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Summary

A precise modeling framework for short-channel nanoscale double gate (DG)
and gate-all-around (GAA) MOSFETSs is presented covering all operating
regimes from subthreshold to strong inversion.

In the subthreshold regime, the modeling of the electrostatics of the DG
MOSFET is based on a conformal mapping analysis. This analytical 2D
solution of Laplace’s equation gives the inter-electrode capacitive coupling.
The GAA MOSFET is a 3D structure to which the 2D conformal mapping
technique is not directly applicable. However, due to the structural similari-
ties, the DG calculations can also be applied with a high degree of precision
to the cylindrical GAA MOSFET by performing a simple geometric scaling
transformation to account for the difference in gate control in the two devices.

Near and above threshold, self-consistent procedures invoking the the 2D /3D
Poisson’s equation in combination with boundary conditions and suitable
modeling expressions are used to model the electrostatics of the two devices.

The drain current is calculated as part of the self-consistent treatment, and
based on the precise modeling of the 2D /3D electrostatics the intrinsic ca-
pacitances can also be extracted. The resulting electrostatics, drift diffusion
current and intrinsic capacitances are in excellent agreement with numerical
simulations.

A compact subthreshold drain current model for the GAA MOSFET is pre-
sented. Additionally, a parameterized model for drain current with all pa-
rameters extracted from the modeling framework is described. These are two
examples of compact models suitable for inclusion in circuit simulators.
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Notation

€0
5ow
€si
Apa

AGaa

Permittivity of vacuum [C?N~!'m™?]

Relative permittivity of gate-insulator

Relative permittivity of silicon

Penetration depth of the electrostatic influence from
source and drain of the double gate MOSFET [m)|
Penetration depth of the electrostatic influence from
source and drain of the gate-all-around MOSFET |m]
Electron mobility [m?V~'s™!]

Momentum relaxation time of electrons [s]

Center potential [V]

Metal work function [J]

Total electrostatic potential, ¢ = @1 + ¢y [V]|
Contribution from inversion charge to the electrostatic
potential [V]

Contribution from inter-electrode coupling to the elec-
trostatic potential [V]

Potential-profile of oxide gap [V]|

Potential at silicon-insulator interface V]

Electron affinity of the semiconductor [J]

Oxide capacitance Cp, = 2= [Fm 2|

oo
Silicon capacitance Cy; = £ [Fm~?|
Trans- (X #Y) and self- (X =Y") capacitances [F|
Electron diffusion coefficient [m?s™!]
Electric field [N C1]
Fermi Energy level |J]
Band gap energy |J]
Reduced Planck’s Constant [Js]
Drain current [A]

Drain current density (per unit channel width) [Am™}]
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k Modulus of elliptic integral

i Complimentary modulus of elliptic integral, k% = 1 — k2
kp Boltzmann’s constant [JK ™|

L Gate length [m]

mr Effective electron mass [kg|

n Electron density [m™3]

N, Acceptor doping density [m—3|

Ny Effective density of states for electrons [m 3|
n; Intrinsic electron density [m 3|

N Sheet electron density [m~2]

Nyess Effective density of states for holes [m™3|

q Electron charge [C]

Qx Charge associated with electrode X [Cm ™|
Tox Equivalent cylindrical oxide thickness of GAA [m]

. Effective oxide thickness of GAA, rj, = Zry, [m]
Tsi Radius of GAA MOSFET silicon substrate [m]

T Absolute temperature [K|

tox Oxide thickness [m)|

. Effective oxide thickness, t/ = Sit,, |m]

Eox

tsi Silicon body thickness of DG MOSFET [m]
Vii Built in voltage [V]

Vb Drain voltage, Vp = Vi + Vi, [V]

Vis Potential difference between drain and source V]|
Vi Quasi Fermi potential [V]

Vep  Flat band voltage for the gate [V]

Va Gate potential, Vg = Vs — Vg [V]

Vs Gate potential referred to source potential [V]
o Saturation velocity [ms™|

Vg Source voltage, Vs = Vj; [V]
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Chapter 1

Introduction

1.1 Background

In December 1947 the first transistor was presented at the Bell laboratories
by William Shockley, John Bardeen and Walter Battain. Since then, and in
particular over the last 40 years, the semiconductor technology has devel-
oped with an amazing speed. The integrated circuit performance has grown
exponentially with the scaling of the MOSFET (Metal-Oxide-Semiconductor
Field Effect Transistor) dimensions as the primary driver. In high perfor-
mance logic (i.e. processors) MOSFETs with 25nm physical gate lengths are
now in production [1].

At this stage the long-lasting favorite of the industry, the single-gate MOS-
FET, is reaching its scaling limit, and the search for alternative devices in-
tensifies. In addition to finding a device with superior scaling properties, the
industry will look for candidates that can be fabricated with a cost and yield
comparable to the present devices. The double-gate (DG) and cylindrical
gate-all-around (GAA) MOSFETs are, indeed, two of the most interesting
devices to meet these criteria.

The scaling of the single-gate MOSFET into the sub-100nm range has been
possible by using for example high doping and steep doping gradients, which
is detrimental for the charge carrier mobility. One of the operation merits
of thin body and low-doped DG devices is volume inversion in the entire
silicon body in all operation regimes. This volume inversion effect enhances
charge carrier mobility particularly in the subthreshold regime, where the
main channel of charge transport is along the source-to-drain symmetry line
[2][3]. When increasing the gate biasing, moving from subthreshold into the
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2 Introduction

near and above threshold regimes, the current channel will shift from the
center to the two silicon-insulator interfaces.

The GAA MOSFET can also, indeed, be designed to benefit from the volume
inversion effect. Additionally, the GAA MOSFET obtains better scaling
properties compared to the DG MOSFET as the cylindrical gate improves
the gate control and suppresses short channel effects [3][4].

Many activities are going on in parallel for the semiconductor technology
to continue its development to reach the future expectations of performance.
One of these activities is device modeling, which gives a deeper understanding
of the physical behavior of the devices. Compact models are also important
tools in circuit design and simulation. These new devices pose a new chal-
lenge in device modeling as the field pattern is two and three dimensional.
This is in contrast to many of the classical single gate 1D models which in
their development are based on an increasing number of non-physical fitting
parameters of obscure origin.

Another point is that the classical definition of the threshold voltage, which
normally marks the onset of the device, loses much of its meaning in the
undoped/lightly doped DG an GAA devices, as described in further detail

in section 2.2.7.

A new model paradigm based on the specific central physical mechanisms in
these kind of devices is therefore desirable and is the inducement to the work
presented in this thesis.

1.1.1 Device Scaling - Moore’s Law

Moore’s Law describes an important trend in the history of computer hard-
ware. It says that the number of transistors that can be inexpensively placed
on an integrated circuit is increasing exponentially with time, doubling ap-
proximately every two years. The observation was first made by Intel co-
founder Gordon E. Moore in 1965. The trend has continued up till today
and is not expected to stop for another decade.

Almost every measure of the capabilities of digital electronic devices is linked
to Moore’s Law, for example processing speed and memory capacity. All of
these are improving at roughly exponential rates as well. This has dramat-
ically increased the usefulness of digital electronics in nearly every segment
of the world economy. Moore’s Law describes this as a driving force of tech-
nological and social change in the late 20th and early 21st century.
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1.1.2 Integrated Circuit Design

The evolution of very large scale integration (VLSI) technology has devel-
oped to the point where over two billion transistors can be integrated on a
single chip!. Integrated circuits were normally subsystem components, par-
titioned by analog and digital boundaries. Now, however, complete systems
are integrated on a chip combining both analog and digital functions. Com-
plementary metal-oxide semiconductor (CMOS) technology has become the
most widespread in these implementations because it provides density and
power savings on the digital side, and a good mix of components for analog
design [5].

1.1.3 Technical Computer Aided Design

Process and device simulators are technical computer aided design (TCAD)
tools. The TCAD tools apply numerical derivations based on complex equa-
tions, such as partial differential equations, to predict the behavior of the
device.

The process simulators can predict the structures that result from specified
process sequences (such as diffusion and ion implantation), based on the
physics and chemistry of the semiconductor processes. Athena from Silvaco
is one example of a process simulator.

Numerical device simulators, on the other hand, predict the electrical char-
acteristics that are associated with specified physical structures and bias
conditions. This normally involves an iterative solution of Poisson’s equa-
tion combined with a transport model for a given set of boundary conditions.
A common way to accomplish this is by discretizing the 2D surface or 3D
volume in a grid, and applying a partial differential equation solver to find
solutions at the grid points in an iterative manner. The convergence and
accuracy depend on the size an layout of the grid, and the complexity of the
applied physical models.

In this work we have not considered the processing steps of the device. How-
ever, as experimental data is not readily available for the nanoscale devices
considered, we use the Atlas device simulator from Silvaco to verify the accu-
racy of of our modeling framework. Atlas has a range of models for transport,
carrier statistics, material properties, etc. These can be combined in the sim-
ulation of a wide range of customized 2D and 3D device geometries.

Intel Ttanium (code named Tukwila) was launched in February 2008 as the world’s
first microprocessor containing more than two billion transistors.
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1.1.4 Circuit Simulation

Integrated circuits, unlike board-level designs composed of discrete parts, are
impossible to breadboard before manufacture. In addition, the high costs of
photolithographic masks and other manufacturing prerequisites make it es-
sential that the circuit is as close to perfect as possible before the integrated
circuit is built. Simulating the circuit with a circuit simulator is therefore
required to verify circuit operation before manufacturing the integrated cir-
cuit.

Tools for simulating the behavior of simple circuits, electronic computer aided
design tools (ECAD), began emerging in parallel with the development of in-
tegrated circuits. SPICE (Simulation Program with Integrated Circuit Em-
phasis) was first released in 1972 by Electronics Research Laboratory of the
University of California, Berkeley, as a derivative of the CANCER, program
(Computer Analysis of Non-linear Circuits, Excluding Radiation) [6]. Since
then SPICE has gone through several evolutions and is widely used by circuit
designers.

One of the key building blocks in SPICE is the device models. Different
research groups have steadily provided models and modeling approaches to
SPICE, continuously improving the functionality of the simulator. The BSIM
MOSFET model invented by the Berkeley group was the industry standard
for many years. In 2005, however, the Compact Model Council, which works
for standardization of compact models and model interfaces, decided to make
the PSP model [7] developed by Phillips semiconductors and Pennsylvania
State University, the industry standard.

SPICE simulators come with a selection of models for different semiconduc-
tors. The simplest models can be accessed quickly and may give adequate

Compact/Analytical — > Circuit Simulator <D(
Device Models SPICE 8
Device Simulator
Silvaco Atlas a
Device Models Based <
on Numerical Solvers 8
Process Simulator
Silvaco Athena

Figure 1.1: Hierarchy of the TCAD and ECAD tools.
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results in many situations. For improved accuracy, the more complex models
should be applied. These are often characterized by many parameters which
must be identified empirically by analyzing measurements or by TCAD sim-
ulations. This is time-consuming and a difficult task considering that some
models use hundreds of parameters, which cannot always be associated di-
rectly with physical mechanisms. Some manufacturers, however, provide
ready to use SPICE parameters for their products, and some device simu-
lators come with parameter extraction tools, which can be used directly as
input to the SPICE models.

1.1.5 Device Modeling

Figure 1.1 illustrates the hierarchy of the TCAD and ECAD tools as de-
scribed above. As indicated compact/analytical devices models are the fun-
damental building blocks of an efficient circuit simulator.

In this thesis, a compact physics based device model is a description of the
device behavior in terms of analytical, mathematical expressions. The most
efficient models are the ones which only involve explicit analytical expres-
sions. Another approach is based on preprocessing routines which result in
parameter look-up tables for fast retrieval and use in simplified parameterized
models.

1.2 Objective

The objective of the thesis is to establish a detailed, physically based frame-
work for precise modeling of short-channel DG and GAA MOSFETs. From
this modeling scheme we may extract current-voltage and intrinsic capac-
itance characteristics of the devices. The framework may also serve as a
starting point for the development of more compact modeling expressions
suitable for use in circuit simulators.

The modeling framework is based on a two- and three-dimensional (2D and
3D) analysis for the DG and GAA MOSFETS, respectively. Short channel
effects are intrinsic to this 2D and 3D analysis. The inter-electrode coupling
of the DG device is solved analytically for the 2D device geometry, and with
appropriate modifications it can also be applied to model the inter-electrode
coupling of the 3D GAA device. The effect of the inversion charges are
included self-consistently in an iterative procedure.
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1.3 Scope

In the endeavor to model the behavior of nanoscale short-channel DG and
GAA devices the main challenges are to determine the 2D /3D electrostatics,
self-consistent modeling, charge transport, quantum-mechanical effects, gate
tunneling and noise. Below follows a summary of to what extent these topics
are addressed in this thesis.

2D and 3D electrostatics. In this work we are considering, as an example,
a DG and GAA MOSFET with gate length of 25nm and a silicon body
thickness/diameter of 12nm, ref. figure 2.1. This length/height ratio implies
that there is a significant coupling, not only between the gate contacts but
also between the source/drain contacts. Therefore a 2D solution is required
to cover these mechanisms. Additionally, the cylindrical geometry of the
GAA MOSFET must be properly accounted for with a 3D analysis.

Self-consistent modeling of inversion charge effects. Near and above
threshold the electrostatic influence from the inversion charges becomes sig-
nificant and has to be taken into consideration. We model the inversion
charge contribution in a self-consistent manner in accordance with the 2D
and 3D Poisson’s equation for the DG and GAA MOSFET, respectively.

Charge transport. In nanoscale MOSFETs with channel lengths less than
100nm [8], the relaxation times of the carriers indicate that the drain cur-
rent will have the character of both drift diffusion and ballistic transport.
Numerical simulations, however, indicate that the use of the drift diffusion
mechanism with constant mobility, reproduces quite well the current found
from more advanced simulations. Hence, in all simulations used for compar-
ison with the present model, we also use the drift diffusion mechanism with
constant mobility. This serves the additional purpose of verifying the overall
modeling procedures used. Ballistic and quasi-ballistic transport are briefly
discussed in the review of models in section 2.2.4, and the drift-diffusion
model is compared to the more sophisticated transport formalisms in chap-
ter 5.

Quantum mechanical effects. When device dimensions are larger than
10nm, classical theory is still applicable [9], and the modeling framework
presented in this thesis is based on classical theory. For smaller dimensions,
quantum confinement has to be considered, and in section 2.2.3 a simplified
quantum confinement model is briefly reviewed.

Gate tunneling. The modeling of gate tunneling is considered to be beyond
the scope of this work. We have considered a high-x dielectric with a relative
permittivity of 7 and a thickness of 1.6nm, in which case the tunneling current



1.4 List of Publications and Own Contributions 7

is quite small [10].

Noise. Noise modeling is beyond the scope of the present work.

1.4 List of Publications and Own Contributions

In my work I have contributed to the following international journal articles,
conference proceedings and posters.

1.4.1 International Journal Articles

1

S. Kolberg, H. Bogrli and T. A. Fjeldly, "Modeling, Verification and
Comparison of Short-Channel Double Gate and Gate-All-Around MOS-
FETS", J. Math. and Comp. in Simulations, doi:10.1016/j.matcom.
2007.09.011, 2007.

H. Borli, S. Kolberg and T. A. Fjeldly, "Physics based Modeling of
Short-Channel Nanowire MOSFET", Journal of Physics: Conference
Series, vol. 100, no 52054, 2008. Available online: www.iop.org.

H. Borli, S. Kolberg, T.A. Fjeldly and B. Iniguez, "Precise Model-
ing Framework for Short-Channel Double-Gate and Gate-All-Around
MOSFETS", IEEE Trans. Electron Devices, vol. 55, no. 10, pp. 2678-
2686, October 2008.

. H. Borli, K. Vinkenes, T. A. Fjeldly, "Physics Based Capacitance Mod-

eling of Short-Channel Double-Gate MOSFETs", Physica Status Solids,
pp. 1-4, 2008, doi:10.1002/pssc.200780124.

S. Kolberg, H. Bgrli, T. A. Fjeldly, "Compact Current Modeling of
Short-Channel Multiple Gate MOSFETs", Physica Status Solidi, pp.
1-4, 2008, doi: 10.1002/pssc.200880125.

H. Borli, S. Kolberg and T. A. Fjeldly, "Capacitance Modeling of Short-
Channel Double-Gate MOSFETS", Solid State Electronics, vol. 52,
2008, pp. 1486-1490, doi: 10.1016/j.sse.2008.06.022.

. U. Monga, H. Bgrli and T. A. Fjeldly, "Compact Subthreshold Current

and Capacitance Modeling of Short-Channel Double-Gate MOSFETs",
Mathematical and Computer Modelling, submitted.
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1.4.2 International Conference Proceedings

1. H. Borli, S. Kolberg, and T. A. Fjeldly, "Analytical Modeling Frame-
work for Short-Channel DG and GAA MOSFETs," Proc. NSTI-Nano-
tech 2007, Santa Clara, CA, vol. 3, pp. 505-509, May 2007.

2. H. Borli, S. Kolberg and T. A. Fjeldly, "Physics Based Current and Ca-
pacitance Model of Short-Channel Double Gate and Gate-All-Around
MOSFETs", Proc. 2nd IEEE Int. Nanoelectronics Conf. (INEC 2008),
pp. 844-849, Shanghai, China, March 2008. TEEE Ref. 978-1-4244-
1573-1/08.

3. H. Borli, S. Kolberg, T. A. Fjeldly and B. Iniguez, "Current and Capaci-
tance Modeling of Short-Channel DG MOSFETS", Proc. 7th IEEE Int.
Caribbean Conf. on Devices, Circuits and Systems (ICCDCS 2008), no.
19, Cancitn, Mexico, April, 2008. TEEE Ref. 978-1-4244-1957-9/08.

4. H. Bgrli, S. Kolberg and T.A. Fjeldly, "Capacitance Modeling of Short-
Channel DG and GAA MOSFETs", NSTI-Nanotech 2008, vol. 3, pp.
745-749, June 2008.

1.4.3 Posters

1. H. Berli, S. Kolberg, and T. A. Fjeldly, "Development and Verifica-
tion of a Precise Compact Model for Short-Channel Gate-All-Around
MOSFETs," MOS-AK Workshop, Montreux, September 2006 |Poster].

2. S. Kolberg, H. Bgrli, and T. A. Fjeldly, "Verification of a Novel 2D
Compact Model for Short-Channel Double Gate MOSFETs," MOS-AK
Workshop, Montreux, September 2006 [Poster]|.
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work for Short-Channel DG and GAA MOSFETs", DEEEA Workshop,
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4. H. Borli and T. A. Fjeldly, "Self-Consistent 2D Modeling of Short-
Channel Nanoscale DG and GAA MOSFETs", COMON Meeting, Find-
hoven, April 2008 [Poster].
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1.4.4 Own Contributions

In these publications my main contributions are summarized below.

e An analytical 2D solution of the Laplace equation for the DG MOSFET
applying conformal mapping techniques, has previously been presented
[11]. T have presented a new method of mapping the solution of the DG
electrostatics into the longitudinal cross-section through the cylindrical
axis of the GAA. This technique, which is based on the structural
similarities between the two devices and their difference in gate control,
does not give an exact solution of the 3D Laplace equation of the GAA
MOSFET. However, it agrees very well with numerical simulations.

e The 2D solution of the Laplace equation of the DG MOSFET, pre-
sented by [11], has been improved to include a corner correction.The
electrostatics close to the corner does not significantly influence the
sub-threshold current calculations, but is more important for the in-

trinsic capacitance modeling.This corner correction also applies to the
quasi-3D Laplace solution of the GAA MOSFET.

e The self-consistent calculation of the electrostatics of the DG MOSFET
in the near threshold regime has been improved based on the work of
[11]. This method has also been extended to model the near thresh-
old electrostatics of the GAA MOSFET, properly accounting for the
cylindrical geometry.

e A self-consistent method has also been developed to calculate the elec-
trostatics in the above threshold regime.

e Based on this modeling framework with a two- and three-dimensional
analysis of the electrostatics for the DG and GAA MOSFET respec-
tively, the drift-diffusion current is modeled in all operation regimes.

e The framework model is also applied to model the intrinsic capacitances
of the DG and GAA MOSFETs in all operation regimes.

