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Chapter 1

Introduction

A certain class of materials exhibits the property of a spontaneous polarization;1

these materials are called pyroelectrics. If the spontaneous polarization direction
can be changed by the application of an electric field, the materials are called fer-
roelectric, in analogy with the ferromagnetic materials. Figure 1.1 illustrates the
observed relationship between electric field E and electric displacement D in a fer-
roelectric material. Around zero electric field the displacement field is dependent
on the past field history, and there is a hysteretic effect. Two important parameters
are defined from the hysteresis loop: the coercive field, or half the width of the
hysteresis curve at zero displacement field, and the remanent polarization, or the
net displacement field at zero electric field. Typically, the materials have a high-
temperature, high-symmetry state with zero spontaneous polarization,2 and at a
certain temperature there is a phase transition to a state with non-zero spontaneous
polarization.

Pyroelectrics have been known for a long time, dating back to the ancient
Greeks [2]. Ferroelectrics were comparatively recently discovered, it was not un-
til 1920 that ferroelectricity was demonstrated in Rochelle salt by Valasek [3, 4].
According to Lines and Glass, the ferroelectric phenomena was for a time consid-
ered an accident of Nature [5, p. 2]. In most instances the polarization is screened
or neutralized, either by charge near the surface, or by domains of opposite polar-
ization, making a direct detection of the polarization difficult. When the screening
is due to charge near the surface, a change in the spontaneous polarization by a
temperature variation can be detected; this is the pyroelectric phenomenon.

After the discovery of ferroelectricity in BaTiO3 [6, 7], progress was made in the
understanding of ferroelectricity on a microscopic level. The relatively simple per-
ovskite structure was more amenable to theoretical considerations than the complex
structure of the hydrogen bonded salts hitherto known to exhibit ferroelectricity.
The cubic perovskite structure is illustrated in Fig. 1.2. This structure is found in
several oxides of general formula ABO3. The A cation is shown as a large circle, and
the B cation as a smaller black circle. The oxygen anions are positioned at the ver-
tices of the octahedra. Some of the most studied ferroelectrics, BaTiO3, PbTiO3, and
solid solutions of PbTiO3 and PbZrO3,

3 are found in distorted perovskite structures.
They share the high-temperature cubic phase, and have transitions to ferroelectric

1That is, the displacement field is non-zero even in zero electric field, D(E = 0) = Ps.
2This high-temperature, high-symmetry phase is not a prerequisite, and there are materials

that decompose before this phase is reached [1, p. 355]. In chapter 2.2, the high-symmetry phase
is assumed to exist.

3In the following, solid solutions of PbTiO3 and PbZrO3 are abbreviated as Pb(Zr,Ti)O3,
without specifying the composition.

1
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Figure 1.1: Hysteresis loop for a ferroelectric material. The coercive field and rema-
nent polarization are indicated on the figure.

a) b)

Figure 1.2: The ideal cubic perovskite structure found in oxides of general formula
ABO3. The A cation is shown as a large shaded circle and the B cation as a small
black circle. The oxygen anions are located at the vertices of the octahedra. After
Náray-Szabó [8] and von Hippel [9].
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tetragonal structures. BaTiO3 has further transitions with decreasing temperature,
while the transition sequence for Pb(Zr,Ti)O3 depends on the composition. This
general introduction gives some references to the observed properties of ferroelectric
materials, whereas only PbTiO3 is considered in the experimental study.

As mentioned, the simple perovskite structure made a theoretical analysis more
approachable. For instance, it was now possible to exactly calculate the electrostatic
interaction between the atoms in the unit cell [10]. Cochran calculated the phonon
dispersion relation for the perovskite structure, using a shell model, where the ions
are approximated as cores, consisting of the nucleus and the inner electrons, and
a shell of the valence electrons [11]. It was shown that the ferroelectric transition
is associated with a transverse optical mode of low frequency. In the harmonic
approximation for the inter-atomic potential, the crystal becomes unstable with
respect to a transverse optical vibration mode when the electrostatic force becomes
equal to the inter-atomic restoring force. Anharmonic terms in the inter-atomic
potential creates a new equilibrium position for the atoms, and the material has a
phase transition to the new structure.

Promising progress on the theoretical side has been made in numerical approxi-
mations based on density functional theory (DFT). The Berry phase approach has
proved successful for calculating the bulk polarization [12–15]. Bulk polarization
can not be defined in terms of the delocalized charge density [16], and the bulk
polarization is instead found by considering the charge current, or the difference in
geometric phase of the valence electron wave function, between a reference structure
of zero polarization and the actual structure. Calculations within DFT have been
used to study the properties of bulk ferroelectric materials [17–19], and surface and
interface properties [20–26], relevant for thin films. Thin film geometries with vari-
ous degrees of constraints and relaxations have been considered. In particular, the
effect of electrodes [27–30], and asymmetries giving rise to interface dipoles [31–33],
are topics of current interest.

Even if such microscopic theories are needed in order to understand and predict if
a material displays ferroelectric behaviour, a pure phenomenological theory is often
sufficient to describe the ferroelectric phenomenon. A thermodynamic description of
ferroelectric phenomena in terms of Landau’s theory of phase transitions was given
by Ginzburg [34] and Devonshire [35–37]. In this theory, the free energy is expanded
as a power series in the order parameter, usually the polarization, and the stable
configuration is found by minimizing the free energy. The theory can successfully
describe the phase transition, and the temperature dependence of the dielectric con-
stant and related properties near the transition point. For thin films it is important
to consider the depolarization field due to incomplete polarization screening, even
with metallic electrodes [38], and the mechanical boundary conditions imposed on
the thin film [39]. The Landau-Ginzburg-Devonshire theory is discussed further in
Chapter 2.2, and in Paper III the Landau-Ginzburg-Devonshire theory, along with
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electrostatics and semiconductor statistics, is used to calculate the polarization pro-
file and stability in thin films with asymmetric boundary conditions.

The symmetric and stable polarization states in ferroelectrics, as described above,
are potentially useful. However, it turns out that for physically realised devices, the
states are often not symmetric nor stable. Hysteresis loops that are shifted along
the electric field axis are well known [40]. The shift can be interpreted as a bias
field, which can be related to effects external to the volume of the ferroelectric
material, such as different electrode materials, or it can be due to effects internal to
the volume of the ferroelectric material, such as impurities. An extensive body of
literature exists on the subject, both for bulk and thin film samples. Experimentally
it is found that the bias field depends on the oxygen pressure during processing,
with an increasing bias field for decreasing oxygen pressure, suggesting that oxygen
vacancies are involved [41–43]. Intentionally acceptor or donor doped materials
have acted as model systems to study the influence of charged point defects on the
bias field. Pb(Zr,Ti)O3 doped with acceptor impurities have shown an increased
bias field [44–46], while donor impurities decreased the bias field [46–49]. However,
there are also reports of no influence of acceptor and donor impurities on the room
temperature bias field [50]. It has been suggested that the bias field is caused by
oriented defect dipole pairs [45, 51]. In this model, defect dipoles from positively
charged oxygen vacancies and negatively charged acceptor impurities, align in the
direction of the polarization. The slow re-orientation of the defect dipoles, compared
to the fast switching of the polarization, gives an energy difference between the
states with polarization parallel and anti-parallel with the defect dipoles. Increasing
the acceptor density increases the formal bias field, while decreasing the density of
oxygen vacancies, by equilibrating the material at high oxygen pressure, or adding
donor impurities, decreases the formal bias field. Illumination with ultraviolet light
has been found to either increase or decrease the bias field, interpreted as an effect
of trapped charge carriers [52–55]. The trapped charge carriers could eliminate the
formal bias field from the defect dipoles, or they can set up an additional bias field.
The electric field in a space charge layer can also account for the bias field [56, 57].
The space charge layer can be the result of surface state charges, charge transfer
from the electrodes, or a non-stoichiometric surface layer [58, 59]. The electrodes can
also give an additional contribution to the bias field, apart from space charge layers,
through a difference in the work function for the electrodes [60]. Indications of this
effect on the ferroelectric properties have been found in several studies [61–63]. Large
shifts of the hysteresis loops can result when one of the electrodes is semiconducting,
due to the voltage drop over the depletion layer in the semiconductor when the
screening is by minority charge. This has been observed with Si electrodes [64] and
with Nb doped SrTiO3 electrodes [65]. In practice all of these effects may occur. To
be able to control the polarization properties, it is necessary to control both defects
and interface properties.
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Another non-ideality found in ferroelectrics is a decay of the remanent polar-
ization with time. The time-dependence can be divided into a relatively rapid
polarization decay for short times (up to a few seconds) followed by a slower de-
cay [66–71]. Several factors have been shown to affect the decay, including the
electrodes [68, 72], the electrode interface quality [73], the film thickness [71, 74], the
temperature [75, 76], the polarization time [67], and the number of previous switch-
ing cycles [77]. The decay is presumably not caused by a decrease in the spontaneous
polarization, but by a local reversal of the polarization, decreasing the macroscopic
net polarization, as has been demonstrated in scanning probe measurements [78].
The decay is often attributed to the depolarization field existing in ferroelectric thin
films [38, 66, 79]. This implies a continuously decreasing net polarization, gradually
approaching zero, as the depolarization field is eliminated by domain formation.
Other effects can contribute, such as the internal bias field mentioned above, and
the final net polarization need not be zero. This raises the particular question of
the stability of the switched net polarization in very thin ferroelectric films. The
polarization decay is more pronounced in very thin films, due to the increased de-
polarization field and a stronger influence from asymmetries at the interfaces with
the electrodes. These effects may lead to a total suppression of the spontaneous
polarization, or a preference for one polarization direction. A non-zero final net
polarization has been observed in fatigued Pb(Zr,Ti)O3 thin films and ultra-thin
polymer films, where only one polarization direction was found to be stable [80–83].
Contrary to this, the net polarization was found to decay with time in thin BaTiO3

films, approaching a zero value [71]. The reasons for a stable or unstable polarization
are at the moment unresolved. Paper III gives results of the polarization stability
in PbTiO3 thin films of different thickness.

Polar surfaces and interfaces are currently attracting much experimental and
theoretical interest [84], and the interface quality can have a significant influence
on ferroelectric properties. For fundamental reasons it is of interest to study the
effect of size on ferroelectric properties, both on the ideal intrinsic properties, and
on external effects such as asymmetries caused by interfaces and defects. From
a practical point of view it also important to know how materials will behave in a
certain configuration. For instance it is often observed that the thickness dependence
of the capacitance of thin ferroelectric films deviates from the geometrically expected
parallel plate behaviour. Whether this is an effect of the electrodes [85, 86], or an
effect of the material properties changing with film size can vary in different material
systems. A behaviour consistent with a description in terms of a series connection
of the film capacitance and a constant interface/electrode capacitance, in the region
of 0.1 to 0.7 F/m2,4has been reported [87–90], however, more complicated thickness
behaviour, related to structural changes in the material, are also observed [91, 92].

4We will often give quantities as per area, reflecting the one-dimensional nature of capacitor
structures, where only the film thickness, and not the capacitor area, is of interest.
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Paper II presents dielectric measurements of thin PbTiO3 films, pseudomorphically
grown on SrTiO3 substrates, which allows for an evaluation of the film thickness
influence on the dielectric properties without interference from varying mechanical
conditions.

The size dependence of the ferroelectric properties has been studied in PbTiO3

particles. The polarization in tetragonal perovskites can be related to the tetragonal
distortion of the unit cell [93, 94], hence structural data are often used to monitor
ferroelectric properties. A reduction of the tetragonality was observed for particle
size less than about 60 nm [95–98], with a concomitant reduction of the transition
temperature [99]. Of more relevance to this study is the behaviour in thin films.
Both BaTiO3 and PbTiO3, epitaxially grown on SrTiO3, have shown a decreasing
tetragonality for film thickness below 10 to 20 nm [100, 101], however, there are
also reports of thickness independent tetragonality for PbTiO3 films in the 1 to
10 nm thickness range [102]. The tetragonal distortion is not necessarily uniform
throughout the film thickness. A decreasing lattice constant in the direction of
the polarization have been found near the interface with a SrRuO3 electrode for
Pb(Zr,Ti)O3 thin films [103, 104]. Paper I is a study of the strain normal to the
interface between PbTiO3 and SrTiO3. Paper II presents data of the out-of-plane
lattice constant with film thickness, and Paper III relates these measurements to
the polarization.

One important difference between particles and epitaxial thin films is the me-
chanical constraints. The strain conditions imposed on the thin film from epitaxial
growth on a thick substrate have been used to engineer the ferroelectric proper-
ties such as transition temperature and polarization direction [105, 106]. This also
implies a difference in pseudomorphically, and relaxed epitaxial thin films, an im-
portant consideration when comparing results in different material systems. For
instance the larger misfit strain in BaTiO3 and Pb(Zr,Ti)O3 epitaxially grown on a
SrTiO3 substrate as compared to PbTiO3 films on the same substrate, leads to re-
laxation for a smaller critical film thickness. The enhanced polarization in strained
BaTiO3 and Pb(Zr,Ti)O3 films decreases with increasing film thickness as the strain
is relaxed [91, 107–109].

For fully strained films, the polarization in BaTiO3 has been found to be nearly
constant at room temperature for film thickness down to 15 nm [108], and decrease
for thinner films [100, 110]. The polarization in Pb(Zr,Ti)O3 thin films shows a simi-
lar dependence [103, 109, 111–114]. Exact measurements of the polarization becomes
challenging in thinner films due to an increase of the leakage current. Nonetheless,
hysteretic polarization loops have been found in 5 nm thin BaTiO3 films [100] and
in 15 nm thin Pb(Zr,Ti)O3 films [114], further corroborated with pulse switching
experiments in 5 nm thin films [103, 114]. Scanning probe measurements have shown
that the sign of the piezoelectric response can be switched, implying a switchable
polarization, in perovskite films down to a thickness of a few nm [101, 115, 116].
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X-ray diffraction measurements on thin PbTiO3 films have shown the appearance
of an in-plane superstructure, thought to stem from a periodic polarization domain
pattern [117]. When the bottom electrode was metallic SrRuO3, the PbTiO3 thin
film was found to be in a monodomain state [102]. This indicates that there is no
total local suppression of the spontaneous polarization, though a large scale cancel-
lation of the net polarization through domain formation can occur, depending on
the interface nature.

Despite the continued interest in ferroelectric materials over the last half-century,
there are still unresolved questions pertaining to the behaviour of physical realiza-
tions of ferroelectric devices. For instance, there is an incomplete understanding of
the interaction between interfaces and the polarization. How to control the factors
that determines the switchability, and subsequent stability, of the polarization? Can
the interface properties be controlled to give predictive behaviour of the polariza-
tion? Are there ways to control the interaction between naturally occurring defects
and the polarization?

This thesis addresses the measurement of ferroelectric properties in thin films
with a pyroelectric method [118]. The pyroelectric method is a non-destructive way
of measuring the initial polarization state, and to monitor the decay of the net
polarization. Of particular interest is the interface between the ferroelectric and the
substrate or electrodes, and its influence is studied by a combination of structural
and dielectric characterization.

Chapter 2 gives an overview of the macroscopic thermodynamic treatment of fer-
roelectrics, in order to give the reader unfamiliar with the subject some background
to interpret the data. Chapter 3 gives details of film growth and standard film
analysis techniques. Chapter 4 describes the pyroelectric measurement technique.
Results are given in the three papers. Paper one is an investigation of the inter-
face between PbTiO3 films and SrTiO3 substrates. The second paper describes the
thickness dependence of the dielectric constant and the effect of film growth tem-
perature on dielectric properties and surface stoichiometry, while the third paper
contains pyroelectric measurements and addresses the stability of the polarization
with decreasing film thickness. The results are discussed in terms of a Landau-
Ginzburg-Devonshire model of an asymmetrically electroded ferroelectric thin film.
As a whole, these papers shows the importance of the interfaces on the ferroelectric
properties in thin films.





