
Robust Speech Recognition in
the Presence of Additive Noise

Svein Gunnar Storebakken Pettersen

A Dissertation Submitted in Partial Fulfillment
of the Requirements for the Degree of

PHILOSOPHIAE DOCTOR

Department of Electronics and Telecommunications
Norwegian University of Science and Technology

2008





Abstract

It is well known that additive noise can cause a significant decrease in per-
formance for an automatic speech recognition (ASR) system. For an ASR
system to maintain an acceptable level of performance in noisy conditions,
measures must be taken to make it robust. Since prior information about
the noise is usually not available, this information typically has to be ob-
tained from the observed noisy utterance that is to be recognized.

Model compensation is one way of achieving robustness towards noise.
One of the main problems with model compensation is how to approximate
the non-linear relationship between speech, noise, and noisy speech in the
log-spectral domain. In an effort to investigate the effects of approxima-
tion accuracy, a comparative study of two existing and one new method
for approximating this relationship is presented. The study shows that, al-
though the approximation methods differ in accuracy on a one-dimensional
example, the recognition results on Aurora2 are almost equal in practice.

Due to several factors, the noisy speech parameter estimates obtained
when performing model compensation will normally be uncertain, limiting
the attainable performance. We propose a new model compensation ap-
proach, in which a robust decision rule is combined with traditional parallel
model combination (PMC) to compensate for uncertainty. Experiments
show that the proposed approach is effective in increasing performance at
low signal-to-noise ratios (SNRs) for most noise types compared to PMC.

Another way of improving ASR performance in noisy conditions is by ap-
plying a feature enhancement algorithm prior to recognition. Many existing
feature enhancement techniques rely on probabilistic models of speech and
noise. Thus, the performance is influenced by the quality of these models.
Traditionally, the probabilistic models have been trained using maximum
likelihood estimation. This dissertation investigates the use of an alterna-
tive estimation method for prior speech models, namely Bayesian learning.
It is shown that, within the chosen experimental setup, Bayesian learning
can be used for model selection, and that the recognition performance is
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comparable to the performance obtained with maximum likelihood in most
cases.

A good probabilistic model for the noise can be difficult to obtain, since
it usually has to be estimated directly from the utterance at hand. In order
to improve the quality of the noise model used by the feature enhancement
algorithm, we investigate the use of voice activity detection (VAD) to obtain
information about the noise. An advantage of the proposed VAD approach
is that it works in the same domain as the speech recognizer. Experiments
show that the VAD approach on average obtains a 10.8% error rate reduction
compared to simply using a speech-free segment from the beginning of the
utterance for noise modeling.
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Chapter 1

Introduction

Automatic speech recognition (ASR) is the process of automatically con-
verting an acoustic speech signal into text using a computer. ASR perfor-
mance comparable to that of a human being has proved difficult to achieve.
The vast amount of research publications in this field during the past few
decades is a testament to the complexity of the problem. What makes the
problem so difficult is the great variability in speech signals, channel, and
environment conditions. The acoustic realization of an utterance depends
on speaker characteristics such as age, sex, and dialect. In addition, the
acoustic signal is affected by noise from the environment and distortions
from the channel, microphone, and analog-to-digital converter before the
signal can be processed in the computer.

Despite these challenges, ASR technology has already been put to use in
a number of real-world applications such as dictation software and automatic
telephone services. Many typical ASR applications require the ASR system
to be robust in order to be useful. For an ASR system to be robust it has
to be able to maintain an acceptable level of performance when exposed to
a range of different conditions. This means that the system has to handle
both speaker variabilities and acoustic variabilities.

The focus of this thesis will be on robustness towards noise. Many
potential applications for ASR rely on the ability of ASR systems to work
well in noisy environments. Consequently, a lot of research has been done
on noise robustness. Speech signals can be influenced by both additive
background noise and convolutional distortions resulting from microphones,
room acoustics, and transmission channels. A lot of the research that has
been done on noise robust ASR considers both additive and convolutional
noise (see e.g. [44, 66, 46]). However, this thesis will focus on additive
background noise.
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2 Introduction

The rest of this chapter is organized as follows. In Section 1.1, a brief
description of the noise robustness problem as well as an overview of different
approaches for dealing with the problem are given. Then, Section 1.2 will
give an overview of the contributions of this thesis.

1.1 The Noise Robustness Problem

In many practical applications, ASR systems are trained without knowing
exactly under which environmental conditions they will be used. As an ex-
ample, consider a telephone based dialog system that lets users call from
any location. Then, the system has to be able to deal with many differ-
ent types of background noise. In practice, it will be impossible to collect
training data that represent all possible environmental conditions for this
system. The main problem we face then is that the observed speech will
have statistics different from the statistics of the training data. In order to
solve this problem there are generally four different approaches:

1. Use features that are robust towards noise, so that the changes in
statistics will be as small as possible.

2. Find a transformation of the feature vectors that will reduce the effect
of the noise on the feature vectors.

3. Transform the ASR model parameters to match the observed environ-
mental conditions.

4. Use robust decision rules that compensate for uncertainty in parame-
ter estimates.

In this thesis we will focus on methods that use one or more of the last three
approaches, i.e., robust feature transformations, model-based techniques, and
robust decision rules. It will be assumed that the ASR system has been
trained using only clean speech data, i.e., with no additive background noise
present.

Most of the techniques described in this thesis require a statistical model
of the noise. In order to estimate the parameters of this model, a small
amount of noise data is needed. Since we rarely have access to relevant
noise data for all possible situations when training the recognizer, this data
usually has to be obtained from the observed noisy utterance that is to be
recognized. There are two fundamentally different approaches for obtaining
noise data from a noisy speech signal. One can either try to detect segments
of the signal that consist only of noise, or one can try to track the noise
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event through periods of speech activity. A simplified version of the former
approach that is commonly used is to assume that the observed signal always
contains a short noise-only segment before the speech begins. This segment
is then either used to estimate noise parameters directly or to estimate
an initial noise model for extracting more noise data from the rest of the
signal. Throughout this thesis we will also make the assumption that the
first portion of each observed signal is speech-free.

The database that will be used for testing noise robustness algorithms
in this thesis is the Aurora2 database [32], which consists of spoken digit
strings with artificially added noise. A description of this database can be
found in Appendix A.

1.2 Contributions of This Thesis

This thesis provides a study of methods for robust automatic speech recog-
nition in the presence of additive noise. In order to improve on some of
the weaknesses of existing approaches, we present contributions for both
model-based methods and robust feature transformations.

A Comparative Study of Approximations for Model Compen-
sation

One of the main problems with model compensation is how to approximate
the non-linear relationship between speech, noise, and noisy speech in the
log-spectral domain. In an effort to investigate the effects of approximation
accuracy, Chapter 4 presents a comparative study of methods for approxi-
mating this relationship. Two previously proposed techniques as well as one
method that is new in this context are examined. A detailed analysis of ex-
perimental results is then carried out to investigate to which extent methods
of different approximation accuracy will result in different estimates when
used in practice.

Combining Model Compensation and a Robust Decision Rule

Due to several factors, the noisy speech parameter estimates obtained when
performing model compensation will normally be uncertain. This uncer-
tainty causes a limitation of attainable performance, which becomes more
severe as the SNR decreases. Robust decision rules have been proposed in
the context of ASR with the purpose of compensating for uncertainty in pa-
rameter estimates. This motivates a combined approach which is presented
in Chapter 5. This approach to model compensation incorporates a robust



4 Introduction

decision rule called Bayesian predictive classification (BPC). The combina-
tion is achieved by using the noisy speech mean from model compensation
in the prior distribution of BPC. Experimental results of the joint approach
are then analyzed. The analysis reveals a problem with the joint approach
when the noise consists mainly of background speech. In order to alleviate
this problem a prior scaling technique is introduced.

Bayesian Learning of Speech Models for MMSE Feature En-
hancement

Methods for minimum mean-square error (MMSE) feature enhancement of
noisy speech rely on probabilistic models of speech and noise in order to
obtain good estimates of clean speech. The quality of these probabilistic
models will therefore influence the quality of the resulting clean speech
estimates. Traditionally, the probabilistic models have been trained using
maximum likelihood (ML) estimation. Chapter 6 starts by reviewing some
of the theory behind Bayesian learning, which in many cases has advantages
compared to ML learning. Then, a study on application of this theory to
front-end models for MMSE feature enhancement is presented. Experiments
with various model sizes are performed and compared to ML. The ability
of Bayesian learning to do model selection is also investigated.

Improved Noise Modeling for MMSE Feature Enhancement
Using Voice Activity Detection

One of the main challenges with most noise robustness techniques is to ob-
tain reliable estimates of the statistical parameters of the noise. Extracting
this information from only the current noisy utterance is far from trivial. In
Chapter 7 we investigate one of the possible approaches for noise parame-
ter estimation, namely voice activity detection (VAD). We propose a novel
VAD method that is used for obtaining improved noise models for MMSE
feature enhancement of noisy speech. One advantage of the proposed VAD
approach is that it works in the same domain as the speech recognizer. The
method is compared to only using the first portion of each utterance for
noise modeling, as well as another well-known VAD method working in the
discrete Fourier transform domain. The results are also compared to an
approximate upper bound VAD. This upper bound VAD was obtained by
running forced alignment on clean speech data to find silence segments that
correspond to noise-only segments in the noisy speech data.



Chapter 2

Speech Recognition Based on
the Hidden Markov Model

In this chapter we will give an overview of speech recognition based on the
hidden Markov model (HMM). We will begin by looking at how the problem
of speech recognition can be related to statistical decision theory, which is
the basis of the probabilistic approach to ASR. Then, we will move on to
describe the HMM, before we give an overview of a typical HMM-based
ASR system. Finally, we explain how to calculate mel-frequency cepstrum
coefficients, which have become the most popular features for ASR during
the last couple of decades.

2.1 Statistical Decision Theory

As mentioned in Chapter 1, the objective of a speech recognizer is to convert
a speech signal into the corresponding sequence of words. A speech recog-
nizer can be represented mathematically as a function d that maps speech
signals into word strings, i.e.,

d : Y → W, (2.1)

where Y is the set of all possible speech signals, and W is the set of all pos-
sible word strings. In statistical theory, such a function is called a decision
rule. When using a speech recognizer in practice, the observed speech signal
Y ∈ Y is used to generate an estimate Ŵ ∈ W of the correct word string
W ∈ W, i.e.,

Ŵ = d(Y). (2.2)

5



6 Speech Recognition Based on the Hidden Markov Model

The statistical way of measuring the quality of such an estimate is by defin-
ing a loss function. A loss function l maps a pair (W, Ŵ ) to a non-negative
real number. For speech recognition a common choice is the (0,1)-loss func-
tion, which is defined as

l(W, Ŵ ) =

{
0 if Ŵ = W

1 if Ŵ 6= W.
(2.3)

This means that all recognition errors are assigned equal loss, while a correct
recognition result gives zero loss. Having defined a loss function it would be
useful to predict the expected performance of different speech recognizers.
This can be achieved by viewing (W,Y) as a jointly distributed random pair
and looking at the expected value of the loss function. If we assume that
the true distribution p(W,Y) is known, we can calculate this expectation
as

r(d(·)) = EW,Y[l(W,d(Y))] (2.4)

=
∑
W∈W

∫
Y∈Y

l(W,d(Y))p(W,Y)dY. (2.5)

The quantity r(d(·)) is called total risk. Given the (0,1)-loss function it can
be shown [34] that the decision rule that minimizes the total risk is Bayes’
decision rule, also called the maximum a posteriori (MAP) decision rule,
given by

d(Y) = arg max
W

P (W |Y) (2.6)

= arg max
W

p(Y|W )P (W ). (2.7)

In ASR the probability distribution of the pair (W,Y) is usually modeled
as

p(W,Y) = pΛ,Γ(W,Y) = pΛ(Y|W )PΓ(W ), (2.8)

where pΛ(Y|W ) is called the acoustic model and PΓ(W ) is called the lan-
guage model. We have assumed that the acoustic model is a member of
a parametric family with parameters Λ. The language model probabilities
are denoted by Γ. Based on these distributions, the MAP decision rule in
(2.7) is given by

Ŵ = arg max
W

pΛ(Y|W )PΓ(W ). (2.9)

If the assumed model structures of pΛ(Y|W ) and PΓ(W ) were correct and
the true values of (Λ,Γ) known, the decision rule in (2.9) would be optimal
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1 2 31
a12

a11 a22

a23

a33

Figure 2.1: An example HMM

in the sense that it minimizes the expected sentence error rate. In practice,
however, we have to select model structures in order to approximate the
true (unknown) distribution p(W,Y). Moreover, estimated values (Λ̂, Γ̂)
have to be found from training data. These estimates are then plugged into
(2.9), resulting in the plug-in MAP decision rule:

Ŵ = arg max
W

pΛ̂(Y|W )PΓ̂(W ). (2.10)

The remaining problem is to find suitable probabilistic models for speech
and language. In ASR, the most common choice for pΛ(Y|W ) is the hidden
Markov model, whereas the most common choice for PΓ(W ) is the N -gram
language model.

2.2 The Hidden Markov Model

The hidden Markov model (HMM) is a powerful statistical model which
is well suited for characterizing discrete time series of observations. The
HMM can be viewed as an extension of the Markov chain. In a Markov
chain there is a set of states with a corresponding set of probabilities for
jumping from one state to another. Observations generated by each state
are deterministic, i.e., a given state generates the same observation every
time. In the HMM this model is extended by introducing a probability dis-
tribution in each state. Consequently, the same state can generate different
observations. This means that, given a sequence of observations, it is usu-
ally not possible to know which state generated each observation. Thus, the
underlying state sequence is hidden.

During the past decades the HMM has become the most popular choice
for acoustic modeling in ASR. When applying this model to speech, one
assumes that the speech signal is short-time stationary. This means that
within a small time frame, e.g. 20-30 ms, we assume that the speech signal
behaves like a stationary random process.

A HMM is defined by the following parameters:



8 Speech Recognition Based on the Hidden Markov Model

• A set of states S = {1, . . . , N}.

• A transition probability matrix A = [aij ].

• A set of state-dependent observation densities {pi(·)}.

• An initial state distribution π = {πi}.

Let us denote the state at time t by qt, and the state sequence by Q = (qt).
The HMM is based on the same assumption as a first order Markov chain,
the Markov assumption:

P (qt|qt−1, . . . , q0) = P (qt|qt−1), for all t. (2.11)

In addition, the HMM assumes that the observation generated at time t
only depends on the current state. An element of the transition probability
matrix aij specifies the probability for a transition from state i to state j,
i.e.,

aij = P (qt = j|qt−1 = i). (2.12)

An element of the initial state distribution specifies the probability for start-
ing in state i, i.e.,

πi = P (q0 = i). (2.13)

An example of a HMM with a topology that is commonly used for mod-
eling a phoneme is shown in Figure 2.1. As we can see, this HMM has
three states. With the allowed transitions given in the figure, the transition
matrix is given by

A =

a11 a12 0
0 a22 a23

0 0 a33

 . (2.14)

The idea behind modeling phonemes with three-state HMMs is that the
states should model the first, middle, and last parts of a phone respectively.
Thus, one usually requires that the initial state must be the first state, which
means that π = {π1 = 1, π2 = 0, π3 = 0}. For the HMM in Figure 2.1,
the observation densities p1(·), p2(·), and p3(·) also need to be specified.
The most common choice of observation density is the Gaussian mixture
model (GMM), and this is also what will be used throughout this thesis.
Assuming that the GMMs of all states consist of M mixture components,
the observation density for state i can be written as

pi(yt) =
M∑
m=1

wimN (yt;µim,Σim) (2.15)
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where yt denotes the observation at frame t, and N denotes a multivariate
normal distribution with mean vector µim and covariance matrix Σim, i.e.,

N (yt;µim,Σim) =
1

(2π)D/2|Σim|1/2
exp

(
−1

2
(yt − µim)TΣ−1

im(yt − µim)
)
.

(2.16)
In (2.16) the dimension of the vector yt is denoted by D. It is also common
to apply a decorrelating transform during the computation of the feature
vectors {yt}. Then, by assuming that there is no correlation between the
elements of the feature vector, we can use diagonal covariance matrices
instead of full. The expression in (2.16) is then reduced to

N (yt;µim,Σim) =
1

(2π)D/2

D∏
d=1

1
σimd

exp
(
−(ytd − µimd)2

2σ2
imd

)
. (2.17)

where

yt = [yt1, . . . , ytD]T (2.18)

µim = [µim1, . . . , µimD]T (2.19)

Σim = diag
(
[σ2
im1, . . . , σ

2
imD]T

)
. (2.20)

The use of diagonal covariance matrices reduces the computational com-
plexity.

Before we can use the HMM for speech recognition, we need to esti-
mate its parameters. Since the state sequence is hidden it is necessary to
use an iterative procedure for maximum likelihood estimation of the pa-
rameters. Fortunately, an elegant solution is provided by the Baum-Welch
algorithm [4, 59], which is a special case of the expectation-maximization
(EM) algorithm [11].

When using the HMM for ASR, we are making some incorrect assump-
tions about speech:

• As a consequence of the Markov assumption, the modeling of state
duration is constrained to a geometric distribution. This means that
the state duration probability decreases exponentially as a function
of time, and such a model is inappropriate for almost any speech
event [41].

• The HMM assumes that a speech signal consists of a series of sta-
tionary segments. This is only an approximation, since an utterance
usually contains several non-stationary segments as well.
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• The assumption that observations are only dependent on the current
state, and thus independent of neighboring observations, is obviously
wrong.

Despite these limitations, the HMM has been shown to work well for mod-
eling speech, and it is still the most popular model for speech recognition.

2.3 Overview of an HMM-Based ASR System

Most HMM-based speech recognizers can be described by the block diagram
shown in Figure 2.2. The sampled speech waveform y is passed to a block
that performs preprocessing. The output from preprocessing is a sequence of
vectors Y which constitute an alternative representation of the speech signal
that is more suitable for statistical pattern recognition. These vectors are
then passed to the decoder which produces a recognition hypothesis Ŵ . The
decoder makes use of three additional modules: acoustic models, lexicon,
and language model. We will soon give a brief description of each block in
Figure 2.2, but first we will introduce the concept of sub-word units, which
is important for many ASR systems.

2.3.1 Sub-Word Units

In principle one would need to train an acoustic model for every possible
word string W . For many ASR applications this is impractical, since the
number of possible sentences usually will be very large. When using the
HMM it is possible to define a relatively small set of sub-word units that
can be combined to generate all possible word strings. Then, one only has
to train an HMM for each sub-word unit, and these can be concatenated to
form all possible word strings. Examples of sub-word units are phonemes
and syllables.

2.3.2 Preprocessing

The objective of the preprocessor block is to extract information from the
sampled speech waveform. This is done by generating a sequence of feature
vectors, which provide a more compact representation of the speech signal.
Ideally, the feature vectors should discard information about factors such
as speaker and environmental characteristics while retaining information
about the linguistic content of the utterance.

The most common approach to preprocessing is to decompose the speech
waveform into a series of short segments, and generate a feature vector



2.3. Overview of an HMM-Based ASR System 11

DecoderPreprocessing

Lexicon Language model

Acoustic models

Figure 2.2: Block diagram of a HMM-based speech recognizer.

based on each segment. One such segment will be referred to as a frame.
The duration of a frame is typically about 25 milliseconds. In order to have
some overlap between consecutive frames, the frame shift is typically about
10 milliseconds. The assumption behind this processing scheme is that
within a frame, the speech signal can be modeled as a stationary random
process.

Each frame is processed by a feature extraction algorithm that results in
a feature vector with a significantly lower dimension than the signal frame.
Examples of different types of features are linear predictive coding (LPC)
features (see e.g. [47]), perceptual linear predictive (PLP) features [31], and
subband spectral centroid histogram (SSCH) features [24]. In this thesis,
however, we will focus on mel-frequency cepstrum coefficients (MFCCs),
which will be described in more detail in Section 2.4.

In order to capture temporal changes in the signal spectra, the feature
vectors are usually augmented by time derivatives of the basic static pa-
rameters. It is common to use both delta and acceleration (delta-delta)
coefficients, resulting in a feature vector of size three times the number of
static parameters.

2.3.3 Pronunciation Lexicon

A pronunciation lexicon is used in ASR systems that are based on sub-
word units, typically phonemes. The lexicon contains a list of words that
constitute the vocabulary of the ASR system. For each vocabulary word the
lexicon also contains one or more phonetic transcriptions. Thus, the lexicon
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tells the recognizer how to create a model for each word by concatenating
sub-word models.

2.3.4 Acoustic Models

The acoustic models are the HMMs that we described in Section 2.2. They
are used by the decoder for finding the likelihood that a given word string
W resulted in a sequence of observed feature vectors. If the ASR system
uses sub-word units, the likelihood pΛ(Y|W ) will be found by concatenating
the acoustic models of several sub-word units.

2.3.5 Language Model

In general the language model has two objectives. The first objective is
to put constraints on how word strings can be constructed. This is done
in order to limit the number of possible word strings to a set containing
sentences that are meaningful for a given application. In addition, a good
language model should be able to calculate prior probabilities of different
word strings. As we have already mentioned, the most common approach
for this purpose is the N -gram language model. An N -gram is a statistical
language model that assigns a probability to a word by taking into account
the N−1 previous words in the word string, in addition to the current word.
The probabilities of the N -gram have to be estimated from language data.
The amount of probabilities that need to be estimated increases rapidly as
we increase N . Consequently, N is usually restricted to 3 or less.

2.3.6 Decoder

The objective of the decoder is to produce a recognition hypothesis accord-
ing to a given decision rule, typically the plug-in MAP rule given by (2.10).
Ideally, we should calculate pΛ̂(Y|W )PΓ̂(W ) for every possible hypothesis
W , and select the one with the greatest posterior probability. However,
this would require that we sum over every possible sequence of HMM states
in order to find the likelihood of each hypothesis. For continuous speech
recognition, this approach is usually too computationally complex in prac-
tice. Therefore, the sum over all possible state sequences is usually approx-
imated by the likelihood of the most likely state sequence. The decoder
uses acoustic models, lexicon, and language model to create a network of
HMM states. The Viterbi algorithm, which is based on dynamic program-
ming, can then be used to search through the network, and this makes the
computation feasible. After having found the most likely state sequence in
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Figure 2.3: Block diagram for calculation of MFCC features.

the HMM-network, we can backtrack the result and find the corresponding
sequence of words.

2.4 Mel-Frequency Cepstrum Coefficients

In [10] MFCC features were found to work well for ASR. Factors that have
contributed to their popularity are low computational complexity and high
recognition performance in clean conditions. The calculation of MFCC fea-
tures contains elements motivated by human perception, such as a filter
bank based on the perceptually motivated mel-scale (see e.g. [33, p. 34]),
and approximation of perceived loudness by the logarithm of filter bank
power. After decomposing the speech waveform into frames, MFCC features
are calculated by passing the frames through the block diagram shown in
Figure 2.3.

In the first block a discrete Fourier transform (DFT) is calculated by
applying a fast Fourier transform (FFT) to the input signal. Then, the
magnitude or squared magnitude is calculated for each of the DFT coeffi-
cients. In the next block the signal is passed through a filter bank where the
filter center frequencies are uniformly spaced on the mel-scale, and the filter
bandwidths are constant on the mel-scale. The result is a power estimate
for each subband. In the next block we take the log(·) of each subband
power value. Finally, in the last block we apply a discrete cosine transform
(DCT) to the vector of log power estimates. The main purpose of the DCT
is decorrelation of the log filter bank powers. As we saw in Section 2.2,
decorrelation of the feature vectors gives reduced computational complexity
in the decoder due to the use of acoustic models with diagonal covariance
matrices.