Additionally, this thesis presents a new compact, analytical subthreshold cur-
rent model for the GAA MOSFET in section 3.5 (not previously published).
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1.5 OQOutline of Thesis

In this thesis we present a technique for 2D and 3D modeling of short-channel
nanoscale DG and GAA MOSFETs. In low-doped devices working in the
subthreshold regime, the potential distribution is dominated by the inter-
electrode coupling between the body contacts. This body potential is de-
termined by an analytical solution of the 2D Laplace equation using the
technique of conformal mapping. Due to the structural similarities between
the DG and GAA MOSFET this 2D solution of Laplace’s equation can also
be mapped into the longitudinal cross section of the GAA accounting for the
difference in gate control between the two MOSFET geometries. Near and
above threshold the influence of the inversion charge on the electrostatics is
taken into account in a precise, self-consistent manner by combining suitable
model expressions with Poisson’s equation. Based on the modeled electro-
statics, we can calculate the drain current and the intrinsic capacitances of
the device. Throughout the thesis, the modeling results are verified against
the numerical simulator Atlas developed by Silvaco.

In chapter 2, the properties of the DG and GAA devices are defined. More-
over, essential physics and existing models related to these devices are re-
viewed. The models and theory introduced here represent much of the foun-
dation for the modeling work in the subsequent chapters.

In chapter 3 the derivation of the inter-electrode electrostatics of the DG and
GAA MOSFET is presented. The 2D Laplace equation of the DG device is
solved analytically by using a conformal mapping technique. This technique
is not directly applicable to the 3D structure of the GAA MOSFET, however,
by accounting for the difference in gate control the 2D DG solution can also
be applied for the GAA MOSFET. An extensive analysis of the error intro-
duced by these simplifications is provided. The inter-electrode contribution
is dominating in the sub-threshold regime, and the modeled sub-threshold
drain current is derived and compared with numerical simulations. A com-
pact, analytical subthreshold drain current model is presented at the end of
the chapter.

In chapter 4 follows a description of the electrostatic modeling of the in-
version charge of the DG and GAA devices. In accordance with the super-
position principle the Laplace solution of the inter-electrode electrostatics
can be separated from Poisson’s equation. Near and above threshold the
mobile charge carriers influence significantly the device electrostatics, and is
modeled in a self-consistent manner in accordance with Poisson’s equation.
The quasi-Fermi potential and the drift diffusion current are included in this
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self-consistent, iterative procedure.

In chapter 5 the drain current modeling in all operation regimes is summa-
rized. Furthermore, an example of a parameterized, compact current-voltage
model is presented where the parameters are extracted from the full modeling
framework. At the end of the chapter the drift diffusion transport mechanism
is compared to more sophisticated transport models.

In chapter 6 the modeling of the intrinsic capacitances of the DG and GAA
MOSFETs is presented. If we can consider the DG and GAA as three ter-
minal devices, they can be described with 9 self- and trans-capacitances. In
the subthreshold regime the analytical solution of the Laplace equation gives
a compact and analytical model of the capacitances of the DG device. Ac-
counting for the improved gate control, the GAA subthreshold capacitances
can be determined in a similar fashion. The effect of the inversion charge
must be accounted for in the near and above threshold regimes, and the self-
consistent analysis of the electrostatics in chapter 4 is applied to determine
the capacitances in these regions of operation. We assume that the gate
overlaps with source and drain, and at the end of the chapter a brief analysis
of the extrinsic overlap capacitances is shown.

Finally chapter 7 contains the conclusion and chapter 8 discuss possible future
work.






Chapter 2

Review of DG and GAA
MOSFET Models

Double-gate (DG) and gate-all-around (GAA) transistors are considered to
be very attractive options to improve the performance of CMOS devices
and to overcome some of the difficulties encountered in further downscaling
of MOSFETS into the sub-50-nm gate-length regime. Scaling of single-gate
MOSFETs into the sub-100nm range, has been possible by for example using
high doping and steep doping gradients. The DG and GAA MOSFETs can
be designed with low body doping density, avoiding some of the detrimental
effects to the charge carrier mobility caused by higher doping levels.

Therefore, considerable effort has been invested in the modeling of the DG
and GAA devices recently, and this chapter gives a brief review of the main
development in this area. In particular we focus on different approaches
for modeling the current and capacitances of these devices [9]|[12]. First,
however, the layout and properties of the DG and GAA devices are given,
and then we review essential physics, which forms the basis of the modeling
approaches.

2.1 Layout and Properties of DG and GAA
MOSFETs

The schematic cross section of the DG MOSFET is illustrated to the left in
figure 2.1. As indicated z is the direction from source to drain, parallel to
the gate contact and y the direction perpendicular to the gate. The third
dimension of the DG device, the width, W, is typically much larger than the

13
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Figure 2.1: Schematic structure of the DG MOSFET (left) and GAA MOSFET
(right).

other dimensions. The cylindrical GAA MOSFET is illustrated to the right
in figure 2.1. Here z and r are the axial and radial coordinates, as indicated.

The properties of the DG and GAA devices considered are based on the tem-
plate of the European Union research project, Silicon Nano-devices (SINANO)
[11]. If not otherwise specified, the gate length is L = 25nm, the silicon thick-
ness/diameter is ty; = 2ry, = 12nm, and the oxide thickness is t,, = 1.6nm.
We apply a p-type uniform silicon substrate doping N, = 1-10%cm 3, and a
high-x gate insulator with a dielectric permittivity of £,, = 7¢(, where gy is
the dielectric permittivity of vacuum. Idealized Schottky contacts with work
function, ®,, = 4.17e¢V (corresponding to that of n-+ silicon) are assumed for
the source and drain, and a near mid-gap gate material with work function
of 4.53eV at the gate contacts. This ensures equipotential surfaces on all the
device contacts.

Effective oxide thickness

The calculations are simplified by using the well known technique of replacing
the insulator layers of the DG device by electrostatically equivalent silicon
layers with an effective thickness

A S (2.1)

where £5; = 11.8¢) is the dielectric permittivity of silicon. In this way we
obtain a continuous electric field across the silicon-insulator interface. This
scaling assumes that the electric field in the oxide is dominated by its y-
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component, and that the lateral x-component can be ignored. In the central
gate-region this is a very good assumption. In the corner regions of the device,
however, the z-component of the electric field becomes more significant and
results in a small error close to the corners.

A similar oxide scaling is applied in the GAA device. In cylindrical coordi-
nates the oxide thickness is given by

t

Tow = T'si 1N (1 + ﬂ) (2.2)
T'sq

where r,; is the radius of the silicon substrate. Similarly to the DG device

(2.1), 7o is scaled so that the insulator material becomes electrostatically

equivalent to the silicon substrate, i.e. 7, = r,,=t. As for the DG this oxide

scaling introduces a small error where the z-component of the electric field
is significant.

2.2 Essential Physics

Some essential physics is here reviewed, in order to establish the foundation
of the models that will be described in the subsequent sections and chapters.

2.2.1 Poisson’s Equation

The electrostatic potential, ¢(x,y), in the semiconductor body of the DG
MOSFET is given by the 2D Poisson’s equation

Poley)  Peley) ¢

N, 2.
ol SES = L (N, (23)

where (z,y) is referred to the Fermi potential at the source contact, N, is
the acceptor doping density in the silicon body (n-channel device) and n is
the mobile charge density.

The cylindrical GAA MOSFET is a 3D device, whose electrostatic potential,
@(x,r), is given by Poisson’s equation with cylindrical co-ordinates.

Pp(x,r)  Oplz,r)  10p(x,1) g
a2 T o2 T T o _S_s,i(Na+n) (24)

For lightly doped devices, i.e. N, < 10%cm~3 [13], the term N, in equation
(2.3) and (2.4) can often be ignored. In moderate to strong inversion the
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inversion charge will normally be the dominant term, i.e. n > N,. In the
subthreshold regime, the depletion charge, N,, will eventually become com-
parable to the inversion charge. However, under these bias conditions, the
inter-electrode coupling will normally dominate the electrostatics. Therefore,
a light doping represents relatively few carriers in the thin body of the DG
and GAA devices, and the effect of the ionized impurities can be considered
negligible in all normal operating regimes of the device.

The 2D Poisson’s equation of equation (2.3) can be separated into a simplified
Poisson equation and a Laplace equation for the mobile charge contribution
and the inter-electrode coupling, respectively, in accordance with the super-
position principle. I.e., for the DG device

o1 Py _qn

Ox? oy? &4 (2:5)
Py Py .
02 + oy? (2:6)

where ¢ can be related to the inversion charge, and ¢, to the inter-electrode
coupling. The electrostatic potentials of the source, drain and gate contacts
are included in the boundary conditions of the Laplace equation (2.6). There-
fore we obtain simplified boundary conditions of the Poisson’s equation (2.5),
where the boundary potentials can be set to zero. The total potential given
as the sum of these two contributions ¢ = 1+ 5. The 3D Poisson’s equation
(2.4) can be separated in a similar manner.

The inter-electrode contribution, ¢,, can be found analytically as described in
chapter 3. The inversion charge contribution, ¢y, is found in a self-consistent
procedure as described in chapter 4.

2.2.2 Fermi-Dirac and Boltzmann Statistics

Electrons in solids obey the Fermi-Dirac distribution function, f(FE), where F
is the energy of a given electron state. The Fermi-Dirac distribution simplifies
to Boltzmann statistics when the Fermi energy level, Ep, lies several kgT
above the valence band (for acceptor type doping),

f(E)

1 E— EF> 27

N 1 4 exp (%) e <_ kT

where kp is Boltzmann’s constant and 7" is the absolute temperature. This
is normally a good assumption for low to moderate doping concentrations.
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Using classical Boltzmann statistics, the mobile charge density, n, in (2.3)
and (2.4) is given by

2
vor (7)

n = — exp 2.8

Na ‘/th ( )

where n; is the intrinsic carrier density for undoped silicon, ¢ is the total

electrostatic potential, Vy, = ¥2L is the thermal voltage and Vj is the quasi-

Fermi potential referred to the applied source potential. We assume that Vi
is constant over any given cross-section perpendicular to the z-axis.

2.2.3 Quantum Inversion Charge

With the incessant down-scaling of the MOSFET we eventually reach a limit
where the quantum effect causes the energy bands in the channel to split.
The quantum inversion charge is distributed in accordance with Fermi-Dirac
statistics (ref. equation (2.7)) over a number of discrete energy levels, E;.

As an illustration, a 1D quantum inversion carrier concentration assuming
an idealized flat potential well with infinite walls is given by

m l Er — E;
= —kgT) In|l 7’” 2.9
=gt S e (T 29

Here 7 is the reduced Planck constant, F; is the lowest energy of sub-band
J measured relative to the conduction band and m,, is the density of states
effective mass. This idealized model does not distinguish between differences
in effective mass in the sub-bands. Additionally, accurate modeling of the
electrostatic potential, particularly close to the barrier between source and
drain, is crucial for obtaining a good estimate of the drain current. In this
approach, however, the potential is assumed to be flat in the x-direction.
This is therefore a very simplified model, which is presented here only as
an illustration of some of the differences between a classical an a quantum-
mechanical approach.

Assuming t,; < L quantum effects will first be observed in the y-direction
of the DG MOSFET (r-direction of the GAA MOSFET). Quantum effects
become significant when the silicon substrate thickness becomes smaller than
10nm [14]. Here, however, the device dimensions considered are such that a
classical treatment of the electron distribution is justified.
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2.2.4 Transport Models
Drift Diffusion Model

One of the simplest models of charge transport is the drift-diffusion model
with constant mobility. This model is based on the assumption that elec-

tron velocity in the semiconductor is proportional to the local, instantaneous
electric field [15].

First we introduce the charge sheet density, n,(z), which is the charge density,
n(z,y), integrated with respect to y

na(e) = [ n(z, y)dy (2.10)

The drift diffusion current density (current per unit channel width) can be
expressed in terms of the quasi-Fermi potential, Vi, which is assumed to be
constant over any given cross-section perpendicular to the x-axis.

dx

st = QMnns(x) (211)

Here ¢ is the electron charge, ng(z) is the charge sheet density of equation

(2.10), and p, is the constant electron mobility given by

qTn
m,

o = 1 (2.12)
n

where m; is the effective mass of electrons, and 7, is the momentum relax-
ation time, which is an average measure of how fast the carrier momentum
changes due to collisions. These collisions can be caused by lattice vibra-
tions of the atoms (phonons), surface scattering, the presence of impurities
and other crystal defects.

niNg
P
n;

If equation (2.8) is solved with respect to Vi, we obtain, Vi = p—V}; In (

If this is inserted in (2.11) applying the charge sheet density of (2.10), we
obtain the drift diffusion equation

dng
Jis = ~amspaB(z) — aD, o) (213
dx
where E(z) = —% is the electric field and D, = “"kTBT is the electron

diffusion coefficient. In equation (2.13) the first term can be associated with
the drift current and the second term with the diffusion current.
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Velocity Saturation

The electron drift velocity is represented by v(E) = 11, E in equation (2.13).
This linear dependence gives a reasonable estimate for low field conditions,
but is no longer valid at high fields.

In high fields the electrons gain considerable energy from the field. Similarly,
the exchange of energy and momentum between the carriers and the crystal
increases, and the net effect in most semiconductors is that the drift velocity
saturates. A common model for the velocity saturation is given by [15]

pnE
RGN

where m is a fitting parameter (i.e. m & 2 for electrons in silicon) and v, is
the saturation velocity, which is equal to approximately 1-107cm/s in silicon
at room temperature.

v(E) =

(2.14)

Energy Transport and Hydrodynamic Models

The energy transport (ET) model follows the derivation by Stratton [16][17]
which is obtained starting from the Boltzmann transport equation (BTE).
The hydrodynamic (HD) model [8] is a higher order solution to the gen-
eral BTE, compared to the drift-diffusion models described above. A set of
simplified transport equations of carrier density, momentum and energy, are
applied in order to find an approximate solution of the BTE.

Both the HD and ET models include non-stationary transport effects such
as velocity overshoot, diffusion associated with carrier temperature and the
dependence of impact ionization rates of carrier energy distributions. One of
the key differences between the HD and ET models is that the former uses
macroscopic relaxation times, which describe the ensemble of carriers, while
the latter uses microscopic relaxation times, which describe how individual
carriers scatter [8].

Ballistic Transport

As the channel lengths continue to shrink, they will eventually become so
small that carriers may traverse from source to drain without scattering
[18][19]. Effects of this so-called ballistic transport, occurs in devices with
channel length shorter than the mean free path, which is about 100nm for
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silicon at room temperature [8]. The drain current will therefore have the
character of both ’collision-dominated’ drift diffusion and ’collision-free’ bal-
listic current, with an increasing shift towards the latter with decreasing gate
lengths.

2.2.5 Capacitance Model

The four-terminal DG MOSFET can be described in terms of 16 trans- and
self-capacitances, C'yy, of which 9 are independent owing to the principle of
charge conservation [20][21]. Here, C'xy reflects the change of charge assigned
to electrode X for a small variation in voltage applied to terminal Y according
to the definition

0Qx

Cxy = +t—— 2.15

o =02 (2.15)
where the plus sign is used for X =Y (self-capacitances), and the minus sign
is used for X # Y (trans-capacitances). These signs are chosen to keep all
of the capacitance terms positive |21].

The GAA MOSFET is a tree-terminal device and so is the DG when applying
symmetric gate biasing. For this case, the number of capacitances reduces
to 9 of which 4 are independent and can be represented by a 3 x 3 matrix

CGG _CSG _ODG
C= _OGS CSS _CDS (216)
_CGD _CSD CDD

where all the rows and columns should sum to zero for the device description
to be charge conservative. The equivalent circuit of the three-terminal device
is shown in figure 2.2 [15].
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Figure 2.2: Equivalent circuit of charge conserving intrinsic capacitances for three-
terminal MOSFETs [15].

2.2.6 Substrate Doping

In DG and GAA MOSFETSs, the ultrathin silicon channel is often preferred to
be undoped or lightly doped (for example with N, < 10%cm ™ [13]) to avoid

adverse effects associated with heavy doping, such as mobility degradation
[22].

For n-channel devices, a light acceptor doping will shift the Fermi potential
towards the valence band by ¢, = Vj, In (]Z_j) This gives a larger potential
difference between the source/drain contacts and the body, i.e. the built in
voltage is increased

E Vin . ( Neess
Vi = 2 Zthyy [ Leelf 2.17
W=7 tht n(Nveff (2.17)

where Ey is the band-gap energy and Ng.rr and N, ss are the effective density
of states for electrons and holes, respectively. Similarly, the flat band voltage
of the metal-insulator-semiconductor coupling at the gates becomes more
negative with increasing n-type doping

(I)m — Xs E V;fh Nceff
Vip = — X8 29 g Tty [ Zeel] 2.18
FB . 5 ®b 5 I (Nveff (2.18)

where ®,,, is the work function of the gate metal and x, is the electron affinity
of the semiconductor.
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Figure 2.3: Numerically simulated (Silvaco Atlas) potential profiles along gate-to-
gate symmetry line of the DG device (left) and GAA device (right) at the threshold
voltage. To ease the comparison between the plots, the difference Vir — Vg is
subtracted from the potential, .

2.2.7 Threshold Voltage

Historically, the most popular definition of the threshold voltage used in com-
pact modeling is the gate voltage at which the band bending reaches 2¢q¢, at
the silicon-insulator interface [23]. Under this condition, the inversion car-
rier density at the silicon-insulator interface equals the density of the dopant
atoms in the silicon bulk, N,. This definition has been physically reasonable
and successful in identifying the turn-on condition for bulk devices, however,
for undoped (or lightly doped) devices the inversion carrier density required
for device turn-on exceeds N, by a good margin. Therefore this definition
becomes inadequate for the nanoscale devices considered here.

The threshold voltage is not applied directly as a parameter in any of the
modeling schemes described in this report, and might even not really be of a
high relevance when we discuss these modeling schemes. Anyway, with the
legacy of the majority of MOSFET models in mind, we apply an alternative
threshold voltage definition [3][11].

From the electrostatics we observe that in the subthreshold regime the ma-
jority of the carriers will move close to the S-D symmetry line, which is the
path of minimum energy. With increasing gate biasing we reach a point
where the contribution of the inversion charge is sufficiently high to cause
the energy minimum and the current path to shift from the device center to
the silicon-insulator interface.

The threshold voltage, Vi, can therefore be defined as the biasing point
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(Vgs = Vi, Vs = 0V) where this shift takes place. This occurs when the
two contributions to the potential (¢; and ¢2) add up to the ’constant’ value
Vi —Vip along the gate-to-gate (G-G) symmetry line. Numerical simulations
carried out on the Atlas simulator from Silvaco, give threshold voltages of
Vr = 0.248V and 0.243V for the present DG and GAA devices, respectively,
ref. figure 2.3. (These threshold points can also be extracted from the self-
consistent model as described in chapter 4. From figure 4.1 and 4.14 we
observe that the modeled threshold points are Vi =~ 0.25 and ~ 0.24 for the
DG and GAA MOSFET, respectively).

Note that the potential along the G-G symmetry line at the threshold point
is not perfectly flat, as ¢; and @y are differently distributed. Numerical
simulations indicate minor fluctuations of less than 0.5mV, as illustrated in
figure 2.3.

2.3 Long-Channel Modeling

In this section we review methods based on the solution of the 1D and 2D
Poisson’s equation for the DG and GAA MOSFETS, respectively. For long
channel devices where short channel effects are negligible, these models are
excellent tools for modeling current and capacitance.

