
June 2007
Geir Egil Øien, IET
Changmian Wang, IET

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Energy-Efficient Link Adaptation and
Resource Allocation in Energy-
Constrained Wireless Ad Hoc Networks

Even Krogsveen

Problem Description

Wireless ad hoc networks are quickly emerging as the most interesting new paradigm for wireless
technology in a variety of applications, including industrial automation, sensor networks, personal
area networks, military applications, home networks, and so on. This MSc thesis project will only
be focusing on the communication aspects of such networks, not the type of data or the
applications running on top. Since the nodes in most applications of such networks will be battery-
powered, energy-efficiency is a matter of great concern.

The MSc project will commence with a literature study where the aim is to collect and summarize
knowledge about the state-of-the-art in research within this field as well as to propose promising
avenues for further research. In particular short-range applications, where both transmission
energy and hardware energy consumption is of importance, are targeted. Both solutions for high-
capacity, low-latency applications as well as low-capacity, medium-to-long latency applications
are of interest. Evaluation of the channel state information needed to perform link adaptation is
also an issue.

After the initial literature study, the emphasis will be on development and evaluation of novel
energy-efficient link adaptation schemes for energy-constrained wireless ad hoc networks, based
on knowledge gained from the literature about promising research directions. In particular, the
schemes reported in [Goldsmith] and [Yang] are to be used as a background for the solution of a
particular route configuration optimization problem. The project is associated with Workpackage 2
"Energy Efficient Link Adaptation" in the Nordic (NORDITE/NFR) collaborative research project
CROPS: Cross-layer optimization in short-range wireless sensor networks (cf. http://www.s3.kth.
se/commth/projects/CROPS/).

Responsible supervisor: Prof. Geir E. Øien, rom C349, oien@iet.ntnu.no
Co-supervisor: PhD student Changmian Wang

Assignment given: 17. January 2007
Supervisor: Geir Egil Øien, IET

Acknowledgements

This thesis is the concluding part of my 5-year Master of Science degree at
the Norwegian University of Science and Technology, department of electron-
ics and telecommunications. The given problem description is inspired by
the ongoing NORDITE Cross-Layer Optimization in Short-Range Wireless
Sensor Networks (CROPS) project. The thesis has also resulted in a paper,
which is submitted to the the IEEE International Symposium on Wireless
Communication Systems (ISWCS) ’07, awaiting assessment. Co-authors are
Geir Øien, Changmian Wang and Saska Lindfors.

A special thank goes to my supervisors, professor Geir Øien and PhD student
Changmian Wang, for their guidance and support. I would also like to
thank Dr. Anna Kim and professor Saska Lindfors for valuable input and
constructive criticism.

Even Krogsveen,
Trondheim, June 2007

i

Abstract

Wireless ad hoc networks have a number of advantages over traditional,
infrastructure-based networks. Robustness and easy deployment are two
of the main advantages. However, the distributed nature of such networks
raises a number of design challenges, especially when energy-efficiency and
QoS requirements are to be taken into consideration. These challenges can
only be met by allowing closer cooperation and mutual adaptation between
the protocol layers, referred to as a cross-layer design paradigm.

In energy-constrained wireless ad hoc networks, each node can only
transmit to a limited number of other nodes directly. Hence, in order to
reach distant destinations, intermediate nodes must relay the traffic of their
peer nodes, resulting in multihop routes. The total energy consumption asso-
ciated with a end-to-end transmission over such a route can be significantly
reduced if the nodes are correctly configured. A cross-layer, optimization
scheme, based on adaptive modulation and power control, is proposed in
this thesis. The optimization scheme assumes that an existing route has
been found, and allows QoS requirements in terms of end-to-end bit error
rate and delay. Both transmission and circuit energy consumption is taken
into consideration. By jointly optimizing all nodes throughout the route, the
total energy consumption can be reduced by more than 50%, compared to
a fixed-rate system. The adaptive system also exhibits superior capabilities
to meet stringent QoS requirements.

Results for both continuous and discrete rate adaptation is produced,
and it is found that discrete adaptation causes only a small performance
degradation, compared to the optimal, continuous case. Simulations also
show that the system is vulnerable to inaccurate link state information. Fi-
nally, the effects of maximum-rate limitation and ignoring the circuit power
consumption is investigated.

iii

Contents

Acknowledgements i

Abstract iii

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Related Work, Definitions and Scope 2
1.2 Objective . 3
1.3 Outline . 3

2 Background and Context 5
2.1 Motivation for Cross-Layer Design 6
2.2 Design Goals and Issues . 9

2.2.1 Hardware . 9
2.2.2 Link Adaptation . 10
2.2.3 Resource Allocation and Multiple Access 11
2.2.4 Topology & Routing 13

2.3 Summary . 16

3 Problem Description 17
3.1 Background . 17
3.2 System Model . 19

3.2.1 Channel . 21
3.2.2 Power Consumption 24
3.2.3 QoS Requirements . 25
3.2.4 Network Estimate . 26

3.3 Route Optimization . 28
3.3.1 Continuous Case . 29

v

vi CONTENTS

3.3.2 Discrete Case . 30
3.3.3 Fixed Rate . 31
3.3.4 Error Scenarios . 33

4 Simulations and Results 35
4.1 Simulations . 35
4.2 Single Hop Results . 37
4.3 Multihop Results . 39

4.3.1 Detailed Route Configuration 40
4.3.2 Basic Comparison . 40
4.3.3 Tight Delay Constraint 43
4.3.4 Inaccurate Link State Information 44
4.3.5 Ignoring Circuit Energy 45
4.3.6 Single- vs. Multi-hop Comparison 46

5 Discussion 49
5.1 Model Review . 49
5.2 Optimization Routine Scheduling 51
5.3 Distributed Power Control . 52
5.4 Circuit Power Model Re-Visited 53
5.5 Self-Congestion . 53
5.6 Computations: Resources and Energy 54

6 Conclusions 55
6.1 Contributions . 57
6.2 Future Work . 57

Bibliography 59

A List of Abbreviations 65

B Matlab Scripts 67
B.1 Main Script . 67
B.2 System Constants . 75
B.3 Route Optimization . 77

B.3.1 Continuous . 77
B.3.2 Discrete . 79
B.3.3 Channel Inversion . 81

B.4 Transmission . 82
B.5 Result Presentation . 85
B.6 Misc. Functions . 91
B.7 Network Analysis . 98

C Screenshots 109

List of Figures

2.1 Illustration of ad hoc network 5
2.2 Cross-layer reference model 7

3.1 Example multihop route . 20
3.2 SNIR requirement as function of modulation order 23
3.3 Estimated distribution of hop lengths 27
3.4 Steps in route optimization routine 30
3.5 Route optimization algorithm for discrete rate adaptation . . 32

4.1 Execution of simulations . 36
4.2 Transmission power as function of modulation order 38
4.3 Energy consumption for packet transmission over single hop

of given length . 39
4.4 Energy consumption as function of hop length and modula-

tion order . 40

vii

List of Tables

4.1 System parameters. 37
4.2 Route configuration details 41
4.3 Basic simulation results . 42
4.4 Simulation results, tight delay constraints 43
4.5 Transmission error rates, inaccurate link state information . . 45
4.6 Energy consumption, inaccurate link state information 45
4.7 Average energy consumption and modulation order, reduced

circuit power consumption . 46
4.8 Optimal configuration and energy consumption for various

hop lengths . 48

viii

Chapter 1
Introduction

Wireless ad hoc networks is one of today’s most interesting emerging tech-
nologies. The development of this agile network technology has opened for
a vast number of new and exciting applications, in which flexibility and
easy deployment and configuration are important properties. An ad hoc
network consists of nodes that must communicate with each other without
relying on any infrastructure or pre-defined hierarchy. This is in contrast
to e.g. WLAN and cellular mobile phone systems, in which base stations
coordinate the user nodes and control all traffic flows. In other words, an
ad hoc network must be self-organizing and function without any dedicated
controlling unit.

A self-configuring, autonomous wireless network obviously has a huge
potential in a great number of situations. Data networks made up of hand-
held devices, ‘smart’ homes, communication and data systems for military
field operations, industrial control systems and wireless sensor networks are
just a few examples where wireless ad hoc networks can be applied. Com-
mon for all these examples is that they utilize the distributed nature and
independence of fixed infrastructure inherent in wireless ad hoc networks.

A distributed system is by nature much more error-tolerant than one
with some form of centralized control, since there is no single critical point
of error. This property is of major importance for many military applications
and sensor networks where nodes are placed in a hostile environment, where
a high rate of node failure is to be expected. Many redundant nodes will
increase the robustness of the system. For other applications, the reduced
time and cost of system deployment when no infrastructure is needed, or
where existing infrastructure cannot be used, is the most useful aspect of
an ad hoc network. This is true for many commercial applications, both
industrial and domestic, and also military.

In short, there is an abundance of applications that could utilize wireless
ad hoc networks. But there are also a number of technological challenges

1

2 CHAPTER 1. INTRODUCTION

associated with this kind of networks systems. The nodes are typically
small, often battery-powered and can be highly mobile. Some applications
have stringent QoS requirements, while others might have a required system
lifetime measured in decades. The distributed nature of wireless ad hoc
networks, combined with these requirements makes existing protocols and
techniques, developed for fixed and wired networks, unsuitable. This calls
for novel thinking that challenges the traditional design paradigms.

1.1 Related Work, Definitions and Scope

Wireless ad hoc networks are a hot topic for research, resulting in a great
number of published research papers and articles. As pointed out, there are
countless conceivable applications for this type of networks, all with different
design requirements and limitations. This makes it impossible to define at
a common framework that encompass them all [1]. However, there are some
key design goals, common for all applications of wireless ad hoc networks.
These will form the basis for this thesis.

It is commonly accepted that wireless ad hoc networks calls for a re-
thinking of the traditional, strictly layered OSI reference model for protocol
design. Many of the challenges encountered in application of wireless ad hoc
networks can only be solved by allowing a closer integration between the
protocol layers, commonly referred to as a cross-layer design paradigm [2,
3, 4].

Energy-efficiency is another point emphasized in the vast majority of rel-
evant publications, since energy reserves are usually considered to be finite.
In e.g. [5, 6], it is shown that energy awareness must be incorporated in all
protocol layers in order to obtain truly energy-efficient solutions, thereby
motivating the cross-layer design paradigm. The limited resources of the
network nodes imply that the transmission range is also limited [3, 7]. In or-
der to transmit to remote destinations, the traffic must therefore be relayed
by intermediate networks nodes to the final destination, creating a multihop
route [1].

Another recurring topic is link adaptation, which is shown to offer tremen-
dous performance improvements in the time-varying environment of a wire-
less communication system [2]. This is particularly important in resource-
limited wireless ad hoc networks, and link adaptation is shown to greatly
improve the performance of such networks, e.g. in [8, 9].

The distributed nature of wireless ad hoc networks makes QoS sensitive
traffic extra challenging. Nevertheless, many applications generate traffic
that requires some form of QoS capabilities, e.g. multimedia sensor net-
works [10].

This brief overview defines the area of focus for this thesis, and the design
goals and mentioned will be further investigated. To summarize, energy-

1.2. OBJECTIVE 3

constrained, short-range wireless ad hoc networks with QoS sensitive traffic
will be the main focus. Only the communication aspect of such systems will
be reviewed. The focus will be on the middle to lower layers.

ZigBee and Bluetooth [11, 12], are two commercially available technolo-
gies that are targeted at many of the same applications as described here.
Further, they share many of the same characteristics, such as emphasis on
energy-efficiency, multihop routing (ZigBee) and distributed network con-
trol. However, these standards does not fully utilize the cross-layer design
approach [3, 13], and will not be further investigated here.

1.2 Objective

This thesis has two main objectives:

� To give a brief introduction to the domain of wireless ad hoc networks,
and to point out some of the most important related design goals and
challenges, as well as proposed techniques on how these problems can
best be met. Cross-layer design and its advantages will be emphasized,
with focus on the middle to lower protocol layers.

� To investigate a route optimization problem, using a cross-layer ap-
proach. The problem is defined based on knowledge acquired by the
initial literature study, and the proposed solution is based on relevant
research papers. An in-depth presentation of the system model and
the optimization scheme will be given. Then the model is implemented
in Matlab, simulations are run and conclusions drawn.

1.3 Outline

The rest of the thesis is organized as follows:

Section 2 Literature survey. Further motivation for cross-layer design para-
digm. Brief overview of important design goals for lower through mid-
dle protocol layers.

Section 3 Presentation of system model, the route optimization problem
and the proposed solution.

Section 4 Description of simulations and numerical results.
Section 5 Result analysis and review of the model, based on the results.
Section 6 Final conclusions and propositions for further work.

Chapter 2
Background and Context

The flexibility of wireless ad hoc networks opens for a number of new, excit-
ing applications. Since no infrastructure is needed, new applications can be
quickly and easily deployed. The distributed nature also makes applications
fault-tolerant, as there is no single point of which the functionality of the
entire system depends. Figure 2.1 visualizes the structure of a generic ad
hoc network.

There are many technological challenges associated with the design of
wireless ad hoc networks, many of which remains unsolved. The field is a
very hot topic for research, and there is clearly a demand from the industry
for this technology. New techniques and protocols are frequently proposed.
However, the distributed nature of wireless ad hoc networks always carries
with it an inherent penalty in terms of degraded performance, compared to
centrally controlled networks [1, 2].

Figure 2.1: Conseptual sketch of wireless ad hoc network. ([1, Fig. 1])

The problems and limitations inherent in wireless ad hoc networks are
in many applications acceptable, in light of the increased flexibility and
possibilities such networks present. Due to the vast variety of applications

5

6 CHAPTER 2. BACKGROUND AND CONTEXT

of wireless ad hoc networks, each with different requirements, it is difficult to
define a common framework for the design of such systems; especially since in
order to achieve acceptable performance and energy efficiency, many system
designs need to be tailored to a specific application [1, 14, 15]. This is in
particular true for systems with stringent QoS requirements [3, 4, 10].

But there are a number of important design goals and key challenges
that are relevant for most applications of wireless ad hoc networks, of which
the cross layer design paradigm is the most important. The reminder of this
section will give a brief motivation for this design paradigm, and present
important related design issues for the three bottom protocol layers.

2.1 Motivation for Cross-Layer Design

Traditionally, the design of any data network or communication system have
been based on the generic OSI reference model [2, 16]. E.g. the well-known
5-layer TCP/IP stack, the workhorse of the Internet, is based on the OSI
model.

A fundamental design principle of this model is modularity. Each layer
is designed to perform its tasks in isolation, and offer its services to the
neighboring layers. The implementation and operational details, however,
are hidden within each layer. Communication between the layers only takes
place through well-defined interfaces, and only between neighboring layers.
This approach makes it easy to modify any layer without interfering with
the operation of the others. The high degree of modularity also makes un-
derstanding and designing networks easier. And finally, it allows equipment
from different vendors cooperate seamlessly, as long as they obey the stan-
dards [2, 16, 17].

Whereas the principle of modularity has its obvious benefits, it also
dictates some limitations. This is especially true when considering wireless
networks. The OSI model was originally designed for wired networks [2,
16] which are fundamentally different from wireless networks in a number
of important areas, some of which are summarized here. The principle of
cross-layer design is illustrated by Figure 2.2. A cross-layer design (right)
allows information flow across layers, thereby allowing joint adaptation and
optimization, while in the traditional model (left), each layer it performs
its operations in isolation, only capable of self-adaptation. This generic, 5-
layered model is frequently used as a reference model in the literature, and
will also be adopted here.

Channel Fluctuations

A wireless communication channel is in nature far more unstable than a
wired one. Fading, shadowing, interference, doppler shifts and refractions

2.1. MOTIVATION FOR CROSS-LAYER DESIGN 7

Figure 2.2: Reference model for protocol stack. Copy of [2, fig. 16.2 (modi-
fied)]

all contribute toward making the wireless channel a challenging medium for
communications [1, 2, 18].

Relatively stable, time-invariant wired channels with small fluctuations
in link quality and Signal to Noise Ratio (SNR) can appear to be transparent
for most practical purposes by over-designing the physical protocol layer
slightly, thereby compensating for the small variations that do exist [6].
That is, the capacity of the channel appears to the higher protocol layers as
constant, and the details about the transmission medium can remain hidden
within the physical protocol layer, as dictated by the OSI model [16].

Wireless channels, however, exhibit much larger variations, and the ca-
pacity of the channel will drop when the link quality, referred to as the link
state, is low. The channel capacity can be increased by increasing the trans-
mit power [2], but in resource-limited wireless nodes, the transmission power
is usually limited. In other words, adaptation within the physical layer in
order to even out these fluctuations is often not possible. The information
about the channel should therefore be shared with the higher layers, so that
they can adapt their operation to the time-varying communication channel.

Distributed network control combined with resource-limited nodes and
time-varying conditions makes QoS sensitive traffic a particularly difficult
challenge. This topic is given much attention in the literature. It is a
common conclusion that allowing closer cooperation between protocol layers
and mutual adaptation have the potential of providing better performance
while lowering overall energy consumption, as compared to the traditional,
layered approach. Link adaptation is a key tool in order to obtain these

8 CHAPTER 2. BACKGROUND AND CONTEXT

goals [7, 8, 9, 15].

Multiple Access

The design of multiple access protocols for wireless ad hoc networks presents
some major challenges. Without any fixed infrastructure, it is up the nodes
themselves to coordinate their transmission in an efficient manner. This is
a highly complex problem, since all nodes share the same communication
medium. To save energy, nodes that are not transmitting or receiving data
should ideally be powered down to conserve energy [1, 5]. But many nodes
must also act as routers, and forward packets from other nodes to their fi-
nal destination. Also, the transmission scheduling can be adapted to the
time-varying nature of the wireless channel, e.g. by transmitting only when
channel conditions are good, called opportunistic scheduling [2]. This illus-
trates that optimal scheduling of transmissions is impossible without taking
the operation of the other layers into consideration.

Network Topology and Routing

Routing principles for wireless ad hoc networks and their wired counterparts
are fundamentally different. Wired networks will be mostly static, with in-
frequent topology changes and relatively stable communication links. There
exists a number of routing algorithms for finding optimal paths in this type
of networks, based on different routing metrics [16]. The relatively stable
environment makes it possible to separate the routing operation from details
in the lower layers.

In wireless ad hoc networks, on the other hand, routing protocols must be
able to adapt to fluctuations in the underlying channel characteristics, as well
as frequent topology changes (in mobile networks) [1]. QoS sensitive traffic
complicates the problem even further. On top of this, energy awareness
should be incorporated into the routing metrics, to maximize the network
lifetime [15]. All this shows that routing in wireless ad hoc networks is a
complicated problem that cannot be solved in isolation.

Summary

As pointed out, protocols designed for static, wired networks will not per-
form very well if used directly on a wireless network, especially when strin-
gent QoS requirements must be satisfied. There are many problems in wire-
less ad hoc networks that cannot be addressed by any single layer. There
is broad acceptance in the literature for the fact that re-thinking of the
original, strictly layered protocol stack reference model is necessary when
considering wireless ad hoc network systems, and that the stringent design
requirements can only be met by utilizing the possibilities this model pro-
vides [3, 6, 15, 19].

2.2. DESIGN GOALS AND ISSUES 9

2.2 Design Goals and Issues

As mentioned, the design of a wireless ad hoc network is highly dependent
on the applications. E.g. a sensor network with nodes embedded in a con-
crete bridge to monitor the structural integrity must have a lifetime of years
or decades, but the requirements on delay and throughput are minimal. A
totally different scenario is the temporarily deployment of video surveillance
equipment, e.g. in a urban riot area. This application will have a much
shorter lifetime, maybe a few days, while the data traffic and QoS require-
ments will be much more demanding. The number of nodes in these two
applications will also be very different. In the first scenario, some thousand
nodes could be deployed, to ensure sufficient redundancy and reliability,
while in the second, perhaps only 10 - 50 nodes is required.

This simple example illustrates the diversity of applications in which
wireless ad hoc networks can be utilized. To narrow down this vast field,
some ground assumptions must be made.

The network nodes are typically battery powered, so that the energy
reserves are finite. In some applications, energy-harvesting from the envi-
ronment is possible [4, 14], and batteries can be replaced for others. Never-
theless, energy should in most cases be considered as a scarce resource. For
all techniques and applications discussed in this thesis, energy efficiency is
emphasized as a key design goal.

Energy-limited devices are also usually peak-power limited [1]. That
is, the instantaneous power that can be drained from the batteries is lim-
ited. Limited power means limited transmission range [7, 20]. Thus, many
applications of wireless ad hoc networks can be classified as short range,
e.g. Wireless Sensor Networks (WSNs) and applications for home automa-
tion [1, 21]. While this term is not well-defined, the definition from [3] will
be adopted here: Short range systems is interpreted as systems with com-
munication ranges (between the nodes) so short that the the nodes’ circuit
power consumption is of the same order of magnitude as power used for
communication.

2.2.1 Hardware

The hardware platform is where all the higher layer protocols are imple-
mented. Functionality defined by higher layer protocols must be supported
in the hardware system design, and virtually all design choices made here
will affect the other layers [2, 5, 15]. This thesis will not give an in-depth
discussion about energy-efficient hardware design, but simply point out the
most important aspects and desired properties of a generic low-power hard-
ware platform.

First of all, different application have different requirements. This calls
for tailored hardware design to deliver the best possible performance. At

10 CHAPTER 2. BACKGROUND AND CONTEXT

the same time, many applications of wireless ad hoc networks, such as home
automation systems and WSNs, rely on cheap, mass-produced hardware to
become commercially feasible. This leads to the first of many trade-offs:
Tailored hardware will be more expensive, but will perform better in the
targeted application(s), whereas a more generic hardware platform would be
cheaper ot produce, at the cost of reduced functionality and performance.

For all applications considered here, energy-efficiency will be a primary
concern. Many papers on energy-efficiency in wireless ad hoc networks ad-
dress only transmission energy. But recent research has shown that for
ultra-low power applications, energy consumption associated with e.g. sig-
nal processing, coding, start-up and even leakage power when the node is
powered down is non-negligible and should be included in the total energy
budget.

It is shown that incorporating circuit energy consumption into the op-
timization process of a given system, tremendous energy savings can be
obtained [5, 8, 22, 23]. A desired property of a generic hardware platform is
the ability to trade performance can be traded for power savings [5]. This
means that a system can adapt adapt its hardware operation to meet given
requirements, and not waste valuable energy by over-performing.

2.2.2 Link Adaptation

Every communication channel have a fundamental capacity limit, which will
vary in time-variant channels [2, 24]. In resource-limited wireless ad hoc
networks, it is a crucial design goal to adapt to these fluctuations, so that
the available resources can be utilized efficiently [1].

Link adaptation can be carried out in a number of ways, and at differ-
ent protocol layers, from simple power control to sophisticated cooperative
diversity schemes [2]. Power control can be used for channel inversion, so
that the received Signal to Noise and Interference Ratio (SNIR) always sat-
isfies a certain threshold. The transmission rate can also be adjusted, based
on the capacity of the channel, by making use of adaptive modulation or
coding [2]. These techniques are frequently utilized in research papers and
proposed protocols. In [5, 6, 22], it is shown that these techniques can greatly
improve the system performance, while saving energy and meeting stringent
QoS requirements. However, the performance of adaptive modulation, cod-
ing and power control is dependent on the accuracy of the available link state
estimates. Estimating the channel in extremely fast fading environments,
e.g. highly mobile ad hoc networks, is difficult, and other techniques should
be considered [2].

Multiple Input Multiple Output (MIMO) techniques can be used to miti-
gate the effects of fading channels, thereby dramatically increasing the capac-
ity. Equivalently, if the data rate is constant, energy can be saved [1, 2]. This
is true when only considering transmission power, but the special character-

2.2. DESIGN GOALS AND ISSUES 11

istics of energy-constrained ad hoc network nodes must be taken into con-
sideration. MIMO-techniques require sophisticated signal processing that
will require extra energy [2], which for some scenarios might actually exceed
the savings obtained by applying such techniques in the first place.

Another approach for producing reliable point-to-point transmission over
time-varying links is to simply retransmit packets that are received in er-
ror [9]. This can be very beneficial in systems where link accurate state
estimation is difficult. In fact, retransmitting over a fast-varying channel is
a simple form of time-diversity, where the number of allowed retransmissions
corresponds to the diversity order [25].