Since the DCT is a linear transform we can find the MFCC vector for
a given frame by multiplying the corresponding log filter bank vector by
a matrix C. Whereas the number of filters in the filter bank is usually
more than twenty, it is common to use only the first 13 coefficients resulting
from the DCT. This means that the matrix C is rectangular. As we shall
see in Chapter 3, several methods for robust ASR rely on the ability to
do the inverse DCT in order to go back to the log-spectral domain. If
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the dimension has been reduced by the use of a rectangular DCT matrix,
the inverse mapping will not be exact. However, since only the highest
order coefficients have been omitted, a smoothed version of the original log-
spectral domain vector can be obtained by using a pseudo-inverse mapping.
Preliminary experiments performed during the work on this thesis indicated
that using a pseudo-inverse mapping instead of the exact C−1 yields an
approximation that is good enough for practical use in robust ASR.

2.5 Summary

In this chapter we have given a brief introduction to HMM-based speech
recognition, and described the basic principles of the HMM. We also consid-
ered how HMM-based speech recognition fits into statistical decision theory,
which is the basis of the statistical approach to pattern recognition. Finally,
we described how to compute the most common type of feature vectors for
speech recognition, namely MFCC.



Chapter 3

Approaches to Noise
Robustness

We will begin this chapter by considering the effect additive noise has on
MFCCs in Section 3.1. Then, we will give an overview of some well-known
methods for robustness against additive noise. Model-based methods are
described in Section 3.2, robust feature transformations are described in
Section 3.3, and robust decision rules are described in Section 3.4. Most of
the techniques presented in Section 3.2 and Section 3.3 require a statistical
model for the noise, which usually has to be found from the given utterance.
Therefore, we will give a brief overview of methods for noise estimation in
Section 3.5.

3.1 The Influence of Noise on MFCCs

In this section, we will describe how MFCC features are affected by additive
noise. Assume that we have a speech signal s[m] and a noise signal n[m].
The observed signal in the time domain is given by

y[m] = s[m] + n[m]. (3.1)

Now, let Y [k], S[k], and N [k] denote the DFTs of y[m], s[m], and n[m]
respectively. In the frequency domain, the noise is still additive:

Y [k] = S[k] +N [k]. (3.2)

Then, taking the magnitude square results in

|Y [k]|2 = |S[k]|2 + |N [k]|2 + 2|S[k]||N [k]| cos(θ[k]), (3.3)

15
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where θ[k] is the angle between S[k] and N [k].
The next step is to calculate the power for each filter output from the

mel-scale filter bank. This is done by applying a series of positive weights
to |Y [k]|2. Let W j

k denote the weight for DFT index k in filter bank channel
j. Then, the filter bank powers are given by∑

k

W j
k |Y [k]|2 =

∑
k

W j
k |S[k]|2 +

∑
k

W j
k |N [k]|2

+ 2
∑
k

W j
k |S[k]||N [k]| cos(θ[k])

(3.4)

for j = 1, . . . , J .
Now, in order to simplify the notation of (3.4) we take a similar approach

to that in [44] and define

Y 2
j =

∑
k

W j
k |Y [k]|2 (3.5)

S2
j =

∑
k

W j
k |S[k]|2 (3.6)

N2
j =

∑
k

W j
k |N [k]|2. (3.7)

Then, we can write (3.4) as

Y 2
j = S2

j +N2
j + 2αjSjNj (3.8)

where we have also defined

αj =
∑

kW
j
k |S[k]||N [k]| cos(θ[k])

SjNj
. (3.9)

Now, we will try to obtain a relation corresponding to (3.8) in the log-
spectral domain. By taking the log of each filter bank channel power we
define the following log-spectral domain vectors:

y =


log Y 2

1

log Y 2
2

...
log Y 2

J

 , s =


logS2

1

logS2
2

...
logS2

J

 , n =


logN2

1

logN2
2

...
logN2

J

 . (3.10)

We also define

α =


α1

α2
...
αJ

 . (3.11)
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With these definitions we can write (3.8) as

expy = exp s + expn + 2α ◦ exp
s
2
◦ exp

n
2

(3.12)

where the exp(·) function operates element-wise on vectors. Then, by taking
the log on both sides we obtain

y = s + log
(
1 + exp(n− s) + 2α ◦ exp

(
n− s

2

))
, (3.13)

where 1 denotes a vector with all elements equal to 1, and the log(·) function
operates element-wise on vectors. We would now like to simplify (3.13) by
removing the last term inside the log(·) and replacing it by a corresponding
additive term on the outside. This can be done as follows:

y = s + log

(
[1 + exp(n− s)] ◦

[
1 +

2α ◦ exp
(
n−s

2

)
1 + exp(n− s)

])
= s + log [1 + exp(n− s)] + e

(3.14)

where the division (2α ◦ exp
(
n−s

2

)
)/(1+ exp(n− s)) is performed element-

wise, and the term e is defined as

e = log

[
1 +

2α ◦ exp
(
n−s

2

)
1 + exp(n− s)

]
. (3.15)

The influence of this additive term will be discussed in more detail in Sec-
tion 3.1.1.

The final step is the DCT. Letting C denote the DCT matrix, we define
yC = Cy, sC = Cs, and nC = Cn. Then, we get

yC = sC + C log
[
1 + exp(C−1[nC − sC ])

]
+ Ce. (3.16)

Equations (3.14) and (3.16) give the relationships between speech, noise and
noisy speech in the log-spectral and cepstral domains respectively. These re-
lationships are non-linear. As we will see in Chapter 3 this causes problems
when we want to calculate unknown statistical parameters for the distribu-
tion of noisy speech given the distributions for clean speech and noise.

Note also that for the relationship in (3.16) to be exact, a square DCT
matrix C must be used. However, as mentioned in Section 2.4, the matrix
C is usually rectangular in practical ASR systems.
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3.1.1 Discussion

In this section we will discuss the influence of the term e on (3.14). We
will begin by considering the magnitude of αj as defined in (3.9). Since
cos(θ[k]) ≤ 1, we have

|αj | ≤
∑

kW
j
k |S[k]||N [k]|
SjNj

. (3.17)

As was noted in the appendix of [14], the right-hand side of (3.17) is the
normalized inner product of two vectors defined as

vS =



√
W j

1 |S[1]|√
W j

2 |S[2]|
...√

W j
K |S[K]|

 , vN =



√
W j

1 |N [1]|√
W j

2 |N [2]|
...√

W j
K |N [K]|

 , (3.18)

where K denotes the dimension of the DFTs. Hence, we have

|αj | ≤
〈vS ,vN 〉
‖vS‖‖vN‖

≤ 1. (3.19)

Since the different vector elements in (3.14) do not interact, we can look
at each vector element of y independently when considering the relative
influence of the term e. Therefore, we will now work with a scalar version
of (3.14), which can be written as

y = s+ log[1 + exp(n− s)] + log

[
1 +

2α exp
(
n−s

2

)
1 + exp(n− s)

]
. (3.20)

First, we will show that the last term can be ignored in cases where either
speech or noise dominates.

If s� n then exp(n− s) ≈ 0. This gives

y ≈ s+ log[1 + 0] + log
[
1 +

0
1

]
= s if s� n. (3.21)

Thus, y will be dominated by speech. On the other hand, if s � n then
exp(n− s)� 1. This results in

y ≈ s+ log(exp(n− s)) + log

[
1 +

2α exp
(
n−s

2

)
exp(n− s)

]

= s+ n− s+ log
[
1 + 2α exp

(
−n− s

2

)]
if s� n.

(3.22)
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Since exp(−(n− s)/2) ≈ 0 in this case, and |α| ≤ 1, we end up with

y ≈ s+ n− s+ log[1 + 0] = n if s� n. (3.23)

Thus, y will be dominated by noise.
In the case that neither s nor n dominates, the term e cannot be ignored.

As an example consider the case n = s and α = −1. Then, we get

y = s+ log 2 + log
[
1− 2

2

]
= s+ log 2 + log 0
= −∞.

(3.24)

A value of −∞ here corresponds to a value of zero in the linear domain.
The reason for this result is that a value of α = −1 means that the DFT
coefficients of the signal and the DFT coefficients of the noise in this subband
are out of phase by an angle θ = π, giving a sum of 0.

By assuming that the linear domain magnitude spectra |S[k]| and |N [k]|
are constant over the bandwidth of each filter in the filter bank, each αj can
be modeled as a zero mean Gaussian random variable [17, 44]. Since αj is
then zero in an expected sense, the error term e is often ignored in (3.14).
Some methods use the zero mean Gaussian model p(α) and account for
uncertainty by modeling the relationship between y, s, and n as a Gaussian
with the same variance as p(α) (see e.g. [17, 44, 14]). Note, however, that
even if αj is zero in an expected sense, the expected value of the error term
e is not necessarily zero since the log operation is non-linear. This fact
motivated Faubel et al. to develop a phase-averaged model in [20].

3.2 Model-Based Techniques

The objective of model-based compensation techniques is to adapt the
acoustic models to the observed noisy environment. Some of the model-
based compensation methods that have been proposed require training on
noisy speech data before they can be applied to speech recognition. Ex-
amples of such methods are neural-network-based HMM adaptation [23]
and Jacobian model adaptation [63]. As these methods do not fit into our
problem formulation, they will not be considered in this thesis.

Parallel model combination (PMC) is probably the most well-known
model-compensation method that does not require noisy speech training
data before use.1 As we shall see in Section 3.2.1, the key point of this

1Again, as mentioned in Section 1.1, we are assuming that a noise model can be
estimated from the utterance we are about to recognize.
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method is how to approximate the non-linear relationship between speech,
noise and noisy speech. Several different approximations have been pro-
posed, and when we later in this thesis consider different methods for model-
compensation, they are all using the PMC framework but differ in approx-
imation technique.

3.2.1 Parallel Model Combination

Parallel model combination [25, 26, 29, 27, 28] is a technique that combines
an HMM for clean speech with an HMM for noise resulting in an HMM
that models noisy speech. Here we will assume that the noise HMM only
consists of one state, although the method can also be used for noise models
with more than one state [26]. We will also assume that the noise model
consists of a single Gaussian mixture component.

In PMC, the parameters of an adapted acoustic model are found by
combining each of the states in the clean speech HMMs with the parameters
of the noise model. For each speech state and mixture component, cepstral
domain model parameters for both speech and noise are mapped back to
either the linear-spectral domain or the log-spectral domain and combined
to find parameters for noisy speech. Then, the resulting parameters are
transformed back to the cepstral domain.

Let us begin by considering the first step: to transform cepstral domain
parameters for speech and noise back to the log-spectral domain. Assuming
a distribution with cepstral domain mean µC and covariance matrix ΣC ,
we get the corresponding log-spectral domain parameters as

µ = C−1µC (3.25)

Σ = C−1ΣC(C−1)T . (3.26)

We can now either do the model combination in this domain, or we can
do another transformation step to obtain parameters in the linear-spectral
domain and then do the combination. Combination of parameters in the
log-spectral domain is done as follows:

µy ≈ log[exp(µs) + exp(µn)]. (3.27)

This method is called the log-add approximation. When using this ap-
proximation, the compensated covariance matrix equals the clean speech
covariance matrix.

For the linear-domain version, the parameters obtained in (3.25) and
(3.26) are transformed once more to obtain linear-spectral domain parame-
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ter values. These are calculated as

µlin
i = exp(µi + Σii/2) (3.28)

Σlin
ij = µlin

i µ
lin
j [exp(Σij)− 1] (3.29)

where the subscripts i and j are used to indicate row and column numbers
in the mean vectors and covariance matrices. Since speech and noise distri-
butions are usually modeled as Gaussians in the cepstral and log-spectral
domains, the corresponding distributions in the linear-spectral domain are
log-normal. Then, assuming that the distribution of the sum of two log-
normally distributed variables is approximately log-normal, we only need to
calculate the mean and covariance matrix of the noisy speech distribution,
i.e.,

µlin
y = µlin

s + µlin
n (3.30)

Σlin
y = Σlin

s + Σlin
n . (3.31)

This method is called the log-normal approximation, since it uses the as-
sumption that the resulting distribution for noisy speech is log-normal.
Then, in order to transform the noisy speech parameters back to the log-
spectral domain, the inverses of (3.28) and (3.29) are used:

µi = log(µlin
i )− 1

2
log
(

Σlin
ii

(µlin
i )2

+ 1
)

(3.32)

Σij = log

(
Σlin
ij

µlin
i µ

lin
j

+ 1

)
. (3.33)

Finally, the cepstrum domain noisy speech parameters are obtained by tak-
ing the DCT:

µCy = Cµy (3.34)

ΣC
y = CΣyCT . (3.35)

For the log-normal approximation, a compensation scheme for delta pa-
rameters was proposed in [27]. First, the delta parameters for both speech
and noise are transformed back to the linear-spectral domain in the same
way as the static parameters. To simplify notation, we will now assume that
all parameters are in the linear-spectral domain, without using the super-
script “lin” that was used above. Then, the corrupted delta parameters are
calculated as weighted sums of the clean speech and noise delta parameters

∆µy,i = γ̄i∆µs,i + η̄i∆µn,i (3.36)
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where ∆µs,i and ∆µn,i are elements of the clean speech and noise delta
mean vectors respectively. The weights γ̄i and η̄i are given by

γ̄i =
µs,i

µn,i

µs,i

µn,i
+ 1

(3.37)

η̄i =
1

µs,i

µn,i
+ 1

. (3.38)

Each element of the corrupted covariance matrix is calculated as

∆Σy,ij = γ̄iγ̄j∆Σs,ij + η̄iη̄j∆Σn,ij , (3.39)

where ∆Σs,ij and ∆Σn,ij are elements of the clean speech and noise delta
covariance matrices respectively.

3.2.2 Model-Based Vector Taylor Series

Recall from (3.14) in Chapter 2 that the relationship between clean speech,
noise, and noisy speech in the log-spectral domain is non-linear. Vector
Taylor series (VTS) is a technique that uses a Taylor series expansion to
obtain a linear approximation to this relationship. This approximation has
been used as a part of many different robustness algorithms since it provides
a way of obtaining closed form solutions to equations that would require
numerical methods to be solved when using the exact relationship.

The VTS approximation was proposed by Moreno [50, 51], who mainly
focused on a feature based minimum mean-square error (MMSE) approach.
Several model-domain methods based on VTS have also been proposed [43,
1, 46]. This section will consider the model-based VTS approach, while the
feature-based approach will be described in Section 3.3.2.

The VTS approximation is typically performed in the log-spectral do-
main. It can also be applied in the cepstral domain by introducing a few
simple modifications. In this section, however, we will only consider the
log-spectral domain version.

The goal of model-based VTS is the same as for PMC, i.e., to find HMMs
that model noisy speech, and then perform recognition with these models.
For a given HMM state the clean speech is assumed to be modeled as a
GMM. Assuming that the noisy speech is also distributed as a GMM, and
that each mixture component can be considered separately, we are again
left with the problem of determining the mean and covariance matrix of
the noisy speech given the parameters of clean speech and some knowledge
about the noise.
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Assuming that the error term e in (3.14) can be ignored, we begin by
writing noisy speech as

y = s + g(s,n) (3.40)

where we have defined

g(s,n) = log [1 + exp(n− s)] . (3.41)

In order to determine the mean of noisy speech, we take the expectation:

µy = E[s + g(s,n)] = E[s] + E[g(s,n)]. (3.42)

For simplicity, we consider a single Gaussian mixture component, and as-
sume that the noise is known. Then, we get

µy = µs +
∫
S

g(s,n)p(s)ds

= µs +
∫
S

log [1 + exp(n− s)]N (s;µs,Σs)ds.
(3.43)

Unfortunately, the integral in Equation (3.43) has no closed-form solution.
In order to overcome this problem, the vector function g(s,n) is approxi-
mated by a vector Taylor series. The accuracy of such an approximation
will depend on the number of terms included in the Taylor series expansion.
Here, we will only consider VTS of order zero and one. We will need the
gradient of g with respect to s. This is a diagonal matrix that depends on
the values of s and n:

Gs,n = diag
(
− exp(n− s)

1 + exp(n− s)

)
. (3.44)

Approximations of order zero and one are then given by

Order 0: g̃(s,n) ≈ g(s0,n) (3.45)
Order 1: g̃(s,n) ≈ g(s0,n) + Gs0,n(s− s0), (3.46)

where s0 is the operating point of the Taylor series. Thus, when using a
VTS approximation of order zero, the expression for a noisy speech vector
is given by

y = s + g(s0,n). (3.47)

Using this approximation in (3.43) yields

µy = µs + g(s0,n). (3.48)
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The covariance matrix can be calculated in a similar way by noting that

Σy = E[(y − µy)(y − µy)T ]

= E[yyT ]− µyµTy .
(3.49)

When using VTS of order zero, the covariance matrix for noisy speech will
be equal to the covariance matrix of clean speech:

Σy = Σs. (3.50)

When using first order VTS, the expression for a noisy speech vector is
given by

y = s + g(s0,n) + Gs0,n(s− s0). (3.51)

Using this approximation in (3.43) yields a mean of

µy = µs + g(s0,n) + Gs0,n(µs − s0)
= (I + Gs0,n)µs + g(s0,n)−Gs0,ns0.

(3.52)

The covariance matrix when using first order VTS is given by

Σy = (I + Gs0,n)Σs(I + Gs0,n)T . (3.53)

So far we have assumed the noise to be known. However, the noise
can also be modeled as a vector of random variables, with a multivariate
Gaussian distribution having mean µn and covariance matrix Σn [51]. Thus,
n must be handled in the same way as s in the Taylor series. Then, the
approximation of order one becomes

y = s + g(s0,n0) + Gs0,n0(s− s0) + Hs0,n0(n− n0), (3.54)

where the gradient of g with respect to the noise is given by

Hs,n = diag
(

exp(n− s)
1 + exp(n− s)

)
. (3.55)

The mean and covariance matrix of the noisy speech are given by

µy = µs + g(s0,n0) + Gs0,n0(µs − s0) + Hs0,n0(µn − n0) (3.56)

Σy = (I + Gs0,n0)Σs(I + Gs0,n0)
T + Hs0,n0ΣnHT

s0,n0
. (3.57)

We still have to choose a value for the operating point (s0,n0). A com-
mon choice is the pair of means (µs,µn), which results in the following
expressions for the mean and covariance matrix:

µy = µs + g(µs,µn) (3.58)

Σy = (I + Gµs,µn)Σs(I + Gµs,µn)T + Hµs,µnΣnHT
µs,µn

. (3.59)
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As discussed in Section 1.1, the noise parameters µn and Σn usually have to
be estimated from the given test utterance. In Section 3.5 we will consider
different methods for noise parameter estimation.

Finally, we note that in the case of VTS order zero, with the same choice
of operating point as before, the noisy speech mean is the same as in (3.58).
The noisy speech covariance matrix is, as shown in (3.50), equal to Σs.
These are the same parameters as are obtained when using PMC and the
log-add approximation.

3.3 Robust Feature Transformations

Given that our ASR system has been trained in clean conditions, the goal of
a robust feature transformation is to find an estimate of the underlying clean
speech feature vector sequence s1, . . . , sT from the observed noisy feature
vector sequence y1, . . . ,yT , i.e.,

ŝt = F(yt) t = 1, . . . , T. (3.60)

Several of the robust feature transforms that will be described in this
section are based on the minimum mean-square error (MMSE) criterion.
This means that the target is to minimize the mean-square error (MSE) for
each frame t. More specifically, we are seeking a transformation (3.60) that
results in

ŝMMSE
t = arg min

ŝt

E[‖st − ŝt‖2]. (3.61)

It can be shown (see e.g. [71, pp. 312-313]) that the MMSE estimate is
given by the mean of the conditional density when observing yt:

ŝMMSE
t = E[st|yt]. (3.62)

This means that if we are able to estimate the probability distribution
p(st|yt), we can also calculate the estimate ŝMMSE

t .
We will now move on to describe four robust feature transformation tech-

niques. These are called spectral subtraction, feature based vector Taylor
series, model-based feature enhancement, and Algonquin. The three latter
techniques are all based on the MMSE estimate.

3.3.1 Spectral Subtraction

Spectral subtraction [6] is a simple feature transformation that has been
widely used. Let Sss(f), Snn(f), and Syy(f) denote the power spectral
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densities (PSDs) of clean speech, noise, and noisy speech respectively. If we
assume that clean speech and noise are uncorrelated, we have

Syy(f) = Sss(f) + Snn(f). (3.63)

Note that compared to (3.3), this expression is simpler since the last term
on the right side of (3.3) is not included in (3.63). This is because the PSD
is based on the expectation, and the last term in (3.3) is zero in an expected
sense.

Then, given estimates Ŝyy(f) and Ŝnn(f) of the PSDs for noisy speech
and noise, we can find an estimate for Sss(f) as

Ŝss(f) = Ŝyy(f)− Ŝnn(f). (3.64)

Estimates for Sss(f) are found for each frame of the input signal. This
means that estimates for the noise PSD are also needed for each frame.
Usually they are found by averaging signal frames where there is no speech
activity. Thus, the noise PSD is assumed not to change when speech is
present.

One problem with this technique is that one can get negative values for
Ŝss(f). To avoid this a lower limit of zero can be used. Another problem
is that the result can contain “musical noise”, which is a result of noise
residuals.

Note that, unlike the other feature transformations we will consider in
this chapter, the spectral subtraction technique does not assume that any
prior information about clean speech is available.

3.3.2 Feature-Based Vector Taylor Series

In this section the basic MMSE filtering approach using VTS [50, 51] will
be described. Unlike spectral subtraction, feature based VTS assumes that
some prior information about speech is available in the form of a GMM
trained on clean speech data, i.e.,

p(s) =
M∑
m=1

P (m)p(s|m) =
M∑
m=1

wmN (s;µs,m,Σs,m). (3.65)

We begin by noting that, when ignoring the error term e in (3.14), the
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MMSE estimate can be written as

ŝ = E[s|y]

=
∫
S

s p(s|y)ds

= y −
∫
S

(log[1 + exp(n− s)])p(s|y)ds

= y −
∫
S

g(s,n)p(s|y)ds

(3.66)

where S denotes the feature space and g(s,n) is defined as in (3.41). Since
the integral in (3.66) cannot be solved analytically, the function g is approx-
imated using a vector Taylor series expansion. In this section we will only
consider the zeroth order approximation, i.e., the approximation given in
(3.45). Since we have assumed a mixture distribution as a prior for speech,
the posterior p(s|y) will also be a mixture distribution. For each mixture
component, the prior speech mean µs,m is used as the operating point of
the Taylor series. Thus, we get

ŝ = y −
∫
S

M∑
m=1

P (m|y)g(s,n)p(s|m,y)ds

= y −
M∑
m=1

P (m|y)
∫
S

g(s,n)p(s|m,y)ds

≈ y −
M∑
m=1

P (m|y)
∫
S

g(µs,m,n)p(s|m,y)ds

= y −
M∑
m=1

P (m|y)g(µs,m,n).

(3.67)

The noise vector n is usually modeled as random vector with distribution
N (µn,Σn). Then, using the noise mean as the VTS operating point, the
MMSE estimate is given by

ŝ = y −
M∑
m=1

P (m|y)g(µs,m,µn). (3.68)

The posterior probability of each mixture component P (m|y) can be found
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as
P (m|y) =

p(y|m)P (m)
p(y)

=
p(y|m)P (m)∑M
j=1 p(y|j)P (j)

. (3.69)

Thus, we need to find the distribution p(y|m) given p(s|m) and p(n). This
is a simple case of model compensation, which was described in Section 3.2.

