5 s−1 (case 4-1)

(c) ε̇ = 10−4 s−1 (case 4-6)

Figure 12.14: Effect of ε̇ on the total mobile dislocation density distribution at ε =
0.5%.

12.3 results and discussion 405

(a) ε̇ = 10−6 s−1 (case 4-5)

(b) ε̇ = 10−5 s−1 (case 4-1)

(c) ε̇ = 10−4 s−1 (case 4-6)

Figure 12.14: Effect of ε̇ on the total mobile dislocation density distribution at ε =
0.5%.

12.3 results and discussion 405

(a) ε̇ = 10−6 s−1 (case 4-5)

(b) ε̇ = 10−5 s−1 (case 4-1)

(c) ε̇ = 10−4 s−1 (case 4-6)

Figure 12.14: Effect of ε̇ on the total mobile dislocation density distribution at ε =
0.5%.



406 bending tests of monocrystals

(a) [123] (case 4-6)

(b) [112] (case 4-7)

(c) [110] (case 4-8)

(d) [111] (case 4-9)

Figure 12.15: Effect of the crystallographic orientation on the total mobile dislocation
density distribution at ε = 0.5%.

406 bending tests of monocrystals

(a) [123] (case 4-6)

(b) [112] (case 4-7)

(c) [110] (case 4-8)

(d) [111] (case 4-9)

Figure 12.15: Effect of the crystallographic orientation on the total mobile dislocation
density distribution at ε = 0.5%.

406 bending tests of monocrystals

(a) [123] (case 4-6)

(b) [112] (case 4-7)

(c) [110] (case 4-8)

(d) [111] (case 4-9)

Figure 12.15: Effect of the crystallographic orientation on the total mobile dislocation
density distribution at ε = 0.5%.

406 bending tests of monocrystals

(a) [123] (case 4-6)

(b) [112] (case 4-7)

(c) [110] (case 4-8)

(d) [111] (case 4-9)

Figure 12.15: Effect of the crystallographic orientation on the total mobile dislocation
density distribution at ε = 0.5%.



12.3 results and discussion 407

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Time (s)

St
ra

in
 (

%
)

 

 

Simulation
Theory

0 0.5 1 1.5 2
0

100

200

300

400

Strain (%)

St
re

ss
 (

M
Pa

)

 

 

Simulation
Theory

(a) Time-strain (b) Stress-strain

Figure 12.16: Comparison of 3PB simulation outputs with approximations given by
[ASTM a] for case nr. 3-1.

3PB tests

Eq. 12.1 applies also to 3-point bending tests, and a target strain rate of
ε̇ = 10−4 s−1 gives an upper rod velocity of 2 × 10−6 m.s−1. On the other
hand, according to [ASTM a] Eq. 12.2 must be replaced by the following
expression:

σ =
3FL
2wt2 (12.3)

A close examination of the simulation results shows that the total strain
developing below the upper rod on the tensile surface is much larger
than the one predicted by integration of Eq. 12.1. As seen in Fig. 12.16a at
t = 100 s the total strain is 2 % instead of the target 1 %. This has a direct
consequence on the stress-strain plot at this location (Fig. 12.16b).

As previously, these discrepancies are left aside and Eqs. 12.1 and 12.3
are used to plot the stress-strain curves.

Fig. 12.17 compares the outputs from simulations 3-1 to 3-4. As for
4PB tests, the sample crystallographic orientation affects both its Young’s
modulus and yielding behavior.

Propagation of the upper yield stress and evolution of the total mobile
dislocation density through the sample half-thickness are monitored in
Figs. 12.18 and 12.19, respectively.

Owing to the linear increase of the bending moment along the specimen
length and between the outer rods, stress and dislocation patterns during
and at the end of simulations is of particular interest. Figs. 12.20 and 12.21
show the Von Mises stress and total dislocation density distribution at
ε = 1 %, respectively.

These static views are complemented in Fig. 12.22 by a series of snapshots
of the stress distribution in the sample oriented in the [110] direction, taken
at different times during the simulation.
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Figure 12.17: Influence of the specimen orientation on the simulated stress-strain
behavior during a 3PB test, cases nr. 3-1 to 3-4.
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Figure 12.18: Evolution of the Von Mises stress through the sample half-thickness,
case 3-1.

12.3.3 Discussion

Deformation homogeneity

The simulations performed in this Chapter confirm the smoothness of
the stress distribution through the samples when deformed in bending.
The 4-point bending configuration yields particularly smooth results that
could be expected from the constant moment applied between the inner
rods: at a given thickness, the stress state does not vary much along the
longitudinal direction. The case of 3PB tests yields more irregularities at
a given thickness, but this could be expected from the variations of the
bending moment between the outer rods.
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12.3.3 Discussion

Deformation homogeneity

The simulations performed in this Chapter confirm the smoothness of
the stress distribution through the samples when deformed in bending.
The 4-point bending configuration yields particularly smooth results that
could be expected from the constant moment applied between the inner
rods: at a given thickness, the stress state does not vary much along the
longitudinal direction. The case of 3PB tests yields more irregularities at
a given thickness, but this could be expected from the variations of the
bending moment between the outer rods.
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Figure 12.19: Evolution of the total mobile dislocation density through the sample
half-thickness, case 3-1.

Strain and stress

general features Strain and stress patterning through the specimen
do not depend qualitatively on the thermodynamic condition. The overall
force-time behavior of the crystals is similar to the one of single crystals
deformed in tension, in spite of the propagation of the yielding phenomena
through the cross-section and towards the neutral axis (Figs. 12.8 and 12.18).
Temperature and strain rate have the same influence on the yield region as
well.

On the other hand, the pattern is significantly affected both qualita-
tively and quantitatively by the crystallographic orientation of the sample,
as clearly shown in Figs. 12.12 and 12.20. Combined with the orienta-
tion dependency of the Young’s modulus, this has potentially important
consequences for industrial applications, as loadings in highly symmetrical
orientations lead to significantly different stresses than obtained on the basis of a
classical [123] orientation.

In both bending situations, the upper yield stress τuy increases by ap-
proximately 40 % when shifting from a [123] to a [111] orientation. This is
in stark contrast with experimental data showing a decrease of the upper
yield stress in symmetrical orientations. This discrepancy is due to the
multiplication law for the yield region relied upon, as discussed in Part iii.

plasticity It is worth noting that the upper yield point retrieved from
the force-time records does not coincide with yielding of the tensile surface
elements, but is slightly delayed, as seen in Figs. 12.3 and 12.16. This means
that plasticity has developed locally when the overall behavior still seems
elastic.

The onset of plastic deformation also puts an end to the validity of
Eqs. 12.2 and 12.3. These equations fail to give the actual value of the
maximum stress in the sample at a given time once plasticity has started
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Figure 12.20: Effect of the crystallographic orientation on the Von Mises stress
distribution at ε = 1 %.
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Figure 12.21: Effect of the crystallographic orientation on the total mobile dislocation
density distribution at ε = 1 %.
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Figure 12.22: Snapshots of the Von Mises stress distribution through the 3PB spec-
imen oriented in the [110] direction at different times, indicated by
arrows on the stress-strain curves (left column). Views of the top (com-
pressed) and bottom (stretched) surfaces are shown in the middle and
right columns, respectively.
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Figure 12.22: Snapshots of the Von Mises stress distribution through the 3PB spec-
imen oriented in the [110] direction at different times, indicated by
arrows on the stress-strain curves (left column). Views of the top (com-
pressed) and bottom (stretched) surfaces are shown in the middle and
right columns, respectively.
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Figure 12.23: Upper yield stress on the tensile surface from 3PB tests (in blue) and
4PB tests (in red) derived from (a) simulations or (b) using Eqs. 12.3
or 12.2.

to develop in the sample. In particular, the value of the local upper yield
stress τuy extracted from simulations differs from the one calculated by the
expressions of [ASTM a] by approximately 20 % for 4PB tests and 30 % for
3PB cases (see Fig. 12.23).

It can also be seen in Fig. 12.23a that at similar thermodynamic conditions
and initial dislocation densities, the upper yield stress reached below the
central rod on the tensile surface in 3PB tests is approximately the same as
the one extracted from the surface of 4PB specimen. However, if Eqs. 12.2
and 12.3 are to be used, τuy would seem up to 10 % higher in 3PB than in
4PB.

upper yield stress propagation An interesting feature revealed by
Figs. 12.8 and 12.18 is the difference of propagation of the upper yield stress
through the sample thickness. In 4PB tests, once the surface has yielded the
upper yield stress decreases as plastic deformation front propagates inwards
and the element layers yield successively.

This is not the case during a 3PB test, and τuy increases from its surface
value until its maximum is reached at one-third of the specimen depth,
before decreasing towards the neutral axis. This can explain the larger
delay between the surface yielding and maximum recorded force in 3PB
simulations than in 4PB ones.

Constitutive model

The results derived in this Chapter are subject to caution, owing to the rather
simple constitutive model relied on to simulate the mechanical response
of the bending specimen. In particular, the effect of secondary systems on
dislocation multiplication in multiple slip is expected to lead to lower upper
yield stresses and enhance significantly the hardening behavior beyond the
yield region.

Experimental results from 3PB tests [Yonenaga 2009] have revealed a dou-
ble yielding of intrinsic and extrinsic dislocation-free silicon monocrystals.
This phenomenon appears in a certain range of temperature and strain rate,
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and in particular crystallographic orientations. Despite several attempts to
reproduce this situation, it has been impossible to reproduce the experimen-
tal findings. Specimen misplacement with respect to the rods, deviation of
the crystallographic orientation of a couple of degrees from the ideal one,
and approximate face parallelism are some the factors investigated.

A possible explanation is the limited complexity of the constitutive model
used. However, the main improvement brought by the holistic model in-
troduced in Part iii lies in the incorporation of forest dislocations on the
hardening mechanisms, that are unlikely to be of significance at small
strains.

One of the most important outcomes from this Chapter is that the local
stress-strain behavior is not necessarily reflected in the force-time curves,
be it simultaneously or qualitatively. An example is the delay between
the first yielding at the sample surface and the maximum force recorded.
Another is the existence of a local double yielding in [110] samples that is
not translated by a double upper yield point in the force-time data.

Local phenomena are consequently filtered before reaching the load cell
of the bending apparatus.

A double yield point detected in the force-time records would then
require an extended specimen volume to exhibit this feature. A possible
explanation is that it finds its roots in the generation and propagation of
Lüders bands from the specimen surface. Simulations show that when the
first upper yield point is detected in the force-time curve, the surface layers
have already yielded.

Lüders bands are observed to form in the yield region in tensile tests and
to propagate from the most stressed regions inwards (see Section 2.4.1). Type
G bands depicted in Fig. 2.10 actually lead to the appearance to a secondary
yield drop, qualitatively similar to the one observed by [Yonenaga 2009].
The following mechanism is suggested:

• Upon loading, the outer layer yields while the overall specimen seems
to be in the elastic region.

• Softening starts to propagate through the thickness, leading to a
decreasing applied force;

• Lüders bands form at the surface and propagate through the thickness,
leading to the appearance of a secondary upper yield point in the
force-time curve.

• Once the unstability is overcome, homogeneous deformation resumes.

This model lacks experimental evidence for the time being. However, in
light of simulations, it seems that the explanation to the double yielding phe-
nomena must lie in local phenomena and cannot be found in macroscopic
parameters.
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We have shown in this Chapter the applicability of the extended AH model
to bending of intrinsic monocrystals. Owing to the strong stress gradients
through the sample thickness and, in the case of 3PB tests, along its length,
rather fine meshes are required for the simulation results to converge.
The increased computational time can be partly offset by parallelization.
Input files for Abaqus/Explicit are available and can be used with any
constitutive model for further investigation of the mechanical behavior of
silicon materials in bending situations.

The results introduced in this work show that the overall behavior of
silicon monocrystals loaded in bending exhibits the same features as in
pure tension. This could indeed be expected. Of interest is the stress and
dislocation density patterning that develops, especially in symmetrical
loading situations such as [110] or [111]. The type of bending test does
not affect significantly the upper yield stresses on the specimen surface
at similar temperature, strain rate and initial dislocation density. On the
other hand, it does modify significantly the stress distribution through the
sample at a given strain level.

A conclusion drawn from the use of the extended AH model is that
bending or uniaxial loadings along symmetrical orientations should be
avoided in order to reduce the upper yield stress. An increase of τuy by
roughly 40 % is simulated by switching from a [123] to a [111] orientation.

This conclusion is in apparent contradiction with experimental data,
pointing to lower upper yield stresses in symmetrical orientations.

The local stress-strain behavior is not necessarily seen in the force-time
record. The development of plastic strains can lead up to a doubling of the
local maximum principal strain, relative to the value predicted by the linear
elasticity theory.

We suggest that the double yield point phenomena experimentally
recorded during 3PB tests in certain conditions could be due to local
unstabilities such as Lüders bands propagating from the highly stressed
sample surface inwards.

Next Chapter focuses on multicrystals and introduces results from var-
ious simulations performed not only on bending specimen, but also on
small aggregates and mc-Si ingots.
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13
E X T R I N S I C M C - S I A G G R E G AT E S

Simulations of multicrystals in various loading conditions are introduced. The comparison
between 4-point bending tests on mono- and multicrystals reveals the fundamental differences
between those two material types. Uniaxial tension of a small multicrystal containing hard
inclusions allows for quantification of the stress increases taking place at various length
scales and due to different factors. Finally, simulation of directional solidification of a mc-Si
ingot gives an example of application of the extended AH model with the implicit version of
the finite element software Abaqus/Standard.

13.1 introduction

Until now only applications of the extended AH model to monocrystals
have been discussed. The case of multicrystals follows naturally, and rep-
resents only additional finite element modeling tasks. Pushing further the
model complexity, oxgyen-contaminated materials are studied as well. The
present Chapter focuses on three cases.

Firstly, an actual 4PB specimen is modeled and deformed in Section 13.2.
Different homogeneous dissolved oxygen concentrations are considered.
Secondly, a small multicrystal containing isotropic perfectly elastic inclu-
sions and exhibiting different mechanical properties than silicon is de-
formed in tension. This allows a careful study of the effect of grain misori-
entation and of inclusions on the local stress and strain fields in Section 13.3.

Finally, the simulation of solidification and cooling of a small mc-Si ingot
is presented. This case requires the development of an additional constitu-
tive model for the melt, relies on Abaqus/Standard for the computation
and uses several modeling tricks described in Section 13.4.
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418 extrinsic mc-si aggregates

13.2 4-point bending of a mc-si bar

13.2.1 Model properties

The mc-Si bar model comes from a real mc-Si specimen whose surface has
been analyzed by EBSD to determine the grain shape and orientation. Filter-
ing out small grains and assuming the 11 remaining grains to be columnar,
the whole sample is obtained by extruding the planar multigrain model.
Fig. 13.1 shows the stereographic projections of the grain orientations.

The FE model is more complex and refined than the ones used in the
previous Chapter, because the particular grain geometry poses some con-
straints on the geometrical discretization of the sample surface. The sample
dimensions are still 4× 3× 45 mm3. C3D8R elements are kept, and 20 layers
in the thickness are considered. Owing to the amount and size of grains,
5559 elements are used to mesh the specimen surface (see Fig. 13.2), leading
to a total amount of elements slightly larger than 111000.

This heavy model is computationally expensive to run, therefore only a
limited amount of simulations is considered here. The temperature is set
to T=1073 K, the upper rod velocity constant and leading to a projected
strain rate ε̇ = 10−5 s−1, and the initial dislocation density is considered
homogeneous at 108 m−2 on each slip system. Three dissolved oxygen
concentrations c∞

O are considered: intrinsic case, c∞
O = 2.5 × 1017 cm−3 and

c∞
O = 5 × 1017 cm−3. The simulations last 500 s, up to a theoretical strain of

0.5 %. Table 13.1 summarizes the cases considered in this Section.

13.2.2 Results and discussion

Stress-strain and dislocation density

The force-time outputs are converted into stress-strain usingthe same as-
sumptions as made in the previous Chapter, relying on Eqs. 12.1 and 12.2.
These results are shown in Fig. 13.3. As expected, increasing the dissolved
oxygen content raises the upper yield stress.

Stress-strain results of case 4-1 are also shown for comparison. The
multicrystalline nature of the present specimen leads to a lower averaged
Young’s modulus relative to a single crystal oriented in the [123] direction.

Case nr. T (K) γ̇ (s−1) ρm,0 (m−2) c∞
O (cm−3)

1 1073 10−5 108 0

2 1073 10−5 108 2.5

3 1073 10−5 108 5

Table 13.1: Simulated cases of 4PB tests of mc-Si bars. Initial dislocation density is
per slip system.
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Figure 13.3: Stress-strain outputs from simulations of 4PB tests of mc-Si bars. The
stress-strain results of case nr. 4-1 of Chapter 12 is also shown for
comparison.
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Figure 13.4: Von Mises stress distribution in the 4PB mc-Si bars at ε=0.5 %.
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Figure 13.5: Total mobile dislocation density distribution in the 4PB mc-Si bars at
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Figure 13.6: Isosurfaces of the Von Mises stress in intrinsic 4PB bars.

13.2 4-point bending of a mc-si bar 421

(a) FZ-Si (b) c∞
O = 2.5 × 1017 cm−3 (c) c∞

O = 5 × 1017 cm−3

Figure 13.5: Total mobile dislocation density distribution in the 4PB mc-Si bars at
ε=0.5 %.

(a) [123] c-Si

(b) mc-Si

Figure 13.6: Isosurfaces of the Von Mises stress in intrinsic 4PB bars.

13.2 4-point bending of a mc-si bar 421

(a) FZ-Si (b) c∞
O = 2.5 × 1017 cm−3 (c) c∞

O = 5 × 1017 cm−3

Figure 13.5: Total mobile dislocation density distribution in the 4PB mc-Si bars at
ε=0.5 %.

(a) [123] c-Si

(b) mc-Si

Figure 13.6: Isosurfaces of the Von Mises stress in intrinsic 4PB bars.

13.2 4-point bending of a mc-si bar 421

(a) FZ-Si (b) c∞
O = 2.5 × 1017 cm−3 (c) c∞

O = 5 × 1017 cm−3

Figure 13.5: Total mobile dislocation density distribution in the 4PB mc-Si bars at
ε=0.5 %.

(a) [123] c-Si

(b) mc-Si

Figure 13.6: Isosurfaces of the Von Mises stress in intrinsic 4PB bars.



422 extrinsic mc-si aggregates

(a) [123] c-Si

(b) mc-Si

Figure 13.7: Isosurfaces of the total mobile dislocation density in intrinsic 4PB bars.

Table 13.2 provides some data for comparison between intrinsic monocrys-
talline and multicrystalline models: maximum values of the Von Mises
stress, total mobile dislocation density and maximum principal strain are
given at the end of the simulations.

Local vs. global behavior

comparison with intrinsic c-si The results indicate that the mul-
ticrystalline configuration considered in this Section leads to a tripling of the
maximum dislocation density, more than a doubling of the maximum strain
developing in the bar, and an increase of the maximum Von Mises stress by
two-thirds, with respect to the homogeneous case of a [123]-oriented single
crystal. These differences are slightly reduced when a [111] monocrystal is
taken as reference1.

need for a local approach This shows that the conclusions reached
in the previous Chapter concerning the large discrepancy between the local and
global behavior is even more accute in the case of multicrystals and justify a
multiscale approach to the problem.

Deformation heterogeneity associated to huge increases in the maximum
values of stress, strain and dislocation density imply that the study of
mc-Si materials cannot neglect the very crystallographic topography of its
constituent grains. The most striking effect of introducing grain misori-
entations (and imposing kinematic compatibility at grain boundaries) is

1 The potential influence of the constitutive model on these results must be kept in mind, as the
extended AH model does not correctly reproduce the strong stress and dislocation density
increases taking place in multiple slip conditions.
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σVM (MPa) εmax (%) ∑ ρm (1011 m−2)

[123] c-Si 30.5 0.71 0.95

[111] c-Si 38.7 0.56 1.45

mc-Si 50 1.74 3

from [123] +64 % +145 % +215 %

Table 13.2: Maximum values of selected variables throughout intrinsic mono- and
multicrystalline 4PB specimen deformed in the same conditions, at
ε = 0.5 %.

(a) [123] c-Si

(b) mc-Si

Figure 13.8: Distribution of the maximum principal strain in intrinsic 4PB bars at
ε = 0.5 %.

the development of strong strain localizations2 associated to strong plastic
deformation, as shown in Fig. 13.8.

The presence of dissolved oxygen leads to the development of larger
stresses, strains and dislocation densities than in the case of intrinsic crys-
tals. Heterogeneities are similarly enhanced, calling further for the use of
dedicated finite element models.

2 Mesh size effects can be expected at these localizations close to grain boundaries. No attempt
to study mesh convergence at grain boundaries has been performed in this Section; therefore
the maximum strain value given in, e.g., Table 13.2 is subject to caution.
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13.3 analysis of a mc-si block with inclusions

This Section focuses on the study of a small multicrystal containing hard
inclusions. Both the local effects of SiC particules and the overall anisotropy
of the mc-Si aggregate are considered. The case of an oxygen-contaminated
aggregate is also touched upon.

13.3.1 Finite Element model

Geometry and mesh

The mc-Si aggregate is made up of 7 columnar grains and contains 3
SiC inclusions, whose mechanical properties are assumed to be isotropic
perfectly elastic (E = 410 GPa, ν = 0.14). The dimensions of the multicrystal
are 6.6 × 5 × 5 mm3. The inclusions are modeled as ellipsoids of length
0.6 mm and radius 0.1 mm. They are embedded into the silicon matrix and
no separation is allowed at the Si/SiC interface.

Grain orientations are randomly generated and shown in Fig. 13.10 using
the stereographic projection and the X-axis as the tensile one.

The matrix is meshed with roughly 142,000 C3D4 elements, while in-
clusions require 750 such elements each. This type of element is chosen
in spite of its poor stress response because of its ability to mesh complex
volumes and surfaces (see Annex C). No mesh convergence study has been
attempted. Fig. 13.9 shows a grid view of the aggregate mesh. Figs. 13.11a
and 13.11b show solid meshes of one grain and an inclusion, respectively.