Retransmission schemes does not require advanced signal processing pro-
cedures. On the other hand, performing retransmissions causes increased
time- and energy consumption, both of which are limited in applications
considered here. Especially, in applications with a tight delay constraints,
retransmissions might not be feasible.

To summarize, appropriate link adaptation is crucial for successful design
of wireless ad hoc networks. But for any adaptation scheme, any associated
additional energy cost (or other penalties) must be carefully weighted against
the provided benefits, bearing in mind the special characteristics, require-
ments and limitations of energy-constrained wireless ad hoc networks. So
exactly which technique is best suited will vary from application to applica-
tion.

2.2.3 Resource Allocation and Multiple Access

Medium access is another of the major challenges in wireless ad hoc net-
works. In particular, the lack of a single control unit makes efficient resource
utilization difficult, especially when combined with stringent requirements
to keeping the energy consumption as low as possible.

In any wireless communication system, the bandwidth is limited, and
must be shared by all users/nodes. The available bandwidth is usually
divided into a finite number of channels. This is typically done by time,
frequency or code (orthogonal codes) division, or a combination of these. In
order to communicate, a node must somehow be granted access to a channel.

Code division can also utilize non-orthogonal codes, thereby making the
systems interference-limited. Here, simultaneous transmissions are allowed,
but will interfere with each other. The level of interference from other users
decides the capacity of each channel. In contrast to orthogonal channeliza-
tion schemes, there is no hard limit on the maximum number of simultane-
ously transmitting users [1]. Thus, nodes can in theory transmit whenever
they want, without any prior negotiating for channel access.

However, there are some difficulties associated with this scheme. First of
all, semi-orthogonal code multiple access schemes are vulnerable to the near-
far problem [24], thus requiring precise power control. This could lead to con-

12 CHAPTER 2. BACKGROUND AND CONTEXT

flicts, as power control affects multiple layers, and should be optimized ac-
cordingly. Further, code division systems requires complex transceivers and
near perfect synchronization between nodes [24], thus making their useful-
ness in energy-constrained ad hoc networks questionable. This is confirmed
by the overweight of attention given to simpler channelizations schemes in
the literature.

So in general, there will be more nodes in the networks considered here
than available channels. As a consequence, the nodes must share commu-
nication channels. Due to the lack of fixed infrastructure or a centralized
control mechanism, it is up to the nodes themselves to synchronize their
transmissions and utilize the available communication channels in the most
efficient manner possible.

When a node is not communicating, it should enter a sleep state, which
is the best way to save energy [21, 26]. But a sleeping node is no longer
a part of the network, and cannot participate in relaying packets for other
nodes, which is crucial for keeping the network connected.

While energy efficiency traditionally has not been a concern for the access
protocol layer [26], it is a key design in energy-constrained ad hoc networks.
In fact, proper scheduling of transmission and sleep cycles is crucial if truly
energy-efficient solutions are to be obtained [1, 6, 23]. In [5], it is shown
that for ultra-low power systems, even powering up and down a node car-
ries with it a non-negligible energy penalty, that should also be taken into
consideration when deciding whether or not putting a node to sleep.

Any MAC protocol must ensure a fair sharing of communication re-
sources. Note that the term fair in some applications of ad hoc networks
does not necessarily mean fairness with respect to nodes. Fairness can also
refer to fairness to the system as a whole. Especially in WSNs with a lot of
redundancy, prolonging the network lifetime might be more important than
ensuring a strict per-node fairness policy [5, 21]. Other applications generate
QoS sensitive traffic. Here, strict per-node fairness must be emphasized.

There are two main approaches for granting channel access: Random
access and scheduling [1]. In the first scheme, nodes contend over channel
access, and the ‘winner’ is allowed to transmit. Scheduling refers to some
deterministic schedule for channel access having been found, and all involved
nodes are granted access in due time. The distributed nature of ad hoc
networks obviously goes well with some form of random access scheme, while
scheduling has the potential of offering a more efficient utilization of available
resources.

In the simplest possible random access scheme, nodes transmit whenever
they have data ready. This rather naive approach will obviously lead to
many collisions, especially in a dense network. Carrier Sense Multiple Access
(CSMA) is another approach, in which the nodes sense the channel before
they transmit, and refrain from doing so if the channel is busy. But due
to the hidden terminal problem [24], there will still be collisions. In the

2.2. DESIGN GOALS AND ISSUES 13

IEEE 802.11 MAC protocol, this is avoided by using a RTS/CTS handshake
procedure [27]. The overhead introduced by this scheme might make it
inappropriate for use in energy-constrained ad hoc networks. Random access
MAC protocols for wireless ad hoc networks are proposed in e.g. [26, 28], but
none of these target low-energy systems in particular. Regardless, random
access schemes have their main strengths in networks dominated by bursty
traffic [1], since fewer collisions will occur and each node occupies the channel
for a relatively short period of time when granted access.

The other approach is a deterministic scheduling of the order in which
the nodes are granted access to the medium [1]. This scheme is typically used
in systems with centralized control, such as cellular mobile phone systems
like GSM [29]. Compared to random access, scheduling have the potential
to make more efficient use of the transmission medium, especially in sys-
tems with many users and/or traffic dominated by long transmissions [1].
However, implementing scheduling in an ad hoc network (with distributed
control) can be very difficult. The complexity of the scheduling problem
grows fast with the network size [1], and requires accurate synchronization
between nodes [30]. Both of which might pose serious problems in energy-
constrained wireless ad hoc networks.

A number of MAC protocols have been proposed for wireless ad hoc
networks, utilizing different techniques and targeting different applications.
The importance of including circuit energy consumption in the sleep schedul-
ing is highlighted in e.g. [15, 31, 32]. The importance of incorporating time-
varying conditions into the protocol design is discussed in e.g. [19, 23, 33, 34].
The variety of proposed approaches confirms that design of MAC proto-
cols is highly dependent on system characteristics, especially traffic patterns
and QoS requirements. The cross-layer design allows many parameters to
be taken into consideration, dramatically increasing the complexity of the
problem, but also opens for high performance and resource utilization.

2.2.4 Topology & Routing

Routing in a wireless ad hoc network is the procedure of finding a path
from one node to another. Usually, this will be a multihop route, involv-
ing intermediate relay nodes. A route is found by making decisions based
on routing metrics, which typically include e.g. link capacities and buffer
states. Although a simple procedure in principle, there are many difficulties
introduced by the particular characteristics of energy-constrained wireless
ad hoc networks. There will be frequent topology changes, e.g. due to node
mobility and link fluctuations, and routes might be broken due to battery de-
pletion. Higly mobile networks poses a particular challenge for applications
with QoS requirements [35]. Finally, energy-awareness must be incorpo-
rated into the routing protocol. All must be taken into consideration, which
greatly complicates the route setup and maintenance.

14 CHAPTER 2. BACKGROUND AND CONTEXT

The stability of the network is decisive for which routing method is best
suited. It is customary to divide routing schemes into 3 main categories;
flooding, proactive and reactive routing [1].

In flooding, every packet is multiplied and forwarded to all reachable
neighbors, making the probability for successful delivery at the final destina-
tion large. The redundancy makes this routing strategy the most robust, as
well as the most resource-demanding. En energy-constrained networks, this
approach should be avoided. But in highly mobile networks, or other sys-
tems where network topology changes extremely fast, other routing strate-
gies will fail, and the brute-force approach of flooding might be the only
alternative [1].

The other routing strategies are proactive and reactive routing. In proac-
tive routing, routing tables are used when routing a packet through the
network to their final destination. The routing tables are maintained by
updating the routing information with regular intervals, which can be done
in a centralized or a distributed fashion. In reactive routing, on the other
hand, a route is only initiated and maintained when needed [16].

In centralized routing, all relevant network information is forwarded to a
single location, which then calculates the routing tables. Thus, centralized
routing will in general be able to find globally optimal routes [1]. But there
are a number of issues with this strategy that is hard to combine with the
special characteristics of wireless ad hoc networks, especially when energy-
efficiency is important. First of all, there is a lot of overhead associated with
the forwarding of routing information, and the network will respond slowly
to topology changes. Route computation can be a complex problem that
requires heavy computations, and the size of the routing problem grows fast
with network size [2]. The idea of having a centralized unit is also in conflict
with the definition of an ad hoc network, but could be interesting e.g. in
small-scale WSNs, which typically have a centralized data fusion center or
gateway [21].

Distributed proactive routing is more commonly used in wireless ad hoc
networks [1]. In distributed routing, there is no central point at global rout-
ing information is gathered. Rather, the nodes only have knowledge of the
routing information about their immediate neighbors, and form routing ta-
bles based on this information. Since routing information is only transmitted
to each nodes immediate neighbors, there is far less overhead associated with
distributed, compared to centralized routing. Further, the system will react
to network topology changes much faster. On the downside, this strategy
will typically give sub-optimal routes, since not all routing information is
known where routing decisions are made.

The last main category, reactive routing, creates a route only when
needed. The route setup can be either source- or destination initiated. That
is, either the source or destination node, respectively, initiates the route
setup procedure. When the transmission is over, the route is no longer

2.2. DESIGN GOALS AND ISSUES 15

maintained. Different variations of reactive routing is frequently proposed
as a suitable choice for wireless ad hoc networks, e.g. [33, 36].

This approach saves the system the overhead of maintaining routes that
are not used, at the cost of a initial setup delay. Also, this strategy will
react faster to topology changes than proactive routing [2]. Reactive routing
typically means that for each end-to-end transmission, there is a setup phase,
in which the route is found (and configured) and a subsequent steady-state
phase, where data is sent. This can be exploited to optimize a given route,
subject to energy-efficiency and QoS requirements [9, 23]. The special class
of routing referred to as data-centric or attribute-based routing [21] is also
enabled by reactive routing, in this case usually destination-initiated. This
class of routing is of particular interest for WSNs, and enables functions like
‘Get information for all nodes where temperature is over 100◦C’.

In general, there is no clear answer to what routing strategy that is best
suited for wireless ad hoc networks. As with most other design issues for this
type of networks, this is highly dependent on the application characteristics
and requirements. But in general, the large amount of overhead associated
with centralized proactive routing, this is rarely a good choice for this kind
of networks. Rather, some form of distributed proactive or reactive routing,
or combinations of these, are preferred [37, 38].

Network topology and node mobility dictates many aspects of the design
of a routing protocol for ad hoc networks [39]. It should be emphasized that
network topology is not only decided by the physical positions of the nodes,
but also by link adaptation schemes, interference from other nodes, and the
transmission power of the nodes [1, 7, 19]. It is therefore desirable that also
the network layer should be able to control transmission parameters, such
as transmission power, data rate, etc. Clearly conflicts will arise when the
same parameters are to be jointly optimized over multiple layers, thereby
creating trade off-situations.

In systems where maximization of the network lifetimse is a major con-
cern (typically WSNs), finding a single, minimum-energy route is not the
whole solution. Using the same route heavily will cause the nodes along this
route to deplete their batteries quickly, which might cause the network to be-
come disconnected. Therefore, traffic should be evenly distributed through-
out the network over time, in order to maximize the system lifetime. This
can be done by cycling through different routes between a given source/des-
tination node pair, although this might be sub-optimal from a local point of
view [37, 40].

This all points to the fact that close integration between multiple pro-
tocol layers is required for designing routing protocols for wireless ad hoc
networks. But while this interaction allows tremendous performance im-
provements, it also makes the protocols complicated and highly application-
specific.

16 CHAPTER 2. BACKGROUND AND CONTEXT

2.3 Summary

This brief overview illustrates that the field of wireless ad hoc networks
carries with it a great number of technological challenges. Protocols that
are not designed with the special characteristics of this type of networks
in mind, will perform badly when faced with these challenges. This calls
for the development of novel techniques and protocols, tailored to meet the
stringent requirements of energy-constrained wireless ad hoc networks. Key
features, such as energy-awareness and QoS support must be incorporated
in all layers.

As pointed out, this is only possible by allowing protocol layers to co-
operate more closely, thereby motivating the cross layer design paradigm.
The cross-layer design paradigm offers potentially dramatic performance
improvements, especially in resource-limited systems and in systems with
stringent QoS requirements.

Despite the advantages of cross layer design, it also carries with it some
problems. Taking all parameters into account can lead to prohibitily large
optimization problems, especially as the network grows larger. Direct con-
flicts between layers might also occur. Transmission power control is a prime
example of this, as it an important parameter in both the physical layer (link
adaptation), the access layer (interference to other nodes) and network layer
(network connectivity). This creates a trade-off situation, where the partic-
ular characteristics of the system in question decide what aspects should be
emphasized over others.

Another important point is that the cross-layer design paradigm violates
the modularity principle, which has proven itself as a highly efficient way
of designing communication and data network systems [16, 2]. Closer in-
tegration between layers will make modifications and cooperations between
different systems more difficult. However, many applications of wireless ad
hoc networks will be autonomous systems, that could communicate with
other systems through gateways. [41] highlights some of the dangers inher-
ent in cross-layer design, such as over-complex systems, ‘spaghetti-design’
and the problems of further developing tailored systems.

The conclusion is that cross layer design is necessary in order to meet
the requirements of wireless ad hoc network systems. It allows optimiza-
tion of a system with respect to defined performance requirements, e.g. in
terms of traffic throughput and QoS, across layers, thereby yielding tremen-
dous energy savings. This is fundamentally different from other, typically
infrastructure-based systems, where maximizing the overall system perfor-
mance is the only objective, and energy-efficiency is not emphasized. How-
ever, care should be taken when applying cross-layer design, keeping in mind
the advantages of the modularity principle.

Chapter 3
Problem Description

The previous section provided a general overview of the most important de-
sign goals and challenges of wireless ad hoc network. The focus will now be
shifted to a specific problem of minimizing the energy consumption associ-
ated with a packet transmission over a given multihop route. The proposed
system and optimization routine is based on some assumptions that makes
it especially relevant for the field of multi-media WSNs [10], such as delay
sensitive traffic and relatively stationary nodes.

3.1 Background

In recent research and literature, much attention has been given to the
subject of energy-aware routing in wireless ad hoc networks. However, [9]
proposes an interesting, closely related approach; energy-efficient optimiza-
tion of existing routes. It is argued that by optimizing the transmission
parameters of the nodes that make up a multihop route, the total energy
consumption can be significantly reduced. At the same time, the route
lifetime can be extended, thereby reducing the need for energy-demanding
route setup procedures. Such a route optimization scheme could in theory
be combined with any existing routing protocol [9].

In the model proposed in [9], it is assumed that a multihop route be-
tween a source and a sink node has been found by some routing protocol.
The energy associated with sending a packet, using this route, is now to be
minimized, while certain QoS constraints must be satisfied; the packet must
be delivered with a given probability of success within a time limit. Each
hop in the route is associated with an independent, Rayleigh-distributed link
gain, which is assumed to be constant over the time required to transmit a
packet. The system is transmitting at a fixed rate and utilizes an Automatic
Repeat Request (ARQ) scheme. For each hop, the ARQ scheme automat-
ically retransmits packets that are received in error. All nodes can adjust

17

18 CHAPTER 3. PROBLEM DESCRIPTION

their transmission power from zero up to a maximum threshold.
Without any energy awareness, each node would retransmit a packet

that is not successfully delivered to the next node until so happens, or a
maximum threshold is reached. But if many retransmissions are necessary
at one of the early nodes, there will be a large delay, and the probability
for a successful delivery within the delay constraint goes to zero [9]. In
this case, the packet should be dropped, since it will not be delivered to
the destination in time. This best-effort does ensure the best end-to-end
delivery rate, but the energy consumption can potentially be unacceptably
large in energy-constrained networks.

To remedy this, the proposed scheme calculates an optimal number of al-
lowed retransmissions for each node throughout the route, and the transmis-
sion power associated with each (re-)transmission. This ensures that packets
are not retransmitted in vain. The optimal route configuration minimizes
the total energy consumption, while ensuring that the packet is delivered
at the sink within the given time constraint with the required probability.
The optimization routine is run in the sink, based on link state information
gathered from all hops throughout the route during the route setup process.
The optimized transmission parameters are then propagated back to the in-
termediate nodes by piggybacking the information on a route reply packet.
Numerical results show that this energy-greedy, truncated ARQ scheme can
give energy savings up to 70%, compared to the best effort scheme, while
meeting the same throughput and delay constraints [9].

The model and optimization scheme proposed in [9] are not directly
targeted at ultra-low power applications. Circuit energy consumption is ig-
nored, and the transmission power levels considered are considerably higher
than what is typical for short-range, ultra-low energy applications [8, 21, 31].
Further, the model is based on a number of idealized assumptions. In the
access layer queuing/buffering delay and overhead and latency associated
with channel access is ignored. Also, interfering traffic and packet collisions
are not discussed.

In [8], energy-optimization is also discussed, but in a different framework,
and with focus on the physical layer. An adaptive modulation scheme for
a point-to-point path loss Additive White Gaussian Noise (AWGN) chan-
nel is investigated. Circuit energy is included in the total energy budget.
This creates a trade-off: Transmitting at a high rate requires more transmis-
sion power, but a shorter period of time is required to transmit the packet,
thereby saving circuit energy, and vice versa. Also, the transmission power
is limited by a peak-power constraint. It is shown that by optimizing the
modulation order, up to 80% energy savings can be obtained for a point-
to-point transmission, compared to the non-optimized case [8]. This work
is followed up in [32] and [20], where optimal transmission scheduling and
routing are discussed for some simple network examples.

Here, the work presented in [9] and [8] will be combined, and applied

3.2. SYSTEM MODEL 19

to a randomly generated multihop route in a network of a given size and
density. That is, the nodes in a multihop route will be configured so that
the total energy consumption associated with an end-to-end packet trans-
mission is minimized, subject to QoS requirements as in [9]. Bit Error
Rate (BER) will be used as the throughput quality metric, instead of Packet
Error Rate (PER). The ARQ scheme and Rayleigh-fading channel model
will be replaced with the AWGN channel and the physical layer models
from [8]. The optimization scheme in the latter will be extended to the
multihop case, so that all nodes in the route are jointly optimized. The
idealized assumptions from [9], regarding competing traffic, channel access
and buffer/queuing delay are adopted here.

3.2 System Model

The area in which the network is deployed is modeled as a square, two-
dimensional space of a given size. In this region, a given number of nodes
are distributed randomly. At some point in time, a random node, the source,
generates a fixed-size packet of Q bits. This packet is sent over a multihop
route, and must be delivered to its destination, the sink, within a time
constraint TD, and with a minimum end-to-end BER Pb,req.

Furthermore, assume that a route of length L hops from source to sink
has been found. The physical length of each hop is denoted di, i = 1, 2, . . . , L.
Each hop is modeled by a path-loss AWGN channel, so that for a given hop
length di, there is a one-to-one relationship with the associated channel gain,
denoted gi. An example route between two random nodes, found by a simple
algorithm that minimizes the hop lengths, is shown in fig. 3.2.

The nodes are capable of adaptive modulation and demodulation, and
power control. In [8], both coded and uncoded QAM and FSK is used,
but only uncoded QAM is followed up in subsequent work by the authors
in [20, 32]. Also here, uncoded QAM will be considered, due to the simple
relationship between modulation order and transmission time of a fixed-
length packet. Including coding would also complicate the circuit power
consumption model further, as power consumption required for coding/de-
coding would have to been taken into consideration.

In the three above mentioned articles, the minimum allowed modulation
order, in terms of bits per symbol, is 2 (4-QAM). This limit is based on
that for a given BER, the required power per bit is the same for 4-QAM
(equivalent with 4-PSK) is the same as for BPSK [18, 32]. But since 4-PSK
requires shorter transmission time than BPSK, for the same number of bits,
the overall energy consumption is lower for QPSK, as less circuit energy
is consumed. So setting 2 bits per symbol as the lowest modulation order
makes sense in terms of keeping the energy consumption to a minimum in
a short-term perspective.

20 CHAPTER 3. PROBLEM DESCRIPTION

Figure 3.1: Example route of length 7 hops. 200 nodes randomly distributed
in 100× 100 meters area.

However, since the output power is limited in the system considered here,
allowing modulation with less than 2 bits/symbol will extend the nodes’
maximum transmission range for a given target BER, since more power per
bit is then available. Allowing a larger transmission range means that more
routes can be configured to meet the QoS requirements, or that an existing
route can be maintained longer, thereby saving the system from trigging a
new route setup procedure. This might be more energy-efficient in terms of
maximizing a system’s overall lifetime. So in the following, 1 bit per symbol
will be the minimum modulation order. For b < 2, PSK will be used, since it
share the same basic structure as MQAM, which will be used for b ≥ 2. The
same hardware model is used here, regardless of which of the two modulation
techniques are used.

For PSK and QAM, there exists a simple, one-to-one relationship be-
tween the modulation order and the transmission time for a fixed-length
packet. Allowing individual adaptation for each hop is therefore equivalent
to dynamic time slot allocation throughout the route. The total time spend
on the transmission is the sum of the time required to transmit and receive
the packet L times and any queuing delay in the nodes. As in [9], prop-
agation delay is ignored. The total energy consumption is the sum of all
energies spent in all nodes along the route, both transmission and circuit
energy.

The goal is now to configure all nodes throughout the given route opti-
mally, so that the total energy consumption is minimized, while satisfying

3.2. SYSTEM MODEL 21

the given QoS constraints. The configuration is completely described by the
vectors b = [b1b2 . . . bL] and Ptx = [Ptx,1Ptx,2 . . . Ptx,L], that dictates the
modulation order and transmission power, respectively, for all nodes. As
in [9], it is assumed that the link state information for the entire route is
known in the sink, where the optimization routine is run. The routine is
run relatively infrequent (i.e. many packets are transmitted using the same
configuration). If more frequent updates are required, the proposed scheme
is not very well suited. Hence, energy and time required to perform the
optimization is ignored for now.

The system model is implemented in Matlab and simulations are run on
a number of generated routes to obtain numerical results. It turns out that
for a given network size and density, the hop lengths can be well modeled
with statistical tools. The remainder of Section 3.2 describes the system
model more in-depth, while 3.3 explains the techniques used for optimizing
the route.

3.2.1 Channel

The route consists of L hops, each of physical length di, i = 1, 2, . . . , L. The
links are modeled using a path-loss AWGN channel model, which is also
appropriate within one block of a slowly block-fading channel. That is, each
hop is associated with a link gain gi, i = 1, 2, . . . , L, through a deterministic
function of the physical channel length and other parameters [8]:

gi =
1

G1dκ
i Ml

(3.1)

Here, di is the distance of the i’th hop. G1 is the gain factor at d = 1 m, κ
is the path loss exponent and Ml the link margin, which are all assumed to
be the same for all hops. A route is completely described by the link gain
vector g = [g1g2, . . . gL].

When transmitting over the i’th link with transmission power Ptx,i, the
received signal power Prx,i is found as [8, (8 - modified)]:

Prx,i = Ptx,igi (3.2)

and the corresponding SNIR [8, (modified)]:

γi =
Ptx,igi

2Bσ2Nf + I
=

Ptx,igi

PNI
(3.3)

where B is the system bandwidth, σ2 the power spectral density of the
AWGN on the channel, and Nf the receiver noise figure. I is interference
power from the other nodes or other sources. Note that competing traffic
on the route is assumed to be eliminated by a suitable orthogonal MAC
protocol, as in [8] and [9]. However, in a large-scale network, it is likely

22 CHAPTER 3. PROBLEM DESCRIPTION

that there is simultaneous communication in a different part of the network.
If the number of interference sources is large, the total interference power
can be modeled as an extra term of white noise. If there is no interference,
the term I can simply be set to zero. However, the term SNIR is used
throughout this thesis, also if the interference power is set to zero.