2.3.1 Drain Current Model of Undoped DG

Long-channel drain current models have been developed for DG MOSFETSs
as presented by Taur et al. in [24] and [25] and by Ortiz-Conde et al. in [26].
The models are based on solving the 1D Poisson’s equation in the transverse
direction. Ortiz-Conde et al. solved Poisson’s equation with respect to the
surface and center of the silicon body potential, while Taur et al. introduced
a new auxiliary variable (3 in their solution. In [12] it is proven that these two
methods are equivalent, and in the following we have chosen to concentrate
on the Taur method. The 1D Poisson’s equation in the transversal direction

is given by )
Pely) _am (w(y) - VF>

2.19
oy? Esi Vin ( )

The quasi fermi potential V is assumed to be independent of y. Integrating
(2.19) once, we obtain [24]

\/ 2(17%‘/}11 <P VF
Vin

+ C, (2.20)
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where C' is the integration constant, which is determined by assuming sym-

metric gate properties, i.e. g—“"‘ = (0. From this we obtain C| =
y y:t:)z+t3i/2

— exp (Wf#) Then by integrating (2.20) we get

o(y) = Vi — 2V In [ i cog (25 (s +t4:/2 = y)ﬂ (2.21)

2B\ 2e5iVi, Tsi

This is an implicit equation where [ is determined by requiring continuity in
the displacement field at the silicon-insulator interface

V;IS - VFB - So(t:m) — Q =g, 8_90
tow Ay

(2.22)

oxT

Y=toy
where () is the total mobile charge per unit gate area.

The parameter 5 can be solved explicitly by a very accurate procedure de-
scribed by Yu et al. in [27].

The drain current can be calculated in accordance with Pao-Sah [28], who
included both the drift and diffusion carrier transport components in the
silicon body. Under the assumption of constant mobility and no velocity
saturation in the channel the current can be expressed as

— / Q(Vi)dVi (2.23)

where Q (V) is the total mobile charge per unit gate area. From equation
(2.22) we can find @ expressed as a function of the auxiliary variable 3 [29]

e

8V
Jy N

= 2e4
Q tsz'

[ tan g (2.24)

Y=toe

If we substitute Vr by [ as independent variable, equation (2.23) can be
calculated analytically as

16W5sz'v;h 2 b o, o o
= fp——— |ftan f — — 4+ 2= [“tan” [ (2.25)
Ltsz' 2 tsz' Ba

The integration limits 3; and (; are calculated for Vy = 0 and Vi = Vy,,
respectively, using the explicit procedure in [27].
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When short channel effects are not significant these models can continuously
cover all operating regions without the need for nonphysical fitting parame-
ters, as validated by numerical simulations in [25] and [26]. Even for short
channel devices these models may yield satisfactory results in the strong in-
version regime. However, in subthreshold and moderate inversion operating
regimes, short channel effects become more important, and a 2D analysis is
required for a physically based analysis without fitting parameters.

Charge Based Current Models

As an alternative to the long channel methods of Taur et al. [25] and Ortiz-
Conde et al. [26] as discussed above, so-called charge-based methods have
also been presented. In undoped DG nanoscale devices the depletion charge
is normally negligible, and the inversion charge is equal to the total charge in
the channel. The total inversion charge, (), at a given x can then be written
as

towttsi/2
Q=2 /t (n — ni)dy = —2C,e (Vs — Vi — 0,) (2.26)

where W, is the potential of the silicon-insulator interface and C,, = 3**.
This charge term is inserted in the Pao-Sah integral (2.23), and the following
approximate expression for the drain current is obtained by [30]

,U’nW Qd Q2

I, =
ds I3 40,

[QVZh(Qd - Q) — (2.27)
where Q4 and Qs are the total inversion charge evaluated at the drain and
source ends, respectively. The method is developed based on the approxima-
tion that gtgne®~VF) < Ve /ty, where ¢, is the center potential at 2 = 0
and y = t,; +t/ /2. They also used an empirical smoothing function.

An improved charge model was developed by Sallese et al. [31], who presented
the following expression for the drain-current

2
Iys = MnLW [2Vth (Qa — Q) — QZCO,? +
2 Esi tsi (Qd - Qs)
8V;2 i (1 - 86—Vth>] (2.28)

Sallese et al. observed that the integration constant, C, in equation (2.20),
was most important in the subthreshold regime, and proposed to apply sub-
threshold asymptote to estimate C'}, which gave C; =~ —%. The improve-

ment of the Sallese method in equation (2.28) compared to equation (2.27) is



26 Review of DG and GAA MOSFET Models

the logarithmic term, which depends on t; and accounts for coupling between
the two gates.

Both these charge-based methods introduce approximations to the exact 1D
solution of Taur and Ortiz-Conde. In strong inversion the charge-based-
methods give small deviations from the Taur and Ortiz-Conde methods. In
subthreshold, however, the deviation is relatively large [12].

2.3.2 Capacitance Model DG

Moldovan et al. [32] have presented an explicit analytical charge and capac-
itance model for long channel, undoped DG MOSFETs. The total charge in
the channel can be obtained by integrating the mobile charge sheet density
over the channel length

Ly2 W2y,

/
QTot =-W Qdﬂ? - -
—-L/2 [ds

Viis
/0 Q%dVi (2.29)

Using the charge-based model of Sallese et al. [31] the boundary condition
of the 1D Poisson’s equation (2.22) can be expressed in terms of the mobile
charge sheet density per unit area, @)

Vs = Vg — Vi + Vi In (G415 ) — Vi In (G =

_Q Csi. Q
ln (Scomvth) + ln (Com + 8Coathh>
1>

where C; = 5t is the silicon capacitance per unit area. From (2.30) we can
find the partial derivative

ovp 1 (L, 1
Q" T, <Q+Q+2Qo> (231

where Qg = 4V};,Cy;. By inserting (2.31) in (2.29) and substitute Vi by @,
we obtain

W2, (o[ Q Q?
= — _< )4 9.32

QTt Ids /Qs (200$ +VVthQ+V¥hQ+2QU Q ( 3 )
where Qs and Q4 can be found implicitly from (2.30) for Vi = 0 and Vi =

Vys respectively. The total charge in (2.32) is equal to the mobile charge
associated with the gate contacts, QQg.

—ng + Vi

(2.30)

The charges associated with the source and drain electrodes are determined
by the Ward-Dutton linear charge partitioning scheme, which is widely ac-
cepted for bulk MOSFETs [20], and has also been proven reasonable for long
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channel DG devices as verified by numerical simulations [32|. The charge
associated with the drain and source contacts, Qp and QQg, respectively, can
then be expressed as

L/2 x + L/2
Qp=-W /m 7 Qdo (2.33)
Qs = Qrot — Qp (2.34)

Equation (2.33) is solved analytically following the same steps as for Q7. in
equation (2.29)-(2.32). The intrinsic capacitances are then found by equation
(2.15). For the special case of zero drain bias Cg¢ is given by [32]

WL
Cag = — (2.35)
o+ Vin (& + 50 )
2Coz th Qs Qs+2Qo

When V,, = 0, the remaining capacitances of the long-channel device can be
found directly from Cgq, due to symmetry [33]

Cae = —2Cqp = —2Cpg = —2Cqs = —2Csq
— 6Csp = 6Cps = 3Cop = 3Css (2.36)

2.3.3 Drain Current Model GAA

Long-channel drain current models are also available for GAA MOSFETSs
[34]. As for the DG models described in section 2.3.1, the GAA model is
based on solving Poisson’s equation in the radial direction accounting for the
cylindrical symmetry. Poisson’s equation is then given by

Polr)  1000) _ani (M) (2.37)

or? r or Egi Vin

where it is assumed that Vj is constant in the radial direction. Equation
(2.37) can be solved analytically giving

—8e4iVinr (B — 1) ]
qn; (r2; + (8 = D)r?)’

p(r) =Vp + VyIn [ (2.38)

The parameter, 3, is found by invoking continuity in the displacement field
at the silicon-insulator interface

Vqs — Vi — <P(7“sz')
reln (1 + ';”Tf)

Oy

= Q=5 (2.39)

601’

r=Tsq
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where () is the total mobile charge per unit gate area.

In [35] Iniguez et al. presented an explicit continuous drain current model.
This model uses a unifying expression which matches the asymptotic behavior
of the device in strong inversion and subthreshold. Alternatively, Yu et
al. [27] have presented a procedure for explicitly calculating § of the GAA
device with high accuracy. This method uses the exact solution of Poisson’s
equation in all regions of operation and can therefore be considered more
mathematically correct.

The drift diffusion current is found from the Pao-Sah integral which in the
cylindrical case yields

27T7”5i Vs

From equation (2.39) we can find @ expressed as a function of /3

oy 1
=gy — — S 2.41
0-=% —a(5-1) (241
where Qg = % By substituting Vm by f in (2.40) we obtain
6re Ve [ 1-2 1 ™
I, = g1, st h 2 7 2.42
d M i [462 + 6 + 5 nﬁ] . ( )

deg; In 1—1—2"—?
where n = E(x “), and gy and Sy are calculated for Vp = 0 and Vp =

Vs, respectively, Ousing the explicit procedure for the GAA in [27].

For long channel devices this model can continuously cover all operating
regions without the need for nonphysical fitting parameters, as validated by
numerical simulations in [34] and [35].

2.3.4 Capacitance Model GAA

Long channel capacitance models for the GAA have been presented by Moldovan
et al. [36] and Yu et al. [33]. The total inversion charge is obtained by inte-
grating the mobile charge sheet density over the channel length

v 2.2 Hn Vi o
Qrot = —27rrs,~/ Qdxr = —4r Tsi—/ Q°dVy (2.43)
0 Ids 0
where Iy, is given in (2.42). From equation (2.41), § can be expressed in

terms of the total mobile charge per unit gate area, i.e. § = Qf‘éo.
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From (2.39), we then find

tO(l)

aQ €ox Q Q + QO

By inserting (2.44) in (2.43) and substitute Vp by @ we obtain an analytical
solution for QQr,, which is equal to the absolute value of the mobile charge
associated with the gate contact, Q¢ = —Q7,. The charges associated with
the source and drain electrodes are determined by a linear charge partitioning
scheme, as described in section 2.3.2, giving analytical results for Qs and Q) p.
The intrinsic capacitances are then found by straight forward differentiations
given by (2.15).

Note that in the case of the GAA we can express § as an explicit function
of @, as given in (2.41), while in the case of the DG,  cannot be explicitly
expressed with @), as seen from (2.24). Therefore the long channel capacitance
model of the GAA can be based on the exact solution of Poisson’s equation,
(2.37), while the DG method is based on the approximated method of Sallese
et al. [31], ref. equation (2.28).

2.4 Short-Channel 2D Modeling

In this section a threshold voltage model of the DG MOSFET based on the
solution of the 2D Poisson’s equation proposed by Chen et al. [37], will
be reviewed. The length/height ratio of the MOSFET devices has steadily
decreased in order to keep up with the down scaling rate of Moore’s law. This
results in an increased electrostatic coupling between the source and drain
electrodes. This unwanted coupling give rise to so called short-channel-effects
(SCEs), such as for example drain induced barrier lowering (DIBL) [15]. A
2D modeling approach is required to cover the SCEs.

When considering undoped and lightly doped devices only the mobile charge
term is included on the right hand side of Poisson’s equation, ref. section
2.2.1. The mobile charge in an undoped device is given by n = n; exp (%),
ref. equation (2.8).

In this context the threshold voltage is defined as the gate voltage at which
the minimum charge sheet density of inversion carriers, n,, reaches a value
adequate for identifying the turn-on condition, nyr.

The quasi-Fermi potential, Vg, is approximated as a step function which is
zero from source through the device, and makes a step equal to Vy, at the
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drain-contact. This step-function approximation makes the model indepen-
dent of Vy,, and the final result is incapable of directly model the DIBL.
Based on the superposition principle the potential is split into a sum of two
terms, ¢ = @, + @p. The first term, ¢, is given by the 1D Poisson’s equation
in the z-direction

d2 a 3 a
Pa T ovp (90—) (2.45)

dx? €si ‘/th

where , (i%) = Vj;. The second term, ¢y is given by the 2D equation

dZ% + dzgpb = qn exp <&> [exp <ﬂ> -1
dx? dy? Esi Vin Vin

where ¢, (i%) = 0, and the E-field is to be continuous when adjusted for the
difference in permittivity across the silicon-insulator interface. The 2D equa-
tion is solved by a truncated Taylor expansion and with variable separation.
The threshold voltage is then found to be

SO () [0, ] o

(2.46)

Vi =Vip + 77VthC

where ¢q, is ¢, at the center, x = 0, # and n are geometrical constants
related to the 1D solution and the Debye length. The value of nyr can be
found from a long channel approximation, from numerical simulations or
from measurements.

Based on this model one can analyze the sensitivity of the threshold voltage
to the geometrical properties L, t,; and £,,;.

2.5 Conformal Mapping

Conformal mapping was introduced as a technique to calculate the two-
dimensional effects of short-channel devices. The first example of the ap-
plication of this technique was shown by Klos et al. in [38]. They used
conformal mapping to map the fields of a semi-infinite slab of silicon into a
complex plane with analytical solutions. The boundary conditions of this 2D
solution included the field from the depletion charge and most short-channel
effects became intrinsic to the model.

This bulk MOSFET model was later refined by Osthaug et al. [39], who
simplified the integrals associated with the conformal mapping procedure.
The model was also verified against experimental results from sub-100nm
single gate devices with good agreement.
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Based on the above work Kolberg et al. applied the conformal mapping
procedure to the DG MOSFET [11][40][41][42][43], and found an analytical
solution to the inter-electrode electrostatics of the device.

We have further improved the conformal mapping modeling of the DG MOS-
FET by including a corner correction to facilitate precise capacitance mod-
eling. The conformal mapping technique has also been applied in a quasi-3D
analysis of the GAA MOSFET |3][4][44][45][46][47][48][49][50][51][52][53][54].






Chapter 3

Inter-Electrode Electrostatics

3.1 Introduction

The inter-electrode electrostatics of the DG device can be described analyt-
ically based on the 2D Laplace equation. This solution, which is dominant
in the subthreshold regime, is derived by performing a conformal mapping of
the device cross-section from the normal (x,y)-plane to the upper half-plane
of the complex (u, iv)-plane (section 3.2).

This technique is not directly applicable to the 3D structure of the GAA
MOSFET. However, by performing a simple geometric scaling transforma-
tion, accounting for the difference in gate control in the two devices, the 2D
DG solution can also be applied for the GAA MOSFET with a high degree
of precision (section 3.3).

The inter-electrode contribution to the electrostatics is dominating in the
subthreshold regime, and the modeled subthreshold drain current is derived

and compared with numerical simulations in section 3.4. A compact, analyt-
ical subthreshold drain current model of the GAA MOSFET is presented in
section 3.5.

3.2 Double-Gate MOSFET

3.2.1 Schwarz-Christoffel Transform

The conformal mapping between the rectangular DG device cross-section in
the normal (z, y)-plane and the upper half-plane of the complex (u, iv)-plane,

33
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is defined by the following Schwarz-Christoffel transform [41][42][55]

9z _ ! Lm iy = LEUw)
v ooz o T TSR

where F(k,w) is the complex elliptic integral of the first kind, K (k) = F(k, 1)

is the corresponding complete elliptic integral, and w = u+¢v. The modulus

k is a constant between 0 and 1 determined implicitly by the geometric ratio
K(k) _L)2

K(VI—k2) 2l +ts

(3.1)

(3.2)

Figure 3.1 illustrates the mapping between the (x,y)-plane (left) and the
(u,iv)-plane (right). The rectangular grid in the left plot maps into the
curve shapes to the right. The angle-preserving characteristics of the con-
formal mapping is observed, as all the perpendicular crossings between the
horizontal and vertical lines to the left are also perpendicular crossings to
the right.

The boundary, i.e. the circumference of the rectangular DG body, maps
onto the real u-axis, and the four corners map into the positions u = £1 and
u= i%. The boundary also includes the four insulator gaps which are drawn
in green in the (z,y)-plane, and can also be discerned on the u-axis in the
right figure. Moreover, the G1-G2 symmetry line and the S-D symmetry line
map onto the imaginary iv-axis and the half-circle of radius Lk about the

origin, respectively. The mapping of the silicon-insulator interfaces is also
indicated [11][42].

3.2.2 Inverse Transform

It is often desirable to define a regular grid in the normal (z,y) plane, and
then find the corresponding grid points in the transformed (u, iv)-plane. This
is obtained by the inverse transform of (3.1). First we rewrite the complex
elliptic integral

sing dt
0 V11— kZsin®t
where ¢ = sin 'w = am(k,z) is the Jacobi amplitude [56], giving ¢ =

F~'(k,z) = am(k, z). There are three basic Jacobi functions which arise
from the inversion of the elliptic integral:

Fk,w) = F(k,¢) = (3.3)

sn(k, z) = sin(am(k, z)) = w (3.4)



3.2 Double-Gate MOSFET 35

GATE 2 Ay

ol

N

32UNOS

| |

. @
L
T

| |

| |

|

|

T

T

'l

'l

'l

NIvia

i 4

SOURCE -1 GATE1

GATE 1

Figure 3.1: Mapping of DG-device between the (z,y)-plane (left) and the trans-
formed (u,iv)-plane (right). The gate 1 and gate 2 electrodes are drawn with the
bold blue lines, the source and drain in the bold red lines and the insulator gaps in
the bold green lines. The SD-symmetry line is indicated with a bold blue dashed
line and the silicon-insulator interfaces with bold black dashed lines.

en(k, z) = cos(am(k, 2)) (3.5)
dn(k, z) = /1 — k2 sin®(am(k, 2)) (3.6)

Routines exist for calculating the values of these Jacobi functions for real
arguments (z € R) and can be extended to also include complex arguments,
z = x + iy, by the formula [56]

o — sk, 2)dn(k, y) +
cn?(k, y

i-cn(k,x)dn(k,x)sAn(
) + k2sn?(k, z)sn?(k, y)

where k = V1 — k2.

3.2.3 Solution of 2D Laplace Equation

The inter-electrode Laplace component of the potential distribution through-
out the extended body can be expressed in the (u,iv)-plane as [55]
v /OO o(u')du

SR = N i) Eprare

(3.8)

where p(u') is the electrostatic potential along the entire boundary, i.e. along
the real u-axis. The major contributions to this integral come from the four
equipotential contacts and minor terms come from the insulator gaps at the
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four corners. In the limit of zero insulator thickness, equation (3.8) results
in the following analytical expression for the potential distribution [42]

Ve [tan’l( —%) + tan~ ( )]—l— ]

v

v

w ! (150)]+

Vi [tan 1 (155) — tan ! (1=4)]

kv v

P2 (Ua U) =

3 |-

)
Vo [7r — tan~! (1kk“) — tan~! (H,;k“)] +
) -t ]

VS [tan (l—i—ku

where Vg1 and Vo are the differences between the gate to source voltage,
Vys1 and Vg, and the flat band voltage, Vpp, ref. equation (2.18), for gate
1 and 2, respectively, Vs is equal to the built in voltage, Vj;, ref. equation
(2.17), and Vp = Vs + Vi, where Vg, is the drain-source voltage.

Figure 3.2 illustrates the inter-electrode potential distribution, which is cal-
culated in the (u,iv)-plane by equation (3.9). This solution is then mapped
back to the (z,y)-plane by the inverse transform as described in section 3.2.2.
We observe that the source and drain electrodes are extended through the
insulator gaps, which is in accordance with the assumption of zero insulator
thickness. A more accurate treatment of the boundary through the insulator
gaps will be described in section 3.2.4.

The potential, po(x,y), has a saddle point close to the center of the device.
In the transversal y-direction this corresponds to the minimum energy, which
will be located along the S-D symmetry line for symmetric gate biasing. This
means that the major part of the electron conduction between source and
drain will be along the S-D symmetry line in the subthreshold region |3].

In the lateral z-direction the saddle point corresponds to the maximum en-
ergy barrier between source and drain. Precise modeling of this barrier is
crucial for accurate calculation of the current. For V;, = 0V the saddle point
will be situated at the device center, x = 0, y = t,, + t5;/2. With increasing
Vys, the barrier potential is steadily raised (i.e. energy barrier lowered) and
shifted towards the source side of the device, z < 0, as illustrated in figure
3.3. This drain induced barrier lowering (DIBL) is intrinsic to equation (3.9).