Cases studied

All simulations are performed at a homogeneous and constant temperature
of 1173 K, applying a unidirectional velocity on one of the specimen faces
ensuring a strain rate ε̇ = 10−5 s−1. The time-velocity function includes an
acceleration phase of 10 s in order to limit oscillations in the force output of
the explicit model. The displacements on the opposite face are constrained
in the tensile direction, while nodes are free to move on the orthogonal
plane. Simulations are run for 500 s, up to a tensile strain of 0.5 %.

The initial mobile dislocation density is set to 108 m−2 on each slip
system. For the CZ-Si case, a homogeneous dissolved oxygen concentration
of 5 × 1017 m−3 is chosen.

Anisotropic properties are studied on the FZ-Si sample only. Given the
columnar nature of the grains, one natural direction to explore is the Y-axis
"solidification" one. The two in-plane X and Z-axes orthogonal directions
are then considered (see Fig. 13.9 for axis definition).
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Figure 13.9: Grid view of the mesh used for study of a mc-Si block with inclusions.

13.3.2 Results and discussion

FZ-Si crystals

global stress-strain outputs The force-time simulation outputs
are converted into stress-strain curves assuming small deformations. Fig. 13.12
shows the results obtained on the intrinsic aggregate. It can be seen that
the randomly generated grain orientations do not lead to any particular
anisotropic behavior, be it in the elastic or plastic deformation ranges. Over-
all, the multicrystal behaves like a single crystal, as was the case for bending
specimen.

stress and strain distributions The global smooth force-time
output hides local heterogeneous behavior. Fig. 13.13 shows the Von Mises
stress distribution at the sample surfaces when deformed in all three di-
rections considered. Looking at a local scale and inside the specimen, a
view cut of the aggregate is selected for its ability to pass through all three
inclusions. This gives us the ability to study both the effect of grain mis-
orientation and of hard inclusions on the stress and strain levels inside the
mc-Si block in Fig. 13.14.

Fig. 13.15 shows the view cut distribution of the maximum principal
strain.

The maximum stress and strain reached in the silicon matrix at ε = 0.5 %
depend on the tensile axis, as shown in Table 13.3. Since mesh sensitivity has
not been assessed, these values must be considered with caution. However,
they point to a common pattern between simulations, namely that the
maximum Von Mises stress (resp. strain) reached in the multicrystal is
roughly 3 times (resp. 4 times) larger than the overall measured one.
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maximum Von Mises stress (resp. strain) reached in the multicrystal is
roughly 3 times (resp. 4 times) larger than the overall measured one.
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Figure 13.12: Stress-strain curves from uniaxial tensile deformation of the mc-Si
block with inclusions along three orthogonal directions. Intrinsic crys-
tals.

Tensile axis X Y Z

σVM (MPa) 35 25 28

εmax (%) 2.65 1.57 1.9

Table 13.3: Maximum values of the Von Mises stress and principal strain in the Si
matrix of mc-Si blocks containing inclusions deformed at ε = 0.5 %.

the effect of inclusions Inclusions have a very local effect, roughly
over a region of the size of the inclusion itself. They participate in stress
increase and are actually at the origin of the maximum Von Mises stress
in all three cases considered here. The same remark is valid for dislocation
densities: the clusters they generate exhibit densities 5 to 10 times the bulk
ones.

The effect of inclusions is best seen in the strain distributions (Fig. 13.15).
Grain boundaries do not have any significant effect on the strain hetero-
geneity as they do not lead to any noticeable discontinuity in the material
properties. On the other hand, as inclusions behave perfectly elastically
and no interface separation is allowed at the Si/SiC boundaries, the silicon
lattice must accomodate plastically for the displacements imposed by the
inclusions.

The elastic anisotropy of the silicon matrix leads to the development of
strain lobes around inclusions, most visible in Fig. 13.15a. The dislocation
density follows these patterns.

Note that the potential interaction between inclusions and free surfaces or
grain boundaries has not been investigated. Adding kinematic constraints
on the Si matrix elements ought to lead to further stress and strains devel-
opments. It is experimentally observed that inclusions tend to grow close
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Figure 13.17: Stress-strain curves from uniaxial tensile deformation of the mc-Si
block with inclusions along the X-axis direction: comparison between
the intrinsic and extrinsic crystals.

to grain boundaries (see Part i), so such a study could prove valuable for
industrial applications.

CZ-Si crystal

Comparison between the intrinsic and extrinsic cases gives results similar
to those derived in the previous Section. The presence of dissolved oxygen
raises the upper yield stress (Fig. 13.17), increases both the absolute Von
Mises stress values and heterogeneities in the sample (Fig. 13.18).

Dislocation locking does not increase noticeably the maximum value
reached in the sample at ε = 0.5 %, but extends the volume submitted to
large stresses. On the other hand, at the upper yield point the maximum
Von Mises stress in the silicon matrix increases by 32 % when oxygen is
present.

Closing remarks

The stress-strain curves obtained from uniaxial tension of a small multicrys-
talline aggregate in reveal no noticeable anisotropic properties, be it in the
elastic or plastic domains. From a macroscopic point of view, solar-grade
mc-Si materials behave like monocrystals. However, simulations show that
a multicrystalline structure leads to mesoscopic variations of stress, strain
and dislocation densities, owing to kinematic compatibility requirements at
the grain boundaries.

Hard inclusions embedded in the silicon matrix increase further the
maximum values reached by these variables, and must be accounted for if
the fracture behavior of mc-Si is to be correctly predicted.

Simulations of bending tests have revealed that the maximum local
Von Mises stress in silicon monocrystals can be derived from a standard
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13.4 solidification and cooling of a mc-si ingot

13.4.1 Finite element model

Geometry and mesh

The previous model applications were concerned with relatively small
multicrystalline aggregates. We turn now to the modeling of solidification
and cooling of a cylindrical mc-Si ingot, of height 8 cm, diameter 20 cm and
made up of 34 columnar grains. The ingot is supported by a stiff perfectly
elastic plate, so that friction between the ingot and what could be identified
as the bottom of the mould can be included (friction coefficient 0.6). No
sticking at the ingot bottom is allowed: all nodes can separate freely from
the supporting plate.

The ingot is meshed with slightly more than 90,000 C3D8R elements, and
680 elements are used for the plate (see Fig. 13.19). The grain orientations
are generated randomly. Fig. 13.20 shows their stereographic projection
with respect to the solidification direction.

Constitutive model and implementation

The simulation of directional solidification poses several problems. Firstly,
simulated times are very large as real solidification processes can take
several dozens of hours, so using an explicit finite element software is not
a reliable solution as the propagated error ought to be large after several
millions of time increments, not to mention the time it takes to complete
the simulation given the complex constitutive model used.

Therefore, Abaqus/Standard is relied on for the purpose of this sim-
ulation. This requires in turn the derivation of the constitutive tangent
modulus (CTM) to ensure rapid convergence of the solver iterations at each
time increment. This is done in Annex B for the temperature-dependent
extended AH model.

The potentially large increments could lead to errors in the integration of
the constitutive equations. To remedy this problem, a second order explicit
solver with substepping is chosen (see Annex A).

Secondly, directional solidification means that molten silicon is present
above the solidified part of the ingot, with the solidification front (the inter-
face between the molten and solid silicon) advancing slowly. The possibility
offered by Abaqus/Standard for modeling fluids are inexistent. A solution
is to consider that all nodes at temperatures above the melting temperature
behave as a soft, perfectly elastic solid5. The constitutive behavior of this
material is also implemented into the UMAT (see Annex B).

This allows a tremendous simplification of the problem, with the draw-
back of inducing a discontinuity of the material properties at the solidifica-

5 The constitutive equations are solved at integration points located at the center of the C3D8R
elements, where the temperature is interpolated from its values at the nodes.
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Figure 13.19: Mesh of the mc-Si ingot and supporting plate for simulation of direc-
tional solidification. The grains are colored according to their crystal-
lographic orientation.

Figure 13.20: Stereographic projection of the 34 grains forming the mc-Si ingot
studied in Section 13.4.
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tion front. This means that the time steps have to be sufficiently small for
the solution to converge correctly at the liquid/solid interface.

13.4.2 Case studied

The case considered here is an extremely simplified solidification and
cooling process, with a flat solidification front moving upwards at a constant
velocity of 1 mm/s. Once solidified, silicon cools down at a rate of 10 K/s.
No temperature homogeneization stage is included when the whole ingot
is solidified.

These values are extreme, compared to the industrial baseline. However,
such choices are made solely to demonstrate the feasability of the simulation
and the potential application of a constitutive model to a real multicrystal.
With 24 elements in the vertical direction, the temperature interpolation at
the integration points is still quite rough and leads to discontinuities in the
material properties, that can be resolved by reducing the time increment.
Significant simulation times result from this limitation, and only one case is
shown in this work.

The initial dislocation density is set to 107 m−2 on each slip system.

13.4.3 Results and discussion

General observations

time increments The rather coarse vertical discretization of the mc-Si
ingot into 24 finite elements layers, combined with the discontinuity of the
constitutive behavior at the melting temperature, has a direct effect on the
increment size used by Abaqus. The "solidification" of an additional layer
stiffens the concerned elements, leading to a stress increase that propagates
downwards into the solidified material, until relieved by plastic deformation.
Each layer solidification requires the use of smaller time increments for
convergence to be reached.

It is believed that using a finer vertical discretization can help smoothen
this stiffening effect, and could allow the finite element solver iterations to
converge more easily.

Once all the ingot has solidified, the time increments increase significantly,
even if plasticity is a priori still active in the model, pointing to the bottleneck
posed by the liquid-to-solid transition.

absence of annealing No annealing or temperature homogeneiza-
tion step is included in the simulations. This means that once solidified, a
layer cools down at a constant rate of 10 K/s, until reaching room tempera-
ture. The strain gradients that result from the strong temperature gradient
in the ingot can be relieved by plastic deformation at rather high temper-
atures. Below roughly 1073 K, plasticity is much less likely to take place
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No temperature homogeneization stage is included when the whole ingot
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These values are extreme, compared to the industrial baseline. However,
such choices are made solely to demonstrate the feasability of the simulation
and the potential application of a constitutive model to a real multicrystal.
With 24 elements in the vertical direction, the temperature interpolation at
the integration points is still quite rough and leads to discontinuities in the
material properties, that can be resolved by reducing the time increment.
Significant simulation times result from this limitation, and only one case is
shown in this work.

The initial dislocation density is set to 107 m−2 on each slip system.

13.4.3 Results and discussion

General observations

time increments The rather coarse vertical discretization of the mc-Si
ingot into 24 finite elements layers, combined with the discontinuity of the
constitutive behavior at the melting temperature, has a direct effect on the
increment size used by Abaqus. The "solidification" of an additional layer
stiffens the concerned elements, leading to a stress increase that propagates
downwards into the solidified material, until relieved by plastic deformation.
Each layer solidification requires the use of smaller time increments for
convergence to be reached.

It is believed that using a finer vertical discretization can help smoothen
this stiffening effect, and could allow the finite element solver iterations to
converge more easily.

Once all the ingot has solidified, the time increments increase significantly,
even if plasticity is a priori still active in the model, pointing to the bottleneck
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and the ingot contraction due to the finite thermal expansion coefficient of
silicon lead to elastic stress developments.

Once the bottom layer has cooled down to 293 K, it basically stops
contracting while the others still do. Behaving mostly elastically at this
point, buckling of the ingot follows, during which very high stresses are
reached as shown in Fig. 13.21.

Stress and dislocation densities

Fig. 13.22 shows the evolution of the Von Mises stress and total dislocation
density in the ingot at different time points. A view cut of the ingot along
its diameter is chosen to give more insights about variable distribution
inside the block.

stress evolution The Von Mises stress remains very low all through-
out the solidification phase, since dislocation generation allows for plastic
relief of the stress developments at the liquid/solid interface. Only unidi-
rectional temperature gradients have been imposed in the model, whereas
in real cases the solidification front takes a bowed shape that induces ad-
ditional temperature gradients in the radial direction6. These would lead
to the development of additional elastic stresses, most likely dampened by
dislocation generation.

As could be expected, stresses develop mainly during the cooling step,
when silicon behaves elastically.

Disregarding the buckling event, the Von Mises stress remains below
7 MPa and develops mainly at the ingot surfaces. Its distribution follows
somehow the grain shapes, with larger values at the boundaries than in the
bulk (with a factor 3 to 5 at room temperature). This is particulary visible
in Fig. 13.23, showing snapshots of the Von Mises stress at various ingot
heights both at the end of the solidification and cooling phases.

Note that the final stress state, with the largest stresses at the top ingot
surface, differs from the one simulated after solidification (in which case
the highest stresses are recorded at the ingot bottom). This ought to be due
to the buckling above-mentioned.

dislocation density Dislocations are generated at very high temper-
atures only: most of the increase of ∑α ρ

(α)
m takes place right after solidifica-

tion of each element layer. This explains why the density pattern does not
vary through the solidification phase, as seen in Fig. 13.22.

Interestingly, the model predicts the formation of a columnar structure of
dislocation densities, which is in agreement with experimental observations
(see Figs. 13.24 and 13.25). This can be understood by noticing that all layers
are submitted to approximately the same loading, with the exception of

6 Accounting for them could be rather easily done by providing to Abaqus the time-temperature
evolution for each element. However, mesh issues are bound to appear then.
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those close to the surfaces. It is therefore not surprising that the dislocation
density distribution stays very stable in the central part of the ingot7.

Fracture probability

no mould sticking When the ingot is let free to separate from the
supporting plate, the bottom surface quickly takes a bowed shape, leaving
the ingot to rest on its outer elements (see Fig. 13.26). The contact between
the ingot and the mould is therefore stress-free. Since the crystals are
intrinsic, the elastic stress development remains small during solidification
and cooling. Even accounting for the buckling phase, the fracture probability
remains extremely small, practically null.

the importance of boundary conditions A simulation has been
run in the same conditions, but fixing four regions onto the supporting
plate. Fig. 13.27 is obtained; the stresses generated at the sticking elements
are so large that material chipping should have occured before the end of
the simulation. The regions whose displacements are constrained also see
large increases of the dislocation densities.

This simple case shows that boundary conditions and especially any
potential sticking with the mould could be severly detrimental to the ingot
integrity. The quality of the coating is therefore critical to any attempt to
produce low-stress mc-Si materials.

Conclusions

The extended AH model has been implemented in Abaqus/Standard.
This requires the derivation of the CTM in order to reach a quadratic
convergence of the FE solver iterations. This model can be used to simulate
the solidification and cooling of mc-Si ingots. Molten silicon is then modeled
as an extremely soft material. Such a choice is relatively straightforward
to implement, but has the drawback of leading to discontinuities in the
constitutive behavior of the elements, resulting in longer simulation times.

Being able to activate each element layer as the solidification front prop-
agates upwards, or to remesh the solidified material accounting for the
liquid/solid interface shape would constitute elegant solutions to this issue,
improve the solution accuracy and hopefully reduce the computational
cost.

Simulation of directional solidification of an intrinsic mc-Si ingot (34
columnar grains) using an extremely simplified temperature profile shows
that dislocations are generated almost exclusively at the solidification front,
and develop in columns of increasing density as the front propagates

7 More accurately, all layers are submitted to the same temperature history, and the grains are
perfectly columnar. This remark would not be valid if grain growth does not take place in the
vertical direction.
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towards the top surface. Very low densities are found at the bottom surface,
provided the ingot does not stick to the mould.

The multicrystalline structure of the ingot leads to stress and dislocation
density heterogeneities, in a way similar to the other cases studied in this
Chapter. Grain boundaries see a slight stress increase compared to the bulk.

The temperature homogeneization step is crucial if ingot "buckling" and
its associated large stresses are to be avoided. The simulations run in the
framework of this PhD work show that the fracture probability in mc-Si
materials remains extremely small if boundary conditions to not lead to
additional, strong kinematic constraints.

440 extrinsic mc-si aggregates

towards the top surface. Very low densities are found at the bottom surface,
provided the ingot does not stick to the mould.

The multicrystalline structure of the ingot leads to stress and dislocation
density heterogeneities, in a way similar to the other cases studied in this
Chapter. Grain boundaries see a slight stress increase compared to the bulk.

The temperature homogeneization step is crucial if ingot "buckling" and
its associated large stresses are to be avoided. The simulations run in the
framework of this PhD work show that the fracture probability in mc-Si
materials remains extremely small if boundary conditions to not lead to
additional, strong kinematic constraints.

440 extrinsic mc-si aggregates

towards the top surface. Very low densities are found at the bottom surface,
provided the ingot does not stick to the mould.

The multicrystalline structure of the ingot leads to stress and dislocation
density heterogeneities, in a way similar to the other cases studied in this
Chapter. Grain boundaries see a slight stress increase compared to the bulk.

The temperature homogeneization step is crucial if ingot "buckling" and
its associated large stresses are to be avoided. The simulations run in the
framework of this PhD work show that the fracture probability in mc-Si
materials remains extremely small if boundary conditions to not lead to
additional, strong kinematic constraints.

440 extrinsic mc-si aggregates

towards the top surface. Very low densities are found at the bottom surface,
provided the ingot does not stick to the mould.

The multicrystalline structure of the ingot leads to stress and dislocation
density heterogeneities, in a way similar to the other cases studied in this
Chapter. Grain boundaries see a slight stress increase compared to the bulk.

The temperature homogeneization step is crucial if ingot "buckling" and
its associated large stresses are to be avoided. The simulations run in the
framework of this PhD work show that the fracture probability in mc-Si
materials remains extremely small if boundary conditions to not lead to
additional, strong kinematic constraints.



















C O N C L U S I O N

The extended model of Alexander & Haasen has been used to study the
deformation of mono- and multicrystals in various loading situations.

monocrystals

Reproductions of 3-point and 4-point bending tests actually performed at
NTNU and Tohoku University have shown the influence of the sample
crystallographic orientation on the recorded force-time curves. It is seen
that the stress-strain derived from standard formulas do not account for
plastic localization at the specimen surfaces.

The plastic front propagation mechanisms have been studied, and exhibit
noticeable differences depending on the bending test of interest. The loca-
tion of the maximum stress when plastic deformation has set in varies with
time, and can be located inside the bending specimen.

Temperature, strain rate and crystal orientation all affect the stress level
and magnitude of dislocation density at a given strain. A striking feature
of orientations such as [110] is the inhomogeneous stress distribution they
create, exhibiting symmetrical patterns. Such "hard" orientations are simu-
lated to have higher upper yield stresses than a classical [123] one would,
although this is in contradiction with experimental results (see Section 2.1).
This discrepancy is due to the limitations of the constitutive model in
multiple slip situations.

multicrystals

Simulations of bending tests and uniaxial tensile testing of multicrystals
have revealed two features:

1. There is no significant difference between the recorded force-time
curves of tests performed on single or multicrystals. In particular,
no secondary upper yield stress is detected in the latter case, and
the multicrystal considered does not show any specific anisotropic
property.

2. This macroscopic mechanical behavior seemingly similar to the case
of single crystals hides strong stress and dislocation density hetero-
geneities on smaller length scales. These are due to various factors
such as relative differences of grain crystallographic orientations and
the presence of hard inclusions embedded in the silicon matrix.

These heterogeneities lead to local stress peaks where fracture is more
likely to occur. Their intensity and location hav been determined for the
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450 conclusion to part iv

cases studied in this work. The main outcome of these case studies is the
imperative need for a multiscale approach when deformation of multicrystals is
considered. This can be achieved by the modeling of random multicrytals
given the statistical properties of the material considered, such as mean
grain size and its standard variation, prefered crystallographic orientation,
distribution of dislocation density, etc.

application to industrial problems

The constitutive model has been implemented into Abaqus/Explicit and
Abaqus/Implicit, respectively in VUMAT and UMAT user subroutines.
The former is well-suited to the study of small specimen loaded during
short times, such as bending tests. The latter fits better the requirements
posed by simulations of long processes, such as directional solidification of
SoG-Si ingots. The last Section of Chapter 13 has shown the applicability
of the extended AH constitutive model to such an industrially-relevant
problem.

The model outputs agree qualitatively with experimental observations:
stresses develop mostly close to the ingot surfaces, and regions of high
dislocation densities grow in columns, following the solidification front.

Boundary conditions have a considerable influence on the fracture proba-
bility of mc-Si ingots. Ingot sticking most likely leads at best to the growth
of dislocation clusters and at worst to local material chipping, which has
the potential to tunr into a large-scale ingot fracture if the cracks spread
inwards.

Such boundary conditions have a much larger influence on the final stress
state than the multicrystalline nature of cast ingots.

future work

Future simulations of bending tests should aim at comparing numerical
results with experimental ones. Comparing the results given by various
constitutive models could also be of high interest; in particular the influence
of forest hardening in multiple slip conditions could be studied with the
help of the model derived in Part iii.

The study of bicrystals could shed some light on the influence of the
relative grain orientations on plastic deformation. The conditions necessary
for the development of strong discontinuities in the dislocation densities
across a grain boundary could be investigated.

Hard inclusions have a local effect on stress increases and dislocation
cluster generation, ans so do grain boundaries, albeit to a lower extent. The
combined influence of both factors should be studied as well, by creating a
model of bicrystal with several inclusions close to the grain boundary.

Finally, simulation of directional solidification using a real temperature
history should be done. This is indeed the ultimate goal of the DESA
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project. However, the objective of this Ph.D. was to derive constitutive
models only; their application to ingot solidification and cooling is the
task of another subgroup. Using a in-house developed finite element code
would provide more freedom and better tools to deal with the shape of
the solidification front and the fundamental problem of modeling the
liquid/solid interface. To this date, Abaqus does not offer the ability to
deal with phase transformation.
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C O N C L U S I O N

bridging the length scales

This thesis has been written on the idea that macroscopic characteristics of
the plastic behavior of silicon find their origins in the microscopic processes
taking place at dislocations, and that a successful constitutive model should
account for them.