If a transmission over a single hop is to satisfy a minimum BER require-
ment, the received SNIR must be larger than a given threshold. On an
AWGN channel, the BER of MQAM modulation is bounded by [8]:

Pb ≤
4
b

(
1− 1√

2b

)
Q

(√
3

2b − 1
γ

)
(3.4)

where b = log2(M) ≥ 2 denotes bits per symbol, and the Q-function is
defined as [18, (2.1-97)]:

Q (x) =
1√
2π

∫ ∞

x
e−t2/2dt, x ≥ 0 (3.5)

which is bounded by [18, (5.2-26)]:

Q (x) < e−x2/2 (3.6)

By applying this bound, (3.4) can be expressed as [8]:

Pb ≤
4
b

(
1− 1√

2b

)
e
− 3γ

2(2b−1) (3.7)

From (3.7), a lower limit for the received SNIR γ can be found by replacing
the inequality with equality and rearranging the equation:

γlim,b = γ(b) ≈ 2
3

(
2b − 1

)
ln

(
4
1− 1/

√
2b

Pbb

)
(3.8)

The required transmission power for transmitting over a channel with
gain gi and noise- and interference power PNI using bi bits per symbol and
meeting a BER requirement Pb can now be found by combining (3.3) and
(3.8):

Ptx,i =
PNI

gi

(
2
3

)(
2bi − 1

)
ln

(
4
1− 1/

√
2bi

Pbbi

)
(3.9)

For b < 2, the bound (3.4) is no longer valid. A similar approximation for
MPSK is given as [18, (5.2-61,62)]:

Pb ≈
2
b
Q
(√

2γ sinπ/2b
)

(3.10)

3.2. SYSTEM MODEL 23

By applying the same bound for the Q-function and following the same
procedure, the required SNIR to meet a target Pb for PSK can be expressed
as

γlim,b ≈ ln
(

2
Pbb

)
1

sin2 π/2b
, (3.11)

and the required transmission power Ptx to satisfy this SNIR limit becomes:

Ptx,i =
PNI

Gi
ln
(

2
Pbb

)
1

sin2 π/2b
. (3.12)

In the following PSK is used for b < 2 and QAM for b ≥ 2, since the
SNIR requirement for PSK increases much faster with the modulation order
than for QAM, as shown in Figure 3.2.

Figure 3.2: SNIR requirements for PSK and QAM over a AWGN channel for
different target BERs. For the two bottom lines, denoted PSK/QAM, PSK is
used for modulation order b < 2 and QAM for b ≥ 2.

Combining (3.9) and (3.12) yield the expression for the required trans-
mission power using modulation order bi over a link with a given gain gi:

Ptx,i =


PNI
gi

(
2
3

) (
2bi − 1

)
ln
(
41−1/

√
2bi

Pbbi

)
(1 + β) , b ≥ 2

PNI
Gi

ln
(

2
Pbbi

)
1

sin2 π/2bi
(1 + β) , b < 2

(3.13)

This is a key result that will later be used in the route optimization pro-
cedure. In the last term, β ≥ 0 is a constant that can be adjusted as a
‘safety margin’; i.e. to ensure that the received SNIR is above the minimum
threshold.

24 CHAPTER 3. PROBLEM DESCRIPTION

3.2.2 Power Consumption

The hardware’s energy consumption characteristics are highly dependent
on the design choices made. Truly power-efficient systems require tailored
hardware design, so that no extra energy is wasted in performing better
than what is required [5, 22]. An in-depth discussion about the details of
hardware design, however, is well beyond the scope of this thesis. Thus, a
slightly modified version of the model used in [8] will be adopted here. The
model includes only power consumption in the RF circuitry, ignoring power
used on baseband signal processing, which is a reasonable assumption for
systems with fairly low baseband symbol rate [22].

Further, each node is at any time in one of three different states: Ac-
tive (transmitting or receiving), sleeping (not communicating) or transient
(powering up from sleep to active). The circuit power consumption is fixed,
but different for each of the three state. When an active node is transmit-
ting, the total power consumption is found as the sum of transmission and
circuit power consumption. The nodes are peak-power limited, i.e. the in-
stantaneous power that can be drained from the batteries is limited by the
constraint Pmax.

In active mode, the power consumption is denoted Pctx and Pcrx, depend-
ing on if the node is transmitting or receiving, respectively. In sleep mode,
it is assumed that the power consumption can be ignored, as most of the cir-
cuitry is powered down. When powering up a node, there is a non-negligible
delay. This is mainly caused by the time required for the Phase Locked
Loop (PLL), which is required for coherent PSK/QAM modulation, to set-
tle down. By carefully choosing the order in which the different elements
of the circuitry are powered up, the power consumption in transient mode,
denoted Ptr can be kept as low as possible [8, 22], but there is still a (small)
net energy loss every time a node is powered up. Accumulated over time,
this term can significantly degrade the overall network lifetime in ultra-low
power applications, if the sleep schedule is not properly planned [22].

When calculating the total energy consumption associated with a point-
to-point transmission over a given link, the power consumptions of the trans-
mitting and receiving node are added together and denoted Pc = Pctx+Pcrx,
which is constant (independent on modulation order). For simplicity, it is
assumed that all nodes are initially in the sleep state. Hence, there will
be a small energy penalty for powering up the receiving node. The total
energy consumption for a packet transmission over the i’th hop can now be
expressed as:

Ei = Ton,i ((1 + α) Ptx,i + Pc) + TtrPtr (3.14)

where Ton,i is the time required for the node to transmit the packet, i.e. the
active period. Assuming square pulses and system bandwidth B, the time
required to transmit a packet of length Q bits, using bi bits per symbol is

3.2. SYSTEM MODEL 25

given by:

Ton,i = Ton (bi) =
Q

Bbi
(3.15)

Further, Ptx,i is the output transmission power, as referred to in (3.13).
Ttr is the power-up transient time for the receiving node. α is a measure
on the Power Amplifier (PA)’s power efficiency, modeled as a function of
the signal’s Peak-to-Average Ratio (PAR). The total power consumption
when transmitting with output power Ptx,i is then given as (1 + α) Ptx,i.
The PA’s efficiency is here modeled as independent of the output power,
which might not be entirely accurate for short-range applications such as
this [42]. However, the same basic model is used in several publications by
the authors of [8] (e.g. [6, 20, 32]), and will also be adopted here. In the
mentioned papers, α is modeled as:

α(b) =
ξ(b)
η
− 1 (3.16)

where η is the PA’s drain efficiency and ξ is the modulation scheme’s PAR,
which for for this model is given as [8, (modified)]:

ξ(b) =

{
3
√

2b−1√
2b+1

, b ≥ 2 (QAM)
1 b < 2 (PSK)

(3.17)

The peak power constraint Pmax limits the total power consumption in each
node, since (1 + α) Ptx,i + Pctx ≤ Pmax is required. It is assumed that the
peak-power constraint is always met for a receiving node, i.e. Pcrx < Pmax.
For a given modulation order, the output transmission power is then limited
by:

Ptx,max (b) =
Pmax − Pctx

1 + α
(3.18)

The final equation (3.18) states that the available output transmission
power is a function of the modulation order (the argument b is omitted on
the right handside). By combining (3.1), (3.13) and (3.18), the maximum
transmission range for a given modulation order and target BER can be
found.

3.2.3 QoS Requirements

The QoS requirements are given per end-to-end packet transmission, in
terms of maximum allowed delay TD and BER Pb,req. The total transmission
time is calculated as the sum of the transmission and transition times for all
nodes. In addition, there might be a queuing delay at each node, denoted
Tq,i, i = 1, 2, . . . L. If no other traffic exists on the route, and all process-
ing and buffering delays associated with the forwarding of the packet are
ignored, Tq,i = 0, ∀i. This assumption is made in [9], and will be adopted

26 CHAPTER 3. PROBLEM DESCRIPTION

here. Although this assumption is not possible to fulfill in an implementable
system, it does provide an theoretical upper performance bound. For an
end-to-end delay constraint TD, a valid configuration must satisfy:

Ttot =
L∑

i=1

(Ton,i + Tq,i + Ttr) ≤ TD (3.19)

where Ton,i is defined by (3.15).
The probability for a successful end-to-end transmission over L hops

can be found as the product of the probability for successful transmission
for each hop, assuming bit error events are independent between the hops,
i.e. a decode-and-forward scheme is used. The following product must be
satisfied:

(1− Pb,tot) =
L∏

i=1

(1− Pb,i) ≥ (1− Pb,req) (3.20)

For simplicity, the target BER is required to be equal across all hops.
This value is readily found from (3.20) by replacing the inequality with
equality and assuming that bit error events are independent from hop to
hop:

Pb,i ≡ Pb = 1− L
√

1− Pb,req (3.21)

The index i is omitted, and Pb is used as the minimum required BER
for all hop throughout the route. The SNIR required to meet Pb can now be
found from (3.8) and (3.11), and the required transmission power to meet
this target for a given link gain from from (3.18).

3.2.4 Network Estimate

To this point, it has simply been assumed that a feasible path from source to
sink has been found, without discussing how. In order to run simulations, a
large number of routes must be generated. Implementing some energy-aware
routing protocol to provide a route in an actual network is beyond the scope
of this thesis. Instead, a statistical approach will be taken. In particular, the
hop lengths are modeled as random variables of some distribution, which is
found in a rather qualitative manner.

The area in which the nodes are deployed is modeled as a square, two-
dimensional space of a certain size. A given number of nodes are distributed
randomly in this area. A proper routing protocol would now have found
a feasible path between a given source/sink pair. Which route is found is,
of course, highly dependent on the protocol and the routing metrics used.
But as shown, the nodes have limited transmission range. Moreover, they
also have a finite number of reachable neighbors. Regardless of the routing
protocol details, it is reasonable to assume that the next hop for any node
will be one of the y closest nodes which are closer to the sink than the node

3.2. SYSTEM MODEL 27

itself. The exact value of y will depend on node density, network size and
of course, the routing metrics. But in a dense network, it is reasonable to
assume that y is larger than in a sparse. Here, the value y = 3 is arbitrary
chosen for the particular network size and density used for the simulations.

Now, for a node n in a randomly generated network, the mean of the
distances to the y closest nodes, which are closer to the sink than the node n
itself, is calculated and denoted dy

avg,n. In order to find a statistical average
for this metric, a fixed sink is chosen randomly, and dy

avg,n is averaged over
all nodes in the network. Averaging this over a large number of generated
networks yields an estimate of the distribution of dy

avg. A set of L random
variables of this distribution is now used to model the hop lengths of a
multihop route of length L.

Figure 3.3 shows the normalized histogram of d3
avg,n ∀ n for 500 network

realizations of a 100×100 m network with 200 nodes. A Rayleigh distribution
with parameter set equal to the peak of the histogram, which in this case
is 11.5 m, is shown in the same plot. For these parameters, d3

avg is well
approximated by this Rayleigh distribution. I.e. the hop lengths are modeled
as Rayleigh-distributed random variables.

Figure 3.3: Normalized histogram of average hop lengths in randomly gener-
ated network, shown with Rayleigh PDF with parameter adjusted to peak of
the histogram.

The similarity of the distribution of the average hop length and the
Rayleigh distribution was found using a heuristic approach, and is valid
only for the given numerical values. The general distribution of the average
hop length is unknown. For other values, it seems like a χ2-distribution fits
the histogram better. The shape of the histogram depends heavily on how

28 CHAPTER 3. PROBLEM DESCRIPTION

many of the closest nodes are used when finding the average, as well as the
node density.

3.3 Route Optimization

With this framework, the goal is now to find the optimal configuration for a
given route that minimizes the total energy consumption per packet trans-
mission, while ensuring that the QoS requirements are satisfied. The total
end-to-end delay must not exceed the delay constraint and the received SNIR
in all hops must be above the minimum threshold for the target Pb. Finally,
the total power consumption is peak power limited. This problem can be
formulated as:

Minimize Etot =
∑L

i=1

(
Q

Bbi
((1 + α) Ptx,i + Pc) + TtrPtr

)
Subject to

∑L
i=1

(
Q

Bbi
+ Tq,i + Ttr

)
≤ TD

Ptx,igi

PNI
≥ γlim,bi

, ∀i
Ptx,i ≤ Pmax−Pctx

1+α , ∀i
bi ≥ bmin, ∀i

(3.22)

The first line expresses the total energy consumption for transmitting
a packet over the route g using the configuration described by b and Ptx.
The second line is the delay constraint, the third is the BER constraint (per
hop), the fourth is the peak-power constraint, and the fifth simply states the
minimum modulation order. In this problem, there are two vector variables
to be optimized, b and Ptx. But it can be simplified to a problem of one
variable by observing that the required transmission power for each hop Ptx,i

can be expressed as a function of the modulation order bi by applying (3.13).
By using this and the transmission power constraint, defined by (3.18), a
upper bound for b can be found as:

bmax : bmax,i = arg max
b

{γmax,i,b ≥ γlim,b} , i = 1, 2, . . . , L , (3.23)

where γlim,b is the minimum received SNIR to meet Pb using for modulation
order b, as defined by (3.8) and (3.11). γmax,i,b is the maximum received
SNIR for the i’th hop, using b bits per symbol, which is found by combin-
ing (3.3) and (3.18):

γmax,i,b =
Ptx,max (b) gi

PNI
(3.24)

This bmax is defines the maximum allowable bi for each hop in the given
route. It is readily shown from (3.13) and (3.16), respectively, that both Ptx

and α are strictly increasing functions of b if all other parameters are fixed.
Hence, decreasing the modulation order will only increase the maximum

3.3. ROUTE OPTIMIZATION 29

available transmission power. At the same time, the required SNIR threshold
decreases with the modulation order, as shown in Figure 3.2. This implies
that any route configuration b, such that bi ≤ bmax,i, i = 1, 2, . . . , L will also
meet the SNIR requirement for the given Pb, and therefore satisfies the third
and fourth lines of (3.22).

Now, by expressing Ptx as a function of b and applying the upper bound
bmax on the solution vector b, (3.22) is simplified to:

Minimize Etot =
∑L

i=1

(
Q

Bbi
((1 + α) Ptx,i + Pc) + 2TtrPtr

)
Subject to

∑L
i=1

(
Q

Bbi
+ Tq,i + Ttr

)
≤ TD

bmin ≤ bi ≤ bmax,i, ∀i

(3.25)

This is an optimization problem of a single, L-dimensional vector vari-
able, that can be solved using different techniques. Finding the optimal b
yields the minimum possible energy consumption for the given route and
input parameters. This problem can be solved for two cases; continuous and
discrete rate adaptation. That is, allowing the modulation order b to take
on any positive value larger than 1, or restrict it to integer values.

Continuous adaptation is expected to give the optimal solution. How-
ever, implementing modulation for a non-integer modulation order is quite
complex [2], and not feasible in a practical system. Thus, both continu-
ous and discrete rate adaptation is implemented, and the results compared.
For reference, the performance of the adaptive systems will be compared to
fixed-rate systems, with and without power control.

3.3.1 Continuous Case

When allowing continuous rate adaptation, the optimization problem (3.25)
can be solved using methods found in the Matlab Optimization Toolbox.
First, (3.23) is applied to find the maximum allowed modulation order vec-
tor bmax for all hops throughout the given route, which is described by the
link gain vector g. This configuration yields the minimum end-to-end trans-
mission time. If it does not meet the delay constraint, no valid configuration
exists for the given route.

If a valid configuration does exist, the function fmincon is used to find
the optimal modulation order vector bopt, that lies within the feasible region,
i.e. bmin ≤ bi ≤ bmax,i, ∀ i. Finally, the corresponding transmission power
vector Ptx is readily found, using (3.13).

For the special case L = 1, the problem can be further simplified. The
end-to-end delay (second line in (3.25)) can be manipulated to yield the
minimum boundary for the modulation order:

bmin = min
{

1,
Q

B (TD − Ttr)

}
, (3.26)

30 CHAPTER 3. PROBLEM DESCRIPTION

where the term for queuing delay is here ignored. Now there is only one
constraint left, the allowed range of modulation orders. Figure 3.4 illustrates
the steps of the optimization process, and the given constraint. Except for
a lower minimum allowed modulation order, this simplified problem is now
very similar to what is described in [8], which can be shown to be a convex
function over the feasible region for the modulation order [6]. As stated, the
net energy consumption when transmitting a packet over a single hop using
a modulation order b < 2 will be larger than when transmitting at b = 2,
since the power requirement per bit is the same while a longer transmission
time is required. Thus, this problem is also convex, and efficient methods
can then be applied to find the optimal solution [8]. However, if the general
L-dimensional problem can also be shown to be convex, remains an open
question.

Figure 3.4: Steps in route optimization routine

Also note that if the delay constraint is loose, i.e.
∑L

i=1

(
Q

Bbi
+ Tq,i + Ttr

)
≤ TD is met for bi = 1, ∀i, the second line of (3.25) becomes redundant,
as the delay constraint is satisfied by all valid configurations. Transmitting
more bits per symbol at any hop will only decrease the end-to-end delay.
In this case, there is no need for end-to-end optimization, and configuring
each node in isolation will give the optimal solution. However, for tighter
delay constraints, this will not be the case, and the nodes needs to be jointly
optimized to guarantee that the global, optimal solution is found.

3.3.2 Discrete Case

Restricting the modulation order to integer values requires a different ap-
proach, since the methods found in the Matlab Optimization Toolbox are
only applicable for continuous variables. An iterative energy-greedy algo-
rithm, presented in pseudo-code in Figure 3.5, is proposed here. Simulations
show that this algorithm finds a near-optimal solution, while it is far less
computationally demanding than the method used in the continuous case.

3.3. ROUTE OPTIMIZATION 31

The initial step is, as in the continuous case, to find the maximum mod-
ulation order for all hops throughout the route. This is done simply by
following the same procedure as in the continuous case, and then round all
elements down to the nearest integer value.

Assuming that the discrete bmax is a valid configuration, the correspond-
ing energy consumption is calculated and the main part of the algorithm is
run. Again, a key point is that as long as all elements of b is within the
feasible region, i.e. bmin ≤ bi ≤ bmax,i, the peak-power constraint is met. It
is then sufficient to check if the end-to-end delay constraint is met.

In each iteration, the constellation size for each hop is decreased by one
bit, relative to the best configuration from last iteration. This is repeated
in a round-robin fashion for all hops. If one or more of these alternative
configurations give a lower total energy consumption than the previous best
configuration, the best is selected and set as the new best configuration.
This procedure is run until no better configuration is found, and the optimal
configuration is returned.

The function T (b) in line 4, calculates the total time used for the trans-
mission using the configuration b, as in (3.19). Ptx (b) on line 6 calcu-
lates the power vector, i.e. the required transmission powers for all hops
when transmitting at the rates defined by b. The function implements
equation (3.13). Finally, the function E (b,Ptx), first encountered in line 7
calculates the total energy consumption for the given configuration, as de-
scribed in the first line of (3.25).

This algorithm ensures that the largest possible energy savings are ob-
tained in each iteration. It does not guarantee that the optimal solution is
found, but simulations indicate that the results are close the optimal solu-
tions found by allowing continuous rate adaptation.

3.3.3 Fixed Rate

The modulation order can be set to a fixed value for all nodes in a given
route. This can be done with or without power control, i.e. adjusting
the transmission power so that the target BER is just satisfied (channel
inversion). Both these cases are implemented, and serves as a reference to
which the results from the adaptive schemes are compared. For a given
modulation order bfix, the required transmission power for each hop can be
found directly from (3.13). Without power control, each node transmits at
maximum power for the given modulation order, found from (3.18). Clearly,
no joint optimization of the nodes is required when using fixed modulation
order, since the power can just as well be adjusted locally at each node.

32 CHAPTER 3. PROBLEM DESCRIPTION

1: procedure optimizeRouteConfiguration(bmin,bmax, TD)
2: bopt ← bmax . Initial best configuration
3: N ← length (bopt) . Number of hops in route
4: Ttmp ← T (bopt) . Calculate end-to-end delay
5: if Ttmp ≤ TD then . Check if time constraint met
6: Ptx,opt ← P(bopt) . Calculate transmission powers
7: Eopt ← E (bopt,Ptx,opt) . Calculate total energy consumption
8: run← TRUE
9: else

10: run← FALSE . No valid route configuration exists
11: bopt = 0
12: Ptx,opt = 0
13: end if
14: while run == TRUE do
15: bprev ← bopt . Save previous best configuration
16: for n← 1, N do . For all hops
17: btmp ← bprev . Go back to previous best configuration
18: btmp (n)← btmp (n)− 1 . Decrease b with 1 for n’th hop
19: if btmp (n) ≥ bmin then . Check bmin constraint
20: Ttmp ← T (btmp)
21: if Ttmp ≤ TD then
22: Ptx,tmp ← P(btmp)
23: Etmp ← E (btmp,Ptx,tmp)
24: if Etmp < Eopt then . New configuration is better?
25: Eopt ← Etmp

26: bopt ← btmp . Set new configuration as best
27: Ptx,opt ← Ptx,tmp

28: end if
29: end if
30: end if
31: end for
32: if bprev == bopt then
33: run← FALSE . No better configuration found. Terminate
34: end if
35: end while
36: return bopt,Ptx,opt . Return optimized configuration
37: end procedure

Figure 3.5: Energy-greedy route optimization algorithm for discrete rate
adaptation.

3.3. ROUTE OPTIMIZATION 33

3.3.4 Error Scenarios

Setup Error

Of course, not all routes can be configured to satisfy the given QoS require-
ments, i.e. end-to-end delay and minimum BER requirement. For a given
end-to-end BER Pb,req and a route length L, the per-hop BER Pb is found
from (3.21). Due to the peak-power constraint, there is a maximum trans-
mission range associated with each modulation order, for a given link gain
gi and target Pb. If any of the hop lengths in a route exceeds this maximum
transmission range for the smallest allowed modulation order bmin = 1, the
SNIR will fall below the minimum threshold and the BER constraint will
be breached. E.g. for Pb,req = 10−3 and a route of 5 hops, the per-hop BER
Pb is approximately 2× 10−4. This gives a maximum transmission range of
dmax = 47 meters.

The error probability for this type of setup error can be expressed as
P (errorrange) =

∑L
i=1 P (di > dmax) = L× P (di > dmax), since the hop len-

gths are modeled as independent and identically distributed random vari-
ables. As the node density grows, this type of setup error rate will become
arbitrary small. Note that this type of setup error is independent of the
delay constraint.

The other type of setup error is caused by breaching the delay con-
straint. The minimum end-to-end delay for a given route is obtained when
using the maximum allowed modulation order at all nodes. If this configura-
tion does not satisfy the delay constraint, no valid route configuration exists.
The probability for this can be expressed as P (errordelay) = P (Tmin > TD),
where Tmin is found from (3.19) using the largest possible modulation or-
der at all hops, which is found from (3.23): Tmin =

∑L
i=1

(
Q

Bbmax,i
+ Ttr

)
.

Queuing delay is ignored. The simulations does not separate between these
two types of setup errors. Whenever they occur in the simulations, they are
both referred to as a setup error.

Transmission Error

The route configuration schemes presented above are based on link state
information (except the fixed-rate, fixed-power scheme), which can easily be
calculated in the link layer [2]. However the link state estimates might not
be entirely accurate, due to node mobility, estimation errors and latency
introduced when forwarding the link state estimates to the sink node.

If a link state of a given hop is estimated to have a smaller signal atten-
uation that its real value, the SNIR will fall below the minimum threshold,
and the BER over this link will be larger that expected. In the opposite
case, valuable energy is wasted, since the node is configured to use a higher
transmission power then what is actually needed. Hence, the performance

34 CHAPTER 3. PROBLEM DESCRIPTION

of a system that is optimized with respect to link state information will be
degraded if this information is inaccurate.

In the simulations, when inaccurate link state information is used1 in
the optimization procedure, the received SNIR may fall below the required
threshold during transmission at one of the hops. If this happens, the end-
to-end BER will fall below its target value Pb,req. The packet is therefore
dropped, and a transmission error is registered. To avoid this situation, the
transmission power must be increased to allow for some variation in the link
state estimates. That is, setting the parameter β in (3.13) to a value larger
than zero, according to the uncertainty of the link state estimates. Note
that this new, adjusted value of the transmission power Ptx is also limited
by the peak-power constraint Pmax, as defined in (3.18). Clearly, if perfect
link state information is used, β can be set to zero, and there will be no
transmission errors.

1Described in Section 4.1

Chapter 4
Simulations and Results

This section briefly describes how the system model in the previous section is
implemented in Matlab, and how the simulations are executed. The source
code is found in appendix B. Further, key results from the simulations are
presented. The results are commented here, while a more thorough discus-
sion and a review of the system model, based on the simulation results, are
found in Section 5.

4.1 Simulations

The system is implemented using Matlab. Only standard built-in functions
are used, except for the fmincon function from the Optimization Toolbox,
which is applied when solving the route optimization problem (3.25) in the
continuous case. Figure 4.1 illustrates the simulation process.

All simulations are run on a network made up of 200 nodes, distributed
randomly in a 100 × 100 m area. As explained in Section 3.2.4, based
on some simple ground assumptions, the hop lengths are approximately
Rayleigh-distributed. A route of length L is therefore approximated by sim-
ply generating L independent and identically Rayleigh-distributed random
variables, describing the hop lengths. The parameter of this distribution is
set to 11.5 m. Link gains are then readily calculated by applying (3.1).