With increasing gate biasing, the gate-to-gate barrier profile flattens and
the barrier eventually shifts to the silicon-insulator interfaces. At this stage
the induced electron density will strongly influence the device electrostatics,
requiring a self consistent analysis, described in chapter 4.
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3.2.4 Corner Correction

The zero order corner approximation of equation (3.9) can be improved by
including a more accurate treatment of the boundary potential across the
four insulator gaps. Since the corners are located relatively far away from
each other, we assume that the potential across the insulator gap can be mod-
eled by using the conformal mapping technique for one separate corner with
infinite gate length and drain/source heigth/depth defined by the following
Schwarz-Christoffel transform [45][49][50][55]

8210 Wie — 1

3.10

awlc W1e ( )
where the subscript 1c¢ indicates that this is a one-corner transform, z;. =
11 + Y1 and wy. = uie + tv1.. With the appropriate boundary conditions

we obtain
2t

e = ﬂ’_” [\/wu; —1—tan ! (\/wlc — 1)} + 1t (3.11)

Figure 3.4 illustrates the (xi.,yi.)-plane of the one-corner layout, with the
infinite gate and source/drain boundary indicated with bold black lines. The
denominator in (3.10) represent the 180° angle at z;. = —oo while the square
root term in the numerator corresponds to the 90° angle of the source/drain
contact at z;. = t,,. We assume an infinite overlap between the gate and the
source/drain contact in this modeling scheme.

Z,, =o0
u1c =00
D
O A "
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@) ()O
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I_ Uic= 1
180° OXIDE Tym
> .
Zio = -loo GATE IX1c f’1c Z’_Z
Upe = 0 e

Figure 3.4: One corner analysis in the zj.-plane with corresponding wu.-values
along the boundary.
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Figure 3.5: Equipotential lines and electric field lines in the transformed
(t1c, 7v1.)-plane of one-corner analysis (left) and in the (z1.,y1.)-plane (right).
The inset (right) shows the potential profile through the oxide gap.

Applying the Laplace integral of equation (3.8), the potential distribution in
the (uy, ivi.)-plane becomes

1 1 w1,
P2, (U1e, U1c) = B (VG + VS/D) - (VG - VS/D) tan™" <—1> (3.12)

Ve

This potential distribution is radially equipotential from the origin of the
(w1, 01)-plane, as shown to the left in figure 3.5. The right plot shows the
equipotential and electric field lines in the (x1,, y1.)-plane.

Note that we also apply the effective insulator thickness, ¢/, ref. section 2.1,
in this analysis. As discussed, this will introduce an error if the x-component
of the electric field in the insulator is significant. As can be observed in
figure 3.5 the E-field emanating from the source/drain corner has an angle
of 45° with the silicon-insulator interface, i.e. the x- and y-components of
the E-field are equal at this point. Everywhere else inside the insulator the
y-component is larger than the x-component. As this error only affects the
correction of the boundary across the insulator gaps, we consider it a second
order effect. In section 3.2.6 the error introduced by the insulator scaling is

analyzed.

In annex A the insulator gap potential is investigated further by doing a
series expansion about z;, = 0 and z, = /. This gives further insight,
and is also applied as boundary conditions for the insulator gap modeling
function described next, and for the silicon-insulator potential profile in the
above threshold regime, as described in chapter 4.

There is no explicit, analytical inverse transform of equation (3.11). There-
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fore it is not possible to directly apply the exact one-corner potential profile
of the insulator gap, as boundary condition in the four-corner DG MOSFET.
In the following we will use a sixth order modeling function to model the in-
sulator gap potential profile. This modeling function extracts its parameters
from the one-corner analysis.

Modeling of Insulator Gap Potential

The sixth order function to model insulator-gap boundary for the four-corner
DG MOSFET is given by

Yoz (Y) = AyS+ By+C (3.13)

where the parameters A, B and C' are determined from the gate potential,
©or(0) = Vg, the source/drain potential o, (t,,) = Vs/p and by the deriva-
tive at y = 0,

0Por VS/D - Va
= — (3.14)
aylc Y1=0 t,oa: \V 1+ |u0|

where ug is indicated in figure 3.5. This derivative is found from the series
expansion about z;. = 0 in annex A, ref. equation (A.5)

The 6 order approximation of (3.13) is compared to the potential profile
obtained by the 'exact’ one-corner analysis in figure 3.6. We observe a small
deviation in the high curvature area close to the source/drain contact, but
overall there is a very good agreement between the two curves.

The insulator gap potential, ¢,;, must then be transformed to the four-corner
(u,7v)-plane so that it can be applied as the boundary potential, ¢(u), of the
Laplace equation in (3.8).

This can be accomplished by performing a series expansion of the elliptic
integral around u = wy, where u; = {—%, —1,4+1, %} for the four corners,
respectively. The transformed potential profile must be calculated separately
for the different values of u;. As the procedure is similar for all four corners,
we have limited this text to only include the calculation of the gate 1 - drain
(G1-D) insulator gap, u; = 1, as an example.

The approximate transform from the (z,y) to the (u, iv)-coordinates for the
G1-D corner is given by
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Figure 3.6: The potential profile across insulator-gap of one-corner analysis (red)
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g lF(k,u) "
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K(k) 1] TR0 - K (k)

[(u S (5k12_(11)_(uk2_) AN TR (3.15)

(M

This corresponds to the two first terms of the series expansion of the elliptic
integral around u; = 1. The third term, with the ['-parameter, ensures that
the transform has the correct value at the contact corner, y(u) =t . In this
case ' is given by

1 L-5k V29, K (k)

r——
ugml 12“0:01(1 - k2) ufwlL

(3.16)

where u,,1 is the transformed value of ¢/ , associated with gate 1. The series

expansion is compared to the exact elliptic integral across the G1-D gap in
figure 3.7, and an excellent agreement is observed.

When y(u) of equation (3.15), is inserted into (3.13), and we ignore all terms
of (u — 1)™ with order greater than 3, we obtain

8(u—1)3
(K(R)* (1 — )

Spom(u) =A 3 + By(u) + C (317)
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The above is valid for the G1-D insulator gap, and similar procedures must
be carried out for the three other insulator gaps. The calculation of the
Laplace integral, with (3.17) as boundary potential, is outlined in annex B.
Figure 3.8 shows a surface plot of the potential profile which includes this
corner correction in all four corner regions. As compared to the simplified

model of figure 3.2, we clearly observe the effect of the corner correction in
figure 3.8.
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Figure 3.7: Comparison of exact (3.1) and approximate (3.15) 4-corner transform
across the G1-D insulator gap.

Potential [V]

Figure 3.8: Inter-electrode potential distribution for the DG MOSFET including
corner correction, Vg, = 0.2V and V3 = 0V.
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3.2.5 Asymmetric Gate

The main scope is to analyze the symmetrically biased DG and GAA de-
vices. However, asymmetric gate biasing is intrinsic to the Laplace solution
discussed above, and three examples are given in figures 3.9- 3.11 to illustrate
the inter-electrode potential distribution for asymmetric gate biasing, asym-
metric insulator thickness and asymmetric insulator material properties.

In all the examples we use a near mid-gap work function for gate 1 and 2,
ie. ®,,61 = e = 4.53eV, and for simplicity zero drain bias is applied in
these examples, i.e. Vy, = 0.

For asymmetric gate bias or gate structures the saddle point is shifted from
the center of the device y = t,, +15/2 towards one of the gates depending on
the asymmetry. This means that the current path between S-D will also be
shifted. In these three examples, figure 3.9- 3.11, we observe that the gate-to
gate barrier is shifted towards the gate 1 contact.

3.2.6 DG Model Verification

The deviation between the DG model (figure 3.8) and numerical simulations
(Silvaco Atlas) is plotted in figure 3.12 for different gate biasing. Here, the
silicon substrate is replaced by an insulator with relative permittivity equal to
that of silicon, 4;, in the DG structure of the numerical simulator. Therefore
no charges are included neither in the simulations nor in the model. In the
left and right plot, for V,, = 0V and 0.7V respectively, we observe error
peaks of approximately 7-9mV close to the device corners. In the center plot
of Vg = 0.35V the error is practically zero throughout the device.

The inter-electrode potential distribution is depending on the potential dif-
ference between the gate, source and drain electrodes. At Vi,por = Vip +
Vpi(/0.36V in this case) and Vs = 0, there is no potential difference between
the gate, source and drain contacts, and the potential distribution from the
Laplace solution will be flat. Therefore, the error is very small in the middle
plot of V,, = 0.35V.

The error peaks observed in the left and right plot, for Vy; = 0V and 0.7V,
respectively, can mainly be attributed to the equivalent insulator thickness
scaling which assumes that there is no lateral electric field in the insulator,
as described in section 2.1. Close to the corners of the device, however, the
x-component of the E-field is significant. Additionally we could expect a
small error caused by inaccuracies in the approximated boundary potential
across the oxide gaps, as described in section 3.2.4.
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Figure 3.9: Asymmetrically biased DG device with V41 = 0.2V and Ve = 0V.
Vds = OV, toml = tozg = 1.6nm and Eoxl = €ox2 = 7.
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Figure 3.10: Asymmetric DG structure with t,;,; = 4.0nm and t¢,,0 = 1.6nm.
Vgsl = Vgs? =0V, Vs =0V and €551 = €og2 = 7.
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Figure 3.11: Asymmetric DG structure with €451 = 3 and €42 = 10. Vg5 =
Vgsg =0V, Vge =0V and t,p1 = tozo = 1.6nm
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Figure 3.12: Deviation between modeled inter-electrode potential distribution
and numerical simulations (Silvaco Atlas) of Laplace contribution at different gate
biasing, Vzs = 0V in all plots.

At the device center there is an excellent correspondence between the simu-
lations and the model with a maximum deviation of approximately 1-2mV.
The potential close to the center is crucial for an accurate description of the
S-D energy barrier, and the drift diffusion current in the subthreshold regime.
Therefore, the error peaks in the corners of the device will not significantly
influence the drain current modeling in subthreshold.

Close to threshold the error introduced by the inter-electrode potential dis-
tribution is very small, as observed in the center plot. With a further increase
in the gate biasing the error peaks will return, however at this stage, the in-
duced electron density will commence to dominate the device electrostatics,
as described in chapter 4.
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3.3 Gate-all-Around MOSFET

3.3.1 Adaptation of the Double-Gate Solution

Cylindrical GAA MOSFETs are 3D structures for which the conformal map-
ping method is not directly applicable. However, because of the cylindrical
symmetry, we observe significant structural similarities between the 2D po-
tential distribution obtained for the DG MOSFET and that of longitudinal
cross sections through the cylinder axis of the GAA device. In fact, the major
difference between the two is the gate control.

This difference can be expressed in terms of the characteristic lengths, which
are a measure of the penetration depth of the electrostatic influence from the

source and drain contacts along the S-D symmetry axis. The characteristic
lengths for the DG and GAA MOSFETs are given by [57][58]

st o:vtsi
Apg = \/ c (1 + ° ) tsitos (3.18)

250:1: 4gsitox

1 st to:v
)\GAA:rsi\/Z—i_ © In (1—|——> (319)

25090 Tsi
respectively, where rg; is the radius of the GAA MOSFET silicon body.

We have proposed a technique for mapping the inter-electrode potential dis-
tribution for the DG MOSFET into that of the GAA MOSFET longitudinal
cross-section [3|[4][48][50]. First we calculate the potential distribution of a
DG device with an extended gate length L' given by

A
L' = )\;ZL (3.20)

where L is the true length of the GAA MOSFET. The Schwarz-Christoffel
transform of the extended device is determined from equation (3.1) by re-
placing the length, L, with the extended gate length L’ and the modulus &
by k" which is found from the geometric ratio, ref. equation (3.2).

K(k") B L'/2
K(VI 1) 2 +7s) 20

The inter-electrode potential distribution can then be calculated by equation
(3.8) to



3.3 Gate-all-Around MOSFET 47

Gate 2

Source

Gate 1l x’
— kDG/A‘GAA'L EE—

Figure 3.13: Schematic illustration of the mapping of a DG MOSFET inter-

electrode potential distribution of an extended device of length L' = /\?—AiL (left)

into the longitudinal cross-section of a GAA device of length L (right).

oy(u,v) = = (3.22)

N

o i () — v ()]
The only difference between (3.22) and (3.9) is the value of k, and the fact
that there is only one possible value of the gate potential for the GAA.

The potential distribution, ¢} (u, v), is then transformed to the (2, y)-coordi-
nates of the the extended DG device. The transform is given by equation
(3.1) applying the properties of the extended DG-device, i.e. L' and k'. Next,
this potential distribution is mapped into the cross-section of the GAA by
compressing it uniformly in the longitudinal direction using the scaling factor
Agaa/Ape (= 0.69 for the present device), as indicated in figure 3.13.

The corner correction, as described in section 3.2.4, is also applied for the
GAA device. The circular shape of the source/drain and gate contact is not
included in the 2D one-corner analysis. However, as the insulator thickness
is relatively small compared to the silicon radius, we assume that this 3D
effect does not significantly alter the insulator gap profile.
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Figure 3.14: Inter-electrode potential distribution for the longitudinal cross-
section through the cylinder axis of the GAA device including corner correction,
Vis = 0.2V and Vg3 = 0V.

Figure 3.14 shows a surface plot of the potential profile of the GAA device
which includes the corner correction. Compared to the potential profile of
the DG device in figure 3.8, we observe the improved gate control of the GAA
structure as the potential distribution is flatter in the central region of the
device.

3.3.2 Verification of GAA-Mapping Model

Here the modeled inter-electrode electrostatics of the GAA MOSFET is com-
pared with numerical simulations (Silvaco Atlas) in order to verify the accu-
racy of the mapping procedure outlined above.

Scaling properties

To check the scaling properties of the GAA MOSFET model, the potential
at the device center was calculated for a range of gate lengths, keeping all
other dimensions fixed. The device center is not arbitrarily chosen to evaluate
the scaling properties. For Vs = 0V the center point represents the energy
barrier between the source and drain contacts in the subthreshold regime.
Even when a nonzero drain-bias is applied, the barrier stays close to the
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Figure 3.15: Modeled and simulated scaling of the subthreshold center potential
with gate length for GAA MOSFETs, rs; = 6nm and t,, = 1.6nm.

device center. Therefore, the device center is a crucial point in determining
the drain current in subthreshold.

As shown in figure 3.15, the modeled center point potential agrees very well
with numerical simulations down to a gate length of at least 15 nm, demon-
strating the good scaling properties of this modeling technique.

Error along S-D symmetry line

In the following analysis the insulator thickness is set to 0.1 nm, practi-
cally zero, to avoid corner effects obscuring the analysis, ref. discussion on
errors introduced by the effective oxide thickness scaling in section 2.1. Ad-
ditionally, we replace the silicon substrate with an insulator in the numerical
simulator. The insulator is assigned the electrostatic properties of silicon,
i.e. a relative permittivity of £,; = 11.8. Therefore, no charges are involved
neither in the model nor in the simulator in this analysis.

The modeled versus the simulated GAA potential along the S-D symmetry
line is plotted in figure 3.16. We observe a maximum deviation of 7mV,
a distance 2.4nm from the source and drain contacts. At the center the
deviation is less than 1.5mV. The DG to GAA mapping technique does not
directly account for the cylindrical geometry of the source and drain contacts.
This might explain why the largest deviation in the GAA electrostatics is
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Figure 3.16: Potential profile along the S-D symmetry line of the GAA device.
Blue line is modeled potential, red x's are numerical simulated results. The red

line indicates the deviation between model and simulations. Vgg = Vi, = 0V,
tox = 0.1nm.

located close to source and drain.

Error at different biasing levels

As discussed in subsection 3.2.6, the inter-electrode contribution depends
on the potential differences between the electrodes. There is a biasing point,
Vis = 0V and Vs = 0.36V, where the Laplace-potential is flat throughout

the device. In the left plot of figure 3.17 we see that the error is very small
for Vs = 0.4V, which is close to Vyspia:.

When the difference in electrode potential increases, either down into sub-
threshold, Vg, < Ve or up into the strong inversion regime, Vys > Viyspiar,
we observe a corresponding increase in the error. Similarly, in the right plot of
figure 3.17 we observe that the error on the drain side tends to increase when
the difference in potential between the drain and gate electrode increases.

Position of error peak

As observed from plot 3.16 and 3.17, the position of the peak error seems
to be relatively independent of biasing level and the extremum is situated
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Figure 3.17: Difference between model and numerical simulations of GAA device
for Vs = OV and different V, (left), and for V,; = OV and different Vg, (right),

tog = 0.1nm.

approximately 2.4nm from the source and drain electrode in all cases.

The left plot of figure 3.18 shows the model error of three GAA-devices of
different length with constant ry; and ¢,,. The results show that the distance

between the error peak and the source contact seems to be independent of
the lateral dimensions as well.

In the right plot of figure 3.18 the model errors of three GAA-devices of
different substrate radius are compared. We observe that the peak error
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Figure 3.18: Difference between model and numerical simulations of GAA device
for different device lengths, L (left) and different silicon radius, r4; (right), Vs =
0V, Vs =0V £y, = 0.1nm.
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position is depending on the transversal dimensions, and moves closer to
the source/drain contact for thinner devices. As Apg in (3.18) and Agaa in
(3.19), which are the basis of the DG to GAA mapping technique, are given
in terms of the silicon body radius/thickness and oxide thickness, and are
independent of the gate length, these results are not unexpected.

Conclusion

In the above analysis we observed that the mapping of a DG solution into
the GAA device resulted in two error peaks along the S-D symmetry line.
Due to the peaks’ proximity to the source and drain contacts, for all realistic
length /height ratios, these errors do not significantly influence the modeling
of the S-D energy barrier, which is situated close to the device center in the
subthreshold regime. Therefore this approach should give adequate accuracy
for the subthreshold drain current modeling.

3.4 Subthreshold Drift-Diffusion Current

As discussed above the main current path between source and drain in the
subthreshold regime, will be along the S-D symmetry line. In deep subthresh-
old the density of mobile charge is so small that it does not significantly
influence the electrostatics of the channel. The subthreshold drain current
model is therefore based on the solution of Laplace’s equation.

3.4.1 Double Gate Device

The drift diffusion current expressed as a function of quasi Fermi potential
was introduced in equation (2.11). If we assume that V is constant over any
given cross-section perpendicular to the z-axis, and assume that the mobile
charges are distributed in accordance with classical Boltzmann statistics, ref.
equation (2.8), the charge sheet density of equation (2.10) is given by

2 2 — tsi ! _
ns(x) = Wi exp ( VF) / exp <w> dy' = nso(z) exp ( VF)
tox

N, Vin th Vin
(3.23)
where W is the device width. Here we introduce ngy(z), which multiplied
by e~V¢/Vir equals the charge sheet density. Moving the factor exp (—%)

outside the integral of equation (3.23), gives an analytical solution to the
integral with Vx as the integration variable in equation (2.11) [59], i.e.
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Figure 3.19: Modeled subthreshold drift diffusion current for DG (blue lines)
compared with numerical simulations (red symbols).
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(3.24)

In the subthreshold regime, we consider the charge contribution to the po-
tential negligible. Therefore, the total potential in equation (3.23) is approx-
imated by the inter-electrode potential contribution, i.e. ¢(x,y) & @o(x,y).

The charge sheet density can be obtained by solving the integral of equation
(3.23) numerically with Simpson’s formula. Here, we have based the drift-
diffusion current calculations on 101 equally spaced G-G cut-lines from source
to drain, where ng(x) is calculated for each of these cuts. This is inserted in
the integral of equation (3.24), which again is solved numerically. We observe
an excellent agreement between the model and the simulations in figure 3.19.

3.4.2 Cylindrical Gate-All-Around Device

The expression of drift diffusion current in equation (3.24) is still valid for
the GAA device, however, when calculating the charge sheet density, nyy, we
must include the cylindrical geometry.

2

Tsi !
nso(z) = ]T\Lf_ZQW/o r’ exp (%) dr’ (3.25)
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Figure 3.20: Modeled subthreshold drift diffusion current for GAA (blue lines)
compared with numerical simulations (red symbols).