Chapter 2

Macroscopic description of
ferroelectricity

In this chapter the macroscopic theory for ferroelectrics needed to establish the re-
lationship between the external parameters, i.e., the temperature, electric field and
mechanical stress, and the response of the material is outlined. The purpose is
to show, within the macroscopic quasi-linear elastic dielectric theory, the relation
between electric field and displacement field that is needed to describe a semicon-
ducting ferroelectric, as in Paper III. Furthermore, the pyroelectric coefficient and
the relation between strain and polarization in an epitaxial thin film is shown.

2.1 The thermodynamic foundation

The various thermodynamic potentials shows the criteria for equilibrium under dif-
ferent experimental configurations. It is instructive to first consider the internal
energy, and find the expressions for electrical and mechanical work for an elastic
dielectric.

The first law of thermodynamics states that the change in internal energy, dU, is
equal to the sum of the heat absorbed, dQ, and the work done on the same volume,
dW [119, p. 11],

dU = dQ + dW, (2.1)

i.e., the energy is conserved. The law of increasing entropy states that, for any
transformation, the exchange of heat is related to the absolute temperature T and
the entropy change dS as [119],

dQ ≤ TdS,

where the equality sign holds for reversible transformations. In the following sec-
tions, the work done by electrical and mechanical forces is considered.

2.1.1 The electrostatic energy

Discussions of electrostatic energy in dielectric media are found in textbooks on
electrostatics, see for instance Stratton [120, ch. 2].

Consider a volume with dielectric matter and charged conductors as in Fig. 2.1
where S1 . . . Sn are the surfaces of the conductors and S0 some bounding surface.
The conductors have a surface charge density σ and within the dielectric the charge
is distributed with a density ρ. The work needed for a variation of the charge density

9
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S1

S2

S3

S0

Figure 2.1: A dielectric volume with conductors. The conductors are shown as
shaded structures bounded by the surfaces Si, and the dielectric volume is bounded
by the surface S0. After Stratton [120].

δρ and δσ is

δWE =

∫
V

φδρdv +
n∑

k=1

∫
Sk

φδσda,

where φ is the electrostatic potential, V the volume of the dielectric, and the sum
is over the surfaces of the conductors. It will be more convenient to express this
in terms of the electric field E and the displacement field D, which in a dielectric
material with polarization P is D = ε0E + P, where ε0 is the vacuum permittivity.
Using Maxwell’s equation for the relationship between the charge density and the
gradient of the displacement field, and the divergence theorem, the variation of the
work is1

δWE =

∫
V

EiδDidv +

∫
S0

φδDinida.

If the volume and outer bounding surface are increased to infinity, where φ = 0,

δWE =

∫
V ′

EiδDidv,

where the integral is to be taken over all space, excluding the conductors.

2.1.2 The elastic energy

The energy stored in a body by small deformations can be expressed by the strain
and stress tensors. An introduction to the theory can be found in Nye [121, ch. V

1The Einstein notation with implicit sums over repeated indices is used, and E = Eix̂i, &c.,
where x̂1, x̂2, and x̂3 are unit vectors.
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dx

dx`

u

x

y

u u+d

O

Figure 2.2: Deformation of a continuous body. A point at x is displaced an amount
u. The nearby point at y is displaced an amount u + du. After Stratton [120] and
Nye [121].

& VI], upon which most of this section is based.

The strain tensor

Figure 2.2 illustrates the deformation of a continuous body. To find an expression
for the elastic deformation, consider the line element dx between the positions x and
y. After the deformation the point x is at x′ = x + u, where u is the displacement
vector describing the deformation. The nearby point initially at y = x + dx is after
the deformation at y′ = y +u + du. The components of the line element dx is after
the deformation

dx′
i = dxi +

∂ui

∂xj

dxj.

The square of the length of the line element is

|dx′
i|2 =

∣∣∣∣dxi +
∂ui

∂xj
dxj

∣∣∣∣
2

= dx2
i + 2

∂ui

∂xj
dxjdxi +

∂ui

∂xj

∂ui

∂xk
dxjdxk,

which can be written in the symmetric form [122, p. 2]

dx′2
i = dx2

i + 2

[
1

2

(
∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xj

∂uk

∂xi

)]
dxjdxi.

For infinitesimal displacements the last term in the brackets can be neglected [122,
p. 3], and

dx′2
i = dx2

i + 2uijdxidxj

where uij is the strain tensor defined as the symmetric tensor

uij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
.

This symmetric strain tensor is of considerable use in the linear elastic theory.
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Figure 2.3: The stress tensor. a) Illustration of the stress components σij . b)
Illustration of the relation between the force per area pi acting on a surface element
and the stress. After Nye [121].

The stress tensor

For homogenous stress the components of stress can be defined with reference to
Fig. 2.3 a). The stress component σij is the force per surface area acting in the xi

direction on the face perpendicular to the xj direction. More generally, the force
acting on a surface element can be found by considering a small tetrahedron as in
Fig. 2.3 b). The faces perpendicular to the axes xi have areas ai, while the fourth
face has an area a. This face is considered as the tangential plane at the surface
point. The surface normal vector has components ni = ai/a. The force per area
acting on this face is p. For a body at rest, the forces in each direction cancel, so
that

pia = σijaj,

or, since nj = aj/a,

pi = σijnj.

In the absence of body-torques, the stress tensor can be shown to be symmetric,

σij = σji,

see for instance Nye [121, p. 86]. This symmetry is used when finding the elastic
energy.2

2In the presence of body-torques, one can use the symmetric part of the stress tensor σij =
1/2(σij + σji) [121, p. 87].
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Elastic materials and the Voigt notation

For small stresses the strain is linearly dependent on the stress components [121, p.
131]. This is expressed by Hooke’s law

uij = sijklσkl.

The 81 components of the elastic compliance tensor sijkl are not all independent.
Since the stress and strain tensors are symmetrical, it follows that sijkl = sjikl and
sijkl = sijlk. Thus the elastic compliance tensor has only 36 independent compo-
nents [121, p. 133].

In the reduced Voigt notation, the stress and strain components are written with
one suffix [121, p. 134]⎡

⎣ σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎦→

⎡
⎣ σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

⎤
⎦

and ⎡
⎣ u11 u12 u13

u21 u22 u23

u31 u32 u33

⎤
⎦→

⎡
⎣ u1

1
2
u6

1
2
u5

1
2
u6 u2

1
2
u4

1
2
u5

1
2
u4 u3

⎤
⎦ .

The notation for the elastic compliance tensor is similarly simplified by expressing
the first and second pair of suffixes of sijkl

{ij, kl} 11 22 33 23, 32 31, 13 12, 21
{α, β} 1 2 3 4 5 6

,

and inserting factors of 2 and 4 according to

sijkl = sαβ when both α and β are 1, 2, or 3
2sijkl = sαβ when one of α and β is 4, 5, or 6
4sijkl = sαβ when both α and β are 4, 5, or 6.

In this reduced notation, Hooke’s law is

uα = sαβσβ.

Greek suffixes indicates that the indices run over six terms, and latin suffixes indi-
cates three terms.

The energy

Since the mechanical forces are of short range, the work done on a body element can
be represented by a surface integral [122, p. 4]. For an infinitesimal displacement
δui, the work is equal to the force times the displacement

δWM =

∫
S

piδuida.
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With pi = σijnj this is converted to a volume integral by the divergence theorem

∫
S

δuiσijnjda =

∫
V

∂

∂xj
(δuiσij)dv

so that

δWM =

∫
V

∂

∂xj

(σijδui) dv =

∫
V

∂σij

∂xj

δuidv +

∫
V

σij
∂δui

∂xj

dv,

where V is the volume enclosed by the surface S. Since the stress tensor is symmet-
ric, σij = σji, the last integral can be written

∫
V

σij
1

2

(
∂δui

∂xj

+
∂δuj

∂xi

)
dv.

Furthermore, if the stress is homogenous the first integral is zero, and, in the reduced
Voigt notation,

δWM =

∫
V

σαδuαdv.

The integral is to be taken over the volume of the material.

2.1.3 The thermodynamic potentials

It has been found that the work performed by mechanical and electrical work is

δW = δWM + δWE =

∫
V

σαδuαdv +

∫
V ′

EiδDidv,

where V is the volume of the dielectric, and V ′ is the entire space. From the first
law of thermodynamics (2.1), the variation of the internal energy is

δU = dQ +

∫
V

σαδuαdv +

∫
V ′

EiδDidv,

which for reversible processes with dQ = TdS is

δU = TdS +

∫
V

σαδuαdv +

∫
V ′

EiδDidv.

It is more convenient to consider thermodynamic potentials where the temperature
T is an independent variable, since this is experimentally accessible and possible to
control.
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The free energy

If the ferroelectric crystal is in thermal contact with the surroundings, but con-
strained in a way as to not allow any work to be done, the free energy

F = U− TS

determines the stability of the system [123, ch. II]. The variation of the free energy
is

δF = δU− SdT − TdS = dQ +

∫
V

σαδuαdv +

∫
V ′

EiδDidv − SdT − TdS.

For reversible processes dQ = TdS and

δF = −SdT +

∫
V

σαδuαdv +

∫
V ′

EiδDidv,

so that for an isothermal, reversible process, the work done on the system is equal
to the change in free energy. On the other hand, when the system is constrained
in a way such that no work is done (δu = 0, δD = 0) δU = dQ, and at constant
temperature

δF = dQ− TdS ≤ 0,

so that any spontaneous process will decrease the free energy. If the system is in a
state corresponding to a minimum of the free energy, then no further reduction can
occur, and the system is in a stable equilibrium.

The thermodynamic potential at constant stress

If the crystal is allowed to expand or contract freely, so that the stress not the strain
is constant, the elastic Gibbs free energy,

G1 = U− TS −
∫

V

σαuαdv,

is the appropriate thermodynamic potential. The variation of this thermodynamic
potential is

δG1 = dQ +

∫
V ′

EiδDidv − SdT − TdS −
∫

V

uαδσαdv.

For reversible processes dQ = TdS and

δG1 = −SdT −
∫

V

uαδσαdv +

∫
V ′

EiδDidv. (2.2)

While if T , σ and D are held constant, as by the constraints of the system, any
irreversible processes for which dQ ≤ TdS gives

δG1 = dQ− TdS ≤ 0,

so that the state which minimizes the elastic Gibbs free energy is thermodynamically
stable.
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The Gibbs free energy

If the electric field and the mechanical stress are controlled in the experiment, then
the Gibbs free energy

G = U− TS −
∫

V ′
EiDidv −

∫
V

uασαdv

can be used to find the thermodynamically stable configuration. The variation is

δG = dQ−
∫

V ′
DiδEidv −

∫
V

uαδσαdv − SdT − TdS,

which for reversible processes reduces to

δG = −SdT −
∫

V ′
DiδEidv −

∫
V

uαδσαdv.

Here the electric field and the mechanical stress are the independent variables.

2.1.4 Equations of state

The equation of state can be found from the thermodynamic potentials. Choosing
for instance the temperature T , stress σ and displacement field D as independent
variables, the strain u and electric field E can be found from the functional derivative
of the elastic Gibbs free energy.

As for ordinary functions of a finite number of variables, f(a1, a2, . . . , an), where
the differential change is

df =
∂f

∂ai

dai,

the variation of the elastic Gibbs free energy can be written [124, p. 22]

δG1 = −SdT −
∫

V

(
δG1

δσα

)
[σα(x′);x] δσα(x)dv

+

∫
V ′

(
δG1

δDi

)
[Di(x

′);x] δDi(x)dv.

where (δG1/δσα) [σα(x′);x] is the functional derivative of the energy functional with
respect to σα at the point x with the temperature and displacement field held
constant, and (δG1/δDi) is similarly defined. The electric field under constant
temperature and stress is seen by comparison with (2.2) to be

Ei [Di(x
′);x] =

(
δG1

δDi

)
[Di(x

′);x] , (2.3)

and a similar expression is found for the strain under constant temperature and
displacement field. The other thermodynamic potentials gives similar relations be-
tween the dependent variables and the functional derivatives of the thermodynamic
potential.
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The variational derivative

In the following chapters, the thermodynamic potentials will be expanded in the
form of a power series in the components of the displacement field Di and the
gradients Di,j = ∂Di/∂xj ,

G1 =

∫
V ′

G1(Di, Di,j)dv,

where G1 is the elastic Gibbs free energy density. In this approximation, the func-
tional derivative takes a particularly simple form. Infinitesimal variations in the
energy functional is [124, p. 30]

δG1 =

∫
V ′

(
∂G1

∂Di

δDi +
∂G1

∂Di,j

δDi,j

)
dv.

If the integration region is kept constant under the variation, δDi,j = ∂δDi

∂xj
[125], so

that

δG1 =

∫
V ′

(
∂G1

∂Di
δDi +

∂G1

∂Di,j

∂δDi

∂xj

)
dv.

The second term in the integral is

∫
V ′

∂G1

∂Di,j

∂δDi

∂xj
dv =

∫
V ′

[
∂

∂xj

(
∂G1

∂Di,j
δDi

)
− ∂

∂xj

(
∂G1

∂Di,j

)
δDi

]
dv.

By the divergence theorem this is

∫
S′

∂G1

∂Di,j
δDinida−

∫
V ′

∂

∂xj

(
∂G1

∂Di,j

)
δDidv,

where S ′ is the bounding surface of V ′. Now if the boundary conditions implies
δDi = 0 at the bounding surface, the first integral is zero. Then

δG1 =

∫
V ′

(
∂G1

∂Di
− ∂

∂xj

∂G1

∂Di,j

)
δDidv,

and the functional derivative is(
δG1

δDi

)
=

∂G1

∂Di
− ∂

∂xj

(
∂G1

∂Di,j

)
,

an ordinary function of Di and Di,j.
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2.1.5 The dielectric function

For linear dielectrics the polarization and electric field are related by the suscepti-
bility tensor χij as Pi = ε0χijEj, and the displacement field and electric field are
related by the permittivity tensor εij as Di = εijEj. Corresponding relations holds
for non-linear dielectrics for small variations of the field

dDi = εijdEj.

The generalized permittivity is then defined as εij = ∂Di

∂Ej
, and the inverse permittivity

tensor as

κij =
∂Ei

∂Dj

,

see for instance Ref. [121, ch. X]. From the equation of state (2.3), the inverse
permittivity tensor under constant stress is

κij =
∂

∂Dj

δG1

δDi
.

Similarly, the inverse permittivity tensor under constant strain can be found from
the corresponding thermodynamic potential. The inverse permittivity tensor is just
one of the compliance tensors for the material. In general these compliances depends
on the constraints under which they are observed.3

2.2 Landau-Ginzburg-Devonshire theory

A phenomenological description of ferroelectrics can be based on the general Landau
theory for phase transitions between states of different symmetry [123, ch. XIV].
An order parameter η is defined which takes the value zero in the symmetric phase
and a non zero value in the less symmetric phase. The thermodynamic potential is
expanded as a power series in the order parameter

Φ = Φ0 + αη + Aη2 + βη3 + Bη4 + . . . .

For ferroelectrics the order parameter is usually taken as the polarization [34, 35], the
displacement field [126, 127], or the displacement of the ions from their high symme-
try positions [123]. The description is referred to as Landau-Ginzburg-Devonshire
theory [34–37]. Here, the displacement field D is used as the order parameter due
to it’s natural involvement in the energy functionals and the boundary conditions
for parallel plate capacitors.

3Frequently this is accentuated by using superscripts on the compliance tensor, indicating which
variable is held constant. We will to a large extent suppress this, and only note when necessary
the constraints.
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2.2.1 Bulk theory for second- and first-order transitions

For a concise discussion, consider a material which at high temperature exist in a
high symmetry paraelectric state. As the temperature is lowered, a spontaneous
polarization develops at a critical temperature Tc. This is the situation for PbTiO3.
If it is assumed that the same expansion of the thermodynamic potential is valid for
both states, and the symmetric state is cubic with a center of symmetry, it follows
that the coefficients for the odd terms in the expansion is zero [126, p. 85]. Under
zero stress conditions, the elastic Gibbs free energy density can be expanded as [35]:

G1 =
A

2
D2 +

B

4
D4 +

C

6
D6, (2.4)

where the expansion is arbitrarily ended at the sixth order, and for simplicity, the
polarization is assumed to develop only along one direction (so the suffix on the
variables is dropped). For D = 0 to represent a minimum of the free energy in the
symmetric state, A must be positive in this state. If there is a continuous change in
the displacement field, from zero in the non-polar state to a non-zero D in the polar
state, the transition is said to be of second order. For a continuous change, it follows
that A must be negative in the polar state, and at the transition point A(Tc) = 0.
Near the transition A can be expanded as A(T ) = α(T − Tc), where α is a positive
constant. This is in accordance with the observed Curie-Weiss behaviour of the
inverse permittivity, κ = α(T − Tc) above the transition temperature, where α is
the inverse Curie constant [128]. Furthermore, if D = 0 is to be a stable equilibrium
value at the transition point, B must be positive (or zero). Assuming a non-zero
value for B the higher order terms can be neglected, and the electric field is found
from (2.4) and (2.3) as

E =
∂G1

∂D
= AD + BD3.