Hence, all the constitutive models introduced in this book are based on
the very physical mechanisms of plastic deformation, namely dislocation
glide on discrete slip systems.

On the other hand, there is no real alternative to such a choice because of
the particularly low initial dislocation densities encountered in as-grown
semiconductors: reproducing the yield region and its high sensitivity on
thermodynamic conditions without relying on the concepts of mobile dislo-
cation density and an analytical velocity law is hardly feasible.

As shown in Part iii, relying on standard dislocation velocity models for
fcc metals does not yield satisfying results for silicon at large dislocation
densities; in other words, the mechanical behavior of semiconductors cannot
be satisfyingly reproduced if the physics of plastic deformation typical of
this material class are overlooked.

A multiscale approach is then required: building a dislocation velocity
law knowing the rate-limiting mechanisms, deriving rate equations for the
evolution of the dislocation densities, and finally linking the microscopic,
physically-based internal variables of the model to the macroscopic plastic
strain rate through Orowan’s law and a relevant kinematic framework.

comparison of constitutive models for silicon monocrystals

Part i has concentrated on exposing the current knowledge we have of
silicon mechanics and the physics of its plastic deformation. It has intro-
duced the standard constitutive models available for the study of the yield
region of silicon; they have been analyzed in depth in the early Part ii. The
following remarks have been made:

1. all models are based on four building blocks:

a) a stress- and temperature-dependent dislocation velocity law

b) a rate equation for the evolution of the dislocation density

c) a definition of the effective stress actually setting dislocations
into motion
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456 conclusion

d) Orowan’s law, allowing the transition from physically-based
internal variables to the macroscopic kinematic framework

2. The kinematics into which the constitutive equations are tradition-
ally implemented inherently limit their range of application, either
because the model is a scalar one assuming a perfectly controlled
crystallographic orientation, homogeneous state of deformation, or be-
cause the three-dimensional J2 approach assumes plasticity to develop
isotropically on one single slip system only.

Kinematics

The kinematics have been fixed by adopting a rate-dependent crystal plas-
ticity (RDCP) framework. Accounting for the 12 different slip systems onto
which dislocations can actually move and multiply, RDCP also allows cou-
plings between these systems through the constitutive equations. In other
words, RDCP enables a correct modeling of latent hardening and forest
interactions.

Constitutive equations

Analysis of experimental observations in the yield region and early stage
I has revealed the limited validity of assumptions commonly made when
deriving constitutive equations. In particular, considering all dislocations to
carry plastic flow is the most troublesome point.

extended ah model Accounting for the build-up of a density of im-
mobile dislocations allows the extended model of Alexander & Haasen
introduced in Chapter 6 to predict correctly the effective stress in the steady-
state of deformation. Introducing temperature and strain rate dependencies
in the dislocation multiplication law increases the model accuracy in the
yield region in a wide range of conditions.

extrinsic crystals Turning to extrinsic crystals, the definition of an
effective density of mobile dislocations depending on the concentrations of
oxygen at the dislocation cores has enabled the correct reproduction of the
upper yield stress dependency on the dissolved oxygen concentration.

a new approach Distinguishing between screw and 60° dislocations
and accounting for the influence of jog dragging on dislocation motion
mechanisms has proved crucial to the success of a novel constitutive model
derived in Part iii.

• Although of a high complexity, this model has few unkown parame-
ters requiring identification by comparison with experimental data,
most of them being derived on physical principles
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• The high model accuracy in the yield region is reinforced by the
absence of explicit temperature or strain rate dependency of the
dislocation multiplication law

• Stress overshoot, single glide and a strong linear hardening rate
in stage II are all retrieved when the rate-limiting action of jogs is
accounted for

• The most striking characteristic of plasticity mechanisms in semicon-
ductors is that forest obstacles do not seem to play any significant
role in delaying dislocation glide

• The model introduced in Part iii is based on physical processes com-
monly encountered in materials and can thus be applied to, e.g.,
fcc crystals, provided the dislocation velocity law in free flight and
constitutive parameters are adapted to the material considered

new insights

The various constitutive models studied in the course of this Ph.D. thesis
have been calibrated on uniaxial tensile tests. Other loading cases are
investigated in Part iv, relevant to research or industrial applications: three-
and four-point bendings of intrinsic and extrinsic mono- and multicrystals,
influence of a multicrystalline structure and of hard inclusions on local
stress developments, directional solidification of a mc-Si ingot.

The main outcome of the study of multicrystals with a RDCP framework
is the ability to quantify the local stress variations due to incompatibility
at the grain boundaries and to other factors such as inclusions. All cases
reviewed have shown that nothing in the force-time records distinguishes a
mono from a multicrystal; the differences are visible on a local scale only
and can be revealed by numerical methods.

The models are physically based on dislocation generation and anni-
hilation processes, and can therefore be used to estimate the dislocation
density distribution in real samples. This is of high industrial relevance
since regions with high dislocation densities typically exhibit low electrical
performance.

Finally, coupling of the models with experimental characterization of the
fracture strength of silicon materials can yield the evolution of the fracture
probability distribution through a given specimen during loading.

future work

This thesis is concluded by some guidelines for future work. The following
ideas complement the comments and discussions made at the end of each
Part.
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458 conclusion

Constitutive model

The work introduced in Part iii has shown that dislocation from forest ob-
stacles does not improve the ordering of the upper yield stress as a function
of the sample orientation. Further work should therefore concentrate in
priority on deriving a more accurate law for the yield region.

The differential equations ruling the evolution of the jog density on
dislocations should be improved as well. In particular, the influence of jog
dragging on segments of random orientation should be investigated further.

Macroscopic use of models

additional applications Future work should concentrate on ap-
plying the constitutive models to various cases. In particular, simulations
of ingot casting should be performed considering various thermal histo-
ries. The rather large variations of dislocation density across certain grain
boundaries, with one grain more dislocated than its neighbour, could be
als systematically investigated with the novel constitutive model.

A dozen of multicrystalline bars have been prepared for 4-point bending
tests, analyzed by EBSD and PVscan to determine the grain shapes, orien-
tations, and dislocation densities. An interesting task would be to deform
them at high temperatures up to large strains and compare the experimental
results with the predictions of the advanced constitutive model.

abaqus routine coding Coding a bilinear continuum brick element
(C3D20) into a user-defined element routine (VUEL) for Abaqus/Explicit
could help improve the stability and accuracy of simulations of uniaxial
tensile tests at large deformations when jog dragging is accounted for, as
it would relieve the user from using computationally heavy remeshing
methods to avoid hourglassing.

An alternative solution would be to derive or approximate the constitutive
tangent moduli of the complete constitutive model in order to allow its use
with Abaqus/Standard.

Theoretical aspects

grain boundaries The influence of grain boundaries on dislocation
generation and annihilation has been neither considered nor reviewed.
Therefore, any further attempt to model multicrystals should include a
discussion about their possible role in deformation mechanisms.

In particular, grain boundary sliding has been observed to take place
at very high temperatures. It is indeed possible that plastic deformation
proceeds by other means than dislocation glide at temperatures closer to
the melting point; this aspect is worth investigating.
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conclusion 459

numerical methods Mc-Si materials have rather large grains, so the
effect of grain boundaries might not always dominate over bulk hardening
mechanisms. However, it could be interesting to estimate intragranular
hardening by implementing a nonlocal crystal plasticity framework, or
strain gradient crystal plasticity, by the introduction of Geometrically Nec-
essary Dislocations (GNDs). Although of theoretical interest, the relevance
of this enrichement for industrial applications ought to be low.
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A
C RY S TA L P L A S T I C I T Y

Numerical tools this thesis relies on are detailed. The mathematical framework of rate
dependent crystal plasticity (RDCP) is introduced. Kinematics are derived both at small and
finite strains. Some algorithms for explicit integration of the constitutive equations at each
integration point are then detailed. The performances of a classical J2 plastic flow formulation
are compared to the ones of a RDCP model. The constitutive equations of Alexander and
Haasen are considered at a single integration point, subjected to an isochoric or plane strain
deformation. It is shown that RDCP gives far more insight into the deformation mechanisms
than a J2 framework does.

a.1 introduction

The constitutive models introduced previously are perfectly suited for an
implementation into a standalone routine that considers the deformation
in the crystal to be homogeneous and the resolved shear strain rate to
be known on the single active slip system. In other words, the models of
Chapter 5 are concerned mainly with the micromechanisms of plasticity,
the bridge with macroscopic deformation and stress being done simply
by introducing the equivalent shear modulus μ∗. The crystallographic
orientation of the specimen relative to the tensile (or compressive) axis is in
addition known and considered constant throughout deformation.

However, in real cases deformation is most likely not homogeneous;
several slip systems can be activated simultaneously and interact with each
other, the applied strain rate might vary with time, the lattice might rotate
upon straining, etc. Crystal Plasticity (CP) is a mathematical framework
allowing the user to account for the real physics of plastic deformation
involving dislocation mechanisms. The principle of this framework can
traced back to the work of [Taylor 1938], followed by [Bishop 1951]. The
underlying idea follows from observation of deformed crystals exhibiting
typical patterns: deformation proceeds by gliding along certain directions.
This forms slip lines, aggregated in bands of various thickness. Plastic
deformation of single crystals proceeds therefore along discrete directions
only, whose amount is limited. In the case of face-centered cubic or diamond
cubic crystals for example, twelve such slip systems are available, three
directions on four planes.
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464 crystal plasticity

The kinematics of crystal plasticity usually suppose to work with large
deformations, although some models adapted to small deformations have
been introduced in the literature. The originality of CP is that each slip
system can interact with the other ones provided the constitutive equations
account for such interaction mechanisms. The determination of the “acti-
vated” systems in the original rate independent CP formulation follows from
computation of the resolved shear stresses on each slip system according to
Schmid’s law. The system subjected to the highest resolved shear stress is
checked against the yield condition for slip (physically meaning, the onset
of dislocation motion). If several slip systems are potentially activated, then
undetermination can arise because of the normality rule at apexes of the
yield surface: which ones are actually active? Adopting a rate dependent
formulation levels off this undertermination by smoothing the yield surface,
as will be exposed later on.

This Annex is organized as follows. Both the rate independent and rate
dependent crystal plasticity frameworks are introduced in Section A.2.
Two ways of deriving constitutive models are discussed, either based on
physically-based internal variables such as dislocation densities, or on
phenomenological variables (e.g., the integrated plastic strain). Kinematics
of finite deformations and related issues are derived in Section A.3 as large
deformations are relied on when implementing new constitutive models
in this Thesis. High order explicit algorithms for the integration of the
constitutive equations are introduced in Section A.4. Finally, the advantages
of adopting a RDCP formulation when complex loadings are considered
are shown in Section A.5.

We adopt here Einstein’s notation if not stated otherwise: if the same
indice is repeated twice in the same equation, then it has be summed over
all its possible values.

Numbering and notation of slip systems

Reference is often made in this Thesis to the notation of Schmid & Boas for
the denomination of the slip systems and slip planes. Dislocation slip in
silicon crystals is allowed on twelve slip systems, the <111> directions on
each of the four (111) slip planes. Figure A.1 illustrates the nomenclature
used. A letter is associated to each plane, a number to each slip direction,
identified in the undeformed fcc lattice respectively by their unit normal
vector n0 and unit unit colinear vector s0. Table A.1 gives the complete list
of systems with their respective numbering from 1 to 12.

Vectors such as n0, s0 or the tensile axis are defined in the lattice coor-
dinate system having for basis the ([001], [010], [001]) vectors, each one
representing a translation of one basis atom in the lattice (of length a, the
lattice parameter).
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a.2 principles of crystal plasticity

a.2.1 rate independent formulation

Because of its historical importance, we introduce first the rate dependent
formulation. This formulation is characterized by a relatively heavy imple-
mentation cost due to the undetermination of active slip systems in the
case of multiple slip, and by the approximative physical assumptions un-
derlying it (materials have in fact a rate dependent behaviour, as observed
experimentally especially for silicon).

Mathematical background

Simultaneously to [Mandel 1965], [Hill 1966] published the fundaments
for polycrystal plasticity and the basic set of equations governing the
slip mechanisms. The interactions between slip systems affect directly the
formulation of plasticity. Let us consider for example a classical yield
function f (σ, χk) ≤ 0, σ being the second-order stress tensor and χk, 0 ≤
k ≤ N the internal variables. If the loading is elastic, then the internal
variables will not change, not being affected by a purely elastic loading
of the considered system. On the contrary, when the yield surface f = 0
is reached, then the internal variables follow evolution law that translate
hardening mechanisms.

This yield function remaining unchanged upon purely elastic loading
would also hold if the plastic deformation on the slip systems did not
affect each other, being perhaps ruled by different yield conditions. Koiter
exposed initially such a theory, but its obvious limitations, not taking into
account latent hardening, have led to further developments that will be
exposed in the following. The amount of glide on slip system α defined by
its normal n(α) and the slip direction s(α) (vectors in the reference coordinate
system), is noted γ(α). In the reference coordinate system1 and using a small
deformations formulation, the plastic strain rate reads

ε̇p = P(α)γ̇(α) (A.1)

P(α) =
1
2

(
s(α) ⊗ n(α) + n(α) ⊗ s(α)

)
(A.2)

In the formalism established by [Mandel 1965], glide occuring on the
same slip system but in opposite directions is considered as two different
mechanisms. For face-centered cubic crystals for example, we have 12 slip
systems, yielding 24 different slip mechanisms. A yield function is defined for
each such mechanism, as in the usual plasticity formulation, in function of
the stress state and the amount of slip on all the mechanisms. For example,

1 The choice of the reference coordinate system is not obvious at first: in addition to the
plastic deformation by glide, elastic distortions of the lattice add to the complexity. [Hill 1966]
suggested to use the coordinate system co-rotating, but not deforming with the lattice. The
objective stress measure chosen is the Cauchy stress on the current configuration.
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the yield function of mechanism α ∈ [1, 24] reads fα(σ, γ(β)) ≤ 0, β ∈
[1, 24]. In the following, the amount of mechanisms is not limited to 24
and taken as N. Moreover, “mechanisms” is considered as equivalent to
“slip systems”, keeping in mind that in our formalism, glide on the same
physical slip system but in two opposite directions is considered as two
different mechanisms. This implies that the relations γ(α) ≥ 0 and γ̇(α) ≥ 0
always hold.

Glide occurs for the mechanism α if fα = 0, the elastic domain in the
stress space of six dimensions being defined as the intersection of all the
regions that verify fα(σ, χβ) ≤ 0. At time t, the mechanism α can be elastic
or plastic:

• if fα < 0, the loading is elastic

• if fα = 0 and ḟα = 0, the loading is plastic and stays plastic at t + Δt

• if fα = 0 and ḟα < 0, elastic unloading from the plastic state occurs at
t + Δt.

Writing fα as a function of the stress tensor and the internal variables (the
amount of slip on the systems), its derivative with respect to time can be
written

ḟα =
∂ fα

∂σ
: σ̇ +

∂ fα

∂γβ
γ̇(β) (A.3)

and in the following, the hardening matrix (Hαβ)1≤α,β≤N is used, its coeffi-
cients being defined as

Hαβ = − ∂ fα

∂γ(β)
(A.4)

The case of plastic loading ( fα = 0 and ḟα = 0) is then written for the
mechanism α . Combining Equations A.3 and A.4 gives⎧⎪⎪⎨⎪⎪⎩

∂ fα

∂σ σ̇ − Hαβγ̇(β) = 0

fα = 0

γ̇(α) ≥ 0

(A.5)

Among the N systems, let us consider n arbitrary that are on their yield
surfaces. This leads to Cn

N loading possibilities for this loading case; finally
the number of loading cases is

N

∑
n=1

Cn
N = 2N

The principle of maximum work still applies, but a fundamental differ-
ence with the classical plasticity formulation is that we do not longer have
σ̇ : ε̇p > 0. Here, the sign is undetermined and depends on the coefficients
of (Hαβ)1≤α,β≤N . The existence of solutions to the equation system and
their eventual unicity depends on the properties of the hardening matrix
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• if fα = 0 and ḟα = 0, the loading is plastic and stays plastic at t + Δt
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N = 2N

The principle of maximum work still applies, but a fundamental differ-
ence with the classical plasticity formulation is that we do not longer have
σ̇ : ε̇p > 0. Here, the sign is undetermined and depends on the coefficients
of (Hαβ)1≤α,β≤N . The existence of solutions to the equation system and
their eventual unicity depends on the properties of the hardening matrix
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-if it is symmetric and positive definite for example. For more details, the
reader is refered to [Mandel 1965].

This formulation has several implications that are characteristic of the
crystal plasticity framework. The most important point might be that the
evolution of the yield surface on any slip system α depends on what
happens on the other systems β through the Hαβ row, even if the system
α is not active. Then, the limiting plane in the stress space for plastic
evolution is no longer determined by the relation ∂ f

∂σ : σ̇ = 0, since the
new formulation implies to take into account the influence of the inverse of
H(ν1...νn) , assuming it exists:(

H(ν1...νn)
)−1

βα

∂ fα

∂σ
: σ̇ = 0 (A.6)

where (ν1...νn) is the set of active systems.

Case of Schmid’s law

In the case of crystals ruled by Schmid’s law, the yield condition on each
system α is expressed in function of the resolved shear stress τ(α) given by
Equation A.7:

τ(α) = σ : P(α) (A.7)

The yield function follows (Eq. A.8), and the time derivative of fα can be
derived (Eq. A.9):

fα = τ(α) − g (γ1...γN) (A.8)

ḟα = P(α) : σ̇ − ∂gα

∂γ(β)
γ̇(β) (A.9)

And we obtain the relation Hαβ = ∂gα

∂γ(β) . Using Eqs. A.7 and A.9 for the

case of plastic loading ( fα = 0 and ḟα = 0), we get Eq. A.102, where the
hardening matrix now takes its full signification as the link between the
slip rate and the stress variation on each slip system. It is reminded that
the hardening matrix coefficients vary with deformation.

τ̇(α) = Hαβγ̇(β) (A.10)

Determination of the active systems among the potentially active ones
(those that fulfill the relation fα = 0) is not a trivial exercise. Assuming
Schmid’s law to be valid, plastic flow then occurs on the system α only if
the resolved shear stress reaches a critical value τ(α) = τ

(α)
c , although this

is not a sufficient condition to enable plasticity on these potentially active
systems. The determination of the actual active systems requires the use
of an energetic criterion. The method has been exposed in [Franciosi 1982]

2 Here we have assumed that Ṗ(α)
= 0, which is valid in the case of small deformations only.

The case of large deformations is introduced further.
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hardening matrix now takes its full signification as the link between the
slip rate and the stress variation on each slip system. It is reminded that
the hardening matrix coefficients vary with deformation.

τ̇(α) = Hαβγ̇(β) (A.10)

Determination of the active systems among the potentially active ones
(those that fulfill the relation fα = 0) is not a trivial exercise. Assuming
Schmid’s law to be valid, plastic flow then occurs on the system α only if
the resolved shear stress reaches a critical value τ(α) = τ

(α)
c , although this

is not a sufficient condition to enable plasticity on these potentially active
systems. The determination of the actual active systems requires the use
of an energetic criterion. The method has been exposed in [Franciosi 1982]

2 Here we have assumed that Ṗ(α)
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and relies on a maximization problem among the ensemble of kinematically
admissible stress and strain rates. In order to solve the optimization problem
it is required to know the values of the hardening coefficients Hαβ that
depend on the amount of plastic deformation.

Determining which set of glide systems are activated and the correspond-
ing amount of glide requires the previous knowledge of the matrix of
instantaneous hardening moduli Hαβ. They represent the mutual interac-
tions between slip systems on hardening.

Ordering relations between hardening moduli

It has been postulated that latent hardening coefficients, meaning hard-
ening on a slip system caused by the other systems, were larger than the
self-hardening coefficients (diagonal terms) [Franciosi 1982]. However, ex-
perimental observations by [Wu 1991, Bassani 1991] and theoretical investi-
gations (see, e.g., [Zarka 1972]) have led to the opposite conclusion, as well
as the establishement of fundamental relations ruling the evolution of the
hardening coefficients with the extent of deformation.

These opposing views are due to different uses of the hardening co-
efficients. [Franciosi 1982] considers the threshold stress determined by
relatively short-range elastic interactions between primary dislocations
and the forest, leading to the formation of junctions. On the other hand,
[Zarka 1972] considers long-range elastic interactions only. In other words,
latent hardening by long-range elastic stresses is always weaker than self-
hardening; however significant plastic flow on secondary systems sets in
only when the applied stress (possibly reduced by latent hardening) reaches
the threshold stress.

The rules derived by [Wu 1991, Bassani 1991] are reminded here.

• The total hardening on any latent secondary system is lower than
the total hardening coefficient on the primary system. This is valid at
least up to the activation of secondary systems.

Hαβ(γ
(α), 0...0) < Hαα(γ

(α), 0...0)

• The cumulated effect of slip on all the systems has a stronger influence
on the hardening coefficient than slip on the considered system alone.

Hαα(γ
(α), 0...0) < Hαα(γ

(α), γ(β), ...)

• The activation of a secondary slip system leads to larger hardening
on this newly activated one, compared to hardening on the primary
systems, for low amount of glide on the secondary one.

Hαα(γ
(α), γ(β), ...) 	 Hββ(γ

(α), γ(β), ...) if γ(β) 	 γ(α)

Some explanations have been given to the different conclusions reached
through time by research groups on the ordering of the instantaneous
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moduli. The size of the tested samples has an influence on the measured
hardening coefficients, because it can favor special glide orientations. There-
fore, using the same aspect ratio neutralizes this effect and yields the
preceding results. In addition, the different postulates concerning the or-
dering of the hardening moduli are due to different ways of measuring the
yield stress when the secondary systems are activated. Usually a backward
extrapolation from the stress-strain curve is used, which does not take into
consideration the rapid and large hardening taking place upon reloading
due to the existence of forest dislocations on the secondary systems created
during the first loading stage. This gives artificially high flow stresses for
secondary systems.