To simulate inaccurate link state estimates, the desired amount of un-
certainty can also be added to the channel gains of the generated route,
according to the following model:

ĝi = gi

(
1 + R

z

100

)
(4.1)

Here, gi ∈ g (The vector containing the link gains of all hops in the route),
R is a zero-mean, unit variance Gaussian-distributed random variable and z
a measurement of the severity of the estimation error, given in %. Assuming
perfect link state information is equivalent to setting z = 0.

35

36 CHAPTER 4. SIMULATIONS AND RESULTS

This procedure yields a new link gain vector ĝ = [ĝ1ĝ2, . . . ĝL], which is
used in the optimization procedure. Transmissions are then simulated, sim-
ply by applying (3.3) to the optimized transmission parameters for each hop
and checking the resulting SNIR against the threshold found from by (3.8)
and (3.11).

Figure 4.1: Execution of simulations

The optimization routines are run for all four cases: Fixed rate with
and without power control, and continuous and discrete rate adaptation. In
total, this yields four sets of four route configurations. For all successful
configurations (i.e. where setup errors does not occur), the transmission
routine is run. If a valid configuration cannot be found, a setup error is
registered, and no transmission takes place.

The transmission procedure is done on a per-hop basis. That is, if in-
accurate link state estimates are used for the optimization routine and the
SNIR falls below the required threshold for one of the hops, a transmission
error is registered, and the transmission is terminated for that particular
route.

The generation of one route, followed by the four optimization procedures

4.2. SINGLE HOP RESULTS 37

and transmission simulations, form one iteration. After each iteration, the
total time and energy consumption and the average modulation order and
transmission power is calculated. In routes where a transmission error oc-
curs, the energy spent on up to, and including, the failing hop is added to
the total energy consumption. The rest of the transmission is then termi-
nated, as the QoS requirements will not be met. A number of iterations are
run, and the final results found as an average over all iterations.

The implemented system is to a large extent adopted from [8]. Also the
numerical values of most system parameters are the same as in the origi-
nal model. Table 4.1 contains parameters used in the simulations. Unless
stated otherwise, these parameters are used in all simulations. Details and
definitions of the parameters are found in Section 3.

Hardware parameters Channel parameters Other parameters
Pctx = 98.20 mW G1 = 30 dB Nf = 10 dB
Pcrx = 112.50 mW κ = 3.5 B = 10 kHz
Pmax = 250 mW Ml = 40 dB Q = 2 kB (pkt length)
Ptr = 50 mW σ2 = −174 dBm/Hz davg = 11.5 m
Ttr = 5 µs I = 0 (no interference) Pb,req = 10−3

η = 0.35

Table 4.1: System parameters.

4.2 Single Hop Results

In order to understand the system model, it is useful to examine how it be-
haves in the single-hop case. In particular, the trade-off between circuit and
transmission energy can easily be illustrated by this simple case. For the
path loss model used here, the received power decreases exponentially with
the physical channel distance, as defined in (3.1) and (3.2). The available
output transmission power also decreases as the modulation order increases,
as defined in (3.18), due to the PA characteristics. When combined, a maxi-
mum range for each modulation order can be found, for a given target BER.
Figure 4.2 shows the required transmission power1 as a function of modula-
tion order, for hop distances 5, 10, 20, and 40 m. The transmission power is
limited upwards by the peak-power constraint. Observe that the maximum
allowed modulation order decreases fast as the hop length increases. The
maximum range for the lowest modulation order b = 1 is approximately 50
meters for a target BER 10−3 (for that single hop).

1Note that transmission power here refers to actual output transmission power, i.e. the
Ptx found in e.g. (3.13) and (3.18). The total power consumption when transmitting at this
power is higher, and is dependent on the PA’s efficiency, as defined in (3.14) and (3.16).
Throughout this section, transmission power will refer to the output transmission power.

38 CHAPTER 4. SIMULATIONS AND RESULTS

Figure 4.2: Required transmission power Ptx as function of modulation order
b for discrete values of hop length, limited by maximum available transmission
power.

The optimal configuration for each hop is found as the best trade-off be-
tween saving circuit energy at the cost of transmission energy, and vice versa.
This is illustrated in figure 4.3, where the total energy consumption per bit
and required transmission power are plotted against modulation order. A
single packet transmission over a hop of length 11.5 m and a target BER of
10−3 is considered. The total energy includes energy consumption in both
the transmitting and the receiving node. The abrupt fall in the graph indi-
cates that the peak power constraint is breached, i.e. the maximum allowed
modulation order for this link is approximately bmax = 6.9 bits/symbol.
The corresponding, discrete value is found by rounding the optimal value
down to the nearest integer, bdisc

max = bbmaxc = 6 bits/symbol. The config-
uration that yields the lowest total energy consumption is approximately
bopt = 5.8 bits/symbol, or bdisc

opt = bdisc
max = 6 bits/symbol for the discrete

case. If a delay constraint had been given, there would also have been a
lower bound on the modulation order, as defined in (3.26).

Figure 4.4 shows the energy consumption for a single packet transmis-
sion, in terms of energy per bit, over a single hop as function of modu-
lation order and hop length, for hop lengths 1 - 50 m, modulation order
1 - 10 bits/symbol and target BER 10−3. The dark blue area below the
sharp threshold marks the region for which no valid configuration exists,
due to the peak-power constraint. As previously stated, the minimum al-
lowed modulation order is 1 bit/symbol. No upper limit on the modulation
order is defined, it is only limited by the peak power constraint in transmit-
ting node for the given channel. As seen from the graph, a modulation order
of more than 10 bits/symbol is theoretically possible for hop lengths smaller

4.3. MULTIHOP RESULTS 39

Figure 4.3: Total energy consumption and required transmission power as
function of modulation order for a single hop of length 11.5 meters.

than 5 meters. Of course, such large constellation sizes are not feasible in
a real wireless system. Nevertheless, the assumption that the constellation
size can be arbitrary large is used in all simulations throughout this chapter,
unless stated otherwise. This way, the theoretically best performance bound
is found. The effect of limiting the maximum modulation order will also be
investigated.

In a non-adaptive system, a fixed modulation order must be set, thereby
greatly affecting the flexibility and energy efficiency of the system. That
is, a low modulation order would be necessary to allow a reasonably long
transmission range. But as seen from figure 4.4, this would waste valuable
energy for transmission over shorter distances, where a higher modulation
order is far more energy-efficient. This is an important point that will be
further illustrated by simulations of transmission over multihop routes.

4.3 Multihop Results

Now, the simulation results of end-to-end packet transmissions over a mul-
tihop route are presented. The four different optimization schemes are de-
noted

� FRFP: Fixed rate, fixed power
� FRVP: Fixed rate, variable power (Channel inversion)
� CR: Continuous adaptive rate, variable power
� DR: Discrete adaptive rate, variable power

40 CHAPTER 4. SIMULATIONS AND RESULTS

Figure 4.4: Energy consumption per bit for single hop transmission as func-
tion of modulation order and hop length.

throughout this section. By using the built-in timer function in Matlab, it is
found that the discrete rate optimization routine runs much faster than the
continuous version, while the fixed-rate, channel inversion scheme requires
negligible time. On average, the discrete optimization routine runs 85-90%
faster than its continuous counterpart.

4.3.1 Detailed Route Configuration

Table 4.2 shows the detailed results for transmitting a packet over a 3 hop
route, with hop lengths 5, 12, and 35 m. The modulation order, output
transmission power and time, energy per bit, and received SNIR are shown
for each hop, for all four route configuration schemes. The fixed modulation
order is set to 2 bits/symbol, the end-to-end delay constraint is 350 ms,
and the end-to-end BER requirement 10−3. Perfect link state information is
assumed. With the fixed rate set fairly low, the largest energy savings can
be obtained on the short distances, where the adaptive schemes can transmit
at a much higher rate. Note that the penalty, in terms of time and energy,
when going from continuous to discrete rate adaptation is quite small.

4.3.2 Basic Comparison

Averaging the results over a large number of iterations gives a better picture
of the system’s performance. The script is run 5000 times, with the route
length is set to 5 hops. Fixed rate transmission over a 5-hop route yields
a total delay of 512.03 ms, including transition time for each node. The
end-to-end delay constraint it therefore set to 515 ms. The end-to-end BER

4.3. MULTIHOP RESULTS 41
H

op
#

H
op

le
ng

th
[m

]

H
op

ga
in

[d
B

]

T
ra

ns
.

sc
he

m
e

M
od

ul
at

io
n

or
de

r

T
ra

ns
.

po
w

er
[m

W
]

T
ra

ns
.

ti
m

e
[m

s]

E
ne

rg
y/

bi
t

[µ
J]

R
ec

.
SN

IR
[d

B
]

1 5.00 -94.46

FRFP 2.00 53.13 102.41 18.13 43.78
FRVP 2.00 0.04 102.41 10.54 12.04
CR 8.90 5.06 23.02 2.81 33.57
DR 9.00 5.42 22.77 2.81 33.87

2 12.00 -107.77

FRFP 2.00 53.13 102.41 18.13 30.47
FRVP 2.00 0.76 102.41 10.64 12.04
CR 5.42 10.02 37.79 5.05 23.23
DR 5.00 7.47 40.97 5.11 21.95

3 35.00 -124.04

FRFP 2.00 53.13 102.41 18.13 14.20
FRVP 2.00 32.34 102.41 15.15 12.04
CR 2.18 37.78 94.16 15.05 12.72
DR 2.00 32.34 102.41 15.15 12.04

Table 4.2: Simulation results, single run. Example route configuration. Route
length 3 hops, end-to-end target BER 10−3, delay constraint 350 ms.

42 CHAPTER 4. SIMULATIONS AND RESULTS

requirement is kept the same and perfect link state information is still as-
sumed. The results presented in Table 4.3 show average energy consumption
per bit, the nodes’ average transmission power and modulation, average and
maximum end-to-end transmission time and the setup error rate.

Tr
an

s.
sc

he
m

e

A
vg

.
en

er
gy

/b
it

[d
B
m

J]

A
vg

.
tr

an
s.

po
w
er

[m
W

]

A
vg

.
m

od
.

or
de

r

Tr
an

s.
ti
m

e
[m

s]

Se
tu

p
er

ro
r

ra
te

[%
]

avg max
FRFP -10.43 53.13 2 512.03 512.03 1.24
FRVP -12.58 3.60 2 512.03 512.03 1.24
CR -15.08 13.27 5.45 221.04 385.17 0.12
DR -15.02 13.07 5.43 226.54 457.41 0.12
CR -14.82 11.43 4.35 247.50 410.14 0.13
DR -14.77 11.23 4.34 252.40 494.96 0.13

Table 4.3: Simulation results, averaged over 5000 runs. 5 hops, end-to-end
BER 10−3, delay constraint 515 ms. bmax limited to 5 bits/symbol in bottom
two lines.

First of all, the simulation results show that the adaptive schemes can
give huge energy savings. As one might expect, transmitting at fixed rate
with maximum power yields the largest energy consumption. By allow-
ing power control (channel inversion), 39% energy savings per bit can be
obtained. The continuous rate adaptation scheme yields 44% and 66% en-
ergy savings over fixed rate with and without power control, respectively.
Restricting the modulation order to integer values causes the energy con-
sumption to rise with 1.4%. The setup error rate for the adaptive schemes is
also smaller, since they allow a longer maximum hop length without falling
below the SNIR threshold.

The bottom two lines of Table 4.3 show the results when the maxi-
mum modulation order bmax is restricted to 5 bits/symbol. As seen from
figure 4.4, hops shorter than approximately 13 meters allows modulation
orders larger than this limit. Hence, for all routes containing hops longer
than 13 meters, there is potentially a performance degradation. Here, the
energy consumption increases with 6%, compared to the unconstrained case,
for both continuous and discrete adaptation. For all other simulations run
here, there is no upper limit on the constellation size, other than what is

4.3. MULTIHOP RESULTS 43

imposed by the peak-power constraint.

4.3.3 Tight Delay Constraint

From Table 4.3, note that the actual end-to-end delay when using adaptive
modulation is on average much smaller than the delay constraint, while less
energy is consumed. The increased flexibility of the adaptive schemes can
be further illustrated by running simulations with tighter delay constraints
and observe the resulting setup error rates.

Table 4.4 shows the results of a number of simulations, where the delay
constraint is gradually decreased, while all other parameters are kept the
same. The fixed-rate modulation order is increased in integer steps when
required to satisfy the delay constraints. The setup error rate and trans-
mission time will be the same for fixed rate transmission with or without
channel inversion, so FR in the table is valid for both FRFP and FRVP.

D
el
ay

co
ns

tr
ai

nt
[m

s]

Tr
an

s.
sc

he
m

e

A
vg

.
m

od
.
or

de
r

Tr
an

s.
tim

e
[m

s]

Se
tu

p
er

ro
r
ra

te
[%

]
avg max

400
FR 3 341.36 341.36 23.08
CR 5.45 221.57 392.41 0.14
DR 5.42 226.68 399.38 0.38

350
FR 3 341.36 341.36 22.72
CR 5.47 220.54 350 0.12
DR 5.46 223.96 349.89 1.38

300
FR 4 256.03 256.03 62.00
CR 5.46 219.95 300.00 0.50
DR 5.50 220.37 299.26 4.72

250
FR 5 204.83 204.83 87.80
CR 5.59 213.21 250.00 5.34
DR 5.75 208.12 249.84 19.78

Table 4.4: Simulation results, averaged over 5000 runs. 5 hops, end-to-end
BER 10−3, various delay constraints.

The setup error rate increases dramatically for the fixed rate schemes
as the delay constraint is tightened. Using continuous rate adaptation, the
setup error rate remains reasonably low much longer. As seen from Ta-
bles 4.3 and 4.4, the setup error rate for discrete rate adaptation at a delay

44 CHAPTER 4. SIMULATIONS AND RESULTS

constraint of 350 ms is roughly the same as for the fixed rate/channel in-
version scheme at 515 ms. The energy consumption for the two cases are
31.1 µJ and 55.2 µJ, respectively. Thus, discrete rate adaptation allows an
almost 40% tigher delay constraint than the fixed rate/channel inversion
scheme, while consuming approximately 40% less energy, on average.

Energy consumption is not included in the results in Table 4.4. The
setup error rates are very high for some of the cases with a tight delay
constraint. As illustrated in figure 4.1, no energy is spent if a route cannot
be successfully configured. Clearly, the failing routes contains more long
hops than routes that can be configured, and will therefore be more energy-
demanding. Thus, when the setup error rates are high, only the less energy-
demanding routes are actually used, leading to statistically incorrect results.
In fact, the average energy consumption is lower for some of the cases with
tight delay constraints and a large setup error rate than those with a looser
delay constraint and a smaller setup error rate. Only when the setup error
rates are roughly the same does it make any sense to compare the average
energy consumption.

4.3.4 Inaccurate Link State Information

All results so far are based on the assumption that perfect link state infor-
mation is available in the sink. When there is uncertainty in the link state
estimation, the received SNIR may fall below the threshold that is required
in order to satisfy the QoS requirements. To counteract the errors caused by
the uncertainty in the link state information, the transmission power must
be increased accordingly.

Table 4.5 shows the transmission error rates for all four transmission
schemes for various degrees of estimation error severity and extra transmis-
sion power. All other parameters are the same as for the initial simulation
run (Section 4.3.2). As expected, the system is vulnerable to link state es-
timation errors. Due to the tight adaptation, the transmission error rates
becomes very large, even for small estimation errors. The transmission power
must be increased with a factor roughly three times larger than the link state
estimation error in order to keep the setup error rate below 1%. Obviously,
when transmitting at maximum power, the transmission error rate is much
lower. In fact, no transmission errors occurred at the fixed rate/maximum
transmission power scheme during these simulations.

In Table 4.6, the energy consumption per bit is given for the fixed
rate/channel inversion and the two adaptive rate schemes, for the levels
of misadjustment and extra transmission power that yields a transmission
error rate that is roughly equal to 1 % (from Tables 4.3 and 4.5. Of course,
increasing the transmission power will also increase the total energy con-
sumption. But the results show that the relative increase in energy con-
sumption is larger for the adaptive schemes than for the fixed rate scheme.

4.3. MULTIHOP RESULTS 45

Misadjustment Extra power FRFP FRVP CR DR

1
2 0 10.84 11.00 11.00
3 0 0.38 0.44 0.44

3
5 0 21.14 21.30 21.30
7 0 4.78 4.88 4.88
10 0 0.14 0.14 0.14

5
10 0 10.90 11.06 11.06
15 0 0.80 0.80 0.80

Table 4.5: Simulation results, averaged over 5000 runs, 5 hops, end-to-end
BER 10−3, delay constraint 515 ms. Transmission error rates, given in %, for
transmission with various degrees of errors in link state information.

Using 15% extra transmission power causes the energy conumption per bit
to rise with approximately 10% for both the adaptive schemes, but only
with 1% for the fixed rate/channel scheme. This difference can be explained
by observing (from Table 4.3) that the average transmission power is much
larger for the adaptive schemes than for the fixed rate scheme, due to the
(on average) higher transmission rate.

Misadjustment Extra power FRVP CR DR
[%] [dBmJ]

0 0 -12.58 -15.09 -15.03
1 3 -12.57 -15.04 -14.97
3 10 -12.56 -14.97 -14.91
5 15 -12.55 -14.67 -14.62

Table 4.6: Simulation results, averaged over 5000 runs, 5 hops, end-to-end
BER 10−3, delay constraint 515 ms. Energy consumption per bit when in-
creasing transmission power to mitigate link state information errors.

4.3.5 Ignoring Circuit Energy

Now, the effect of including the circuitry’s contribution to the overall energy
consumption, and how this affects the route configuration, is investigated.
The circuit power consumption is reduced by 50% and then ignored allto-
gether, compared to the initial values given in Table 4.1. The peak-power
constraint Pmax is reduced accordingly. That is, Pnew

max = Pmax − aPctx,
where a = 1 when circuit power is ignored alltogether, and a = 0.5 when
it is reduced by 50%. Hence, the available transmission power remains the
same as before.

Table 4.7 shows the average modulation order bavg and the average end-
to-end delay for both cases. The delay constraints that give a reasonably

46 CHAPTER 4. SIMULATIONS AND RESULTS

low setup error rate from Table 4.4 are also used here, to obtain statistically
valid results. Perfect link state information is used. It is readily seen that as
the transmission power becomes more dominant, lower modulation orders
are selected, and that the end-to-end delay approaches the delay constraint.
In other words, when only the transmission power is considered, the optimal
configuration is to use the lowest modulation order possible. Minimizing the
nodes’ active time, where circuit energy is consumed, becomes increasingly
important as the circuit power consumption grows larger and thus, higher
modulation orders are used. This behavior is intuitively satisfying.

Delay CR DR
Constraint 1/2 0 1/2 0

[ms] bavg Tavg bavg Tavg bavg Tavg bavg Tavg

515 4.76 259.11 2.23 514.75 4.75 265.02 2.01 512.03
400 4.83 256.17 3.03 399.93 4.84 258.68 3.06 396.70
350 4.80 255.96 3.49 349.99 4.84 255.28 3.61 348.3

Table 4.7: Simulation results, 5000 runs, 5 hops, end-to-end BER 10−3,
delay constraint 515 ms. Average modulation order and end-to-end delay when
circuit power is reduced 50% and completely ignored.

4.3.6 Single- vs. Multi-hop Comparison

Routing protocol issues are not addressed directly in this thesis. The goal is
merely to optimize a given route. However, it is highly relevant to examine
how the total energy consumption is affected when resorting to many short
hops, compared to fewer, but longer, hops. This analysis is important when
designing energy-aware routing protocols, to find what is the desirable hop
length, from an energy-saving perspective.

Table 4.8 shows the maximum allowed modulation order, the correspond-
ing required transmission power and time and the energy consumption per
bit, for various hop lengths. The circuit power consumption is now set
to the initial values, as given in Table 4.1, and the required per-hop BER
Pb = 10−3. No delay constraint is taken into consideration.

Obviously, the maximum modulation order decreases and the transmis-
sion time and energy consumption per bit increases as the hop length grows
longer. What is interesting is to observe when multiple, short hops becomes
more energy-efficient than a single, longer hop.

The results show that for short distances, a single, long hop is more
energy-efficient than multiple short hops. E.g. will 5 hops of 4 meters each
in total consume 5 × 2.56 = 12.8 mJ, as compared to 8.52 mJ for a single
hop of 20 meters. That is, resorting to 5 hops consumes approximately
50% more energy per bit, and the total transmission time is also higher. At
approximately 15 m, the situation changes; two hops of 15 m requires slightly

4.3. MULTIHOP RESULTS 47

less energy than a single hop of 30 m. The time consumption is also roughly
equal, ignoring any intermediate queuing and processing delay. There is not
much difference between the continuous and the discrete schemes is these
results.

The modulation order is unconstrained for these results, and is very
high for the shortest distances (16 bits/symbol for 1 m). This is, of course,
not feasible to implement in a real system, where there will be a upper
limit for the modulation order. For these short distances, the circuit power
dominates over the transmission power. Thus, using a lower modulation
order than the theoretical, optimal value will cause the energy consumption
per bit to increase for the short hops, making a single hop more feasible.
The severity of this problem decreases as the hop length increases. It should
also be noted that in order to maintain the same end-to-end BER, resorting
to more hops requires a lower per-hop BER, compared to if fewer hops are
used, as defined in (3.21).

48 CHAPTER 4. SIMULATIONS AND RESULTS

H
op

le
ng

th
[m

]

Tr
an

s.
sc

he
m

e

M
ax

.
m

od
.

or
de

r

Tr
an

s.
po

w
er

[m
W

]

Tr
an

s.
ti
m

e
[m

s]

E
ne

rg
y/

bi
t

[m
J]

1
CR 16.45 3.70 12.45 1.47
DR 16.00 2.72 12.80 1.46

2
CR 12.91 3.70 15.87 1.88
DR 13.00 3.95 15.75 1.88

4
CR 9.60 4.37 21.33 2.56
DR 10.00 5.74 20.48 2.57

8
CR 6.75 7.02 30.36 3.86
DR 7.00 8.35 29.26 3.87

10
CR 5.83 8.16 35.12 4.53
DR 6.00 9.17 34.13 4.53

15
CR 4.50 13.33 45.47 6.33
DR 4.00 9.29 51.20 6.46

20
CR 3.59 18.89 56.97 8.52
DR 4.00 25.42 51.20 8.54

30
CR 2.44 31.86 83.81 13.09
DR 2.00 21.69 102.40 13.63

40
CR 1.88 52.62 108.94 19.20
DR 1.00 31.92 204.80 30.20

Table 4.8: Simulation results, single run, per-hop BER 10−3. Minimum-
energy configuration for various hop lengths. All results given per hop.

Chapter 5
Discussion

The simulation results show that joint end-to-end route optimization across
the protocol layers can potentially offer tremendous energy savings, and
that the increased flexibility of the adaptive schemes enables the system
to satisfy stringent QoS requirements. However, it should be stressed that
the proposed model and simulations are based on a number of idealized as-
sumptions; mainly the absence of competing traffic, perfect timing of the
wake-up/sleep cycle of the nodes, and zero queuing/buffer delay. The effect
of inaccurate link state information is only briefly discussed. Thus, the sim-
ulation results reflect the theoretically best performance results, and should
be treated accordingly. It is difficult to directly compare the performance of
the scheme proposed here with the one proposed in [9], since they are based
on different ground assumptions regarding the channel models.

5.1 Model Review

The single-hop results show that for a given hop length, there exists a op-
timal modulation order that minimized the total energy associated with a
packet transmission over this link, for a given target BER. The physical
layer model and system parameters are adopted from [8], and the single-hop
results comply well with the results in the article. This adaptive modula-
tion and power control scheme belongs in the physical layer, which has no
knowledge of end-to-end QoS requirements.

By jointly optimizing all nodes in a multihop route, across the physi-
cal, access and network layers, subject to end-to-end QoS constraints, the
optimal configuration for all nodes can be found. While this configuration
might not allow all nodes to transmit in the most energy-efficient manner
possible from a local perspective, the total energy consumption for all nodes
throughout the route is minimized, while the QoS constraints are satisfied.
Further, the number of hops in an arbitrary route will vary, but the same

49

50 CHAPTER 5. DISCUSSION

end-to-end QoS requirements will still be valid. Thus, it makes sense to
jointly optimize all nodes throughout the route. If each node is optimized
in isolation, without knowledge of the route as a whole, it would be very
difficult to satisfy such end-to-end requirements.