The charge sheet density can be obtained by solving the integral of equation
(3.25) numerically with Simpson’s formula. Here, the calculations are based
on 101 equally spaced G-G cut-lines from source to drain to estimate ng(z).
This is inserted in the integral of equation (3.24), which also has to be solved
numerically. We observe an excellent agreement between the modeled and
the simulated current in figure 3.20.

3.5 Compact Subthreshold Current Model

The current calculations in section 3.4 applied numerical integration routines
(Simpson’s formula) in order to determine the charge sheet density, ng, for
a number of equally spaced G-G cutlines. Additionally, the integral in the
denominator of equation (3.24) was solved numerically. By making some sim-
plifications a more compact, analytical solution to the drift diffusion current
is possible.

Considering the GAA MOSFET, we know that the main current path be-
tween source and drain is along the S-D symmetry line in the subthreshold
regime. The minimum potential along this path is the location of the en-
ergy barrier, whose height and shape are very important for determining
the current. Differentiating equation (3.22) with respect to u along the S-D
symmetry line, we obtain the following expression for ,,;, as derived for the
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DG MOSFET in annex D (ref. equation (D.4) which must be mapped from
the extended DG solution into the cross section of the GAA as described in
section 3.3)

—(L+K)(Vp — V) _ i_u2

min = o (Vp — 2V + V) min = g~ Hmin

(3.26)

Using the conformal mapping function of (3.1) (replacing L by L' and k& by £'),
we obtain the corresponding z! . . of the extended DG device. The position

of the barrier minimum of the GAA MOSFET is then z,,;, = x;lln)‘)\c"%; and
the barrier potential is given by ¢min = ©2(Umin, Vmin)-

We then assume that the gate-to-gate potential profile at the barrier can be
approximated by a parabola
. 2
11— —— 3.27
(Tlo:v + TSi) ] ( )

Using this parabolic approximation of the gate-to-gate potential profile at
the barrier we obtain an analytical solution of the charge sheet density of
equation (3.25)

Pmin (xmina 7”) = VG + (d)mm - VG)

2 ) /

n: Tsi plx,r

NosOmin = ﬁl27r/ r’ exp % dr' (3.28)

a 0 th
2 ! 2 GminThe (The+2re)+Var, 72 (bmin—Ve)

namlr Ter V min'ox\'ox ST s si\Ymin

= t ( or + SZ) th LA Vth(rg:c+rsi)2 € (Tgw+rsi)2vth — ]_

Na(¢min7Vg)

We also apply a parabolic approximation of the potential profile along the
S-D symmetry line.

Here ¢, is the barrier potential and ¢}, = %% is the curvature of
T=Tmin

the inter-electrode potential at the barrier point (v = ;) as derived for the
DG MOSFET in annex D (ref. equation (D.8), which must be mapped from
the extended DG solution into the cross section of the GAA as described
in section 3.3). This parabola will not terminate in the correct boundary
potentials at the source and drain contacts. However, as the parabola has the
correct curvature at the barrier point, the potential profile in the vicinity of
the barrier becomes quite accurate. In fact, as long as we model the potential
profile correctly before it increases 2-3 thermal voltages from the barrier
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voltage the most significant contribution to the integral in the denominator
of equation (3.24) is modeled correctly.

The integral in the denominator of equation (3.24) can then be approximated
to:

Smin
/L/2 dx’ e Vin /L/Z dx’
_ / ~ . B Lp(.’t’)
L/2 ns(](aj ) N somin L/2 exp ( Vi )
(3.30)
O in (L=2T i) oY i (LA2T min )
VTV {erf( NN + erf N

N somin \/ 29012,mm
where the error function is defined as erf(z) = % JEetdt.

Figure 3.21 illustrates the modeled subthreshold current obtained by this
simplified method. Both in figure 3.20 and 3.21 the maximum relative devi-
ation between the model and the numerical simulations occurs at V,; = 0V
and Vg, = 0.5V and is 1.8% and 1.2%, respectively. The increasing error for
increasing Vy, can be explained by the increasing density of mobile charges,
which are ignored in these subthreshold models. Anyway, a max deviation
below 2% is indeed acceptable. A marginally better result in the compact
model compared to the more exact modeling scheme, could reflect effects
introduced by the parabolic trial functions which fortuitously turn out more
accurate in this case.

A similar comparison at Vy; = —0.1V and Vg, = 0.5V gives 0.5% and 0.8%
relative deviation between the models and simulations in figure 3.20 and 3.21,
respectively. As should be expected, the exact modeling scheme gives better
results than the compact model in this case.

A similar compact current model is possible for the DG MOSFET, as will
be reported in [60]. However, in the expression of the charge sheet den-
Sity, Ngomin, ref. equation (3.28), error functions will replace some of the
exponential functions. Consequently, the 3D cylindrical geometry leads to a
simplified expression of the charge sheet density of parabolic potential profiles
as compared to the DG MOSFET.
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Figure 3.21: Compact model of subthreshold drift diffusion current for GAA (blue
dashed lines) compared with numerical simulations (red symbols).






Chapter 4

Near and Above Threshold

4.1 Introduction

Poisson’s equation can be divided in two superimposed parts, as described in
section 2.2.1. The Laplace equation describes the inter-electrode capacitive
coupling, ref. chapter 3. This is the dominating contribution to the device
electrostatics in the subthreshold regime. When the gate bias is increased,
however, we reach a point where the electrostatic effect of the inversion charge
can no longer be neglected. Poisson’s equation is solved self-consistently in 2
and 3 dimensions for the DG and GAA MOSFET, respectively, to determine
this inversion charge contribution. At finite drain bias, the self-consistency
also encompasses the quasi-Fermi potential distribution and the drain cur-
rent.

In section 4.2 and 4.3 these procedures are described for the DG and GAA
MOSFET, respectively. There is a separate procedure for the near threshold
and the above threshold operation regimes for both devices.

4.2 Double-Gate MOSFET

4.2.1 DG Near Threshold

The charge contribution to the DG electrostatics, 1, is given by the 2D
Poisson’s equation, ref. equation (2.5). Our approach involves determining
the parameters of a set of modeling functions self-consistently in accordance
with the 2D Poisson’s equation and the boundary conditions. The modeling

29
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functions approximate the potential profiles along the S-D symmetry line
and along a number of equally spaced G-G cutlines.

The procedure is initialized by the 1D Poisson’s equation in the y-direction
and an estimate of the quasi-Fermi potential at the center point. The model-
ing functions are then updated self-consistently in accordance with 2D Pois-
son’s equation. This procedure is described in detail in the following.

Initialization - Quasi-Fermi Potential
The quasi-Fermi potential as a function of z is derived from equation (3.24)

[DD /w I '
e s d 4.1
qpnVin W —L/2n0(x) ! (4.1)

where ng(x) is given in equation (3.23). Initially the charge sheet density is
calculated assuming ¢(x,y) = pa(z,y), i.e. we ignore the charge term. When
increasing the gate biasing from subthreshold conditions up to the thresh-
old voltage, the charge contribution increases and becomes quite significant.
This leads to an increasing error in the initial estimate of Vx. However, the
quasi-Fermi potential rapidly converges in the subsequent iterations when the
charge contribution is included in the self-consistent procedure as described
below.

VF(JT) = _‘/th In <1 —

Center Potential and Gate-to-Gate Symmetry Line

Based on the initial value of Vz(0), we can estimate the center potential,
01 (0 t + %) = ¢1.. We assume that the charge contribution to the gate-

? Yox

to-gate (G-G) potential has a parabolic shape given by

01(0,y) = ¢1c [1 - (1 Lﬂ (4.2)

-
tOCE+ ;Z

which satisfies the boundary conditions at the gate contacts, i.e. ¢1(0,0) =
©1(0,2t), +t5) = 0, and at the device center, i.e. ¢ (0 t .+ t—) = P,

? Yox 2

From equation (4.2) we find

d? 201
Y1 ¢ (4.3)

N
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Hence for the device center, the 2D Poisson’s equation can be written as

_ exp = _ (4.4)

201, qn? G1c + P2 (0, by + %L) — Vr(0) d%p,
(t, + 1) exila da?

The z-curvature, %‘%, is set equal to zero in the initial solution. In subse-
quent iterations, however, the z-curvature at the center point is estimated
from the modeling expression of the S-D symmetry line.

Figure 4.1 compares the modeled center potential (final value after iterative
procedure has converged), ¢. — Vs + Vpp, with numerical simulations (where
Oe = ¢1c + o is the sum of the charge and inter-electrode contributions
to the potential at the center point). For Vi, > 0.3V, the assumption of a
parabolic G-G potential profile tends to break down. At this biasing level
mobile charges commence to accumulate at the silicon-insulator interfaces
and give a significant contribution to ;. The G-G potential profile in these
regions will have high curvature which can not be represented accurately by
a parabolic curve shape.

80T

N
o

Potential [mV]

o

0 — 01 02 03
Vs [V]

Figure 4.1: The amplitude of the center potential, ¢. — Vs + Vrp, plotted as a
function of gate bias. The self-consistent solution is plotted with the blue line and
the numerical simulations are marked with red symbols. (V5 = 0V)
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Source-to-Drain Symmetry Line

Next, we consider the potential distribution along the S-D symmetry line.
Below threshold the total potential is relatively large close to the source and
drain contacts, allowing a significant amount of charges to accumulate in
these regions [11][37]. These accumulated charges give a rapid change of the
potential and a high z-curvature in these regions. As we approach the central
region of the device, however, the the gate contacts and the curvature in the
y-direction start to dominate the electrostatics. In the transition between
the source/drain influenced regions, and the central gate influenced region,
two characteristic potential minima are formed along the S-D symmetry line
of the charge potential. These minima tend to melt together when the gate
voltage is increased above 0.3V, for the device considered, as the charge
accumulation effect in the source/drain regions becomes less pronounced,
and similarly the charge density in the central region increases.

This tendency can be observed in figure 4.2 where the charge potential, ¢y,
along the S-D symmetry line is plotted for different gate biasing conditions
(Vas = 0V). At Vs = 0.3V, we observe that the potential minima have
moved further away from the source/drain contacts and are less distinct, as
compared to the plots of V,; = 0.1 and 0.2V.

The charge contribution to the potential profile, ¢, along the S-D symmetry

10
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Figure 4.2: The charge potential, ¢, along the S-D symmetry line for different
gate biasing (Vgs = 0V). Model is plotted with blue lines and numerical simulations
indicated with red symbols.
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line is modeled by considering the charge accumulation close to the source and
drain contacts and combine these with a forth order modeling expression to
model the potential profile in the central region. The potential is calculated
self-consistently in accordance with the 2D Poisson’s equation at the center
point and at the minima. Additionally we estimate the electric field at the
source and drain contact and apply the given boundary conditions.

The perpendicular electric field at the source and drain contacts can be ap-
proximated by applying a 1D Poisson’s equation and assuming a linear ap-
proximation for the potentials, as reported in [3|[11]. The electric field of the

inversion charge near source, Eg; = —% e can be written as
00 Egi + Eg) (7 + £ v
Eg ~ @/ exp —( ) ( 2) dr = qnlin (4.5)
Eg /% Vin £5i(BEs1 + Eg2)
where Egy = —dd% . which will be described in more detail below. The

electron concentration at the boundary between the body and the source
2

contact is given by n = :,— exp (%), ref. equation (2.8). If equation (4.5) is

solved for Eg;, we obtain

Es; E; \’
Eo = 2|14+ ,1+2( 2 4.6
S1 5 \J + <E52> (4.6)

where E, = ,/%, the plus sign is applied for Vs — Vep < Vs and the
minus sign for Vos—Vrp > Vs. Note that (4.6) can also be used to determine
Ep; by replacing Egs by Eps.

The E-field of equation (4.6) is based on two assumptions. First, the potential
is assumed to be linear along the S-D symmetry line close to the source
and drain contact. Second, the infinite upper limit of the integral demands
that the significance of the exponent inside the integral of equation (4.5)
vanishes within the limits of where the linear approximation is reasonable.
The potential must fall off by 2-3 thermal voltages in the linear region for this
to be true. This is normally a good assumption below and near threshold.

The electric field from the inter-electrode coupling, Ego, can be found by
differentiating the potential distribution in equation (3.9), %‘%, and the con-
formal mapping transform in (3.1), j—z, along the S-D symmetry line. Details
of this calculation are given in annex D. At the center of the source contact

the following analytical expression is obtained

Z—j(i:) lvafﬁw 1 -k VHﬂlK(fﬂ) (4.7)

S2 —

P1eviE 1=V
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Similarly on the drain side, Ep, = —% o—i/2 one obtains
2 (1—k Ak 1 k 1—Vk 2Vk
Epo=—|——+ VGL - Vb + vk + Vs vk K vk (4.8)
Lr \1+k 1—k 1—Vk 1+Vk 14+ k

Under these assumptions the contribution to the potential from the charge
accumulation can be calculated to

o0 Eg + Ego) (z + L 1 E 2
Gsa R ESI/ exp (—( ik S2) ( 2)) dr = —— (70 ) Vin
L Vin

(4.9)
At the drain side Eg; and Ego are replaced by Ep; and Ep,, respectively.

We note from equation (4.6) that in the limiting case of Egy = 0, Eg; =
E
B
|¢SA|mam - |¢DA|maw — Vvth-

Therefore, the charge accumulation potential has a maximum value of

The electronic contribution to the potential will vanish exponentially when
moving away from the source and drain contacts. This is modeled with the
following function

R

PsA(T) = dsaexp (—

Vin
However, due to the linear approximation of equation (4.5), the magnitude
of ¢s4 of equation (4.9) will always be smaller than the potential drop from
the source/drain contact to the corresponding minimum. Therefore, in our
modeling scheme, we scale the exponential expression of equation (4.10) by a
factor, ag and correspondingly ap on the drain side. Initially ag = ap = 2.

We then combine these exponential functions with a forth order function

tes
©1 (m,tgm+§> = az' +br® + ca’ +dr + e+

(B )
agPsaexp | —
asVin
Epi +E r— L
apPpa exp (—( = il ( 2)) (4.11)
apVin

Note that ag and ap are also included in the denominator of the exponential
functions so that the derivative of these terms are independent of the scaling
factors at the source and drain contacts. The parameters a, b, ¢, d and e of
(4.11) are found from the following boundary conditions.
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e Center potential from equation (4.4), ¢, (O t + %ﬁ) = 01,

) Yox

e The potential at the source and drain contact, ¢ ($§, .+ %) =0.

o Estimated E-field at source and drain contact %% L= Esi/p1-
r= b}

The scaling factors, ag and «ap, are optimized so that the 2D Poisson’s
equation is satisfied in the two minima. The positions of these minima are
given by the modeling expression (4.11), and the xz-curvature can be found
directly from the second derivative of (4.11). The y-curvature is determined
by drawing a parabola between the gate-boundaries an the potential minima
(ref. equation (4.2) and (4.3)). We then apply a binary search pattern
to determine the scaling factors, ag/p, which give the minimum deviation
between the left and right hand side of the 2D Poisson’s equation in these
points.

Figure 4.3 illustrates an example of the different contributions in equation
(4.11), and figure 4.4 compares the modeled potential contribution from the
charge, ¢, the inter-electrode coupling, s, and the total potential, ¢, with
numerical simulations.

o SOURCE ' ' ' DRAIN
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Figure 4.3: The charge potential, ¢;, along the S-D symmetry line for V,, =
0.25V and Vy; = 0.5V. Different contributions to modeled charge potential are
indicated. Numerical simulations are plotted with red symbols. Note that agdsa
and ap@pa have been subtracted from the exponential terms to ease the com-
parison of the different contributions.
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Figure 4.4: Modeled and numerically simulated total potential, ¢, and the contri-
butions, ¢ and 9 along the S-D symmetry line for V,, = 0.25V and V4, = 0.1V.
The constant voltage V3; has been added to ¢; to ease the comparison of the
different terms.

Gate-to-Gate Cutlines

Based on the results for ¢ along the S-D symmetry line, we can calculate ¢
of a number of equally spaced G-G cutlines from source to drain. The G-G
cuts, which represent the charge contribution to the potential, ¢;(x,y), are
modeled by parabolas as given in equation (4.2), where ¢, is replaced by the

corresponding value of the modeled S-D potential profile o, (a: t .+ %)

? Yox

Drain Current and Quasi-Fermi Potential

The drift-diffusion current was introduced in equations (2.11) and (3.24). In
the drift-diffusion current expression we have to determine the charge sheet
density, ng(z), as given in equation (3.23).

The integral of (3.23) is calculated numerically, using Simpson’s formula, for a
number of equally spaced G-G cuts from source to drain, ref. discussion above
and figure 4.5. Note that it is the total potential ¢ = ¢; + 9 that enters into
the exponential of equation (3.23). Simpson’s formula is also applied when
solving the integral in the denominator of the current expression in equation
(3.24).
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A new estimate of the quasi-Fermi potential, Vg (z), can then be obtained by
equation (4.1). Based on this new estimate of Vi(x), we can return to find
a better estimate of the center potential. Then the parameters of the S-D
symmetry line are updated, which in turn gives new boundary conditions
of the G-G cut lines. This updated potential distribution leads to a new
estimate of the current and Vg, and the procedure can be repeated. The
procedure typically converges after 2-3 iterations.

Figure 4.5 compares the modeled charge potential grid and numerical simu-
lations for V,, = 0.25V and Vy, = 0.1V, and the inset shows the quasi-Fermi
potential. Note that we do not explicitly model the silicon-insulator potential
profiles, even though they are plotted with bold lines and compared to nu-
merical simulations in the figure. These are based on the value of the equally
spaced parabolic G-G cuts at the silicon-insulator interface. An excellent
agreement between the model and the numerical simulations is observed.

Potential [mV]

Figure 4.5: Modeled charge potential, o1, of the DG device (blue lines) compared
to numerical simulations (Silvaco Atlas) (red lines). The plot includes 9 G-G
cutlines, the S-D symmetry line (bold) and the silicon-insulator potential profiles
(bold). Inset shows modeled quasi-Fermi potential (Vz(z)) (blue line) from source
to drain compared to numerical simulations (red line).
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Figure 4.6: Flow diagram of self-consistent procedure of calculating electrostatics
and current in the near threshold regime.

The self-consistent procedure for the near threshold regime, is summarized
in the flow diagram of figure 4.6 [3]. The drift-diffusion current as a function
of Vs is plotted in figure 4.7 for V, from 0V to 0.3V. We observe an excellent
agreement between the model and the numerical simulations.
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Figure 4.7: Modeled drift-diffusion current in the near threshold regime for DG
(blue lines) compared to numerical simulations (red symbols).
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4.2.2 DG Above Threshold

Similarly to the near-threshold modeling we apply a number of modeling
functions whose parameters are optimized self-consistently in accordance
with the 2D Poisson’s equation, to model the electrostatics in the above
threshold regime.

Initialization - Quasi-Fermi Potential

The quasi-Fermi potential is initialized by using a piecewise linear function

with value of Vi(0) = (1 — 0.8Vj,)%= at the center, 2 = 0. This is found

empirically as a good estimate for the device considered. A simple linear

function, i.e. Vp(x) = V47 + Vgs, would also work, but the procedure would

normally need an extra iteration to converge.

This serves as a starting point, and we will return to the self-consistent
calculation of the quasi-Fermi potential at the end of this section.

Initialization of Center Potential and Gate-to-Gate Symmetry Line

Based on the initial value of Vz(0), a first estimate of the potential profile
along the G-G symmetry line is made by the 1D long channel solution of Taur
et al. [25], ref. equation (2.21). As this is a solution of the 1D Poisson’s

equation, it is assumed that the xz-curvature is zero, initially, i.e. j—ﬁ 0= 0.
Tr=

Note this 1D solution gives the total potential, and the charge contribution
is found by ¢1(y) = @ (y) — 2(y).