3.3.3 Model-Based Feature Enhancement

Model-based feature enhancement (MBFE) was originally proposed by Cou-
vreur and Van hamme in [9], and further work was done by Stouten in [66]
and Stouten et al. in [67, 68, 69]. The method operates in the MFCC
domain.

The first step of the MBFE method is to find an HMM for noisy speech
with parameters Λy. In order to do this, MBFE takes advantage of a
prior HMM for speech with parameters Λs and a prior HMM for noise with
parameters Λn. If the HMM states in the priors have GMM probability
density functions (pdfs), each state is decomposed into several parallel states
with a single component pdf in each state. The parameters of the noisy
speech model Λy can then be found using different methods, e.g. PMC
as described in Section 3.2.1 or VTS as described in Section 3.2.2. In this
section we will follow the approach taken in [66], where VTS is used. Each
state i in the decomposed clean speech HMM is then combined with a state
j in the noise HMM using the cepstral equivalents of (3.58) and (3.59):

µ
(i,j)
y = µs,i + C log

[
1 + exp(C−1(µn,j − µs,i))

]
(3.70)

Σ(i,j)
y = A(i,j)Σs,iAT

(i,j) + B(i,j)Σn,jBT
(i,j) (3.71)

where, in order to simplify notation, we have defined

A(i,j) = C diag
(

1
1 + exp(C−1(µn,j − µs,i))

)
C−1 (3.72)

B(i,j) = I−A(i,j). (3.73)

For a given pair of states (i, j), the matrix A is the cepstral equivalent of
the matrix I+Gµs,µn , where G was defined in (3.44). Similarly, the matrix
B is the cepstral equivalent of Hµs,µn , with H defined in (3.55). Note that
the number of states in the resulting noisy speech HMM will be the number
of states in the clean speech HMM times the number of states in the noise
HMM.

Having obtained the approximate HMM for noisy speech, the forward-
backward algorithm is used to obtain probabilities for being in certain states
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at certain times. More specifically, we calculate the probability of being in
state (i, j) at frame t, i.e.,

γ
(i,j)
t = P (qst = i, qnt = j|Y) (3.74)

where qst and qnt denote the speech state and noise state at frame t respec-
tively, and Y = {y1, . . . ,yT } denotes the observed feature vectors.

In order to find a clean speech estimate, we note that the MMSE estimate
can be written as

ŝt =
Ms∑
i=1

Mn∑
j=1

P (qst = i, qnt = j|Y) E[st|qst = i, qnt = j,Y] (3.75)

where M s denotes the number of states in the clean speech HMM and Mn

denotes the number of states in the noisy speech HMM. Thus, what remains
is to find state-conditional MMSE estimates E[st|qst = i, qnt = j,Y]. For a
state (i, j) in the noisy speech HMM, the state-conditional estimate can be
approximated by (see [66] for derivation)

ŝ(i,j)
t = µs,i + Σs,iAT

(i,j)(Σ
(i,j)
y )−1(yt − µ

(i,j)
y ). (3.76)

Finally, the resulting MMSE estimate is calculated as

ŝt =
Ms∑
i=1

Mn∑
j=1

γ
(i,j)
t ŝ(i,j)

t . (3.77)

Although the original MBFE approach is based on the HMM, it was
shown in [66] that good results can also be obtained by simply using a
GMM. Later in this thesis we will use MBFE, and our implementation is
based on the GMM. In addition, we will also limit the noise model to only
consist of a single mixture component. This means that we can simplify the
above formulation. The expressions in (3.70) and (3.71) can be simplified
to

µy,i = µs,i + C log
[
1 + exp(C−1(µn − µs,i))

]
(3.78)

Σy,i = AiΣs,iAT
i + BiΣnBT

i (3.79)

where

Ai = C diag
(

1
1 + exp(C−1(µn − µs,i))

)
C−1 (3.80)

Bi = I−Ai. (3.81)
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A component-conditional estimate for frame t can then be found as

ŝit = µs,i + Σs,iAT
i Σ

−1
y,i(yt − µy,i). (3.82)

The final MMSE estimate is then calculated as

ŝt =
M∑
i=1

γit ŝ
i
t (3.83)

where M is the number of mixture components in the clean speech GMM
and

γit =
wiN (yt;µy,i,Σy,i)∑M
j=1wjN (yt;µy,j ,Σy,j)

. (3.84)

3.3.4 Algonquin

Algonquin [44, 21, 22] is a feature enhancement method that can operate
either in the log-spectral domain or the cepstral domain. We will first
consider the version that operates in the log-spectral domain before we
consider the changes needed in order to work in the cepstral domain.

Algonquin uses a prior GMM for speech p(s) and a prior GMM for noise
p(n) in order to approximate the posterior p(s|y), which is also modeled as a
GMM. A variational algorithm is used to obtain this approximate posterior,
which is denoted by qy(s).

The relationship between clean speech, noise and noisy speech is mod-
eled by a normal distribution, where variations due to the error term e in
(3.14) are taken into account by the covariance matrix. Given s and n, the
distribution of y is given by

p(y|s,n) = N (y; s + log(1 + exp(n− s)),Ψ) (3.85)

where Ψ is the covariance matrix.
The joint distribution between y, s, n, speech GMM component ms and

noise GMM component mn is now given by

p(y, s,n,ms,mn) = p(y|s,n)p(ms)p(s|ms)p(mn)p(n|mn)
= N (y; f(s,n),Ψ)wsmsN (s;µs,ms ,Σs,ms)
· wnmnN (n;µn,mn ,Σn,mn)

(3.86)

where wsms and wnmn denote the mixture component weights of speech com-
ponent ms and noise component mn respectively. In addition, we have
defined

f(s,n) = s + log[1 + exp(n− s)]. (3.87)
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For notational convenience we will now define the joint vector of clean
speech and noise

z =
[
s
n

]
. (3.88)

For each pair of prior speech and noise components (ms,mn), the joint prior
p(z) = p(s)p(n) will have a component m with the following parameters

µm =
[
µs,ms

µn,mn

]
(3.89)

Σm =
[
Σs,ms 0

0 Σn,mn

]
. (3.90)

Using the joint prior, we can write (3.86) as

p(y, z,m) = p(y|z)p(m)p(z|m). (3.91)

In order to obtain tractable calculations, Algonquin proceeds by lineariz-
ing (3.87) using first order VTS as

f̃(z) = f(z0) + F(z− z0) (3.92)

where z0 is the operating point of the Taylor series, and F is the gradient
matrix of the function f . Denoting the dimension of a feature vector by D,
the matrix F is D × 2D, and it is given by

F = [I + Gz0 ;Hz0 ] (3.93)

where Gz0 and Hz0 are as defined in (3.44) and (3.55) respectively. Note
that the VTS operating point z0 corresponds to the pair (s0,n0) which was
used in the G and H matrices in Section 3.2.2. Using this approximation,
we can rewrite (3.86) as

p(y, z,m) ≈ N (y; f(z0) + F(z− z0),Ψ)wmN (z;µm,Σm). (3.94)

Having obtained this linearized distribution, the goal is to use variational
inference to find the parameters of the variational posterior qy(z), which is
defined to be a GMM. This GMM is given by

qy(z) =
∑
m

ρmN (z;ηm,Φm). (3.95)

where ρm, ηm, and Φm respectively denote the weight, mean, and covariance
matrix of component m. The parameters of qy(z|m) are found by minimiz-
ing the Kullback-Leibler divergence between the true posterior p(z|y) and
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the variational posterior qy(z), given by

K =
∑
m

∫
z

qy(z,m) log
qy(z,m)
p(z,m|y)

dz. (3.96)

However, since we do not have an expression for the true posterior, we can
exploit the fact that minimizing (3.96) is equivalent to maximizing

F = log p(y)−K

=
∑
m

∫
z

qy(z,m) log
p(y, z,m)
qy(z,m)

dz. (3.97)

Maximizing (3.97) by differentiating and equating to zero results in the
following means and covariance matrices of qy (see [44] for derivation)

ηm = Φm[Σ−1
m µm + FTΨ−1(y − f + Fz0)] (3.98)

Φm = (Σ−1
m + FTΨ−1F)−1. (3.99)

The mixture weights are given by

ρm =
γmwm∑
i γiwi

, (3.100)

where

γm = (2π)D/2|Σm|−1/2|Ψ|−1/2|Φm|1/2

· exp
[
−1

2

(
µTmΣ−1

m µm + (y − f + Fz0)TΨ−1(y − f + Fz0)

− ηTmΦ−1
m ηm

)]
.

(3.101)

The final problem is to determine the operating point z0 of the vector
Taylor series. Algonquin uses an iterative approach where each iteration
uses the previously calculated posterior mean ηm as operating point. This
will in most cases make ηm converge to a mode of the true posterior (see
[44] for details). This leads to the following iterative algorithm.

1. For each mixture component m:

(a) z(0)
0 ← µm, i← 0

(b) Calculate f = f(z(i)
0 ) using (3.87)

(c) Calculate F = F(z(i)
0 ) using (3.93)
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(d) Calculate Φ(i)
m and η

(i)
m using (3.99) and (3.98)

(e) z(i+1)
0 ← η

(i)
m , i← i+ 1

(f) If not converged, go to (b)

2. Calculate mixture weights ρm

After having found the posterior parameters, the MMSE estimate of the
clean speech feature vector is found as the upper half of

ẑ =
∫

zp(z|y)dz

≈
∫

z
∑
m

qy(m)qy(z|m)dz

=
∑
m

ρmηm.

(3.102)

In order to make Algonquin work in the cepstral domain, the function f
defined in (3.87) and the matrix F defined in (3.93) must be changed. The
cepstral domain version of f is given by

f(z) = s + C log
[
1 + exp(C−1(n− s))

]
. (3.103)

For the cepstral domain version of the gradient matrix we first define

D = C diag
(

1
1 + exp(C−1(n0 − s0))

)
C−1. (3.104)

Then, the new matrix F can be written as

F = [D; I−D]. (3.105)

3.4 Robust Decision Rules for ASR

Recall from Section 2.1 that most speech recognizers are based on the plug-
in MAP decision rule

Ŵ = arg max
W

pΛ̂(Y|W )PΓ̂(W ), (3.106)

where (Λ̂, Γ̂) are estimates that have been found from training data. As
mentioned in Section 2.1, this decision rule is suboptimal in practice. There
are several reasons for this. First of all, by using model structures such
as HMMs and N -grams to model the unknown distributions p(Y|W ) and
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P (W ), we are making approximations. In addition, the estimates (Λ̂, Γ̂)
are affected by the choice of estimation method, and the amount of avail-
able training data. Finally, in most cases there is some degree of mismatch
between training and testing conditions. In order to address these issues,
several approaches using robust decision rules have been proposed. The
following sections will describe two such approaches: the minimax rule [49]
and the Bayesian predictive classification rule [35]. Both these approaches
are aimed at compensating for the uncertainty of parameter estimates ob-
tained from training data. Note that in the following, we will only consider
uncertainty in the parameters of the acoustic models.

3.4.1 The Minimax Decision Rule

The minimax decision rule for ASR was first studied by Merhav and Lee
in [49], where minimax classification was applied to isolated word speech
recognition. Suppose that there is some degree of mismatch between train-
ing and testing conditions, and that we have estimated a set of parameters
Λ0 from our training data. We assume that the true parameters lie in a
neighborhood region around the estimated Λ0, i.e.,

Λ ∈ η(Λ0) (3.107)

where η(Λ0) is referred to as the mismatch neighborhood. The goal of the
minimax decision rule is to minimize the worst-case probability of error
given that the parameters do not depart from the allowed neighborhood.
The resulting decision rule is given by

Ŵ = arg max
W

[
max

Λ∈η(Λ0)
pΛ(Y|W )P (W )

]
. (3.108)

As we can see from (3.108), the minimax approach allows the parameters
to obtain the values inside the mismatch neighborhood which result in the
highest likelihood from the acoustic model. Given these parameter values,
the classification result is obtained in the same way as in the plug-in MAP
decision rule. Merhav and Lee also proposed a mismatch neighborhood
for the means of cepstral coefficients [49]. For a given HMM state with a
pre-trained mean vector µ∗, the neighborhood is defined as

η(µ) =
{

µ : |µd − µ∗d| ≤ Cd−1ρd, d = 1, 2, . . . , D
}

(3.109)

where d denotes the cepstral coefficient element number, D denotes the
dimension of the cepstral vector, and C and ρ are constants such that C > 0
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and 0 ≤ ρ < 1. These constant have to be tuned. Alternative neighborhoods
for minimax classification which require less tuning were presented in [2].
A Viterbi-based minimax search algorithm was proposed in [40], allowing
minimax classification for continuous speech recognition.

3.4.2 Bayesian Predictive Classification

The Bayesian predictive classification (BPC) approach for speech recogni-
tion was first introduced by Huo et al. in [35]. As we have already discussed,
the minimax decision rule minimizes the worst-case probability of error.
This is a very conservative strategy. The objective of Bayesian predictive
classification (BPC) is to minimize the overall recognition error rate, when
marginalizing both with respect to the input observation and with respect
to model parameters. The parameters of the acoustic models are viewed
as random variables, distributed according to a prior distribution p(Λ|φ),
where φ denotes the set of hyperparameters. More specifically, the BPC
rule is obtained by defining an overall risk, which is the risk averaged over
all admissible distorted data models. Minimizing the overall risk under a
(0,1)-loss function yields the BPC rule, which is given by (see e.g. [34] for
derivation)

Ŵ = arg max
W

p̃(Y|W )P (W ) (3.110)

where
p̃(Y|W ) =

∫
p(Y|Λ,W )p(Λ|φ,W )dΛ. (3.111)

The pdf in (3.111) is called the predictive density. Exact implementation
of the BPC rule is not easy. Consequently, different approximations have
been proposed. The approach in [35, 38] uses a Laplace approximation to
calculate the predictive pdf and a quasi-Bayes [36] algorithm for compu-
tation of posterior pdfs. The resulting BPC rule is called the quasi-Bayes
predictive classification (QBPC) rule. In [39] two alternative approaches
are presented. One of these is based on the Viterbi algorithm, and the re-
sulting rule is called Viterbi Bayesian predictive classification (VBPC). The
other approach calculates the Bayesian predictive density of each Gaussian
mixture component, which is then used as a compensated distribution. The
resulting method is called Bayesian predictive density based model compen-
sation (BP-MC). This method will now be described in more detail, as it is
used in the approach that will be presented in Chapter 5.

BP-MC is a straightforward way of applying Bayesian prediction to
HMM-based speech recognition. Instead of directly modifying the deci-
sion rule, the modification is applied to each state density of the acoustic
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models. The parameters of each Gaussian mixture component are assumed
to be uncertain, and the Bayesian predictive density replaces the standard
pdf in order to compensate for this. This results in modified parameters for
each state and mixture component which are then plugged into the standard
MAP decision rule in (2.10). Recall from Section 2.2 that when diagonal
covariance matrices are used, the pdf of HMM state i is given by

pi(y|θi) =
M∑
m=1

wimN (y;µim,Σim)

=
M∑
m=1

wim

D∏
d=1

1√
2πσimd

exp
(
−(yd − µimd)2

2σ2
imd

) (3.112)

where θi = {wim,µim,Σim : m = 1, . . . ,M} are the parameters of this
state. We will also use the notation θim = {θimd : d = 1, . . . , D} for the
parameters of mixture component m in state i, where θimd = {µimd, σimd}.
For each state and mixture component we assume that a prior distribution
p(θim|φim) is available, where φim denotes the hyperparameters. Then, we
can calculate the predictive density for each state as

p̃i(y) =
M∑
m=1

wim

∫
pim(y|θim)p(θim|φim)dθim

=
M∑
m=1

wim

D∏
d=1

∫
pimd(yd|θimd)p(θimd|φimd)dθimd.

(3.113)

In [39] only the uncertainty in the mean is compensated. A uniform prior is
defined based on the uncertainty neighborhood that was used for minimax in
[49], i.e., the neighborhood in (3.109). For a given state, mixture component,
and feature vector element, the prior is then given by

p(µimd|φimd) =

{
1

2Cd−1ρd for µ∗imd − Cd−1ρd ≤ µimd ≤ µ∗imd + Cd−1ρd

0 otherwise.
(3.114)

Let us define the predictive distribution for feature vector element d as

p̃imd(yd) =
∫
pimd(yd|θimd)p(θimd|φimd)dθimd. (3.115)
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Using the prior in (3.114), and defining the constant Ud = Cd−1ρd, we get

p̃imd(yd) =
1√

2πσimd

1
2Ud

µ∗imd+Ud∫
µ∗imd−Ud

e−(yd−µimd)2/2σ2
imddµimd

=
1

2Ud

[
Φ
(
µ∗imd − yd + Ud

σimd

)
− Φ

(
µ∗imd − yd − Ud

σimd

)] (3.116)

where

Φ(z) =
1√
2π

z∫
−∞

e−x
2/2dx. (3.117)

3.5 Noise Estimation

Most of the techniques that have been described in this chapter require a
statistical model of the noise, and as described in Section 1.1 this model is
usually estimated from noise data which is extracted from the utterance that
is to be recognized. However, the problem of how to obtain noise data from
a noisy speech utterance is non-trivial, and many different techniques have
been proposed to solve this problem. In this section we will give an overview
of different categories of such techniques and mention a few examples.

As we mentioned in Section 1.1, there are two fundamentally differ-
ent categories of noise estimation methods. One is to try to extract noise
parameters from the whole utterance by tracking the noise during speech
activity, and the other is to perform voice activity detection (VAD) to iden-
tify speech-free regions that can be used for estimating noise parameters.
The former is usually referred to as noise tracking.

Methods for noise tracking work in different domains. An example of
an approach that works in the spectral domain is the minimum statistics
technique [48]. This technique is based on the observation that the power of
a noisy speech signal frequently decays to the power level of the disturbing
noise. Thus, it is possible to estimate the noise power spectral density by
tracking the minimum of the noisy signal power spectral density.

Deng et al. have proposed several different noise tracking algorithms
working in the log-spectral and cepstral domains. In [13] a noise tracking
algorithm working in the cepstral domain based on recursive expectation-
maximization (EM) was presented. The recursive EM estimate was based
on maximum likelihood (ML) estimation. This framework was later ex-
tended to maximum a posteriori (MAP) estimation in [14], by incorporat-
ing a Gaussian prior distribution for the noise. Another approach, based



38 Approaches to Noise Robustness

on incremental Bayes learning with prior evolution was presented in [12].
This algorithm recursively updates the mean and variance of the noise prior
based on the approximate Gaussian posterior computed at the preceding
time step. Two other approaches that are related to the ML and MAP
approaches described above are an ML-based sequential noise estimation
method proposed by Ding et al. in [16], and a MAP-based sequential noise
estimation method proposed by Ding in [15].

Some noise estimation techniques try to find a single set of optimal
noise model parameters for a given noisy utterance based on all the signal
frames instead of tracking the noise from frame to frame. In the context of
feature-based VTS, Moreno et al. [51] proposed an iterative EM approach
that uses the noisy speech GMM to maximize the likelihood of the noisy
observations. The algorithm seeks the noise parameters that, when com-
bined with the clean speech GMM, result in the maximum value for the
likelihood. In the context of model-based VTS, Kim et al. [43] proposed
an approach in which the joint likelihood of the recognized word sequence
and noise parameters is maximized using an iterative procedure. This pro-
cedure alternates between keeping noise parameters fixed while finding the
optimal word sequence and keeping the word sequence fixed while finding
the optimal noise parameters. This HMM-based procedure becomes more
complicated than Moreno et al.’s GMM-based procedure since we need to
estimate the likelihoods that observations were generated by given states
and mixtures in the HMM.

Voice activity detection is the other approach for obtaining noise data
from a noisy speech utterance. A large amount of techniques has been
proposed to solve this problem. Here, we will only mention some of the
more recent techniques that work in the discrete Fourier transform domain,
and use the likelihood ratio test (LRT) for classifying frames as speech-free
or not. A well-known method based on the LRT was proposed by Sohn et al.
in [65]. This approach will be reviewed in Section 7.3, since it is used as
a basis for comparison in Chapter 7. A similar approach, using an LRT
based on multiple observations was presented by Ramirez et al. in [60].
Kim et al. redefined the LRT-based decision rule by employing a uniformly
most powerful test in [42]. We will discuss the VAD approach to noise
estimation more in Chapter 7, where we also propose a novel VAD method
that works in the MFCC domain.
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3.6 Summary and Discussion

This chapter started by describing how MFCCs are influenced by noise.
Then, several well-known noise robustness algorithms were described. Fi-
nally, a brief overview of different methods for noise estimation was given.

Both the model-based techniques described in Section 3.2 and the feature-
based techniques described in Section 3.3 have been shown to significantly
improve speech recognition performance in the presence of noise. How-
ever, they do have shortcomings. First of all, neither the model-based nor
feature-based techniques have an effective way of dealing with the error term
e in (3.14). Whereas most methods simply ignore it, Algonquin takes it into
account through the covariance matrix Ψ in (3.85). However, the findings
of Droppo et al. in [18] indicate that the performance gain obtained by us-
ing this model is limited, since the so-called zero variance model performed
better in their experiments. Another weakness of methods that work in the
log-spectral or cepstral domain is that they have to make an approxima-
tion to the non-linear relationship between speech, noise, and noisy speech.
The accuracy of this approximation is likely to influence recognition perfor-
mance. Another aspect that also needs to be considered is that most of these
methods rely on statistical models of speech and noise. Thus, another factor
that influences performance is the quality of these models, which in turn
depends on the choice of estimation method and the amount of available
training data.

In the following chapters we will describe different methods that attempt
to compensate for some of these weaknesses. Chapter 4 presents a compar-
ative study that investigates the influence of different approximations to
the non-linear relationship between speech, noise, and noisy speech. Then,
Chapter 5 describes a method that compensates for uncertainty in parame-
ter estimates of models for noisy speech. In Chapter 6 we investigate an al-
ternative estimation method for probabilistic speech models used in MMSE
feature enhancement, namely Bayesian learning. Finally, in Chapter 7 we
describe a method for voice activity detection that is used for extracting
noise-only frames from noisy utterances. These are in turn used as training
data in order to improve the noise model for MMSE feature enhancement.

Another issue that needs consideration when working with noise robust-
ness is the compensation of delta and acceleration coefficients. Different
approaches deal with this issue in different ways, and some techniques sim-
ply avoid it by using static coefficients only.

For model-based methods it is quite important to have a delta compen-
sation scheme since most recognizers use delta coefficients. For PMC we
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have already described a delta compensation scheme in Section 3.2.1. This
technique is also used in Chapter 5. For more on compensation of accelera-
tion coefficients with PMC, see e.g. [25]. Methods for delta and acceleration
compensation in the context of model-based VTS can be found in [1, 46].
Note that in the comparative study on model compensation in Chapter 4,
no delta or acceleration coefficients are used during recognition. This is
done because the aim of this study is to compare approximation accuracy
without any “disturbing” factors.

Feature-based methods can achieve good performance by using only
static coefficients in the front-end, and then calculate delta and acceleration
coefficients based on the estimated clean speech feature vectors containing
the static coefficients. Speech recognition can then be performed with delta
and acceleration coefficients in the back-end. We have therefore chosen to
use static coefficients only when performing feature enhancement in Chap-
ter 6 and Chapter 7. In some of the experiments with MBFE in [66], delta
parameters were used in the front-end, and found to improve performance.
However, when estimating the noise model online on Aurora2, the inclusion
of delta parameters degraded the performance instead of improving it. This
was because the online estimates of the delta parameters for the noise were
not accurate enough to improve the performance.