The spontaneous displacement field for temperatures below the transition point
under zero electric field is thus

D2
s(T ) =

α(Tc − T )

B
.

Figure 2.4 illustrates the free energy as a function of the displacement field for
temperatures just above, at, and just below the transition temperature for a second
order transition.

If there is a discontinuous jump in D from zero in the non-polar state to a finite
value Ds at the transition temperature, the transition is said to be of first order.
This can happen if B is negative, and then for stability C must be positive. The
finite equilibrium value under zero electric field corresponds to

A + BD2
s + CD4

s = 0.
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T < T
c

Figure 2.4: The free energy in a second order transition. The transition temperature
is Tc, and the three curves shows the free energy just above, at, and just below the
transition temperature.

At the transition point the free energy of the two states is equal, so that

A

2
D2

s +
B

4
D4

s +
C

6
D6

s = 0.

Combining these two equations gives

D2
s(Tc) = −3

4
B
C

, and A(Tc) = 3
16

B2

C
,

which shows that A is positive at the transition temperature. The temperature
dependence of A is assumed to follow a Curie-Weiss behaviour as for a continuous
transition,

A(T ) = α(T − T0),

with T0 < Tc. The spontaneous displacement field under zero electric field is

D2
s(T ) =

2

3
D2

s(Tc)

(
1 +

√
1− 3

4

T − T0

Tc − T0

)

Figure 2.5 illustrates the free energy as a function of the displacement field at tem-
peratures just above, at, and just below the transition temperature.

The underlying equation of state, as found from (2.4) and (2.3) is illustrated
in Fig. 2.6. A D-E hysteresis loop is measured by contacting the material with
metal electrodes, and varying the electrostatic potential difference between those
electrodes. Hence it is the electric field that is controlled in the experiment, and
the thermodynamic stable state is determined by the minimum property of the
Gibbs free energy. It can be shown that only the solid part of the curve in fig. 2.6
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c
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T < T
c

Figure 2.5: The free energy in a first order transition. The transition temperature
is Tc, and the three curves shows the free energy just above, at, and just below the
transition temperature.

D

E

Figure 2.6: Schematic hysteresis loop from the equation of state. The solid curve
represents the stable states. At the dashed lines, one of the states becomes unstable,
and there would be a switching of the polarization direction.



22 Macroscopic description of ferroelectricity

represents a minimum of the Gibbs free energy, and that the broken part of the
curve around zero electric field represents unstable states.4 Furthermore, at zero
electric field both ±Ds are absolutely stable, whereas at a finite electric field, one
polarization direction represents a global minimum and is absolutely stable and the
other polarization direction a local minimum that is only metastable. At the dashed
lines, the metastable state becomes unstable, and the corresponding electric field is
the thermodynamic coercive field.

2.2.2 The effect of strain

The effect of the elastic energy have so far been neglected (the stress was assumed
to be zero). For a thin film grown epitaxially on a thick substrate this is not
justifiable. The appropriate mechanical boundary conditions for a film epitaxially
grown on a much thicker substrate are: [39] at the free surface the stress components
σ3 = σ4 = σ5 = 0, whereas at the interface with the substrate the strain components
u1, u2, and u6 are determined by the substrate.5 The thermodynamic potential for
the variables Di, and u1, u2, u6, σ3, σ4, σ5, can be obtained from the elastic Gibbs
free energy density by the transformation [39]

G̃1 = G1 + u1σ1 + u2σ2 + u6σ6, (2.5)

where the elastic Gibbs free energy density for a cubic ferroelectric is [35, 129, 130]

G1 = α1(D
2
1 + D2

2 + D2
3) + α11(D

4
1 + D4

2 + D4
3)

+ α12(D
2
1D

2
2 + D2

2D
2
3 + D2

3D
2
1) + α111(D

6
1 + D6

2 + D6
3)

+ α112[D
4
1(D

2
2 + D2

3) + D4
2(D

2
3 + D2

1) + D4
3(D

2
1 + D2

2)] + α123D
2
1D

2
2D

2
3

− 1

2
s11(σ

2
1 + σ2

2 + σ2
3)− s12(σ1σ2 + σ2σ3 + σ3σ1)− 1

2
s44(σ

2
4 + σ2

5 + σ2
6)

−Q11(σ1D
2
1 + σ2D

2
2 + σ3D

2
3)

−Q12[σ1(D
2
2 + D2

3) + σ2(D
2
3 + D2

1) + σ3(D
2
2 + D2

1)]

−Q44(σ4D2D3 + σ5D1D3 + σ6D1D2)

+
1

2
g11

(
D2

1,1 + D2
2,2 + D2

3,3

)
+ g12 (D1,1D2,2 + D1,1D3,3 + D2,2D3,3)

+
1

2
g44

[
(D1,2 + D2,1)

2 + (D1,3 + D3,1)
2 + (D2,3 + D3,2)

2] . (2.6)

The αi’s are the components of the linear dielectric stiffness tensor, αij, and αijk

components of the higher order dielectric stiffness tensors, sαβ the elastic compliance

4For a first order transition, near the transition temperature, the state with E = 0 and D = 0
is also a stable equilibrium.

5The directions are chosen so that x1, x2 are in the plane of the substrate, and x3 is normal to
the substrate.
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coefficients, and Qαβ the electrostrictive constants. The modified thermodynamic
potential has the property of being in a minimum for thermal equilibrium.

For the equations of state, it is still possible to use the elastic Gibbs free energy,
or another thermodynamic potential. Finding the strain from (2.6) and solving for
the stress gives

σ1 =
s11

s2
11 − s2

12

[
u1 −Q11D

2
1 −Q12(D

2
2 + D2

3)− s12σ3

]
− s12

s2
11 − s2

12

[
u2 −Q11D

2
2 −Q12(D

2
1 + D2

3)− s12σ3

]
,

σ2 =
s11

s2
11 − s2

12

[
u2 −Q11D

2
2 −Q12(D

2
1 + D2

3)− s12σ3

]
− s12

s2
11 − s2

12

[
u1 −Q11D

2
1 −Q12(D

2
2 + D2

3)− s12σ3

]
,

σ6 =
1

s44
(u6 −Q44D1D2) .

Under the assumption of a tetragonal state with D1 = D2 = 0, (2.3) and (2.6),
together with the stress conditions, gives

E3 = 2α1D3 + 4α11D
3
3 + 6α111D

5
3

− 2Q11σ3D3 − 2Q12
1

s11 + s12

(
u1 + u2 − 2Q12D

2
3 − 2s12σ3

)
D3

− g11D3,3,3 − g44(D3,1,1 + D3,2,2).

In addition to the dielectric coupling terms found in the zero stress configuration,
there is electrostrictive coupling of the displacement field to the in-plane strain. For
a thin film with a free surface

σ3 = 0,

and the mechanical boundary conditions for epitaxial growth on a cubic substrate
gives

u1 = u2 = as−a0

a0
= u0, and u6 = 0,

where as is the lattice constant of the substrate,6 and a0 is the extrapolated lattice
constant of the reference state. Thus

E3 = 2α1D3 + 4α11D
3
3 + 6α111D

5
3

− 4Q12
1

s11 + s12

(
u0 −Q12D

2
3

)
D3

− g11D3,3,3,

6In cases where the thin film relaxes through misfit dislocations, an effective substrate lattice
constant can be used [131].
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where it is further assumed that the state is monodomain with D3,1 = D3,2 = 0.
This can be written as

E3 = AD3 + BD3
3 + CD5

3 − g11D3,3,3, (2.7)

where
A
2

= α1 − 2 u0Q12

s11+s12
, B

4
= α11 +

Q2
12

s11+s12
, C

6
= α111.

This is the relation used when calculating the displacement field profile in a thin
ferroelectric film in Paper III. The effect of strain has not been independently checked
in this work. All experiments were conducted with one type of substrate, so that
identical strain conditions were imposed on all samples. However, the transition
temperature, as inferred from x-ray diffraction measurements of the temperature
dependence of the out-of-plane lattice constant (unpublished results), did show an
increased transition temperature, as predicted from the modified thermodynamic
potential [39], and also observed by others [117].

Relationship between strain and polarization

From the elastic Gibbs free energy with D1 = D2 = 0, D3 �= 0, and σ3 = 0

u3 = −∂G1

∂σ3
= s12(σ1 + σ2) + Q11D

2
3.

With

σ1 + σ2 = 2
u0 −Q12D

2
3

s11 + s12
,

the strain is

u3 =
2s12

s11 + s12
u0 +

(
Q11 − 2s12

s11 + s12
Q12

)
D2

3. (2.8)

This relation is used for calculating the displacement field based on measurements
of the lattice constant in Paper III.

2.2.3 The pyroelectric effect

The temperature dependent polarization can give rise to an external current when
the ferroelectric material is subject to a temperature variation. If the ferroelectric
is connected to a low-impedance external electric circuit, the time variation of the
temperature gives rise to the pyroelectric current density

j =
dD

dt
=

dD

dT

dT

dt
.

It is therefore of interest to calculate the temperature dependence of the polarization.
In the following, it is assumed that the ferroelectric is in a monodomain tetragonal
state.
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Bulk theory

For bulk ferroelectrics in zero electric field and zero stress, the pyroelectric response
has been found from the expansion of the free energy density. Assuming temperature
independent coefficients for terms of higher order than quadratic in the free energy
density, the pyroelectric coefficient was found as [132]

p =
dD3

dT
= − α

κ33
D3,

where α is the inverse Curie constant and κ33 the inverse permittivity. In the next
sections, the situation for a thin epitaxial film is considered.

The effect of strain

The strain in an epitaxial thin film changes the expansion coefficients of the first
and third order terms in the equation of state as in (2.7)

A
2

= α1 − 2 u0Q12

s11+s12
, B

4
= α11 +

Q2
12

s11+s12
,

where α1 = α(T − T0). Assuming the electrostrictive constant Q12 and the stiffness
coefficients s11 and s12 to be temperature independent [129, 133–135], there is no
additional temperature dependence in the terms of higher than first order in the
equation of state.

Under short-circuit conditions for a bulk ferroelectric

dE3 =
∂E3

∂T
dT +

∂E3

∂D3
dD3 = 0

so that
dD3

dT
= −

∂E3

∂T
∂E3

∂D3

.

The strain term in A gives an additional temperature dependence compared to the
stress free bulk scenario, so that

∂E3

∂T
=

(
α− 2

Q12

s11 + s12

∂u0

∂T

)
D3.

From the expression for the in-plane strain

u0 =
as − a0

a0
,

the temperature dependence of the strain is found as

∂u0

∂T
=

as

a0

(γs − γ0) ,
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where γs and γ0 are the linear thermal expansion coefficients for the substrate and
ferroelectric film respectively. The pyroelectric coefficient is then

p = −α− 2 Q12

s11+s12

as

a0
(γs − γ0)

κ̃33

D3,

where the inverse permittivity is also different from the constant stress value, as
indicated by the tilde.

The effect of the depolarization field

The influence of the electric field in a thin film configuration can be accounted for
by considering the equation of state in the form f(T, D, E) = 0,

f(T, D3, E3) = A(T )D3 + BD3
3 + CD5

3 −K
∂2D3

∂x2
3

− E3 = 0.

With the simplifying assumption that the film is insulating ∂D3/∂x3 = 0. Under
short circuit condition with two metal electrodes, the electric field in the film is

E3 = −2λ

εd
D3,

where λ and ε are the screening length and the lattice contribution to the dielectric
constant in the metal electrodes [136, ch. 26], and d is the ferroelectric film thick-
ness. Substituting this into the equation of state gives a relation in terms of the
temperature and displacement field alone. The total differential

df =
∂f

∂T
dT +

∂f

∂D3

dD3 = 0,

gives
dD3

dT
= − ∂f/∂T

∂f/∂D3
.

The numerator gives α as before (corrected for in-plane strain), while the denomi-
nator now is corrected for the capacitance associated with the electrodes

∂f

∂D3

= κ̃33 +
2λ

εd
.

The pyroelectric coefficient is thus

p = −α− 2 Q12

s11−s12

as

a0
(γs − γ0)

κ̃33 + 2λ
εd

D3. (2.9)

Equation (2.9) can be used to compare the theoretical pyroelectric response to the
measured one. For polydomain samples, assuming that the domain wall contribution
to the total area is negligible, the pyroelectric response is determined by the average
polarization over the total electroded area.



Chapter 3

Experimental techniques

This chapter describes the techniques used for growing and characterizing the thin
films, i.e. sputter deposition, x-ray diffraction, photoelectron spectroscopy, atomic
force microscopy and dielectric characterization. The pyroelectric measurements are
described in chapter 4.

3.1 Sputter deposition

All samples in this study were grown by sputter deposition. In sputter deposition,
ions are accelerated towards a target composed of the material to be deposited. The
ions collide with the target, and sets off a series of cascade collisions, leading to
transferal of energy to atoms that are subsequently emitted from the target surface.
A detailed description of the sputtering process can be found in Ref. [137]. Some
of the sputtered atoms are adsorbed and forms a thin film on a substrate placed in
the vicinity of the target.

A radio-frequency power source is connected to the sputtering gun when sput-
tering dielectrics. At frequencies above a few MHz the mobility of the ions in the
plasma is too low to follow the instantaneous field variation, leading to a higher
electron current toward the target in the positive half-cycle than ion current in
the negative half-cycle [138]. A dc-bias develops on the target, until steady-state
conditions are reached, with equal ion and electron currents.

A particular challenge with sputter deposition of oxide thin-films is selective
re-sputtering of the growing film by negative oxygen ions. One way of mitigating
this is to use an off-axis geometry. This geometry positions the sample outside of
the plasma and outside of the direct path of oxygen ions accelerated by the sheath
voltage at the sputtering target [139, 140]. A general overview of control of film
properties in sputter deposition can be found in Ref. [141].

An off-axis rf-magnetron sputtering tool was used in this study. Typical deposi-
tion parameters were total pressures from 100 to 170 mTorr, flow rates of 10 sccm
Ar and 4 sccm O2, and forward deposition power of 90 W. The targets were com-
mercial 3” ceramic targets of Pb1.1TiO3 and SrRuO3. A 10% Pb excess was used to
compensate for Pb evaporation at high growth temperatures [142].

Films were grown on SrTiO3 substrates that were etched with buffered HF acid
and annealed, to achieve a single terminated TiO2 surface prior to growth [143, 144].

27
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Figure 3.1: Scattering of x-rays on two scattering centres. The phase difference
between radiation scattered at the two centres is determined by the distance vector
x and scattering vector k, see text. After Guinier [145].

3.2 X-ray diffraction

X-ray diffraction was used to determine the lattice constants of the films, and to
measure the epitaxial relationship between the film and the substrate. The coherent
scattering of x-rays by electrons in crystalline solids gives rise to diffraction peaks,
or directions in space where the electro-magnetic radiation interferes constructively,
yielding a high intensity. These diffraction lines are used to determine the structure
of the solid.

For two or more scattering centres, as in Fig. 3.1, the amplitude of the coherently
scattered radiation is the sum

A = A0

∑
i

fi exp(iφi),

where fi are the scattering factors of the centres, and φi the phase differences from
radiation scattered at an arbitrary origin. For the two centres shown in Fig. 3.1, the
phase difference is

φ = −2πx · n− n0

λ
,

where x is the distance vector between the centres, λ is the wavelength of the
radiation, and n0 and n are unit vectors in the direction of the incident radiation
and the direction of interest for the scattered radiation, respectively. The wavelength
and direction dependencies are contained in the scattering vector

k = 2π
n− n0

λ
.