Analytical expressions of the instantaneous hardening moduli

From experiments on copper single crystals, [Wu 1991, Bassani 1991] de-
termined a general expression for the off-diagonal components of the
hardening matrix

(
Hαβ

)
1≤α,β≤m, considering them to be proportional to the

associated diagonal moduli: Hαβ = qHαα, α 
= β, 0 ≤ q < 1. They showed
moreover that the behaviour of such crystals was satisfactorily described
using q = 0, meaning that the hardening matrix was diagonal in their case.
Even if this formulation is adapted for easy glide, it is believed to hold
for further hardening stages. They give the following expression for the
instantaneous hardening moduli:{

Hαα = F(γ(α))G({γ(β) β 
= α})
Hαβ = qHαα, α 
= β, 0 ≤ q < 1

(A.11)

Multiplicative decomposition is assumed, that allows a distinction between
influence of primary and latent slip on self-hardening moduli. Other ex-
pressions of the hardening matrix have been suggested in the literature.

One must be aware that these moduli are expressed as functions of the
total plastic deformation on each slip sytem γ(α), obtained by integration
of the glide rates throughout the crystal history. This formulation is called
a continuum slip model by [Rice 1971]. It is worth reminding that the plas-
tic strains are not state variables. Physically relevant variables would be
for example dislocation densities (leading to a discrete dislocation slip model
according to the same author). On the other hand, choosing to express
the hardening moduli as a function of the dislocation densities requires
additional equations describing their evolution, the glide rates being ob-
tained directly from the solution to the minimization problem described
above. Other expressions of hardening moduli can be found for instance in
[Asaro 1983, Bronkhorst 1992].

[Zarka 1972] gives the expression of the yield function for the monocrys-
tal as a function of the densities of dislocations on the systems, using his
results derived from theoretical calculations to obtain the critical resolved

470 crystal plasticity

moduli. The size of the tested samples has an influence on the measured
hardening coefficients, because it can favor special glide orientations. There-
fore, using the same aspect ratio neutralizes this effect and yields the
preceding results. In addition, the different postulates concerning the or-
dering of the hardening moduli are due to different ways of measuring the
yield stress when the secondary systems are activated. Usually a backward
extrapolation from the stress-strain curve is used, which does not take into
consideration the rapid and large hardening taking place upon reloading
due to the existence of forest dislocations on the secondary systems created
during the first loading stage. This gives artificially high flow stresses for
secondary systems.

Analytical expressions of the instantaneous hardening moduli

From experiments on copper single crystals, [Wu 1991, Bassani 1991] de-
termined a general expression for the off-diagonal components of the
hardening matrix

(
Hαβ

)
1≤α,β≤m, considering them to be proportional to the

associated diagonal moduli: Hαβ = qHαα, α 
= β, 0 ≤ q < 1. They showed
moreover that the behaviour of such crystals was satisfactorily described
using q = 0, meaning that the hardening matrix was diagonal in their case.
Even if this formulation is adapted for easy glide, it is believed to hold
for further hardening stages. They give the following expression for the
instantaneous hardening moduli:{

Hαα = F(γ(α))G({γ(β) β 
= α})
Hαβ = qHαα, α 
= β, 0 ≤ q < 1

(A.11)

Multiplicative decomposition is assumed, that allows a distinction between
influence of primary and latent slip on self-hardening moduli. Other ex-
pressions of the hardening matrix have been suggested in the literature.

One must be aware that these moduli are expressed as functions of the
total plastic deformation on each slip sytem γ(α), obtained by integration
of the glide rates throughout the crystal history. This formulation is called
a continuum slip model by [Rice 1971]. It is worth reminding that the plas-
tic strains are not state variables. Physically relevant variables would be
for example dislocation densities (leading to a discrete dislocation slip model
according to the same author). On the other hand, choosing to express
the hardening moduli as a function of the dislocation densities requires
additional equations describing their evolution, the glide rates being ob-
tained directly from the solution to the minimization problem described
above. Other expressions of hardening moduli can be found for instance in
[Asaro 1983, Bronkhorst 1992].

[Zarka 1972] gives the expression of the yield function for the monocrys-
tal as a function of the densities of dislocations on the systems, using his
results derived from theoretical calculations to obtain the critical resolved

470 crystal plasticity

moduli. The size of the tested samples has an influence on the measured
hardening coefficients, because it can favor special glide orientations. There-
fore, using the same aspect ratio neutralizes this effect and yields the
preceding results. In addition, the different postulates concerning the or-
dering of the hardening moduli are due to different ways of measuring the
yield stress when the secondary systems are activated. Usually a backward
extrapolation from the stress-strain curve is used, which does not take into
consideration the rapid and large hardening taking place upon reloading
due to the existence of forest dislocations on the secondary systems created
during the first loading stage. This gives artificially high flow stresses for
secondary systems.

Analytical expressions of the instantaneous hardening moduli

From experiments on copper single crystals, [Wu 1991, Bassani 1991] de-
termined a general expression for the off-diagonal components of the
hardening matrix

(
Hαβ

)
1≤α,β≤m, considering them to be proportional to the

associated diagonal moduli: Hαβ = qHαα, α 
= β, 0 ≤ q < 1. They showed
moreover that the behaviour of such crystals was satisfactorily described
using q = 0, meaning that the hardening matrix was diagonal in their case.
Even if this formulation is adapted for easy glide, it is believed to hold
for further hardening stages. They give the following expression for the
instantaneous hardening moduli:{

Hαα = F(γ(α))G({γ(β) β 
= α})
Hαβ = qHαα, α 
= β, 0 ≤ q < 1

(A.11)

Multiplicative decomposition is assumed, that allows a distinction between
influence of primary and latent slip on self-hardening moduli. Other ex-
pressions of the hardening matrix have been suggested in the literature.

One must be aware that these moduli are expressed as functions of the
total plastic deformation on each slip sytem γ(α), obtained by integration
of the glide rates throughout the crystal history. This formulation is called
a continuum slip model by [Rice 1971]. It is worth reminding that the plas-
tic strains are not state variables. Physically relevant variables would be
for example dislocation densities (leading to a discrete dislocation slip model
according to the same author). On the other hand, choosing to express
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shear stress (see Section 6.3.2), from which the hardening matrix can be
expressed as a function of the dislocation densities:
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a.2.2 Rate dependent materials

The mechanical behaviour of most materials is rate dependent. The hard-
ening laws for such materials differ from the examples given above. In
particular, the numerical treatment of the model is lighter because there
is no more need to look for the set of active slip systems. In the rate de-
pendent framework, all systems follow the same evolution law whatever
the conditions. In particular, undetermination of the active slip systems
is no longer an issue, the apexes of the yield surface being smoothened.
The only requirement is to find an evolution law for the slip rates that
depends on the resolved shear stress as well as other internal variables.
Several models have been introduced in the literature. Some examples are
introduced below.

Thermally activated glide

An interesting model accounting for changes of temperature can be men-
tioned from the work of [Harder 1999], who considers the case of thermally
activated slip rate (Eq. A.13). The effective stress τ

(α)
e f f accounts for kinematic

hardening. More general models of thermally activated glide are available
in the literature (see, e.g., [Kocks 1975, Nemat-Nasser 2004]).
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Power law

The derivation of a power law for dislocation velocity and accordingly the
strain rate is a particular case of the more general expression for dislo-
cation velocity moving through thermally overcomable obstacles, as dis-
cussed in [Kocks 1975]. In this case, the slip rate on a given system α is
expressed as a power function of the flow stress, normalized by a reference
stress τ

(α)
re f , typically the internal stress (Eq. A.14), originally developped

by [Hutchinson 1976] and adopted by several authors (see for example
[Peirce 1983, Bronkhorst 1992, Zikry 1996]). The evolution of the reference
stress can depend for example on the internal variables of all slip systems
through an interaction matrix H similar to the hardening matrix introduced
above. As in Section A.2, the internal variables can be the total strain or

A.2 principles of crystal plasticity 471

shear stress (see Section 6.3.2), from which the hardening matrix can be
expressed as a function of the dislocation densities:

f = ∑
α

fα = ∑
α

Kα
ρ
(α)
m

ρ
(α)
f

(τ(α) − τ
(α)
int )

2 (A.12)

a.2.2 Rate dependent materials

The mechanical behaviour of most materials is rate dependent. The hard-
ening laws for such materials differ from the examples given above. In
particular, the numerical treatment of the model is lighter because there
is no more need to look for the set of active slip systems. In the rate de-
pendent framework, all systems follow the same evolution law whatever
the conditions. In particular, undetermination of the active slip systems
is no longer an issue, the apexes of the yield surface being smoothened.
The only requirement is to find an evolution law for the slip rates that
depends on the resolved shear stress as well as other internal variables.
Several models have been introduced in the literature. Some examples are
introduced below.

Thermally activated glide

An interesting model accounting for changes of temperature can be men-
tioned from the work of [Harder 1999], who considers the case of thermally
activated slip rate (Eq. A.13). The effective stress τ

(α)
e f f accounts for kinematic

hardening. More general models of thermally activated glide are available
in the literature (see, e.g., [Kocks 1975, Nemat-Nasser 2004]).

γ̇(α) = γ̇
(α)
0

⎛⎝
∣∣∣τ(α)

e f f

∣∣∣
μ

⎞⎠n

exp

⎛⎝− ΔF
kbT

⎛⎝1 −
∣∣∣τ(α)

e f f

∣∣∣
τ
(α)
re f

⎞⎠⎞⎠ sign
(

τ
(α)
e f f

)
(A.13)

Power law

The derivation of a power law for dislocation velocity and accordingly the
strain rate is a particular case of the more general expression for dislo-
cation velocity moving through thermally overcomable obstacles, as dis-
cussed in [Kocks 1975]. In this case, the slip rate on a given system α is
expressed as a power function of the flow stress, normalized by a reference
stress τ

(α)
re f , typically the internal stress (Eq. A.14), originally developped

by [Hutchinson 1976] and adopted by several authors (see for example
[Peirce 1983, Bronkhorst 1992, Zikry 1996]). The evolution of the reference
stress can depend for example on the internal variables of all slip systems
through an interaction matrix H similar to the hardening matrix introduced
above. As in Section A.2, the internal variables can be the total strain or

A.2 principles of crystal plasticity 471

shear stress (see Section 6.3.2), from which the hardening matrix can be
expressed as a function of the dislocation densities:

f = ∑
α

fα = ∑
α

Kα
ρ
(α)
m

ρ
(α)
f

(τ(α) − τ
(α)
int )

2 (A.12)

a.2.2 Rate dependent materials

The mechanical behaviour of most materials is rate dependent. The hard-
ening laws for such materials differ from the examples given above. In
particular, the numerical treatment of the model is lighter because there
is no more need to look for the set of active slip systems. In the rate de-
pendent framework, all systems follow the same evolution law whatever
the conditions. In particular, undetermination of the active slip systems
is no longer an issue, the apexes of the yield surface being smoothened.
The only requirement is to find an evolution law for the slip rates that
depends on the resolved shear stress as well as other internal variables.
Several models have been introduced in the literature. Some examples are
introduced below.

Thermally activated glide

An interesting model accounting for changes of temperature can be men-
tioned from the work of [Harder 1999], who considers the case of thermally
activated slip rate (Eq. A.13). The effective stress τ

(α)
e f f accounts for kinematic

hardening. More general models of thermally activated glide are available
in the literature (see, e.g., [Kocks 1975, Nemat-Nasser 2004]).

γ̇(α) = γ̇
(α)
0

⎛⎝
∣∣∣τ(α)

e f f

∣∣∣
μ

⎞⎠n

exp

⎛⎝− ΔF
kbT

⎛⎝1 −
∣∣∣τ(α)

e f f

∣∣∣
τ
(α)
re f

⎞⎠⎞⎠ sign
(

τ
(α)
e f f

)
(A.13)

Power law

The derivation of a power law for dislocation velocity and accordingly the
strain rate is a particular case of the more general expression for dislo-
cation velocity moving through thermally overcomable obstacles, as dis-
cussed in [Kocks 1975]. In this case, the slip rate on a given system α is
expressed as a power function of the flow stress, normalized by a reference
stress τ

(α)
re f , typically the internal stress (Eq. A.14), originally developped

by [Hutchinson 1976] and adopted by several authors (see for example
[Peirce 1983, Bronkhorst 1992, Zikry 1996]). The evolution of the reference
stress can depend for example on the internal variables of all slip systems
through an interaction matrix H similar to the hardening matrix introduced
above. As in Section A.2, the internal variables can be the total strain or

A.2 principles of crystal plasticity 471

shear stress (see Section 6.3.2), from which the hardening matrix can be
expressed as a function of the dislocation densities:

f = ∑
α

fα = ∑
α

Kα
ρ
(α)
m

ρ
(α)
f

(τ(α) − τ
(α)
int )

2 (A.12)

a.2.2 Rate dependent materials

The mechanical behaviour of most materials is rate dependent. The hard-
ening laws for such materials differ from the examples given above. In
particular, the numerical treatment of the model is lighter because there
is no more need to look for the set of active slip systems. In the rate de-
pendent framework, all systems follow the same evolution law whatever
the conditions. In particular, undetermination of the active slip systems
is no longer an issue, the apexes of the yield surface being smoothened.
The only requirement is to find an evolution law for the slip rates that
depends on the resolved shear stress as well as other internal variables.
Several models have been introduced in the literature. Some examples are
introduced below.

Thermally activated glide

An interesting model accounting for changes of temperature can be men-
tioned from the work of [Harder 1999], who considers the case of thermally
activated slip rate (Eq. A.13). The effective stress τ

(α)
e f f accounts for kinematic

hardening. More general models of thermally activated glide are available
in the literature (see, e.g., [Kocks 1975, Nemat-Nasser 2004]).

γ̇(α) = γ̇
(α)
0

⎛⎝
∣∣∣τ(α)

e f f

∣∣∣
μ

⎞⎠n

exp

⎛⎝− ΔF
kbT

⎛⎝1 −
∣∣∣τ(α)

e f f

∣∣∣
τ
(α)
re f

⎞⎠⎞⎠ sign
(

τ
(α)
e f f

)
(A.13)

Power law

The derivation of a power law for dislocation velocity and accordingly the
strain rate is a particular case of the more general expression for dislo-
cation velocity moving through thermally overcomable obstacles, as dis-
cussed in [Kocks 1975]. In this case, the slip rate on a given system α is
expressed as a power function of the flow stress, normalized by a reference
stress τ

(α)
re f , typically the internal stress (Eq. A.14), originally developped

by [Hutchinson 1976] and adopted by several authors (see for example
[Peirce 1983, Bronkhorst 1992, Zikry 1996]). The evolution of the reference
stress can depend for example on the internal variables of all slip systems
through an interaction matrix H similar to the hardening matrix introduced
above. As in Section A.2, the internal variables can be the total strain or



472 crystal plasticity

the dislocation densities on the slip systems. An example of such a ref-
erence stress is given in Equation A.15 for the case of a continuum slip
model [Peirce 1983] and Equation A.16 for a discrete dislocation slip model
[Zikry 1995, Zikry 1996].
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The strain rate prefactor γ̇
(α)
0 comes from Orowan’s law and should be

depending on the density of mobile dislocations that carry plastic flow, al-
though in practice it is considered to remain constant [Nemat-Nasser 2004].
This is actually justified as the density of mobile dislocations quickly satu-
rates to reach a steady-state value in easy glide.

The stress exponent n is usually very high to guarantee that the slip rates
remain extremely small at low applied stresses. On the other hand, as soon
as it comes closer to the reference stress the strain rate increases quickly.
Negative strain rates are allowed by such a law, reducing the amount of
systems required by the model.

Isotropic and kinematic hardening

It is also possible to take into account isotropic and kinematic hardening,
see Eq. A.17, as done by [Meric 1991, Barbe 2001a, Barbe 2001b]. There, k(α)

translates the kinematic hardening, while i(α) represents isotropic hardening.
Of course, these variables follow evolution laws depending on for example
the dislocation interactions and other internal variables. This model rep-
resents satisfactorily the Bauschinger effect and can be used e.g. for cyclic
loadings.
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〈∣∣∣τ(α) − k(α)
∣∣∣− i(α)

τ
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re f

〉n

sign
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(A.17)

Several models for rate dependent materials are available in the literature.
They all express the strain rate on the slip systems as a function of the
applied stress and a set of internal variables. It must be noted that these
models might be extremely nonlinear and difficult to integrate implicitely.
Section A.4 introduces high-order explicit solvers that can be used for this
purpose.
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The mathematical framework described above has been derived in the
small strains approximation. If the constitutive equations are updated in
the current configuration, the stress and strain increments are likely to be
small enough to justify a local use of small strain, provided that the lattice
spin due to plastic slip is accounted for and correctly sent to the global
solver. It is however possible to express the whole problem in finite strains,
a formulation that is useful, e.g., to identify the model parameters from
uniaxial tensile tests of single crystals loaded in single glide, as secondary
slip then sets in at very large strains.

a.3 large deformations

The obvious limitations of the small strains formulation when applied
to real cases (for example, metal forming) have been overcome by using
large deformations and a multiplicative decomposition of the displacement
gradient tensor [Lee 1969, Rice 1971]. It is then assumed that the total defor-
mation gradient can be decomposed into a purely plastic term, translating
glide on the slip systems and an intermediate stress-free configuration,
whereas lattice rotation, rigid body rotations and other additional effects
are gathered into the thermoelastic part of the gradient. It is also possible
to extract the thermal part of the latter.

a.3.1 Kinematics

For a comprehensive review of the mathematic formulation of the large
deformations in the context of crystal plasticity, the reader is refered for
example to [Asaro 1983]. The basics are detailed here.

Consider the transformation u(X, t) that maps at each time t a material
point X in the inital configuration C0 into a material point x in the current
configuration Ct (Eq. A.18). The deformation gradient F is defined as in
Eq. A.19.

u : X ∈ C0 −→ x = u (X, t) ∈ Ct (A.18)

F = ∇u (X, t) =
∂u (X, t)

∂X
(A.19)

It is assumed that the material is deformed plastically solely through slip
mechanisms, meaning that deformation mechanisms such as twinning or
dislocation climb are not taken into account, although they could be imple-
mented as well. The associated plastic (or inelastic) deformation gradient
tensor is noted Fp, and represents an intermediate stress-free configuration.
Slip leaves the lattice unrotated and unstressed, but induces a rotation of
the material point that can be identified by polar decomposition of Fp.

In addition to slip, the lattice undergoes elastic deformations and rigid-
body rotations embedded into the elastic deformation gradient Fe, the ulti-
mate deformation gradient tensor being given by Eq. A.20, see Figure A.2.
This definition implies that plastic deformation is isochoric, meaning that
det Fp = 1 and det F = det Fe > 0.
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tensor is noted Fp, and represents an intermediate stress-free configuration.
Slip leaves the lattice unrotated and unstressed, but induces a rotation of
the material point that can be identified by polar decomposition of Fp.

In addition to slip, the lattice undergoes elastic deformations and rigid-
body rotations embedded into the elastic deformation gradient Fe, the ulti-
mate deformation gradient tensor being given by Eq. A.20, see Figure A.2.
This definition implies that plastic deformation is isochoric, meaning that
det Fp = 1 and det F = det Fe > 0.
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of the displacement gradient tensor is shown.

474 crystal plasticity

Figure A.2: Kinematics of deformation of a solid. The multiplicative decomposition
of the displacement gradient tensor is shown.

474 crystal plasticity

Figure A.2: Kinematics of deformation of a solid. The multiplicative decomposition
of the displacement gradient tensor is shown.

474 crystal plasticity

Figure A.2: Kinematics of deformation of a solid. The multiplicative decomposition
of the displacement gradient tensor is shown.



A.3 large deformations 475

F = FeFp (A.20)

The slip direction s(α)0 of a glide system α in the undeformed configuration

becomes upon application of F, s(α) = Fes(α)0 . The direction normal to the

slip plane becomes n(α) = Fe−1n(α)
0 . This is because plastic deformation by

pure slip does not affect the slip directions and the normal to the slip planes:
for example, Fps(α)0 = s(α)0 . These vectors in the current configuration are
still orthogonal, but no longer unit vectors. The velocity gradient L is equal
to

L = ḞF−1 = ḞeFe−1 + FeḞpFp−1Fe−1 = Le + Lp = (De + Ωe) + (Dp + Ωp)
(A.21)

The tensors D and Ω are the rates of stretching and spin tensors, respec-
tively, defined in the spatial coordinates by{

D = 1
2
(∇v +t ∇v

)
= De + Dp

Ω = 1
2
(∇v −t ∇v

)
= Ωe + Ωp

(A.22)

with v(x, t) = ∂u
∂t . Since we assume that plastic deformation happens by

slip only, the plastic velocity gradient can be decomposed in the sum of
the amount of plastic strain rate on all slip systems defined relative to the
reference state lattice:

Lp = Dp + Ωp = FeḞpFp−1Fe−1 = ∑
α

γ̇(α)s(α) ⊗ n(α) (A.23)

The γ̇(α) are defined so that:

ḞpFp−1 = ∑
α

γ̇(α)s(α)0 ⊗ n(α)
0 (A.24)

Physically, they are the slip rates on the different slip systems. Eq. A.24 can
be used to update the plastic deformation gradient. The introduction of
two additional tensors P(α) and W(α) (Eq. A.25) leads to the expression of
the plastic stretching and spinning tensors as sole functions of the γ̇(α)’s
(Eq. A.26): ⎧⎨⎩ P(α) = 1

2

(
s(α) ⊗ n(α) + n(α) ⊗ s(α)

)
W(α) = 1

2

(
s(α) ⊗ n(α) − n(α) ⊗ s(α)

) (A.25)

{
Dp = ∑α P(α)γ̇(α)

Ωp = ∑α W(α)γ̇(α)
(A.26)

a.3.2 Stress update

Two approaches are available to integrate the stress: either the solution is
found on the actual configuration, or a pull-back is imposed. The latter
method is more convenient from a computational point of view, but both
ways are introduced in the following.
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ḞpFp−1 = ∑
α

γ̇(α)s(α)0 ⊗ n(α)
0 (A.24)

Physically, they are the slip rates on the different slip systems. Eq. A.24 can
be used to update the plastic deformation gradient. The introduction of
two additional tensors P(α) and W(α) (Eq. A.25) leads to the expression of
the plastic stretching and spinning tensors as sole functions of the γ̇(α)’s
(Eq. A.26): ⎧⎨⎩ P(α) = 1

2

(
s(α) ⊗ n(α) + n(α) ⊗ s(α)

)
W(α) = 1

2

(
s(α) ⊗ n(α) − n(α) ⊗ s(α)

) (A.25)

{
Dp = ∑α P(α)γ̇(α)

Ωp = ∑α W(α)γ̇(α)
(A.26)

a.3.2 Stress update

Two approaches are available to integrate the stress: either the solution is
found on the actual configuration, or a pull-back is imposed. The latter
method is more convenient from a computational point of view, but both
ways are introduced in the following.