Chapter 4

A Comparative Study of
Approximations for Model
Compensation

In this chapter we will consider different ways of approximating the non-
linear relationship between the statistical parameters of speech, noise, and
noisy speech. In addition to the well-known log-normal approximation used
by PMC, we will investigate two alternative approximations. One of these
was proposed by Raut et al. in [61] and is based on Lagrange polynomials.
The other method is a general technique for evaluation of the mean and
variance of power sums with log-normal components, proposed by Schwartz
and Yeh in [64]. We will show how this method can be used for model com-
pensation. The study presented in this chapter will focus on compensation
of the mean. Parts of this work were also presented in [56].

4.1 Different Approximations of the Noisy Speech
Mean

Recall from Chapter 2 that if we ignore the error term in (3.14), the rela-
tionship between speech, noise and noisy speech in the log-spectral domain
is given by

y = s + log (1 + exp(n− s)) , (4.1)

which yields a noisy speech mean given by

µy = µs + E[log (1 + exp(n− s))]. (4.2)

41
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As we have seen in Chapter 3 the problem is that there is no closed form
solution for the expectation on the right-hand side of (4.2). In Section
3.2.1 we saw that the PMC log-normal approximation takes the approach
of transforming the model parameters back to the linear spectral domain,
while we saw in Section 3.2.2 that VTS found an approximation directly
in the log-spectral domain. Both the alternative approaches presented here
also work directly in the log-spectral domain.

Since we will assume that the ASR system is working with mixtures of
Gaussian distributions in the cepstral domain, the distributions of speech
and noise mixture components in the log-spectral domain are also Gaussian.
Consequently, the corresponding variables in the linear spectral domain are
log-normally distributed. Since we have to end up with Gaussians in the
log-spectral domain after compensation, we will be working under the as-
sumption that the sum of two log-normally distributed random variables is
also approximately log-normally distributed.

Further, we will assume that the feature vector elements are independent
in the log-spectral domain. This means that we do not take into account the
correlations that exist between feature vector elements in the log-spectral
domain. Due to the use of overlapping filters in the mel-scale filter bank,
this is incorrect. However, it is quite common to make this assumption
when working with noise robust ASR. The advantage is that we can work
with scalars instead of vectors and matrices.

4.1.1 Schwartz-Yeh Approximation

In [64] Schwartz and Yeh proposed a method for calculating the mean and
variance of a sum of log-normally distributed random variables.

We will consider a single element of the log-spectral domain feature
vector and denote speech and noise by s and n respectively, and their cor-
responding means and variances by µs, µn, σ2

s and σ2
n. Define w to be a

Gaussian random variable given by

w = n− s. (4.3)

This yields the following statistical properties of w.

E[w] = µw = µn − µs (4.4)

Var[w] = σ2
w = σ2

n + σ2
s (4.5)

Now, the scalar version of (4.2) can be written as

µy = µs + E [log(1 + ew)] . (4.6)
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The second term can be written as

E [log(1 + ew)] =

∞∫
−∞

[log(1 + ew)]p(w)dw, (4.7)

where p(w) denotes the normal density of the random variable w. The
function log(1 + z) can be expanded in the following power series

log(1 + z) =
∞∑
j=1

Cjz
j , Cj =

(−1)j+1

j
, (4.8)

which is valid when |z| < 1. In order to use this power series, the integral
in (4.7) must be split into two parts:

E [log(1 + ew)] =

0∫
−∞

[log(1 + ew)] p(w) dw +

∞∫
0

[log(1 + e−w) + w] p(w) dw.

(4.9)
Now, a result on the following form can be derived:

µy = µs +
σw√
2π
e−µ

2
w/2σ

2
w + µwΦ

(
µw
σw

)
+

∞∑
k=1

Cke
k2σ2

w/2

[
ekµwΦ

(
−µw − kσ2

w

σw

)
+ e−kµwΦ

(
µw − kσ2

w

σw

)]
.

(4.10)

Here, the function Φ(z) is given by

Φ(z) =
1
2

+
1
2

erf
(
z√
2

)
. (4.11)

Thus, µy can be found without using numerical integration. However, the
number of terms in the sum must be limited to a finite number. It was
found in [64] that about 40 terms were required for the 4th significant digit.
Increasingly accurate approximations can be obtained by including more
terms, at the cost of higher computational complexity.

4.1.2 Lagrange Polynomial Approximation

In [61] Lagrange polynomials were used to approximate mean parameters for
noisy speech. For this approach, w is again defined as in (4.3) and assumed
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to be normally distributed with mean and variance as given by (4.4) and
(4.5). Then, a 2nd-order Lagrange interpolating polynomial L2(w) is used
to approximate the function

g(w) = log(1 + ew). (4.12)

The approximation is then given by

g(w) ≈ L2(w) =
2∑

k=0

g(wk)
2∏

i=0,i6=k

(w − wi)
(wk − wi)

. (4.13)

For this approximation, three points must be chosen. The first point is
placed at w0 = µw. The other two points should be selected such that
w1 = w0−α and w2 = w0+α. The value α should be chosen as a compromise
between accuracy around the point w0 and accuracy at points far away from
w0. Thus, the variance of w should be taken into account. The resulting
polynomial is on the form g(w) = aw2 + bw + c, and the mean estimate is
therefore given by

µy = µs + E[g(w)] = µs + a(σ2
w + µ2

w) + bµw + c. (4.14)

This method gives accurate estimates at low computational complexity.

4.2 Analysis of Different Approximations

To analyze the accuracy of different approaches, a simulation was run on a
one-dimensional example, where the noise parameters were set to constants
µn = 10 and σ2

n = 0.1. The clean speech variance was set to σ2
s = 6, while

the clean speech mean µs varied from 3 to 12. Monte-Carlo simulation was
used to generate a basis for comparison. (Note that this is essentially the
same setup as used for a similar experiment in [61], but different methods are
compared.) The result can be seen in Figure 4.1. The range for µs has been
chosen as the region where the methods differ the most. For values µs < 3
and µs > 12, the estimates become more and more similar for all methods.
From the plot it can be seen that both the Schwartz-Yeh approximation and
the Lagrange polynomial approximation give estimates close to the Monte-
Carlo simulation. The log-normal approximation is very inaccurate around
µs = 7, where the speech and noise means in the linear domain have values
close to each other. Note also that in the region 3 < µs < 7, the log-normal
estimate of the noisy speech decreases as the mean of clean speech increases.
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Figure 4.1: Corrupted speech mean estimates using different methods. Noise
mean µn = 10, noise variance σ2

n = 0.1, speech variance σ2
s = 6. Speech

mean µs varying from 3 to 12.

4.3 Experiments and Results

The three methods described above were tested on the part of the Aurora2
database with exhibition noise. Exhibition noise was chosen since this type
of noise was also used for experiments in [61]. The noise parameters were
estimated from the 10 first frames of each test utterance. This could result in
poor noise estimates in the case of non-stationarities in the noise. Therefore,
we also added stationary white Gaussian noise at different SNRs and ran
additional experiments. The noise power for a given SNR was set to the
average power of the first 10 frames of all files in set A of Aurora2 with this
SNR.

Recognition experiments were run using 13-dimensional MFCC features
(i.e. only static parameters), and C0 was used instead of log-energy. The rest
of the setup was standard. For the Schwartz-Yeh approximation, 40 terms
were used for the sum in (4.10). For the Lagrange polynomial approach,
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Table 4.1: Results (word accuracy) for exhibition noise.

SNR Baseline Log-norm. Schw.-Y. Lagrange
20 69.70 93.49 93.43 93.46
15 52.08 90.10 90.19 90.19
10 34.68 85.07 85.41 85.47
5 20.46 73.43 73.62 73.65
0 12.03 51.62 51.87 51.90
-5 9.47 29.53 29.28 29.31

Avg. (0–20) 37.79 78.74 78.90 78.93

Table 4.2: Results (word accuracy) for white Gaussian noise.

SNR Baseline Log-norm. Schw.-Y. Lagrange
20 54.71 90.59 90.47 90.53
15 40.36 86.98 87.16 87.20
10 27.86 81.39 81.61 81.64
5 18.61 67.17 67.14 67.20
0 11.79 46.34 46.44 46.41
-5 8.55 23.42 23.67 23.63

Avg. (0–20) 30.67 74.49 74.56 74.60

the points w1 and w2 were placed two times σw away from the point w0.
The results for experiments on exhibition noise are shown in Table 4.1,

and results for experiments on additive white Gaussian noise are shown in
Table 4.2. The baseline is the result when using clean speech models. For
both noise types it can be observed that all the methods perform signif-
icantly better than the baseline. In addition, the results for the different
approaches are very similar, and none of the methods are able to signifi-
cantly outperform any of the others.1

4.4 Discussion

Figure 4.1 showed that the differences between the log-normal approxima-
tion and the two other approaches were quite significant when testing on

1Under a 5% confidence level, the only statistically significant differences are at 10dB.
For 10dB exhibition noise both Schwartz-Yeh and Lagrange are significantly better than
log-normal, whereas for 10dB white noise Lagrange is significantly better than log-normal.
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Table 4.3: Comparison of estimates obtained using the log-normal and
Schwartz-Yeh approximations. The table lists relative frequency for dif-
ferent relative deviations of estimated mean values for 25 files containing
exhibition noise at SNRs of 20dB and -5dB.

|µLN
y −µSY

y |
1
2
(µLN

y +µSY
y )

Rel. freq., 20dB Rel. freq., -5dB

0%-5% 98.65% 99.51%
5%-10% 0.85% 0.37%
10%-15% 0.42% 0.08%
15%-20% 0.06% 0.02%
20%-25% 0.01% 0.02%

Table 4.4: Comparison of estimates obtained using the log-normal and La-
grange polynomial approximations. The table lists relative frequency for
different relative deviations of estimated mean values for 25 files containing
exhibition noise at SNRs of 20dB and -5dB.

|µLN
y −µLP

y |
1
2
(µLN

y +µLP
y )

Rel. freq., 20dB Rel. freq., -5dB

0%-5% 98.74% 99.53%
5%-10% 0.78% 0.35%
10%-15% 0.42% 0.08%
15%-20% 0.05% 0.02%
20%-25% 0.01% 0.02%

a one-dimensional example. However, after running speech recognition ex-
periments, these differences are not reflected in the recognition results. In
order to get an indication of how often methods of different approximation
accuracy will result in significantly different estimates of the noisy speech
mean, we calculated the relative deviations between all estimated means on
25 files with exhibition noise when using the different techniques. The esti-
mates calculated using the log-normal approximation, µLN

y , were compared
to:

1. Schwartz-Yeh estimates, µSY
y .

2. Lagrange polynomial estimates, µLP
y .

The comparisons were performed for different SNRs. The results for the two
cases are shown in Table 4.3 and Table 4.4. In these tables the first column
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Figure 4.2: Distribution of relative deviations when comparing log-normal
estimates versus Schwartz-Yeh estimates.

lists different ranges of relative deviations between the mean estimate µLN
y

and the estimate using the other method (i.e. Schwartz-Yeh estimate in
Table 4.3 and Lagrange polynomial estimate in Table 4.4). The following
columns show the percentage of all mean estimates for which the relative
deviation was in the specified range. The first row of Table 4.3 tells us that
for an SNR of 20 dB the estimates made by the two methods differ by 5%
or less in 98.65% of the cases. For an SNR of -5 dB, 99.51% of the estimates
differ by 5% or less. Table 4.4 shows similar results when comparing the
log-normal approximation to the Lagrange polynomial approximation.

In order to look closer at the distribution of these small differences, his-
tograms were plotted for relative deviations up to 2.5%. These histograms
are given in Figure 4.2 and Figure 4.3. From the plots it can be observed
that in both cases the relative frequency is greatest for small relative de-
viations, and it decreases rapidly for increasing relative deviations. This
tendency is more pronounced for an SNR of -5 dB than for 20 dB. Experi-
ments on the other SNRs showed that the distribution varies gradually from
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Figure 4.3: Distribution of relative deviations when comparing log-normal
estimates versus Lagrange estimates.

that of 20 dB to that of -5 dB as the SNR decreases.

The conclusion from this investigation is that the methods rarely result
in significantly different estimates, and this is probably part of the reason
why there was so little difference of performance between the approaches.

Another possible reason is that there are weaknesses in the assumption
that the resulting noisy distribution is Gaussian. It has been shown [25, 1]
that for some combinations of speech and noise parameters, the true noisy
distribution is bimodal and hence quite different from a Gaussian. If there
are weaknesses in the underlying assumptions, it might not help to improve
the accuracy of the approximation.

The results obtained here are quite different from what was reported
in [61], but this could be due to differences in database, noise characteristics,
and recognizer setup.
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4.5 Conclusion

This chapter presented a comparison between three approximations to the
non-linear relationship between noise, speech, and noisy speech applied for
model compensation. The three approaches differ in theoretical accuracy
and computational complexity. However, recognition experiments on a digit
recognition task with artificially added noise resulted in very similar perfor-
mance for the three methods.



Chapter 5

Combining Model
Compensation and a Robust
Decision Rule

In this chapter we will propose an approach that makes use of both BPC
and PMC to achieve increased robustness towards noise. As described in
Chapter 3, PMC is a method for estimating the parameters of speech cor-
rupted by noise. In practice there will always be some uncertainty in these
estimates. The BPC technique provides a way of compensating for un-
certainty in parameter estimates. By combining these two approaches, we
can obtain information about the mismatch situation and simultaneously
account for uncertainty in this information. Parts of this work were also
presented in [57] and [54].

5.1 Joint Bayesian Predictive Classification and
Parallel Model Combination

Parallel model combination is a method that allows us to increase noise
robustness by replacing the clean speech HMM parameters with estimates of
the noisy speech HMM parameters. If we assume that no prior information
about the noise is available, the noise parameters have to estimated from
the current utterance. A common approach is to assume that the first few
frames of the utterance are speech-free and estimate the noise parameters
using these frames. This can result in uncertain estimates. In addition, as
we have seen in Chapter 4, PMC only provides an approximation to the
non-linear relationship between the parameters of clean speech, noise, and
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noisy speech. Due to these factors, we have to expect that there will be some
degree of uncertainty in the noisy speech parameter estimates obtained by
PMC.

As described in Section 3.4.2, BPC can be used to compensate for un-
certainty in parameter estimates. To this end, we will use the Bayesian
predictive density based model compensation approach to compensate for
the uncertainty in the PMC parameter estimates. In this combined ap-
proach, which we will call BPC-PMC, only the uncertainty in the mean
parameters will be considered. The BPC approach relies on information
embedded in prior distributions, and the proposed approach takes advan-
tage of knowledge about the mismatch situation obtained by PMC when
specifying the priors. More specifically, the mean parameters estimated by
PMC are used as prior means. The width of the prior is set based on the
neighborhood given by (3.109).

In the Bayesian predictive density based model compensation approach
described in Section 3.4.2 a uniform prior distribution was used, and the
resulting density in (3.116) is clearly different from a Gaussian pdf. Using
a Gaussian pdf as a prior instead of a uniform pdf results in a predictive
distribution that is also Gaussian. Since this reduces the computational
complexity, we chose a Gaussian prior for our experiments. Gaussian priors
were also used in [37].

5.1.1 BPC with a Gaussian Prior

Let us first consider the case of a Gaussian prior with mean αimd and vari-
ance ν2

d for HMM state i, mixture component m, and feature vector element
d. (Note that the variance is independent of state and mixture component
number.) Then, we can calculate (3.115) as

p̃imd(yd) =
∫
N (yd;µimd, σ2

imd)N (µimd;αimd, ν2
d)dµimd

= N (yd;αimd, σ2
imd + ν2

d). (5.1)

Plugging this into (3.113) results in the following state density for HMM
state i:

p̃i(y) =
M∑
m=1

wim

D∏
d=1

N (yd;αimd, σ2
imd + ν2

d). (5.2)
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5.1.2 Setting the Hyperparameters

In the joint BPC-PMC approach, the prior mean is set to the noisy speech
mean estimated by PMC, i.e.,

αimd = µyimd (5.3)

where µyimd is the result of (3.34). The variance is set as follows. In order
to avoid having to deal with the placement of different cepstral coefficients
and their delta and acceleration coefficients in the feature vector, we define
q(d) to be a function that maps feature vector element d to the order of the
corresponding cepstral coefficient.1 The prior variance is set to

ν2
d =

{
1
3C

2q(d)−2ρ2q(d) if q(d) > 0
kdσ̄d if q(d) = 0,

(5.4)

where C > 0 and ρ ∈ (0, 1] are constants. The variance 1
3C

2q(d)−2ρ2q(d) is a
result of minimizing the Kullback-Leibler divergence between our Gaussian
and a uniform distribution of width equal to 2Cq(d)−1ρq(d) [37]. For the
zeroth order cepstral coefficient, the prior variance has been set to a constant
kd multiplied by the global standard deviation σ̄d from the clean speech
training set for the corresponding coefficient (static, delta, or delta-delta).

5.1.3 Summary of the Procedure

We will now sum up the steps needed to implement the proposed procedure.
The following steps are performed for each file to be recognized:

1. Estimate noise parameters from the first N frames

2. Using PMC as described in Section 3.2.1, find estimates {µyimd} of the
noisy speech mean for all mixture components m in all HMM states i

3. For each HMM state i, mixture component m, and feature vector
element d, set the parameters of the predictive distribution as follows:

(a) The mean is set to αimd = µyimd

(b) The variance is set to σ2
imd + ν2

d , with ν2
d given in (5.4)

1For example, a d that corresponds to the delta coefficient of cepstral coefficient 5 will
be mapped to 5.
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5.1.4 Experiments and Results

Experiments are performed on set A of the Aurora2 database. Recognition
was run using static, delta and delta-delta parameters. PMC was used
to estimate new means for static and delta parameters, while delta-delta
parameters were left unchanged. In some experiments, PMC was also used
to estimate new variances for static parameters. Noise parameters were
estimated using the first 10 frames of each test utterance. For the joint BPC-
PMC approach, BPC was used to compensate for uncertainty in all mean
parameters. For the variance of the BPC prior, we used values of C = 2
and ρ = 0.95 for the constants in the first case of (5.4). The constants kd
were set to 1.0, 1.5, and 2.0 for the static, delta, and delta-delta parameters
of the zeroth cepstral coefficient respectively.

The resulting recognition performance for different techniques, including
baseline, and different noise types are given in Table 5.1. In this table,
recognition using only PMC with updated mean values has been given the
label PMC. When variances are also compensated for, the label PMC-var
is used. The joint BPC and PMC technique is labeled BPC-PMC. Note
also that a comparison of PMC and BPC-PMC with statistical significance
testing can be found in Table F.1 in Appendix F.

Table 5.1 shows that model compensation by PMC significantly improves
performance compared to the baseline, which is based on clean speech mod-
els. Moreover, the results show that BPC-PMC obtains improved perfor-
mance compared to PMC for subway, car, and exhibition noise at low SNRs.
In addition, the performance at high SNRs is comparable to PMC. How-
ever, for babble noise performance drops when using BPC-PMC compared
to PMC. PMC-var only seems to work better than PMC in a few cases.

For SNRs of 10dB and higher, the PMC technique obtains word accura-
cies of at least 80% for all noise types. This indicates that good estimates
of noisy model parameters are obtained. However, for low SNRs there is a
higher degree of uncertainty in the compensated models. By using the noisy
model estimates in prior specification for BPC, we are, to some extent, able
to compensate for this uncertainty. This, however, does not apply for bab-
ble noise, where a drop in performance is observed. By taking a closer
look at the recognition results, one can see that the problem that arises
in this case is a big increase in the amount of insertion errors. This can
be explained as follows. The noise model for babble noise can be viewed
as a model for “background speech”. When applying PMC with this noise
model, the compensated HMMs will model a mixture of speech from differ-
ent sources. Using these models for recognition will result in more insertion
errors compared to the original models, since the compensated models are
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Table 5.1: Word accuracies (%) on Aurora2 using PMC and BPC-PMC

Noise SNR Baseline PMC PMC-var BPC-PMC
20 96.90 97.88 95.67 97.39
15 92.08 96.53 91.10 96.01

subway 10 73.87 92.66 82.13 92.20
5 45.26 80.35 63.95 82.13
0 20.94 46.67 42.59 56.00
-5 10.72 21.31 20.79 25.88
20 91.81 96.83 88.94 87.48
15 75.54 92.65 76.27 79.20

babble 10 48.76 85.04 59.43 63.27
5 22.16 67.05 38.00 47.22
0 9.52 39.57 17.38 24.12
-5 5.77 17.11 3.57 8.16
20 96.57 98.30 98.12 97.64
15 84.76 96.96 96.39 96.87

car 10 57.35 91.50 91.05 92.48
5 23.38 70.27 76.29 76.74
0 8.65 31.05 49.00 45.75
-5 6.53 15.72 19.89 18.25
20 96.39 97.41 96.36 96.36
15 89.36 95.83 92.75 94.35

exhibition 10 68.44 91.05 84.73 89.02
5 35.11 75.75 65.47 75.13
0 11.05 42.27 38.20 46.74
-5 6.60 15.46 16.23 19.72

Avg. (0–20dB) 57.39 79.28 72.19 76.81

more likely to find a match in segments containing only babble noise. The
use of BPC and the resulting increased variances will make this effect even
more pronounced, and an even higher number of insertion errors will occur.

By looking at the average word accuracies in Table 5.1, one can observe
that the performance for babble noise is so poor that the average word
accuracy is lower for BPC-PMC than for PMC. In the next section we will
see how one can improve the result by introducing prior scaling.
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5.2 Joint BPC-PMC with Prior Scaling

Compared to traditional PMC, the BPC-PMC approach presented in Sec-
tion 5.1 did not perform well in the presence of babble noise. As discussed
in Section 5.1.4, the problem is caused by a lot of insertion errors when
using BPC to increase variances in presence of noise which contains “back-
ground speech”. In order to avoid this negative effect, some measures must
be taken to reduce the number of insertion errors.

In this section we improve our approach by using a prior that is scaled
on a frame-by-frame basis in order to avoid an increase of the variance in
periods where we are relatively confident that no speech is present. This is
done by calculating a confidence measure for each frame. More specifically,
this confidence measure is calculated as a likelihood ratio based on a model
for noisy speech and a noise model. Then, the width of the BPC prior is
scaled according to the value of the likelihood ratio. The resulting approach
can be viewed as compromise between using plain PMC and the joint BPC-
PMC approach. As we shall see, the resulting performance is increased
for noise types containing background speech at the cost of a performance
reduction for other noise types.

5.2.1 Introducing the Scale Factor

As can be seen from (5.2), the variance is increased compared to the original
state density. We would like to reduce the variance during periods when
there is no speech activity by introducing a frame-dependent scale factor
ξt ∈ [0, 1] on the prior variance. The resulting prior for frame t is then

pt(µimd|φtimd) = N (µimd;αimd, ξtν2
d). (5.5)

This prior results in the following state density for frame t and HMM state
i:

p̃ti(yt) =
M∑
m=1

wim

D∏
d=1

N (ytd;αimd, σ2
imd + ξtν

2
d). (5.6)

The scale factor will be set to reflect our confidence that frame t does contain
speech. A high confidence will result in a scale factor with value close to 1,
while a low confidence will give a value close to 0.
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5.2.2 Setting the Scale Factor

In order to determine whether a given frame t is likely to contain speech or
not, we make use of the log likelihood ratio (LLR)

LLR(y) = log
p(y|Ω0)
p(y|Ω1)

= log p(y|Ω0)− log p(y|Ω1), (5.7)

where the classes Ω0 and Ω1 represent speech present and speech absent
respectively. The method that is used to calculate this LLR will be described
in detail in Chapter 7, where it is used for a different purpose.