For a given wavelength, the range of accessible scattering vectors is given by the
Ewald sphere of radius 2π/λ.

For atoms, the scattering power is represented by the scattering factor f

Icoh = f 2Ie,
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where Icoh is the intensity of the coherently scattered radiation and Ie the Thompson
scattering intensity for electrons [145, p. 11]. As a generalization of the scattering
from discrete centres, the scattering factor is determined by an integral over the
electron density [145, p. 15]

f(k) =

∫
ρ(x) exp(−ik · x)dv.

For an entire solid, the scattered amplitude is expressed as

A(k) ∝
∫

ρ(x) exp(−ik · x)dv,

which is the Fourier transform of the electron density.
For crystalline solids it is convenient to utilize the translation symmetry, and

describe the crystal in terms of the lattice and the unit cell. The lattice is defined
by the set of lattice vectors R = pa+qb+rc, where a, b, and c are three vectors, not
all in the same plane, connecting the lattice points, and p,q, and r run through all
integers. The electron density of the whole crystal is then written as the convolution
of the electron density of the unit cell and the lattice multiplied by the form factor
of the object [145, p. 84]. The form factor of the object is given by the shape of the
crystal, and is unity inside the object, and zero outside.

The amplitude of the coherently scattered radiation is found by calculating the
Fourier transform of the electron density. By the convolution theorem, the Fourier
transform of the electron density is the product of the Fourier transform of the
electron density in the unit cell, called the structure factor, and the convolution of
the Fourier transforms of the lattice, which gives the reciprocal lattice, and of the
form factor of the object.

For a perfect, but finite crystal, the transform of the form factor for the object
determines the width of the diffraction lines. For an infinite crystal, the Fourier
transform of the form factor of the object is a delta function in reciprocal space, and
the diffraction lines are sharp. As the dimensions of the crystal are reduced, the
diffraction lines broadens. For a thin film, the transform of the form factor for the
object is a product of delta functions of the in-plane coordinates and a sinc function
in the out-of-plane coordinate, with characteristic oscillations that are determined
by the film thickness.

Figure 3.2 illustrates a plane in the reciprocal lattice. For a fixed relation be-
tween the incident radiation and the crystal, the diffraction lines corresponds to
intersections of the reciprocal lattice points, broadened by the form factor of the
crystal, and the Ewald sphere, given as a circle in the figure. In general, there will
be no such intersection, and no diffraction lines. One way of forcing an intersec-
tion is to rotate the crystal with respect to the incident radiation direction. This is
illustrated in Fig. 3.2b).
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Figure 3.2: a) A plane in reciprocal space. The circle indicate a section of the Ewald
sphere. Simultaneously changing the angles θ and 2θ yields a scan along the l axis,
a θ/2θ scan. b) Illustration of a rocking curve measurement. Changing the angle θ
gives a measure of the width of the diffraction peak, or of the amount of crystallites
with slightly different orientation, the mosaic spread.
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Figure 3.3: Illustration of a 4-circle goniometer. The sample can be rotated through
the angles θ, φ, and χ with respect to the incident radiation. The point detector
can be rotated through the angle 2θ.
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In practice the crystal is mounted on a goniometer, as in Fig. 3.3. For a four-
circle goniometer, the crystal can be rotated with respect to the incident radiation
through the angles θ, φ, and χ, as indicated on the figure. In addition, the detector
for the scattered radiation can be moved along the angle 2θ. In this study we have
used θ/2θ scans, where the crystal is rotated an angle θ and the detector an angle
2θ, to determine the out-of-plane lattice constant and the film thickness. Such a
scan, illustrated in Fig. 3.2 a), gives a straight scan along the l axis in reciprocal
space when the crystal has been properly aligned. Rocking curves, where the detec-
tor angle is fixed and the crystal rotated an angle Δθ, have been used to determine
the width of the (00l) peaks to give a measure of the mosaic spread in the films.
The intensities have also measured in an area of the reciprocal space, a reciprocal
space map (RSM), to determine the relation between the in-plane lattice of the sub-
strate and the thin film. Several instruments were used in the study. The typical
measurement configuration was incident monochromatic CuKα1 radiation, with a
wavelength of 1.5406 Å. The scattered radiation was detected with a scintillating
point detector. For high resolution measurements the acceptance angle of the de-
tector was set to 0.04◦, and the incident radiation had a divergence of < 0.02◦ in
the scattering plane.1

3.3 X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy was used to investigate the surface composition
of the films. In this technique, x-ray photons are used to excite atoms in the film,
leading to electron emission. The escape depth of the electrons is of the order of a
few nm, so the technique is surface sensitive [146, p. 9]

The experimental setup is illustrated in Fig. 3.4. An x-ray source illuminates the
sample and the emitted electrons are analysed and detected. The kinetic energy of
the emitted electron is [146, p. 4]

Ek = hν − Φ− |EB|,

where hν is the photon energy, Φ the work function of the solid, and EB the bind-
ing energy of the electron. Figure 3.5 illustrates the relation between the measured
spectrum and the energy levels in the solid. The binding energy is in a first ap-
proximation equal to the negative orbital energy (Koopmans’ binding energy) [146,
p. 42], and serves as an identification of the atoms present in the sample and their
chemical bonding.

For a hemispherical sector analyser, consisting of two concentric hemispheres,
the emitted electrons are analysed by applying a potential difference between the

1The acceptance angle was defined using slits, while the divergence angle is an upper limit
estimate from the width of the x-ray beam at the detector plane.
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Figure 3.4: Schematic of the XPS setup. An x-ray source illuminates the sample,
and the photoemitted electrons are analysed and detected. After Hüfner [146].
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Figure 3.5: Illustration of the relation between the electron energy levels in the solid
and the photoemission spectrum. The diagram on the left represents the binding
energy of the electrons in the solid, and the diagram on the right the kinetic energy
of the emitted electrons. After Hüfner [146].
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outer and inner hemispheres, with the inner hemisphere at a higher potential. The
electrons will follow curved trajectories in the analyser, and only electrons of a
certain kinetic energy will have a path with the same curvature as the hemispheres,
and be detected.

Here, unmonochromatized MgKα radiation of energy 1253.6 eV was used to ex-
cite the electrons. The spectrums were recorded in the constant analyser energy
mode, with a bandpass energy of 20 eV. The raw data was smoothed with Savitzky-
Golay filtering [147]. The line profiles was found by fitting Voigt functions and a
Shirley background from inelastically scattered electrons [148] to the filtered data,
using a least-squares method. Relative integrated peak intensities were estimated
from the fitted profiles to give information on the composition with growth temper-
ature.

3.4 Atomic force microscopy

Atomic force microscopy (AFM) is a versatile scanning probe technique for surface
studies. The basis for the method is a small tip, mounted on a cantilever as in
Fig. 3.6, that is scanned over the sample surface. The force between the tip and
sample surface is measured by the deflection of the cantilever. In this work we have
used the tapping-mode for topography studies. In tapping-mode the cantilever is
vibrated at a frequency close to the resonance frequency of the cantilever, and the
tip-surface separation decreased until a fixed vibration amplitude is achieved. The
sample is raster scanned and the feedback mechanism adjusts the sample height to
maintain the fixed cantilever vibration amplitude. We used AFM tips with length
∼ 15 μm, nominal tip radius of 8 nm, and resonance frequency for the cantilever of
∼ 300 kHz.

can
tilev

er

tip

sam
ple surfac

e

Figure 3.6: Illustration of an AFM tip on a cantilever. The tip is scanned across
the sample surface, and the force between the tip and sample measured through the
deflection of the cantilever.
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Figure 3.7: Asymmetric voltage pulses used for the polarization measurements. The
first and third pulse sets the polarization state. The polarization is calculated from
the measured current in the positive half-cycle of the second pulse and the negative
half-cycle of the fourth pulse.

3.5 Polarization and capacitance measurements

The polarization hysteresis loops and capacitance was measured with an Aixacct
TF 2000 thin film analyser.

The polarization is measured as the time integral of the current flowing during the
application of triangular voltage pulses, similar to the Sawyer-Tower principle [149],
except that the current is integrated numerically by a computer instead of by a
capacitor. Asymmetric voltage pulses as in Fig. 3.7 was used to avoid high leakage
currents, while simultaneously approaching full saturation of the polarization. The
positive and negative maximum voltages was set independently, while the pulse
length was fixed at 1 ms. Four pulses were used to measure the complete hysteresis
loop. The first and third pulses set the polarization in the relaxed positive and
negative state, respectively. The positive half-cycle of the second pulse and negative
half-cycle of the fourth pulse was used to calculate the polarization. The relaxation
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Figure 3.8: a) An electrical equivalent circuit for a thin film. A parallel connection
of an ideal resistor and capacitor. b) The admittance in terms of the conductance
and the susceptance. The phase angle φ and the loss angle δ are indicated.

time between each pulse was 2 ms.
The capacitance is determined through the relation between induced current and

applied voltage for low-level sinusoidal voltage signals. For a linear response, with
complex notation Ṽ = V0e

iωt,
Ĩ = Y Ṽ ,

where Y is the admittance. The actual voltage and current are the real part of their
complex representation, V = �{Ṽ } = V0 cos(ωt) and I = �{Ĩ} = I0 cos(ωt + φ).
For an ideal capacitive element

I = C
dV

dt
,

and the admittance is
Y = iωC.

For a general linear response, Y = G + iB, where G is the conductance and B the
susceptance. The conductance and susceptance are determined by measuring the
amplitude and the phase of the current

I0

V0

=
√

G2 + B2,

tan(φ) =
B

G
.

A simple model of a dielectric thin film at low frequencies (∼ kHz) in terms of
electrical components is a parallel connection of an ideal capacitor and an ideal
resistor, as in Fig. 3.8. From this equivalent circuit, the capacitance is determined
as

C =
B

ω
.
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The loss tangent

tan(δ) =
G

B

gives a measure of the lossyness of the film.
The capacitance was measured with an AC amplitude of 50 mV, at a frequency of

2 kHz. The loss tangent was less than 0.1 for all reported data, showing considerable
leakage for very thin films, and adding an uncertainty to the data for very thin films
of the same order as the observed variation.

Electrical contact to the thin films was made through circular contact pads with
diameter 400 μm, deposited ex situ (200 nm Au/50 nm Pt) on the surface, and a
continuous bottom electrode of SrRuO3 or Nb doped SrTiO3.



Chapter 4

Pyroelectric measurements

The dynamic pyroelectric method was originally used by Chynoweth to characterize
BaTiO3 single crystals, and shown to be a useful complementary method to standard
dielectric hysteresis loops [118]. The pyroelectric response can be measured indepen-
dently of applied external electric fields, and is an attractive way of measuring the
initial polarization state, as well as monitoring the variation of the polarization with
time. The initial polarization state gives information on asymmetries existing in the
thin film structure, and the variation of the polarization with time gives information
on the stability of the polarization.

4.1 Experimental setup

The experimental setup is illustrated in Fig. 4.1. The pyroelectric current from
the ferroelectric capacitor is generated by illuminating the top electrode with a
modulated laser beam, thereby causing a temperature modulation. The resulting
current is detected with a lock-in amplifier. A current to voltage converter, based
on a Burr Brown OPA627AP operational amplifier, is used to ensure short-circuit
conditions during the measurement of the pyroelectric current. The polarization is
manipulated by isolating the ferroelectric capacitor under test from the detection
circuit, and applying a voltage between the top- and bottom-electrode.

In order to estimate the theoretical pyroelectric response and the dependence
on the modulation frequency, the temperature variation induced in the ferroelectric
film must be found.

4.2 Induced temperature variation

The geometry of the system is as shown in Fig. 4.2: the top electrode of thickness
250 nm and radius 200 μm, the ferroelectric film of thickness <200 nm, the bottom
electrode of thickness ∼ 100 nm, and the substrate of thickness ∼ 500 μm. The top
surface is illuminated in the center with a laser spot of radius less than the electrode
radius.

One-dimensional approximation

In one dimension the equation of conduction of heat for a homogenous material
is [150, p. 9]

∂T

∂t
=

λ

ρc

∂2T

∂z2
,

37
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Figure 4.1: Schematic pyroelectric measurement setup. The laser beam is modulated
by a mechanical chopper. The light is focused on the top electrode, and the resulting
current detected with a lock-in amplifier.

d

dm1

r0

r

dm2

Figure 4.2: Illustration of capacitor structures. The capacitor consists of a circu-
lar top electrode of radius r and thickness dm1, a continuous ferroelectric film of
thickness d, a continuous bottom electrode of thickness dm2, and a thick substrate.
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Table 4.1: Thermal constants for the materials in the experimental study.

Material λ c ρmol Ref.
[W m−1 K−1] [J mol−1 K−1] mol/m3

Au 317 25.42 9.81× 104 [151, p. 65]
Pt 71.6 25.85 10.99× 104 [151, p. 139]
PbTiO3 3 130 2.62× 104 [152, p. 362]
SrRuO3 6 108 2.75× 104 [153]
SrTiO3 10 150 2.79× 104 [152, p. 313]
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Figure 4.3: The thermal wavelength for Au and SrTiO3 in a one-dimensional solution
of the equation of conduction of heat. For frequencies below ∼ 10 kHz the thermal
wavelength is much larger than the contact radius.

where T is the temperature, λ the thermal conductivity, ρ the density, and c the
specific heat of the material. The general steady-state solution for a sinusoidal time
varying temperature is

T (z, t) = �{(aeκz + be−κz
)
e−iωt

}
,

where κ =
√

iωρc/λ, and �{} indicates the real part of the argument. This rep-
resents a thermal wave with wavelength λth = 2π/	{κ}, where 	{} indicates the
imaginary part of the argument. The thermal constants for the materials used in
the experimental study are shown in table 4.1, and Fig. 4.3 shows the thermal wave-
length in Au and SrTiO3 for modulation frequencies from 101 to 104 Hz. The contact
radius and the substrate thickness are also indicated in the figure. It is seen that
for frequencies below ∼ 10 kHz the thermal wavelength in Au is much larger than
the contact radius. Assuming no heat transfer along the perimeter of the contact
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Figure 4.4: The surface temperature calculated for a capacitor with a Au/Pt
(200 nm/50m) top electrode, 100 nm PbTiO3 film, 100 nm SrRuO3 bottom elec-
trode, on a 500 μm SrTiO3 substrate.

this means that the temperature in the top electrode along the radial direction can
be assumed practically constant, and a one-dimensional approximation is meaning-
ful. Ideally, for a one-dimensional approximation, the thermal wavelength in the
substrate should be short compared to the radius of the top electrode. This is only
fulfilled at high frequencies.

The temperature in the capacitor structure was found with a matrix method [150,
ch. 3.7], and Fig. 4.4 shows the calculated surface temperature response for a typical
capacitor. The heat flux at the surface was estimated at

j1 = (1− R)P/A = 0.7480 W/cm2,

assuming a reflectivity constant R of 0.9765 for Au [154], and an input power P
of 40 mW on the electrode area A. The amplitude of the temperature variation is
seen to follow a ∼ ω−1/2 dependence. Bearing in mind that the one-dimensional ap-
proximation is valid only for a limited frequency window, the temperature variation
should deviate from the inverse square root dependence at low frequencies, where
the effective heat capacitance is larger than what assumed in the one-dimensional
model. This deviation will be slight for the surface temperature, however, and it is
the surface temperature that determines the pyroelectric response.

4.3 Pyroelectric response

From chapter 2.2.3, for a sinusoidal temperature variation of frequency ω, the mag-
nitude of the pyroelectric current density is

|j| =
∣∣∣∣dD

dT

∣∣∣∣ωΔT (ω),
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Table 4.2: Elastic constants for PbTiO3.

Q11 Q12 sE
11 sE

12 Ref.
×10−2 m4/C2 ×10−2 m4/C2 ×10−12 m2/N ×10−12 m2/N

8.1 – 8.9 -2.6 – -3.9 - - [155]
6.6 -3.2 - - [156]
8.9 -2.6 - - [129]
- - 7.5 -1.5 [157]
- - 7.2 -2.1 [158]

and should follow a ω1/2 behaviour. The experimental data gave an ωn behaviour
in the frequency range from 100 Hz to 3 kHz, with n varying from 0.43 to 0.48 in
different samples. Values of the electromechanical, elastic, and dielectric constants
in (2.9) are needed for a numerical estimate of the pyroelectric coefficient. The
electrostrictive coefficient is known from literature. The elastic compliance coeffi-
cients in the literature are usually measured under constant electric field, and the
corresponding coefficients under constant displacement field must be found.