Source-to-Drain Symmetry Line

Next, we establish the potential profile along the S-D symmetry line, which
is modeled by a forth order polynomial in combination with exponential
functions which model the charge accumulation close to the source/drain
contacts, ref. (4.10)

o(r+4) p(:-4)

o1 = axt + bx® + cx? + de + e + pgae Ve + ppae Ve (4.12)

The parameters of the polynomial are found from the center potential (es-
timated by G-G symmetry line) and the potential and electric field at the
source and drain contacts. These boundary conditions must be adjusted to
account for the value and derivative of the two exponential terms.
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The charge accumulation close to the source/drain contacts, which was dis-
cussed in section 4.2.1, is not as pronounced above threshold. Therefore the
assumptions of equation (4.6) are no longer as accurate as in the near thresh-
old regime. However, as the gate voltage is increased, the accuracy of the
electrostatics along the S-D symmetry line becomes less important, since the
channel has moved from the center of the device to the silicon-insulator inter-
faces. Therefore the charge accumulation terms in (4.12) do have adequate
accuracy for this region as well. On the other hand, a more accurate mod-
eling of the potential profile along the silicon-insulator interfaces is required,
and we will return to this in a separate subsection below.

Figure 4.8 plots the S-D potential profile, 1, based on equation (4.12), where
the center potential has been optimized self-consistently as described below.
The inter electrode contribution, (5, and the total potential, ¢, are also
shown. The modeled potential profiles agree very well with the numerical
simulations, and the maximum deviation is less than 5 mV.

Self-Consistent Adjustment of Center Potential

When the S-D and G-G symmetry lines have been established, the center
potential is adjusted self-consistently in accordance with the 2D Poisson’s
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Figure 4.8: Modeled and numerically simulated total potential and the contribu-
tions, 1 and ¢ along the S-D symmetry line for Vg3 = 0.6V and Vy; = 0.5V. The
constant voltage Vj,; has been added to ¢; to ease the comparison of the different
terms.
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equation (2.3), which is solved with respect to ¢ = @, i.e.

o | ¢
/ tsi dx? + dy?
¢c =@ <O7tow + ?) = VF(O) + Vi In — (4.13)
€siNg

where the x-curvature is estimated from the second derivative of the modeling
2

function of equation (4.12), i.e. L85 = 2¢, and the curvature of the inter-

electrode potential, djﬂ;’;?, which is derived in annex D. The y-curvature is

estimated by the second derivative of the long channel solution in (2.21),

d? 832V,
d f T o2 ﬂ(t’fﬁsf}/l?—y) 2 (4.14)
Y CcoS ( 1o /2 )tsi

which must be evaluated for y = ¢/ +1,/2 (i.e. cos-function in denominator
equals 1).

Based on the adjustment of the center potential, the potential profiles of the
S-D and G-G symmetry lines can be updated accordingly.

Potential Profile along Silicon-Insulator Interface

The potential along the silicon-insulator interface is modeled by a set of
modeling functions as indicated by the different colors in figure 4.9 and 4.10.

Source side (black curve): The black part of the curve in figure 4.10
extends from the center of the device to a distance ¢/, from the source contact
and is modeled by a parabola.

The parameters of the parabola are determined from three points; at the

center, x = 0, one effective insulator thickness from the source contact,
r = —L/2+t, and halfway between these points, z = L?t% Initially we

use Taur’s long channel approximation [25]. Separate values of the auxiliary
variable § must be calculated for each of these points based on the estimated
quasi-Fermi voltage, Vr(x), ref. equation (2.21).

In the following iterations the potential at these three points are adjusted
self-consistently in accordance with the 2D Poisson’s equation, ref. equa-
tion (4.13). The z-curvature is estimated from the second derivative of the
parabola (black curve) which was calculated in the previous iteration. The
y-curvature is approximated by the second derivative of the long channel
approximation of equation (4.14), which must be evaluated for y =t/ .

Drain side: On the drain side we have two cases that must be treated dif-
ferently depending on Vy,. To distinguish between them we use the following
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Figure 4.9: Cross section of DG device with different modeling regions indicated.
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Figure 4.10: Silicon-interface surface potential of DG device for Vs =0.6V and
Vas =0.1V and 0.5V. Red symbols are numerical simulations (Silvaco Atlas).



4.2 Double-Gate MOSFET 73

condition. When Vi, —Vrp > Vi +Vj,;, case 1 is applied, else case 2 is applied
(ref. figure 4.9).

Case 1: For low drain biasing the surface potential is approximately linear up
to a distance ¢, from the drain contact as can be observed for V;; = 0.1V in
figure 4.10. We use Taur’s long channel solution [25] to estimate the potential
at v = L/2—1t';, and model the potential linearly between this point and the
center point. This is indicated with the red line in figure 4.10.

As the z-curvature of the linear line is zero, self-consistency is fulfilled by the

long channel solution at x = L/2 — ¢!, in this case.

Case 2: For higher drain biasing we use the following function to model the
potential profile, which extends from the drain contact to the center

L L\3
oz, t,)=A (x — 5) + B (x — 5) +Vp (4.15)

In annex A, we found that by carrying out a serial expansion about the drain
contact corner the inter-electrode potential was described by a %—root term,
ref. equation (A.10). The exponent of the B term in (4.15) is therefore based
on this one-corner analysis. The silicon-insulator potential terminates at the
sharp corner of the ideal drain contact, which is a weak singularity for the
electric field. This means that the derivative of the potential, i.e. the electric
field, approaches infinity at this point. A and B are determined by the
potential at the center (z = 0) and at a point in between (z = £). The latter
is initiated by Taur’s long channel solution and adjusted self-consistently
in accordance with equation (4.13), where the z-curvature is derived from

2y _ 2B . . .
(4.15), o5 = ook and the y-curvature is given by equation (4.14).

The resulting potential profile is plotted with the blue line in figure 4.10.
Potential close to source and drain contacts: Close to the source con-
tact (cyan curves) and close to the drain contact in case 1 (green curve), the
surface potential is modeled by a combination of a term with exponent % and
linear term as in case 2 of the drain surface potential.

At the drain side we use equation (4.15), where A and B are decided from
the value and derivative of the red line at x = L/2 — ¢/ . This is shown as
the green line in figure 4.10.

At the source side appropriate sign changes must be applied to (4.15), and
Vp must be replaced by Vg, i.e.

L L\s3
olat )= A (x + 5) +B (x + 5) Vs (4.16)
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The derivative of this function is infinity at the source contact corner, r =
L/2, as desired. A and B are decided by the potential and derivative of the
parabola at = —L/2 + 1t/ (black curve).

Gate-to-Gate Cutlines

Based on the S-D symmetry line and the silicon-insulator potential profile, we
can calculate a number of equally spaced G-G cutlines from source to drain.
The G-G cuts, which represent the total potential, ¢ + @5, are modeled by
a sixth order function

oA Lsi ' 6 Lsi / 4 ~ Lsi / 2
QO(y)—Cl y_?_tow +0b y_E_tow +c y_?_tow +d (417)

The parameters a, lA), ¢ and d are determined from the following boundary
conditions

e The potential along the S-D symmetry line.
e The potential along the silicon-insulator interface.

e The derivative at the silicon-insulator interface, given by ‘;—“; =

Y=tp,
w, where we have assumed that the potential is linear through

the insulator.

e The y-curvature along the S-D symmetry line of the device, which is
determined self-consistently in accordance with the 2D Poisson’s equa-
tion, i.e.

o _ qni (@t + L) —Ve(z)\  d%p
—_— X J—
dy2 5siNa P ‘/th de

—2¢  (4.18)

2 2 2 . .
Here the z-curvature, ZTf = ddf; + dd;’f, is estimated from the second

derivative of the modeling function of (4.12), d;f; = 12az*+6bz +2¢ ',
d2o
Y dx2 )

which is derived

and the curvature of the inter electrode potential
in annex D.

Close to the source and drain contacts the G-G potential cuts become very
flat in the central part and have high curvature close to the silicon-insulator

!The exponential terms of (4.12) can be ignored since they are only significant close to
the source and drain electrodes, where we assume flat G-G profiles as described next.



4.2 Double-Gate MOSFET 75

interface. These boundary conditions can give unwanted oscillations in the
modeling function of (4.17). To avoid this, we insert two triangles with one
side along the source and drain contact and the triangle top at the S-D
symmetry line, as indicated in figure 4.11. On the drain side the triangle top
is assumed to be one characteristic length, Apq, ref. equation (3.18), from
the contact. On the source side the triangle top is assumed to be at the
minimum of the total potential along the S-D symmetry line, but not further
than A\pg from the source contact.

Inside the triangle the potential is modeled as constant in the y-direction
and equal to the potential along the S-D symmetry line in the z-direction.
Outside the triangle, a modified version of equation (4.17) is applied, where
the (y — % —t/,)" factors are replaced by (y — ya(x))", where ya(x) is the
y-value of the triangle edge, i.e.

p(y) = aly —ya())® +bly —ya()* +d (4.19)

We use the same set of boundary conditions as for equation (4.17), but the
parabolic term, ¢, vanishes, as the curvature at the edge of the triangle is
assumed to be zero.

Drain Current and Quasi-Fermi Potential

We follow the same procedure as in section 4.2.1 to determine the drift-
diffusion drain current and quasi-Fermi potential. The charge sheet density,
nso(x), ref. equation (3.23), is obtained from the electrostatics which has
been calculated above. The integral of (3.23) is calculated numerically, using
Simpson’s formula, for a number of equally spaced G-G cuts from source to
drain. Simpson’s formula is also applied when solving the integral in the
numerator of the current expression in equation (3.24).

A new estimate of the drift-diffusion current and quasi-Fermi potential,
Vi (x), can be obtained by equation (3.24) and (4.1), respectively. Based
on the new estimate of Vg(x), we can return to find a better estimate of the
center potential. Then the parameters of the S-D symmetry line and silicon-
insulator potential profiles are updated, which in turn gives new boundary
conditions of the G-G cut lines. This updated potential distribution leads to
a new estimate of the drift diffusion current and Vp(z), and the procedure
can be repeated. The procedure typically converges after 2-3 iterations.

Figure 4.11 compares the modeled potential grid and numerical simulations
for Vs = 0.6V and V4, = 0.5V, and the inset shows the quasi-Fermi potential.
An excellent agreement between the model and the simulator is observed.
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Figure 4.11: Modeled electrostatics of DG device (blue lines) compared to numer-
ical simulations (Silvaco Atlas) (red lines). Includes 9 G-G cutlines (G-G symmetry
line in bold), the S-D symmetry line (bold) and the silicon-insulator potential
profiles. Inset shows modeled quasi-Fermi potential (blue) from source to drain
compared to numerical simulations (red).

The self-consistent procedure for the above-threshold regime, is summarized
in the flow diagram of figure 4.12 [3|. The drift-diffusion current as a func-
tion of Vg, is plotted in figure 4.13 for Vi, from 0.4V to 0.8V. An excellent
agreement between the modeled drain current and the numerical simulations
is observed.
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Figure 4.12: Flow diagram of self-consistent procedure of calculating electrostat-
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Figure 4.13: Modeled drift-diffusion current in the above threshold regime for
DG (blue lines) compared to numerical simulations (red symbols).
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4.3 Gate-all-Around MOSFET

The modeling of the cylindrical GAA device follows the same procedure and
uses the same modeling functions as the DG MOSFET both in the near and
above threshold regimes. The major difference is that the cylindrical geome-
try must be properly accounted for, and the self-consistency must be linked to
the 3D Poisson’s equation with cylindrical co-ordinates, ref. equation (2.4).

Section 4.3.1 outlines the modeling procedure in the near threshold regime
and section 4.3.2 the procedure above threshold.

4.3.1 GAA Near Threshold

Initialization - Quasi-Fermi Potential

The charge sheet density, ns(x), for the GAA device is given by equation
(3.25). Initially, we assume that the inter-electrode contribution dominates
the electrostatics, and set p(z, ") & po(z,7") in the exponent inside the inte-
gral of ng(z). Based on this estimate, the quasi-Fermi potential is initiated
by equation (4.1).

Center Potential and Gate-to-Gate Symmetry Line

Very similar to what we did in the case of the DG device, we estimate the
center potential ¢;(0,0) = ¢1. assuming that the charge contribution to the
G-G potential has a parabolic shape given by

01(0,7) = ¢ [1 — (Lﬂ (4.20)

/
Tox + Tsi

which satisfies the boundary conditions at the gate contact, i.e. ¢1(0,7!, +

rsi) = 0, and at the device center ¢1(0,0) = ¢1.. From the cylindrical co-
ordinates of Poisson’s equation, we then find

2
lim (1% L 901) =T 4010 (4.21)

r=0 \ r dr dr? o+ rs)?

Hence for the device center, Poisson’s equation with cylindrical co-ordinates
can be written as

4¢1c o qn? ¢1c + 902(07 O) - VF(O) dzgpl
= exp +
(e +7si)?  €5ilNa Vin dz?

(4.22)
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The z-curvature, ‘;27“;’, is set equal to zero initially, and is estimated from the

modeling function of the S-D symmetry line in subsequent iterations.

Figure 4.14 compares the modeled center potential (final value after iterative
procedure has converged), ¢.— Vs + Vpp, with numerical simulations (where
be = @10+ bac). We observe a somewhat larger deviation between the model
and the numerical simulations, compared to the DG device (ref. figure 4.1).
The parabolic function might no longer be as accurate as the potential profile
along the G-G symmetry line seems to be flatter close to the center of the
cylinder. Additionally due to the cylindrical geometry the curvature of the
parabola is multiplied by two in the center, ref. equation (4.21). Therefore
the error in the curvature of the parabolic modeling function will be amplified.
However, we observe that the maximum deviation in the center potential is
in the order of 2-3 mV, and this is more than adequate.

Source-to-Drain Symmetry Line
The modeling of the charge potential along the S-D symmetry line is done
in exactly the same manner as for the DG-device as described in section

4.2.1, applying the same modeling functions and boundary conditions. The
assumptions made for calculating Eg; and Ep; are still valid. The electric
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Figure 4.14: The amplitude of the center potential, ¢. — Vs + Vpp, plotted as
a function of gate bias. The self-consistent solution is plotted with the blue line
and the numerical simulations are marked with red symbols. (V5 = 0V)
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Figure 4.15: The charge potential plotted along the S-D symmetry line for dif-
ferent gate biasing, Vzs = OV. Model is plotted with blue lines and numerical
simulations indicated with red symbols.

fields from the inter-electrode contributions, Egs and Eps, are given by the
expressions in (4.7) and (4.8), respectively, replacing k by k', ref. equation
(3.21).

Figure 4.15 shows the charge contribution to the potential, ¢, along the S-D
symmetry line plotted for three different gate biasing levels. We recognize the
two potential minima close to the source and drain contacts, ref. discussion
in section 4.2.1.

Figure 4.16 illustrates an example of the different contributions of the model-
ing function in equation (4.11) for the GAA device, and figure 4.17 compares
the modeled potential contribution from the charge, ¢, the inter-electrode
coupling, (o, and the total potential, ¢, with numerical simulations.

Gate-to-Gate Cutlines

Exactly as we did in the case of the DG device, we calculate a number of
equally spaced G-G cutlines from source to drain. The G-G cuts, which
represent the charge contribution to the potential, p;(z,y), are modeled by
parabolas as given in equation (4.20), where ¢;. is replaced by the corre-
sponding value of the modeled S-D potential profile ¢; (z,0).
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The charge potential, ¢, along the S-D symmetry line for

Vgs = 0.25V and Vg, = 0.3V. Different contributions to the modeled charge
potential are indicated, ref. equation (4.11). Numerical simulations are plotted
with red symbols. Note that aspss and apdpa have been subtracted from the
exponential terms associated with the source and drain sides, respectively, to ease

the comparison

of the different contributions.
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Figure 4.17: Modeled and numerically simulated total potential, ¢, and the
contributions, ¢; and ¢y along the S-D symmetry line for Vi3 = 0.3V and Vy, =
0.1V. The constant voltage Vj; has been added to ¢; to ease the comparison of
the different terms.
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Drain Current and Quasi-Fermi Potential

The drift-diffusion current, Ipp, and the quasi-Fermi potential are calculated
in the same manner as for the DG device. However, we must account for the
cylindrical geometry when calculating the charge sheet density, ref equation
(3.25).

Based on this new estimate of Vr(z), we can return to find a better estimate
of the center potential. Then the parameters of the S-D symmetry line are
updated, which in turn gives new boundary conditions of the G-G cut lines.
This updated potential distribution leads to a new estimate of the current and
Vi(z), and the procedure can be repeated. The procedure typically converges
after 2-3 iterations and is summarized in the flow diagram of figure 4.6.

Figure 4.18 compares the modeled charge potential grid with numerical sim-
ulations for V3 = 0.25V and V4, = 0.1V, and the inset shows the quasi-Fermi
potential. An excellent agreement between the model and numerical simula-
tions is observed.
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Figure 4.18: Modeled charge contribution to the electrostatics of GAA device
(blue lines) compared to numerical simulations (Silvaco Atlas) (red lines). Includes
9 G-G cutlines, the S-D symmetry line (bold) and the silicon-insulator potential
profiles (bold). Inset shows modeled quasi-Fermi potential (blue line) from source
to drain compared to numerical simulations (red line).



4.3 Gate-all-Around MOSFET 83

GAA Ves =03V,
<
f=S

8 ]

=0.25V;

xxxxxxxxxgixxx_

\/ES=O'2V"

Vgs=0V A== s ommom

‘ . V,.=0.15V

0 0.4 0.5 0 0.1 0 0.4 0.5

02 03
VisV]

Figure 4.19: Modeled drift-diffusion current in the near threshold regime for GAA
(blue lines) compared to numerical simulations (red symbols).

The modeled drift-diffusion current as a function of Vy, is plotted in figure
4.19 for Vg, from OV to 0.3V. These results also agree very favorably with
the numerical simulations.

4.3.2 GAA Above Threshold
Initialization

The quasi-Fermi potential is initialized by the same piecewise linear function
as used for the DG device, ref. section 4.2.2. The initial value of V#(0) is then
applied in the long channel solution of Iniguez et al. [35], ref. equation (2.38),
to initialize the potential profile along t}%e G-G symmetry line. Initially the

x-curvature is assumed to be zero, i.e. ZTf 0= 0.
r=

Source-to-Drain Symmetry Line

The modeling of the charge potential, ¢, along the S-D symmetry line is
performed in the exactly same manner as for the DG-device as described in
section 4.2.2, applying the same modeling functions and boundary conditions.

Figure 4.20 plots the S-D potential profile, ¢, and the contribution from the
inversion charge, ¢; and inter-electrode, 5. The potential profiles agree very
well with the numerical simulations.
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Figure 4.20: Modeled and numerically simulated total potential, ¢, and the
contributions, (1 and ¢ plotted along the S-D symmetry line for Vy; = 0.6V and
Vis = 0.5V. The constant voltage V;; has been added to ¢ to ease the comparison
of the different terms.

Self-Consistent Adjustment of Center Potential

When we have found estimates of the potential profiles along the S-D and
G-G symmetry lines, the center potential is adjusted self-consistently in ac-
cordance with the 3D Poisson’s equation, i.e.

d’p 1dy >
_|_ T _|_ .2
dr? ) (423)

¢ = ¢ (0,0) = Vp(0) + Vi In (K r dr

2
qan;
EsiJVa

where the z-curvature along the S-D symmetry line is estimated from the
second derivative of the modeling function, ¢, and the second derivative of
the inter-electrode potential, %%. The latter is derived in annex D. The two
terms of Poisson’s equation involving variable r, are estimated by the long
channel solution of equation (2.38)

lde d? 8r2Vin (8 — 1
s R (B 1) . (4.24)
rdr - dr %+ (B—1)]

which is evaluated for » = 0. This adjustment of the center potential updates
the boundary conditions of the S-D and G-G cut lines.
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Silicon-Insulator Potential Profiles

The potential along the silicon-insulator interface is modeled by the same
set of modeling functions as for the DG device. The modeling functions are
determined from a number of points along the interface, which are updated
self-consistently. The z-curvature in these points are estimated from the
modeling functions, and the two terms of Poisson’s equation involving the
variable r are estimated from the long channel solution of equation (4.24),
evaluated at r = ry;.