The allocation of modulation orders to the nodes is equivalent to opti-
mal, dynamic time slot allocation. The modulation order/rate is increased
over short hops/high quality links, where the energy cost per bit is small,
resulting in a short time slot. Long hops/low quality links are allocated
lower transmission rates/longer time slots, since the extra cost of increasing
the rate is then much higher than for the shorter hops. This ‘water-filling’ is
a well-known principle for communication over time-varying wireless chan-
nels. A fixed-rate system cannot adapt to the different hop lengths in other
ways than channel inversion, which is a sub-optimal solution, compared to
the water-filling principle [2].

As the simulation results show, the increased flexibility of the adaptive
system allows it to meet far tighter delay constraints than the fixed-rate sys-
tem, while consuming less energy. Continuous modulation orders yields, as
expected, the optimal solution, since more accurate adaptation is then possi-
ble. However, the penalty associated when restricting the modulation order
to integer values is quite small; the energy consumption per bit increases
with 1-2%, on average. This is in line with other results [2, 43].

In order to obtain the optimal route configuration, accurate link state
information must be available in the sink. Using inaccurate link state in-
formation in the simulations causes performance degradation, in terms of
increased energy consumption and/or more frequent transmission errors.
That is, in order to keep the transmission error rate reasonably low, the
transmission power must be increased. The required extra power increases
fast when the uncertainty associated with the link state estimates is larger
than a few percent. Of course, there will always be some delay associated
with the propagation of the link state information to the sink, running the
optimization routine and back-propagate the route configuration, thereby
causing some inaccuracy in the link state estimates. But in a relatively sta-
ble network, the estimates will still be good enough. On the other hand, a
high-mobility network, where the hop lengths/link states change more fre-
quently than what the system can keep up with, will cause the proposed
scheme to fail. In such cases, some best-effort scheme, like transmitting at a
fixed, high transmission power or using ARQ, would be a better solution. In
fact, in the simulations, no transmission errors occurred when always using
maximum available transmission power.

With the set of system parameters used for the simulations, the circuit
power consumption is quite high, compared to the available transmission
power, while the transition time is so short that it has negligible impact on
the result. In fact, the total circuit power of the receiving and transmitting
nodes added together is larger than the available transmission power. As

5.2. OPTIMIZATION ROUTINE SCHEDULING 51

confirmed by the simulation results, this favors short transmission times
over keeping the transmission power at a low level, which is in accordance
with other, related publications [6]. Reducing the circuit energy, causes the
adaptive system to select lower modulation orders. When the circuit power
is completely ignored, the optimal configuration yields an end-to-end delay
that is as close to the delay constraint as possible.

For the given system parameters, it is shown that fewer, but longer
hops are more energy-efficient than many short hops. This is valid up to
approximately 30 m, where two 15 m hops requires slightly less energy than
a single hop of 30 m. This indicates that the proposed ground assumption for
the routing strategy, where one of the 3 closest nodes were always selected for
the next hop, is probably not optimal from an energy-efficiency point of view.
Rather, more distant nodes should also be allowed for the next hop, resulting
in a higher average hop length. More hops also means more queuing delay
(not investigated here), and more complicated multiple access problems. On
the other hand, higher transmission power causes more interference to other
nodes in the network. And, of course, for a given node in a random ad hoc
network, it might not be possible to find a next hop that is of (near) optimal
length, especially in sparse networks. To summarize, there are many things
that needs to be taken into consideration when defining what is an ‘optimal’
route between two given nodes in an energy-constrained wireless ad hoc
network. Thus, the main strength of the proposed scheme is the ability to
adapt to (almost) any given route, making the best out of the situation at
hand, which is shown to provide significant energy savings under the given
assumptions.

5.2 Optimization Routine Scheduling

The optimization routine presented here is done for a single packet. The
energy cost of doing this optimization for every transmitted packet in a
practical system, however, would obviously swamp the energy savings ob-
tained by optimizing the route in the first place. So several packets have
to be transmitted on the same route, using the same configuration, for this
scheme to be feasible. This raises the problem of how often a route should
be re-configured (if necessary), after the initial optimization, which again
depends on the propagation environment, node mobility and the traffic pat-
tern.

Routes could be maintained in a proactive manner, with periodic re-
configurations. Running frequent updates cause much overhead, which will
increase the total energy consumption. On the other hand, too infrequent
updates could lead to sub-optimal performance and increased transmission
error rates. There is no clear answer to what is the optimal schedule, since
it is highly dependent on the network mobility.

52 CHAPTER 5. DISCUSSION

In a reactive approach, the optimization routine can be trigged by a
packet loss. This reduces the overhead, but there will be some time before
the route is re-configured and ready to be used again. Once a route has been
broken, it might also be impossible to successfully re-configure it, in which
case a new route must be found. Especially in delay-sensitive applications
this will be a problem.

5.3 Distributed Power Control

In a practical system, the modulation order will be restricted to integer val-
ues, while the transmission power can be adapted more accurately. It is
therefore plausible to assume that the transmission powers should be more
frequently updated than the modulation orders in order to maintain the opti-
mal route configuration, regardless of if proactive or reactive re-configuration
scheduling is used. This can be exploited by making the optimization scheme
partially distributed.

Link states are measured locally at each node, and must be relayed to
the sink in order to run the optimization process. Relaying this information
for every packet transmission is also obviously not feasible. Also, there is
always some delay introduced when relaying packets to the sink, making
the estimates slightly out of date. But since link states can be measured
locally every time a transmission takes place, all nodes have access to recent
link state information about their own in- and outgoing links. Therefore,
it makes sense to adjust the transmission power locally, at each individual
node and with respect to its allocated modulation order, once the initial
route configuration is relayed back to the nodes. This saves the overhead
of relaying the link state information to the sink, and allows more accurate
power adaptation. The modulation orders, however, will remain the same
until a new end-to-end optimization routine is run.

This approach is justified by the fact that the target BER for each hop
is known at the involved nodes. Further, the required transmission power
for each individual node is expressed as a deterministic function of the cor-
responding modulation order. Thus, local transmission power adjustments
can be done locally, without any performance degradation. The modifica-
tion makes the route configuration scheme partly distributed, and effectively
divides it into a setup phase and a maintenance phase. This is similar to
what is proposed in [23].

This modified version allows the transmission power to be adjusted more
frequently than in the original version, without any additional overhead.
A complete end-to-end route optimization operation that also updates the
modulation orders (i.e. a reconfiguration) should now be run whenever the
energy gain by doing so is larger than the associated overhead cost (proac-
tive), or when the required transmission power can no longer be delivered

5.4. CIRCUIT POWER MODEL RE-VISITED 53

at any of the intermediate nodes (reactive).

5.4 Circuit Power Model Re-Visited

As mentioned in Section 3.2.2, the hardware circuit power consumption
model used might not be entirely correct. First of all, the assumption that
the circuit power consumption is independent on modulation order should
be used with care, especially in systems where a wide range of modulation
orders are available. Ideally, the hardware should also adapt its operation
(and power consumption) to what is required in order to satisfy a given con-
figuration [5]. This would ensure optimal utilization of available resources,
but might be difficult to implement in a practical system.

Further, the PA’s efficiency is taken to be independent on the output
power. This is a rather coarse approximation, as the efficiency of most PAs
used for this kind of application is also dependent on the amplifier’s output
power [42]. Also, the type of PA used, thereby also the power consumption
model, is dependent on the modulation technique used. Here, QAM/PSK is
used due to the simple relationship between the constellation size and symbol
transmission time. Constant-envelope modulation techniques, such as FSK,
have less stringent requirements to the PA’s linearity. This allows other
types of PAs, with higher drain efficiency [6], to be used. For short-range
applications, where the RF circuit design has a large influence on the overall
energy consumption, it is vital to choose the right modulation technique for
a given application in order to obtain truly energy-efficient solutions. In the
implemented simulation scripts, it is straightforward to adjust all hardware
parameters so that other hardware models and modulation techniques can
be tested in the same framework.

5.5 Self-Congestion

Even in the absence of competing traffic, which is assumed for this model,
self-congestion might pose a problem for adaptive rate multihop schemes,
where the rates can be different across the hops. The weakest link will have
the lowest throughput rate, thereby making it the bottleneck in the route.
If packets are generated at the source faster than they can be transmitted
by this bottleneck link, the buffer of the node transmitting over this link
gradually be filled. This is referred to as self-congestion [44]. If too much
traffic is sent over this route, the throughput delay will gradually increase
and packets will eventually be dropped, due to buffer overflow.

This problem can be addressed at several protocol layers. In the network
layer, a new route setup procedure can be initiated before the buffer capacity
of the bottleneck node is breached. This requires some knowledge of the
transmission duration if the network layer. Addressing the problem at the

54 CHAPTER 5. DISCUSSION

transport layer offers another possibility: The transmission rate of the source
can be adjusted so that it does not exceed the capacity of the bottleneck.
Yet another approach is to integrate the traffic characteristics into the route
setup procedure. In this case, multiple routes between a source/sink pair
can be found, if needed, thereby increasing the net capacity between the two
nodes.

5.6 Computations: Resources and Energy

In this model, the time and energy required when performing the optimiza-
tion routine itself have not been addressed. In resource-limited systems,
this must of course be taken into consideration. Some applications, such as
WSNs, will typically have a fixed data fusion center or gateway, which is
the destination for many incoming connections. These nodes, which usually
will have far greater computational capabilities and energy reserves, are well
suited for taking the burden of optimizing its incoming connections. If no
central node exists, and the traffic is evenly distributed over all peer nodes,
they will all take their fair share of the burden. But if a single node is the
destination for many connections, it might experience a quick depletion of
the batteries, leaving it useless.

Regardless, the complexity of the optimization routine should be min-
imized. The energy-greedy optimization algorithm used for discrete rate
adaptation is best described as a truncated brute-force search over the pos-
sible configurations. If the number of hops is reasonably low, and the max-
imum modulation order is limited, the optimal solution will be found after
relatively few iterations. However, the complexity increases with the num-
ber of hops and range of allowed modulation orders. Other, more efficient
methods to solve this problem might exist.

As previously stated, finding the optimal modulation order in the single
hop case for the model used here can be shown to be a convex problem [6].
This is utilized in [45], which, for a given set of input parameters, aims to
arrive at a simple, closed-form expression for finding the optimal modulation
order for QAM transmission over a single hop, by means of curve-fitting.
The optimal modulation order can than be found directly, without running
any optimization algorithms. This work is based on the same underlying
hardware and channel models as adopted here. If a similar approach can
be used on the L-dimensional optimization problem of a multihop route,
the energy required for running the optimization routine could probably be
significantly reduced.

Chapter 6
Conclusions

Wireless ad hoc networks have the potential of becoming a dominant network
technology in the near future. One of the main advantages of such networks
is that they can function without any fixed infrastructure or base station,
making deployment both easy and cost-effective. Further, the distributed
nature makes these networks fault-tolerant, as there is no single critical
point of error. However, distributed network control will always lead to
some performance degradation.

Many applications will rely on small, battery-powered nodes, with lim-
ited resources and energy-reserves, which makes energy-efficiency a paramount
design goal. This, combined with the other special characteristics of wire-
less ad hoc networks, raises many technological challenges, requiring novel
techniques and aproaches. Some of these, which are believed to be among
the most important, have been summarized in this thesis. Most notably,
the cross-layer design paradigm is of major importance, as it has the poten-
tial of providing tremendous performance improvement over the traditional,
strictly layered OSI reference model, especially in systems with limited en-
ergy and/or QoS requirements. Despite the advantages of the cross-layer
design, it does come with a cost. Closer integration between layer implies
that different layers of the protocol stack must be jointly designed, thereby
complicating the design and making reuse and further development of exist-
ing protocols and systems more difficult.

Based on the special characteristics of energy-constrained wireless ad hoc
networks, and novel techniques proposed in related literature, an energy-
efficient, cross-layer route optimization scheme has been proposed. It was
shown how a given multihop route consisting of AWGN links can be energy-
optimized, subject to QoS requirements, in terms of end-to-end throughput
and delay, by utilizing adaptive modulation and demodulation and power
control in the intermediate nodes. The route configuration is based on link
state information from the given route, and all nodes throughout the route

55

56 CHAPTER 6. CONCLUSIONS

are jointly optimized, across the physical, access and network layers. Ran-
dom routes, on which the proposed technique was applied, were generated
using statistical tools, based on an initial, qualitative analysis of the char-
acteristics of energy-aware routing protocols.

The hardware model used in the system is targeted at short-range, low-
power devices, so that the circuit power consumption is of the same order
of magnitude as the transmission power. It is shown that when taking
the circuit power consumption into consideration in a low-power adaptive
rate system, the traditional belief that maximizing the transmission time
is the most energy-efficient strategy no longer holds. Rather, the optimal
modulation order for a given point-to-point transmission is found as the best
trade-off between saving circuit energy at the cost of transmission energy,
and vice versa. The simulation results depend heavily on the underlying
hardware and channel parameters, both of which can easily be adjusting in
the developed simulation script.

Simulations run on multihop routes, showed that the proposed route
optimization scheme offers significant energy savings, while improving the
system’s capability to meet stringent QoS requirements. Compared to a
fixed-rate system, the proposed optimization scheme can on average reduce
the total energy consumption per transmitted bit by more that 50%, while
satisfying stricter delay constraints, when allowing continuous rate adapta-
tion. Resticting the modulation order to discrete, integer values causes 1-2%
higher energy consumption, compared to the optimal, continuous case. Fur-
ther simulations showed that inaccurate link state information can result in
severe performance degredation, making the scheme best suited for relatively
stable and immoblie networks.

The proposed cross-layer route optimization scheme allows energy-efficient
link adaptation when transmitting over variable-quality links, while the end-
to-end optimization ensures that the QoS requirements are satisfied and that
a global, optimal solution is found. Without this end-to-end optimization,
each node would have been configured in isolation from the others, po-
tentially wasting valuable energy and definitely making it very difficult to
satisfy end-to-end QoS requirents. The proposed scheme can in theory be
combined with any existing routing protocol, by optimizing both new and
existing routes. Re-configuring existing routes is beneficial in order to pro-
long their lifetime, thereby reducing the need for running energy-demanding
route setup procedures.

The proposed scheme is based on a number of idealized assumptions;
mainly no contending traffic on the route, zero buffer/queuing delay, no
overhead associated with channel access and perfect sleep-scheduling of the
nodes. These assumptions are obviously not valid in real systems. However,
the proposed model can serve as a reference for benchmark testing of parts
of real systems, since the idealized conditions yields the theoretical upper
performance bound for the given situation. The main problems with the pro-

6.1. CONTRIBUTIONS 57

posed model is the need for accurate link state information, and challenges
associated with sleep scheduling and channel access of intermediate nodes.
Further, when link rates throughout a route are different, low-capacity links
will become bottlenecks, which might cause self-congestion.

6.1 Contributions

� Utilizing adaptive modulation link adaptation techniques in an end-
to-end route optimization scheme.

� Using statistical approximations of energy-aware routing in a ran-
dom wireless ad hoc network, and use this to easily generate route-
approximations in a network of a given size and density.

� Developing the energy-greedy route optimization algorithm.
� Developing a framework for testing various route optimization schemes.

Flexibility and easy configuration has been emphasized.

6.2 Future Work

In this thesis, a basic system model that is well suited for demonstrating the
principles for the proposed route optimization scheme, has been used. The
model is based on a number of idealized assumptions, resulting in the best
achievable results. Only some qualitative analyses on how a real-life situa-
tion would affect the performance of the system are made. Extending the
model so that contending traffic, interference from other nodes and chan-
nel access issues are included in the problem and simulations represents the
next natural step. The hardware model should also be reviewed. Further,
the complexity of the optimization algorithms should be scrutinized and,
if possible, improved. If the optimization can be proven to be convex, this
could be utilized to make more efficient algorithms. Finally, a proper routing
protocol could be implemented. It would also be interesting to investigate
if the proposed scheme could be combined with existing protocols and then
be implemented in more advanced network simulators, such as ns2, in order
to run more representable simulations.

Bibliography

[1] A. Goldsmith and S.B. Wicker. Design Challenges for Energy-
Constrained Ad Hoc Networks. IEEE Wireless Communications. Vol. 9,
no. 4, pages 8-27, 2002.

[2] A. Goldsmith. Wireless Communications. Cambridge University Press,
2005.

[3] G. Karlsson, S. Lindfors, M. Skoglund, and G. Øien. Cross-
Layer Optimization in Short-Range Wireless Sensor Networks.
CROPS project description and slides, 2005. Available at:
http://www.ee.kth.se/commth/projects/CROPS/.

[4] R. Ramanathan, J. Redi, and BBN Technologies. A Brief Overview of
Ad Hoc Networks: Challenges and Directions. IEEE Communications
Magazine. Vol. 40, no. 5, pages 20-22, 2002.

[5] R. Min, M. Bhardwaj, S. Cho, N. Ickes, E. Shih, A. Sinha, A. Wang,
and A. Chandrakasan. Energy-Centric Enabling Technologies for Wire-
less Sensor Networks. IEEE Wireless Communications. Vol. 9, no. 4,
pages 28-39, 2002.

[6] S.R. Cui. Cross-Layer Optimization in Energy Constrained Networks.
PhD thesis, Stanford University, 2005.

[7] V. Kawadia and P.R. Kumar. Principles and Protocols for Power Con-
trol in Wireless Ad Hoc Networks. IEEE Journal on Selected Areas in
Communications. Vol. 23, no. 1, pages 76-88, 2005.

[8] S. Cui, AJ Goldsmith, and A. Bahai. Energy-Constrained Modulation
Optimization. IEEE Transactions on Wireless Communications. Vol. 4,
no. 5, pages 2349-2360, 2005.

[9] H.C. Yang, L. Yang, and K. Wu. Minimum-Energy Route Configuration
for Wireless Ad Hoc Networks. 25th IEEE International Performance,

59

60 BIBLIOGRAPHY

Computing, and Communications Conference (IPCCC). Apr. 2006,
Phoenix, USA.

[10] I.F. Akyildiz, T. Melodia, and K.R. Chowdhury. A survey on wireless
multimedia sensor networks. Computer networks. Issue 51, pages 921-
960, 2006.

[11] Official website for ZigBee Alliance: http://www.zigbee.org/.

[12] Official website for Bluetooth: http://bluetooth.com/.

[13] B. Zhen, J. Park, and Y.; Kim. Scatternet Formation of Bluetooth Ad
Hoc Networks. Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS). Jan. 2003, Island of Hawaii,
USA.

[14] K. Römer and F. Mattern. The Design Space Of Wireless Sensor Net-
works. IEEE Wireless Communications. Vol. 11, no. 6, pages 54-61,
2004.

[15] E. Shih, S.H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chan-
drakasan. Physical Layer Driven Protocol and Algorithm Design for
Energy-Efficient Wireless Sensor Networks. Proceedings of the 7th An-
nual International Conference on Mobile Computing and Networking.
Jul. 2001, Rome, Italy, Pages 272-287.

[16] A.S. Tannenbaum. Computer Networks, 4th ed. Prentice Hall, 2003.

[17] Y. Zhang and L. Cheng. Cross-layer Optimization for Sensor Networks.
New York Metro Area Networking Workshop (NYMAN). Sep. 2003,
New York, USA, Pages 247-252.

[18] J.G. Proakis. Digital Communications, 4th ed. McGraw-Hill Higher
Education, 2001.

[19] T. ElBatt and A. Ephremides. Joint Scheduling and Power Control for
Wireless Ad Hoc Networks. IEEE Transactions on Wireless Commu-
nications. Vol. 3, no. 1, pages 74-85, 2004.

[20] S. Cui, R. Madan, A. Goldsmith, and S. Lall. Joint Routing, MAC and
Link Layer Optimization in Sensor Networks with Energy Constraints.
IEEE International Conference on Communications (ICC). May 2005,
Seoul, South-Korea, Vol. 2.

[21] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wire-
less Sensor Networks: a Survey. Computer Networks. Vol. 38, no. 4,
pages 393-422, 2002.

BIBLIOGRAPHY 61

[22] A.Y. Wang, S.H. Cho, C.G. Sodini, and A.P. Chandrakasan. Energy
Efficient Modulation and MAC for Asymmetric RF Microsensorsys-
tems. International Symposium on Low Power Electronics and Design
(ISLPED). Aug. 2001, Huntington Beach, USA, Pages 106-111.

[23] M.L. Sichitiu. Cross-Layer Scheduling for Power Efficiency in Wireless
Sensor Networks. 23rd Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM). Mar. 2004, Hong Kong,
China, Vol. 3, Pages 1740-1750.

[24] R.L. Peterson, R.E. Ziemer, and D.E. Borth. Introduction to Spread-
Spectrum Communications. Prentice Hall Englewood Cliffs, 1995.

[25] Q. Lie, S. Zhou, and G.B. Giannakis. Cross-Layer Combining of Adap-
tive Modulation and Coding With Truncated ARQ over Wireless Net-
work Links. IEEE Transactions on Wireless Communications. Vol. 3,
no. 5, pages 1746-2755, 2004.

[26] S. Toumpis and A. Goldsmith. New media access protocols for wireless
ad hoc networks based on cross-layer principles. IEEE Transactions on
Wireless Communications. Vol. 5, no. 8, pages , 2006.

[27] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC Protocol Work
Well in Multihop Wireless Ad Hoc Networks? IEEE Communications
Magazine. Vol. 39, no. 6, pages 130-137, 2001.

[28] N. Bisnik and A. Abouzeid. Queuing Delay and Achievable Throughput
in Random Access Wireless Ad Hoc Networks. 2006. Available at:
citeseer.ist.psu.edu/bisnik06queuing.html.

[29] M. Rahnema. Overview of the GSM system and protocol architecture.
IEEE Communications Magazine. Vol. 31, no. 4, pages 92-100, 1993.

[30] J. Elson and D. Estrin. Time Synchronization for Wireless Sensor Net-
works. Proceedings of the 15th International Parallel and Distributed
Processing Symposium (IPDPS). Apr. 2001, San Francisco, USA, Pages
1965-1970.

[31] C.C. Enz, A. El-Hoiydi, J.D. Decotignie, and V. Peiris. WiseNET: An
Ultralow-Power Wireless Sensor Network Solution. Computer. Vol. 37,
no. 8, pages 62-70, 2004.

[32] S. Cui, A. Goldsmith, and A. Bahai. Joint Modulation and Multiple Ac-
cess Optimization under Energy Constraints. IEEE Global Telecommu-
nications Conference (GLOBECOM). Nov. 2004, Dallas, USA, Vol. 1.

[33] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie. Protocols for Self-
Organization of a Wireless Sensor Network. IEEE Personal Communi-
cations. Vol. 7, no. 5, pages 16-27, 2000.

62 BIBLIOGRAPHY

[34] T. Holliday, A. Goldsmith, P. Glynn, and N. Bambos. Distributed
power and admission control for time varying wireless networks. IEEE
Global Telecommunications Conference (GLOBECOM). Nov. 2004,
Dallas, Texas, Vol. 2.

[35] S. Chen and K. Nahrstedt. Distributed Quality-of-Service Routing in
Ad Hoc Networks. IEEE Journal on Selected Areas in Communications.
Vol. 17, no. 8, pages 1488-1505, 1999.

[36] S. Doshi, S. Bhandare, and T.X. Brown. An On-demand Minimum
Energy Routing Protocol for a Wireless Ad Hoc Network. ACM SIG-
MOBILE Mobile Computing and Communications Review. Vol. 6, no. 3,
pages 50-66, 2002.

[37] R.C. Shah and J.M. Rabaey. Energy Aware Routing for Low Energy Ad
Hoc Sensor Networks. IEEE Wireless Communications and Networking
Conference (WCNC). Mar. 2002, Orlando, USA, Vol. 1.

[38] Q. Li, J. Aslam, and D. Rus. Online Power-Aware Routing in Wireless
Ad-Hoc Networks. Proceedings of the 7th Annual International Con-
ference on Mobile Computing and Networking. Jul. 2001, Rome, Italy,
Pages 97-107.

[39] T. Camp, J. Boleng, and V. Davies. A Survey of Mobility Models
for Ad Hoc Network Research. Wireless Communications and Mobile
Computing. Vol. 2, no. 5, pages 483-501, 2002.