Elastic compliance coefficients

General procedures for finding the relationship between compliance tensors observed
under various constraints are given by Grindlay [127, p. 56, p. 98]. The elastic
compliance coefficients under constant displacement can be found as

sD
αβ = sE

αβ +

(
∂uα

∂Dj

)
σ,T

(
∂Dj

∂Ei

)
σ,T

(
∂Ei

∂σβ

)
D,T

,

so that in a tetragonal state with D1 = D2 = 0,

sD
11 = sE

11 − 4(Q12D3)
2ε33,

and
sD
12 = sE

12 − 4(Q12D3)
2ε33.

From the literature values of the elastic compliance coefficients in table 4.2, and zero
stress spontaneous polarization and dielectric constant as calculated from the elastic
Gibbs free energy (2.6), with parameters from table 4.3, sD

11 = 6.3×10−12 m2/N and
sD
12 = −3.0× 10−12 m2/N.

The dielectric constant with in-plane strain

The inverse permittivity is

κ̃33 =
∂

∂D3

δG̃1

δD3

.
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Table 4.3: Dielectric stiffness coefficients for PbTiO3. From [129].

α1 −1.708× 108 m/F
α11 −7.252× 107 m5/C2F
α111 2.606× 108 m9/C4F

From (2.5), with coefficients derived from table 4.3, and a strain of u0 = −0.014,
the inverse permittivity is estimated at

κ̃33 = 2.53× 109 m/F.

In the tetragonal state the inverse permittivity tensor is diagonal, so that the relative
dielectric constant is

ε̃33 = ε−1
0 κ̃−1

33 = 44.68,

which is less than the measured dielectric constant ε33 = 69 (Paper II). Con-
versely, the measured dielectric constant gives an inverse permittivity of κ̃33 =
1.64× 109 m/F. The Landau-Ginzburg-Devonshire theory also underestimates the
room-temperature bulk dielectric constant [129]. The discrepancy between measured
and calculated values can result from contributions from domain-wall motion and
defects to the measured dielectric constant. The range of validity for the Landau-
Ginzburg-Devonshire, where room-temperature data are predicted from measured
quantities near the phase-transition temperature with only one temperature de-
pendent parameter, can also be questioned. For the theoretical estimate of the
pyroelectric coefficient we use the theoretical value of the inverse permittivity.

The pyroelectric coefficient

The numerical estimate of the pyroelectric coefficient from (2.9) and thermal expan-
sion coefficients from table 4.4 is

p =
dD

dT
= −

α− 2 Q12

sD
11+sD

12

∂u0

∂T

κ̃33 + 2λ
εd

D = −1.02× 10−4 C/m2K.

However, at high measuring frequencies, only the surface layer experiences a tem-
perature variation, making the effective thermal expansion of the substrate zero.
This gives an estimated pyroelectric coefficient of

p =
dD

dT
= −5.29× 10−5 C/m2K.
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Table 4.4: Thermal expansion coefficients for PbTiO3 and SrTiO3.

PbTiO3 SrTiO3 Ref.
K−1 K−1

12.6× 10−6 - [129]
- 10.7× 10−6 [159]

With an estimated temperature variation at 2 kHz of 3.6 × 10−3 K (fig. 4.4), the
expected current density is 2.4 mA/m2, compared to the measured current density

j ≈ 0.4

0.12

nA

mm2 = 3.3 mA/m2.

The theoretical estimate of the pyroelectric response is seen to be in reasonable
agreement with the measured value.
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In this study, we rely on low-angle annular dark-field scanning transmission electron mi-
croscopy to probe the interface strain profile in epitaxial PbTiO3/SrTiO3 thin-films. All
samples displayed a compressively strained layer at the PbTiO3/SrTiO3 interface, with
the strain vector parallel to the polarization direction. The width of the strained layer was
found to be ∼ 15 − 30 Å, dependent on the electrode environment. Our findings open a
perspective to use interface strain engineering in combination with control of electrostatic
boundary conditions as a tool to monitor the effective interface polarization. These find-
ings have implications for future use of ferroelectrics in electronic and mechanical devices.

Ferroelectric materials are interesting for use
in a variety of applications ranging from non-
volatile memories to micro/ nanoelectrome-
chanical devices.1 In most electronic devices,
understanding and control of the interface be-
tween the ferroelectric material and the elec-
trode is important. Several ferroelectric field ef-
fect devices have been proposed and realized.2–4
A large polarization is often desired, leading
to substantial carrier modulation in the active
channel. For the successful implementation of
such approaches, a detailed knowledge of the
interface polarization is central. It is worth not-
ing that ferroelectric properties are sensitive to
strain. Moreover, ferroelectrics are subject to
size effects as the dimensions of the sample are
reduced,5–8 and there has been reported ferro-
electricity with inferior polarization in ultrathin
films when the thickness is reduced.9 Thus, the
understanding and control of the interface po-
larization pose significant challenges for using

a)Also at: NTNU Nanolab, Realfagbygget, Norwegian
University of Science and Technology, 7491 Trondheim,
Norway; author to whom correspondence should be ad-
dressed; electronic mail: thomas.tybell@iet.ntnu.no

ferroelectrics in future nanoelectronics.
In this letter, we use low-angle annular

dark-field (ADF) scanning transmission elec-
tron microscopy (STEM)10 to show that epi-
taxial PbTiO3/SrTiO3 (PTO/STO) films dis-
play a strained interface. The direction of the
strain is colinear with the polarization direc-
tion, corresponding to a reduced c-axis lattice
parameter of the PTO thin film in the first few
unit cells. This observation is crucial for further
downscaling and to the design of future device
applications of ferroelectric thin films.

High-quality (001)-oriented PTO films with
a thickness between 50 and 200 Å were epitax-
ially grown on (001) oriented STO substrates
using off-axis radio-frequency magnetron sput-
tering. Both insulating STO and conduct-
ing Nb doped STO substrates were used.
Atomic force microscopy topographic measure-
ment revealed smooth surfaces with a root-
mean-square roughness of ∼ 3 − 5 Å over
1 × 1 μm. Rocking curve measurements on
the (001) reflection typically displayed a full
width at half maximum < 0.1◦. θ − 2θ x-
ray diffraction (XRD) analysis revealed distinct
size effects around the (001) and (002) reflec-
tions, which were used to carefully estimate
the film thickness. The XRD analysis revealed



48

a gradual decrease in the measured c-axis lat-
tice parameter from the bulk value of 4.16 Å,
for films thinner than ∼ 200 Å. A similar de-
crease in c-axis lattice parameter as a function
of film thickness was recently reported by Licht-
ensteiger et al.9

In the present study, a JEOL 2010F trans-
mission electron microscopy (TEM)/STEM
(200 kV field emission gun, Cs = 1.0 mm)
instrument was used to study mechanically
thinned and argon-ion milled PTO thin-film
cross-sections. The scanning electron probe
was smaller than 0.2 nm in diameter, and the
scattered electrons were collected by a JEOL
ADF detector with a collecting angle ranging
from 9 to 174 mrad.

Figure 1(a) shows a high-resolution image of
a cross-section TEM sample for a 51 Å thick
PTO film on STO. As can be seen, the interface
is congruent without any misfit dislocations in
this region. This finding was confirmed by
high-resolution, high-angle ADF STEM, sen-
sitive to the atomic number Z,11 as displayed
in Fig. 1(b). Such high-quality interfaces were
seen consequently for all samples studied. Elec-
tron diffraction patterns taken at the inter-
face, as seen in the inset of Fig. 1(a), con-
firmed the in-plane coherency, with no splitting
of the (0k0) PTO and STO reflections up to
the fourth order. Subsequently, we have mea-
sured the low-angle ADF response, which is
sensitive to strain contrast.10 Figure 2(a) de-
picts the low-angle (9-24 mrad) ADF response
for the interface of a 191 Å PTO/STO sample.
A band with an increased intensity was present
at the film substrate interface. Such bright
bands were found in all samples, irrespectively
of whether they were grown on insulating or
conducting substrates. The increased low-angle
ADF intensity of the PTO/STO interface was
independent of the TEM sample thickness for
samples thicker than ∼ 20 nm. Moreover, the
width and relative intensity of this bright band
were the same for samples studied at room tem-
perature and at -150 ◦C. Based on the find-
ings above, the observed effect is attributed to
strain contrast and not to additional phonon
scattering,12 nor thickness variations, composi-
tional variations,13 or local interfacial defects.14
However, the increased intensity at the upper
film surface, as seen in Fig. 2(a), is related to an
extrinsic effect related to charging of the TEM

FIG. 1. (a) High-resolution cross-section TEM im-
age of a high-quality 51 Å thick film of PTO grown
on STO. Inset: [100] Electron diffraction pattern
with coherent (040) PTO/STO (vertical arrow) and
splitting in the (004) (horizontal arrow) reflections.
The * marks where (000) is located. (b) High- angle
(26-69 mrad) ADF image showing Z contrast.

sample.
The electron diffraction data of the

PTO/STO interfaces revealed good epitaxy,
thus discarding a reduced lattice mismatch due
to misfit dislocations as the cause of the bright
bands observed in low-angle ADF STEM.
Tilting the samples relative to the electron
beam in the [010] direction and thereby keeping
the interface “edge on,” resulted in similar
intensity variations, as seen in Fig. 2(b). These
findings suggest that the observed contrast
is due to lattice strain parallel to the PTO
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FIG. 2. (a) Low-angle (9-24 mrad) ADF image
of 191 Å PTO film grown on STO showing strain
contrast at the interface and the top surface. (b)
The same film tilted by 6◦ along [010] revealing a
c-axis compressive strained layer. White right top
corner is end of imaging area.

[001] direction, hence the strain is parallel to
the polarization vector. Careful comparison
between the lattice parameters in the bright
band relative to the one of the volume of the
thin films unveiled a reduced c-axis lattice
parameter near the film/substrate interface.
We note that the observed layer with a reduced
c-axis lattice parameter gives a contribution to
the film thickness dependent decrease in the
effective c-axis value for the thinnest samples,
as observed by XRD analysis.

From the intensity profile in Fig. 3, we mea-
sured the size of the bright interfacial layer to
be 27-30 Å i.e., about 7 unit cells of PTO

FIG. 3. Intensity profile, averaged over 7 nm par-
allel to the interface, for a 191 Å PTO film on STO
(upper full line) and a 201 Å PTO film on Nb-doped
STO (lower dotted line) with indicated bandwidth
(vertical lines). The bandwidth is defined as the
distance from the interface, as determined by the
first Pb column, to the position where the intensity
is one-half of the maximum mean intensity in the
band relative to the mean intensity in the bulk of
film.

grown on insulating STO (full line). The same
layer thickness was obtained for all film thick-
nesses studied. In real applications, the elec-
trostatic boundary conditions are important.7,8
Therefore, we also studied the strain contrast
in thin PTO films grown on metallic Nb-doped
STO. These films all display a smaller inter-
face strained layer, typically 18-20 Å wide, as
illustrated in Fig. 3 (dotted line) for a 201 Å
thick film. Hence, by changing the electrostatic
boundary conditions, the width of the strained
layer is altered. Films grown on insulating STO
with a Pt/Au electrode deposited at room tem-
perature showed strained layers of similar thick-
ness as films deposited on metallic substrates,
16-20 Å.15

PTO is known to exhibit a strong
polarization-strain coupling,16 which im-
plies that the effective polarization is reduced
in the compressively strained layer as compared
to the bulk of the film. This has implications
for applications reliant on the polarization at
the interface, since the figure of merit for such
devices will depend on interfacial strain. Based
on the polarization-strain coupling, we note
that the strained layer implies the presence
of a gradient in polarization, going from a
thin-film saturation polarization in the volume
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of the film to a smaller finite value at the
interface. The observed compressively strained
layer is possibly a measure of the intrinsic
evolution of the ferroelectric order parameter
at an interface.

In conclusion, we have used low-angle ADF
STEM to probe the strain profile in epitaxial
PTO/STO thin films. All samples displayed a
layer of c-axis strain at the interface, related
to a decrease in the c-axis lattice parameter
for the first few unit cells of the PTO films.
This finding opens the possibility for using in-
terface strain engineering, possibly in combina-
tion with the electrostatic boundary conditions,
to tailor the effective interface polarization for
future ferroelectric electronic and mechanical
devices.
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The crystalline and dielectric properties of sputter deposited PbTiO3 thin films were in-
vestigated as a function of the film thickness and growth temperature. The crystalline
quality was found to be independent of film thickness from 2.4 to 200 nm. The capaci-
tance of 0.12 mm2 Pt/PbTiO3/SrRuO3 and Pt/PbTiO3/Nb:SrTiO3 capacitors was found
to deviate from the ideal parallel plate capacitance for PbTiO3 films thinner than 10 nm.
The decrease in capacitance was consistent with field penetration into the electrodes. The
surface Pb content, as determined from x-ray photoelectron spectroscopy, was found to
decrease with increasing growth temperature from 700-760 ◦C. However, no change could
be observed in the crystalline quality.

I. INTRODUCTION

When ferroelectric and related high dielec-
tric constant materials are processed in thin
film form, the dielectric constant generally de-
creases with decreasing film thickness.1 The low
frequency dielectric constant is commonly mea-
sured via the capacitance of parallel plate type
capacitors, and the observed reduction in the
dielectric constant is often rationalized in terms
of an interfacial layer with low dielectric con-
stant in series with the bulk dielectric. Such an
interfacial layer is found in theoretical models
of the polarization, where the loss of dipole-
dipole interactions at the film surface results
in a reduced dielectric constant.2,3 In addition,
the series capacitance associated with electric
field penetration into the metal electrodes will
also reduce the measured capacitance from the
ideal parallel-plate capacitor value.4,5 However,
the microstructure of the thin film will affect
the dielectric properties, and it is hard to sepa-
rate the influence of thickness dependent vari-
ations in the microstructure on the dielectric
constant from intrinsic thickness variations of
the dielectric constant.

In particular, several studies on the di-
electric properties of PbZrxTi1−xO3 (PZT)
films have reproduced the general thickness
dependence.6–9 Most of the data reported in lit-

a)Electronic mail: thomas.tybell@iet.ntnu.no

erature, however, derives from polycrystalline
films. Fujisawa et al.10 found less thickness
variation of the dielectric constant for epitaxial
compared with polycrystalline PZT films. Re-
cently, Pintilie et al.11 reported dielectric mea-
surements on epitaxial PZT films. They con-
cluded that the decrease in the dielectric con-
stant with decreasing film thickness was an arti-
fact of the traditional analysis in terms of a par-
allel plate capacitor. Moreover, in their analy-
sis, the intrinsic dielectric constant was close
to the measured value in fully depleted thin
films, and the increase in the dielectric constant
with increasing film thickness was attributed to
a leaky bulk region of the film.

Furthermore, the ferroelectric properties of
PZT are known to vary with cation stoichiom-
etry. For instance, the Curie temperature12

and remanent polarization13,14 have both been
found to decrease with decreasing Pb content.
With the use of Pb-enriched sources, however,
it is possible to grow near stoichiometric PZT
thin films.15–20

In this paper we investigate the influence of
film thickness on the crystalline and dielectric
properties of rf-magnetron sputter deposited
PbTiO3 (PTO) thin films. The growth temper-
ature dependence of the cation stoichiometry
and the consequences for the crystalline qual-
ity and dielectric properties are also assessed.



54

II. EXPERIMENTAL DETAILS

A. Sample growth

The samples investigated in this study were
grown on (i) insulating SrTiO3 (STO) sub-
strates, (ii) conductive Nb-doped (0.5 wt.%)
SrTiO3 (Nb:STO) substrates, and (iii) SrRuO3

(SRO) films deposited in-situ on STO sub-
strates. All substrates were (001) oriented,
with a miscut angle of less than 0.1◦. Com-
mercially available annealed (Nb:STO), or HF-
etched and annealed (STO) substrates were
used.