Gate-to-Gate Cutlines

Based on the potential profile along the S-D symmetry line and the silicon-
insulator interfaces, a number of equally spaced cutlines are calculated ap-
plying the modeling function of equation (4.17). The three first boundary
conditions of the cutlines are equal to the boundary conditions for the DG
model. However, the final boundary condition as given in equation (4.18),
must be modified to account for the cylindrical geometry. Along the S-D
symmetry line (r = 0), the two r-terms of Poisson’s equation add up to
lim, (% + %‘fi—f) = 2‘;27%’. Therefore along the S-D symmetry line the r-
curvature is given by

L[t (ot ) < Vo))
2 gsiNa ‘/th dx?

d*p
dr?

(4.25)

r=0

Similar to the DG model, we introduce two triangles with one side along the
source and drain electrodes, and the triangle top at the S-D symmetry line.
Inside the triangle the potential is modeled as constant in the y-direction and
equal to the potential along the S-D symmetry line in the z-direction. Out-
side the triangle equation (4.19) is applied (replacing y by the r-coordinate).
On the drain side the triangle top is set to be one characteristic length, g4,
from the drain contact, ref. equation (3.19). On the source side the triangle
top is set to the minimum of the total potential along the S-D symmetry line,
but not further than Aga4 away from the source contact. These triangles are
indicated in figure 4.21.

Drain Current and Quasi-Fermi Potential

The drain current and quasi-Fermi potential are calculated in the same man-
ner as for the near-threshold regime of the GAA, ref. section 4.3.1. The
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modeled quasi-Fermi potential is shown in the inset of figure 4.21 and the
modeled drift-diffusion current as a function of Vy, is plotted in figure 4.22.
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Figure 4.21: Modeled electrostatics of GAA device (blue lines) compared to
numerical simulations (Silvaco Atlas) (red lines). Includes 9 G-G cutlines (G-G
symmetry line in bold), the S-D symmetry line (bold) and the silicon-insulator
potential profiles. Inset shows modeled quasi-Fermi potential (Vg (z)) (blue) from
source to drain compared to numerical simulations (red).
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Figure 4.22: Modeled drift-diffusion current in the near threshold regime for GAA
(blue lines) compared to numerical simulations (red symbols).



Chapter 5

Drain Current Modeling

5.1 Modeled Drift Diffusion Current

The drift diffusion current plotted as a function of Vj, in the subthreshold
regime was presented in figure 3.19 and 3.20 for the DG and GAA devices,
respectively. Similarly the drift-diffusion current of the DG device in near

and above threshold regimes was presented in figure 4.7 and 4.13, and for
the GAA device in figure 4.19 and 4.22.

In figure 5.1 the same results are presented in semi-logarithmic plots as a
function of Vg ,. Here, the subthreshold model is applied for V,; < 0V, the
near threshold model for 0V< Vi, < 0.35V and the above threshold model
for Vs > 0.35V for both the DG and the GAA MOSFET.

X Numerical Simulations ;S X Numerical Simulations
10 : : : 10
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0.8
Vos VI Vgs V1

Figure 5.1: Modeled and simulated transfer characteristics of DG (left) and GAA
MOSFET (right) for Vs =0.1, 0.3 and 0.5V.

87



88 Drain Current Modeling

5.2 Compact Current Modeling

The main concern in compact modeling is to find analytical expressions for
the current-voltage characteristics which are compatible with the efficiency
requirements of circuit simulators. In section 3.4 an analytical model of the
drift diffusion current in the subthreshold regime for the GAA MOSFET was

presented.

A compact drain current model which covers all operating regimes from sub-
threshold to strong inversion, was presented in [11][61]. This model is based
on an interpolation function which matches the limiting behavior in sub-
threshold and strong inversion, and at a point close to threshold.

[sub
Inp = 10" |1 : (5.1)
by o810 1+ (loglan) "]

10g10 (Iin'u

Here I,,, and I,,, are the asymptotes of the current in subthreshold and
strong inversion regimes. These asymptotes are linear functions in the semi-
logarithmic plot and are determined by two points in subthreshold and two
points in strong inversion, as indicated in the left plot of figure 5.2. The pa-
rameter m is found by matching the interpolated curve to the near threshold
calculation as indicated by the asterisk in the left plot.
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Figure 5.2: To the left the subthreshold and strong inversion asymptotes (dashed
lines) and the near threshold current calculation (asterisk) are illustrated. The
solid lines are the resulting interpolating function. To the right, the modeled DG
compact current (dashed lines) is compared to numerical simulations (symbols).



5.3 Transport formalisms 89

The resulting drain current of the DG MOSFET is compared with numerical
simulations in the right plot of figure 5.2. This compact modeling scheme
can also be applied for the GAA MOSFET, and we obtain similar accuracy
in the drift diffusion current as shown in [61].

5.3 Transport formalisms

In section 2.2.4 a brief introduction to some transport models was given. The
modeled current in figure 5.1 is based on the drift diffusion model with con-
stant mobility (DD). However, in nanoscale MOSFETSs, with channel lengths
less than about 100 nm [8], the scattering rates of the carriers indicate
that the drain current will have the character of both drift-diffusion and
ballistic/quasi-ballistic transport, with an increasing shift towards the latter
with decreasing gate length. In the following we will carry out a comparison
between the simple DD model and more sophisticated transport mechanisms

3]

Figure 5.3 compares numerically simulated DG and GAA MOSFET drain
current I, versus Vi, using different transport formalisms (energy transport,
hydrodynamic, drift diffusion with velocity saturation (DDvs), and drift dif-

fusion with constant mobility (DD)) at the gate lengths 12.5 nm, 25 nm, and
50 nm.
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Figure 5.3: Simulated DG (left) and GAA (right) drain current versus gate
bias for different transport formalisms and gate lengths, L =12.5, 25 and 50nm.
Vas = 0.5V. (DD=dFrift diffusion with constant mobility, DDvs=dFrift diffusion with
velocity saturation, HD=hydrodynamic, ET=energy transport)
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We notice that the energy transport (ET) formalism, which presumably is
the most precise [16], consistently gives the highest I,. The hydrodynamic
model (HD), which is somewhat less precise, predicts a 20 — 30% lower I, for
the 25 nm device in moderate to strong inversion. It is interesting to note
that DD with constant mobility, using the default value from Atlas (u, =
1000cm?/Vs), gives results in between those of the ET and HD formalisms,
tracking quite well their dependence on Vg,. As expected, DD with a typical
saturation velocity (DDvs) gives I4-values almost a decade lower than the
other models for the 25 nm device, (using the Atlas default values of vy =
1.03-107cm/s and m = 2, ref. equation (2.14)).

From this, we may conclude that, in the near-ballistic regime, the DDvs
formalism fails to predict the magnitude of the drain current, primarily be-
cause of the limit imposed on the carrier velocity. However, using the DD
formalism, which has no upper bound on the velocity, seems to compensate
quite well for this deficiency to give estimates of I; that are well within the
range of values predicted by the physically better justified ET and HD for-
malisms. Moreover, a still better overall agreement with either ET or HD can
be obtained simply by suitably adjusting the DD mobility parameter. Simi-
lar observations have also been made by comparison between DD transport
and Monte Carlo simulations [62]. In terms of our modeling, the application
of the DD represents a great simplification over the use of any of the other
formalisms.



Chapter 6

Capacitance Modeling

In section 2.2.5, we introduced a capacitance model which is based on the
charge conservation principle. We saw that a three terminal device can be
described by 9 trans- and self-capacitances C'xy, of which 4 are independent.
For symmetric gate biasing the DG MOSFET can be considered a three-
terminal device, and the GAA device is also, indeed, a three terminal device.

The equivalent circuit of this capacitance model, which was presented in fig-
ure 2.2, is reprinted inside the DG /GAA-cross section in figure 6.1. Note that
we assume that the gate contacts overlap the source and drain contacts, and

Gate
‘ Cextr—|— /Odee C., {r—l—
==Csc LCGS Ces Coe== Cop=—
Ly Ly
(OI) Css Cep Cop _D‘
S —I— 0
Q 5
(D CDS
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1l -
Silicon-substrate
Cr= \Oxide [ et
Gate

Figure 6.1: Cross section of DG and GAA device with equivalent circuit of charge
conserving intrinsic capacitances, C'xy. Extrinsic overlap capacitances, Ce¢yy, and
boundaries between the intrinsic and extrinsic capacitances are indicated.
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this results in extrinsic capacitances, C.,., associated with the overlapping
regions. The boundaries between the intrinsic and extrinsic capacitances are
also indicated and will be explained in detail below.

Section 6.1 and 6.2 describe the DG and GAA models of the intrinsic trans-
and self-capacitances in subthreshold and in the near/above threshold re-

gions, respectively. The extrinsic overlap capacitances are analyzed in section
6.3.

6.1 Subthreshold - Intrinsic Capacitances

6.1.1 Double Gate

In the subthreshold regime the inter-electrode coupling dominates the behav-
ior of the device. The intrinsic subthreshold capacitance model is therefore
based on the solution of Laplace’s equation, ¢, as described in chapter 3.

If we can assume zero body charge, we know that the electric field emanating
from a charge on electrode X must terminate on a charge of opposite sign
on electrode Y. Therefore, the electrode charges associated with the inter-
electrode coupling add up to zero charge when summed over all electrodes,
due to the charge conservation principle [20].

According to Gauss’ law, the total charge assigned to an electrode, is pro-
portional to the integrated perpendicular electric field, E , terminating on
that electrode. In accordance with the thin oxide approximation, we extend
the source and drain contacts through the oxide gap at the corners of the
device. Applying the inter-electrode potential distribution of equation (3.9)
we can then determine the charge associated with electrode X to

Zmazx Umaz d
Qx = eiW E, dz = ie,W &2 du
Zmin Umin dU v—0
(u—1)(ku+1) Umaz
e | Vel (ters) + 6
=— ‘
Vol (5) + Vpln (B5t) ||

where Vi; =V, — Vg is the difference between the gate-source voltage and
the flat band voltage, Vs = Vj; is the built in voltage of the source electrode
and Vp = Vj; + Vs is the sum of the built in voltage and the drain-source
voltage. In equation (6.1) we made the following substitution of variables to
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perform the integral over E

dipa1 dz = — lim L@g/dv %du =7 @
dz v—0 dz/dv du dv
dz/du

dz/dv |y
(Zmins Zmaz) OF (Umin, Umaz), in (6.1) are the lower and upper extremities of

the electrode, X, to which the charge is to be assigned. As we consider
symmetrical gate-biasing, the calculation of the charge associated with the
gate, QQ¢, must include both gate contacts. Due to symmetry this is solved by
applying (Umin, Umaz) corresponding to the gate 1 contact in equation (6.1),
and multiply the result by 2.

IEJ}jZ = —

du (6.2)

v—0

where we used the relationship = —1t. The limits of integration,

The thin oxide approximation of equation (6.1), deviates significantly from
numerical simulations. Therefore, a more accurate treatment of the bound-
ary potentials across the four oxide gaps is required, and we apply the corner
correction, based on the one-corner conformal mapping, as described in sec-
tion 3.2.4.

The major contribution to the intrinsic capacitances will still be given by
expression (6.1), using the appropriate integration limits as discussed below.
In addition the minor, but still significant contribution from the four oxide
gaps must be included, and a detailed description of the calculation of these
contributions to ()x and Cxy is given in annex C.

For determining the charge associated with the drain (Qp) and source (Qg)
electrodes, the integration runs from y = #,, to ty + t,, for x = +£%, re-
spectively, or between the corresponding coordinates on the wu-axis of the
four-corner (u,iv)-plane (see figure 3.1). The latter are obtained from the

Schwarz-Christoffel transform in equation (3.1).

For the gate electrodes (Qq), we notice from the right plot of figure 3.5
that the charges close to the corners, between the bold solid and dashed
lines, correspond to field lines that terminate on the sides of the source/drain
electrodes. Therefore, in order to preserve intrinsic total charge neutrality,
these charges should be excluded and assigned to the extrinsic capacitances.
From the one-corner analysis in section 3.2.4, we find that the integration of
the intrinsic gate charge should run between x = —% + zo and % — xp for the
two gates, where xy = 0.339¢, ., or between the corresponding coordinates
along the u-axis.

The capacitances are calculated by differentiating the electrode charges with
respect to the various electrode potentials in accordance with equation (2.15).
We note that QQx is a linear function in V4, which means that these capaci-
tances are bias independent. Due to symmetry and charge conservation, we
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find that CGS = OGD = OSG = ODG = Cg—G, CDS = CSD; and OSS = CDD; in
the subthreshold regime where the inter-electrode contribution is dominant.
For zero drain biasing, Vs = 0V, these relationships are valid in all regions

of operation [49][50].

The modeled inter-electrode capacitances at different device lengths are com-
pared to numerical simulations in figure 6.2. The length of the source and
drain electrodes and the oxide thickness are held constant, i.e. t,; = 12nm
and t,, = 1.6nm, and we observe that the source and drain self-capacitances,
Css and C'pp are not noticeably affected by the change in gate length. As ex-
pected we also observe that the capacitances associated with the gate, the red
and blue curves, increases for increasing gate lengths until they flatten out at
L =~ 30 —35nm. This concurs with, C'ps and Csp, approaching zero, and can
be considered the long channel limit above which short channel effects are no
longer significant. Note that the capacitances are given in femto-farad/pm.

0.6
DG \ \ |
0.5} . . . - Coe|
€
=
™
‘» 0.3} ol o
é : : ) : Css,CDD
-é 0.2 //%/—K Csir CGjS’ Che Cono
=3 ‘ ‘ ‘ ‘
O 0.1f . .
O\M . Gso Cos
-0.1 . . . ;
10 15 20 25 30 35

L[nm]

Figure 6.2: Modeled intrinsic subthreshold capacitances (lines) plotted as a func-
tion of DG device length. Oxide and substrate thicknesses are held constant,
ts; = 12nm and t,; = 1.6nm. Model is bias independent. Numerical simulations
(symbols) were carried out at Vys = 0V and V, = —0.2V.
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6.1.2 Gate-All-Around MOSFET

In section 3.3 we introduced a technique for mapping the 2D Laplace solution,
¢}, of the DG device into the longitudinal cross-section through the central
axis of the GAA MOSFET. The central axis divides the longitudinal cross-
section in two parts of symmetrical electrostatics. Considering one of these
radial surfaces, it must be rotated 360° about the central axis to cover the
cylindrical volume, as illustrated in figure 6.3.

The approximate charge associated with the cylindrical gate contact is then
given by

!

Umaz d !
Qa = ieg2m (Tsi + rﬂ) / .
u

5 Ch du (6.3)

v—0

where ¢, is the GAA inter-electrode potential of the cross-section given in
equation (3.22). The factor 27 (rsi + %) corresponds to the 360° rotation of
the radial surface about the central axis. Due to the cylindrical geometry, the
density of the electric field lines through the insulator will decrease, moving
from the silicon-insulator interface to the gate contact. This effect is not
correctly accounted for in the quasi-3D solution applied, and to compensate
for this deficiency we use the electric field at the center of the insulator, ’"Z’TZ,
to estimate the gate charge, Qq.

The charge associated with the circular source and drain contacts is given by

QS/D = 27Ti€si/ " TELGAAd’I“ (64)
0

The perpendicular electric field terminating at the source and drain contacts

Figure 6.3: Radial cross-section of the GAA MOSFET. This surface must be
rotated 360° about the central axis to cover the cylindrical volume.
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is calculated analytically in accordance with

[y dz
E caa= —il_f)l% ( 7 ) / (@) (6.5)

where the numerator is given by

lim dgy 1-F l Vb N Vs
v=0 dv T (u—1)(Ku—1) (u+1)(K'u+1)
2VG(I€I’LL2 + 1)
(o — 1) (o — 1)]

(6.6)

and the derivative of the transform of the extended DG device along the
boundary, v = 0, is given by

. dY il

lim — =

=0 dv 21 — u2V/1 — E2u2K(k')

(6.7)

In accordance with the procedure described in section 3.3, this calculation
of the extended DG device can be mapped into the GAA MOSFET by com-
pressing it uniformly in the longitudinal direction using the scaling factor
Agaa/Apa, i.e. % = ’\/\GDA; %' The perpendicular electric field along the
source and drain contact can then be found by inserting equation (6.6) and

the downscaled (6.7) into (6.5).

The integral of equation (6.4) is then calculated numerically to estimate Qg
and @Qp. The capacitances C'sy and Cpy, where Y = S, D, GG, are then found
by carrying out a numerical differentiation of Qs and (Qp with respect to the
source, drain and gate voltages.

The modeled subthreshold GAA capacitances at different device lengths are
compared to numerical simulations in figure 6.4. All radial dimensions are
held constant, and we observe that the source and drain self-capacitances,
Css and Cpp are not noticeably affected by the change in gate length. The
capacitances associated with the gate, the red and blue curves, increases for
small gate lengths, however the change is not as pronounced as for the DG
in figure 6.2. We also observe a small rise in, C'ps and Csp, for small gate
lengths. Relatively, the coupling between the source and drain electrode,
which give rise to short channel effects, is significantly smaller for the GAA
compared to the DG MOSFET. Note that the capacitances are given in
atto-farad.



6.2 Near and Above Threshold - Intrinsic Capacitances 97

20
GAA

15¢ . -
— : Ces
L X X
‘9‘ .
§10- s o Css Cop]
£ | Cser Cos: Coe: Ceo
@®©
&5r
(@]

OF CSDY CDS

-5 N :

25
L[nm]

Figure 6.4: Modeled intrinsic subthreshold capacitances (lines) plotted as a func-
tion of GAA device length. Radial dimensions are held constant, r;; = 6nm and
tor = 1.6nm. Model is bias independent. Numerical simulations (symbols) were
carried out at Vy, = 0V and V,, = —0.2V.

6.2 Near and Above Threshold - Intrinsic Ca-
pacitances

In the near and above threshold regimes, both the inter-electrode coupling
and the inversion charge will contribute to the capacitance. The former
is bias independent, as pointed out in the previous section, and will pay
its constant contribution to the capacitances in all operating regimes. The
contribution of the inversion charges, on the other hand, will steadily become
more significant to the intrinsic capacitances as the gate biasing increases.

6.2.1 Double Gate MOSFET

We use the self-consistent device electrostatics, from chapter 4, to determine
the inversion charge distribution associated with the electrodes. From the
modeled silicon-insulator interface potential, ¢1(z,t..), we can estimate the
perpendicular electric field at the gate contacts, E;, (z) = —%. The
electrode charge, Qg1, associated with the body charge can then be deter-

mined as
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)2

Qe =2Wey ) E; (2")d2’ (6.8)
—L/2

The charges on the gate contact associated with the body charge is not
limited to the gate length as assumed by the integration limits of equation
(6.8). Some field lines emanating from the body charge will terminate on
the gate contacts at |z| > £. The integral should, therefore, ideally run
over Foo. However, we assume that the error made by this assumption is

negligible.

At source and drain, the charges may be difficult to determine precisely from
the perpendicular electric field because of strong corner effects. Instead, we
calculate the total body charge, Qg = ¢ ffﬁZ ns(z)dz, where ng is the charge
sheet density, ref. equation (2.10). We then divide the device in two equal
parts separated by the G-G symmetry line, where () g is the body charge in
the half closest to source and QQgp the body charge closest to drain.

We then split the gate charge into two terms, Qg1 = Qais + Qaip- The
first term, QQ¢1g, is associated with source, i.e. integral runs from —% to 0
in equation (6.8), and the second term, Qg1p, is associated with drain, i.e.
integral runs from 0 to %

The charge associated with source and drain can then be approximated to
Rs1 = Qs — Qs and Qp1 = Qpp — Qcip. These charges are finally
differentiated numerically with respect to the terminal voltages in order to
determine the contribution from the body charges to the capacitances.