[40] J.H. Chang and L. Tassiulas. Energy Conserving Routing in Wireless
Ad Hoc Networks. 19th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM). Mar. 2000, Tel Aviv, Is-
rael, Vol. 1.

[41] V. Kawadia and PR Kumar. A Cautionary Perspective on Cross-Layer
Design. IEEE Wireless Communications. Vol. 12, no. 1, pages 3-11,
2005.

[42] S. Lindfors. Power consumption of a class-b power amplifier. Draft,
2007, Helsinki University of Technology.

[43] A. Gjendemsjø, G.E. Øien, and P. Orten. Optimal Discrete-Level
Power Control for Adaptive Coded Modulation Schemes with Capacity-
Approaching Component Codes. IEEE International Conference on
Communications (ICC). Jun. 2006, Istanbul, Turkey, Pages 3498-3502.

[44] B. Girod, E. Setton, and X. Zhu. Congestion-Optimized Routing and
Scheduling of Video Over Wireless Ad Hoc Networks. International
Symposium on Circuits and Systems (ISCAS), May 2005, Kobe, Japan.

BIBLIOGRAPHY 63

[45] C. Wang and G. Øien. Optimum Modulation Order Adaptations for
MQAM in Wireless Sensor Networks. Draft, 2007, Norwegian Univer-
sity of Science and Technology.

Appendix A
List of Abbreviations

AWGN Additive White Gaussian Noise

CSMA Carrier Sense Multiple Access

MIMO Multiple Input Multiple Output

SNIR Signal to Noise and Interference Ratio

ARQ Automatic Repeat Request

BER Bit Error Rate

CTS Clear To Send

FSK Frequency Shift Keying

GSM Global System for Mobile Telecommunication

MAC Multiple Access

OSI Open Systems Interconnection

PAR Peak-to-Average Ratio

PER Packet Error Rate

PLL Phase Locked Loop

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

QoS Quality of Service

RTS Ready To Send

65

66 APPENDIX A. LIST OF ABBREVIATIONS

SNR Signal to Noise Ratio

TCP Transfer Control Protocol

WSN Wireless Sensor Network

IP Internet Protocol

PA Power Amplifier

RF Radio Frequency

Appendix B
Matlab Scripts

B.1 Main Script

scr_sys.m

1 %% INITIALIZATION
2 clear all,close all,clc
3 %%%
4 % System parameters (Adjustable)
5

6 % Route length
7 L_route = 5;
8 % %Time constraint, end−to−end [ms]
9 T = 515;

10 % Fixed−rate bit/symbol
11 b_fix = 2;
12 % Mean hop length [m]
13 ch_m = 11.5;
14 % Channel gain misadjustment
15 g_misad = 1;
16 % SNR power margin
17 pwr_m = 3;
18 % Target BER, from table 1 in (4)
19 P_b_end_to_end = 1e−3;
20 P_b = 1 − (1 − P_b_end_to_end)^(1/L_route);
21 % P_b = 1e−4;
22

23 %%%
24

25 c_sim = struct('L_route', L_route, 'T', T, 'b_fix',
b_fix, 'ch_m', ch_m, 'P_b_EE', P_b_end_to_end, 'P_b
', P_b, 'g_misad', g_misad, 'pwr_m', pwr_m);

26 save param_sim c_sim
27 scr_constants;
28 clear all

67

68 APPENDIX B. MATLAB SCRIPTS

29

30 load param_sim
31 load param_sys
32

33 %%%
34 % No. simulation runs
35

36 N_run = 5000;
37

38 % Other variables (temp stuff)
39 N_bad_routes = 0;
40

41

42 %%%
43 % Some variables
44 acc_res_fr = zeros(N_run, 5);
45 acc_res_fr_fp = zeros(N_run, 5);
46 acc_res_cr = zeros(N_run, 5);
47 acc_res_dr = zeros(N_run, 5);
48 % acc_res_cr_tsa = zeros(N_run, 5);
49 % acc_res_dr_tsa = zeros(N_run, 5);
50

51 route_cnf_fr = zeros(N_run, 1);
52 route_cnf_cr = zeros(N_run, 1);
53 route_cnf_dr = zeros(N_run, 1);
54 % route_cnf_cr_tsa = zeros(N_run, 1);
55 % route_cnf_dr_tsa = zeros(N_run, 1);
56

57 T_cr = 0;
58 T_dr = 0;
59 T_fr = 0;
60 % T_dr_tsa = 0;
61 % T_cr_tsa = 0;
62

63

64 %%%
65 %% START GIANT COUNTER
66

67 for bigCounter = 1:N_run
68

69 % %% VARIABLE ROUTE LENGTH
70 % % Route length
71 % L_route = ceil(rand*10);
72 % % %Time constraint, end−to−end [ms]
73 % P_b_end_to_end = 1e−3;
74 % P_b = 1 − (1 − P_b_end_to_end)^(1/L_route);
75 % % Overwrite
76 % c_sim.L_route = L_route;
77 % c_sim.P_b = P_b;
78

79 %% ROUTE SETUP
80

81 disp([num2str(bigCounter) '/' num2str(N_run)])
82 % disp([num2str(bigCounter) '/' num2str(N_run) 'Route Length: '

B.1. MAIN SCRIPT 69

num2str(L_route)])
83

84 % Generate hop lengths
85 ch_dist = fnc_ch_create(c_sim.ch_m,c_sim.L_route);
86 % ch_dist = [5 12 35];
87 % ch_dist = [1 2 4 8 10 15 16 20 30 40];
88 % Find link gains
89 ch_gains = fnc_ch_calc_gain(c_sys.G_1, c_sys.k, c_sys.M_l,

ch_dist);
90 % Add CSI misadjustment, 1: Gaussian dist, 0: uniform dist
91 ch_gains_misad = fnc_ch_gain_misad(ch_gains, c_sim.g_misad, 1);
92 % Check if there exists link that cannot be used
93 N_bad_routes = N_bad_routes + fnc_route_usable(c_sys, c_sim,

ch_gains_misad);
94

95 %% OPTIMIZATION
96

97 % ### Find the optimal transmission scheme for route ###
98

99 % Fixed rate, adaptive power
100 tic
101 route_cnf_fr = fnc_nonad_opt(c_sys, c_sim, ch_gains_misad);
102 T_fr = T_fr + toc;
103

104 % Continous rate, dynamic time slot allocation
105 tic
106 route_cnf_cr = fnc_linkad_opt_c(c_sys, c_sim, ch_gains_misad);
107 T_cr = T_cr + toc;
108

109 % Discrete rate, dynamic time slot allocation
110 tic
111 route_cnf_dr = fnc_linkad_opt_d(c_sys, c_sim, ch_gains_misad);
112 T_dr = T_dr + toc;
113

114

115 % % % Continous rate, fixed time slot allocation
116 % tic
117 % route_cnf_cr_tsa = fnc_linkad_opt(c_sys, c_sim,

ch_gains_misad, 0);
118 % T_cr_tsa = T_cr_tsa + toc;
119

120 % % % Discrete rate, fixed time slot allocation
121 % tic
122 % route_cnf_dr_tsa = fnc_linkad_opt(c_sys, c_sim,

ch_gains_misad, 1);
123 % T_dr_tsa = T_dr_tsa + toc;
124

125

126 % ### Check if successful transmission scheme found ###
127

128 % Fixed rate
129 if (length(find(route_cnf_fr(:,1) > 0)) == c_sim.L_route)
130 route_cnf_fr_ok = 1;
131 else

70 APPENDIX B. MATLAB SCRIPTS

132 route_cnf_fr_ok = 0;
133 end
134

135 % Continous rate, dynamic time slot allocation
136 if (length(find(route_cnf_cr(:,1) > 0)) == c_sim.L_route)
137 route_cnf_cr_ok = 1;
138 else
139 route_cnf_cr_ok = 0;
140 end
141

142 % Discrete rate, dynamic time slot allocation
143 if (length(find(route_cnf_dr(:,1) > 0)) == c_sim.L_route)
144 route_cnf_dr_ok = 1;
145 else
146 route_cnf_dr_ok = 0;
147 end
148

149 % % Continous rate, fixed time slot allocation
150 % if (length(find(route_cnf_cr_tsa(:,1) > 0)) == c_sim.L_route)
151 % route_cnf_cr_tsa_ok = 1;
152 % else
153 % route_cnf_cr_tsa_ok = 0;
154 % end
155

156 % % Discrete rate, fixed time slot allocation
157 % if (length(find(route_cnf_dr_tsa(:,1) > 0)) == c_sim.L_route)
158 % route_cnf_dr_tsa_ok = 1;
159 % else
160 % route_cnf_dr_tsa_ok = 0;
161 % end
162

163 %% TRANSMISSION
164

165 % ### Transmit only if successful configuration found ###
166

167 % Fixed rate
168 if (route_cnf_fr_ok)
169 route_res_fr = fnc_route_tx(c_sys, c_sim, ch_gains,

route_cnf_fr, 0);
170 route_res_fr_fp = fnc_route_tx(c_sys, c_sim, ch_gains,

route_cnf_fr, 1);
171 else
172 route_res_fr = zeros(1,6);
173 route_res_fr_fp = zeros(1,6);
174 end
175

176 % Continous rate
177 if (route_cnf_cr_ok)
178 route_res_cr = fnc_route_tx(c_sys, c_sim, ch_gains,

route_cnf_cr, 0);
179 else
180 route_res_cr = zeros(1,6);
181 end
182

B.1. MAIN SCRIPT 71

183 % Discrete rate
184 if (route_cnf_dr_ok)
185 route_res_dr = fnc_route_tx(c_sys, c_sim, ch_gains,

route_cnf_dr, 0);
186 else
187 route_res_dr = zeros(1,6);
188 end
189

190 % % ### Fixed time slot allocation ###
191 % % Discrete rate
192 % if (route_cnf_cr_tsa_ok)
193 % route_res_cr_tsa = fnc_route_tx(c_sys, c_sim, ch_gains,

route_cnf_cr_tsa, 0);
194 % else
195 % route_res_cr_tsa = zeros(1,6);
196 % end
197 %
198 % if (route_cnf_dr_tsa_ok)
199 % route_res_dr_tsa = fnc_route_tx(c_sys, c_sim, ch_gains,

route_cnf_dr_tsa, 0);
200 % else
201 % route_res_dr_tsa = zeros(1,6);
202 % end
203

204 %% EVALUATION
205

206 % Evaluate results
207 acc_res_fr_fp(bigCounter,:) = fnc_route_calc_res(c_sim,

route_res_fr_fp, route_cnf_fr_ok);
208 acc_res_fr(bigCounter,:) = fnc_route_calc_res(c_sim,

route_res_fr, route_cnf_fr_ok);
209 acc_res_cr(bigCounter,:) = fnc_route_calc_res(c_sim,

route_res_cr, route_cnf_cr_ok);
210 acc_res_dr(bigCounter,:) = fnc_route_calc_res(c_sim,

route_res_dr, route_cnf_dr_ok);
211 % acc_res_dr_tsa(bigCounter,:) = fnc_route_calc_res(c_sim,

route_res_dr_tsa, route_cnf_dr_tsa_ok);
212 % acc_res_cr_tsa(bigCounter,:) = fnc_route_calc_res(c_sim,

route_res_cr_tsa, route_cnf_cr_tsa_ok);
213

214 %% END GIANT LOOP
215 end
216

217 %% PRESENTATION
218

219 % Simulation parameters
220 disp(' ')
221 disp(['# Runs________________________: ' num2str(N_run)])
222 disp(['# Hops in Route_______________: ' num2str(c_sim.L_route)

])
223 disp(['End−to−end delay constraint___: ' num2str(c_sim.T) ' ms'

])
224 disp(['End−to−end target BER_________: ' num2str(c_sim.P_b_EE)

])

72 APPENDIX B. MATLAB SCRIPTS

225 disp(['Link gain misadjustment_______: ' num2str(c_sim.g_misad)
' %'])

226 disp(['Required SNR margin___________: ' num2str(c_sim.pwr_m) '
%'])

227 disp(['Fixed−rate bit/symbol_________: ' num2str(c_sim.b_fix)
])

228

229 % If single run, show details
230 if (N_run == 1)
231

232 % Show SNR limits
233 fnc_show_snr_limits(c_sys, c_sim);
234

235 % Present Route information
236 disp(' ')
237 disp('*** Route Information ***')
238 print_route_info(ch_dist, ch_gains, ch_gains_misad);
239 disp(' ')
240 disp('

##
')

241 disp('Results for transmission over a single route')
242

243 % Transmission results
244 if(route_cnf_fr_ok)
245 disp(' ')
246 disp('*** Fixed Rate, Fixed Power ***')
247 print_results(c_sys, c_sim, route_res_fr_fp);
248 disp(' ')
249 disp('*** Fixed Rate, Variable Power ***')
250 print_results(c_sys, c_sim, route_res_fr);
251 else
252 disp(' ')
253 disp('*** Setup Error for Fixed Rate ****')
254 print_setup(c_sys, c_sim, route_cnf_fr);
255 end
256

257 if(route_cnf_cr_ok)
258 disp(' ')
259 disp('*** Continous Rate, Dynamic time slot allocation

***')
260 print_results(c_sys, c_sim, route_res_cr);
261 else
262 disp(' ')
263 disp('*** Setup Error for Continous Rate, Dynamic time

slot allocation ****')
264 print_setup(c_sys, c_sim, route_cnf_cr);
265 end
266

267 if(route_cnf_dr_ok)
268 disp(' ')
269 disp('*** Discrete Rate, Dynamic time slot allocation

***')
270 print_results(c_sys, c_sim, route_res_dr);

B.1. MAIN SCRIPT 73

271 else
272 disp(' ')
273 disp('*** Setup Error for Discrete Rate, Dynamic time

slot allocation ****')
274 print_setup(c_sys, c_sim, route_cnf_dr);
275 end
276

277 % % % Fixed time slot allcoation
278 % if(route_cnf_cr_tsa_ok)
279 % disp(' ')
280 % disp('*** Continous Rate, Fixed time slot allocation

***')
281 % print_results(c_sys, c_sim, route_res_cr_tsa);
282 % else
283 % disp(' ')
284 % disp('*** Setup Error for Continous Rate, Fixed time

slot allocation ****')
285 % print_setup(c_sys, c_sim, route_cnf_cr_tsa);
286 % end
287 %
288 % if(route_cnf_dr_tsa_ok)
289 % disp(' ')
290 % disp('*** Discrete Rate, Fixed time slot allocation

***')
291 % print_results(c_sys, c_sim, route_res_dr_tsa);
292 % else
293 % disp(' ')
294 % disp('*** Setup Error for Discrete Rate, Fixed time

slot allocation ****')
295 % print_setup(c_sys, c_sim, route_cnf_dr_tsa);
296 % end
297

298 end
299 % Present averaged results
300 disp(' ')
301 disp('

##'
)

302 disp('Averages')
303 disp(' ')
304 disp('# Fixed Rate, Fixed power:')
305 [E_fr_fp, P_fr_fp, ER_fr_fp] = print_accum_res(c_sys, c_sim,

acc_res_fr_fp, N_run);
306 disp(' ')
307 disp('# Fixed Rate, Variable power:')
308 [E_fr, P_fr, ER_fr] = print_accum_res(c_sys, c_sim, acc_res_fr,

N_run);
309 disp(' ')
310 disp('# Continous Rate, dynamic time slot allocation:');
311 [E_cr, P_cr, ER_cr] = print_accum_res(c_sys, c_sim, acc_res_cr,

N_run);
312 disp(' ')
313 disp('# Discrete Rate, dynamic time slot allocation:');
314 [E_dr, P_dr, ER_dr] = print_accum_res(c_sys, c_sim, acc_res_dr,

74 APPENDIX B. MATLAB SCRIPTS

N_run);
315 % disp(' ')
316 % disp('# Continous Rate, fixed time slot allocation:');
317 % [E_cr_tsa, P_cr_tsa, ER_cr_tsa] = print_accum_res(c_sys,

c_sim, acc_res_cr_tsa, N_run);
318 % disp(' ')
319 % disp('# Discrete Rate, fixed time slot allocation:');
320 % [E_dr_tsa, P_dr_tsa, ER_dr_tsa] = print_accum_res(c_sys,

c_sim, acc_res_dr_tsa, N_run);
321

322 % Compare key results
323 disp(' ')
324 disp('

##'
)

325 disp('Comparison')
326

327 disp(' ')
328 disp('# Fixed rate, fixed power (FR_FP): ')
329 disp([' Energy: ' num2str(10*log10(E_fr_fp)) ' dBm, error rate

: ' num2str(ER_fr_fp) ' %'])
330

331 disp(' ')
332 disp('# Fixed rate, variable power (FR_VP): ')
333 disp([' Energy: ' num2str(10*log10(E_fr)) ' dBm, error rate: '

num2str(ER_fr) ' %'])
334 imp = 100*(E_fr_fp − E_fr)/E_fr_fp;
335 disp([' Improvement over FR_FP: ' num2str(imp) ' %'])
336

337 disp(' ')
338 disp('# Continous rate, dynamic time (CR): ')
339 disp([' Energy: ' num2str(10*log10(E_cr)) ' dBm, error rate: '

num2str(ER_cr) ' %'])
340 imp = 100*(E_fr_fp − E_cr)/E_fr_fp;
341 imp2 = 100*(E_fr − E_cr)/E_fr;
342 disp([' Improvent over FR_FP: ' num2str(imp) ' %'])
343 disp([' Improvent over FR_VP: ' num2str(imp2) ' %'])
344

345 disp(' ')
346 disp('# Discrete rate, dynamic time (DR): ')
347 disp([' Energy: ' num2str(10*log10(E_dr)) ' dBm, error rate: '

num2str(ER_dr) ' %'])
348 imp = 100*(E_dr − E_cr)/E_cr;
349 disp([' Degredation from CR: ' num2str(imp) ' %'])
350

351 % disp(' ')
352 % disp('# Continous rate, Fixed time (CR_TSA): ')
353 % disp([' Energy: ' num2str(10*log10(E_cr_tsa)) ' dBm, error

rate: ' num2str(ER_cr_tsa) ' %'])
354 % imp = 100*(E_cr_tsa − E_cr)/E_cr;
355 % disp([' Degredation from CR: ' num2str(imp) ' %'])
356

357 % disp(' ')
358 % disp('# Discrete rate, fixed time (DR_TSA): ')

B.2. SYSTEM CONSTANTS 75

359 % disp([' Energy: ' num2str(10*log10(E_dr_tsa)) ' dBm, error
rate: ' num2str(ER_dr_tsa) ' %'])

360 % imp = 100*(E_dr_tsa − E_cr_tsa)/E_cr_tsa;
361 % imp2 = 100*(E_dr_tsa − E_dr)/E_dr;
362 % disp([' Degredation from CR_TSA: ' num2str(imp) ' %'])
363 % disp([' Degredation from DR: ' num2str(imp2) ' %'])
364 %
365 % disp(' ')
366 % disp(['Error Rate (should be): ' num2str(100*(N_bad_routes/

N_run)) '%'])
367

368 % Optimization time
369 disp(' ')
370 disp('

##'
)

371 disp('Average Time Consumption per iteration')
372 disp([' #FR_VP: ' num2str(T_fr/N_run)])
373 disp([' #CR: ' num2str(T_cr/N_run)])
374 disp([' #DR: ' num2str(T_dr/N_run)])
375 % disp([' #CR_TSA: ' num2str(T_cr_tsa/N_run)])
376 % disp([' #DR_TSA: ' num2str(T_dr_tsa/N_run)])
377

378

379 %%

B.2 System Constants

scr_constants.m (user-defined system parameters)

1 clc, clear all, close all
2 %%%
3 % System parameters (fixed)
4

5 % Reference gain factor 30dB
6 G_1 = 10^3;
7 % path−loss−exponent
8 k = 3.5;
9 % Link margin 40dB

10 M_l = 10^4;
11 % Bandwith [Hz]
12 B = 10000;
13 % Additive noise power, −174dBm
14 sigma_2 = 10^−17.4;
15 % Noise figure
16 N_f = 10;
17 % Interference power
18 I = 0;
19 % Packet length [bits]
20 L_pkt = 2048;
21 % Max Tx power [mW]

76 APPENDIX B. MATLAB SCRIPTS

22 P_max = 250;
23 % Transision time [ms]
24 T_tr = 5e−3;
25 % PA drain efficency parameter
26 eta = 0.35;
27 % Calculate total noise and interference power [mW]
28 N_tot = 2*B*sigma_2*N_f + I;
29

30 %%% Circuit power
31

32 P_mix = 30.3;
33 P_syn = 50;
34 P_fil_tx = 2.5;
35 P_fil_rx = P_fil_tx;
36 P_adc = 6.7;
37 P_dac = 15.4;
38 P_lna = 20;
39 P_ifa = 3;
40

41 % Total transmitter circuit power consumption (Constant)
42 P_ctx = P_mix + P_syn + P_fil_tx + P_dac;
43 P_crx = P_mix + P_syn + P_fil_rx + P_adc + P_lna + P_ifa;
44

45 % P_max = P_max − 0.5*P_ctx;
46 % P_ctx = 0.5*P_ctx;
47 % P_crx = 0.5*P_crx;
48

49 % Transision circuit power consumption
50 P_tr = P_syn;
51 % P_tr = 0;
52

53 %%%
54 % The bit step size
55

56 % b: bit per symbol
57

58 % Min b
59 b_min = 1;
60 % Max b
61 b_max = 20;
62 % b step size (continous mode)
63 b_stp = 0.01;
64

65 %%%
66 % Struct that hold system parameters, known to nodes
67 c_sys = struct('B', B, 'L_pkt', L_pkt, 'P_max', P_max, 'P_ctx',

P_ctx, 'P_crx', P_crx, 'P_tr', P_tr, 'T_tr', T_tr, 'N_tot'
, N_tot, 'G_1', G_1, 'k', k, 'M_l', M_l, 'b_min', b_min, '
b_max', b_max, 'b_stp', b_stp, 'eta', eta);

68

69 % Save wanted constants
70 save param_sys c_sys
71

72 % Clear workspace

B.3. ROUTE OPTIMIZATION 77

73 clear all

B.3 Route Optimization

Optimization routines: Continuous, Discrete and Channel Inversion.

B.3.1 Continuous

fnc_linkad_opt_c.m.

1 %%%
2 %
3 % function: fnc_linkad_opt_c
4 %
5 % Continuous modulation order route optimization. Uses

fmincon
6 %
7 % Input:
8 % c_sys: system parameters
9 % c_sim: simulation parameters

10 % ch_gains: Link gain vector
11 %
12 % Output:
13 % res: result vector of dimension Lx2, consists of
14 % b: Modulation order, −1 if no valid config exists
15 % P_tx: transmission power
16 %
17 %%%
18 function res = fnc_linkad_opt_c(c_sys, c_sim, ch_gains)
19 % Return transmission configuration: [b P_tx] (Both column

vectors)
20 % b = −1 for unsuccessful configuration
21

22 % b_ll and b_ul are vector of length L_route
23 % lower and upper limit for b vector
24 b_ll = c_sys.b_min*ones(1,c_sim.L_route);
25 b_ul = fnc_linkad_find_b_max(c_sys, c_sim, ch_gains);
26

27 % There is a link in the route too weak to be used.
28 % Return −1 for this and largest possible b for the others
29 br_ind = find(b_ul < b_ll);
30 if (length(br_ind) > 0)
31 % Debugging
32 % disp('b_ul < b_ll in fnc_linkad_opt_c(...)')
33 % b_ll
34 % b_ul
35 b_ul(br_ind) = −1;
36 p_tx_vec = zeros(1,c_sim.L_route);
37 res = [b_ul' p_tx_vec'];
38 return

78 APPENDIX B. MATLAB SCRIPTS

39 end
40

41 % Check if largest b meet time requirement
42 T_min = sum(fnc_calc_T(c_sys, c_sim, b_ul));
43 if(T_min > c_sim.T)
44

45 % Debugging
46 % disp('T_min > T_lim in fnc_linkad_opt_c(...)')
47 % T_min
48 % c_sim.T
49

50 res = [−1*ones(c_sim.L_route,1) zeros(c_sim.L_route,1)
];

51 return
52

53 end
54

55 % Optimization routine
56 options_tmp = optimset('fmincon');
57 % options = optimset(options_tmp,'LargeScale','off', '

TolCon', 0, 'TolFun', 1e−6, 'TolX', 0.0001, 'Diagnostics',
'off', 'Display', 'off', 'FunValCheck', 'on');

58 options = optimset(options_tmp,'LargeScale','off','TolCon',
1e−5, 'TolFun', 1e−3, 'TolX', 1e−3, 'Diagnostics', '

off', 'Display', 'off', 'FunValCheck', 'on');
59 [b_opt,exitflag] = fmincon(@E_tot, b_ul, [], [], [], [],

b_ll, b_ul, @T_tot, options);
60 % Extra output values, for debugging:
61 % [b,fval,exitflag,output,lambda,grad,hessian]
62 % exitflag
63

64

65 if (exitflag < 0)% No solution found, exitflag −1
66 exitflag
67 output
68 lambda
69 % pause
70 res = [−1*ones(c_sim.L_route,1) zeros(c_sim.L_route,1)

];
71 else % Solution found
72 p_tx_vec = fnc_calc_P_tx(c_sys, c_sim, b_opt, ch_gains)

;
73 res = [b_opt' p_tx_vec'];
74 end
75

76 %%%%%%%% Nested functions
77

78 % Energy (Objective function)
79 function E = E_tot(x)
80 % Find transmission power associated with rate

vector
81 P_tx = fnc_calc_P_tx(c_sys, c_sim, x, ch_gains);
82 % Find total energy consumption
83 E = sum(fnc_calc_E(c_sys, c_sim, x, P_tx));

B.3. ROUTE OPTIMIZATION 79

84

85 end
86

87 % Time (Nonlinear constraint)
88 function [c, ceq] = T_tot(y)
89

90 % Time
91 T_tot = sum(fnc_calc_T(c_sys, c_sim, y));
92 c = T_tot − c_sim.T;
93 ceq = [];
94

95 end
96

97 end

B.3.2 Discrete

fnc_linkad_opt_d.m.