The PTO films were grown by off-axis
rf-magnetron sputtering from a non-
stoichiometric target with 10% excess Pb.
All samples were grown with an Ar:O2 ratio
of 10:4 and a total pressure of 165 mTorr.
The sputtering power was 90 W, which gave
a growth rate of ∼ 0.2 nm/min. The samples
were allowed to cool to room temperature in
the growth ambient.

In order to study the impact of film thick-
ness on the structural and dielectric proper-
ties, films with thicknesses ranging from 2.4 to
200 nm were grown. Two sets of PTO films
were grown at substrate heater temperatures
of 725 and 735 ◦C, respectively. To study the
effect of growth temperature on the crystalline
and dielectric properties, films with a thickness
of 20 nm, sufficiently thick to display bulk-like
crystalline properties, were grown at substrate
heater temperatures from 700–760 ◦C.21

The SRO layer was grown with an Ar:O2 ra-
tio of 10:4, a total pressure of 100 mTorr, and a
sputtering power of 100 W. The layer thickness
was 65 nm with a resistivity of ∼ 500 μΩ cm.
For measurements of the dielectric properties,
circular Au/Pt contact pads with a diameter
of 0.4 mm were deposited by e-beam evapo-
ration through a stencil mask. The Nb:STO
substrates and SRO films were used as bottom
electrodes for the electrical characterization.

B. Structural characterization

The crystalline structure of the thin films was
investigated with x-ray diffraction (XRD) us-
ing Cu Kα (λ = 0.15406 nm) radiation. The
out-of-plane lattice constant and the film thick-

ness were estimated from graphical compar-
isons of experimental and calculated diffrac-
tion patterns of the (001) and (002) diffrac-
tion peaks. The diffraction patterns were calcu-
lated from an idealized structure of NPTO unit
cells of PTO and NSRO unit cells of SRO on
a semi-infinite STO substrate.22 The structure
factor for PTO was calculated from the bulk
structure,23 but with the in-plane a-axis lattice
constant set equal to the STO substrate value23

(0.3905 nm) and the out-of-plane c-axis lattice
constant used as a fitting parameter. The Ti
and O displacements were scaled with the c-
axis lattice constant. It has been shown that
thin films of SRO grown on STO are compres-
sively strained.24 Taking into account the re-
sulting expansion of the bulk orthorhombic unit
cell in the out-of-plane (110) direction, a sim-
plified tetragonal structure with one f.u./unit
cell was used in the structure factor calcula-
tions for SRO. The in-plane lattice constant
was set equal to the substrate value and the
out-of-plane lattice constant used as a fitting
parameter, as was done for the PTO structure
factor.

To evaluate the crystalline quality of the
PTO films, rocking curves were measured
around the (001) and (002) diffraction peaks.
In-plane coherence with the substrate was as-
sessed from reciprocal space maps (RSM) of the
(103) diffraction peak and pole figures of the
(103) STO and (113) PTO diffraction peaks.
The pole figures were measured with a 2θ an-
gle corresponding to the (113) PTO peak (∼
77.0◦), which is close to the (103) STO peak
(2θ = 77.2◦). The sample was rotated around
the surface normal (the φ angle) and about an
axis perpendicular to the surface normal (the θ
angle).

The relative Pb:Ti ratio was measured
with x-ray photoelectron spectroscopy (XPS).
The recorded spectra were smoothed with a
Sawitzky-Golay filter (11 points, fourth order)
and fitted to Voigt functions and a Shirley back-
ground using a least squares algorithm. The
relative integrated intensities of the XPS peaks
were estimated from the fitted curves.
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C. Dielectric characterization

Dielectric properties were measured with an
Aixacct TF analyzer 2000. The capacitance
was measured at 2 kHz with a bias voltage of
±0.1 V and small signal amplitude of 50 mV.
The reported capacitances are average values
over the bias range. The polarization was mea-
sured using a variant of the built-in dynamic
hysteresis measurement procedure by the TF
analyzer 2000.25 Asymmetric triangular bipolar
voltage pulses were used instead of the stan-
dard symmetric pulses to avoid large leakage
currents at negative bias without decreasing the
polarization field for positive bias. Four pulses
were applied, the first two pulses starting with
negative half-periods and the final two pulses
starting with positive half-periods. The posi-
tive half-period of the second pulse and the neg-
ative half-period of the fourth pulse were used
to calculate the polarization. The pulse length
was 1 ms with a dwell time of 2 ms between
pulses. The positive and negative amplitudes
were set independently, keeping a constant slew
rate for the pulse. The polarization was calcu-
lated by integrating the measured current, in-
cluding possible contributions from the leakage
current. The voltage was defined as positive
when applied to the top electrode.

III. RESULTS AND DISCUSSION

A. Influence of film thickness

1. Crystalline properties

Figure 1 shows typical XRD scans measured
around the (001) diffraction peak along with
calculated scans for the idealized structure.
The PTO film thicknesses were (from bottom to
top) 7, 14, 24, and 41 nm, respectively. Thick-
ness fringes around the (001) and (002) diffrac-
tion peaks could be readily observed in all but
the thickest samples (> 100 nm).

The c-axis lattice constant is plotted versus
film thickness in Fig. 2. Four different sam-
ple series are shown: films grown on insulat-
ing STO substrates, films grown on conduc-
tive Nb:STO substrates, films grown on SRO
films at a nominal temperature of 725 ◦C, and
films grown on SRO films at a nominal tem-
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FIG. 1. θ/2θ XRD scans of PTO grown on
SRO/STO. The PTO film thickness was (from bot-
tom to top) 7, 14, 24, and 41 nm, respectively. The
diffractograms have been displaced along the in-
tensity axis for clarity. Bold lines show measured
data, while the fine lines are fits obtained from the
idealized structure.

perature of 735 ◦C. As can be seen, for films
thicker than 20 nm the lattice constant is close
to the bulk value of 0.4152 nm.23 Thinner films
show a gradual decrease in the lattice con-
stant that is in agreement with the previous
reports, wherein this decrease was attributed
to a reduction of the spontaneous polariza-
tion in thin films.26 Transmission electron mi-
croscopy (TEM) images have shown a strained
layer with a decreased c-axis lattice constant
near the film/substrate interface,27 recently ob-
served also in PZT films for which a similar
decrease in lattice constant was found at the
film/vacuum interface as well.28 To a certain
extent, the reduced c-axis lattice constant for
very thin films, as measured with XRD, will be
due to a growing contribution from the smaller
c-axis lattice constant near the interfaces.

The full width at half maximum (FWHM) of
rocking curves measured around the (001) PTO
diffraction peak was typically twice that of the
substrate, and less than 0.04◦. In-plane epitaxy
was maintained irrespective of thickness. The
pole figure of the (113) PTO and (103) STO
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FIG. 2. The PTO c-axis lattice constant, as ob-
tained from fits to the XRD data, plotted vs. film
thickness. Films thicker than 20 nm show a fixed
out-of-plane lattice constant, similar to the bulk
value, while thinner films show a lattice constant
which decreases monotonically with the film thick-
ness. No significant difference is seen for films de-
posited on different substrates or grown at differ-
ent substrate temperatures. The error bars, shown
for films grown on Nb:STO substrates only, indi-
cate the uncertainty in the fitted values. For films
thicker than 10 nm the errorbars are smaller than
the symbols.

diffraction peaks in Fig. 3, for a 49 nm thick
film grown on SRO/STO, shows the alignment
of the in-plane lattice vectors of PTO and STO.
The (113) PTO diffraction peaks appear at 45◦
with respect to the (103) STO diffraction peaks,
which testifies to the cube on cube epitaxy. The
reciprocal space map of the (103) diffraction
peak from a thick PTO film (100 nm) grown
on SRO/STO, shown in Fig. 4, shows that the
in-plane lattice constants of SRO and PTO are
both constrained to the substrate value.

Atomic force microscopy (AFM) imaging
showed surfaces with a step-and-terrace struc-
ture that gradually disappears with increasing
film thickness. The root-mean-square (rms)
roughness on 5 × 5 μm2 scans was measured
at 0.2–0.9 nm. The change from a step-and-
terrace structure to a homogeneous flat surface
is illustrated in Fig. 5. The step and terrace
structure is clearly seen for the thinner films,
i.e. for (a) 5 nm, (b) 19 nm, and (c) 32 nm
thick films. It degrades in the thicker films, (d)
41 nm and (e) 51 nm, and disappears entirely in
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STO (103)

PTO(113)

FIG. 3. Pole figure of the (113) PTO and (103)
STO diffraction peaks for a 49 nm thick sample
grown on SRO/STO. The solid circles identify the
region of measurement. The (113) PTO peaks ap-
pear at 45◦ with respect to the (103) STO peaks,
which testifies to the cube on cube epitaxy.
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FIG. 4. Reciprocal space map of (103) diffrac-
tion peaks for a 100 nm thick PTO film grown
on SRO/STO. The PTO, SRO, and STO peaks all
have the same in-plane lattice constant.

(f) a 106 nm thick film. This trend was seen for
films grown on both STO, Nb:STO, and SRO.

2. Dielectric properties

The measured capacitance of the
Pt/PTO/SRO and Pt/PTO/Nb:STO struc-
tures is shown as a function of PTO film
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FIG. 5. AFM images of PTO films grown on
SRO/STO. The film thickness was a) 5 nm, b)
19 nm, c) 32 nm, d) 41 nm, e) 51 nm, and f)
106 nm. The z-range of the linear gray-scale is
±1 nm for all images. Clear step-and-terrace struc-
tures are observed for the thinnest films, gradually
disappearing for thicker films.

thickness in Fig. 6. For film thicknesses greater
than 10 nm, the capacitance is proportional to
the inverse thickness. In thinner films, a de-
viation from the inverse thickness dependence
is seen for films grown with a SRO bottom
electrode. Leakage currents prohibited mea-
surements on films thinner than 4.5 nm. For
films grown on a Nb:STO bottom electrode,
the capacitance saturates at ∼ 5 nF for thin
films. A dielectric constant of εPTO/ε0 = 69
was found from a fit to a linear thickness
dependence of the inverse capacitance. For
films with a Nb:STO bottom electrode, the
fit was limited to films thicker than 10 nm.
The clamped and free dielectric constants for
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FIG. 6. Measured capacitance of
Pt/PTO/Nb:STO capacitors (filled circles)
and Pt/PTO/SRO capacitors (open circles) with
0.12 mm2 area. The error bars are the standard
deviations of measurements on different capaci-
tors. The solid line is a fit to the data for films
thicker than 10 nm, imposing an inverse thickness
dependence. The dotted line is the capacitance
calculated for an MIM model and the dash-dotted
line is the capacitance calculated for an MIS
model. The inset shows the inverse capacitance
for films with an SRO bottom electrode vs. film
thickness. The linear fit gives a negative intercept
corresponding to −3.9± 8.1 m2/F.

PTO are 51 and 126, respectively, in single
crystals.23

It is known that field penetration into the
electrodes will decrease the total capacitance
of thin films.4,5 With two metal electrodes, the
total inverse capacitance per unit area for a film
of thickness d, is

1
C

=
(

λPt

εPt
+

d

εPTO
+

λSRO

εSRO

)
, (1)

where λPt and λSRO are free electron gas
screening lengths for Pt and SRO in a linear
dielectric background with dielectric constants
εPt and εSRO, respectively.5,29 The screening
lengths were estimated at λPt = 0.06 nm and
λSRO = 0.11 nm.30 With these values, the ex-
pected series capacitance from the metal elec-
trodes is 0.47 F/m2. A fit to a linear thickness
dependence of the inverse capacitance for films
on SRO, shown in the inset to fig. 6, actually
gives a negative intercept of −3.90±8.09 m2/F.
The negative intercept can be interpreted in
terms of an electrically short-circuited region
of thickness ∼ 2 nm in the films. However, the
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upper limit of 4.2 m2/F gives a minimum ex-
perimental interface capacitance of 0.24 F/m2,
which can be interpreted in terms of an ad-
ditional interface capacitance. Based on the
estimated electrode capacitance, we find that
any additional interface capacitance must be
at least 0.48 F/m2. The interface layers with
strain normal to the interface, which were ob-
served by TEM, could have a different dielectric
constant from the bulk of the film, giving an ad-
ditional interface capacitance. The capacitance
from these strained layers can be expressed as

1
Cinter

= dinter

(
1

εinter
− 1

εPTO

)
, (2)

where dinter and εinter are the total width and
dielectric constant of the strained layers respec-
tively. Assuming that the strained layer width
at both the SRO and Pt interface is ∼ 1.8 nm,
as was observed for an Nb:STO interface,27 the
dielectric constant in the strained layer do not
decrease by more than 25% of the bulk value.

For films grown on Nb:STO, the total capac-
itance can be estimated from a metal-insulator-
semiconductor (MIS) model,31 including the
field-dependent dielectric constant of STO.32,33
The capacitance of the semiconductor surface
is found following the analysis of Schottky
diodes with field-dependent dielectric constants
by Kahng and Wemple.34 Treating the Nb:STO
substrate as a non-degenerate semiconductor
with bulk electron and hole densities n0 and
p0, the surface capacitance is found in the Ap-
pendix to be

Cs = −qn0

p0
n0

(
e−βφs − 1

)− (eβφs − 1
)

Es(φs)
, (3)

where q is the absolute value of the electron
charge, β = q/kBT with kB Boltzmann’s con-
stant and T the absolute temperature, and
Es(φs) and φs are the electric field and poten-
tial at the semiconductor/insulator interface,
respectively. The potential is referenced to
the bulk of the semiconductor. The interface
potential will depend on the insulator thick-
ness and the polarization, and is found numer-
ically as described in the Appendix. With the
small deviation of the dielectric constant in the
strained interface layers, found for films with an
SRO bottom electrode, the effect on the mea-
sured capacitance can be neglected. The total

capacitance then is

1
C

=
(

λPt

εPt
+

d

εPTO
+

1
Cs

)
. (4)

The result from the numerical calculations is
shown as the dot-dash line in Fig. 6. It
was assumed that the work function for Pt is
qΦm = 5.5 eV,35 the electron affinity for STO
is qχs = 4.0 eV,36 the bandgap of STO is
Eg = 3.2 eV,37 and the electron effective mass
in STO is m∗/me = 10.38 The bulk electron
density was assumed equal to the donor den-
sity Nd = 2 × 1020 cm−3 in the Nb:STO sub-
strate, in accordance with carrier densities de-
rived from transport measurements on similar
substrates.39 The polarization in the PTO film
was assumed to be −65 μC/cm2, the direction
in agreement with our pyroelectric measure-
ments, and the magnitude in reasonable agree-
ment with the polarization measurements. As
can be seen, the predicted capacitance is close
to the ideal parallel plate value for thick films
and significantly reduced for films thinner than
∼ 10 nm. For thick films, the large negative
polarization induces an inversion layer in the
substrate surface, giving a large series capaci-
tance. In thinner films, the potential difference
of the electrodes opposes the formation of the
inversion layer, and the small depletion layer
capacitance dominates the total capacitance.

The film thickness at which this transi-
tion occurs can be estimated from a simplified
model. Ignoring the free carrier density in de-
pletion and weak inversion, the potential at the
interface is33

φs = −
√

abε0
qNd

[
cosh

(
qNd

bε0
w

)
− 1
]

, (5)

where a = 1.64 × 1015 (V/m)2, b = 1.42 ×
1010 (V/m), and w is the depletion layer width.
Furthermore, φs = −Eg/q at strong inversion,
so the depletion width is

wc =
bε0
qNd

arcosh
(

NdEg√
abε0

+ 1
)

. (6)

The transition occurs for the film thickness
where the depletion layer just reaches this
width, and this film thickness is found from the
continuity of the displacement field at the in-
terface as

dc =
εi(Φm − χs − Eg/q − qNdλPt

εPt
wc)

Pr + qNdwc
. (7)
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FIG. 7. The c-axis lattice constant for 20 nm thick
films grown on Nb:STO (filled circles) and SRO
(open circles) as a function of growth temperature.
The error bars, shown for films grown on Nb:STO
substrates only, indicate the uncertainty in the fit-
ted values.