A.3 large deformations 475

F = FeFp (A.20)

The slip direction s(α)0 of a glide system α in the undeformed configuration

becomes upon application of F, s(α) = Fes(α)0 . The direction normal to the

slip plane becomes n(α) = Fe−1n(α)
0 . This is because plastic deformation by

pure slip does not affect the slip directions and the normal to the slip planes:
for example, Fps(α)0 = s(α)0 . These vectors in the current configuration are
still orthogonal, but no longer unit vectors. The velocity gradient L is equal
to
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Incremental update on the current configuration

The constitutive law in large deformations requires the choice of an objective
stress rate and of a stress measure. We choose here the Jaumann rate of
Kirchhoff stress, since the Kirchhoff stress is the work conjugate of the
strain field D defined previously. The Kirchhoff stress τ is related to the
Cauchy stress σ by the determinant J of the deformation gradient:

J = det F = det Fe

τ = Jσ
(A.27)

The Jaumann rate is defined by:

◦
τ = τ̇ − Ωτ + τΩ (A.28)

We introduce the fourth order tensor of elastic moduli C so that
◦

τe = C : De.
The difference between the rates of the purely elastic and the total Kirchhoff
stress is written with the help of a second-order tensor β(α), see Eq. A.29.
This yields the expression of the material Jaumann stress rate (Eq. A.30):

◦
τe − ◦

τ = ∑
α

β(α)γ̇(α), β(α) = W(α)τ − τW(α) (A.29)

◦
τ = C : D − ∑

α

(
C : P(α) + β(α)

)
γ̇(α) (A.30)

Finally, the Schmid stress (or resolved shear stress) τ(α) on the slip system
α is defined to be the work conjugate of γ̇(α):{

τ : Dp = ∑α τ(α)γ̇(α)

τ(α) = P(α) : τ
(A.31)

Since the P(α) vary with the lattice and are not constant with respect to
time, the time derivative of the Schmid stress reads τ̇(α) = Ṗ(α) : τ +P(α) : τ̇,
which can be written in different forms, using the Jaumann rate.

Derivation on the initial configuration

An alternative framework has been suggested, where another stress and
stress measure pair is chosen (see for example [Bronkhorst 1992, Kalidindi 1992]).
Adopting the strain measure of Green-Lagrange and considering only the
elastic part of the displacement gradient tensor that creates stresses, it
follows

Ee =
1
2

(
FeTFe − I

)
(A.32)

its work conjugate is the second Piola-Kirchhoff stress (2PK) (Eq. A.33)
which is assumed in the case of a hyperelastic material to be related to the
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strain by a fourth-order elastic tensor L (Eq. A.34). This linear approxima-
tion coming from a Taylor expansion of the 2PK stress is valid for small
elastic strains only, which is usually the case for metals.

Se = Fe−1(Jσ)Fe−T (A.33)

Se = L : Ee (A.34)

As previously, the plastic deformation gradient is given by Eq. A.24, and
the definition of the resolved shear stress follows from the plastic stress
power per unit volume associated to Lp:

τ(α) = Se : sym(FeTFes(α)0 ⊗ n(α)
0 ) (A.35)

In the case where elastic deformations are small, Ce = FeTFe can be approx-
imated by the identity tensor, giving equation A.36 for the Schmid stress,
expressed as a function of the lattice vectors in the initial configuration only.

τ(α) = Se : sym(s(α)0 ⊗ n(α)
0 ) (A.36)

The use of such an integration scheme on the initial configuration is
attractive since the stresses are related uniquely to the elastic part of the
deformation gradient. Given the updated total deformation gradient F and
by integration of its plastic part Fp by virtue of eq. A.24, Fe is directly found
by using the multiplicative decomposition of F.

a.3.3 Thermal expansion

We have until now assumed an isothermal framework. Temperature varia-
tions and gradients lead nonetheless to strain build-up through the thermal
expansion coefficients and the stiffness anisotropy of the materials. In the
case of large deformations, it is possible to consider the related displacement
gradient tensor Fθ . The total deformation gradient reads3:

F = FeFpFθ (A.37)

where it is assumed that plastic deformation takes place on the thermally
expanded unstressed configuration. Figure A.2 is no longer valid and should
hence be replaced by Figure A.3. The lattice unit vectors s(α)0 and n(α)

0
defined above are affected by the thermal expansion and plastic glide takes
place on the intermediate (unstressed) configuration characterized by the
vectors Fθs(α)0 and Fθ−1n(α)

0 , as depicted in Figure A.3. The lattice orientation
remains nonetheless unchanged by the application of both the thermal and
plastic parts of the deformation gradient, the elastic part still being the only
responsible for stress development.

3 We use in this section the symbol θ to denote temperature instead of T, since the latter is also
used to transpose a tensor.
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expressed as a function of the lattice vectors in the initial configuration only.
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The use of such an integration scheme on the initial configuration is
attractive since the stresses are related uniquely to the elastic part of the
deformation gradient. Given the updated total deformation gradient F and
by integration of its plastic part Fp by virtue of eq. A.24, Fe is directly found
by using the multiplicative decomposition of F.

a.3.3 Thermal expansion

We have until now assumed an isothermal framework. Temperature varia-
tions and gradients lead nonetheless to strain build-up through the thermal
expansion coefficients and the stiffness anisotropy of the materials. In the
case of large deformations, it is possible to consider the related displacement
gradient tensor Fθ . The total deformation gradient reads3:

F = FeFpFθ (A.37)

where it is assumed that plastic deformation takes place on the thermally
expanded unstressed configuration. Figure A.2 is no longer valid and should
hence be replaced by Figure A.3. The lattice unit vectors s(α)0 and n(α)

0
defined above are affected by the thermal expansion and plastic glide takes
place on the intermediate (unstressed) configuration characterized by the
vectors Fθs(α)0 and Fθ−1n(α)

0 , as depicted in Figure A.3. The lattice orientation
remains nonetheless unchanged by the application of both the thermal and
plastic parts of the deformation gradient, the elastic part still being the only
responsible for stress development.

3 We use in this section the symbol θ to denote temperature instead of T, since the latter is also
used to transpose a tensor.
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Figure A.3: Kinematics of deformation of a solid in the case of non-isothermal con-
ditions. The multiplicative decomposition of the displacement gradient
tensor is shown.

It is also possible to consider an alternative decomposition of the defor-
mation gradient by applying first the inelastic deformations, followed by the
thermal expansion. The deformation gradient reads in this case F = FeFθFp,
but such a formulation is less physically meaningful because plastic strains
are not allowed to be applied on the actual relaxed configuration of the
lattice. The choice of Eq. A.37 allows plastic slip to depend on temperature.
Fθ is given by Eq. A.38 for the most general case, where α is the tensor of
thermal expansion coefficients and θ0 a reference temperature [Meissonnier 2001].
This expression can be derived with respect to time in the case of temperature-
independent thermal expansion coefficients to obtain Eq. A.39 [McHugh 1993].

Fθ = exp (α(θ − θ0)) (A.38)

ḞθFθ−1 = θ̇α (A.39)

Since the thermal expansion coefficients of silicon are temperature-
dependent and we are aiming at covering a large temperature span we will
use the exact derivation of Eq. A.38, leading to:

ḞθFθ−1 = θ̇

(
α + (θ − θ0)

∂α

∂θ

)
(A.40)

478 crystal plasticity

Figure A.3: Kinematics of deformation of a solid in the case of non-isothermal con-
ditions. The multiplicative decomposition of the displacement gradient
tensor is shown.

It is also possible to consider an alternative decomposition of the defor-
mation gradient by applying first the inelastic deformations, followed by the
thermal expansion. The deformation gradient reads in this case F = FeFθFp,
but such a formulation is less physically meaningful because plastic strains
are not allowed to be applied on the actual relaxed configuration of the
lattice. The choice of Eq. A.37 allows plastic slip to depend on temperature.
Fθ is given by Eq. A.38 for the most general case, where α is the tensor of
thermal expansion coefficients and θ0 a reference temperature [Meissonnier 2001].
This expression can be derived with respect to time in the case of temperature-
independent thermal expansion coefficients to obtain Eq. A.39 [McHugh 1993].

Fθ = exp (α(θ − θ0)) (A.38)

ḞθFθ−1 = θ̇α (A.39)

Since the thermal expansion coefficients of silicon are temperature-
dependent and we are aiming at covering a large temperature span we will
use the exact derivation of Eq. A.38, leading to:
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ḞθFθ−1 = θ̇

(
α + (θ − θ0)

∂α

∂θ

)
(A.40)

478 crystal plasticity

Figure A.3: Kinematics of deformation of a solid in the case of non-isothermal con-
ditions. The multiplicative decomposition of the displacement gradient
tensor is shown.

It is also possible to consider an alternative decomposition of the defor-
mation gradient by applying first the inelastic deformations, followed by the
thermal expansion. The deformation gradient reads in this case F = FeFθFp,
but such a formulation is less physically meaningful because plastic strains
are not allowed to be applied on the actual relaxed configuration of the
lattice. The choice of Eq. A.37 allows plastic slip to depend on temperature.
Fθ is given by Eq. A.38 for the most general case, where α is the tensor of
thermal expansion coefficients and θ0 a reference temperature [Meissonnier 2001].
This expression can be derived with respect to time in the case of temperature-
independent thermal expansion coefficients to obtain Eq. A.39 [McHugh 1993].

Fθ = exp (α(θ − θ0)) (A.38)
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The numerical treatment of the equations is similar to previously, writing
Fe = F(FpFθ)−1. Therefore, once the plastic and thermal parts of the defor-
mation gradient are integrated (using Eqs. A.24 and A.40 respectively) the
elastic part can easily be obtained.

L = ḞF−1 = Le + Lp + Lθ (A.41)

Lθ = FeFp
(

ḞθFθ−1
)
(FeFp)−1 (A.42)

a.4 integration of the constitutive equations

Chapter 5 exposes the limitations of the models currently available for
the study of the mechanical behaviour of silicon single crystals, inherent
both to their kinematical framework and to their constitutive equations:
limitation to small strains and to uniaxial, zero-dimensional straining cases
sollicitating crystals along one slip system only, the secondary systems
being completely ignored. This Section aims at detailing the numerical
methods used to update the internal variables of the constitutive equations,
independently on the kinematical framework and plasticity formulations
adopted by the user (that is, using RDCP at small or finite strains, or a
J2 framework, etc.). We focus in the following on the implementation of
models onto a single integration point: the strain rate tensor ε̇ (or velocity
gradient L), the time increment and set of internal variables at the end
of the last increment are given as inputs. Implementation of a crystal
plasticity framework into a commercial Finite Element package is detailed
in Chapter 6. We are concerned in this Annex by the update of internal
variables and stress state. This procedure is not straightforward because
of the potentially high degrees of nonlinearity and coupling between the
internal variables. Different solvers are introduced.

a.4.1 Generic algorithm

Definition of coordinate systems and Euler angles

In order to ease the comprehension of the numerical procedures, we in-
troduce in this Section a generic algorithm. Let us consider a fictious f.c.c.
(or diamond cubic) crystal located in a laboratory, the latter being char-
acterized as a Galilean referential and an orthogonal coordinate system4

C0, defined by unit vectors (x0, y0, z0). The coordinate system linked to
the crystal lattice and its orientations 〈100〉, 〈010〉, 〈001〉 is written Clat.
Instead of the traditional crystallographic denominations the unit vectors
are written (x, y, z). This coordinate system is co-rotating with the lattice
during deformation.

The relative orientation of Clat with respect to C0 can be defined by three
successive rotations to which we associate the three Euler angles (ψ, θ, φ),

4 This coordinate system will also be called in the following global system, in opposition the
crystallographic, or local system.
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Figure A.4: Definition of the Euler angles (ψ, θ, φ)

see Figure A.4 [Kocks 1998]. Adopting the Bunge notation, the angles
become (φ1, θ, φ2), with φ1 = ψ + π

2 , φ2 = π
2 − φ. The matrix allowing for

coordinate transformation from the global to the lattice system is written
Q (φ1, θ, φ2) (Eq. A.43). The component e(lat)

i of a vector e(lat) in the lattice
coordinate system is expressed with the help of Q from its coordinates in
the global system e(global)

j :

Q (φ1, θ, φ2) =

⎡⎢⎢⎣ cos φ1 cos φ2 − sin φ1 cos θ sin φ2

− cos φ1 sin φ2 − sin φ1 cos θ cos φ2

sin φ1 sin θ

sin φ1 cos φ2 + cos φ1 cos θ sin φ2 sin θ sin φ2

− sin φ1 sin φ2 + cos φ1 cos θ cos φ2 sin θ cos φ2

− cos φ1 sin θ cos θ

⎤⎥⎥⎦
(A.43)

e(lat)
i = Qije

(global)
j (A.44)

Consequently, a tensor T0 expressed in C0 can be expressed into Clat with
the help of Q as follows:

Tlat = QT0QT (A.45)

Formulation of the problem

For convenience, the problem treated here is formulated in the approxi-
mation of small deformations, but the treatment remains general and its
extension to finite strains is relatively straightforward. Because of the in-
cremental form of the constitutive equations, the experiment duration time
ttot is discretized into nsteps equal finite time increments of length Δt, with
ttot = nstepsΔt. Let us consider a displacement field u(x, t) applied to a
material point positioned at x. Then the strain tensor is given by the sym-
metrical part of the gradient of u(x, t) also called the deformation gradient
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∇u = F, see Eq. A.46. The strain rate is the time derivative of the strain
tensor:

ε =
1
2
(∇u + t∇u

)
, εij =

1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(A.46)

ε̇ij =
∂εij

∂t
(A.47)

Assume that we apply the given displacement field u(x, t) to the whole
volume of the crystal. Using Eq. A.46, we can derive the corresponding
strain tensor. For convenience, the strain rate tensor at time t is assumed
constant during each time step and given by ε̇ij =

εij(t+Δt)−εij(t)
Δt . This ap-

proximation assumes that the time steps shall be small enough to guarantee
a satisfying approximation of the actual strain evolution with time. The
problem to solve is then to find the stress tensor σ and the set of internal
variables that satisfy the incremental equation σ̇ = L : (ε̇ − ε̇p), with ε̇p the
plastic strain rate tensor that follows a given constitutive law introducing k
internal variables (yi)1≤i≤k, and L is the linear, fourth-order stiffness tensor
that might depend on temperature.
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if necessary5, and the next time step is processed. The complete procedure
is shown in Algorithm A.1. Note that the variables are updated on the
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The critical part of the programs is clearly the solver. How to get the
updated internal variables determining the plastic part of the deformation?
Next Section describes the different strategies available to achieve this goal.

a.4.2 Explicit solvers

Because different explicit solvers can be used in the routines, their principles
are exposed in the following. Let us consider a system of k coupled first-
order differential equations:

{
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, yi(t0) = yi,0,

1 ≤ i, j ≤ k}. For convenience, derivation with respect to time only is
considered, and we write ∂yi

∂t = y′i = ẏi. In our problem, these functions
(resp. their first-order derivatives) would be the internal variables (resp.
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approximation assumes that the initial and current configuration are the same, there is
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their evolution rates) that determine for instance the value of the plastic
strain and dislocation velocity at each step. The continuous equations read:⎧⎪⎪⎨⎪⎪⎩

ẏi(t) = fi
(
t, yj(t)

)
yi(t0) = yi,0

1 ≤ i, j ≤ k

with yi,0 the initial values of the problem required to solve it. Time dis-
cretization into time steps of length Δtn = tn+1 − tn allows to write the
derivatives of the functions as in Eq. A.48, where the choice of α determines
the type of the solver.

fi
(
tn, yj(tn)

)
=

αyi(tn+1) + (1 − α)yi(tn)

Δtn
(A.48)

For α = 0, the formulation is fully explicit and the time derivative of
the functions yi for step n are taken as the derivatives at the beginning
of the step. On the other hand, if α is taken as unity, then the solver is
fully implicit, and the (usually) non-linear equation system to solve might
require the use of a Newton-Raphson iteration scheme. Let us call yi(tn+1)
the exact solution to the problem. Then the error of any solver reads:

err = yi(tn+1)− yi(tn+1) (A.49)

A Taylor expansion of the solution at tn+1 gives Eq. A.50, and the order of
a solver is simply given by the order of magnitude of the remaining terms
minus 1.

yi(tn+1) = yi(tn) + Δtnẏi(tn) +
(Δtn)2

2
ÿi(tn) + ... +

(Δtn)k

k!
y(k)i (tn) + ...

(A.50)

Forward Euler method

The easiest and straightforward integration method is of course to consider
the explicit method at each time step n, since the rates ẏi(tn) are known
from the functions yj derived at previous step. The forward Euler method
uses the Taylor development of the solution up to the first derivative. Then
the set of equations reads in its discretized form:{

yi(tn+1) = yi(tn) + Δtn ẏi
(
tn, yj(tn)

)
1 ≤ i, j ≤ k

(A.51)

Such a solution is of first order, meaning that the error of the solution is
one order of magnitude higher than the time step chosen.

errFE = O
(
(Δtn)

2
)

(A.52)
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from the functions yj derived at previous step. The forward Euler method
uses the Taylor development of the solution up to the first derivative. Then
the set of equations reads in its discretized form:{

yi(tn+1) = yi(tn) + Δtn ẏi
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Euler-Cauchy method

It seems therefore interesting to increase the order p of the solver, since
the final error after n steps of equal length Δt reads errn = O (

n(Δt)p+1).
Equation A.50 shows that it is possible to refine the approximate solution
yi(tn+1) by using terms of higher order in the Taylor expansion. For ex-
ample, the second derivative can itself be approximated by a first order
development, giving the Euler-Cauchy method, namely⎧⎪⎪⎨⎪⎪⎩

yi(tn+1) = yi(tn) +
Δtn

2
(
ẏi

(
tn, yj(tn)

)
+ ẏi

(
tn+1, yj(tn)

+Δtnẏj (tn, yl(tn))
))

1 ≤ i, j, l ≤ k

(A.53)

Such an approach is easily implemented into an algorithm since it is based
on the explicit derivation of expressions at successive iterations. For exam-
ple, the Euler-cauchy method can be written⎧⎪⎪⎨⎪⎪⎩

yi(tn+1) = yi(tn) +
1
2 (k1 + k2)

k1 = Δtn ẏi
(
tn, yj(tn)

)
k2 = Δtn ẏi

(
tn + Δtn, yj(tn + k1)

) (A.54)

where k1 and k2 are the solutions given by the forward Euler method at tn
and tn+1 respectively, using the former solutions as the initial values for
the second iteration. The Euler-Cauchy method is of order 2, since the term
of order 2 in Equation A.50 has been integrated into the approximation,
leaving third derivatives.

errEC = O
(
(Δtn)

3
)

(A.55)

Higher order Runge-Kutta methods

A simple fourth order method requires four evaluations of the derivatives
and the functions at different times. The solution reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi(tn+1) = yi(tn) +
1
6 (k1 + 2k2 + 2k3 + k4)

k1 = Δtn ẏi
(
tn, yj(tn)

)
k2 = Δtn ẏi

(
tn +

Δtn
2 , yj(tn) +

k1
2

)
k3 = Δtn ẏi

(
tn +

Δtn
2 , yj(tn) +

k2
2

)
k4 = Δtn ẏi(tn + Δtn, yj(tn) + k3)

(A.56)

errRK = O
(
(Δtn)

5
)

(A.57)

Such a solver is attractive for nonlinear problems that would otherwise re-
quire extremely small time steps to ensure stability. Of course the numerical
treatment of the solution is quite heavy, and it might be more effective to
use a lower order solver.
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(
tn + Δtn, yj(tn + k1)

) (A.54)

where k1 and k2 are the solutions given by the forward Euler method at tn
and tn+1 respectively, using the former solutions as the initial values for
the second iteration. The Euler-Cauchy method is of order 2, since the term
of order 2 in Equation A.50 has been integrated into the approximation,
leaving third derivatives.

errEC = O
(
(Δtn)

3
)

(A.55)

Higher order Runge-Kutta methods

A simple fourth order method requires four evaluations of the derivatives
and the functions at different times. The solution reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi(tn+1) = yi(tn) +
1
6 (k1 + 2k2 + 2k3 + k4)

k1 = Δtn ẏi
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ẏi

(
tn, yj(tn)

)
+ ẏi
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(
tn, yj(tn)

)
k2 = Δtn ẏi
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ẏi

(
tn, yj(tn)

)
+ ẏi
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+Δtnẏj (tn, yl(tn))
))

1 ≤ i, j, l ≤ k

(A.53)

Such an approach is easily implemented into an algorithm since it is based
on the explicit derivation of expressions at successive iterations. For exam-
ple, the Euler-cauchy method can be written⎧⎪⎪⎨⎪⎪⎩

yi(tn+1) = yi(tn) +
1
2 (k1 + k2)

k1 = Δtn ẏi
(
tn, yj(tn)

)
k2 = Δtn ẏi

(
tn + Δtn, yj(tn + k1)

) (A.54)

where k1 and k2 are the solutions given by the forward Euler method at tn
and tn+1 respectively, using the former solutions as the initial values for
the second iteration. The Euler-Cauchy method is of order 2, since the term
of order 2 in Equation A.50 has been integrated into the approximation,
leaving third derivatives.

errEC = O
(
(Δtn)

3
)

(A.55)

Higher order Runge-Kutta methods

A simple fourth order method requires four evaluations of the derivatives
and the functions at different times. The solution reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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1
6 (k1 + 2k2 + 2k3 + k4)
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2

)
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2
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(A.56)

errRK = O
(
(Δtn)

5
)

(A.57)

Such a solver is attractive for nonlinear problems that would otherwise re-
quire extremely small time steps to ensure stability. Of course the numerical
treatment of the solution is quite heavy, and it might be more effective to
use a lower order solver.
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a.4.3 Substepping algorithm

This Section describes a substepping algorithm for integration of differential
equations that guarantees accuracy of the solution. Because the solvers
exposed above are all explicit, they require small time steps to ensure
a minimal propagated error and stability. If an explicit Finite Elements
software is used to solve the elliptic boundary value problem, then small
time steps are readily imposed to ensure stability of the global solver, and
the use of a forward Euler scheme to integrate the constitutive equations
might suffice.