1 %%%
2 % function: fnc_linkad_opt_d
3 %
4 % Discrete modulation order route optimization. Implements
5 % energy−greedy optimization algorithm.
6 %
7 % Input:
8 % c_sys: system parameters
9 % c_sim: simulation parameters

10 % ch_gains: Link gain vector
11 %
12 % Output:
13 % res: result vector of dimension Lx2, consists of
14 % b: Modulation order, −1 if no valid config exists
15 % P_tx: transmission power
16 %
17 %%%
18 function res = fnc_linkad_opt_d(c_sys, c_sim, ch_gains)
19

20 res = zeros(c_sim.L_route,2);
21 E_chk = zeros(1,c_sim.L_route);
22 T_chk = zeros(1,c_sim.L_route);
23

24 % b_ul and b_ll are vectors of length L_route
25 b_ul = floor(fnc_linkad_find_b_max(c_sys, c_sim, ch_gains));
26 % b_ll = c_sys.b_min*ones(1,c_sim.L_route);
27

28 % Check if any links in the route are too weak
29 br_ind = find(b_ul < c_sys.b_min);
30 if (length(br_ind) > 0)
31

32 % Debugging:
33 % disp('b_ul < b_ll in fnc_linkad_opt_d(...)')

80 APPENDIX B. MATLAB SCRIPTS

34 % b_ll
35 % b_ul
36

37 b_ul(br_ind) = −1;
38 p_tx_vec = zeros(1,c_sim.L_route);
39

40 res = [b_ul' p_tx_vec'];
41 return
42 end
43

44 % Check if the largest possible b vector meets the time
requirement

45 T_min = sum(fnc_calc_T(c_sys, c_sim, b_ul));
46 if (T_min > c_sim.T)
47

48 % Debugging:
49 % disp('T_min > T_lim in fnc_linkad_opt_d(...)')
50 % T_min
51 % c_sim.T
52

53 res = [−1*ones(c_sim.L_route,1) zeros(c_sim.L_route,1)];
54 return
55

56 end
57

58 % Initial check passed, running through algorithm
59 b_opt = b_ul;
60 p_tx_opt = fnc_calc_P_tx(c_sys, c_sim, b_opt, ch_gains);
61 E_opt = sum(fnc_calc_E(c_sys, c_sim, b_opt, p_tx_opt));
62

63 go = 1;
64 while (go)
65

66 b_prev_opt = b_opt;
67

68 for n = 1:c_sim.L_route
69 % Decrease b with 1 for each hop
70 b_tmp = b_prev_opt;
71 b_tmp(n) = b_tmp(n) − 1;
72 %Check if valid constellation size
73 %Set invalid b to large value
74 if (b_tmp(n) ≥ c_sys.b_min)
75 T_tmp = sum(fnc_calc_T(c_sys, c_sim, b_tmp));
76 if (T_tmp ≤ c_sim.T)
77 p_tx_tmp = fnc_calc_P_tx(c_sys, c_sim, b_tmp,

ch_gains);
78 E_tmp = sum(fnc_calc_E(c_sys, c_sim, b_tmp,

p_tx_tmp));
79 if (E_tmp < E_opt)
80 E_opt = E_tmp;
81 b_opt = b_tmp;
82 p_tx_opt = p_tx_tmp;
83 end
84 end

B.3. ROUTE OPTIMIZATION 81

85 end
86 end %end FOR
87

88 if (b_prev_opt == b_opt)
89 go = 0;
90 end
91

92

93 end%End WHILE
94

95 res = [b_opt' p_tx_opt'];
96

97 return

B.3.3 Channel Inversion

fnc_nonad_opt.m.

1 %%%
2 %
3 % function: fnc_nonad_opt
4 %
5 % Channel inversion, fixed rate route configuration.
6 %
7 % Input:
8 % c_sys: system parameters
9 % c_sim: simulation parameters

10 % ch_gains: Link gain vector
11 %
12 % Output:
13 % res: result vector of dimension Lx2, consists of
14 % b: Modulation order, −1 if no valid config exists
15 % P_tx: transmission power
16 %
17 %%%
18 function res = fnc_nonad_opt(c_sys, c_sim, ch_gains)
19

20 res = zeros(c_sim.L_route, 2);
21

22 % Time Slots
23 % T_hop = (c_sim.T − c_sys.T_tr*c_sim.L_route)/c_sim.L_route;
24

25 % Transmission power
26 b_vec = c_sim.b_fix*ones(1,c_sim.L_route);
27 p_tx_vec = fnc_calc_P_tx(c_sys, c_sim, b_vec, ch_gains);
28

29 b_ul = fnc_linkad_find_b_max(c_sys, c_sim, ch_gains);
30 T_used = sum(fnc_calc_T(c_sys, c_sim, b_vec));
31

32 br_ind = find(b_vec > b_ul);
33

34 if (length(br_ind) > 0)

82 APPENDIX B. MATLAB SCRIPTS

35

36 % disp('b_ul < b_ll in fnc_nonad_opt(...)')
37 % b_vec
38 % b_ul
39

40 b_vec(br_ind) = −1;
41 p_tx_vec = fnc_calc_P_tx(c_sys, c_sim, b_ul, ch_gains);
42

43 res = [b_vec' p_tx_vec'];
44 return
45

46 elseif (T_used > c_sim.T)
47

48 % disp('T_min > T_lim in fnc_nonad_opt_d(...)')
49 % T_used
50 % c_sim.T
51

52 res = [−1*ones(c_sim.L_route,1) zeros(c_sim.L_route,1)];
53 return
54

55 end
56

57 res = [b_vec' p_tx_vec'];
58

59 return

B.4 Transmission

fnc_route_tx.m

1 %%%
2 %
3 % function: fnc_route_tx
4 %
5 % Packet transmission over given route, using given route
6 % configuration. Hop−by−hop transmission, terminates if

error in
7 % previous hop.
8 %
9 % Input:

10 % c_sys: system parameters
11 % c_sim: simulation parameters
12 % g_vec: Link gain vector
13 % r_cnf: Route configuration (mod.order and tr.power)
14 % fix_p: Boolen value. Transmit at max power if 1, use

given congif if
15 % 0
16 %
17 % Output:
18 % res_matr: Result matrix, dimestion Lx6, each row consists

of

B.4. TRANSMISSION 83

19 % per−hop results:
20 % flag: status flag. 1: OK, 0, err in previous hop, −1:

tr. error
21 % b: modulation order
22 % P: transmission power
23 % T: transmission time
24 % E: energy consumption
25 % SNR: received SNR
26 %
27 %%%
28 function res_matr = fnc_route_tx(c_sys, c_sim, g_vec, r_cnf,

fix_p)
29 % res_matr: [flag b P T E SNR]
30 % r_cnf: [b P]: −1 no valid b, −2 could not meet snr.
31

32 % TODO: make retransmission−routine!
33 % flag suggestion:
34 % −1: snr error
35 % 0: error in prev. hop
36 % 1: ok
37

38 % Initiate variables
39 res_matr = zeros(c_sim.L_route,6);
40 err_ind = find(r_cnf(:,1) < 1);
41

42 % Check if fixed power is to be used
43 if (fix_p)
44 P_tx_max = fnc_calc_P_tx_max(c_sys, c_sim.b_fix);
45 r_cnf(:,2) = ones(c_sim.L_route,1)*P_tx_max;
46 end
47

48 % Check if configuration is valid
49 if (length(err_ind) > 0)
50 disp('Invalid configuration accepted in route_tx')
51 r_cnf
52 pause
53 end
54

55 % Transmit hop−by−hop. Cancel if a transmission error occurs
56 res_matr(1,:) = fnc_hop_tx(c_sys, c_sim, g_vec(1), r_cnf(1,1),

r_cnf(1,2));
57 for(n = 2:c_sim.L_route)
58 if(res_matr(n−1,1) == 1)
59 res_matr(n,:) = fnc_hop_tx(c_sys, c_sim, g_vec(n),

r_cnf(n,1), r_cnf(n,2));
60 else
61 res_matr(n,:) = [0 0 0 0 0 0];
62 end
63 end
64

65 return

84 APPENDIX B. MATLAB SCRIPTS

fnc_hop_tx.m

1 %%%
2 %
3 % function: fnc_hop_tx
4 %
5 % Transmission over a single hop. Compares calculated,

received
6 % SNIR with required threshold for given modulation order
7 %
8 % Input:
9 % c_sys: system parameters

10 % c_sis: simulation parameters
11 % g: Link gain
12 % b: modulation order
13 % P_t: Transmission power
14 %
15 % Output:
16 % res: Result vector, consisting of:
17 % flag: 1 if success, −1 if fail
18 % b: modulation order
19 % P_t: Transmission power
20 % T: Transmission time
21 % E: Used energy
22 % snr_rec: Received SNIR
23 %
24 %%%
25 function res = fnc_hop_tx(c_sys, c_sim, g, b, P_t);
26 % [flag b P T E snr_rec]
27 %
28

29 % % Debugging
30 % if(P_t == 1)
31 % disp('*** Minimum Tx power used! ***')
32 % elseif (P_t < 1)
33 % disp('*** Even smaller TX power used ***')
34 % end
35

36 % if (b > c_sys.b_max)
37 % disp('b exeeds b_max in fnc_hop_tx(...)')
38 % g
39 % b
40 % P_t
41 % pause
42 % end
43

44 flag = 1;
45 % Find minimum SNR threshold
46 snr_min = fnc_calc_snr_min(c_sim.P_b, b, 0); % No extra margin

here
47 snr_rec = P_t*g/(c_sys.N_tot);
48 T = fnc_calc_T(c_sys, c_sim, b);
49 E = fnc_calc_E(c_sys, c_sim, b, P_t);

B.5. RESULT PRESENTATION 85

50

51 if (snr_rec < snr_min)
52 if (abs(snr_rec−snr_min) > 0.0001)
53 flag = −1;
54 % % Debugging
55 % disp(['SNR ERROR IN TRANSMISSION!'])
56 % disp(['Received SNR: ' num2str(10*log10(snr_rec)) '

dBm'])
57 % disp(['Required SNR: ' num2str(10*log10(snr_min)) '

dBm'])
58 end
59 end
60

61 % Return hop results
62 res = [flag b P_t T E snr_rec];
63 return

B.5 Result Presentation

fnc_route_calc_res.m

1 %%%
2 %
3 % function: fnc_route_calc_res
4 %
5 % Calculates the averages of a route transmission
6 %
7 % Input:
8 % c_sim: system parameters
9 % hop_res: Matrix of hop results. L rows

10 % conf_succ: Boolean value if the configuration was
successful.

11 %
12 % Output:
13 % res: Route averages, consisting of:
14 % flag: status flag. 1: OK, −1: setup err, −2: Tx err
15 % E: Total energy consumption
16 % T: Total end−to−end delay
17 % b_avg: average modulation order
18 % P_avg: average transmission power
19 %
20 %%%
21 function res = fnc_route_calc_res(c_sim, hop_res, conf_succ)
22 % route_res: [flag b P T E SNR]
23 % acc_res: [flag E T b_avg P_avg] 1: OK, −1: setup err, −2: Tx

err
24

25 res = zeros(1,5);
26

27 if (conf_succ)
28 % Energy consumed also if failed transmission

86 APPENDIX B. MATLAB SCRIPTS

29 res(2) = sum(hop_res(:,5)); % acc energy
30 if (length(find(hop_res(:,1) > 0)) == c_sim.L_route)
31 res(1) = 1; %OK
32 res(3) = sum(hop_res(:,4)); % end−to−end time, if succ
33 res(4) = mean(hop_res(:,2)); % avg b, if succ
34 res(5) = mean(hop_res(:,3)); % avg P, if succ
35 else
36 res(1) = −2; %TX error, energy is still used
37 end
38 else
39 res(1) = −1; %Setup error
40 end

print_results.m

1 %%%
2 % function: print_results
3 %
4 % Presents the detailed route results in table form
5 %
6 % Input:
7 % c_sys: system parameters
8 % c_sim: simulation parameters
9 % res: Result matrix, number of rows equals numbers of hops

in route
10 %
11 % Output:
12 % none
13 %
14 %%%
15 function print_results(c_sys, c_sim, res)
16 % res: [flag b P T E SNR]
17

18 disp(['|−−−−−−−|−−−−−−−−|−−−−−−−|−−−−−−−
−−−−−−−−|−−−−−−−−−|−−−−−−−−−−−|'])

19 disp(['| Hop | flag | b | Ptx | T_on |E/bit[uJ]|
SNR[dB] |'])

20 disp(['|−−−−−−−|−−−−−−−−|−−−−−−−|−−−−−−−
−−−−−−−−|−−−−−−−−−|−−−−−−−−−−−|'])

21 for m=1:c_sim.L_route
22 if (res(m,6) > 0)
23 snr_db = 10*log10(res(m,6));
24 else
25 snr_db = 0;
26 end
27 [s_res, e_res] = sprintf('|%−7.0f|%−8.0f|%−7.2f|%−7.2f

|%−8.2f|%−9.2f|%−11.2f|', m,res(m,1:4),1000*res(m,5)/
c_sys.L_pkt, snr_db);

28 disp(s_res)
29 end
30 disp(['|−−−−−−−|−−−−−−−−|−−−−−−−|−−−−−−−

−−−−−−−−|−−−−−−−−−|−−−−−−−−−−−|'])
31

B.5. RESULT PRESENTATION 87

32 if (length(find(res(:,1) == 1)) == c_sim.L_route)
33 disp('***** Transmission OK *****')
34 E_total = sum(res(:,5));
35 E_per_bit = E_total/c_sys.L_pkt;
36 E_per_bit_dBm = 10*log10(E_per_bit);
37 T_total = sum(res(:,4));
38 T_mean = mean(res(:,4));
39 E_per_bit_per_hop = mean(res(:,5))/c_sys.L_pkt;
40 E_per_bit_per_hop_dB = 10*log10(E_per_bit_per_hop);
41

42 disp([' Total energy consumtion: ' num2str(E_total) ' mJ'])
43 disp([' Total end−to−end time : ' num2str(T_total) ' ms'])
44 disp([' Average T_on per hop: ' num2str(T_mean) ' ms'])
45 else
46 disp('***** Transmission ERROR *****')
47 end
48

49 return

print_accum_res.m

1 %%%
2 % function: print_accum_res
3 %
4 % Calculates simulation averages and presents results.
5 %
6 % Input:
7 % c_sys: system parameters
8 % c_sim: simulation parameters
9 % res: Result matrix, number of rows equals numbers of

simulation runs
10 % N_tot: Number of runs (for result validation)
11 %
12 % Output:
13 % res: result vector of dimension Lx2, consists of
14 % E_b_avg: Average energy consumption per bit
15 % P_tx_avg: Average transmission power
16 % err_rate: Total error rate
17 %
18 %%%
19 function [E_b_avg, P_tx_avg, err_rate] = print_accum_res(c_sys,

c_sim, res, N_tot)
20 % [flag E T b_avg P_avg] 1: OK, −1: setup, err, −2: Tx err
21

22 N_ok = length(find(res(:,1) == 1));
23 N_ok_re = length(find(res(:,1) == 2));
24 N_err_setup = length(find(res(:,1) == −1));
25 N_err_tx = length(find(res(:,1) == −2));
26

27 ind_ok = find(res(:,1) > 0);
28 res_ok = res(ind_ok,:);
29

30 if (N_ok + N_ok_re + N_err_setup + N_err_tx 6= N_tot)

88 APPENDIX B. MATLAB SCRIPTS

31 disp('Err/Corr count fault!')
32 return
33 end
34

35 N_ok_tot = N_ok + N_ok_re;
36 N_err_tot = N_err_setup + N_err_tx;
37 err_rate = 100*(N_err_tot)/N_tot;
38

39 if (N_err_tot > 0)
40 err_rate_su = 100*(N_err_setup/N_err_tot);
41 err_rate_tx = 100*(N_err_tx/N_err_tot);
42 else
43 err_rate_su = 0;
44 err_rate_tx = 0;
45 end
46

47 % % % % Not implemented
48 % if (N_ok_re > 0)
49 % retrans_rate = 100*(N_ok_re/N_ok_tot);
50 % else
51 % retrans_rate = 0;
52 % end
53

54 if (N_ok_tot > 0)
55

56 E_p_avg = mean(res_ok(:,2));
57 E_p_max = max(res_ok(:,2));
58 E_p_min = min(res_ok(:,2));
59

60 E_b_avg = E_p_avg/c_sys.L_pkt;
61 E_b_avg_dbm = 10*log10(E_b_avg);
62

63 T_avg = mean(res_ok(:,3));
64 T_max = max(res_ok(:,3));
65 T_min = min(res_ok(:,3));
66

67 b_avg = mean(res_ok(:,4));
68 P_tx_avg = mean(res_ok(:,5));
69

70 disp([' *Energy per packet [mJ]:'])
71 disp([' − Mean: ' num2str(E_p_avg) ', Max: ' num2str(

E_p_max) ', Min: ' num2str(E_p_min)])
72 disp([' *Energy per bit [mJ]:'])
73 disp([' − Mean: ' num2str(E_b_avg) ' (' num2str(

E_b_avg_dbm) ' dBm)'])
74 disp([' *Time per packet[ms]:'])
75 disp([' − Mean: ' num2str(T_avg) ', Max: ' num2str(

T_max) ', Min: ' num2str(T_min)])
76 disp([' *Bit per symbol (mean): ' num2str(b_avg)])
77 disp([' *Tx power(mean) [mW]: ' num2str(P_tx_avg)])
78 disp([' *Error rate: ' num2str(err_rate) ' % (Setup: '

num2str(err_rate_su) ', %, Tx: ' num2str(err_rate_tx) '
%)'])

79 % disp([' *Retransmissions: ' num2str(retrans_rate) ' %'])

B.5. RESULT PRESENTATION 89

80

81 if(T_max > c_sim.T)
82 if (abs(T_max − c_sim.T) > 0.0001)
83 disp('Time Capacity Breached!!!!')
84 disp(['Time [s]: ' num2str(T_max/1000)])
85 disp(['Limit [s]: ' num2str(c_sim.T/1000)])
86 pause
87 end
88 end
89

90 else
91 disp([' All transmissions failed!'])
92 disp([' *Error rate: ' num2str(err_rate) ' % (Setup: '

num2str(err_rate_su) ', %, Tx: ' num2str(err_rate_tx) '
%)'])

93 % disp([' *Retransmissions: ' num2str(retrans_rate) ' %'])
94 E_b_avg = 1;
95 P_tx_avg = 0;
96 end
97

98 return

print_setup.m

1 %%%
2 % function: print_setup
3 %
4 % Presents the route configuration details.
5 %
6 % Input:
7 % d: Hop lengths
8 % g: Channel gains
9 % g_misad: Channel gains with added misadjustment

10 %
11 % Output:
12 % none
13 %
14 %%%
15 function print_setup(c_sys, c_sim, setup)
16

17 disp(['|−−−−−−−|−−−−−−−−|−−−−−−−|'])
18 disp(['| Hop | flag | Ptx | '])
19 disp(['|−−−−−−−|−−−−−−−−|−−−−−−−|'])
20 for m=1:c_sim.L_route
21 [s_res, e_res] = sprintf('|%−7.0f|%−8.0f|%−7.2f|', m,setup(

m,:));
22 disp(s_res)
23 end
24 disp(['|−−−−−−−|−−−−−−−−|−−−−−−−|'])
25

26 return

90 APPENDIX B. MATLAB SCRIPTS

print_route_info.m

1 %%%
2 % function: print_route_info
3 %
4 % Presents route information.
5 %
6 % Input:
7 % d: Hop lengths
8 % g: Channel gains
9 % g_misad: Channel gains with added misadjustment

10 %
11 % Output:
12 % none
13 %
14 %%%
15 function print_route_info(d, g , g_misad)
16

17 disp(['
|−−−−−−−−−|−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−|−−−−−−−−−−−|'
])

18 disp(['| Hop | d | g_re | g_est | est_err
|'])

19 disp(['
|−−−−−−−−−|−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−|−−−−−−−−−−−|'
])

20

21 for (m=1:length(d))
22 g_dev = (100*(g(m)−g_misad(m))/g(m));
23 [s_ch, e_ch] = sprintf('|%−9.0f|%−9.2f|%−10.2f|%−9.2f

|%−11.1f|',m,d(m),10*log10(g(m)),10*log10(g_misad(m)),
g_dev);

24 disp(s_ch);
25 end
26 disp(['

|−−−−−−−−−|−−−−−−−−−|−−−−−−−−−−|−−−−−−−−−|−−−−−−−−−−−|'
])

27

28

29 return

B.6. MISC. FUNCTIONS 91

B.6 Misc. Functions

fnc_ch_create.m

1 %%%
2 %
3 % function: fnc_ch_create
4 %
5 % Creates a route of the desired length, each hop modeled

as
6 % a Rayleigh−distributed random variable
7 %
8 % Input:
9 % m: Distribution parameter

10 % L: Route length
11 %
12 % Output:
13 % r: Route hop lengths, 1xL vector
14 %
15 %%%
16 function r = fnc_ch_create(m,L)
17

18 prm = ones(1,L)*m;
19 r = raylrnd(prm);
20

21 return

fnc_ch_calc_gain.m

1 %%%
2 %
3 % function: fnc_ch_calc_gain
4 %
5 % Calculates the channel gain vector
6 %
7 % Input:
8 % G_1: Gain factor
9 % k: Path loss exponent

10 % M_l: Link margin
11 % d: Hop length vector
12 %
13 % Output:
14 % g: Link gains per hop
15 %
16 %%%
17 function g = fnc_ch_calc_gain(G_1,k,M_l,d)
18

19 g = 1./(G_1*d.^k*M_l);
20

21 return

92 APPENDIX B. MATLAB SCRIPTS

fnc_ch_gain_misad.m

1 %%%
2 %
3 % function: fnc_ch_gain_misad
4 %
5 % Add link state information estimation error of desired

severity. If
6 % desired, uniform distribution of the error can be

selecteder
7 %
8 % Input:
9 % g: Link gain vector

10 % a: Misadjustment severity, in \%
11 % gauss: Boolean value. Gaussion−distributed error if 1,

uniform if 0
12 %
13 % Output:
14 % g_ad: New, misadjusted link gain vector.
15 %
16 %%%
17

18 function g_ad = fnc_ch_gain_misad(g,a,gauss)
19

20 if (gauss) % Gaussian dist of error
21 v_ad = randn(size(g));
22 else % Uniform dist of error
23 v_ad = rand(size(g)) − 0.5;
24 end
25