Let ηt denote the LLR for frame t. The problem that remains is how to
set the scale factor as a function of ηt. The most straightforward approach
is to perform voice activity detection by simply setting a threshold τ on the
value of ηt, i.e.,2

ξt =

{
1 if ηt > τ

0 if ηt ≤ τ.
(5.8)

However, this means that we make a hard decision at each frame. An
alternative solution is to use a continuous function f : R→ [0, 1] for mapping
the LLR-values to scale factors, i.e., ξt = f(ηt). A natural choice for f is a
sigmoid function. The parameters of the sigmoid have to be optimized in
order to find a suitable slope and shift. In this chapter we use a sigmoid on
the form

ξt =
1

1 + exp(−9.2
ψ (ηt − 3

2ψ))
, (5.9)

where the parameter ψ determines the shift and plays a similar role as the
threshold in (5.8).

5.2.3 Summary of the Procedure

We will now sum up the steps needed to implement the proposed procedure.
The following steps are performed for each file to be recognized:

1. Estimate noise parameters from the first N frames

2. Using PMC as described in Section 3.2.1, find estimates {µyimd} of the
noisy speech mean for all mixture components m in all HMM states i

3. For each frame t:
2Note that setting ξt = 0 reduces the prior to a delta function: pt(µimd|φt

imd) =
δ(µimd − αimd).
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(a) Calculate the LLR value ηt
(b) Calculate the scale factor ξt using either (5.8) or (5.9)

(c) For each HMM state i, mixture component m, and feature vector
element d, set the parameters of the predictive distribution as
follows:

i. The mean is set to αimd = µyimd
ii. The variance is set to σ2

imd + ξtν
2
d , with ν2

d given in (5.4)

5.2.4 Experiments and Results

Most of the experimental setup was the same as in Section 5.1.4. Note that
for the calculation of the LLR in (5.7), only the static parameters were used.

The results for four different methods are shown in Table 5.2. The
approach using hard decision prior scaling in (5.8) has been given the label
BPC-vad, and the approach using the sigmoid in (5.9) has been given the
label BPC-sig. For these approaches, the parameters τ and ψ have been
optimized to give the best average performance. The result was τ = 26
for BPC-vad, and ψ = 21 for BPC-sig. The performance of BPC-sig was
almost the same as for BPC-vad.

When we look at the two approaches using prior scaling, we can see
that the performance for babble is significantly increased compared to BPC-
PMC. At the same time, the performance on subway and car is reduced. On
exhibition we can observe an improvement (except at -5dB). This is because
exhibition noise also contains some background speech, and we are able to
remove insertion errors by using prior scaling. On average we are able to
improve the performance compared to PMC.

Statistical significance tests comparing PMC, BPC-PMC, and BPC-vad
can be found in Table F.2 and Table F.3 in Appendix F.

5.3 Conclusion

In this chapter we presented an approach that combined parallel model
combination (PMC) and Bayesian predictive classification (BPC). The mo-
tivation for this joint approach was to compensate for uncertainty in the
noisy speech model calculated by PMC. The BPC-PMC approach was real-
ized by setting the BPC prior mean to the noisy speech mean calculated by
PMC. While the BPC-PMC approach performed well for most noise types,
it resulted in large amounts of insertion errors in the case of babble noise
due to increased variance of the compensated models. In order to mitigate
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Table 5.2: Word accuracies (%) on Aurora2 using PMC, BPC-PMC, BPC-
vad, BPC-sig

Noise SNR PMC BPC-PMC BPC-vad BPC-sig
20 97.88 97.39 97.39 97.39
15 96.53 96.01 95.95 95.89

subway 10 92.66 92.20 91.86 91.93
5 80.35 82.13 81.58 81.67
0 46.67 56.00 52.72 52.59
-5 21.31 25.88 23.24 23.30
20 96.83 87.48 94.50 94.50
15 92.65 79.20 89.60 89.66

babble 10 85.04 63.27 79.50 79.56
5 67.05 47.22 64.33 64.06
0 39.57 24.12 38.15 38.12
-5 17.11 8.16 16.60 16.48
20 98.30 97.64 97.55 97.52
15 96.96 96.87 96.75 96.72

car 10 91.50 92.48 91.92 91.92
5 70.27 76.74 74.80 74.56
0 31.05 45.75 38.56 38.41
-5 15.72 18.25 16.19 16.10
20 97.41 96.36 96.82 96.85
15 95.83 94.35 95.09 95.09

exhib. 10 91.05 89.02 89.85 89.82
5 75.75 75.13 77.45 77.23
0 42.27 46.74 47.39 47.42
-5 15.46 19.72 19.13 19.01

Avg. (0–20dB) 79.28 76.81 79.59 79.55

this effect, prior scaling was introduced. This approach scaled the prior
variance such that the variance of the compensated models became large if
the confidence in speech presence was high, and small if the confidence in
speech presence was low. This increased the performance for babble noise
at the cost of a reduction in performance for some of the other noise types,
resulting in improved average word accuracy.
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Chapter 6

Bayesian Learning of Speech
Models for MMSE Feature
Enhancement

Several methods for MMSE feature enhancement of noisy speech make use
of probabilistic models of speech and noise. The traditional approach for
training such models is maximum likelihood (ML) estimation. An alter-
native to ML learning is Bayesian learning. Bayesian learning has some
advantages compared to ML learning, and in this chapter we investigate
whether these advantages can contribute to improving the performance of
MMSE feature enhancement. A part of this work was presented in [58].

In order to clarify what the novel contributions of this chapter are, we
will start by giving a short outline. First, we begin by reviewing the gen-
eral principles of Bayesian learning in Section 6.1. Then, in Section 6.2 we
describe variational Bayesian (VB) learning, which is an approximation to
exact Bayesian learning. Our presentation in this section is mainly based on
the work of Attias [3]. Then, we describe how variational Bayesian learning
can be used on a Gaussian mixture model in Section 6.3. This section is also
based on [3], where the formulas for VB learning were given without deriva-
tion. To the best of our knowledge, the derivations behind these formulas
have not been published anywhere. Therefore, we have included deriva-
tions of VB learning for the GMM in Appendix C. Then, in Section 6.4 we
present the novel idea of this chapter, namely application of VB learning to
front-end speech models for MMSE feature enhancement. Section 6.5 then
describes different ways of initializing the VB learning algorithm, followed
by MMSE feature enhancement experiments using Algonquin in Section 6.6
and MBFE in Section 6.7. Finally, conclusions are drawn in Section 6.8.
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6.1 Bayesian Learning

The conventional method for training statistical models such as GMMs and
HMMs is maximum likelihood (ML). However, there are a couple of draw-
backs to ML learning. One problem is that ML has a tendency to overfit
the model to the training data, causing a lack of generality in the resulting
model. Another problem is that ML always prefers complex models over
simple models. The reason for this is that the objective of ML learning is
to maximize the likelihood of the training data. A more complex model has
more parameters than a simple model, and using more parameters allows
ML to obtain a better fit to the data. Thus, the criterion used for ML
learning is not well suited for selecting an optimal model structure.1

The Bayesian approach to model learning tries to solve these problems.
In general, the Bayesian approach has three advantages over ML learn-
ing [74]:

1. Incorporation of prior knowledge through the use of prior distributions

2. Model selection by maximization of the posterior over model struc-
tures

3. Robust classification through marginalization over model parameters

In ML learning, the parameters are viewed as fixed but unknown quanti-
ties, and the objective is to find the point estimate of the model parameters
that results in the highest likelihood. In Bayesian learning, the parameters
are considered to be random variables, distributed according to some proba-
bility distribution. The goal of Bayesian learning is to estimate the posterior
distribution of the model parameters, instead of a point estimate.2 Having
obtained this posterior one can reduce effects of overfitting as well as in-
crease classification robustness by integrating out the model parameters. In
addition to obtaining the posterior of the model parameters, the Bayesian
approach tries to estimate the posterior distribution of model structures.
This distribution can be used for model selection.

For most statistical models Bayesian learning is far from trivial. To
be able to implement Bayesian learning for models such as GMMs and
HMMs, one has to resort to approximations. One such approximation is

1Note that it is possible to use additional criteria, such as the minimum description
length (MDL) [62], in order to perform model selection based on ML learning.

2Note that maximum a posteriori (MAP) estimation, which does consider the param-
eters to be random variables, is not a completely Bayesian approach. This is because it
only seeks the mode of the posterior, which may not be representative of the posterior
distribution. See [5, p. 33] for more details on this.
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the variational Bayesian approach [3, 74, 5, 72]. Examples of previous
applications of VB learning to speech recognition are training of GMMs
for recognition of confusable phones [73] and HMM model-selection and
training for speech recognition [75, 76].

6.2 Variational Bayesian Learning

In [3] Attias proposed a variational approach for Bayesian learning of graph-
ical models. Let Y = {y1, · · · ,yN} denote an observed dataset consist-
ing of N independent and identically distributed items. Moreover, let
Z = {z1, · · · , zN} denote hidden variables and θ denote the parameters. For
a given model structure M , the goal is to compute the parameter posterior
p(θ|Y,M). In addition, for the purpose of model selection, the posterior of
model structures p(M |Y) is of interest.

To make Bayesian computations tractable, the key point is to approxi-
mate the joint posterior p(Z,θ|Y,M) by a variational posterior q(Z,θ|Y)
which is restricted to a factorized form as

q(Z,θ|Y) = q(Z|Y)q(θ|Y). (6.1)

Note that q should always be understood as conditioned on Y, although it
is common not to write this explicitly. We will also follow this convention.

If we knew the true posterior p(Z,θ|Y,M) we would be able to calcu-
late the marginal log likelihood log p(Y|M), which could then be used for
comparing different models. However, since we do not know p(Z,θ|Y,M),
we have to use the factorized form in (6.1) in order to find an approximate
posterior. This can be done by seeking the posterior q(Z,θ) that maximizes
a lower bound for log p(Y|M). This lower bound can be derived as follows:

log p(Y|M) = log
∫
p(Y,Z,θ|M)dZdθ

= log
∫
q(Z,θ)

p(Y,Z,θ|M)
q(Z,θ)

dZdθ.
(6.2)

Now, by applying Jensen’s inequality, and the factorization in (6.1), we
obtain

log p(Y|M) ≥
∫
q(Z,θ) log

p(Y,Z,θ|M)
q(Z,θ)

dZdθ

=
∫
q(Z)q(θ) log

p(Y,Z,θ|M)
q(Z)q(θ)

dθdZ.
(6.3)



64
Bayesian Learning of Speech Models for MMSE Feature

Enhancement

The lower bound in (6.3) is often referred to as free energy, and we will
denote it by FM (q(Z), q(θ)). We have now reformulated the problem of
computing the posterior as an optimization problem, where the cost function
is FM .

The function FM can also be rewritten on a form that shows more clearly
that it penalizes model complexity. This can be done as follows:

FM (q(Z), q(θ)) =
∫
q(Z)q(θ)

[
log

p(Y,Z|θ,M)
q(Z)

+ log
p(θ|M)
q(θ)

]
dθdZ

=
∫
q(Z)q(θ) log

p(Y,Z|θ,M)
q(Z)

dθdZ−KL[q(θ)‖p(θ|M)]

= EZ,θ

[
log

p(Y,Z|θ,M)
q(Z)

]
−KL[q(θ)‖p(θ|M)].

(6.4)

Here, EZ,θ[·] denotes the expectation with respect to q(Z,θ) and KL denotes
the Kullback-Leibler distance. Thus, the last term is now the KL distance
between the parameter prior and the variational posterior q(θ). While the
first term corresponds to the averaged likelihood, the second term can be
interpreted as a penalty term for more complex models. As we increase the
number of parameters in order to increase the average likelihood, the KL
distance will also increase and thus reduce the total value of FM . Assuming
equal prior probabilities for all model structures M , the model with the
highest value of FM corresponds to the model with the highest posterior
probability.

In order to optimize the free energy with respect to the posteriors q(Z)
and q(θ), an EM-like algorithm can be derived. See e.g. [5] for a derivation
of this procedure. The E-step consists of computing the variational posterior
over hidden variables as

q(Z) ∝ exp {Eθ[log p(Y,Z|θ,M)]} . (6.5)

The M-step is then to compute the variational parameter posterior as

q(θ) ∝ exp{EZ[log p(Y,Z|θ,M)]}p(θ|M). (6.6)

6.3 Variational Bayesian Learning for the GMM

The application of VB learning as described in Section 6.2 for the GMM
was presented in [3]. In the case of a GMM, the hidden variables are scalars
Z = {z1, . . . , zN} describing which mixture component that generated each
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observed vector. Using the hidden variables, the GMM can be written on
the form

p(yn|θ,M) =
M∑
z=1

p(yn|zn = z,θ)p(zn = z|θ). (6.7)

In this case, the model structure is simply the number of components, de-
noted M . Each component has a Gaussian distribution N (µz,Σz). Note
that in this section we will make use of the inverse covariance matrix
Γz = Σ−1

z . The matrix Γz is called the precision matrix, and for the algo-
rithm presented in this section it is convenient to use precision instead of
covariance. Note that p(zn = z|θ) in (6.7) is simply the mixture weight for
component z, i.e., p(zn = z|θ) = wz.

It is useful to choose prior densities from conjugate families, since the
posterior densities will then belong to the same families as the priors. As
a consequence, the VB learning simply amounts to updating the hyperpa-
rameters of the posteriors. Thus, the following conjugate priors are defined
for the parameters θ:

p({wz}) = D(λ0) (6.8)

p(µz|Γz) = N (ρ0, β0Γz) (6.9)

p(Γz) =W(ν0,Φ0). (6.10)

Here D and W denote Dirichlet and Wishart densities respectively. A
short description of these distributions can be found in Section B.2 and
Section B.3 in the appendix. The corresponding variational posteriors are
given by:

q({wz}) = D({λz}) (6.11)
q(µz|Γz) = N (ρz, βzΓz) (6.12)

q(Γz) =W(νz,Φz). (6.13)

The objective of the E-step is to compute the variational posterior over
hidden variables q(Z). Defining γnz = q(zn = z|yn), this can be done as
follows:

q(zn = z) = γnz ∝ w̃zΓ̃1/2
z exp

{
−1

2
(yn − ρz)T Γ̄z(yn − ρz)−

D

2βz

}
(6.14)

q(Z) =
N∏
n=1

q(zn), (6.15)
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where

log w̃z = Eθ[logwz] = ψ(λz)− ψ

(∑
z′

λz′

)
(6.16)

log Γ̃z = Eθ[log |Γz|] =
D∑
i=1

ψ

(
νz + 1− i

2

)
− log |Φz|+D log 2 (6.17)

Γ̄z = Eθ[Γz] = νzΦ−1
z . (6.18)

In the above equations, ψ denotes the digamma function, which is briefly
described in Section B.1 in the appendix. The normalization constant of γnz
can be found by using the constraint that

∑M
z=1 γ

n
z = 1 for all n.

The M-step can be divided into two stages. In the first stage, which
is the same as in the ordinary EM algorithm, the following quantities are
computed:

w̄z =
1
N

N∑
n=1

γnz (6.19)

µ̄z =
1
N̄z

N∑
n=1

γnz yn (6.20)

Σ̄z =
1
N̄z

N∑
n=1

γnzC
n
z . (6.21)

In the above equations, we have defined

Cn
z = (yn − µ̄z)(yn − µ̄z)T (6.22)

N̄z = Nw̄z. (6.23)

The hyperparameters of the posteriors are then updated in the second stage.

λz = N̄z + λ0 (6.24)

νz = N̄z + ν0 (6.25)

βz = N̄z + β0 (6.26)

ρz =
N̄zµ̄z + β0ρ0

N̄z + β0
(6.27)

Φz = N̄zΣ̄z +
N̄zβ

0

N̄z + β0
(µ̄z − ρ0)(µ̄z − ρ0)T + Φ0 (6.28)
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Since posteriors are computed instead of parameters, the predictive den-
sity is used for unseen data. In this density the parameters θ are integrated
out. This gives us a mixture of multivariate t-distributions3 on the form

p(y|Y) =
M∑
z=1

w̄ztκz(y;ρz,Ωz). (6.29)

For component z, the degrees of freedom are κz = νz + 1−D, the mean is
ρz and the covariance is Ωz = ((βz + 1)/βzκz)Φz. The mixture weight is
given by w̄z = λz/

∑
z′ λz′ .

In order to be able to compare different models, we still need to find an
expression for the free energy of the GMM. A derivation of this expression
can be found in Appendix D.

6.3.1 The Diagonal Covariance Case

If diagonal covariance matrices are used, a few changes are needed to the al-
gorithm presented in Section 6.3. In this case we are making the assumption
that the vector elements are statistically independent. When the vector ele-
ments of a D-dimensional multivariate normal distribution are independent,
the distribution can be simplified to a product of D one-dimensional normal
distributions. For a one-dimensional Gaussian with parameters mean and
precision, the conjugate prior is the normal-gamma prior. This means that
instead of using a Wishart density as a prior for the precision matrix, we
now consider each element of the diagonal precision matrix independently,
and use a gamma density as prior. Assuming that the precision matrix is
diagonal, we can write

Γz = diag(rz), rz =

rz1...
rzD

 (6.30)

where rz is the vector consisting of the diagonal precision elements. Denot-
ing the gamma density by G, the new prior is given by

p(Γz) =
D∏
d=1

p(rzd) =
D∏
d=1

G(ν0, φ0
d). (6.31)

A short description of the gamma distribution can be found in Section B.4
in the appendix. The expression for the E-step in (6.14) can be simplified

3See Section B.5 in the appendix for a short description.



68
Bayesian Learning of Speech Models for MMSE Feature

Enhancement

to

γnz ∝ w̃zΓ̃1/2
z exp

{
−1

2

D∑
d=1

r̄zd(ynd − ρzd)2 −
D

2βz

}
, (6.32)

where

log Γ̃z =
D∑
d=1

Eθ[log rzd] = Dψ(νz/2)−
D∑
d=1

log(φzd/2) (6.33)

r̄zd =
νz
φzd

. (6.34)

Moreover, (6.21) can be simplified to the following scalar version:

σ̄2
zd =

1
N̄z

N∑
n=1

γnz (ynd − µ̄zd)2. (6.35)

Consequently, a scalar version of (6.28) for the update of hyperparameter
φzd is given by

φzd = N̄zσ̄
2
zd +

N̄zβ
0

N̄z + β0
(µ̄zd − ρ0

d)
2 + φ0

d. (6.36)

6.4 VB Trained Models used in MMSE Feature
Enhancement

As described in Section 6.1, there are several advantages to the Bayesian
learning approach compared to traditional ML training. When only a small
amount of data is available, ML training suffers from overfitting problems
if the chosen model structure is too complex. In addition, if a component
is assigned very few observations during ML training, numerical problems
can arise. Because of the regularization effects from the priors, the VB
training has no such numerical problems. In addition, since the VB objective
function contains a penalty term for complex models, the training has an
ability to prune the trained model according to the amount of data available.
Thus, even if the model structure is chosen too complex, the model will not
have the same overfitting problems as ML. Moreover, the VB free energy can
be used as a model selection criterion to choose the right model complexity.

We will apply the algorithm described in Section 6.3 to train the speech
priors p(s) used by Algonquin and MBFE for MMSE feature enhancement.
The result of the VB training is posteriors for the parameters of p(s). Ideally,
we should use the predictive distribution given by (6.29) as a prior for MMSE
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feature enhancement. However, since Algonquin and MBFE are based on
the assumption that the mixture components are Gaussian, we approximate
each of the multivariate t-distributions with the multivariate Gaussian that
was closest with respect to KL-distance. Given a component z, it can be
shown that this is a Gaussian with mean and covariance equal to that of
the multivariate t-distribution [7], i.e.,

p(s) =
M∑
z=1

w̄zN (s;ρz,Ωz). (6.37)

6.5 Initialization of the VB Algorithm

The VB algorithm for training a GMM uses an iterative EM approach.
When using the EM algorithm, initial parameter values are needed as a
starting point for the iterative procedure. There are several possible ways
of generating initial parameter estimates.

One option is to use k-means clustering [70, p. 532]. In this case the
model size will be predefined by the number of clusters k. The k-means
algorithm partitions the data set into k sets, and using this partition one
can set initial values of γnz = q(zn = z|yn) which are used in the VB
training algorithm. Given that vector yn has been assigned to cluster z, we
set γnz = 1 and γni = 0 for all i 6= z. With these initial values one can run
the M-step of the VB algorithm and obtain initial parameter values.

Another option is to use iterative mixture splitting, which is commonly
used when training HMMs for ASR. This is done by starting off with only
one mixture component and estimating its parameters. Then, one can split
this component by generating a new component with almost the same pa-
rameters and start another EM cycle. When there are several mixture com-
ponents one has to use some criterion for determining which component to
split next. Note that it is possible to split several components at the same
time. However, in this thesis we will only split one component between each
EM cycle. More specifically, we use the following iterative mixture splitting
for the VB algorithm:

1. Select the component z = arg maxl λl for splitting.

2. Split component z into two components i and j.
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3. Set the new values of λ, β and ν as follows:

λi = λj =
λz − λ0

2
(6.38)

βi = βj =
βz − β0

2
(6.39)

νi = νj =
νz − ν0

2
. (6.40)

4. The value of Φ is left unchanged:

Φi = Φj = Φz. (6.41)

5. The value of ρ is perturbed by a perturbation vector p as follows:

(a) Set the perturbation vector to a small amount ε of the (expected)
standard deviation of each vector element in component z, i.e.,

p = ε


√

φz1

νz

...√
φzD
νz

 (6.42)

where φzd denotes element d on the diagonal of matrix Φz.

(b) Set the new values of ρ as

ρi = ρz − p (6.43)
ρj = ρz + p. (6.44)

6.6 Experiments in the Log-Spectral Domain with
Algonquin

6.6.1 Preliminary Experiments Using Subway Noise

The first experiments were run using the log-spectral domain version of
Algonquin. Noisy speech files were first denoised in the log-spectral domain
using different speech GMMs as the prior p(s). Then, the resulting files
were transformed to the MFCC domain. The log-spectral feature vectors
used during enhancement were 23-dimensional, while the MFCCs were 39-
dimensional including delta and acceleration parameters, with C0 as energy.
Using these feature vectors, recognition was then performed with models
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Figure 6.1: Feature enhancement in log-spectral domain with Algonquin.
Recognition performance for ML when using different training sets and di-
agonal/full covariance matrices.

trained in clean condition. For the experiments in this section, we chose the
subset of Aurora2 containing subway noise at 5 dB. The baseline recognition
result, using no feature cleaning, was a word accuracy of 45.26%.

In the log-spectral domain there is a high degree of correlation between
neighboring feature vector elements due to the use of overlapping filters in
the mel-scale filter bank. Thus, it is beneficial to use full covariance matri-
ces. It was observed experimentally that training full covariance matrices
gave significantly higher performance than diagonal covariance matrices.
However, when using the full covariance matrix in Algonquin, only a small
advantage in performance was observed compared to simply using the di-
agonal elements of the fully trained covariance matrix. Due to the need
for a lot of matrix inversion operations when using full covariance matri-
ces during feature enhancement, the computational complexity becomes a
lot higher than when diagonal covariance matrices are used. As a result,
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full covariance matrices were used during training, but only the diagonal
elements were used during feature enhancement. Figure 6.1 shows experi-
mental results obtained with diagonal and full covariance matrices during
feature enhancement.