This thickness depends critically on the
polarization. For a polarization between
−60 μC/cm2 and −70 μC/cm2, which are plau-
sible values for PTO, the critical thickness
varies from 10 to 5 nm, in agreement with the
experimental data.

B. Influence of growth temperature

1. Crystalline properties

The c-axis lattice constant was found to
decrease with increasing growth temperature.
Figure 7 shows a similar decrease for films
grown on both Nb:STO and SRO. RSMs of the
(103) diffraction peak showed no relaxation of
the in-plane lattice constant, regardless of the
growth temperature. Furthermore, the crys-
talline quality, as judged by the FWHM of
the (001) rocking curve (less than 0.03◦), was
unaffected by the growth temperature. Fig-
ure 8 shows a θ/2θ-scan of a 53 nm thick film
grown on Nb:STO at 735 ◦C. The predominant
peaks in this diffractogram are the PTO and
STO (00l) diffraction peaks. In addition, a mi-
nor diffraction peak at 2θ = 45◦ is attributed
to an unidentified impurity phase. This peak
was found in diffractograms recorded for 20 nm
thick samples as well. The relative peak in-
tensity of the impurity phase to the PTO (002)
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FIG. 8. θ/2θ scan of a 53 nm thick PTO film grown
on Nb:STO substrate at 735 ◦C. The (00l) peaks
from PTO and STO is seen along with an uniden-
tified impurity phase at 2θ ∼ 45◦.
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FIG. 9. Peak intensity ratio of the Pb 4f and Ti 2p
emission from XPS measurements on PTO films on
Nb:STO substrates, as a function of growth tem-
perature. The relative Pb content is seen to de-
crease with increasing temperature.

diffraction peak did not change with the growth
temperature or with film thickness, suggesting
that the volume fraction of the impurity phase
is constant. The PTO film surfaces were flat,
with a step and terrace structure. Rms val-
ues for the roughness, measured by AFM on
5×5 μm2 scans, varied from 0.2 to 0.7 nm.

Quantitative XPS measurements of the Pb
4f and Ti 2p emission showed that the growth
temperature affects the material composition.
Figure 9 shows the Pb:Ti intensity ratio
from measurements made on films grown on
Nb:STO. It appears that the Pb:Ti ratio de-
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FIG. 10. Hysteresis loops (thick lines) and switch-
ing currents (thin lines) measured on PTO films
with SRO bottom electrodes. The film growth tem-
perature was a) 700 ◦C, b) 710 ◦C, c) 720 ◦C, d)
730 ◦C, e) 740 ◦C, and f) 750 ◦C.

creases with increasing growth temperature.
The concomitant decrease of the lattice con-
stant is consistent with earlier reports.12,40

2. Dielectric properties

Capacitance measurements on PTO films
with SRO bottom electrodes gave a relative di-
electric constant of 91± 13, independent of the
growth temperature, and in agreement with the
dielectric constant found for the thickness se-
ries. The films were ferroelectric irrespective of
the growth temperature. Polarization hystere-
sis loops are shown in Fig. 10, together with the
switching currents. All samples showed asym-
metric hysteresis loops shifted towards a posi-
tive field. The maximum applied field was lim-
ited by an exponentially increasing leakage cur-
rent with applied bias voltage. For a negative
bias, this limiting field was 440–600 kV/cm,
while positive bias permitted an applied field
of 780–930 kV/cm. The negative field limit
was found to decrease with increasing growth
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FIG. 11. Switchable polarization as a function of
film growth temperature. A marked decrease of the
polarization is seen with increasing growth temper-
ature. The error bars are the standard deviations
of measurements on different capacitors.

temperature. These upper and lower bounds
on the bias voltage lead to unsaturated polar-
ization loops. Samples grown at low temper-
atures, 700 ◦C (a) and 710 ◦C (b), showed a
saturated polarization for negative fields and
unsaturated polarization for positive fields. At
higher growth temperatures the polarization
is unsaturated for both positive and negative
fields. Moreover, the switching currents de-
creased in amplitude for samples grown at high
temperatures. It remains unclear whether this
is due to unsaturated polarization or derives
from a decrease in spontaneous polarization.

The switchable polarization, defined as half
the sum of the negative and positive polariza-
tion at zero field, is shown as a function of
growth temperature in Fig. 11. Averaged over
3–6 contacts on each sample, the polarization
varied from 51± 7 μC/cm2 for a sample grown
at 700 ◦C to 17±6 μC/cm2 for a sample grown
at 750 ◦C. These polarization values are smaller
than that estimated from the capacitance mea-
surements on films with Nb:STO electrodes.
This is attributed to the difference between
the remanent polarization and the switchable
polarization. For these unsaturated hysteresis
loops, the switchable polarization can be less
than the actual remanent polarization in the
initial negative polarization state. The coer-
cive field, defined as half the sum of the applied
field at the switching current peaks, also de-
creased with growth temperature, from 474±35
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to 366±55 kV/cm. The increase in leakage cur-
rent with increasing growth temperature, which
in PTO is often associated with Pb vacancies,41
is in agreement with the decreasing Pb content
found from the XPS data.

IV. CONCLUSIONS

Good quality PTO films were grown with
thicknesses from 2 to 200 nm. The crystalline
quality was unaffected by the growth tempera-
ture from 700 to 760 ◦C. Films grown at high
temperature appeared to be Pb deficient, as
seen from unsaturated hysteresis loops, a re-
duced c-axis lattice constant, and a reduced Pb
4f to Ti 2p intensity ratio in XPS measure-
ments.

Capacitance measurements were consistent
with a thickness independent dielectric con-
stant. The dielectric constant in the strained
layer at the film/substrate interface previously
observed in TEM images, is not reduced by
more than 25% compared with the bulk of the
film.
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Appendix

The potential, φs, at the semiconduc-
tor/insulator interface in the MIS model is
found numerically from the continuity of the
displacement field,

εiEi(φs) + Pr = Ds(φs), (A.1)

where εi is the linear dielectric constant of the
insulator, Ei(φs) the electric field in the insu-
lator (which, under the assumption of no free
charge, is constant throughout the film), Pr

the remanent polarization in the insulator, and
Ds(φs) is the displacement field in the semicon-
ductor at the interface. The electric field in the

insulator is

Ei(φs) = −1
d

[Φm − χs − φm(φs) + φs] ,

(A.2)
where d is the insulator thickness, qΦm the
metal work function, qχs the semiconductor
electron affinity, and φm(φs) the potential at
the metal-insulator interface referenced to the
bulk of the semiconductor. It is assumed that
the electron affinity is equal to the semiconduc-
tor work function. With an applied voltage V ,

φm(φs) = −λm

εm
Ds(φs) + V, (A.3)

where λm is the screening length and εm the
dielectric constant of the metal. With the
field-dependent dielectric constant of Nb:STO
as found by Yamamoto et al.33

εSTO(E) =
bε0√

a + E2
, (A.4)

where the constants a and b are 1.64 ×
1015 (V/m)2 and 1.42×1010 V/m, respectively,
the displacement field at the interface is

Ds(φs) =
∫ Es

0

εSTOdE

= bε0 ln

(
Es +

√
a + E2

s√
a

)
, (A.5)

where Es = Es(φs) is the electric field in
the semiconductor at the interface. The elec-
tric field is found using the standard textbook
derivation,31 assuming non-degenerate carrier
statistics, but allowing for a field dependent di-
electric constant. The electric field is found as

Es(φ) = ±
[

1
b2

(
kBT

qL0

)4

F 4(φ)

+ 2
√

a

b

(
kBT

qL0

)2

F 2(φ)
]1/2

.(A.6)

The field is positive for positive φ and negative
when φ is negative. The Debye-type length L0

and the function F (φ) are31

L0 =
√

ε0
qn0β

, (A.7)

and

F 2(φ) =
p0

n0

(
e−βφ + βφ− 1

)
+
(
eβφ − βφ− 1

)
. (A.8)
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The assumption of non-degenerate carrier
statistics for the 0.5 wt.% Nb doped STO sub-
strates is generally not applicable. However,
the major effect of the film thickness and polar-
ization dependence of the surface capacitance
is from the depletion region, where the carrier
density is described by non-degenerate statis-
tics.

The capacitance of the surface layer is Cs =
∂Ds/∂φs, and is found from the the displace-
ment field expressed as a function of surface
potential φs,

Ds(φs) = −qn0

∫ φs

0

[
p0

n0

(
e−βφ − 1

)

− (eβφ − 1
) ]

E−1(φ)dφ. (A.9)

Thus the capacitance is

Cs =
∂Ds

∂φs

= −qn0

p0
n0

(
e−βφs − 1

)− (eβφs − 1
)

Es(φs)
.

(A.10)

The flat-band capacitance is found from an ex-
pansion of the charge density and electric field
for small φs to be

lim
φs→0

Cs =
qn0

√
p0
n0

+ 1√√
a

b

(
kBT
qL0

) . (A.11)
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Polarization direction and stability in ferroelectric lead titanate
thin films

Ø. Dahl,a) J. K. Grepstad, and T. Tybellb)

Department of Electronics and Telecommunications, Norwegian University
of Science and Technology, O.S. Bragstads plass 2a, NO-7491 Trondheim,
Norway

In this article, we examine the initial polarization of PbTiO3 thin films grown epitaxially
on SrRuO3 electrodes. It is found that the as-grown predominant polarization is directed
towards the SrRuO3 bottom electrode in films thinner than 20 nm, and directed towards
the top surface in thicker films. The data is interpreted in terms of a Landau-Ginzburg-
Devonshire model for a semiconducting ferroelectric with asymmetric boundary conditions.
Based on the measured hysteresis loops and the stability of the two polarization directions
with time, it is concluded that charged defects serve to impose a preferential downward
polarization in very thin films.

I. INTRODUCTION

Ferroelectric thin films for device applica-
tions are often polarized perpendicular to the
film surface. Ideally, the polarization is com-
pensated by screening charges in short-circuited
electrodes. When such boundary conditions
are not satisfied, stable polarization can be
explained by internal screening in a Landau-
Ginzburg-Devonshire model.1–3 As was shown
by Guro et al.,2 the contact potential of the
ferroelectric-electrode interface affects the po-
larization in the ferroelectric. Hence ferroelec-
tric thin film structures with only one elec-
trode may exhibit a preferred direction of
polarization, which is often observed experi-
mentally. For example, ferroelectric PbTiO3

thin films grown on Nb-doped SrTiO3 elec-
trodes were found to be monodomain with
positive polarization (i.e., �P directed towards
the substrate),4 while similar films grown
on SrRuO3 electrodes have shown negative
polarization.5 Monodomain films with positive
polarization as well as polydomain films with
periodically alternating positive and negative
domains have been reported for PbTiO3 grown
on insulating SrTiO3 substrate.6–8 In addition
to the substrate material, the size of the fer-
roelectric material has also been found to af-

a)Present address: SINTEF Materials and Chemistry,
NO-7465 Trondheim, Norway. Electronic mail: oys-
tein.dahl@sintef.no
b)Electronic mail: thomas.tybell@iet.ntnu.no

fect the initial polarization. Inversion of the net
polarization upon increasing size was observed
for PbTiO3 particles deposited on Nb-doped
SrTiO3 substrate, from positive polarization in
small particles to negative polarization for par-
ticles larger than ∼ 105 nm3.9 A similar ef-
fect was observed for PbTiO3 thin films grown
on La0.67Sr0.33MnO3 electrodes, which changed
from a polydomain to a monodomain state with
negative polarization when the film thickness
exceeded 25 nm.10 It has also been found that
the oxygen pressure under high temperature
processing can be used to reversibly switch the
polarization in PbTiO3 films with a SrRuO3

bottom electrode.11 At the moment, it is not
established to what extent the polarization is
screened by domain formation, external, or in-
ternal charges.

Here, we investigate the initial polarization
and the stability of the switched polarization in
PbTiO3 thin films grown on SrRuO3 electrodes.
We use a Landau-Ginzburg-Devonshire model
for an ideal semiconducting ferroelectric to the-
oretically assess the initial polarization, extend-
ing the symmetric models of Ivanchik,1 Guro et
al.,2 Chenskii,3 and Watanabe,12 with bound-
ary conditions appropriate for a thin film with
a vacuum interface on one side and a metallic
electrode on the other.

II. EXPERIMENTAL

PbTiO3 films with a thickness ranging from
5 to 100 nm were grown on SrRuO3 epilay-
ers deposited on SrTiO3 substrate. The films



68

were grown by off-axis rf magnetron sputtering
from a Pb1.1TiO3 target in an O2:Ar (4:10) at-
mosphere with a total pressure of 165 mTorr
at a growth temperature of 540 ◦C. The films
were c-axis oriented, with a mosaic spread of
< 0.03 deg, as measured by x-ray diffraction
rocking curves around the (001) and (002) re-
flections. The step-and-terrace surface topog-
raphy of the substrates was replicated for films
thinner than 100 nm, while thicker films had
a root-mean-square surface roughness of less
than 0.4 nm. Further details on film deposition
and crystalline structure characterization are
reported elsewhere.13 The SrRuO3 layer was
used as bottom electrode, and 0.12 mm2 Au/Pt
contacts (200/50 nm thick) deposited ex situ
were used as top electrodes for electrical char-
acterization.

Polarization hysteresis curves were measured
with a conventional Sawyer-Tower type setup
(Aixacct TF2000). Asymmetric triangular
bipolar voltage pulses were used, as reported
previously,13 and the measurement frequency
was 1 kHz. Pyroelectric hysteresis curves were
measured as described by Chynoweth.14 The
samples were locally heated using a 40 mW
laser of 830 nm wavelength focused on the top
electrode. The laser beam was pulsed using a
mechanical chopper, and the resulting pyroelec-
tric current was detected with a phase-locked
amplifier. A current-to-voltage converter was
used to ensure short-circuit conditions during
measurements. The samples were polarized
by voltage pulses with a pulse length of 1 s.
The dwell time between polarization and mea-
surement of the pyroelectric response was 5 s.
Hysteresis loops were mapped out by apply-
ing a sequence of pulses with increasing and
decreasing voltage amplitude. The stability
of the polarization was examined by monitor-
ing the time response of the pyroelectric cur-
rent after forced polarization. The samples re-
mained short-circuited throughout these mea-
surements.

III. RESULTS AND DISCUSSION

The initial pyroelectric hysteresis loops, mea-
sured during the first switching of polariza-
tion, are shown in Fig. 1. The 10 nm thick
film, Fig. 1 (a), showed a positive initial py-
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FIG. 1. Pyroelectric hysteresis loops measured on
as-grown PbTiO3 films. The initial response is pos-
itive in the 10 nm thick sample a), while it is neg-
ative in the thicker samples b-d).

roelectric response, while thicker films such as
the 19 nm thick film, Fig. 1 (b), showed a
negative initial response. Films thicker than
∼ 30 nm, Figs. 1 (c) and (d), showed a neg-
ative initial response close to saturation. The
response of a 5 nm thick film was consistent
with a positive polarization, however, this film
could not be switched in the present exper-
iment. The PbTiO3 samples in this study
showed a change in net polarization with film
thickness, with a positive initial polarization
for the thinnest films, thus differing from previ-
ous reports which found a negative polarization
for all film thicknesses.5 Polarization hysteresis
loops are shown in Fig. 2. Leakage current in
samples thinner than ∼ 20 nm made polariza-
tion measurements by the conventional tech-
nique unreliable. The polarization data show
a similar trend as the pyroelectric loops, with
a less sharp switching voltage for the thinnest
samples. This is also evident from the current-
voltage data shown by broken curves in Fig. 2.