26 g_ad = g.*(1 + v_ad*a/100);
27

28 return

fnc_linkad_find_b_max.m

1 %%%
2 %
3 % function: fnc_linkad_find_b_max
4 %
5 % Calculates the maximum modulation order per hop for a

given route
6 %
7 % Input:
8 % c_sys: system parameters
9 % c_sim: simulation parameters

10 % g_vec: Link gain vector
11 %
12 % Output:
13 % b_max: Maximum modulation order vector
14 %
15 %%%

B.6. MISC. FUNCTIONS 93

16 function b_max = fnc_linkad_find_b_max(c_sys, c_sim, g_vec)
17

18 b_max = zeros(1,length(g_vec));
19

20 % modulation order vector
21 b = c_sys.b_min:c_sys.b_stp:c_sys.b_max;
22

23 % SNR limits
24 snr_lim_vec = fnc_calc_snr_min(c_sim.P_b, b, c_sim.pwr_m);
25 % Find required transmission power
26 P_tx_max_vec = fnc_calc_P_tx_max(c_sys, b);
27

28 for n = 1:length(g_vec)
29

30 % Largest received SNR for given hop
31 snr_r_max = (P_tx_max_vec*g_vec(n))/c_sys.N_tot;
32 % Find valid
33 inx = max(find(snr_r_max > snr_lim_vec));
34

35 % Select largest, if exists
36 if (length(inx) > 0)
37 b_max(n) = c_sys.b_min + (inx−1)*c_sys.b_stp;
38 else
39 b_max(n) = −1;
40 end
41

42 end
43

44 return

fnc_calc_P_tx.m

1 %%%
2 %
3 % function: fnc_calc_P_tx
4 %
5 % Calculate the power vector, given vectors g and b
6 % g and b must be of the same lengts (scalar or vector), or

one can
7 % be a scalar
8 %
9 % Input:

10 % c_sys: system parameters
11 % c_sim: simulation parameters
12 % b: modulation order vectors
13 % g: Link gain vector
14 %
15 % Output:
16 % p: power vector
17 %
18 %%%
19 function p = fnc_calc_P_tx(c_sys, c_sim, b, g)
20

94 APPENDIX B. MATLAB SCRIPTS

21 if ((length(b) > 1) && (length(g) > 1))
22 if (length(b) 6= length(g))
23 disp('ERROR IN fnc_calc_P_tx. If b and p vector, they

must be of same length')
24 b_length = length(b)
25 p_length = length(g)
26 end
27 end
28

29 snr_min = fnc_calc_snr_min(c_sim.P_b, b, c_sim.pwr_m);
30 p = (c_sys.N_tot./g).*snr_min;
31

32 return

fnc_calc_P_tx_max.m

1 %%%
2 %
3 % function: fnc_calc_P_tx_max
4 %
5 % Calculates the maximum available transmission power for a
6 % given modulation order
7 %
8 % Input:
9 % c_sys: system parameters

10 % b: modulation order vector (or scalar)
11 %
12 % Output:
13 % P_tx_max: Max power vector. Same dimension as b
14 %
15 %%%
16 function P_tx_max = fnc_calc_P_tx_max(c_sys, b);
17

18 alph_vec = fnc_calc_PA_eff_fac(c_sys.eta, b);
19 P_tx_max = (c_sys.P_max − c_sys.P_ctx)./(1 + alph_vec);
20

21 return

fnc_calc_PA_eff_fac.m

1 %%%
2 %
3 % function: fnc_calc_PA_eff_fac
4 %
5 % Calculates the PA effeiency factor, alpha, as function of
6 % modulation order
7 %
8 % Input:
9 % eta: PA drain efficiency

10 % b: modulation order vector (or scalar)
11 %
12 % Output:

B.6. MISC. FUNCTIONS 95

13 % alpha: Power efficiency vector. Same dimension as b
14 %
15 %%%
16 function alpha = fnc_calc_PA_eff_fac(eta, b)
17

18 indx = find(b ≤ 2);
19 b(indx) = 2;
20 ksi = 3*((sqrt(2.^b)−1)./(sqrt(2.^b)+1));
21 alpha = ksi/eta − 1;
22

23 return

fnc_calc_snr_min.m

1 %%%
2 %
3 % function: fnc_calc_snr_min
4 %
5 % Calculates the required received SNIR threshold, given a

target
6 % BER and a modulation order
7 %
8 % Input:
9 % Pb: Target BER (scalar)

10 % b: modulation order vector (or scalar)
11 % pwr_m: Extra safety margin
12 %
13 % Output:
14 % gma_min: SNIR theshold vector. Same dimension as b
15 %
16 %%%
17 function gma_min = fnc_calc_snr_min(Pb, b, pwr_m)
18

19 % Debugging
20 if (find(b ≤ 0))
21 disp('b is 0!!!')
22 end
23

24 gma_min = zeros(1,length(b));
25

26 ind_psk = find(b < 2);
27 ind_qam = find(b ≥ 2);
28

29 b_psk = b(ind_psk);
30 b_qam = b(ind_qam);
31

32 gma_psk = log(2./(Pb*b_psk)).*(1./(sin(pi./(2.^b_psk)).^2))

*(1+pwr_m/100);
33 gma_qam = log((4*(1−(1./sqrt(2.^b_qam))))./(Pb*b_qam))

.*(((2.^b_qam)−1)*(2/3))*(1+pwr_m/100);
34

35 gma_min(ind_psk) = gma_psk;
36 gma_min(ind_qam) = gma_qam;

96 APPENDIX B. MATLAB SCRIPTS

37

38 return

fnc_calc_T.m

1 %%%
2 %
3 % function: fnc_calc_T
4 %
5 % Calcualates the transmission time for each
6 % hop, including the transient time for the receiving node
7 %
8 % Input:
9 % c_sys: system parameters

10 % c_sim: simulation parameters
11 % b: modulation order vector (or scalar)
12 %
13 % Output:
14 % T_vec: Vector of transmission times. Same dimension as b
15 %
16 %%%
17 function T_vec = fnc_calc_T(c_sys, c_sim, b)
18 T_vec = zeros(1,length(b));
19

20 K = (c_sys.L_pkt/c_sys.B)*1000;
21 T_vec = K./b + c_sys.T_tr;
22

23 return

fnc_calc_E.m

1 %%%
2 %
3 % function: fnc_calc_E
4 %
5 % Calculates the energy consumption per hop, based on route
6 % configuration vector and channel gain vector
7 %
8 % Input:
9 % c_sys: system parameters

10 % c_sim: simulation parameters
11 % b: modulation order vector
12 % P_tx: power vector
13 %
14 % Output:
15 % E_vec: Energy vector
16 %
17 %%%
18 function E_vec = fnc_calc_E(c_sys, c_sim, b, P_tx)
19

20 % Check if b and P_tx vecors of same dimension
21 if ((length(b) > 1) && (length(P_tx) > 1))

B.6. MISC. FUNCTIONS 97

22 if (length(b) 6= length(P_tx))
23 disp('ERROR IN calc_E. If b and P_tx vectors, they

must be of same length')
24 b
25 P_tx
26 size(b)
27 size(P_tx)
28 pause
29 end
30 end
31

32 E_vec = zeros(1,length(b));
33

34 % The power effiency for each hop
35 alph_vec = fnc_calc_PA_eff_fac(c_sys.eta, b);
36 % Transmission time
37 K = (c_sys.L_pkt/c_sys.B)*1000;
38 T_on = K./b;
39 % Energy penalty for transient time
40 E_tr = c_sys.P_tr*c_sys.T_tr*length(b);
41 % Energy vector
42

43 % With power consumption:
44 E_vec = ((1+alph_vec).*P_tx.*T_on + (c_sys.P_ctx+c_sys.

P_crx).*T_on + E_tr)/1000;
45

46 return

fnc_show_snr_limits.m

1 %%%
2 %
3 % function: fnc_show_snr_limits
4 %
5 % Shows the SNR limits for some modulation orders
6 %
7 % Input:
8 % c_sys: system parameters
9 % c_sim: simulation parameters

10 %
11 % Output:
12 % none
13 %
14 %%%
15 function fnc_show_snr_limits(c_sys, c_sim)
16

17

18 b_cont = c_sys.b_min:c_sys.b_stp:c_sys.b_max;
19 b_disc = 1:1:c_sys.b_max;
20

21 gma_min_d = fnc_calc_snr_min(c_sim.P_b, b_disc, 0);
22 gma_min_c = fnc_calc_snr_min(c_sim.P_b, b_cont,0);
23

98 APPENDIX B. MATLAB SCRIPTS

24

25 disp(' ')
26 disp(['SNR−limits for MQAM, Target BER = ' num2str(c_sim.

P_b)])
27 disp(['| b | SNR | dB |'])
28 disp(['|−−−−−−−|−−−−−−−−−|−−−−−−−−|'])
29 for m=1:c_sys.b_max
30 [s1, e1] = sprintf('%−7.0f', m);
31 [s2, e2] = sprintf('%−9.1f', (gma_min_d(m)));
32 [s3, e3] = sprintf('%−8.3f', (10*log10(gma_min_d(m))));
33 disp(['|' s1 '|' s2 '|' s3 '|'])
34 end
35 disp(['|−−−−−−−|−−−−−−−−−|−−−−−−−−|'])
36

37 % figure,plot(b_cont,10*log10(gma_min_c)), grid on
38 % hold on
39 % stem(1:b_max,10*log10(gma_min_d))
40

41 return

B.7 Network Analysis

scr_nw.m

1 clear all
2 close all
3 clc
4

5 x_size = 200; %Area size
6 N_nd = 100; % # Nodes
7 N_cl = 3; % Find averages of N_cl closest for each
8

9 N_runs = 100;
10

11 res = zeros(N_nd*N_runs,1);
12 res_route = zeros(N_runs,6);
13

14 % big counter
15 for bc=1:N_runs
16

17 clear nodes
18 clear dst
19

20 disp([num2str(bc) '/' num2str(N_runs)])
21

22 % Create network
23 nw = nt_fnc_create_nw(x_size,N_nd);
24

25 % Find random sink
26 sink = ceil(rand*N_nd);
27

B.7. NETWORK ANALYSIS 99

28 %%
29 % Find average of N closest node, which closer to sink than

itself, for
30 % all nodes
31

32 % Find min max and avg of N_cl nodes, in direction of
center

33

34 for n=1:N_nd
35 if (n 6= sink)
36 res((bc−1)*N_nd+n) = nt_fnc_find_M_closest(nw,n,

sink,N_cl);
37 end
38 end
39

40 %%
41 % Find a route from a random node to the sink, using

shortest−hop
42 % algorithm
43

44 % Choose a random node
45 nodes(1) = ceil(rand*N_nd);
46

47 n = 1;
48 go = 1;
49

50 % While sink not reached
51 while (go)
52

53 % Find next node towards sink
54 [hop,node_next] = nt_fnc_next_node(nw,nodes(n),sink);
55 % Vector of distances
56 dst(n) = hop;
57 % Vector of node indices
58 nodes(n+1)= node_next;
59 if (node_next == sink)
60 % Sink found
61 go = 0;
62 end
63 n = n + 1;
64 end
65

66 if (bc == N_runs)
67 fig_route = 1;
68 else
69 fig_route = 0;
70 end
71

72 %Calc route stats
73 res_route(bc,:) = nt_fnc_show_route(nw, nodes, dst, x_size,

fig_route);
74 end
75

76 %%

100 APPENDIX B. MATLAB SCRIPTS

77 % Extract stats
78

79 % Remove the nodes closest to the sink (returned negative
values)

80 indxs = find(res > 0);
81 res_mod = res(indxs);
82

83 % Extract the mean and variance of the results
84 res_avg = mean(res_mod);
85 res_var = var(res_mod);
86 res_min = min(res_mod);
87 res_max = max(res_mod);
88

89 n_bins = 50;
90 [res_bin, res_ind] = hist(res_mod,n_bins);
91 % res_nrm = sum(res_bin);
92 [res_bin_max, res_bin_max_ind] = max(res_bin);
93 res_bin_norm = res_bin./max(res_bin);
94 res_peak = res_ind(res_bin_max_ind);
95

96 % Extract stats from routes
97 % [N_hop, h_min, h_max, h_avg, d_shortest, d_route_tot]
98 avg_N_hop = mean(res_route(:,1));
99 d_hop_min = min(res_route(:,2));

100 d_hop_max = max(res_route(:,3));
101 d_hop_avg = mean(res_route(:,4));
102 d_straight_avg = mean(res_route(:,5));
103 d_route_avg = mean(res_route(:,6));
104

105 %%
106 % Show results
107

108 fig_hist = 2;
109 fig_pdf_rl = 3;
110 fig_cdf_rl = 4;
111

112 % Some key statistics
113 disp('Network statistics:')
114 disp([' Size of area___________________: ' num2str(x_size) '

x ' num2str(x_size)])
115 disp([' Number of nodes________________: ' num2str(N_nd)])
116 disp([' Nodes per square meter_________: ' num2str(N_nd/

x_size^2)])
117

118 disp(' ')
119 disp(['For every node, found the mean of distance to ' num2str(

N_cl)]);
120 disp(['closest nodes that are closer to sink than node itself:

'])
121 disp([' Stats from this:'])
122 disp([' Mean (of means)_____________: ' num2str(res_avg)

])
123 disp([' Variance (of means)_________: ' num2str(res_var)

])

B.7. NETWORK ANALYSIS 101

124 disp([' Smallest ___________________: ' num2str(res_min)
])

125 disp([' Largest ____________________: ' num2str(res_max)
])

126 disp([' Peak of histogram __________: ' num2str(res_peak)
])

127

128 disp(' ')
129 disp('Route statistics:')
130 disp([' # hops (using shortest hop)____: ' num2str(avg_N_hop)

])
131 disp([' Shortest hop___________________: ' num2str(d_hop_min)

])
132 disp([' Longest hop____________________: ' num2str(d_hop_max)

])
133 disp([' Average hop____________________: ' num2str(d_hop_avg)

])
134 disp([' Dst from source to sink_______ : ' num2str(

d_straight_avg)])
135 disp([' Total route length_____________: ' num2str(

d_route_avg)])
136

137

138 % Present plots
139

140 % Set limits for PDF/CDF x−axis
141 l_max = res_avg + res_var;
142 l_stp = l_max/n_bins;
143 lims = 0:1/100:l_max;
144 % Rayleigh PDF and CDF
145

146 pdf_rayl_pk = raylpdf(lims,res_peak);
147 pdf_chi2_pk = chi2pdf(lims,res_peak);
148 pdf_rayl_mn = raylpdf(lims,res_avg);
149 pdf_chi2_mn = chi2pdf(lims,res_avg);
150

151 cdf_rayl_pk = raylcdf(lims,res_peak);
152 cdf_rayl_mn = raylcdf(lims,res_avg);
153 cdf_chi2_pk = chi2cdf(lims,res_peak);
154 cdf_chi2_mn = chi2cdf(lims,res_avg);
155

156

157

158

159 fig = figure(fig_hist);
160 set(fig,'Name','Statistics of distance to M closest nodes,

towards sink');
161 hold on
162 norm_fac = max(pdf_chi2_mn);
163 bar(res_ind, res_bin_norm*norm_fac)
164 % plot(lims,pdf_rayl_pk,'r');
165 % plot(lims,pdf_chi2_pk,'g');
166 % plot(lims,pdf_rayl_mn/sum(pdf_rayl_mn),'g');
167 % plot(lims,pdf_chi2_mn/sum(pdf_chi2_mn),'r');

102 APPENDIX B. MATLAB SCRIPTS

168 % plot(lims,pdf_rayl_mn,'g');
169 plot(lims,pdf_chi2_mn,'r');
170 title('Chi−square, mean')
171

172 figure
173 hold on
174 norm_fac = max(pdf_rayl_mn);
175 bar(res_ind, res_bin_norm*norm_fac)
176 plot(lims,pdf_rayl_mn,'g');
177 title('rayleigh, mean')
178

179 figure
180 hold on
181 norm_fac = max(pdf_chi2_pk);
182 bar(res_ind, res_bin_norm*norm_fac)
183 plot(lims,pdf_chi2_pk,'g');
184 title('Chi−square, peak')
185

186 figure
187 hold on
188 norm_fac = max(pdf_rayl_pk);
189 bar(res_ind, res_bin_norm*norm_fac)
190 plot(lims,pdf_rayl_pk,'g');
191 title('rayleigh, peak')
192

193 % xlabel('Hop length [m]')
194 % ylabel('Relative Occurences/Probability')
195 % legend('Histogram','Rayleigh','Chi−squared');
196

197 % fig = figure(fig_cdf_rl);
198 % set(fig,'Name','CDF');
199 % hold on
200 % % plot(lims,cdf_rayl_pk,'r');
201 % % plot(lims,cdf_chi2_pk,'g');
202 % plot(lims,cdf_rayl_mn,'g');
203 % plot(lims,cdf_chi2_mn,'r');
204 % xlabel('Hop length [m]')
205 % ylabel('Probability')
206 % legend('Rayleigh','Chi−square');

nt_fnc_create_nw.m

1 %%%
2 %
3 % function: nt_fnc_create_nw
4 %
5 % Creates a random, 2−dimensional network of desired size

and density.
6 %
7 % Input:
8 % x: Network size, as side in square
9 % N: Number of nodes

10

B.7. NETWORK ANALYSIS 103

11 %
12 % Output:
13 % coord: x and y coordinates of N nodes, dimension 2xL
14 %
15 %%%
16 function coord = nt_fnc_create_nw(x,N)
17

18 coord = rand(2,N)*x − x/2;
19

20 % With sink node in (0,0) and numbered
21

22 % coord = zeros(2,N);
23 % coord(1,:) = 1:N;
24 % coord(2:3,:) = rand(2,N)*x − x/2;
25

26 return

nt_fnc_find_M_closest.m

1 %%%
2 %
3 % function: nt_fnc_find_M_closest
4 %
5 % Finds the average of the M closest nodes that are closer

to another,
6 % given node s than node n itself
7 %
8 % Input:
9 % nw: Coordingates of all nodes in network

10 % n: Index of node in question
11 % s: Index of sink node
12 % M: number of nodes to be found
13 %
14 % Output:
15 % M_mean: The mean of the distances from n to the M closes

nodes, in
16 % the direction of s.
17 %
18 %%
19 function M_mean = nt_fnc_find_M_closest(nw, n, s, M)
20

21 N = length(nw);
22 succ = 0;
23

24 % Large initial value, for comparison
25 % Store the M closest nodes, in direction of center
26 init_max = 10*max(nw(1,:));
27 dst_M_closest = 1000;
28

29 % The node in question, origin
30 node = nw(:,n);
31 % Center node, sink
32 sink = nw(:,s);

104 APPENDIX B. MATLAB SCRIPTS

33

34 % Distance from origin to sink
35 d_o_s = nt_fnc_node_dist(node,sink);
36

37 for m=1:N
38 % Distance from origin to node m
39 d_o_i = nt_fnc_node_dist(node,nw(:,m));
40 % Distance from other node to sink
41 d_i_s = nt_fnc_node_dist(nw(:,m),sink);
42

43 % Find the M closest nodes
44 % check that considered node is not sink, or closer
45 % to the sink than the other
46 if ((d_i_s < d_o_s) && (m 6= s))
47

48 % Check if node m is among the M closest nodes by by
comparing

49 % with the one furthest away (dst_shortest is sorted)
and that node

50 % is closer to considered than to sink
51 if((d_o_i < dst_M_closest(end)) && (d_o_s > d_o_i))
52 % If so, add to list of shortest
53 dst_M_closest(end) = d_o_i;
54 % Sort the list
55 dst_M_closest = sort(dst_M_closest);
56 succ = succ + 1;
57 end
58 end
59

60 end
61

62 % If no closer nodes found, the node is one if the M+1 nodes
closest

63 % to the sink. Disregard this result and return negative values
. Otherwise,

64 % return the min, max and avg of the list
65 if (succ < M)
66 M_mean = −1;
67 else
68 M_mean = mean(dst_M_closest);
69 end
70

71 return

nt_fnc_next_node.m

1 %%%
2 %
3 % function: nt_fnc_next_node
4 %
5 % Finds the next, closest node in direction of given sink.

Part of
6 % shortest−hop routing algorithm.

B.7. NETWORK ANALYSIS 105

7 %
8 % Input:
9 % nw: Coordingates of all nodes in network

10 % node_ind: Index of node in question
11 % sink_ind: Index of sink node
12 %
13 % Output:
14 % dst: Distance to the next node
15 % ind: Index of next node
16 %
17 %%%
18 function [dst, ind] = nt_fnc_next_node(nw,node_ind, sink_ind)
19

20 N = length(nw);
21 dst = 1000;
22 ind = 0;
23 node = nw(:,node_ind);
24 sink = nw(:,sink_ind);
25

26 %find dst to sink
27 d_o_s = nt_fnc_node_dist(node,sink);
28 for m=1:N %run through all other nodes
29

30 %find dst between other node and sink
31 d_i_s = nt_fnc_node_dist(nw(:,m),sink);
32 %if node is closer to sink
33 if (d_i_s < d_o_s)
34 %find dist between node and other node
35 d_o_i = nt_fnc_node_dist(node,nw(:,m));
36 %check if closer then best, and not self
37 if (d_o_i < dst && d_o_i > 0)
38 %Distance between node and next node
39 dst = d_o_i;
40 ind = m;
41 end
42 end
43 end
44

45 %if no closer node found, return distance to origin, and 0 as
next

46 if (ind == 0)
47 dst = d_o_s;
48 ind = sink_ind;
49 end
50

51 return

nt_fnc_show_route.m

1 %%%
2 %
3 % function: nt_fnc_show_route
4 %

106 APPENDIX B. MATLAB SCRIPTS

5 % Calculates Route statistics. Visualizes route if desired.
6 %
7 % Input:
8 % nw: Coordingates of all nodes in network
9 % nodes: Index of nodes in route

10 % x: Side of square network area
11 % fig_n: Boolean value. Show route in figure if 1.
12 %
13 % Output:
14 % res: Route stats, consists of
15 % N_hop: Number of hops from source to sink
16 % h_min: Shortest hop
17 % h_max: Longest hop
18 % h_avg: Average hop
19 % d_shortest: Euxledian distance between sink and

source
20 % d_route_tot: Total route length
21 %
22 %%%
23 function res = nt_fnc_show_route(nw, nodes, dst, x, fig_n)
24 % [N_hop, h_min, h_max, h_avg, d_shortest, d_route_tot]
25

26 N_hop = length(nodes)−1;
27

28 if (fig_n 6= 0)
29

30 fig_1 = figure(fig_n);
31 set(fig_1,'Name','Network sketch');
32 scatter(nw(1,:)',nw(2,:)',40,'filled');
33 axis([−x/2 x/2 −x/2 x/2])
34 grid on
35 xlabel('x−coordinate [m]')
36 ylabel('y−coordinate [m]')
37 hold on
38 scatter(nw(1,nodes(1)),nw(2,nodes(1)),40,'g','filled');
39 scatter(nw(1,nodes(end)),nw(2,nodes(end)),40,'r','filled');
40

41 end
42

43 for (m=1:N_hop)
44

45 n1 = nw(:,nodes(m));
46 n2 = nw(:,nodes(m+1));
47

48 if (n1(1) > n2(1))
49 x_neg = 1;
50 end
51

52 if (n1(2) > n2(2))
53 y_neg = 1;
54 end
55

56 x_diff = n2(1)−n1(1);
57 y_diff = n2(2)−n1(2);

B.7. NETWORK ANALYSIS 107

58

59 x_step = x_diff/2;
60 y_step = y_diff/2;
61

62 if (fig_n 6= 0)
63 plot(n1(1):x_step:n2(1),n1(2):y_step:n2(2),'r')
64 end
65

66 end
67

68 d_min = min(dst);
69 d_max = max(dst);
70 d_avg = mean(dst);
71

72 % Shortest discance between source and sink
73 dst_shortest = nt_fnc_node_dist(nw(:,nodes(1)),nw(:,nodes(end)

));
74 % Total route length
75 dst_route = sum(dst);
76

77 % [N_hop, h_min, h_max, h_avg, d_shortest, d_route_tot]
78 res = [N_hop d_min d_max d_avg dst_shortest dst_route];
79

80 return

Appendix C
Screenshots

Figure C.1: Route configuration details for a single route realization.

109

110 APPENDIX C. SCREENSHOTS

Figure C.2: Simulation averages over multiple route realizations.

111

Figure C.3: Comparison of key results for the different optimization schemes.