In order to further reduce the computational complexity, we selected
only a subset of the complete Aurora2 training set for model estimation.
We chose four different training sets, each consisting of 50 randomly se-
lected files. Figure 6.1 shows the performance of ML-trained GMMs using
full covariance matrices and diagonal covariance matrices, trained on both
the complete training set and the four training sets which only contain 50
files each. The latter has been averaged over the four selected sets. Note
that all the models used here were trained using iterative mixture split-
ting. The plot shows that when only using 50 files for model training, the
performance obtained with diagonal covariance is better than with full co-
variance matrices. This is probably because the amount of training data is
too small to obtain robust estimates of the full covariance matrices. In ad-
dition, we can see that the performance of the diagonal covariance matrices
and a training set of 50 files is comparable to using the complete training
set for models with less than 40 mixture components. Thus, in this section,
we will keep the model sizes in this range, with a maximum of 50 mixture
components.

In order to compare ML and VB training we tested both k-means ini-
tialization and iterative mixture splitting for both methods. For the VB
training, the prior was set as follows:

λ0 = 1, β0 = 1, ν0 = D (6.45)

ρ0 = 0, Φ0 = τI (6.46)

where D denotes the feature dimension and I denotes the D × D identity
matrix.

The first experiment was done with k-means initialization for both ML
and VB. The scaling factor for Φ0 was set to τ = 10.0. Recognition results
for models with number of mixture componentsM varying from 10 to 50 can
be seen in Table 6.1. This table shows results for each of the 4 training sets.
The ML results stop at around 30 mixture components, where numerical
problems arose due to lack of training data. However, the results show that
for VB the results keep improving after that point. In addition, for a given
model size VB is slightly better than ML in most cases.

In the next experiment we tested ML and VB using iterative mixture
splitting. The best scaling factor for Φ0 was found at τ = 3.0. A plot
showing recognition performance for all cases averaged over the 4 training
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Table 6.1: Recognition performance (word accuracy) after denoising files
containing subway noise at 5 dB, using models trained with four different
training sets.

Set 1 Set 2 Set 3 Set 4
M ML VB ML VB ML VB ML VB
10 70.22 71.11 69.48 69.82 69.48 70.53 70.10 70.68
14 70.65 69.88 70.19 71.23 69.54 69.20 67.64 69.88
18 70.56 71.05 69.42 70.22 69.79 70.22 70.28 70.86
22 72.28 71.29 69.30 69.30 68.93 69.63 69.97 70.92
26 71.72 72.24 68.44 69.97 69.17 71.02 67.88 70.37
30 71.08 71.35 — 70.80 68.38 71.02 69.39 71.85
34 69.70 71.97 — 70.95 — 70.80 — 72.24
38 — 72.74 — 71.26 — 71.94 — 71.72
42 — 72.18 — 70.37 — 71.02 — 70.74
46 — 71.17 — 69.94 — 71.57 — 70.62
50 — 70.31 — 70.43 — 71.05 — 71.85

sets is shown in Figure 6.2. In this plot the results for ML using k-means
and iterative mixture splitting have been given the labels ML-KM and ML-
IMS respectively, and the corresponding results for VB have been labeled
VB-KM and VB-IMS. From this plot one can see that iterative mixture
splitting clearly improved ML’s robustness towards numerical problems, and
that iterative mixture splitting works better than k-means initialization for
these training sets. Iterative mixture splitting also works better in the VB
case. In addition, it can be seen that VB with mixture splitting obtains a
stable and good performance at around 14 mixture components, and that
it outperforms ML.

Statistical significance tests when comparing the iterative mixture split-
ting version of ML and VB can be found in Table F.4 in Appendix F. This
table shows results for each of the four training sets for some of the model
sizes.

We also examined the free energy. Figure 6.3 shows the recognition
performance and free energy for both k-means initialization, and iterative
mixture splitting. In both cases the result has been averaged over the four
training sets. We can see that the shape of the free energy plot is similar
to the shape of the word accuracy plot in both cases. However, when using
k-means the word accuracy is not as stable as when using iterative mixture
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Figure 6.2: Feature enhancement in log-spectral domain with Algonquin.
Recognition performance for ML and VB.

splitting, and this is not reflected in the free energy. When using iterative
mixture splitting both the word accuracy and the free energy have stable
areas above 14 mixture components.

6.6.2 Experiments on Other Noise Types

In Section 6.6.1 we ran experiments on subway noise at 5dB, and found
that iterative mixture splitting worked better than k-means initialization.
Moreover, the results indicated that VB had an advantage compared to ML.
In this section we will give results for the remaining three noise types that
are found in test set A of Aurora2: babble, car, and exhibition. Experiments
are run with the same speech GMMs (those trained using iterative mixture
splitting) and setup that was used in Section 6.6.1. The results are shown
in Figure 6.4, Figure 6.5, and Figure 6.6. As can be seen in these plots, VB
does not have the same performance advantage compared to ML for these
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Figure 6.3: Feature enhancement in log-spectral domain with Algonquin.
Recognition performance for VB and free energy

noise types. This result is unexpected, since the same speech GMMs are
used in all cases. The performance on babble noise is almost equal for ML
and VB, while on car noise ML performs slightly better. On exhibition, the
performance is approximately the same for ML and VB.

Statistical significance tests comparing ML and VB for these three noise
types can be found in Table F.5, Table F.6, and Table F.7 in Appendix F.

The VB performance enters a stable area at around 14 to 18 mixture
components for all noise types, and it has a shape similar to the free energy
which was shown in Figure 6.3. This means that the free energy could be
used for model selection. However, in order to be sure to obtain a model
in the flat area of the performance curve, it seems that one should select a
model that is slightly larger than the point where the flat area of the free
energy curve begins.
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Figure 6.4: Feature enhancement in log-spectral domain with Algonquin.
Recognition performance for ML and VB on babble noise at 5dB.

6.7 Experiments with MBFE in the Cepstral Do-
main

The setup for experiments with MBFE in the cepstral domain was essen-
tially the same as the setup used in Section 6.6.1. Since there is much
less correlation between neighboring feature vector elements in the cep-
stral domain than in the log-spectral domain, the GMMs were now trained
with diagonal covariance matrices. The feature vectors were 13-dimensional
MFCCs. Moreover, based on the results from the log-spectral domain, iter-
ative mixture splitting was preferred over the k-means approach.

Note that going from Algonquin to MBFE is not just a change of do-
mains. These two methods are different in the way they approach the prob-
lem of finding the MMSE estimate. The goal in Algonquin is to find the
parameters of the joint clean speech and noise posterior distribution. Hav-
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Figure 6.5: Feature enhancement in log-spectral domain with Algonquin.
Recognition performance for ML and VB on car noise at 5dB.

ing found these parameters, the resulting distribution is used for finding the
clean speech estimate. The approach of MBFE is to use the clean speech
model and noise model to find a model for noisy speech. Then, based on
the likelihoods of different components in the noisy speech model, a clean
speech estimate is found. Thus, since Algonquin and MBFE use different
approaches for finding the clean speech MMSE estimate, they can behave
differently.

Plots comparing the performance of ML and VB are given in Figures 6.7-
6.10. Based on the results from the log-spectral domain, the performance
of VB was expected to be at least comparable to the performance of ML.
Whereas this was the case for subway noise and car noise, the performance of
ML was significantly better than VB for babble noise and exhibition noise.
This result was quite unexpected. It is difficult to explain this behavior,
but it seems that differences between the Algonquin and MBFE algorithms
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Figure 6.6: Feature enhancement in log-spectral domain with Algonquin.
Recognition performance for ML and VB on exhibition noise at 5dB.

lead to different model preferences.

6.8 Conclusion

This chapter presented a study on the use VB trained front-end models in
MMSE feature enhancement. Feature enhancement of noisy speech data was
performed based on speech GMMs trained using both ML and VB learn-
ing, before running speech recognition on the cleaned data. Both iterative
mixture splitting (IMS) and k-means initialization were investigated.

The first set of experiments was run in the log-spectral domain using
Algonquin. When using k-means initialization, VB had advantages com-
pared to ML in the sense that numerical problems were avoided, and the
performance was better. However, IMS outperformed k-means. When using
IMS for both ML and VB, the latter gave improved performance for sub-
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Figure 6.7: Feature enhancement in cepstral domain with MBFE. Recogni-
tion performance for ML and VB on subway noise at 5dB.

way noise, but for the other noise types the performance was approximately
the same. Thus, the remaining advantage of VB is that the free energy
can be used as a criterion for model selection. However, in this particular
application, the practical usefulness of model selection is somewhat limited.

The second set of experiments, which was run in the cepstral domain
using MBFE, gave very different and unexpected results. While VB and
ML showed approximately the same performance on subway and car noise,
ML significantly outperformed VB on babble and exhibition noise.
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Figure 6.8: Feature enhancement in cepstral domain with MBFE. Recogni-
tion performance for ML and VB on babble noise at 5dB.
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tion performance for ML and VB on car noise at 5dB.



82
Bayesian Learning of Speech Models for MMSE Feature

Enhancement

0 5 10 15 20 25 30 35 40 45 50
71

72

73

74

75

76

77

78

79

80
Experiments in the cepstral domain using MBFE. Exhibition noise, 5dB.

Number of mixture components

W
o

rd
 a

c
c
u

ra
c
y
 [

%
]

 

 

ML

VB

Figure 6.10: Feature enhancement in cepstral domain with MBFE. Recog-
nition performance for ML and VB on exhibition noise at 5dB.



Chapter 7

Improved Noise Modeling
for MMSE Feature
Enhancement Using Voice
Activity Detection

The main difficulty in noise model estimation is that prior information about
the noise is usually not available. Consequently, noise data have to be
extracted from the current noisy speech utterance. In Section 3.5 we gave
a brief overview of different techniques for noise estimation. In an ideal
situation, we would like to be able to track how the noise varies from frame
to frame. In practice, however, it is very difficult to obtain reliable estimates
for every frame. In this chapter we take a simpler approach, by using voice
activity detection (VAD) for extracting noise-only frames. The extracted
frames can then be used for improving noise models used for MMSE filtering
of noisy speech.

Due to the popularity of MFCC features for speech recognition, it is
useful to have VAD methods and MMSE filtering algorithms that both
work in the MFCC domain. We propose a method for VAD based on the
likelihood ratio test (LRT) that works directly on MFCC feature vectors.
Detected noise-only frames are collected and used for creating a noise model,
which is then used for MMSE filtering. We will also consider a well-known
LRT-based VAD algorithm that works in the DFT domain, and compare
its performance to the results of our method. Parts of this work were also
presented in [55].

83
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7.1 System Description

We consider a system consisting of three stages:

1. Voice activity detection to identify noise-only frames

2. MMSE filtering of noisy speech using the noise-only frames obtained
in step 1 for noise modeling

3. Speech recognition based on the MMSE-filtered feature vectors from
step 2 using recognizer models trained in clean conditions

A block diagram of the system is shown in Figure 7.1. Performing all steps
(after feature extraction) in the MFCC domain has the advantages that no
feature vector transformations are necessary between each stage, and we do
not need access to features in the frequency domain as is required by many
VAD and noise tracking algorithms. The VAD in stage 1 is based on the
likelihood ratio test, and takes advantage of prior knowledge about speech
in the form of a GMM in the same way as the MMSE filtering in stage 2.
Note that the VAD method in stage 1 needs an initial crude estimate of
the noise parameters. In practice this can be obtained by using an initial
silence detector to extract a few noise-only frames.

The MMSE filtering approach used in this chapter is the GMM-based
version of model-based feature enhancement (MBFE) [9, 66] that was de-
scribed at the end of Section 3.3.3.

Note that our system extracts noise-only frames from the whole utter-
ance before estimating a single set of noise model parameters. We could also
have tried an online approach by updating the noise model for each noise-
only frame we find. However, the findings of Myrvoll and Nakamura in [52]
suggest that there is not a lot to gain from this approach. Consequently, we
have chosen the simpler alternative, which also makes our system less com-
putationally demanding since we avoid having to update the noisy speech
GMM used by MBFE.

7.2 Cepstral Domain VAD Based on the LRT

Voice activity detection is a binary classification problem, consisting of the
classes

Ω0 : speech absent
Ω1 : speech present.
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Figure 7.1: Block diagram of the system.

Given an observation y this problem can be formulated as a statistical
hypothesis test where the null hypothesis (H0) is that y belongs to Ω0 and
the alternative hypothesis (H1) is that y belongs to Ω1. According to the
Neyman-Pearson Lemma, an optimal hypothesis test is obtained by using
the likelihood ratio test. The likelihood ratio is given by

LR(y) =
L(y|H0)
L(y|H1)

=
p(y|Ω0)
p(y|Ω1)

(7.1)

where L(y|·) denotes the likelihood of the given hypothesis and p(y|·) de-
notes the probability density function of an observation from the given class.
The likelihood ratio test is performed by comparing the likelihood ratio to
a threshold τ , and making a decision, i.e.,

Accept H0 if LR(y) ≥ τ
Reject H0 if LR(y) < τ.

When using this test for VAD, y is a frame from a noisy speech signal.
Thus, the frame will be classified as only noise if LR(y) ≥ τ , and as a
mixture of noise and speech if LR(y) < τ .
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In practice, the LRT is usually performed in the log domain by defining
a log likelihood ratio, i.e.,

LLR(y) = log
p(y|Ω0)
p(y|Ω1)

(7.2)

= log p(y|Ω0)− log p(y|Ω1). (7.3)

It has been shown [60] that for VAD it can be beneficial to use an LRT
that takes into account several consecutive observations. More specifically,
for a frame l, this is done by summing up the log likelihood ratios for the
current frame and for m frames in both directions. Thus, for frame l we
evaluate the sum of LLRs on the set Yl+m

l−m = (yl−m, . . . ,yl, . . . ,yl+m), and
get the following:

LLRm(Yl+m
l−m) =

l+m∑
k=l−m

log
p(yk|Ω0)
p(yk|Ω1)

=
l+m∑

k=l−m
log p(yk|Ω0)−

l+m∑
k=l−m

log p(yk|Ω1).

(7.4)

In order to use this test, models for noisy speech and noise are needed.
Thus, we will again make use of the first N frames of each utterance, which
are assumed to consist only of noise.1 These frames are used to estimate
an initial (single component) Gaussian noise model with mean µn and co-
variance matrix Σn. In addition, we make use of a GMM for clean speech.
In our system, this clean speech GMM is the same model that is used for
MMSE filtering in the next stage of processing. As was described in Sec-
tion 3.2.2, we can determine the statistical parameters for noisy speech by
applying VTS and using the known statistical parameters of clean speech
and noise. Thus, using first-order VTS, the mean and covariance matrix of
mixture component j of the noisy speech GMM are given by2

µy,j = µs,j + C log[1 + exp(C−1(µn − µs,j))] (7.5)

Σy,j = FjΣs,jFTj + GjΣnGT
j (7.6)

1Note that LRT-based VAD methods working in the DFT domain usually assume a
known initial noise variance, which in practice means that one needs some data to estimate
it from. Hence, these methods also require some initial noise-only frames.

2Note that this is the same method as is used in the GMM-based version of MBFE
when only a single component noise model is used.
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where

Fj = C diag
(

1
1 + exp(C−1(µn − µs,j))

)
C−1 (7.7)

Gj = I− Fj . (7.8)

Then, using these models we can write the resulting LLR as

LLRm(Yl+m
l−m) =

l+m∑
k=l−m

log
N (yk;µn,Σn)∑J

j=1wjN (yk;µy,j ,Σy,j)
. (7.9)

7.3 VAD in the DFT Domain Based on the LRT

In the experimental section we will compare our VAD method to a well
known DFT-based approach proposed by Sohn et al. in [65]. In this section
we will briefly review this method.

Let s̃, ñ, and ỹ denote the DFTs of clean speech, noise, and noisy speech
respectively. Moreover, let S̃[k], Ñ [k], and Ỹ [k] denote the kth elements of
the respective DFTs. Sohn et al.’s method is based on a statistical model
where the DFT coefficients are assumed to be asymptotically independent
complex Gaussian random variables [19]. Then, the probability densities of
the classes Ω0 and Ω1 are given by

p(ỹ|Ω0) =
K∏
k=1

1
πλN (k)

exp

{
−|Ỹ [k]|2

λN (k)

}
(7.10)

p(ỹ|Ω1) =
K∏
k=1

1
π[λN (k) + λS(k)]

exp

{
−|Ỹ [k]|2

λN (k) + λS(k)

}
, (7.11)

where λN (k) and λS(k) denote the variances of Ñ [k] and S̃[k] respectively,
and K is the dimension of the DFT vectors. Note that since this method
operates in the DFT domain, it avoids having to deal with the non-linear
relationship in (3.16). For the kth DFT coefficient, the likelihood ratio can
be written as3

Ψk =
p(Ỹ [k]|Ω0)
p(Ỹ [k]|Ω1)

= (1 + ξk) exp
{
− γkξk

1 + ξk

}
, (7.12)

3Note that we have defined this LR as the inverse of the LR used in [65] in order to
match our definition in (7.1).
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where ξk = λS(k)/λN (k) and γk = |Ỹ [k]|2/λN (k) are the so-called a priori
and a posteriori signal to noise ratios [19]. The LLR for one frame is then
calculated as the geometric mean of LLRs for each DFT coefficient, i.e.,

log Ψ =
1
K

K∑
k=1

log Ψk. (7.13)

In order to avoid clipping of weak speech tails, Sohn et al.’s method uses
a HMM-based hang-over scheme. For more details on this see [65].

7.4 Experiments and Results

To evaluate the proposed approach, we run speech recognition experiments
on set A of the Aurora2 database. The recognition performance when using
VAD for improved noise modeling will be compared to the recognition per-
formance when only using the first 20 frames for noise modeling. We will
also compare the effectiveness of our VAD approach to Sohn et al.’s method,
which was briefly reviewed in Section 7.3. Note that this method works in
the DFT domain and hence does not fit directly into the block diagram
in Figure 7.1. In addition, we will compare the results to an approximate
upper bound for the VAD method, which has been generated by running
forced alignment on the clean speech data using the clean speech recognizer
models. This method gives a close to optimal speech activity labeling.

The proposed algorithm was tested using a clean speech GMM with
32 mixture components. The value of m in (7.4) was set to 4. For both
the proposed approach and Sohn et al.’s method, we have optimized the
thresholds to give the best performance when averaging over all noise types,
and SNRs from 0 to 20dB.

During VAD and MMSE filtering, 13-dimensional MFCC feature vectors
are used, with C0 as energy. During recognition the feature vectors are 39-
dimensional, consisting of static, delta and acceleration coefficients.

Now, we compare the results to only using the first 20 frames and Sohn
et al.’s method, as well as the close to optimal labeling obtained from forced
alignment (FrcAlgn). The results are given in Table 7.1, where the proposed
approach has been given the label LRT-CEP.

The proposed LRT-CEP approach outperforms the use of only the first
20 frames for noise modeling. When comparing our VAD method to Sohn
et al.’s method, we can see that the proposed approach on average performs
better on babble and exhibition noise. On the other hand, Sohn et al.’s
method performs better on subway and car noise. When averaging over all
SNRs and noise types, the performance of these two methods is very similar.



7.4. Experiments and Results 89

Table 7.1: Word accuracies (%) on Aurora2

Noise SNR First20 Sohn LRT-CEP FrcAlgn
20 96.75 97.05 96.90 97.91
15 93.89 94.75 94.72 96.22

subway 10 86.34 89.07 89.41 92.63
5 75.50 80.44 80.32 85.82
0 56.16 61.01 59.87 67.92
-5 28.09 29.66 27.51 34.73
20 96.61 97.19 97.49 98.25
15 93.74 94.74 95.77 97.58

babble 10 85.97 88.97 90.81 94.47
5 72.52 77.75 79.78 84.73
0 44.53 48.64 46.49 54.20
-5 14.93 17.26 15.24 21.16
20 98.33 98.51 98.57 98.60
15 97.44 97.88 97.70 98.03

car 10 94.78 95.76 95.17 95.76
5 87.21 88.67 87.92 89.20
0 66.84 64.06 60.01 65.85
-5 28.57 24.46 21.12 25.56
20 97.69 97.81 97.72 98.21
15 95.00 95.80 95.96 96.54

exhib. 10 90.25 91.02 91.98 92.69
5 79.91 82.17 83.52 84.60
0 61.59 65.17 66.52 66.65
-5 35.51 37.15 36.19 38.11

Avg. (0–20dB) 83.55 85.32 85.33 87.79

Statistical significance tests comparing First20, Sohn et al.’s method,
and the proposed approach can be found in Table F.8 and Table F.9 in
Appendix F.

The improvement of the proposed approach versus only the first 20
frames is 1.78% absolute, which corresponds to a reduction in word er-
ror rate of 10.8%. The gap in recognition accuracy between using only the
first 20 frames and the forced alignment is 4.24% absolute. This means that
we are able to close about 40% of the gap.
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Tables showing the relative amounts of frames that were classified as
noise by the VAD methods can be found in Appendix E. The tables also
show the relative amounts of frames (FrcAlgn) that were classified as silence
by the forced alignment upper bound. Note that as the SNR decreases,
speech sounds with low energy may be masked by noise. Thus, it may be
beneficial to include more frames for noise modelling than those detected by
forced alignment on clean speech data. The amount of frames selected by
a given method depends on how we set the threshold, and thus the results
in Appendix E represent a compromise of selected frames when optimizing
thresholds for the maximum word accuracy averaged over all noise types
and SNRs (0–20dB).

From the tables in Appendix E, it can be observed that the proposed
approach generally classifies a larger amount of frames as noise than Sohn
et al.’s method. For babble noise and exhibition noise, Sohn et al.’s method
always selects fewer frames for noise modelling than FrcAlgn. These are
also the noise types where the proposed approach works better than Sohn
et al.’s method for SNRs higher than 0dB. The proposed approach selects
more frames than FrcAlgn in almost all cases. At 0dB and -5dB, the number
of selected frames is probably too high in most cases, and thus Sohn et al.’s
method performs better.

As a final comment, we note that the results presented in this chapter
do not match the results reported in [66]. This is probably due to the more
complex system setup that was used in [66], which included convolutional
noise removal and more mixture components in both front-end and back-
end.

7.5 Conclusion

This chapter investigated the use of voice activity detection for obtaining
improved noise models for use in MMSE feature enhancement. An LRT-
based method for VAD working directly on MFCC features was proposed.
The VAD method was included in a system where, in addition to VAD, both
MMSE filtering and speech recognition was performed in the MFCC domain.
Noise modeling based on the proposed VAD algorithm was shown to give
improved recognition performance compared to simply using the assumed
speech-free regions from the beginning of each utterance. In addition, the
VAD approach gave performance comparable to that of Sohn et al.’s LRT-
based approach working in the discrete Fourier transform domain.



Chapter 8

Conclusions

In the following, we will sum up the most important conclusions that we
have drawn in this thesis. Note that since the experiments have been lim-
ited to the Aurora2 task, the conclusions do not necessarily generalize to
all databases, noise types, and recognizer setups. From the previous four
chapters, the most important conclusions we have drawn are:

• For model compensation, more accurate approximations of the non-
linear relationship between speech, noise, and noisy speech do not give
significant performance gains. The results suggest that the traditional
PMC approximation is good enough in practice.

• The joint BPC-PMC approach, which combines model compensation
with a robust decision rule, does improve performance at low SNR for
several noise types. Since this method involves an increase in variance,
prior scaling is needed when the background noise consists mainly of
speech.