If the constitutive model is implemented into an implicit Finite Element
solver, the time increments imposed to solve the displacement problem
might be large enough to generate significant errors in the update of the
internal variables, and consequently of the stress state. A way to avoid
this issue is to rely on the use of substepping algorithms that divide the
global time step Δt imposed at the increment n into k substeps of variable
lengths (Δts,1...Δts,k) so that Δt = ∑i=1,k Δts,i [Fellin 2002]. The length of
each substep is determined from a convergence criterion on the error of
the solver. This is typically achieved by comparing the solution given by a
solver of order i to the one yielded by the use of a solver of order i-1.

If the substep k has converged, the next substep length Δts,k+1 is imposed
to be larger than the successful Δts,k by a factor α2 > 1 and the differential
equations with updated variables are sent for solving at ts,k+1 = ts,k + Δts,k;
otherwise a new attempt is made at substep k of reduced size Δts,k = α1Δts,k
with α1 < 1. The substepping algorithm decides automatically the substep
length based on the errors and tolerance as follows:⎧⎪⎪⎨⎪⎪⎩

α1 = max
(

0.9
√

tol
err , 0.2

)
α2 = min

(
0.9

√
tol
err , 5

) (A.58)

Algorithm A.2 gives an overview of the procedure described in this Section.
Substepping algorithms can consequently be based on the comparison

between the results given by, e.g., a forward Euler and an Euler-Cauchy
solver. If one desires to use higher order solvers instead, it is possible to
base substepping on a set of 4th and 5th order Runge-Kutta schemes, or
so-called embedded Runge-Kutta formulae [Dormand 1980].

A basic drawback from using high order explicit solvers is that it requires
more than one function evaluation, increasing thereby the computational
time. A fifth order embedded RK solver requires for example six such eval-
uations. Using substepping is therefore not always wanted as it multiplies
further the computation requirements.
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Algorithm A.2 Substepping algorithm. The exact expression of the substep
size actuators α1 and α2 are given in Eq. A.58.
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a.5 comparison of modeling strategies : the case of silicon

Two possibilities are offered to model plasticiy. Either plastic deformation
is considered to be able to proceed along any spatial direction (as assumed
by the model of [Dillon 1986] relying on small strains approximation and a
J2-plasticity formulation), or the physically more realistic case of discrete
plastic slip is chosen by adopting a crystal plasticity framework described
previously. Both methods are studied and compared in the following.

Throughout this Section, the material modeled is a pure silicon crystal,
without impurities or dopants. Considering the standard model of Alexan-
der & Haasen (model 1) only, we show that a crystal plasticity routine
provides with far more insight into the deformation processes than a J2-
plasticity code does. In particular, the plastic anisotropy and projection of
strain rates onto the “slip systems” are much more accurate with the former
method. Complex, three-dimensional loadings lead to peculiar stress re-
sponses that can be effectively captured only by the discretization of plastic
deformation that crystal plasticity provides.

The differences between two modeling approaches are studied using
stand-alone programs, considering a single integration point to be repre-
sentative of the whole specimen. The user must provide the routines with
the strain rate or velocity gradient as inputs at each time increment. In par-
ticular, such an approach does not allow for simulation of purely uniaxial
tensile tests, since the latter do not impose known displacements on the
free surfaces. Those need to be derived using for instance the finite element
method. Nonetheless, this preliminary study gives interesting insights into
the overwhelming abilities of crystal plasticity modeling. The results of this
Section have been presented in [Cochard 2008].

a.5.1 Kinematics and constitutive equations

Small strains: J2-plasticity

The framework introduced here comes directly from the work of [Dillon 1986,
Kim 1987]. The resolved shear stress is approximated by

√
J2, where J2 is

computed from the deviatoric part S of the stress tensor σ:

S = σ − 1
3

tr(σ)I (A.59)

J2 =
1
2

S : S (A.60)

The strain rate is additively decomposed into a plastic and elastic part. The
plastic strain rate is expressed as a linear function of S, the prefactor f
playing the role of Orowan’s law in a fictious crystal with one slip sytem
having no specific plane or direction:
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⎧⎪⎪⎨⎪⎪⎩
σ̇ = L : (ε̇ − ε̇p)

ε̇p = f S

f = 1√
J2

ρbv

(A.61)

Note that this model does not account for multiple slip cases and ne-
glects totally the interactions between the 12 slip systems. In particular, no
evolution of the dislocation densities on the “latent” systems is predicted
by these constitutive equations. This approximation presents the advantage
of being easy and numerically efficient to compute. Nevertheless, as we
will see its drawback is a wrong estimation of the actual resolved shear
strain rate upon complex loading conditions. The effective stress acting on
the fictious and only slip system is obtained using the classical approach
of Alexander & Haaasen (Eq. 5.5), by substracting from the applied stress
τ =

√
J2 the internal stress τint.

Algorithm A.3 summarizes the method used for integration of the J2-
plasticity model in a small strains approximation, given a strain rate tensor
ε̇n at each time step n of length Δtn. The solver used to derive the internal
variables at each step in case of plastic loading can be either explicit or
implicit. Algorithm A.3 uses model 1 to calculate the internal stress and
the dislocation density evolution rate. This simple case allows for easy
derivation of the Jacobian matrix if an implicit solver is chosen. The routine
has been implemented into Matlab and different solvers have been tested:
first order explicit forward Euler, second order explicit Euler-Cauchy, fourth
order explicit Runge-Kutta, or fully implicit Euler backward solver.

Finite strains: crystal plasticity

This framework requires to bridge the gap between the macroscopic (dis-
placement or velocity gradient) and the microscopic (slip systems) scales.
This is done using Eq. A.24. Algorithm A.4 describes briefly the different
steps needed to overcome this multiscaling difficulty, in the case of a simple
Euler forward integration scheme. The stand-alone routine has been written
in Fortran 95, since compilation of the code allows for rapid execution
of the algorithm. The explicit solvers introduced previously have been
implemented.

Equations and parameters of the constitutive models

The model of Alexander & Haasen is used in the following on each slip
system6 α. The set of parameters used is as follows: the dislocation velocity

v(α) = v0

(
τ
(α)
e f f
τ0

)m0

exp
(
− U

kbT

)
is obtained with v0 = 3.5 × 104 m.s−1, τ0 =

1 MPa, m0 = 1 and U = 2.35 eV. The effective stress reads τ
(α)
e f f = τ(α) −

6 Note that for the case of J2-plasticity only one slip system is considered.
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evolution of the dislocation densities on the “latent” systems is predicted
by these constitutive equations. This approximation presents the advantage
of being easy and numerically efficient to compute. Nevertheless, as we
will see its drawback is a wrong estimation of the actual resolved shear
strain rate upon complex loading conditions. The effective stress acting on
the fictious and only slip system is obtained using the classical approach
of Alexander & Haaasen (Eq. 5.5), by substracting from the applied stress
τ =

√
J2 the internal stress τint.

Algorithm A.3 summarizes the method used for integration of the J2-
plasticity model in a small strains approximation, given a strain rate tensor
ε̇n at each time step n of length Δtn. The solver used to derive the internal
variables at each step in case of plastic loading can be either explicit or
implicit. Algorithm A.3 uses model 1 to calculate the internal stress and
the dislocation density evolution rate. This simple case allows for easy
derivation of the Jacobian matrix if an implicit solver is chosen. The routine
has been implemented into Matlab and different solvers have been tested:
first order explicit forward Euler, second order explicit Euler-Cauchy, fourth
order explicit Runge-Kutta, or fully implicit Euler backward solver.

Finite strains: crystal plasticity

This framework requires to bridge the gap between the macroscopic (dis-
placement or velocity gradient) and the microscopic (slip systems) scales.
This is done using Eq. A.24. Algorithm A.4 describes briefly the different
steps needed to overcome this multiscaling difficulty, in the case of a simple
Euler forward integration scheme. The stand-alone routine has been written
in Fortran 95, since compilation of the code allows for rapid execution
of the algorithm. The explicit solvers introduced previously have been
implemented.

Equations and parameters of the constitutive models

The model of Alexander & Haasen is used in the following on each slip
system6 α. The set of parameters used is as follows: the dislocation velocity

v(α) = v0

(
τ
(α)
e f f
τ0

)m0

exp
(
− U

kbT

)
is obtained with v0 = 3.5 × 104 m.s−1, τ0 =

1 MPa, m0 = 1 and U = 2.35 eV. The effective stress reads τ
(α)
e f f = τ(α) −

6 Note that for the case of J2-plasticity only one slip system is considered.
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τ
(α)
int . Finally, the dislocation multiplication ρ̇(α) = δAHτ

(α)
e f f ρ(α)v(α) uses a

prefactor δAH = 3.1 × 10−4. Note that the exact value of the parameters is
not important in as much as we are aiming at comparing qualitatively more
than quantitatively the models.⎧⎪⎪⎨⎪⎪⎩

v(α) = v0

(
τ
(α)
e f f
τ0

)m0

exp
(
− U

kbT

)
ρ̇(α) = δAHτ

(α)
e f f ρ(α)v(α)

(A.62)

Crystal plasticity can take into account interactions between slip systems
and can include latent hardening effects by the introduction of a matrix of
hardening coefficients

(
aαβ

)
1≤α,β≤12:

τ
(α)
int = μb

√
∑β aαβρ(β) (A.63)

Setting the off-diagonal parameters in the interaction matrix
(
aαβ

)
1≤α,β≤12

to zero allows for self-hardening only. The only case considered in the
following is where the diagonal coefficients are set to

√
aii = 0.3 and the

off-diagonal to null: latent hardening is absent and the constitutive law
on each slip system is similar to the one of the original AH model. On
the other hand, the J2 model working with one system only relies on the
classical expression for the internal stress:

τint = μbA
√

ρ (A.64)

with A = 0.3.

a.5.2 Isochoric loadings

All simulations are performed7 at a temperature of 1073 K and an initial
dislocation density of 108 m−2 on each slip system. The initial dislocation
density in the J2 model is taken as 108 m−2. The three Euler angles are taken
initially as (15°, 20°, 15°). The boundary conditions are given by the strain
rate or velocity gradient tensor. The loadings considered in this Section are
tensile in the e1 direction (in the lab referential) and isochoric. The tensors
read therefore:

ε̇ = ε̇11e11 ⊗ e11 − ε̇11

2
(e22 ⊗ e22 + e33 ⊗ e33) (A.65)

L = L11e11 ⊗ e11 − L11

2
(e22 ⊗ e22 + e33 ⊗ e33) (A.66)

Simulations are performed up to 1 % strain in the tensile direction, the
time step being chosen small enough to reach convergence of the results. A
strain rate ε̇11 = 10−2 s−1 or L11 = 10−2 s−1 is taken.

7 This set of conditions is refered to as “reference conditions” in this Section.
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Figure A.5: Influence of temperature on the simulated mechanical behavior of silicon
using (a) the J2 continuum formulation of [Dillon 1986] and (b) finite
strains RDCP. The strain and stress plotted are the components of the
tensors along the tensile direction.

Results - response to deformation conditions

Both modeling approaches reproduce the variations of mechanical response
of silicon to different temperatures, strain rates and initial dislocation
densities. Nonetheless, two significant discrepancies are the magnitude of
the upper yield point, roughly 25 % higher with the crystal plasticity model,
and the presence of secondary yield drops that the continuum formulation
does not reveal. Figure A.5 allow for comparison of the simulated stress-
strain behaviors at various temperatures.

Analysis of discrepancies between the models

The origin of the multiple yield drops is the successive activation of slip
systems. Each explosion of dislocation density leads to softening of the
crystal, translated by a yield drop in the stress-strain curve. The three
dimensional isochoric loading requires the activation of more than one
slip system for the virtual crystal to accomodate the imposed deformation.
Plotting the evolution of the six principal systems as a function of strain
clearly illustrates the series of explosions (see Figure A.6). The rate of
growth of dislocation densities during their explosion is not the same for
all systems. This is due to the different values of the resolved shear stresses
that influence the magnitude of the effective stress, and in turn the rate of
multiplication of the densities. A clear correlation between the yield drop
in the stress-strain curve and the sudden increase of the total dislocation
density coming from the activation of secondary systems can be seen in
Figure A.7.

A higher upper yield point follows from a larger resolved shear strain
rate projected onto the primary system. The J2 formulation namely consid-

ers that the plastic strain rate is given by ε̇ = S√
1
2 S:S

ρbv if
√

J2 =
√

1
2 S : S >

μbA
√

ρ. This Von Mises criteria, with the yield surface evolving with de-
formation, would be adapted to the case where the mechanical behavior
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Figure A.6: Evolution of the dislocation densities on the six principal slip sytems
during deformation in reference conditions, using RDCP.
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Figure A.8: Mechanical work required to deform a fictious silicon monocrystal, as
computed by (a) a J2 formulation and (b) a RDCP framework, as a
function of the two first Euler angles. Isochoric deformation, maximum
principal strain 1 %.

of the specimen is an average over a large amount of grains. Such a choice
of model is valid for polycrystals that exhibit a rather isotropic behavior.
Silicon materials being made of a small amounts of grains, it is not pos-
sible to consider a mean average of the aggregates, and the choice of a J2
formulation of plasticity poses some problems.

Anisotropy of the plastic deformation

The discretization of the crystal into twelve slip systems induces an anisotropic
behavior of the plastic deformation of silicon. In order to evaluate the ability
of the models to account for such an aspect, different simulations have been
performed in the reference conditions but considering different initial Euler
angles. The third angle being fixed to 0°, the total mechanical work up to
1 % deformation is calculated using Eq. A.67 or A.68 depending on the
formulation.

WJ2 =
∫

σ : ε̇dt (A.67)

WRDCP =
∫

P : Ėdt (A.68)

Figure A.9 shows the variations ratio of mechanical works rW(φ1, θ) =
WRDCP(φ1, θ)/WJ2(φ1, θ) with the first two Euler angles8. The discrepancy
between both methods is quite large, a J2-formulation taking into account
anisotropy solely through the coefficients of the stiffness matrix and there-
fore neglecting anisotropy of plastic deformation. In other words, a RDCP
framework enriches the results by adding plastic anisotropy to the elastic
one. Introducing latent hardening in the crystal plasticity routine increases
further the ratio rW .

8 Due to the symmetry of the diamond cubic lattice, it is sufficient to study the variations of
rW(φ1, θ) for 0 ≤ φ1 ≤ π

2 and 0 ≤ θ≤ π
4 .
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of the specimen is an average over a large amount of grains. Such a choice
of model is valid for polycrystals that exhibit a rather isotropic behavior.
Silicon materials being made of a small amounts of grains, it is not pos-
sible to consider a mean average of the aggregates, and the choice of a J2
formulation of plasticity poses some problems.

Anisotropy of the plastic deformation

The discretization of the crystal into twelve slip systems induces an anisotropic
behavior of the plastic deformation of silicon. In order to evaluate the ability
of the models to account for such an aspect, different simulations have been
performed in the reference conditions but considering different initial Euler
angles. The third angle being fixed to 0°, the total mechanical work up to
1 % deformation is calculated using Eq. A.67 or A.68 depending on the
formulation.

WJ2 =
∫

σ : ε̇dt (A.67)

WRDCP =
∫

P : Ėdt (A.68)

Figure A.9 shows the variations ratio of mechanical works rW(φ1, θ) =
WRDCP(φ1, θ)/WJ2(φ1, θ) with the first two Euler angles8. The discrepancy
between both methods is quite large, a J2-formulation taking into account
anisotropy solely through the coefficients of the stiffness matrix and there-
fore neglecting anisotropy of plastic deformation. In other words, a RDCP
framework enriches the results by adding plastic anisotropy to the elastic
one. Introducing latent hardening in the crystal plasticity routine increases
further the ratio rW .

8 Due to the symmetry of the diamond cubic lattice, it is sufficient to study the variations of
rW(φ1, θ) for 0 ≤ φ1 ≤ π

2 and 0 ≤ θ≤ π
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a.5.3 Plane strain loadings

In order to check the influence of the velocity gradient tensor components,
other simulations have been run using plane strain conditions:

L = L11e11 ⊗ e11 (A.69)

Such loadings impose event more constrains on the crystals. This can be
seen in Figure A.10 where the stress does not seem to reach a steady state
value towards large strains. The secondary yield peaks are much less visible
than in the case of constant volume loadings.
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a.5.4 Conclusions

Limitations of a continuum approach

Adopting a J2-plasticity formulation limits the ability of accounting for the
discretization of slip mechanisms in monocrystals. Plastic deformation is
assumed isotropic. A direct consequence is a “projection” of the strain rate
onto the deviatoric space that is too low compared to the more realistic
projections performed by crystal plasticity. This results in significantly lower
upper yield stresses than obtained with RDCP. In addition, the absence
of secondary systems from the J2 framework forbids the incorporation of
latent hardening and activation of additional systems upon complex loading
situations. The former limitation was already mentioned by [Dillon 1986].

Performance of crystal plasticity

Crystal plasticity has several advantages but costs much more than the
former approach. Firstly, twelve systems must be treated instead of one.
Secondly, the finite strains framework chosen in this work implies nu-
merically heavy matrix operations. The adoption of crystal plasticity is
consequently limited to relatively small problems with a limited amount of
Gauss points (where the constitutive equations must be integrated). The fol-
lowing Chapter is dedicated to the implementation of an advanced model
into Abaqus/Explicit and the calibration of its parameters at finite strains.

Applicability of crystal plasticity to silicon single crystals

[Moon 2002] used a crystalline formulation with different constitutive laws
depending on the temperature range to simulate the mechanical behaviour
of silicon single crystals. These authors used the creep law derived by
[Myshlyaev 1969] for high temperatures above a critical dislocation density.
However, this law is valid for high strains and represents fairly well the
later stages of hardening of silicon, albeit without being able to relate the
dislocation density with the strain state. It is therefore not interesting for us
to consider this case.

[Cacho 2007] also used such a rate dependent crystal plasticity formu-
lation for single crystal silicon and noticed the fundamental difference
in predicting the plastic domains with the continuum formulation. Such
a multislip formulation has also been used to model nanoindentation of
silicon surfaces, and to study the initiation of cracking in the material un-
der varying hydrostatic pressures, although the parameters used for the
(aαβ) interaction matrix might not be relevant for silicon, its coefficients
being obtained from latent hardening experiments on copper single crystals
[Yoshino 2001].
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The case of polycrystalline aggregates

The work achieved by Cailletaud and his team provides us with examples
of what can be done with a crystal plasticity formulation adapted to the
modeling of polycrystals (see, e.g., [Barbe 2001a, Barbe 2001b, Diard 2005]).
They start by considering a representative volume element (RVE) of a
high number of grains generated randomly. The texture (crystallographic
orientation of the grains with respect to a reference coordinate system) is
defined either randomly or according to a given computational pattern.
The cubic polycrystal studied is considered to be a RVE when the finite
element simulations match the homogeneized equations. Such numerical
simulations allow for investigation at the level of a phase (all the grains
having the same crystallographic orientation), meaning the intergranular
level, or at the level of a single grain (intragranular variations). In addition
to the differences in orientations that lead to different macroscopic stress-
strain responses, the existence of compatibility requirements between the
grains lead to increased plastic activity at the grain boundaries and highly
inhomogeneous strain distributions within the grains. This is believed to be
a crucial starting point to investigate intergranular fracture.

Important results are that the intergranular and intragranular behaviors
present a large scatter of answers to a given loading. Some grains work in
tension, others in compression, and within grains the discrepancies seem
to be even higher. These strong heterogeneities cannot be captured by the
current models used for process modeling and can bring new insights into
the mechanical state of directionally solidified silicon ingots.
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b.1 case of the extended ah model

Note: we do not use Einstein’s notation here. If an indices is repeated twice
in the same equation there is no summation unless specified otherwise.
This section is concerned with the exact derivation of the consistent tangent
moduli for the extended model of Alexander and Haasen with temperature-
dependent constitutive parameters, in the small strains approximation. The
evolution of the stress reads:

σ̇ = C : ε̇e = C :
(

ε̇ − ε̇p − ε̇T
)

(B.1)

with the plastic strain rate as a function of the plastic slip rates on the slip
systems α:

ε̇p =
1
2 ∑

α

γ̇(α)
(

s(α)0 ⊗ n(α)
0 + n(α)

0 ⊗ s(α)0

)
= ∑

α

γ̇(α)P(α)
0 (B.2)

P(α)
0 =

1
2

(
s(α)0 ⊗ n(α)

0 + n(α)
0 ⊗ s(α)0

)
The thermal strain rate reads:

ε̇T = Ṫϑ(T)

with ϑ(T) the temperature-dependent, second-order tensor of thermal
expansion coefficients. The case of a coupled thermal-stress analysis requires
the computation of ∂σ̇

∂T as discussed in the next section. The elastoplastic
consistent tangent moduli (CTM) Cep reads in rate form:

Cep =
∂σ̇

∂ε̇
= C − ∑

α

C : P(α)
0

∂γ̇(α)

∂ε̇
(B.3)

or in an incremental form:

Cep =
∂Δσ

∂Δε
= C − ∑

α

C : P(α)
0

∂Δγ(α)

∂Δε
(B.4)
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dependent constitutive parameters, in the small strains approximation. The
evolution of the stress reads:

σ̇ = C : ε̇e = C :
(

ε̇ − ε̇p − ε̇T
)

(B.1)

with the plastic strain rate as a function of the plastic slip rates on the slip
systems α:

ε̇p =
1
2 ∑

α

γ̇(α)
(

s(α)0 ⊗ n(α)
0 + n(α)

0 ⊗ s(α)0

)
= ∑

α

γ̇(α)P(α)
0 (B.2)

P(α)
0 =

1
2

(
s(α)0 ⊗ n(α)

0 + n(α)
0 ⊗ s(α)0

)
The thermal strain rate reads:

ε̇T = Ṫϑ(T)

with ϑ(T) the temperature-dependent, second-order tensor of thermal
expansion coefficients. The case of a coupled thermal-stress analysis requires
the computation of ∂σ̇

∂T as discussed in the next section. The elastoplastic
consistent tangent moduli (CTM) Cep reads in rate form:

Cep =
∂σ̇

∂ε̇
= C − ∑

α

C : P(α)
0

∂γ̇(α)

∂ε̇
(B.3)

or in an incremental form:

Cep =
∂Δσ

∂Δε
= C − ∑

α

C : P(α)
0

∂Δγ(α)

∂Δε
(B.4)
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The latter equation considers the variations of the increments of stress Δσij
with respect to the ones of strain Δεij, upon perturbation of the system over
a time increment Δt:

t → t + Δt

ε → ε + Δε

χ → χ + Δχ

σ → σ + Δσ

where χ is the vector of internal variables. The increments of amount of
slip Δγ(α) are obtained as functions of the (χ)i and (χ + Δχ)i’s.