The stability of the switched polarization
with time is shown in Fig. 3 for a 10 nm and
a 19 nm thick film, respectively. The pyroelec-
tric response was found to decline nearly log-
arithmic with time after polarization. Thick
films showed no measurable difference in stabil-
ity between the two polarization states. Only
for very thin films, initially polarized in the pos-
itive state, is an asymmetry of the polarization
state clearly observed. After the film is nega-
tively polarized, it reverts to a positive polar-
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ization.
The predominantly negative initial polariza-

tion has been previously attributed to polariza-
tion screening by negative ions in the growth
chamber.5 Here, the influence of the electrode
configuration on the polarization direction is
examined. In a perfectly insulating ferroelec-
tric, the electric field associated with the po-
larization gradient tends to destabilize the po-
larization. In a semiconducting ferroelectric,
the surface band-bending can induce a screen-
ing charge to stabilize the polarization.1–3

Following Ivanchik1 and Guro et al.2, the
Landau-Ginzburg-Devonshire expansion of the

elastic Gibbs free energy density in the ferro-
electric material in terms of the displacement
field D,

G = G0 +
K

2

(
dD

dz

)2

+
A(T )

2
D2

+
B

4
D4 +

C

6
D6, (1)

is used to find the equation of state relating
the electric field E and the displacement D.
The elastic energy is incorporated by rescal-
ing the thermodynamic constants A and B.15,16

The effect of the the bottom electrode inter-
face and the film surface is included through
the boundary conditons and the energy asso-
ciated with the gradient of the displacement
field near the film surface. The thermody-
namic constants A, B, and C are known ex-
perimentally for PbTiO3,17 and Zhirnov’s es-
timate for the constant K,15 assuming that
the polarization varies over distances on the
order of a lattice constant a0, is adopted by
setting K = A(0)a2

0.
18 The displacement field

profile and the charge density are found self-
consistently from the equation of state, which
gives the electric field as the variational deriva-
tive of the elastic Gibbs free energy density,

E =
∂G

∂D
− d

dz

(
∂G

∂ dD
dz

)

= −K
d2D

dz2
+ AD + BD3 + CD5. (2)

The electric field is by definition equal to the
negative of the gradient of the electrostatic po-
tential φ. Thus,

AD + BD3 + CD5 = K
d2D

dz2
− dφ

dz
, (3)

which by multiplication with the charge density
ρ = dD/dz gives

(AD+BD3+CD5)dD =
(

K − dφ

dρ

)
ρdρ. (4)

Integrating (4) over the PbTiO3 layer gives[
A

2
D2 +

B

4
D4 +

C

6
D6

]D(z2)

D(z1)

=

K

2
[
ρ2
]ρ(z2)

ρ(z1)
− [ρφ]ρ(z2)

ρ(z1) +
∫ ρ(z2)

ρ(z1)

φdρ, (5)
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where the solution of the final integral depends
on the relation between charge density and elec-
trostatic potential. For a semiconductor, the
charge density is

ρ = q
[
p− n + N+

d −N−
a

]
, (6)

where q is the electron charge, n and p are the
electron and hole densities, and q(N+

d −N−
a ) the

net charge density from the dopants. For an in-
trinsic semiconductor, the Boltzmann approxi-
mation gives ρ(φ) = 2qni sinh(−βφ),19 where
ni is the intrinsic carrier density.20 The po-
tential φ is measured relative to the chemi-
cal potential of the neutral semiconductor and
β = q/kT , where k is Boltzmann’s constant and
T the absolute temperature. The numerical
calculations show that the induced charge den-
sity at the surface invalidates the Boltzmann
approximation. Therefore, Joyce and Dixon’s
approximation for the relation between the re-
duced electrochemical potential ηn = (μ+ qφ−
Ec)/kT and the electron density n,21

ηn = ln
(

n

Nc

)
+
∑
m=1

Am

(
n

Nc

)m

, (7)

is used instead of the Boltzmann approxima-
tion. Here μ is the chemical potential, Ec is
the conduction band edge, and Nc is the con-
duction band effective density of states. Joyce
and Dixon derive the coefficients Am from a
reversion of the power series expansion of the
Fermi integral in terms of exp(η).21 The same
approximation is used for the hole density p,
with the reduced electrochemical potential re-
placed by ηp = (Ev − μ − qφ)/kT , where Ev

is the valence band edge. Nc is replaced by
the valence band effective density of states Pv.
In the numerical calculations, the approxima-
tion is limited to the first four terms.22 Setting
dρ = q(dp− dn), the integral in Eq. (5) is writ-
ten

∫ ρ(z2)

ρ(z1)

φ(ρ)dρ = q

∫ p(z2)

p(z1)

φ(ηp)dp

− q

∫ n(z2)

n(z1)

φ(ηn)dn. (8)

From Eq. (7), relating φ and n,

−q

∫
φdn =

−
∫ {

kT

[
ln
(

n

Nc

)

+
∑
m

Am

(
n

Nc

)m ]
+ (μ− Ec)

}
dn

= −n

{
kT

[
ln
(

n

Nc

)
− 1

+
∑
m

Am

m + 1

(
n

Nc

)m
]

+ (μ− Ec)

}
,(9)

with a corresponding expression for the inte-
gral over the hole density. For the numeri-
cal calculations, the minority carrier density
was estimated from the law of mass action,
(n, p) = n2

i /(p, n). The majority carrier den-
sity was found from Eq. (6).

The PbTiO3/SrRuO3 system is modelled as
an ideal semiconducting monodomain ferroelec-
tric with a free electron gas bottom electrode.
For this asymmetric configuration, the bound-
ary condition at the surface is

D = 0, (10)

and the displacement field and potential at the
ferroelectric-metal interface are related by

φ =
λ

εrε0
D −ΔΦ, (11)

where ΔΦ is the contact potential, and λ and
εr are the screening length and the relative
dielectric constant of the metallic electrode,
respectively.23 The displacement field will in-
crease from zero at the film surface to an ex-
treme value D0, either in the interior of the
film or at the ferroelectric-metal interface. If
the extreme is found in the interior of the film,
it follows that the gradient of the displacement
field is zero there. Hence, there is a neutral
plane where ρ = 0 and φ = 0. Equation (5) can
then be solved numerically for D in terms of
φ. If no neutral plane is found, Eq. (5) can be
solved with D = D0 at the ferroelectric-metal
interface and φ given by Eq. (11). The dis-
placement field profile and corresponding film
thickness were found by numerical integration
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FIG. 4. The relationship between film thickness
and displacement field, as obtained from a Landau-
Ginzburg-Devonshire model at room temperature
(solid line). The open circles mark the experi-
mental initial pyroelectric response (right ordinate
axis), and the open squares shows the displacement
field calculated from the measured lattice constant
(left ordinate axis).

of the inverse charge density over the displace-
ment field, from the film surface to the film-
bottom electrode interface.

In Fig. 4, the solid line shows the magnitude
of D0 versus the film thickness for an intrinsic
semiconducting ferroelectric with contact po-
tential ΔΦ = −0.3 V and negative polariza-
tion. The contact potential was set equal to
Φm − (χs + Vn), where qΦm is the work func-
tion of the metal electrode, and qχs and qVn are
the electron affinity and the difference between
the conduction band minimum and the chem-
ical potential, respectively.24 The reported lit-
erature values are Φm = 4.9 V for SrRuO3 and
χs = 3.5 V for PbTiO3.25,26 While some uncer-
tainty is involved in the assessment of the exact
value of the chemical potential, equal effective
density of states is assumed for the conduction
and the valence band, and Vn = Eg/2q, with
Eg = 3.4 eV for PbTiO3.26 As can be seen, for
a film thickness of less than 10 nm, the model
has no solution for the displacement field. For
films thicker than 10 nm, there is a finite solu-
tion for the displacement field, which increases
with thickness and saturates for films thicker
than 40 nm. Considering only the asymmetry
arising from the contact potential at the film-
bottom electrode interface, the negative polar-
ization state is about 0.1 J/m2 lower in energy
than the positive polarization state for any film

thickness. The free energy density in the in-
finitely thick film limit is about 1 × 108 J/m3

lower than the paraelectric reference structure.
Thus for a 10 nm thick film, the energy differ-
ence between positive and negative polarization
amounts to about 10% of the total change in
free energy.

Figure 4 also shows experimental data for the
magnitude of the initial pyroelectric response
(open circles). The measured pyroelectric re-
sponse is seen to increase less rapidly with in-
creasing film thickness than predicted by the
model. The measured pyroelectric response is
a surface average over both positive and nega-
tive domains. Hence, for thin films where the
depolarization field is stronger, resulting in a
more even distribution of positive and negative
domains, the net response is less than predicted
for a monodomain thin film.

It is also possible to relate the polarization
to the unit cell tetragonality. From the elas-
tic Gibbs free energy,17 under the appropriate
mechanical boundary conditions,16 the relation
between the out-of plane lattice constant c and
the displacement field D reads,

D2 =
1

Q11 − 2s12
s11+s12

Q12[
c

a0
−
(

1 +
2s12

s11 + s12
u0

)]
, (12)

where a0 is the cubic lattice constant, u0 is
the in-plane strain imposed by the epitaxial
growth on the SrTiO3 substrate, s11 and s22

are the elastic compliance coefficients, and Q11

and Q12 are the electrostrictive constants. The
displacement field calculated from Eq. (12) with
the measured lattice constant c,13 using values
for the electrostrictive coefficients and the cu-
bic lattice constant as given by Haun et al.,17
and elastic compliance coefficients taken from
Ref. 27, is shown as open squares in Fig. 4. The
calculated displacement field from the mea-
sured lattice constant is in good agreement with
the predictions from the model and increases
more rapidly than the pyroelectric response,
again indicating the effect of domain formation
for very thin films.

The observed change in stable polarization
direction is not predicted by the present model
for an intrinsic semiconductor, for which neg-
ative polarization is stable for all film thick-
nesses. We note, that if the chemical poten-
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FIG. 5. The measured offset voltage of the py-
roelectric (filled circles) and ferroelectric (open cir-
cles) hysteresis loops. The voltage offset is negative
in thin films, going positive and increasing with film
thickness to saturate at ∼ 0.5 V.

tial changes as a result of doping, this will have
two potentially opposing effects: (i) The con-
tact potential will change. A net donor dop-
ing reduces Vn and makes the contact poten-
tial less negative, or even positive, potentially
stabilizing the positive polarization direction.
Whereas a net acceptor doping may help stabi-
lize the negative polarization direction. (ii) The
amount of surface band bending required to in-
duce a sufficient screening charge is changed.
A net donor doping decreases the screening en-
ergy at the surface for the negative polarization
direction, while a net acceptor doping decreases
the energy for a positive polarization direction.
Calculations with net acceptor dopant densities
from 10−1 to 109 cm−3 gave lowest energy for
positive polarization in thin films and for nega-
tive polarization in thick films, with a crossover
thickness in the range of 20–30 nm.

The above analysis does not include the in-
fluence of defects. Internal fields can result
from charged defects and defect dipoles.28–33 In
Fig. 5, the voltage offset, defined as half the sum
of the coercive switching voltages for positive
and negative polarization, are shown for pyro-
electric (filled circles) and polarization (open
circles) hysteresis measurements. The offset
voltage for thick films (> 30 nm) corresponds to
the built-in offset expected from the difference
in work function for the Pt and SrRuO3 elec-
trodes. For thinner films the offset voltage de-
creases and reaches −0.8 V for the 10 nm thick
film. Polarization hysteresis loops from 20 nm

thick films grown at different temperatures13
showed an increasing negative voltage offset for
films grown at the highest temperatures. Com-
bined with the spontaneous switching to posi-
tive polarization, this suggests an increased in-
fluence from defects in the thinnest films. The
preferred positive polarization and negative off-
set voltage in thin films are compatible with
positively charged oxygen vacancies at the sur-
face. Additional mechanisms are needed to ex-
plain the change in preferred polarization direc-
tion with increasing film thickness. A realistic
model of the interaction and the dynamics be-
tween defects and the polarization during film
growth would be valuable in order to under-
stand the real thin film behavior.

IV. CONCLUSION

In summary, calculations on an idealized
model indicate that the as-grown state of the
PbTiO3 films will have a preference for one
of the two opposite polarization directions, de-
pending on the contact potential between the
ferroelectric thin film and the metal bottom
electrode. Very thin films show voltage offsets
and retention behavior compatible with a layer
of positive charge near the top electrode.
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Chapter 5

Conclusions and outlook

We have studied the properties of thin PbTiO3 films grown pseudomorphically on
SrTiO3 substrates. It was found that the properties are unchanged for film thick-
ness down to 20 nm. For thinner films the interfaces and polarization screening
mechanism starts influencing the properties.

The TEM study and XRD measurements showed that the PbTiO3 films were of a
good structural quality with a low density of extended defects. The major extrinsic
impact on the ferroelectric properties was assumed to come from point defects in
the film and from the interfaces and electrodes.

The effect of the point defects can be illustrated with the response of films grown
at different temperatures. It was seen from XPS measurements that the Pb to Ti
ratio at the surface decreased with increasing growth temperature. Concomitant
with this, there was an increase in the leakage current and a larger negative offset
voltage in the hysteresis loops. Although XPS is a surface technique, we expect
the results to be indicative of the composition of the bulk of the sample as well.
Hence the samples grown at optimal temperature are close to stoichiometric, with
Pb and O vacancies as the dominating point defects. This is in agreement with the
prevailing literature [160–166]. There are indications that the point defects have a
stronger influence on the ferroelectric properties in very thin films. For films grown
at optimal temperature, it was found that the offset voltage in the polarization
hysteresis loops became negative in very thin films, similar to that observed in films
grown at high temperatures. The stability of the negative polarization was lost after
switching in very thin films.

The TEM study found a strain gradient, parallel with the polarization direc-
tion, in a layer near the Nb doped SrTiO3 and pure SrTiO3 substrate. In this
layer, the c-axis of the unit cell was gradually reduced compared to the bulk of
the film. The strain is not from the epitaxial growth, but can be related to a re-
duced polarization near the interface. A similar strain gradient has recently been
observed for Pb(Zr,Ti)O3 thin film grown on SrRuO3 electrode [103, 104]. Based on
the capacitance measurements for different film thickness, we found that the dielec-
tric properties of this layer was not significantly changed from the bulk properties.
This is in agreement with others who have found that the interface capacitance
is dominated by the electrodes [88, 90, 167, 168]. The polarization can be reduced
near the interface as a compromise between the depolarization energy from incom-
pletely screened polarization and the strain and polarization gradient energy for an
inhomogeneous polarization.

The XRD measurements showed a decreasing out-of-plane lattice constant with
decreasing film thickness below 20 nm. This behaviour has also been observed
previously in PbTiO3 thin films [101]. The polarization profile, calculated from a
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vacuum/ferroelectric/metal electrode structure, showed a decreasing bulk polariza-
tion for films in the same thickness region. The polarization as extracted from the
measured lattice constant was in agreement with the model calculations.

The pyroelectric measurements showed that the polarization had the thick-film
limit value down to a film thickness of 20 nm. For thinner films there was a re-
duced response. This is in agreement with the XRD results, and with other stud-
ies, which have found a reduction of the polarization for film thickness less than
15 nm [100, 103, 108, 114, 169]. For thick films, the initial polarization was found
to be negative, consistent with the model calculations, showing the possibility of
controlling the polarization by adjusting the contact potential of the interface be-
tween the ferroelectric and the electrodes. The decay of the net polarization after
applying switching pulses was found to be faster in thinner films, consistent with
an increased depolarization field with decreasing film thickness. The final state in
very thin films was not zero net polarization, but a finite positive net polarization,
which we interpret as an effect of the presence of interface dipoles and defects that
influences the polarization.

Returning to the question of the factors that affect the switchability and stability
of the polarization, it is clear that both the interfaces and defects are important.
To clarify the relative importance of the interface itself, and interface defects, it
would be of interest to investigate surface and interface defects in detail. This can
be accomplished by measuring the depth profile and the nature of the defects, using
e.g. XPS, Auger electron spectroscopy, and electron energy loss spectroscopy, which
all give valuable information. However, these methods have either a low sensitivity,
or are very local probes, so this is a challenging task. Utilizing different electrode
materials, preferably metallic oxides to keep mechanical conditions unchanged, can
verify the role of the interface. The relaxed state could be examined, with for
instance scanning probe microscopy or x-ray diffraction methods, to clarify wether
the relaxed state consists of randomly nucleated domains or regular stripe domains
as found in some thin films [117, 170]. In addition, the temperature dependence of
the polarization relaxation could shed light on the relaxation mechanism. Models of
the three-dimensional strain at the interface, with particular attention to the effect
of step edges on the strain, as well as the interaction between depolarization field,
strain field, and point defects, would be of particular interest.
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