• Although variational Bayesian learning of the front-end speech model
for Algonquin feature enhancement gave some promising results on
subway noise, the results on other noise types and with another feature
enhancement algorithm showed that the method did not generalize.
In most cases traditional maximum likelihood learning was equal to
or better than variational Bayesian learning.

• Voice activity detection (VAD) was shown to be an effective way of
obtaining additional noise data, and consequently better noise models,
for MMSE feature enhancement. The proposed cepstrum domain ap-
proach based on the likelihood ratio test gave a reduction in word error
rate of 10.8% compared to using the first 20 frames of each utterance
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for noise modeling. In addition, the average performance was similar
to Sohn et al.’s well-known approach working in the DFT domain.

8.1 Future Work

In the following we will give some suggestions for directions of future re-
search in this area.

The comparative study of model compensation approximations in Chap-
ter 4 was performed using only static feature vector coefficients. This was
done in order to investigate the basic influence of different approximations
without any “disturbing” factors. In practice, however, compensation of
delta and delta-delta coefficients is very important for the ASR performance.
Thus, a study on different approximations including delta compensation
schemes would be of interest.

The joint BPC-PMC approach proposed in Chapter 5 was based on
the idea of compensating for uncertainty in the parameter estimates of the
compensated models. This was done by applying BPC with priors that
had mean values equal to the PMC noisy speech mean, and a variance
determined by neighborhoods that were originally proposed for the minimax
decision rule. A limitation of this approach is that, for a given feature vector
element, the prior variance is the same of all HMM states and mixture
components. It would be interesting to consider methods for obtaining
individual prior variances for each state and mixture component. Further
work is needed to determine how to approach this problem.

The variational Bayesian learning for front-end GMMs in MMSE feature
enhancement only gave improvements in a few cases in our experiments in
Chapter 6. One issue that could be investigated further is the setting of the
prior distribution. Whereas we used a non-informative prior, it would be
interesting to make it more dependent on the data. An interesting approach
in this respect is that of Constantinopoulos and Likas in [8]. In their method
the model selection problem is treated locally, in a region of the feature
space, in order to set more informative priors.

The results obtained in Chapter 7 using VAD for improved noise mod-
eling in MMSE feature enhancement were promising. Noise frames were
extracted from an entire utterance before using the result to estimate the
noise model. It is also possible to apply the VAD in an online approach,
where the noise models of both the VAD algorithm and MMSE filtering
algorithm are updated each time a noise frame is found. It would be in-
teresting to see how the results of this approach would compare to that
presented in Chapter 7. It would also be very useful to do a comparison
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of VAD-based approaches and noise tracking algorithms in the context of
MMSE filtering of noisy speech.
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Appendix A

The Aurora2 Database

The experiments described in this thesis have been performed on the Au-
rora2 database [32]. In this chapter we give a short description of this
database.

The Aurora2 database has been designed to evaluate the performance of
algorithms for robust speech recognition in noisy conditions. It was released
by the Aurora working group, which is a part of the European Telecommuni-
cation Standards Institute (ETSI) under the technical committee for Speech
processing, Transmission planning, and Quality service aspects (STQ).

In the Aurora2 database, noisy speech was created artificially by adding
noise to the clean speech recordings of the TIDigits database [45]. The
TIDigits database contains connected digit strings spoken in American En-
glish. The recordings that were used to create Aurora2 consist of sequences
of up to seven digits. The original 20kHz recordings were downsampled to
8kHz before distortions were added. Moreover, in order to consider realistic
frequency characteristics of terminals and equipment in the telecommunica-
tions area, an additional filtering was applied. Two “standard” frequency
characteristics which have been defined by the International Telecommu-
nication Union (ITU) were used. These were created by filtering with the
so-called G.712 and MIRS filters (see [32] for plots and details).

Recordings of noise were added to the clean speech recordings at SNRs
of 20dB, 15dB, 10dB, 5dB, 0dB, and -5dB. To be able to add noise at a
given level, one first has to define the term SNR. Since this is dependent on
the selected frequency range, the SNR was defined as the ratio of signal to
noise energy after filtering both signals with the G.712 characteristic.

The speech energy was determined by applying the ITU recommenda-
tion P.56 and using the corresponding ITU software. The noise energy was
calculated as root mean square (RMS) of the noise segment. For each ut-
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terance a randomly chosen noise segment of the same length as the clean
speech recording is cut out from the noise recording. Noise recordings have
been collected from different places.

• Suburban train

• Crowd of people (babble)

• Car

• Exhibition hall

• Restaurant

• Street

• Airport

• Train station

Some of these noise recordings are fairly stationary (e.g. car and exhibition
hall), while others contain non-stationary segments (e.g. street and airport).

Two training modes have been defined for the Aurora2 database. One is
training on clean speech data, while the other is training on clean and noisy
data. The latter is referred to as multi-condition training. In this thesis we
focus on the use of models trained in clean conditions. For clean training,
8440 utterances are selected from the training set of TIDigits, containing
recordings of 55 male and 55 female adults. These recordings are filtered
with the G.712 characteristic.

Three test sets are defined, using a total of 4004 utterances from 52 male
and 52 female speakers in the TIDigits test set. These utterances are split
into 4 subsets with 1001 utterances in each. All speakers are present in each
subset. Each noise signal is added to one of these subsets at different SNRs.
The clean files are included as a seventh condition. Both speech and noise
is filtered with the G.712 characteristic before adding.

The first test set, called test set A, contains the following noise types:
suburban train (subway), babble, car, and exhibition. In total, this set
consists of 4 · 7 · 1001 = 28028 utterances. The second test set, called test
set B, is created in the same way as test set A, but contains different noise
types. These are restaurant, street, airport, and train station. There is also
a third set, which contains only 2 of the 4 subsets with 1001 utterances in
each. This set is called test set C. On this set speech and noise are filtered
with a MIRS characteristic before adding noise at different SNRs. The noise
types used for this set are subway and street. The purpose of this set is to
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show the influence on recognition performance from mismatch in frequency
characteristics.

The reference recognizer is based on the Hidden Markov Model Toolkit
(HTK) [77]. This recognizer uses one whole-word HMM for each of 11
English digits, including “oh”. Each HMM has 16 states with a simple
left-to-right model structure without skips, and each state uses a three-
component GMM with diagonal covariance matrices. There is also a silence
model, as well as a model for short pause. The silence model has three
states with six mixture components in each state, while the model for short
pause only has a single state which is tied to the middle state of the silence
model. Note that some research papers use a more complex version of this
back-end recognizer, which has more mixture component per state. In this
thesis, however, we use the simple version of the back-end recognizer.

The feature vectors used by the reference recognizer are MFCCs with
a dimension of 39. This includes 12 cepstral coefficients (without C0) and
logarithmic frame energy plus the corresponding delta and acceleration co-
efficients. Note that in this thesis we replace the log energy by C0, since
most the algorithms we use require knowledge about C0. When calculating
MFCC vectors the frame length is set to 25ms and the frame shift is set to
10ms. The number of bands in the mel-scale filter bank is 23.
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Appendix B

Functions and Probability
Distributions

B.1 The Digamma Function

The digamma function is defined as the logarithmic derivative of the gamma
function Γ(x), i.e.,

ψ(x) =
d

dx
log Γ(x) =

1
Γ(x)

d

dx
Γ(x). (B.1)

By substituting an integral representation for the derivative of the gamma
function, it can be written as

ψ(x) =
1

Γ(x)

∞∫
0

tx−1e−t log t dt. (B.2)

B.2 The Dirichlet Distribution

Suppose we have M random variables {Y1, . . . , YM} distributed according to
a Dirichlet distribution of orderM . Given the parameters λ = {λ1, . . . , λM},
where λi > 0 for all i, the Dirichlet distribution has a pdf given by

p(y1, . . . , yM ) = D(λ) =
Γ
(∑M

j=1 λj

)
∏M
j=1 Γ(λj)

M∏
i=1

yλi−1
i (B.3)

for all y1, . . . , yM ≥ 0 such that
∑M

i=1 yi = 1.
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Defining λ̃ =
∑M

j=1 λj , the mean value of Yi is given by

E[Yi] =
λi

λ̃
, (B.4)

and the variance is given by

Var[Yi] =
λi(λ̃− λi)
λ̃2(λ̃+ 1)

. (B.5)

B.3 The Wishart Distribution

Suppose we have a matrix A of dimension D ×D that has a Wishart dis-
tribution. Then, the pdf is given by

p(A) =W(ν,Φ) =
|A|(ν−D−1)/2

2νD/2|Φ|−ν/2ΓD(ν/2)
exp

[
−1

2
tr(AΦ)

]
(B.6)

where Φ is a positive definite matrix of size D×D, and ν ≥ D denotes de-
grees of freedom. The function ΓD(ν/2) is the multivariate gamma function
given by

ΓD(ν/2) = πD(D−1)/4
D∏
j=1

Γ
(
ν + 1− j

2

)
. (B.7)

The mean of A is given by

E[A] = νΦ−1. (B.8)

B.4 The Gamma Distribution

Suppose we have a random variable Y that has a gamma distribution. Then,
the pdf is given by

p(y) = G(ν, φ) =
(φ2 )ν/2

Γ(ν/2)
yν/2−1e−

φ
2
y (B.9)

for y > 0.
The mean value of Y is given by

E[Y ] =
ν

φ
, (B.10)

and the variance is given by

Var[Y ] =
2ν
φ2
. (B.11)
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B.5 The Multivariate t-Distribution

Suppose we have a random vector y of dimension D that has a multivariate
t-distribution. Then, the pdf is given by

p(y) = tκ(ρ,Ω) =
Γ
(
κ+D

2

)
Γ
(
κ
2

)
(πκ)D/2|Ω|1/2

[
1 + 1

κ(y − ρ)TΩ−1(y − ρ)
]κ+D

2

,

(B.12)
where ρ is the mean, Ω is the covariance matrix, and κ denotes degrees of
freedom.
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Appendix C

Derivation of VB Learning
for the GMM

In this chapter we will show how to derive the VB learning algorithm which
was described in Section 6.3. As a starting point for the derivation, we
will use a general formulation of the VB learning algorithm for conjugate-
exponential models which was given by Beal in [5].

C.1 General Formulation of VB for Conjugate-
Exponential Models

As in Section 6.2, we let Y = {y1, . . . ,yN} denote an observed dataset con-
sisting ofN independent and identically distributed items, Z = {z1, . . . , zN}
denote hidden variables and θ denote the parameters. For a model to be
conjugate-exponential, it has to satisfy to following two conditions [5].

1. The complete-data likelihood must be in the exponential family, i.e.,

p(yn, zn|θ) = g(θ)f(yn, zn) exp
{
φ(θ)Tu(yn, zn)

}
(C.1)

where φ(θ) is the vector of natural parameters, and u(yn, zn) is the
vector of sufficient statistics.

2. The parameter prior must be conjugate to the complete-data likeli-
hood, i.e.,

p(θ|η, ξ) = h(η, ξ)g(θ)η exp
{
φ(θ)T ξ

}
(C.2)

where η and ξ are hyperparameters of the prior.
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For a model that satisfies these two conditions, the steps of the VB EM
algorithm can be formulated as follows [5].

1. The VB E-step is given by

q(zn) ∝ f(yn, zn) exp
{
φ̄Tu(yn, zn)

}
(C.3)

q(Z) =
N∏
n=1

q(zn) (C.4)

where the natural parameter vector φ̄ is given by

φ̄ = Eθ[φ(θ)]. (C.5)

Note that the factorization in (C.4) turns out to be optimal as a
consequence of the assumption that the elements in Y are independent
and identically distributed (see [5] for more details).

2. The VB M-step results in the conjugate posterior q(θ) with hyperpa-
rameters η̃ and ξ̃, i.e.,

q(θ) = h(η̃, ξ̃)g(θ)η̃ exp
{

φ(θ)T ξ̃
}
. (C.6)

The new hyperparameters are obtained as

η̃ = η +N (C.7)

ξ̃ = ξ +
N∑
n=1

ū(yn) (C.8)

where
ū(yn) = EZ[u(yn, zn)]. (C.9)

C.2 The GMM as a Conjugate-Exponential Model

The GMM satisfies the two conditions given in Section C.1, and is therefore
a conjugate-exponential model. Note that in the case of a GMM, the latent
variables zn are scalars, and thus denoted as zn. In order to use the formu-
lation from Section C.1 we need to identify the natural parameter φ(θ) of
the GMM. The complete-data likelihood is given by

p(yn, zn = z|θ) = p(zn = z|θ)p(yn|zn = z,θ)

= wz
|Γz|1/2

(2π)D/2
exp

{
−1

2
(yn − µz)TΓz(yn − µz)

}
.

(C.10)
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We will now rewrite this as a product over all mixture components by defin-
ing

δj(z) =

{
1 if z = j

0 otherwise.
(C.11)

Then, we can write (C.10) as

p(yn, zn|θ) =
1

(2π)
D
2

M∏
j=1

(
wj |Γj |

1
2 exp

{
−1

2
(yn − µj)TΓj(yn − µj)

})δj(zn)

.

(C.12)
Taking both exp and log of (C.12) yields

p(yn, zn|θ) =
1

(2π)
D
2

exp

{
M∑
j=1

δj(zn) logwj +
1
2

M∑
j=1

δj(zn) log |Γj |

+
M∑
j=1

δj(zn)
[
−1

2
(yn − µj)TΓj(yn − µj)

]}
.

(C.13)

The expression inside the square brackets of the last term can be rewritten
as follows:

−1
2
(yn − µj)TΓj(yn − µj) = −1

2
tr(ΓjynyTn ) + µTj Γjyn −

1
2
µTj Γjµj .

(C.14)

Thus, comparing (C.13) to (C.1), we get

g(θ) =
1

(2π)
D
2

, (C.15)
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and the natural parameter vector becomes

φ(θ) =



logw1
...

logwM
log |Γ1|

...
log |ΓM |
vec(Γ1)
Γ1µ1

µT1 Γ1µ1
...

vec(ΓM )
ΓMµM

µTMΓMµM



. (C.16)

The vector u(yn, zn) is

u(yn, zn) =



δ1(zn)
...

δM (zn)
1
2δ1(zn)

...
1
2δM (zn)

−1
2δ1(zn) vec(ynyTn )

δ1(zn)yn
−1

2δ1(zn)
...

−1
2δM (zn) vec(ynyTn )

δM (zn)yn
−1

2δM (zn)



. (C.17)

Now we will consider the prior, which is given by

p(θ|ξ) = p({wz})
M∏
j=1

p(µj |Γj)p(Γj)

= D({λ0z})
M∏
j=1

N (ρ0, β0Γj)W(ν0,Φ0).

(C.18)
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Note that in this case we do not have the η hyperparameter from (C.2). Also
note that in this chapter, we will use subscript zeros instead of superscript
zeros to indicate prior parameters. When ignoring constants in the prior,
we have

p(θ|ξ) ∝
M∏
i=1

wλ0i−1
i

·
M∏
j=1

(
|β0Γj |

1
2 exp

{
−1

2
(µj − ρ0)Tβ0Γj(µj − ρ0)

}

· |Γj |(ν0−D−1)/2 exp
[
−1

2
tr(ΓjΦ0)

])
.

(C.19)

Taking the exp and log, we obtain

p(θ|ξ) ∝ exp

{
M∑
i=1

(λ0i − 1) logwi +
1
2

M∑
j=1

(log βD0 + log |Γj |)

− β0

2

M∑
j=1

(µTj Γjµj − 2µTj Γjρ0 + ρT0 Γjρ0)

+
M∑
j=1

ν0 −D − 1
2

log |Γj | −
1
2

M∑
j=1

tr(ΓjΦ0)

}
.

(C.20)

This gives the following hyperparameter ξ:

ξ =



λ01 − 1
...

λ0M − 1
ν0/2

...
ν0/2

−1
2 vec(β0ρ0ρ

T
0 + Φ0)

β0ρ0

−1
2β0
...

−1
2 vec(β0ρ0ρ

T
0 + Φ0)

β0ρ0

−1
2β0



. (C.21)
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C.3 The E-Step

For the E-step we need to calculate φ̄. This is given by

φ̄ =



log w̃1
...

log w̃M
log Γ̃1

...
log Γ̃M
vec(Γ̄1)
Γ̄1ρ1

ρT1 Γ̄1ρ1 + D
β1

...
vec(Γ̄M )
Γ̄MρM

ρTM Γ̄MρM + D
βM



(C.22)

where log w̃j , log Γ̃j , and Γ̄j are as in (6.16), (6.17), and (6.18) respectively.
Note that

Eθ[µTj Γjµj ] = Eθ[tr(ΓjµjµTj )]

= tr(Eθ[Γj ] Eθ[µjµTj ])

= tr
(
Γ̄j

{
Eθ

[
1
βj

Γ−1
j

]
+ ρjρ

T
j

})
= tr

(
Γ̄j

{
1
βj

Γ̄−1
j + ρjρ

T
j

})
= tr

(
1
βj

I + Γ̄jρjρTj

)
= ρTj Γ̄jρj +

D

βj
.

(C.23)
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Plugging (C.22) into (C.3) yields

q(zn) ∝ exp

{
M∑
j=1

δj(zn) log w̃j +
1
2

M∑
j=1

log Γ̃j

+
M∑
j=1

[
−1

2
δj(zn) tr(Γ̄jynyTn ) + δj(zn)ρTj Γ̄jyn

− 1
2
δj(zn)

(
ρTj Γ̄jρj +

D

βj

)]}
.

(C.24)

This can be simplified to

q(zn) ∝
M∏
j=1

(
w̃jΓ̃

1
2
j exp

{
−1

2
(yn − ρj)T Γ̄j(yn − ρj)−

D

2βj

})δj(zn)

(C.25)

which is equivalent to

γnj = q(zn = j) ∝ w̃jΓ̃
1
2
j exp

{
−1

2
(yn − ρj)T Γ̄j(yn − ρj)−

D

2βj

}
. (C.26)

The result in (C.26) is the same as (6.14).

C.4 The M-Step

For deriving the M-step we need to calculate the vector ū(yn) as in (C.9).
Since EZ[δj(zn)] = γnj , we get

ū(yn) =



γn1
...
γnM
1
2γ

n
1

...
1
2γ

n
M

−1
2γ

n
1 vec(ynyTn )
γn1 yn
−1

2γ
n
1

...
−1

2γ
n
M vec(ynyTn )
γnMyn
−1

2γ
n
M



. (C.27)



110 Derivation of VB Learning for the GMM

Now we can find the posterior hyperparameters by plugging (C.21) and
(C.27) into (C.8). First, note that the vector of posterior hyperparameters
ξ̃ is given by

ξ̃ =



λ1 − 1
...

λM − 1
ν1/2

...
νM/2

−1
2 vec(β1ρ1ρ

T
1 + Φ1)

β1ρ1

−1
2β1
...

−1
2 vec(βMρMρTM + ΦM )

βMρM
−1

2βM



. (C.28)

Thus, for λj we get

λj − 1 = λ0j − 1 +
N∑
n=1

γnj (C.29)

λj = λ0j + N̄j , (C.30)

where N̄j is as defined in (6.23). This result is the same as (6.24) if every
λ0j is set to a common constant λ0. Similarly, for νj we obtain

νj
2

=
ν0

2
+

1
2

N∑
n=1

γnj (C.31)

νj = ν0 + N̄j . (C.32)

This result equals (6.25). Before finding update expressions for ρj and Φj

we will need to find the expression for βj :

−1
2
βj = −1

2
β0 −

1
2

N∑
n=1

γnj (C.33)

βj = β0 + N̄j . (C.34)
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This result equals (6.26). Then, we can find the expression for ρj .

βjρj = β0ρ0 +
N∑
n=1

γnj yn (C.35)

ρj =
β0ρ0 + N̄jµ̄j

βj
(C.36)

Here, µ̄j is as defined in (6.20). Plugging in (C.34) gives

ρj =
β0ρ0 + N̄jµ̄j
β0 + N̄j

. (C.37)

This result equals (6.27). Finally, we find the expression for Φj .

−1
2
(βjρjρTj + Φj) = −1

2
(β0ρ0ρ

T
0 + Φ0)−

1
2

N∑
n=1

γnj yny
T
n (C.38)

This can be rearranged to

Φj = Φ0 + β0ρ0ρ
T
0 − βjρjρTj +

N∑
n=1

γnj yny
T
n . (C.39)

Then, by plugging in (C.34) and (C.37) for βj and ρj respectively, we get

Φj = Φ0 + β0ρ0ρ
T
0

− (β0 + N̄j)
(
β0ρ0 + N̄jµ̄j
β0 + N̄j

)(
β0ρ

T
0 + N̄jµ̄

T
j

β0 + N̄j

)

+
N∑
n=1

γnj yny
T
n

= Φ0 + β0ρ0ρ
T
0

− 1
β0 + N̄j

(
β2

0ρ0ρ
T
0 + β0N̄jρ0µ̄

T
j + β0N̄jµ̄jρ

T
0 + N̄2

j µ̄jµ̄
T
j

)
+

N∑
n=1

γnj yny
T
n

= Φ0 +
β0(β0 + N̄j)− β2

0

N̄j + β0
ρ0ρ

T
0 −

N̄jβ0ρ0µ̄
T
j

β0 + N̄j
− N̄jβ0µ̄jρ

T
0

β0 + N̄j

−
N̄2
j µ̄jµ̄

T
j

β0 + N̄j
+

N∑
n=1

γnj yny
T
n .

(C.40)
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Next, we add and subtract the term N̄jβ0

β0+N̄j
µ̄jµ̄

T
j . This gives

Φj = Φ0 +
N̄jβ0

β0 + N̄j

(
ρ0ρ

T
0 − ρ0µ̄

T
j − µ̄jρ

T
0 + µ̄jµ̄

T
j

)
− N̄jβ0

β0 + N̄j
µ̄jµ̄

T
j −

N̄2
j µ̄jµ̄

T
j

β0 + N̄j
+

N∑
n=1

γnj yny
T
n

= Φ0 +
N̄jβ0

β0 + N̄j
(µ̄j − ρ0)(µ̄j − ρ0)T

− N̄j(β0 + N̄j)
β0 + N̄j

µ̄jµ̄
T
j +

N∑
n=1

γnj yny
T
n

(C.41)

Note that the last two terms can be rewritten as

N∑
n=1

γnj yny
T
n − N̄jµ̄jµ̄

T
j =

N∑
n=1

γnj (yn − µ̄j)(yn − µ̄j)T = N̄jΣ̄j , (C.42)

where Σ̄j is as defined in (6.21). This gives us the final result, i.e.,

Φj = Φ0 +
N̄jβ0

β0 + N̄j
(µ̄j − ρ0)(µ̄j − ρ0)T + N̄jΣ̄j , (C.43)

which is the same as (6.28).



Appendix D

VB Free Energy for GMM

Recall from (6.4) that the free energy can be written as

FM (q(Z), q(θ)) = EZ,θ

[
log

p(Y,Z|θ,M)
q(Z)

]
−KL[q(θ)‖p(θ|M)]. (D.1)

In order to calculate the free energy for a GMM, we will start by looking
at the first term. This term can be viewed as averaged log likelihood. For
notational convenience, we will denote this term by L. Since the GMM
assumes that observations are independent, we have

L = EZ,θ

[
log

p(Y,Z|θ,M)
q(Z)

]
= EZ,θ

[
log

(
N∏
n=1

p(yn, zn|θ,M)
q(zn)

)]

= EZ,θ

[
N∑
n=1

log
p(yn, zn|θ,M)

q(zn)

]

=
N∑
n=1

Ezn,θ

[
log

p(yn, zn|θ,M)
q(zn)

]
(D.2)

We can now write the expectation as

L =
N∑
n=1

M∑
z=1

q(zn = z)
∫
q(θ) log

p(yn, zn = z|θ)
q(zn = z)

dθ. (D.3)

Note that VB assumes that the parameter posterior q(θ) can be factorized
as follows

q(θ) = q({wz})
M∏
z=1

q(µz,Γz). (D.4)
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Using this factorization, we can split (D.3) into two parts:

L =
N∑
n=1

M∑
z=1

q(zn = z)
∫
q({wz}) log

p(zn = z|{wz})
q(zn = z)

d{wz}

+
N∑
n=1

M∑
z=1

q(zn = z)
∫
q(µz,Γz) log p(yn|zn = z,µz,Γz)dµzdΓz.