Care must be taken to express all tensors in the same (global) coordi-
nate system. The incremental expression (Eq. B.4) is used to derive the
CTM. Calligraphic terms are used to represent fourth-order (symmetric)
tensors. Bold capital letters are second-order tensors. Latin or greek char-
acters in bold represent vectors. Symmetric second-order tensors can be
written as 6-components columns while symmetric fourth-order tensors
can be compressed down to 6x6 matrices. The double dot contraction
of two symmetric second-order tensors A : B = ∑i,j AijBij is equal to
the dot product between two vectors as follows: A : B ≡ a.b, but care
must be taken to correctly account for the nondiagonal terms. Typically
the vectorial representation of a symmetric second order tensor reads in

this case a =
(

A11 A22 A33
√

2A12
√

2A13
√

2A23

)T
. In case of contraction

between the fourth-order stiffness tensor and a symmetric second-order
tensor (e.g., σ = C : εe), the vector representation of the latter reads
εe =

(
εe

11 εe
22 εe

33 2εe
12 2εe

13 2εe
23
)T , since the engineering notation is used by

Abaqus/Standard.
As shown in Eq. B.4, finding the CTM amounts to deriving the 12 second

order tensors ∂Δγ(α)

∂Δε . This implies a dependency of the CTM on the very
constitutive law adopted for the material. Two integration algorithms can
be considered to determine the Δγ(α)’s: either explicit forward, or explicit
with use of the midpoint rule, namely a Euler-Cauchy solver.

Euler forward integration of the amount of plastic slip

If a first order, forward explicit solver is used, the plastic slip increments do
not depend on Δε, and the CTM is simply equal to C. Note that this case is
not the ideal one since stability of the integration scheme is not guaranteed,
and small time increments are required. In these conditions it might be
more relevant to consider the use of an explicit finite element solver.

Euler-Cauchy integration of the amount of plastic slip

The amount of slip on each system is updated at each increment follow-

ing Δγ(α) = Δt
(
(1 − Θ) γ̇(α)

∣∣∣
t
+ Θ γ̇(α)

∣∣∣
t+Δt

)
, and consequently ∂Δγ(α)

∂Δε =
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ΘΔt
∂ γ̇(α)|t+Δt

∂Δε . If Θ = 0 the integration is fully explicit, if Θ = 1 it is fully
implicit. Using Orowan’s law one and dropping the |t+Δt for enhanced
readability, one gets

∂Δγ(α)

∂Δε
= ΘbΔt

∂
(

ρ
e f f (α)
m v(α)

)
∂Δε

(B.5)

= ΘbΔt

(
ρ

e f f (α)
m

∂v(α)

∂Δε
+ v(α)

∂ρ
e f f (α)
m
∂Δε

)

where the dislocation densities, velocities and their derivatives are taken at
the end of the increment. The dislocation velocity depends solely on the
effective stress acting on dislocations. Assuming the stress exponent to be
unity:

∂v(α)

∂Δε
=

v0

τ0
exp

(
− U

kbT

) ∂τ
(α)
e f f

∂Δε
(B.6)

the derivative of the effective mobile dislocation density with respect to the
strain rate is more complicated. At t + Δt the dislocation density is found
by using the same integration scheme as for Δγ(α)’s so that:

ρ
e f f (α)
m

∣∣∣
t+Δt

= ρ
e f f (α)
m

∣∣∣
t
+ Δρ

e f f (α)
m

= ρ
e f f (α)
m

∣∣∣
t
+ Δt

(
(1 − Θ) ρ̇

e f f (α)
m

∣∣∣
t
+ Θ ρ̇

e f f (α)
m

∣∣∣
t+Δt

) (B.7)

Its derivative is equal to:

∂ρ
e f f (α)
m
∂Δε

=
∂Δρ

e f f (α)
m

∂Δε
= ΘΔt

∂ ρ̇
e f f (α)
m

∣∣∣
t+Δt

∂Δε
(B.8)

the constitutive law gives the evolution of the density of mobile dislo-

cations as ρ̇
e f f (α)
m =

(
K1 exp

(
− f (T)c(α)O

τO

)
τ
(α)
e f f − 2ycρ

e f f (α)
m

)
ρ

e f f (α)
m v(α) and

K1 a parameter depending on temperature only. After calculation of its
derivative and simplification one gets, using θ = ΘΔt v0

τ0
exp

(
− U

kbT

)
and

KO = K1 exp
(
− f (T)c(α)O

τO

)
,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂ρ
e f f (α)
m

∂Δε j
=

(
λ
(α)
m,Δε j

+ λ
(α)
O,Δε j

) ∂τ
(α)
e f f

∂Δε j

λ
(α)
m,Δε j

=
2θ

(
KOτ

(j,α)
e f f −ycρ

e f f (j,α)
m

)
ρ

e f f (j,α)
m

1−θ
(

KOτ
(j,α)
e f f −4ycρ

e f f (j,α)
m

)
τ
(j,α)
e f f

λ
(α)
O,Δε j

= −θ
f (T)
τO

ϕ
(α)
O,Δε j

KOρ
e f f (α)
m τ

(α)2
e f f

(B.9)

where it is emphasized that the λm,Δε j and λO,Δε j vectors depend on the
component of the strain increment Δε1≤j≤6 considered: the vectors of effec-
tive stresses τe f f and dislocation densities ρm are evaluated at t + Δt after
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the derivative of the effective mobile dislocation density with respect to the
strain rate is more complicated. At t + Δt the dislocation density is found
by using the same integration scheme as for Δγ(α)’s so that:
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the constitutive law gives the evolution of the density of mobile dislo-
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where it is emphasized that the λm,Δε j and λO,Δε j vectors depend on the
component of the strain increment Δε1≤j≤6 considered: the vectors of effec-
tive stresses τe f f and dislocation densities ρm are evaluated at t + Δt after
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application of Δε j and depend on j because of the anisotropy of plastic defor-
mation. A useful relationship is the derivative of the oxygen concentration
at t + Δt with respect to the strain increment, assuming that v(α) 
= 0:
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Similarly, one can obtain a linear dependency of the variation of the total
dislocation densities ρ
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t with the strain increment as a⎧⎪⎨⎪⎩
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In the following we will work on the jth column of the consistent tangent
moduli yielded by Δε j, jth component of the strain increment vector. The
variation of the plastic slip rate with respect to the strain rate (Eq. B.5) is

proportional to the quantity
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as follows:
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and the derivation of the CTM is equivalent to the determination of the
∂τ

(α)
e f f

∂Δε terms. Writing τ
(α)
e f f = τ(α) − τ

(α)
int and τ(α) = σ : P(α)

0 one immediately
obtains
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The internal stress is a function of the dislocation densities on all the slip
systems and its derivative with respect to the strain increments reads:
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Using the linear expressions derived previously (Eqs. B.9 and B.10) and
considering individual tensorial components, Eq. B.13 is equivalent to:
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Let us define AΔε j , a 12x12 matrix depending on the jth component of the
strain increment Δε through the values of the internal variables:
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Insertion of Eq. B.14 into Eq. B.12 yields a linear system of equations linking

the
∂τ

(β)
e f f

∂Δε ’s to the resolved shear stresses:

∑
β

(
AΔε j

)
αβ

∂τ
(β)
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.P(α)

0 (B.16)

Then one gets by solving this linear equation system:
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Insert Eq. B.17 into Eq. B.11, which now reads:
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Replace now ∂Δσ
∂Δε j

by its expression (from Eq. B.4):
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The ∂Δγ(α)

∂Δε j
’s are obtained by solving the equation system:

QΔε j .xj = rj (B.18)
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Then one gets by solving this linear equation system:
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Insert Eq. B.17 into Eq. B.11, which now reads:
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The ∂Δγ(α)

∂Δε j
’s are obtained by solving the equation system:

QΔε j .xj = rj (B.18)

B.1 case of the extended ah model 503

Using the linear expressions derived previously (Eqs. B.9 and B.10) and
considering individual tensorial components, Eq. B.13 is equivalent to:
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Let us define AΔε j , a 12x12 matrix depending on the jth component of the
strain increment Δε through the values of the internal variables:
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where
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Finally, the ∂Δγ(α)

∂Δε j
’s can be inserted into Eq. B.4 and the jth column of the

consistent tangent moduli is obtained:

Cep
,j = C ,j − ∑

α

(
C.P(α)

0

) (
Q−1

Δε j
.rj

)
α

(B.21)

In practice, derivation of the complete CTM requires six evaluations of
the internal variables and stresses following the application of the strain
increments Δε j over a time length Δt. Each time the equation systems B.16
and B.18 must be solved.

• at the end of increment i (i.e. at ti + Δti), the initial internal variables,
strain and stresses (at ti) are sent to the routine tangentmoduli for
derivation of the CTM. The time step used is Δti.

• tangentmoduli computes the CTM following Eq. B.21, that is, one
column at a time. Each column is obtained by perturbating the system
at ti, imposing (Δε)i = δijΔε j for 1 ≤ j ≤ 6.

• For each component Δε j:

– a second order Euler-Cauchy solver without substepping1 is

used to compute
(

ρ
(j,α)
m , ρ

(j,α)
t , τ

(j,α)
e f f

)
1≤α≤12

.

– the vectors λm,Δε j and λt,Δε j are then formed (resp. Eqs. B.9
and B.10)

– the AΔε j matrix is built and inversed to derive QΔε j (Eqs. B.15
and B.20). The rj vector is calculated as well.

– QΔε j is inversed and the jth colum of the CTM formed.

• Note that the construction of the QΔε j matrices and rj vectors require

the use of C.P(α)
0 vectors that can be built at the beginning of the

routine. This implies the use of a rotation matrix allowing the transfor-
mation of coordinates between the local (crystal lattice) and the global

1 no improvement of the convergence properties is detected by the use of substepping with error
control and direct integration is numerically less expensive, therefore prefered. Convergence
is slower as the global time increment is increased upon strong softening of the material (in
the yield region).
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systems, since C and the P(α)
0 ’s are typically known in the former one

whereas the CTM must be expressed in the global system.

• Assuming the dislocation velocity law independent on the constitu-
tive model, each constitutive model is characterized by a choice of (1)
internal stress τ

(α)
int depending on the internal variables, in the present

case dislocation densities ρ(α), and (2) first order differential equations
ruling the evolution of these very internal variables, ultimately de-
pending on the internal stresses. The derivation of the CTM must be
adapted to each change in any of these components of the constitutive
model, by correcting the λΔε j vectors and the components of the AΔε j
matrices.

convergence of the newton-raphson iterations

The material is rate-dependent and its mechanical behavior extremely
temperature sensitive (exponential dependency of the velocity and multi-
plication parameters). Therefore the convergence properties will depend
sensitively on the global time increment and on the temperature. The
element size might as well play a role by setting a length scale in the model.
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b.2 derivation of ddsddt for coupled thermomechanical anal-
yses

This Section is concerned with the derivation of the DDSDDT required by
Abaqus/Standard in the case of coupled mechanical-thermal analyses. Note
that it has not been used in our work, but its derivation is proposed here
for future reference.

Efficient convergence properties in the case of nonisothermal loadings in
a fully coupled thermal-stress analysis require the precise definition of the
variations of the stress increment with respect to those of the temperature
increments, ∂Δσ

∂ΔT , that reads:

∂Δσ

∂ΔT
=

∂C
∂ΔT

: Δεe + C :
∂Δεe

∂ΔT
(B.22)

Computation of ∂Δσ
∂ΔT is not required in the standard case of decoupled

temperature-stress analysis. The first term is computed by writing C(T +

ΔT) � C(T) + ΔT ∂C
∂T and ∂C

∂ΔT = ∂C
∂T

∣∣∣
T

. This approximation is valid since
ΔT 	 T is always valid in practice, and the components of the stiffness
tensor ar weakly dependent on the temperature. Δεe is computed by pertur-
bating the system at the end of the increment, by applying a temperature
change ΔT = Ṫ

∣∣
t Δt over a time increment Δt:

t → t + Δt

T → T + ΔT

χ → χ + Δχ

σ → σ + Δσ

The total strain increment is here imposed to be null, so that Δεe = −Δεp −
ΔεT . Let us consider as previously the solutions yielded by different choices
of integration scheme. For simplicity the influence of osygen is disregarded
in the following.

Euler forward explicit solver

The increment of thermal strains is calculated following: ΔεT = ΔtṪϑ(T) =
ΔTϑ(T), temperatures and parameters being taken at t. Consequently
∂ΔεT

∂ΔT = ϑ(T). Similarly, ∂Δεp

∂ΔT = 0 and the stress increment varies with
the temperature increment as

∂Δσ

∂ΔT
=

∂C
∂T

∣∣∣∣
T

: Δεe + C : ϑ(T) (B.23)

Midpoint rule

As previously, an explicit solver of second order without substepping is
used to derive the components of Δεe and to update the vector of internal
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Midpoint rule

As previously, an explicit solver of second order without substepping is
used to derive the components of Δεe and to update the vector of internal

506 consistent tangent moduli for abaqus/standard

b.2 derivation of ddsddt for coupled thermomechanical anal-
yses

This Section is concerned with the derivation of the DDSDDT required by
Abaqus/Standard in the case of coupled mechanical-thermal analyses. Note
that it has not been used in our work, but its derivation is proposed here
for future reference.

Efficient convergence properties in the case of nonisothermal loadings in
a fully coupled thermal-stress analysis require the precise definition of the
variations of the stress increment with respect to those of the temperature
increments, ∂Δσ

∂ΔT , that reads:

∂Δσ

∂ΔT
=

∂C
∂ΔT

: Δεe + C :
∂Δεe

∂ΔT
(B.22)

Computation of ∂Δσ
∂ΔT is not required in the standard case of decoupled

temperature-stress analysis. The first term is computed by writing C(T +

ΔT) � C(T) + ΔT ∂C
∂T and ∂C

∂ΔT = ∂C
∂T

∣∣∣
T

. This approximation is valid since
ΔT 	 T is always valid in practice, and the components of the stiffness
tensor ar weakly dependent on the temperature. Δεe is computed by pertur-
bating the system at the end of the increment, by applying a temperature
change ΔT = Ṫ
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variables χ. The second term of Eq. B.22 is harder to derive than the first
one.

Variation of thermal strain increment with the temperature increment

Let us first consider the thermal strains: ε̇T = Ṫϑ(T). In the lattice coordi-
nate system, this reads:

ϑ(T) = ϑ(T) (1, 1, 1, 0, 0, 0)T = ϑ(T)I

ϑ(T) = 3.725 ×
(

1 − exp
(
−5.88 × 10−3 (T − 124)

))
+5.548 × 10−4 T

(
10−6 K−1

)
Adopting an Euler-Cauchy updating algorithm for computation of the
thermal strain increment over a time Δt (i.e. setting Θ = 0.5), one gets
∂ΔεT

∂ΔT = Δt
2

(
Ṫ
∣∣
t ϑ(T) + Ṫ

∣∣
t+Δt ϑ(T + ΔT)

)
∂ΔεT

∂ΔT
=

ϑ(T)
2

+
Δt
2

Ṫ
∣∣
t+Δt

∂ϑ (T + ΔT)
∂ΔT

and the thermal expansion coefficient vector at T + ΔT reads, assuming
ΔT 	 T:

ϑ (T + ΔT) � ϑ (T) + ΔT
∂ϑ

∂T

∣∣∣∣
T

∂ϑ

∂T
= 2.19× 10−2 exp

(
−5.88 × 10−3 (T − 124)

)
+ 5.548× 10−4

(
10−6 K−2

)
Finally, the variation of the thermal strain increment with respect to the
temperature increment reads:

∂ΔεT

∂ΔT
=

ϑ(T)
2

+
ΔT
2

∂ϑ

∂T

∣∣∣∣
T

where we assume that Ṫ
∣∣
t+Δt = Ṫ

∣∣
t.

Variation of plastic strain increment with the temperature increment

Derivation of ∂Δεp

∂ΔT is more intricated. The same method as for the CTM will
be adopted in the following.

∂Δγ(α)

∂ΔT
=

Δt
2

b
∂
(

ρ
(α)
m v(α)

)
∂ΔT

=
Δt
2

b

(
ρ
(α)
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∂v(α)

∂ΔT
+ v(α)

∂ρ
(α)
m

∂ΔT
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∣∣
t+Δt = Ṫ
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where we assume the magnitude of the Burgers vector not to be affected by
temperature, the dislocation densities and velocities are taken at t + Δt, i.e.
T + ΔT.

∂v(α)

∂ΔT
=

v0

τ0
exp

(
− U

kb (T + ΔT)

)⎛⎝ U

kb (T + ΔT)2 τ
(α)
e f f +

∂τ
(α)
e f f

∂ΔT

⎞⎠
= v(α)

⎛⎝ U

kb (T + ΔT)2 +
1

τ
(α)
e f f

∂τ
(α)
e f f

∂ΔT

⎞⎠ (B.24)

∂ρ
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m

∂ΔT
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(
UK1 + U

)
K1τ

(α)
e f f − 2

(
Uyc + U

)
ycρ

(α)
m

2
Δt − K1τ

(α)
e f f v(α) + 4ycρ

(α)
m v(α)

ρ
(α)
m v(α)

kb (T + ΔT)2

+

2ρ
(α)
m v(α)

(
K1 +

ycρ
(α)
m

τ
(α)
e f f

)
2

Δt − K1τ
(α)
e f f v(α) + 4ycρ

(α)
m v(α)

∂τ
(α)
e f f

∂ΔT
(B.25)

where the expressions K1 = AK1 exp
(
−UK1

kbT

)
and yc = Ayc exp

(
−Uyc

kbT

)
have been used, yielding e.g. ∂K1

∂T =
UK1
kbT2 K1. Eq. B.25 can be written, with

θ = Δt v0
τ0

exp
(
− U

kb(T+ΔT)

)
,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
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Similarly one can derive for the total dislocation densities:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ρ

(α)
t

∂ΔT = ν
(α)
t,ΔT + λ

(α)
t,ΔT

∂τ
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(α)2
e f f

(
ρ
(α)
m

UK1+U

kb(T+ΔT)2 + ν
(α)
m,ΔT
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t,ΔT = θ

2 K1τ
(α)
e f f

(
2ρ

(α)
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(α)
e f f

) (B.27)

The variations of the plastic slip increments are given by

∂Δγ(α)

∂ΔT
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2
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∂ΔT
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(B.28)

As in the case of the CTM, linear relationships are found between the
derivatives of the dislocation densities and the one of the effective stress.