(D.5)

We will now consider each of these two terms separately. The terms will be
denoted as L1 and L2 respectively, i.e., L = L1 + L2. Considering L1, this
term can again be split into two terms as follows:

L1 =
N∑
n=1

M∑
z=1

q(zn = z)
∫
q(wz) logwzdwz −

N∑
n=1

M∑
z=1

q(zn = z) log q(zn = z).

(D.6)
As in Section 6.3 we will denote q(zn = z) by γnz . Now, we can write (D.6)
as

L1 =
N∑
n=1

M∑
z=1

γnz log w̃z −
N∑
n=1

M∑
z=1

γnz log γnz (D.7)

where log w̃z is as defined in (6.16).
Now, we can move on to the term L2. First, we note that log p(yn|zn =

z,µz,Γz) can be written as

log p(yn|zn = z,µz,Γz) = −D
2

log 2π +
1
2

log |Γz|

− 1
2
(yn − µz)TΓz(yn − µz).

(D.8)

The last term in (D.8) can be written as

−1
2
(yn − µz)TΓz(yn − µz) = −1

2
(
yTnΓzyn − 2yTnΓzµz + tr(ΓzµzµTz )

)
.

(D.9)
Now, taking the expectation of (D.8) with respect to q(θ) yields

Eθ[log p(yn|zn = z,µz,Γz)] = −D
2

log 2π +
1
2

log Γ̃z

− 1
2

(
yTn Γ̄zyn − 2yTn Γ̄zρz + ρTz Γ̄zρz +

D

βz

)
,

(D.10)
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where we have used (C.23) from Appendix C to find the expectation of the
last term in (D.9). In (D.10), log Γ̃z and Γ̄z are as defined in (6.17) and
(6.18) respectively. This results in the following expression for L2:

L2 =
N∑
n=1

M∑
z=1

γnz
2

(
−D log 2π + log Γ̃z − (yn − ρz)T Γ̄z(yn − ρz)−

D

βz

)
.

(D.11)
Plugging (D.7) and (D.11) into (D.5) yields the following expression for L:

L =
N∑
n=1

M∑
z=1

γnz
2

(
2 log w̃z − 2 log γnz −D log 2π + log Γ̃z

− (yn − ρz)T Γ̄z(yn − ρz)−
D

βz

)
.

(D.12)

Then, we can move on to the last term in (D.1). We have

KL[q(θ)‖p(θ|M)] =
∫
q(θ) log

q(θ)
p(θ|M)

dθ

=
∫
q({wz})

M∏
z=1

q(µz,Γz) log
q({wi})

∏M
i=1 q(µi,Γi)

p({wj})
∏M
j=1 p(µj ,Γj)

dθ

=
∫
q({wz}) log

q({wz})
p({wz})

d{wz}

+
∫ M∏

z=1

q(µz,Γz)
M∑
i=1

log
q(µi,Γi)
p(µi,Γi)

dµzdΓz.

(D.13)

The first term is the KL-distance between the posterior and prior of {wz}.
These are Dirichlet distributions with parameters {λz} and {λ0

z} respec-
tively. We will denote this KL-distance by KLD[{λz}‖{λ0

z}]. The last term
in (D.13) can be simplified due to the fact that the parameters of one com-
ponent are independent of the parameters of other components. Thus, for
each component we can integrate out the parameters of all other compo-
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nents, and get

KL[q(θ)‖p(θ|M)] = KLD[{λz}‖{λ0
z}]

+
M∑
z=1

∫
q(µz,Γz) log

q(µz,Γz)
p(µz,Γz)

dµzdΓz

= KLD[{λz}‖{λ0
z}]

+
M∑
z=1

∫
q(µz|Γz)q(Γz) log

q(µz|Γz)
p(µz|Γz)

dµzdΓz

+
M∑
z=1

∫
q(Γz) log

q(Γz)
p(Γz)

dΓz.

(D.14)

The last term here is the sum of KL-distances between the posterior and
prior of each Γz. These have Wishart distributions. Given one component
z, the posterior has parameters {νz,Φz}, and the prior has parameters
{ν0,Φ0}. We will denote this KL-distance by KLW [{νz,Φz}‖{ν0,Φ0}]. In
the second term in (D.14) we have to integrate out Γz for all components.
This results in the sum of KL-distances between posteriors q(µz) and priors
p(µz) that have their precision matrices replaced by the expected values
according to q(Γz): βzΓ̄z and β0Γ̄z respectively. For a given component,
we will denote this KL-distance by KLN [{ρz, βzΓ̄z}‖{ρ0, β0Γ̄z}]. Thus, we
can write (D.14) as

KL[q(θ)‖p(θ|M)] = KLD[{λz}‖{λ0
z}]

+
M∑
z=1

KLN [{ρz, βzΓ̄z}‖{ρ0, β0Γ̄z}]

+
M∑
z=1

KLW [{νz,Φz}‖{ν0,Φ0}].

(D.15)

Closed-form expressions for calculating these KL-distances can be found
in [53].
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Then, we can write the final expression for the free energy as

FM (q(Z), q(θ)) =
N∑
n=1

M∑
z=1

γnz
2

(
2 log w̃z − 2 log γnz −D log 2π

+ log Γ̃z − (yn − ρz)T Γ̄z(yn − ρz)−
D

βz

)

−KLD[{λz}‖{λ0
z}]−

M∑
z=1

KLW [{νz,Φz}‖{ν0,Φ0}]

−
M∑
z=1

KLN [{ρz, βzΓ̄z}‖{ρ0, β0Γ̄z}].

(D.16)
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Appendix E

Amounts of Detected Noise
Frames

This appendix lists relative amounts of noise frames selected for noise mod-
elling by the voice activity detection methods described in Chapter 7. Ta-
ble E.1 shows the amounts as percentages of the total number of frames
when excluding the first 20 frames of each utterance, which are used for
estimating the initial noise model. Table E.2 shows the amounts as per-
centages of the total number of frames when including the first 20 frames.
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Table E.1: Percentage of frames classified as noise, excluding the first 20.

Noise SNR Sohn LRT-CEP FrcAlgn
20 11.05 16.96 18.52
15 13.38 20.29 ”

subway 10 15.69 21.68 ”
5 19.46 25.68 ”
0 23.11 32.63 ”
-5 31.77 47.58 ”
20 6.50 17.27 17.83
15 7.39 19.15 ”

babble 10 8.24 22.36 ”
5 9.22 28.85 ”
0 11.05 39.76 ”
-5 14.51 57.41 ”
20 13.78 21.76 17.40
15 16.78 25.82 ”

car 10 20.10 30.24 ”
5 24.27 36.85 ”
0 30.25 49.14 ”
-5 40.56 70.77 ”
20 6.16 19.65 18.36
15 7.55 22.08 ”

exhib. 10 8.72 25.13 ”
5 9.56 28.14 ”
0 11.74 33.11 ”
-5 13.39 43.03 ”
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Table E.2: Percentage of frames classified as noise, including the first 20.

Noise SNR Sohn LRT-CEP FrcAlgn
20 21.30 26.53 27.90
15 23.36 29.47 ”

subway 10 25.40 30.70 ”
5 28.74 34.24 ”
0 31.96 40.39 ”
-5 39.63 53.62 ”
20 17.06 26.61 27.11
15 17.85 28.29 ”

babble 10 18.61 31.13 ”
5 19.48 36.89 ”
0 21.10 46.57 ”
-5 24.16 62.22 ”
20 23.54 30.61 26.75
15 26.20 34.21 ”

car 10 29.14 38.13 ”
5 32.84 43.99 ”
0 38.14 54.90 ”
-5 47.28 74.08 ”
20 16.95 28.88 27.74
15 18.17 31.04 ”

exhib. 10 19.21 33.74 ”
5 19.96 36.40 ”
0 21.88 40.80 ”
-5 23.34 49.57 ”
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Appendix F

Significance Testing

When comparing test results of different algorithms for speech recognition,
small performance differences can often occur due to chance effects. It is
therefore important to check whether differences in performance are statis-
tically significant. In this thesis we will use the matched-pairs test presented
by Gillick and Cox in [30] when testing for statistical significance.

F.1 Matched-Pairs Significance Test

This test assumes that it is possible to divide the output from a speech
recognition algorithm into segments such that the errors in one segment
are statistically independent of the errors in any other segment. Typical
candidates for such segments are phrases or sentences. Now, suppose we
are to compare the results from two speech recognition algorithms, denoted
A1 and A2 respectively. Then, we would like to test whether algorithm A1

on average makes the same amount of errors on a segment as algorithm A2.
Let the random variables N i

1 and N i
2 denote the number of errors made

on segment i by A1 and A2 respectively. Then, define the random variable

Zi = N i
1 −N i

2 (F.1)

for i = 1, . . . , n, where n is the number of segments. This means that we
have a random sample of size n for the difference of the number of errors
made by A1 and A2 on a given segment.

Based on this random sample, we will check whether there is sufficient
evidence to support the hypothesis that µ = 0. Thus, the following hy-
potheses will be tested:

H0 : µ = 0
H1 : µ 6= 0.

(F.2)
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A natural estimator for the mean is the sample mean, i.e.,

µ̂ =
1
n

n∑
i=1

Zi, (F.3)

The variance can be estimated as

σ̂2 =
1

n− 1

n∑
i=1

(Zi − µ̂)2. (F.4)

Now, we define a new random variable W as

W =
µ̂

σ̂/
√
n
. (F.5)

If n is large, W will approximately have a normal distribution N (0, 1). To
test the null hypothesis, we compute

P = 2P (Z ≥ |w|)

= 2

∞∫
|w|

1√
2π
e−t

2/2dt

= 1− erf
(
|w|√

2

)
,

(F.6)

where w is the observed value of W . If P < α for a chosen significance level
α, then H0 is rejected. This means that the differences in the recognition
results are found to be statistically significant. If P ≥ α, then H0 cannot be
rejected, and the differences in the results might be due to chance effects.

When applying this significance test to our experiments on Aurora2,
we will use utterances as segments. Moreover, to determine the number
of errors on a given segment, we will use an alignment algorithm based
on dynamic programming which finds the number of substitution errors,
deletion errors, and insertion errors. The number of errors for a given
segment is then found by summing up the number of substitutions, deletions
and insertions. The significance level α is chosen to be 5%.

F.2 Comparing PMC, BPC-PMC, and BPC-vad

In this section we compare the results of the methods PMC, BPC-PMC,
and BPC-vad from Chapter 5 in order to determine which differences are
statistically significant. Table F.1 compares PMC and BPC-PMC, Table F.2
compares BPC-PMC and BPC-vad, and Table F.3 compared PMC and
BPC-vad.
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Table F.1: Comparison of PMC and BPC-PMC. Boldfaced font indicates a
statistically significant difference using a significance level of 5%.

Noise SNR PMC BPC-PMC
20 97.88 97.39
15 96.53 96.01

subway 10 92.66 92.20
5 80.35 82.13
0 46.67 56.00
-5 21.31 25.88
20 96.83 87.48
15 92.65 79.20

babble 10 85.04 63.27
5 67.05 47.22
0 39.57 24.12
-5 17.11 8.16
20 98.30 97.64
15 96.96 96.87

car 10 91.50 92.48
5 70.27 76.74
0 31.05 45.75
-5 15.72 18.25
20 97.41 96.36
15 95.83 94.35

exhibition 10 91.05 89.02
5 75.75 75.13
0 42.27 46.74
-5 15.46 19.72
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Table F.2: Comparison of BPC-PMC and BPC-vad. Boldfaced font indi-
cates a statistically significant difference using a significance level of 5%.

Noise SNR BPC-PMC BPC-vad
20 97.39 97.39
15 96.01 95.95

subway 10 92.20 91.86
5 82.13 81.58
0 56.00 52.72
-5 25.88 23.24
20 87.48 94.50
15 79.20 89.60

babble 10 63.27 79.50
5 47.22 64.33
0 24.12 38.15
-5 8.16 16.60
20 97.64 97.55
15 96.87 96.75

car 10 92.48 91.92
5 76.74 74.80
0 45.75 38.56
-5 18.25 16.19
20 96.36 96.82
15 94.35 95.09

exhibition 10 89.02 89.85
5 75.13 77.45
0 46.74 47.39
-5 19.72 19.13
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Table F.3: Comparison of PMC and BPC-vad. Boldfaced font indicates a
statistically significant difference using a significance level of 5%.

Noise SNR PMC BPC-vad
20 97.88 97.39
15 96.53 95.95

subway 10 92.66 91.86
5 80.35 81.58
0 46.67 52.72
-5 21.31 23.24
20 96.83 94.50
15 92.65 89.60

babble 10 85.04 79.50
5 67.05 64.33
0 39.57 38.15
-5 17.11 16.60
20 98.30 97.55
15 96.96 96.75

car 10 91.50 91.92
5 70.27 74.80
0 31.05 38.56
-5 15.72 16.19
20 97.41 96.82
15 95.83 95.09

exhibition 10 91.05 89.85
5 75.75 77.45
0 42.27 47.39
-5 15.46 19.13
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F.3 Comparing ML and VB Learning for Model-
ing Speech in Algonquin

In this section we take a closer look at some of the results from Chapter 6
in order to check which differences are statistically significant. For model
sizes of 18, 26, 34, 42, and 50 we present detailed results for each of the four
training sets that were used to generate Figure 6.2, Figure 6.4, Figure 6.5,
and Figure 6.6. These results are shown in Table F.4, Table F.5, Table F.6,
and Table F.7 respectively.

Table F.4: Comparing ML and VB on subway noise 5dB for different train-
ing sets. Boldfaced font indicates a statistically significant difference using
a significance level of 5%.

Set 1 Set 2 Set 3 Set 4
M ML VB ML VB ML VB ML VB
18 71.88 73.50 69.97 70.83 70.99 71.08 71.26 71.23
26 72.09 73.44 70.46 70.74 70.19 71.38 70.37 71.23
34 72.40 73.50 70.77 70.71 70.92 71.17 71.75 71.23
42 70.53 73.38 70.00 70.68 69.70 71.08 71.78 71.26
50 70.46 73.38 70.34 70.74 69.88 71.05 70.77 71.23

Table F.5: Comparing ML and VB on babble noise 5dB for different training
sets. Boldfaced font indicates a statistically significant difference using a
significance level of 5%.

Set 1 Set 2 Set 3 Set 4
M ML VB ML VB ML VB ML VB
18 77.24 76.72 76.00 77.78 76.48 76.78 77.03 75.85
26 76.21 76.63 76.84 77.75 76.93 76.90 76.24 75.73
34 76.36 76.66 76.54 77.78 77.90 76.93 76.15 75.76
42 77.12 76.57 76.75 77.69 77.30 76.75 77.00 75.73
50 77.27 76.45 77.09 77.69 77.30 76.72 77.03 75.60
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Table F.6: Comparing ML and VB on car noise 5dB for different training
sets. Boldfaced font indicates a statistically significant difference using a
significance level of 5%.

Set 1 Set 2 Set 3 Set 4
M ML VB ML VB ML VB ML VB
18 82.52 82.14 82.05 81.99 82.28 82.43 81.93 81.18
26 81.99 82.05 82.17 81.84 83.21 82.52 82.25 81.18
34 82.43 81.90 82.20 81.75 83.06 82.55 82.58 81.24
42 81.60 81.93 82.46 81.63 82.67 82.55 82.20 81.21
50 81.99 81.90 82.25 81.60 82.52 82.37 82.73 81.15

Table F.7: Comparing ML and VB on exhibition noise 5dB for different
training sets. Boldfaced font indicates a statistically significant difference
using a significance level of 5%.

Set 1 Set 2 Set 3 Set 4
M ML VB ML VB ML VB ML VB
18 79.91 79.08 76.95 78.28 78.46 79.17 78.62 78.68
26 80.01 78.96 77.94 78.22 78.43 79.27 78.03 78.74
34 79.91 79.02 78.25 78.19 78.77 79.11 78.68 78.71
42 80.19 79.02 77.82 78.15 77.14 79.20 78.80 78.71
50 80.16 78.96 77.66 78.06 77.32 79.20 78.71 78.71
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F.4 Comparing VAD-Methods and the First20 Ap-
proach for Noise Model Estimation

In this section we compare the results of different methods from Chapter 7.
We compare the First20 method, Sohn et al.’s method and the proposed
LRT-CEP approach in order to determine which differences are statistically
significant. Table F.8 compares First20 to the LRT-CEP approach and
Table F.9 compares Sohn et al.’s approach to the LRT-CEP approach.

Table F.8: Comparison of First20 and proposed LRT-CEP approach. Bold-
faced font indicates a statistically significant difference using a significance
level of 5%.

Noise SNR First20 LRT-CEP
20 96.75 96.90
15 93.89 94.72

subway 10 86.34 89.41
5 75.50 80.32
0 56.16 59.87
-5 28.09 27.51
20 96.61 97.49
15 93.74 95.77

babble 10 85.97 90.81
5 72.52 79.78
0 44.53 46.49
-5 14.93 15.24
20 98.33 98.57
15 97.44 97.70

car 10 94.78 95.17
5 87.21 87.92
0 66.84 60.01
-5 28.57 21.12
20 97.69 97.72
15 95.00 95.96

exhib. 10 90.25 91.98
5 79.91 83.52
0 61.59 66.52
-5 35.51 36.19
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Table F.9: Comparison of Sohn et al.’s approach and proposed LRT-CEP
approach. Boldfaced font indicates a statistically significant difference using
a significance level of 5%.

Noise SNR Sohn LRT-CEP
20 97.05 96.90
15 94.75 94.72

subway 10 89.07 89.41
5 80.44 80.32
0 61.01 59.87
-5 29.66 27.51
20 97.19 97.49
15 94.74 95.77

babble 10 88.97 90.81
5 77.75 79.78
0 48.64 46.49
-5 17.26 15.24
20 98.51 98.57
15 97.88 97.70

car 10 95.76 95.17
5 88.67 87.92
0 64.06 60.01
-5 24.46 21.12
20 97.81 97.72
15 95.80 95.96

exhib. 10 91.02 91.98
5 82.17 83.52
0 65.17 66.52
-5 37.15 36.19



132 Significance Testing



Bibliography

[1] A. Acero, L. Deng, T. Kristjansson, and J. Zhang. HMM adaptation
using vector Taylor series for noisy speech recognition. In Proc. Int.
Conf. on Spoken Language Processing (ICSLP), pages 869–872, 2000.

[2] M. Afify, O. Siohan, and C.-H. Lee. Minimax classification with para-
metric neighborhoods for noisy speech recognition. In Proc. European
Conf. on Speech Comm. and Technology (Eurospeech), pages 2355–
2358, 2001.

[3] H. Attias. A variational Bayesian framework for graphical models. In
Proc. Neural Information Processing Systems, volume 12, pages 209–
215, 2000.

[4] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization
technique occurring in the statistical analysis of probabilistic functions
of Markov chains. The Annals of Mathematical Statistics, 41(1):164–
171, 1970.

[5] M. J. Beal. Variational Algorithms for Approximate Bayesian Infer-
ence. PhD thesis, University College London, 2003.

[6] S. F. Boll. Suppression of acoustic noise in speech using spectral sub-
traction. IEEE Trans. on Acoustics, Speech, and Signal Processing,
27:113–120, 1979.

[7] J. T. Chien. A Bayesian prediction approach to robust speech recog-
nition and online environmental learning. Speech Communication,
37:321–334, 2002.

[8] C. Constantinopoulos and A. Likas. Unsupervised learning of Gaussian
mixtures based on variational component splitting. IEEE Trans. on
Neural Networks, 18(3):745–755, 2007.

133



134 Bibliography

[9] C. Couvreur and H. Van hamme. Model-based feature enhancement for
noisy speech recognition. In Proc. IEEE Int. Conf. on Acoust., Speech,
Signal Processing (ICASSP), pages 1719–1722, 2000.

[10] S. B. Davis and P. Mermelstein. Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously spoken
sentences. IEEE Trans. on Acoustics, Speech, and Signal Processing,
28:357–366, 1980.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, 39(1):1–38, 1977.

[12] L. Deng, J. Droppo, and A. Acero. Incremental Bayes learning with
prior evolution for tracking nonstationary noise statistics from noisy
speech data. In Proc. IEEE Int. Conf. on Acoust., Speech, Signal Pro-
cessing (ICASSP), pages 672–675, 2003.

[13] L. Deng, J. Droppo, and A. Acero. Recursive estimation of nonstation-
ary noise using iterative stochastic approximation for robust speech
recognition. IEEE Trans. on Speech and Audio Processing, 11(6):568–
580, 2003.

[14] L. Deng, J. Droppo, and A. Acero. Enhancement of log mel power
spectra of speech using a phase-sensitive model of the acoustic environ-
ment and sequential estimation of the corrupting noise. IEEE Trans.
on Speech and Audio Processing, 12(2):133–143, 2004.

[15] G.-H. Ding. Maximum a posteriori noise log-spectral estimation based
on first-order vector Taylor series expansion. IEEE Signal Processing
Letters, 15:158–161, 2008.

[16] G.-H. Ding, X. Wang, Y. Cao, F. Ding, and Y. Tang. Sequential noise
estimation for noise-robust speech recognition based on 1st-order VTS
approximation. In Proc. IEEE Automatic Speech Recognition and Un-
derstanding Workshop (ASRU), pages 363–368, 2005.

[17] J. Droppo, A. Acero, and L. Deng. A nonlinear observation model
for removing noise from corrupted speech log mel-spectral energies. In
Proc. Int. Conf. on Spoken Language Processing (ICSLP), pages 1569–
1572, 2002.



Bibliography 135

[18] J. Droppo, L. Deng, and A. Acero. A comparison of three non-linear
observation models for noisy speech features. In Proc. European Conf.
on Speech Comm. and Technology (Eurospeech), pages 681–684, 2003.

[19] Y. Ephraim and D. Malah. Speech enhancement using a minimum
mean-square error short-time spectral amplitude estimator. IEEE
Trans. on Acoustics, Speech, and Signal Processing, 32:1109–1121,
1984.

[20] F. Faubel, J. McDonough, and D. Klakow. A phase-averaged model
for the relationship between noisy speech, clean speech and noise in the
log-mel domain. In Proc. Interspeech, pages 553–556, 2008.

[21] B. J. Frey, L. Deng, A. Acero, and T. Kristjansson. Algonquin: Iterat-
ing laplace’s method to remove multiple types of acoustic distortion for
robust speech recognition. In Proc. European Conf. on Speech Comm.
and Technology (Eurospeech), pages 901–904, 2001.

[22] B. J. Frey, T. T. Kristjansson, L. Deng, and A. Acero. Algonquin
- learning dynamic noise models from noisy speech for robust speech
recognition. In Proc. Neural Information Processing Systems, 2002.

[23] S. Furui and D. Itoh. Neural-network-based HMM adaptation for noisy
speech. In Proc. IEEE Int. Conf. on Acoust., Speech, Signal Processing
(ICASSP), pages 365–368, 2001.
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