∂τ
(α)
e f f

∂ΔT
=

∂Δσ

∂ΔT
.P(α)

0 − ∂τ
(α)
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∂ΔT
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The variations of the plastic slip increments are given by
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As in the case of the CTM, linear relationships are found between the
derivatives of the dislocation densities and the one of the effective stress.
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The variations of the plastic slip increments are given by
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As in the case of the CTM, linear relationships are found between the
derivatives of the dislocation densities and the one of the effective stress.
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where we assume the magnitude of the Burgers vector not to be affected by
temperature, the dislocation densities and velocities are taken at t + Δt, i.e.
T + ΔT.
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where the expressions K1 = AK1 exp
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Similarly one can derive for the total dislocation densities:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ρ

(α)
t

∂ΔT = ν
(α)
t,ΔT + λ

(α)
t,ΔT

∂τ
(α)
e f f

∂ΔT

ν
(α)
t,ΔT = θ

2 K1τ
(α)2
e f f

(
ρ
(α)
m

UK1+U

kb(T+ΔT)2 + ν
(α)
m,ΔT

)
λ
(α)
t,ΔT = θ

2 K1τ
(α)
e f f

(
2ρ

(α)
m + λ

(α)
m,ΔTτ

(α)
e f f

) (B.27)

The variations of the plastic slip increments are given by
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As in the case of the CTM, linear relationships are found between the
derivatives of the dislocation densities and the one of the effective stress.
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Following Eq. B.13, the internal stresses derivatives can be expressed as a
linear function of the effective stress derivatives:
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As previously, the effective stress variations on the slip systems are obtained
by solving the linear system
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with AΔT a 12x12 matrix having a similar shape as the AΔε j ’s:
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Insert this result into Eq. B.28 and then use Eq. B.22 to solve for the ∂Δγ(α)

∂ΔT ’s:
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where (x)1≤α≤12 = ∂Δγ(α)

∂ΔT and

(rΔT)1≤α≤12 = τ
(α)
e f f

(
ρ
(α)
m

U

kb (T + ΔT)2 + ν
(α)
m,ΔT

)
−

(
ρ
(α)
m + λ

(α)
m,ΔTτ

(α)
e f f

)
(

κ
(α)
ΔT +

∂ΔεT

∂ΔT
. ∑

β

(
A−1

ΔT

)
αβ

C.P(β)
0

)
(B.34)

B.2 derivation of ddsddt for coupled thermomechanical analyses 509

Following Eq. B.13, the internal stresses derivatives can be expressed as a
linear function of the effective stress derivatives:

∂τ
(α)
int

∂ΔT
=

μb
2 ∑

β

⎛⎝ Aαβν
(β)
m,ΔT√

ρ
(β)
m

+
aαβν

(β)
t,ΔT√

∑κ aακρ
(κ)
t

⎞⎠
+

⎛⎝ Aαβλ
(β)
m,ΔT√

ρ
(β)
m

+
aαβλ

(β)
t,ΔT√

∑κ aακρ
(κ)
t

⎞⎠ ∂τ
(β)
e f f

∂ΔT

(B.29)

As previously, the effective stress variations on the slip systems are obtained
by solving the linear system

∑
β

(AΔT)αβ

∂τ
(β)
e f f

∂ΔT
=

∂Δσ

∂ΔT
.P(α)

0 − μb
2 ∑

β

⎛⎝ Aαβν
(β)
m,ΔT√

ρ
(β)
m

+
aαβν

(β)
t,ΔT√

∑κ aακρ
(κ)
t

⎞⎠
(B.30)

with AΔT a 12x12 matrix having a similar shape as the AΔε j ’s:

(AΔT) αβ = δαβ +
μb
2

⎛⎝ Aαβλ
(β)
m,ΔT√

ρ
(β)
m

+
aαβλ

(β)
t,ΔT√

∑κ aακρ
(κ)
t

⎞⎠ (B.31)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂τ

(α)
e f f

∂ΔT = ∂Δσ
∂ΔT . ∑β

(
A−1

ΔT

)
αβ

P(β)
0 − κ(α)

κ
(α)
ΔT = μb

2 ∑β

(
A−1

ΔT

)
αβ

∑π

(
Aβπν

(π)
m,ΔT√

ρ
(π)
m

+
aβπν

(π)
t,ΔT√

∑κ aβκρ
(κ)
t

) (B.32)

Insert this result into Eq. B.28 and then use Eq. B.22 to solve for the ∂Δγ(α)
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Insert this result into Eq. B.28 and then use Eq. B.22 to solve for the ∂Δγ(α)
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Insert this result into Eq. B.28 and then use Eq. B.22 to solve for the ∂Δγ(α)
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Once the QT matrix has been inversed the solution is given by:
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b.3 von mises plasticity for melt

The consistent tangent modulus for the “silicon melt” is derived in the
following. This liquid is assumed to behave like a very soft solid. It is used
in a later Part of this Thesis, when simulating the solidification and cooling
of a small multicrystalline ingot.

The melt is represented by an elastic-perfectly plastic material using Von
Mises plasticity flow rule:

f = σeq − σy ≤ 0, ḟ = 0 if f = 0 (B.36)

σeq =

√
3
2

S : S =

√
3
2
‖S‖ (B.37)

The deviator s is derived from the stress tensor:

S = σ − 1
3

tr (σ) I (B.38)

The increment of stress reads as usually:

σ̇ = C : (ε̇ − ε̇p) (B.39)

Associated plasticity gives:

ε̇p = λ̇
∂ f
∂σ

=
3
2

λ̇
S

σeq
=

√
3
2

λ̇
S

‖S‖ (B.40)

Determination of the plastic strain increment is equivalent to the derivation
of Δλ.

Return mapping algorithm

At t a strain increment Δε is applied to the system initally at (σ, ε), leading
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Taking the deviatoric part of this equations yields:

S = St − Δλ
3

2σeq
dev (C : S) (B.42)
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Isotropic materials

If the material isotropic, the stiffness matrix reads:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12

C12 C11 C12 0

C12 C12 C11
C11−C12

2

0 C11−C12
2

C11−C12
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and dev(C : S) = C : S = (C11 − C12) S. Therefore Eq. B.41 is simplified to:

St = S
(

1 + Δλ
3 (C11 − C12)

2σeq

)
(B.43)

showing that S and St are colinear. For isotropic materials, an additional
relationship is consequently obtained as S

‖S‖ = St

‖St‖ . Then Eq. B.40 can be

written ε̇p = 3
2 λ̇ St

σt
eq

, which simplifies tremendously the derivation of Δλ.

Equivalently, one can derive:

S = St

(
1 − Δλ

3 (C11 − C12)

2σt
eq

)
(B.44)

At t + Δt the stress state should be on the plastic yield surface: f = 0, or√
3
2 S : S − σy = 0. This is equivalent to or σt

eq

(
1 − Δλ

3(C11−C12)
2σt

eq

)
− σy = 0

and

Δλ =
2 f (σt)

3(C11 − C12)
(B.45)

The case of ideal plasticity of isotropic materials gives therefore the plastic
strain increment directly from the trial state.

Perfect plasticity is characterized by a constant yield stress σy, therefore
when f = 0,

ḟ = ˙σeq =
∂ f
∂σ

: σ̇ =
3
2

σ̇ : S
σeq

= 0 (B.46)

This consistency condition gives for λ̇, using Eqs. B.39 and B.40:

λ̇ =
C : S

3
2σeq

S : C : S
: ε̇ (B.47)

with C : S = (C11 − C12) S and σeq = σy, the expression for the plastic strain
rate reads for isotropic materials:

ε̇p =
3

2σ2
y

S ⊗ S : ε̇ (B.48)
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The consistent tangent moduli reads, when plasticity is developing,

Cep = C
(
I − 3

2σ2
y

S ⊗ S

)
(B.49)

and Cep = C otherwise.

Anisotropic materials

The case of anisotropy does not allow such simplifications as previously. For
example, the increment Δλ cannot be obtained in closed-form as in Eq. B.45

and it must be derived numerically by solving the equation
√

3
2 S : S − σy =

0. Insertion of Eq. B.42 into the yield condition at the end of the increment
(that is, when σeq = σy) gives:

0 =

(
27

8σ2
y

dev(C : S) : dev(C : S)

)
(Δλ)2

−
(

9
2σy

St : dev(C : S)
)

Δλ +
(

σt
eq

)2 − σ2
y

(B.50)

which can be solved easily by a Newton-Raphson scheme in combination
with Eq. B.40 to update the deviatoric stress S at each iteration. Once Δλ
and S have been updated, the consistent tangent moduli can be derived by
using Eq. B.47:

Cep = C
(
I − S ⊗ C : S

S : C : S

)
(B.51)
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C
C O M P U TAT I O N A L A S P E C T S O F F E A N A LY S E S

Some remarks related to the computational aspects of the thesis are gathered in this Annex.
Annex A provides with a deepened insight of computational strategies to integrate the
equations of the constitutive model. This Annex focuses exclusively on issues related to the
implementation of the models into a Finite Element package. In a first step, the accuracy
of a small strain formulation is assessed by comparison with the outputs of a finite strain
framework. Secondly, the efficiency of parallelization is evaluated. Finally, the effect of
element type on the solution is studied.

c.1 small vs. finite strains kinematics

We consider in this Section the finite element model of tensile specimen
as used in Chapter 10. The elastic bounding blocks are not included. The
mesh is dense enough to guarantee converged results. The extended AH
constitutive model is chosen for the purpose of simplicity.

The initial Euler angles are set so that the sample is loaded in the [1̄2̄3]
direction. A constant velocity is applied to one sample end while the other
is kept fixed, so that the resolved shear strain rate acting on the primary slip
plane is 10−4 s−1. Simulations are run during 400 s, up to a tensile strain
ε � 2 %.

Time and force are converted into strain and stress using Eqs. 10.1
and 10.2, respectively. Fig. C.1 shows that the final stress differs by 6 %
at a shear strain of 4 %, which is more than acceptable. The Von Mises
stress and maximum principal strain distributions through the specimen at
the end of the simulation are also extremely similar, as shown in Figs. C.2
and C.3, respectively.

This shows that adopting a small strains approximation does not lead
to significant errors at the strains considered in the applications of the
constitutive model. A computational time gain of 12.5 % has been obtained
by shifting to the lighter, less calculation intensive small strains framework.
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Figure C.1: Comparison of the stress-strain curves obtained using finite strains or a
small strains approximation.

(a) Small strains

(b) Finite strains

Figure C.2: Comparison of the Von Mises stress field at t = 400 s using a small
strains approximation or finite strains. The apparently different stress
state in the gauge section is due to the scale discretization.
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(a) Small strains

(b) Finite strains

Figure C.3: Comparison of the strain field at t = 400 s using a small strains approxi-
mation or finite strains.

c.2 parallelization gains

The benefits from parallel computation are investigated in this Section. The
FE model considered here is similar to the previous one. Both finite and
small strains are considered. The baseline is defined as the time necessary
to complete a simulation with finite strains kinematics on one CPU. Fig. C.4
is obtained. Given the model size, parallelization yields significant compu-
tational time gains. Note that this would not be the case with smaller FE
models, where a saturation of the simulation time is observed.
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Figure C.4: Computation time using the parallelization possibilities offered by
Abaqus/Explicit. Index 100: time for solving the finite strains problem
with one cpu.

c.3 element type

Objective and strategy

The effect of element type on the simulation outputs is studied in this
Section. Abaqus/Explicit proposes a limited amount of element types
for analysis of 3-dimensional problems. We assess here the ability of the
elements C3D8, C3D8R, C3D4and C3D10M to simulate a uniaxial tensile test
of a silicon monocrystal oriented for single glide. The specimen geometry
is a cube of 1 mm side length. A constant velocity is applied at one of its
ends so that ε̇ = 10−4 s−1, while the displacement degrees of freedom of
the nodes on the opposite face are prohibited in all directions as shown in
Fig. C.5.

For each element type the cube is meshed with only one element through
each cube edge. The output from a converged mesh of 5 × 5 × 5 C3D8R
elements is also shown as a reference. The duration of simulations is 100 s,
and the extended constitutive model of Alexander & Haasen derived in
Chapter 6 is used in conjunction with a finite strains framework.

Results

As seen in Fig. C.6, C3D4 elements yield the poorest results. This could be
expected as this element type generally requires a high mesh density in
order to produce converged results. Using C3D10M elements gives very
good results, being of second order and therefore correctly accounting for
the displacement possibilities left at the free surfaces of the cube.

The force output is similar for the C3D8 and C3D8R elements. A shallow
secondary yield point can be detected in the corresponding curves of
Fig. C.6, due to the lack of displacement degrees of freedom on the specimen
edges and faces. Such mesh-induced kinematic constraints are relieved by
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Figure C.5: Model used to study the effect of element types.
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Figure C.6: Force output from a finite element model of a cube, using different
element types.
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the constitutive model through activation of secondary slip systems. This
in turn generates additional dislocation density explosions and ultimately
several upper yield points. Refining the C3D8R mesh indeed allows for
one single slip system to accomodate for the applied deformation, and the
correct force-time output is obtained.

The case of C3D8 elements

It is of high interest to consider the limitations induced by C3D8 elements.
Such an element can be considered as equivalent to the aggregation of 8
C3D8R elements onto which additional kinematic constraints are added to
neutralize the extra nodes. As seen previously, a severe drawback arising
by restraining the degrees of freedom of a finite element model is the
activation of additional slip systems in order for the additional constraints
to be accomodated for.

Applying a purely uniaxial tension on a fully integrated, first-order
element such as C3D8 does not yield the actual behavior of a monocrystal
with free surfaces. Owing to the crystal plasticity-based constitutive model,
this results in the spurious activation of slip systems. This problem of over-
stiffness is already widely known in the literature (see, e.g., [Liu 2003]), and
has severe impacts when applied to nonlinear RDCP constitutive models.

An important consequence of this analysis is that in the most general case,
first-order fully integrated elements should not be used with a crystal plasticity
framework.

If brick elements are to be used to mesh a geometrical model, then
only reduced integration can yield reliable results. This in turn may lead
to element distortion by activation of hourglassing modes. Alternatively,
C3D10M elements might provide with accurate solution, albeit at the price
of a higher computational cost, each element having three Gauss points at
which the constitutive equations must be solved.
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E X P E R I M E N TA L D ATA

This Annex gathers experimental data obtained on solar-grade silicon multicrystals during
this PhD work, both at room temperature for flexural strength determination and at high
temperature. All experiments performed are four-point bending tests.

d.1 room temperature experiments

Details about the experimental setup, analysis methods and results pro-
cessing are given in Chapter 11. For confidentiality reasons, only results
relative to the material provided by SINTEF are introduced below. 4PB
tests yield two results: a Young’s modulus can be extracted from the force-
displacement data, and the maximum force reached before fracture gives
an indication of the flexural strength of the sample.

Young’s moduli

The Young’s modulus of a sample does not depend on its surface state,
but for readability the results of sets 1 and 2 are separated and shown in
Table D.1 and D.2 respectively.

A histogram can be plotted given these data, and shows that the distribu-
tion of Young’s moduli is not totally random but follows roughly a normal
law. For more details, refer to Chapter 11.
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522 experimental data

Sample nr. E Sampl nr. E (GPa)

S128 180 S145 157

S129 175 S146 164

S130 175 S147 161

S131 172 S149 162

S132 175 S150 173

S133 171 S151 171

S134 178 S152 170

S135 183 S153 168

S136 172 S154 169

S137 158 S155 168

S138 162 S156 167

S139 164 S157 166

S140 157 S158 167

S143 157 S159 166

S144 160 S160 165

Table D.1: Young’s modulus of mc-Si bars from SINTEF material, set 1.

Sample nr. E Sampl nr. E (GPa)

S161 159 S179 153

S162 171 S180 158

S163 173 S181 164

S164 179 S182 169

S165 167 S183 158

S168 170 S184 159

S169 164 S188 160

S170 168 S189 163

S172 173 S190 150

S173 174 S193 156

S174 169 S195 162

S175 151 S196 162

S176 152 S197 173

S177 169 S198 161

S178 152 S200 166

Table D.2: Young’s modulus of mc-Si bars from SINTEF material, set 2.
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S172 173 S190 150

S173 174 S193 156

S174 169 S195 162

S175 151 S196 162

S176 152 S197 173

S177 169 S198 161

S178 152 S200 166

Table D.2: Young’s modulus of mc-Si bars from SINTEF material, set 2.
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d.2 high temperature experiments

Preliminary discussion

The goal of high temperature experiments (above 1073 K) is to assess
whether the mechanical behavior of SoG-Si multicrystals resembles the one
of monocrystals. Several factors make this assessment difficult, and the
restricted amount of results presented in the following only reflects the
consequences of the remarks below.

• A first issue is the grain size, large with respect to the standard
sample dimensions imposed by the testing apparatus. Ideally, one
would like to have as many grains as possible in the cross-section,
so that the observed behavior (force-displacement record) results
from the averaging of each individual response of the grains to the
mechanical load. However, the experimental setup sets a limit on
the size of samples that can be tested, with an inner span of 20 mm
only. This brings the maximum number of grains in the longitudinal
direction between the inner rods down to a dozen.

• Another factor to remember is that the particular loading created by
the 4PB apparatus sollicitates the sample along one direction only.
Consequently, any anisotropy introduced during ingot crystallization
cannot be observed since all samples have been cut along the same
orientation.

• More than that, the very crystallographic topography and properties
of the samples are unknown: grain size, orientation, shape, initial
dislocation density, chemical composition, etc.

• The most severe drawback encountered comes from the maximum
allowed heating rate, 200 K per hour. Such a limit is set by the mechan-
ical properties of the oven components. This means that heating up
from room temperature to the target one takes several hours, during
which many annealing and diffusion processes can take place without
giving the operator any control over them.

Dislocation annihilation and stress relief in the material are to be
expected, as well as diffusion of locking impurities such as nitrogen
and oxygen. It is consequently not surprising to observe mechanical
behaviors similar to those of monocrystals. The validity of the results
is consequently extremely limited.

• Finally, security purposes require the operator to be present in the lab
during all the heating step1.

The results presented in this Section have not been used for model
calibration for the reasons exposed above: too much uncertainty on the

1 This is obviously a personal observation that does not influence the validity of the results but
rather weights significantly in the decision to perform more tests.
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Sample nr. T (K) ε̇ (s−1)

E77 1073 10−6

E78 1073 10−6

E76 1073 5 × 10−6

E75 1073 5 × 10−6

E73 1073 10−5

E74 1073 10−5

E80 1173 5 × 10−6

E79 1173 10−5

E40 1173 10−5

Table D.3: High-temperature testing conditions.

thermodynamical state of the samples when loading starts, unknown grain
size and orientation, etc. Note that a dozen of samples have been analyzed
by EBSD and PVscan for future test and modeling.

d.2.1 Sample preparation and experimental conditions

The mc-Si bars have been cut following the ASTM standard C1211-98a
[ASTM a]. The samples E79 and E80 have been polished and etched on the
tensile side, following the same procedure as room-temperature samples of
set 2 (see Chapter 11).

The factors above-mentioned limit severly the amount of samples tested.
Only two temperatures (1073 and 1173 K) and a limited range of strain rates
(from 10−6 to 10−5 s−1) are explored. The latter are calculated assuming the
samples to be isotropic homogeneous materials. Following [ASTM a], the
strain rate is given by:

ε̇ =
6ts
L2 (D.1)

where t is the specimen thickness, s the cross-head speed and L the outer
span. Knowing t, L and the target strain rate, s can be calculated and
applied to the specimen.

Temperature is monitored continuously by thermocouples at two posi-
tions in the oven, close to the sample and outside the 4PB apparatus. The
temperature is kept accurate during the experiments within less than 1 K.
All experiments are performed in an argon atmosphere after the chamber
is flushed and filled with argon four to five times. The heating rate is set to
200 K per hour. Table D.3 gives the details of the experimental conditions
considered2.

2 Sample E78 has been tested but the data has been subsequently lost due to a manipulation
error.
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Sample nr. T (K) E (GPa)

E77 1073 138

E78 1073 -

E76 1073 146

E75 1073 146

E73 1073 152

E74 1073 162

E80 1173 117

E79 1173 114

E40 1173 119

Table D.4: Young’s modulus of samples tested at high temperatures.

d.2.2 Results

The force-deflection records are converted into stress-strain results assuming
small deformations and isotropic homogeneous materials. The total elastic
strain can be obtained by dividing Eq. 11.6 by Eq. 11.5 and identifying the
elastic strain εe as σ = Eεe:

εe =
16td

L
(D.2)

The samples are deformed either up to fracture or when the tensile ap-
paratus reaches its maximum allowed load cell displacement. The results
obtained at 1173 K are not presented.

Young’s modulus

The Young’s modulus of each sample can be computed as well, using the
same method as described in Chapter 11. Table D.4 shows the calculated
values. As expected, the Young moduls decreases with temperature.

Stress-strain curves

Figure D.1 shows the results measured at 1073 K. As mentioned earlier,
the mechanical behavior of the samples likens the one of monocrystals: an
upper yield point is followed by a sharp yield drop, and a quasi-linear
hardening rate sets in beyond the lower yield point.

Some points are worth mentioning:

• Strain rate has the same effect on the yield region of multicrystals
than it has on single crystals, by increasing the upper yield stress.
However, the lower yield stress evolution is not strictly enforced for
SoG-Si, as impurities likely influence its magnitude.

• Reproducability is not guaranteed, especially when it comes to the
lower yield stress and flow stress. Of particular interest are the two
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Figure D.1: Experimental results obtained by 4PB deformation of SoG-Si multicrys-
tals produced by Elkem Solar. Temperature 1073 K.

curves obtained at 10−5 s−1. Impurities and different grain orienta-
tions could be reasons for the discrepancy.

• On the other hand, the samples deformed at 5 × 10−6 s−1 exhibit
the same behavior in the yield region, but stage I is affected for one
specimen by what could be identified as diffusion of impurities to the
dislocations, resulting in a wavy force response.

The specimen deformed at 1173 K follow the same pattern, and exhibit
lower yield stresses than those deformed at 1073 K, as could be expected.

d.2.3 Discussion

Overall, these few experiments allow to draw only qualitative conclusions:
the average response of small SoG-si multicrystalline aggregates is like
the one of monocrystals when it comes to the existence of a yield region
and the influence of thermodynamic conditions on the yield points. The
hardening rate beyond the lower yield points is always low, suggesting that
the majority of the stressed volume deforms in single glide3.

In addition to the initial dislocation density, impurity type and concen-
tration that vary both between and within samples, grain misorientation
limit the reproducability of the stress-strain curves at given temperature
and strain rate.

It is in the meantime very tricky, to draw quantitative conclusions based
on these experimental data. No sample is like another both because of their
constituent crystals which vary in size, shape and orientation, and because
their respective thermomechanical histories have led to different dislocation

3 This remark does not rule out local deformation in multiple slip, particularly close to the grain
boundaries. Sample fracture observed at very low strains and stresses is most likely due to
local stress concentrators that do not have any effect in the global force records.
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the majority of the stressed volume deforms in single glide3.

In addition to the initial dislocation density, impurity type and concen-
tration that vary both between and within samples, grain misorientation
limit the reproducability of the stress-strain curves at given temperature
and strain rate.

It is in the meantime very tricky, to draw quantitative conclusions based
on these experimental data. No sample is like another both because of their
constituent crystals which vary in size, shape and orientation, and because
their respective thermomechanical histories have led to different dislocation

3 This remark does not rule out local deformation in multiple slip, particularly close to the grain
boundaries. Sample fracture observed at very low strains and stresses is most likely due to
local stress concentrators that do not have any effect in the global force records.
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density and impurity distributions. This last remark is strengthened by the
fact that our experimental apparatus restrics severly the heating rate; an-
nealing and diffusional effects cannot be ruled out and make any parameter
identification almost impossible.

Additional tests have been performed during the completion of this thesis
by a private company. The specimen were then much larger and tested in a
much wider temperature and strain rate range. The same conclusions as
derived in this Section hold.
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