Figure 6.5 shows two examples of the modeled capacitances of the DG device
versus Vi, for Vg, = 0.1V and 0.5V, covering operating conditions from deep
subthreshold to strong inversion. Figure 6.6 shows the modeled capacitances
as a function of Vi, for Vi, = 0.25V and 0.6V. The model compares quite
well with the numerical simulations.
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Figure 6.5: Intrinsic capacitances of DG device as a function of Vi, for Vy, =

0.1V (left) and Vg5 = 0.5V (right). Model is plotted with lines and numerical
simulations with symbols.
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Figure 6.6: Intrinsic capacitances of DG device as a function of Vg, for V,, =

0.25V (left) and V5 = 0.6V (right). Model is plotted with lines and numerical
simulations with symbols.
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6.2.2 Gate-All-Around MOSFET

The electrostatics of the GAA device, as derived in chapter 4, is the basis of
the charge contribution to the intrinsic capacitances in the near and above
threshold regimes. We follow a similar procedure as for the DG device, but
due to the cylindrical geometry there are a few differences which are pointed
out below.

The perpendicular electric field at the silicon-insulator interface can be esti-
mated by
©1(,75)

/
TOCE

E, =- (6.9)

Note that the cylindrical geometry has been accounted for in the oxide thick-
ness of r/ . ref. equation (2.2). However, due to decreasing density of field
lines moving from the silicon-insulator interface to the gate contact the mag-
nitude of E;, is also decreasing. Imposing continuity of the electric field
across the silicon-insulator interface, equation (6.9) represents the magni-
tude of the electric field at » = r,. The gate charge, (Qg1, associated with
the body charge is then given by
L/2
QGI = 277Tsi£si L2 ElL(l‘l)dl‘l (610)

Note that in this case, in contrast to the quasi-3D analysis based gate charge
calculation in section 6.1.2, we have a proper 3D self-consistent analysis of
the potential, ¢, (z,74), along the silicon-insulator interface, and the approx-
imations of equation (6.3) are no longer necessary.

The charges associated with source and drain, (Qs; and (Qp;, respectively,
are determined from the difference between the total body charge and the
charges associated with gate in a similar manner as for the DG. The body
charge can be determined from the integral, Qp = ¢ [ ns(z)dz, where the
charge sheet density, n,, for cylindrical geometry is given by

2

_ Mg [T plo,r) = Ve(x)\
ns(z) = Na27r/0 r’ exp < i dr (6.11)

Finally, the self- and trans-capacitances are found by numerical differentia-
tion with respect to the electrode voltages.

Figure 6.7 shows two examples of the modeled capacitances of the GAA
device versus Vs for V4, = 0.1V and 0.5V, covering operating conditions
from deep subthreshold to strong inversion. Figure 6.8 shows the modeled
capacitances as a function of Vi, for Vyo = 0.25V and 0.6V. The model
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compares quite well with the numerical simulations performed by the Silvaco

Atlas device simulator.
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Figure 6.7: Intrinsic capacitances of GAA device as a function of V,, for V4, =
0.1V (left) and Vg = 0.5V (right). Model is plotted with lines and numerical

simulations with symbols.
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Figure 6.8: Intrinsic capacitances of GAA device as a function of Vy,, for V,, =
0.25V (left) and V5 = 0.6V (right). Model is plotted with lines and numerical

simulations with symbols.
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6.3 Extrinsic Overlap Capacitance

The extrinsic overlap capacitances, Ce,,, which are indicated in figure 6.1,
can be approximated as parallel plate capacitors. For the DG device the
parallel plate capacitance is given by Cegirp = M, where dg,p is the
overlap length between the gate and the source/ drain electrodes (neglecting
external fringing capacitances). For the cylindrical GAA device the parallel

. . 2Meozd,
plate approximation becomes Ceyir,, & ”7t5”)
In (1+%)
St

A more accurate analysis, however, is given by the one-corner conformal
mapping procedure as described in section 3.2.4. Using (9, of equation
(3.12), Qx per unit gate width in equation (6.1), can be calculated to

_&ilVe = V) (“’“) (6.12)

m Umin

Umaz d¢2lc

Qx,, = 1€si /
u v—0
Analog to the capacitance model introduced in section 2.2.5, the one-corner
analysis represents a two-terminal device, with four self- and trans-capacitances
of which one is independent, i.e. in the resulting 2 x 2 capacitance matrix
all entries have equal magnitude, but cancel each other by pairwise opposite
signs.

The integral of equation (6.12) can either be solved along the S/D contact or
along the gate contact. As long as the contact is deep enough so that the E-
field can be considered perpendicular through the oxide at the contact depth,
ref. right plot of figure 3.5, these solutions will give equal results. Along the
gate contact wy;, = —1 (ref. figure 3.5) and Uy, is found implicitly from
the conformal mapping of the one-corner transform (ref. (3.11))

2! 1 (Tt + 1
ds/p + 22 | T gy — =1 tmar T2 _ (6.13)
T 2 V31— Uper — 1

The total extrinsic overlap capacitance contribution from the four corners of
the DG device is then given by

Cextrpg =4W

4 . .
dQch — W‘gsz In <umzn> (614)

dVS/D ™

Uma:L‘

In the case of the cylindrical GAA the total extrinsic overlap capacitance can
be approximated to (ref. discussion of equation (6.3))

I .
CextrGAA ~ 4551' (rsi + %) In <Umm> (615)

Uma:L‘




Chapter 7

Conclusion

A precise modeling framework for short-channel nanoscale double-gate (DG)
and cylindrical gate-all-around (GAA) MOSFETs has been presented. In
the subthreshold regime the DG modeling is based on a conformal mapping
analysis of the potential distribution in the device body arising from the inter-
electrode capacitive coupling. The DG inter-electrode coupling can also be
applied with a high degree of precision to the GAA MOSFET by performing
a simple geometric scaling transformation to account for the difference in gate
control in the two devices. The modeling of the drain current and the intrin-
sic capacitances in subthreshold are based on this inter-electrode coupling.
For accurate capacitance modeling a special treatment of the insulator-gap
boundary has been implemented.

Near and above threshold, where the effect of the inversion charge can no
longer be neglected, self-consistent procedures invoking Poisson’s equation
in combination with boundary conditions and suitable modeling expressions
for the potential are applied. The DG modeling is based on the 2D Poisson’s
equation, while the GAA is based on the 3D Poisson’s equation with cylin-
drical symmetry. The drain current is calculated as part of the self-consistent
treatment, and the intrinsic capacitances can also be extracted.

The modeled DG and GAA electrostatics, drain current and intrinsic capac-
itances have been compared with the Atlas device simulator from Silvaco.
They all show excellent agreement with the numerical simulations in all op-
eration regimes. A compact subthreshold GAA drift diffusion current model
and a parameterized compact current model covering the full range of bias
conditions are also presented. These compact models would be suitable for
implementation in circuit simulators such as SPICE.
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Chapter 8

Future Work

A complete compact model must have procedures for calculating currents,
capacitances and noise. Here we have considered the electrostatics, drain
current and intrinsic capacitances of the DG and GAA MOSFETs. There
are many issues related to the compact modeling of these nanoscale devices
which require additional analysis, including the ones discussed below.

8.1 Development of SPICE-Type Model

Due to the complexity of the analysis and the strict requirement of not intro-
ducing any fitting parameters, our models apply iterative procedures in order
to establish the electrostatics in the near and above threshold regimes. The
framework model must therefore be implemented as a preprocessing routine,
from which parameters can be extracted and used in compact circuit simu-
lation tools. This way we can meet the requirement of high computational
speed of the SPICE simulator.

8.2 Noise

Noise modeling is also an important part of a compact model for nanoscale
devices. Several research groups are working with this subject [63].
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8.3 FinFET

Candidates for next generation device technology also include the FinFET.
The framework model of the DG and GAA MOSFET may serve as a good
foundation on which modeling procedures for the FinFET can be developed.
The FinFET is a 3D device, for which the 2D conformal mapping cannot
be directly applied. However, bearing in mind the solution for GAA in sub-
threshold, it is worth investigating if this 2D Laplace solution can be fitted
into the FinFET as well.

8.4 Transport Mechanisms

Our modeling scheme applies the drift diffusion transport formalism with
constant mobility, ignoring velocity saturation and ballistic transport mech-
anisms. Especially in the subthreshold regime where the inter-electrode cou-
pling dominates the electrostatics, it may be possible to achieve compact
models with more sophisticated transport formalisms.

8.5 Quantum Inversion Charge

In our modeling scheme we apply the classical Boltzmann distribution for
calculating the inversion charge. With a body thickness of 12nm, we are ap-
proaching the limit where quantum effects commences to become significant.
Therefore a quantized charge distribution should be analyzed.



Appendix A

Series Expansion of One-Corner
Potential

A.1 Introduction

The one-corner analysis in chapter 3 applied the Schwarz-Christoffel trans-
form (ref. equation (3.11))

[\/wlc —1—tan ! (\/wu; — 1)] +t, (A1)

2t

Z1e

We obtained the following solution to the Laplace equation (ref. equation
(3.12))

. 1 1 _1 [ U1c
©21, (Ulc, ,Ulc) — 5 (VG + VS/D) — ; (VG — VS’/D) tan <U—lc> (A2)
The potential distribution of the (u1.,ivi.) and (21, y1.)-plane are indicated
in figure 3.5. Here, we will further analyze the one-corner potential profile
by carrying out a series expansion about z;. = 0 and z, =1,

A.2 Series Expansion About z;. =0

In this section we will analyze the potential profile about z;. = 0 moving
along the real y;. axis in the zj.-plane of figure 3.5. The insulator gap is
therefore perpendicular to the ix.-axis at z;. = 0, and the angle preserving
property of conformal mapping requires that the same is true with respect
to the uq.-axis in the wq.-plane at u;. = ug = —0.439.
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To simplify the mapping function we carry out a series expansion of the
square root and the inverse tangent terms of equation (A.1) about vy, = 0
to the first order

U1e

2¢/1 + |uo|
tan ! (\/uo -1+ ivlc) ~ tan (\/uo — 1) — 2|u0|\/vic+7|u0|

When these series expansions are inserted in equation (A.1), we obtain the
following simplified mapping, which is valid about z;. = 0 along the real y;.

axis.
t v
e = Y1e N $|u1|\/1+|u0| (A.3)
0

The potential variation for small v, at u;. = ug has the form

Vg — 1+ ivie = Vug — 1+

1 1 _lu
R
NV—l(V—v ) L (A4)

~ 7 Vo= V) 1 ‘

g— % valid for t — oo.

where we have used the expansion tan™!(t) ~
Solving equation (A.3) with respect to vy, and inserting this into (A.4) we

obtain the following linear function of y;,

¢(0,y1c) = Vg — (VG - VS/D) — Je (A.5)

t,o:v V 1+ |U0|

The slope of the curve for small #= is therefore (1 + |uo|)™"/? ~ 0.834. Figure
A.1 shows that this first order series expansion about z;, = 0 is quite accept-
able for % up to 0.6 and has a maximum error of about 17% at %< = 1.
The derivative of equation (A.5) is applied as boundary condition for the
modeling function of the insulator gap potential of equation (3.13).

A.3 Series Expansion About z;. =t

Next we carry out the series expansion about z;, = ¢ (w;. = 1), and
due to the presence of the corner, we have to expand (A.1) with respect to
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Figure A.1: The potential profile across insulator-gap of one-corner analysis com-
pared to series expansions about y;. = 0 and y;. =t

Wie = U1 + 11, — 1. It turns out that this expansion has to be carried out
to third order in \/wi. in order to find a non-zero result, i.e.

3
iT1e + Yie Rty [1 + % ((Ulc — 1)+ U%c) exp (zg tan™" <u1jjli 1))}
(A.6)
Since we are moving along the real y;.-axis (ix;. = 0) in the negative direction
the phase angle inside the exponent of (A.6) equals 7 (180°). This means
that tan—* (u”“ 1) = §7r = 120°, and in the left plot of figure 3.5 we observe
this angle of 120° between the bold dashed line and the u.-axis at u;. = 1.

The relation between u;, and v, then becomes u;.,—1 = 1\’}, and equation
(A.6) can then be rewritten

. 44/2 3

Using similar approximations as in (A.4), we find

o1e (L, v1e) = Vop + — (VG — VS/D) V1e (A.8)

Inserting vy, from (A.7) we get

2187 \ :
6
¢1c (1, v1e) = Vs/p + (VG - VS/D) <m> (1 — i) (A.9)
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Figure A.1 shows that this series expansion about z;. =t/  is acceptable for
s down to 0.9. Note also that the derivative of (A.9) at ;. = t,,, is infinite.

For completeness we also carry out a series expansion of the potential profile
abount y =t/ into the contact corner along the silicon insulator interface.
This can be estimated by using a similar expansion of the transform about
y =t .. We are now moving in the negative imaginary direction in the z;.-
plane, and the phase angle inside the exponent of (A.6) equals —m /2. This
means that tan™! (%) = 2 = 60°, and in the left plot of figure 3.5 we
observe this angle of 60° between the silicon-insulator line and the u;.-axis
at Ule = 1.

42

3
4

3
Following the above procedure, we obtain 3¢ = v{,. Thisis then inserted

3347
in the general expression of the potential in (A.2). Assuming v, < 1, we
obtain

2187 \b (11, °
Pic (17 Ulc) ~ VS/D + (VG - VS/D) (m) <t’_1> (AlO)

2
Note that the potential is a function of x7,. This %—root relation is applied
as boundary condition in the modeling expression of the silicon-insulator
interface potential in the self-consistent procedure as described in section

4.2.2.



Appendix B

Corner Correction - Integrals

The modeled oxide gap potential is part of the boundary condition of the
Laplace equation as given in (3.8). In this annex we will outline the proce-
dure for calculating the contribution from these oxide gaps to 2D potential
profile. For simplicity the calculation of the G1-D oxide gap contribution is
shown, with the serial expansion of the elliptic integral around u; = 1. The
contribution of the three other oxide gaps are calculated in a similar manner.

As seen in polynomial approximation of the oxide gap potential of equation
(3.17), @ou(u) contains one constant term C' and four terms which include
the integration variable on the form (u'—1)™. These terms give the following
integrals, denoted I for the constant term and I, for the (v — 1)™ terms:

I v /’1+uoml dul
0= = K
) (u—u')?+0v?

-1 an=t (2 1) N 1)} (B.1)

M

v [lrueer (u — 1)%du’
I, = —/ BU L
) (u—u')?+0v?

1 - _ V Yozl
— \/l—u—wtan =2 ) —
71'[ (\/1—u—iv>

I uTiwtan ! (%) ] (B.2)
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v 14+uoz1 (u, — 1)%dul
o[
> 7wl (u—u)?+v?
1
= [2\/%9511) +
i(1—u+iv)**tan! (— ”um>
l—u+w
—i(1 —u—iv)*?tan! <— ”um> ] (B.3)
l—u—w
v [lrueer (u — 1)%du’
Y NS
2 wh (u—u')? 4+ v?
1
= 3— [2\/U0$1(U0m1 + 6u — 6)U +
T

vV Uoz1

)

3i(1 — u — iv)*? tan! (

vV Uoz1

3i(l —u+ z’v)5/2 tan™! (— (B.4)
V1—u-+w

L. /1+“oz1 (u' —1)3du/
Tk (u—u')? + v?

! (Uog1 + du — 4)
= 7 |Uoz1 (Uox U—a)v—
2’/T 1 1

o (v =3(u—1)°")n <(“ow(1u—_u1; iL)QJ 1)2> -

2(u— 1) ((u—1)* = 30%) x
(1 (12 — et (1)) (53)

Here u,,1 is the oxide thickness of the G1-D gap transformed to the (u,iv)-
plane. In accordance with (3.15), (3.17) and (B.1)-(B.5) the G1-D-gap’s
contribution to the Laplace inter-electrode potential can be written as
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(u U) B 8A13 + BL X
Yre1-p(u,v) = (K (k))5(1 — k2)3 2(1 — k2)K (k)
[I (5k* — 1)1 ]
RN ] A o

Similarly the contribution from the three other corners, i.e. G1-S, G2-D and
G2-S, must be calculated.






Appendix C

Corner Correction - Capacitance

The modeled oxide gap potential is part of the boundary condition of the
Laplace equation as given in (3.8). In this annex we will outline the procedure
for calculating the contribution from these oxide gaps to the trans- and self-
capacitances, Cxy .

As previously defined, @y is the charge which can be associated with elec-
trode X, which is given by

Umaz Qo (U, U
R

Umin 8,U

du (C.1)

v—0

where ,,;, and u,,,, are the lower and upper limits of the X-contact to
which the charge should be associated.

For simplicity we calculate the contribution of the G1-D oxide gap as an
example, with the serial expansion of the elliptic integral around u; = 1.
Based on the integrals, I,,, found in the previous annex, ref. equations
(B.1)-(B.5), we can calculate the charge contributions to ()x in accordance
with equation (C.1).

Umaz aI . —_ 1 _ U=Umaz
Qxo = 5Sz'/ 8—0 du= " (u Uom) (C.2)
Umin v v—0 ™ U — 1 U=Umin
Umaz aI% d
= £9; U
2e5; _1 Uger \ |77
= — V1 —wutan C.3
m <\/1 —U) |y, (C3)
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Q Umazx aIg d
x3 = 651’/ u
’ Umin OV v—0
2 7 or U tmar
= ZS < ftggrtt + (1 — u)*? tan ! <\/1“__1u>> (C.4)
Q Umazx aIE d
Xz = 6Si/ - u
2 Umin OV v—0
€si
= 3% [\/uom (6u2 + 2u(Upg1 — 6)) —
6ﬂ—ufﬂmﬂ4<y#ﬂ)] (C.5)
Umazx aI§
Qxs = 551’/ 9 . du
Umin U =0
€5
- % Uoz1U (QU + Uog1 — 4) +
— Upy1 — 1 U=Umaz
+2(u—1)%In (%) ] (C.6)

Here the integration limits, u = %, and u = U4, correspond to the lower
and upper limits of the X-electrode to which the charge should be associated,
ref. (C.1). The constant terms, which vanish when inserting the upper and
lower integration limits, have been omitted to simplify the above results.

Finally we can write the G1-D-gap contribution to the charge associated with
the X-electrode as

8Q
Rxci-p = A(K(k))G(?l(?)— BE + CQxo +
5k — 1)Q 2
PR TS PP eSS B SR

21— k)K (k) | 7 121 -k?)

Where A, B and C are given in equation (3.13) and I' in (3.16). The capac-
itance Cxy is then given by the differentiation in equation (2.15). As the
parameters A, B and C' of equation (C.7) depend linearly on the terminal
voltages, this capacitance contribution is bias independent. Similarly the
capacitance contribution from the three other corners must be calculated.



Appendix D

Differentiation of Inter-Electrode
Potential

The S-D symmetry line of the DG device maps into a semi-circle with ra-
dius ﬁ about the origin of the (u,iv) plane as shown in figure 3.1. The
Schwarz-Christoffel transform of equation (3.1) and the inter-electrode po-
tential distribution of equation (3.9) are here combined to find the first and
second derivative of the Laplace potential along this symmetry line. At the
end the second derivative along the gate-to-gate symmetry line is also de-

rived.

D.1 First Derivative

Along the S-D symmetry line, v can be expressed in terms of u, i.e. v =
\/+ —u?, and the mapping function of equation (3.1) can be rewritten to

L (1+k7\/_“)

12
IR CON

=+ 2 (D.1)

The derivative of the transform with respect to w along the S-D symmetry
line can then be calculated to
dx

= — (D.2)

v=4/ T U — 2]‘3
Vi 2y/1 ku?,/ Hf,g (24)

Similarly the inter-electrode potential of equation (3.9) can be evaluated
along the S-D symmetry line by replacing v with v = ,/]i u?. This potential
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differentiated with respect to w is given by
dps (1 —=k)[(1 4k + 2ku)Vp — 4kuVg — (1 + k — 2ku) V]

du |,_ /T3 my/ L —u? (14 k)2 — 4k2u?)
(D.3)

The inter-electrode contribution to the electric field along the S-D symmetry
line, E; = —%22 s found by dividing (D.3) with (D.2). The perpendicular
E-field at center of the source and drain contacts, ref. equation (4.7) and

(4.8), are found by evaluating E, at u = IFﬁ, respectively.

The position of the inter-electrode potential extremum along the S-D sym-
metry line can be found by solving equation % = 0, which has a simple
analytical solution

—(1+k)(Vp —Vs)
2k(Vp — 2Vg + Vs)
In the subthreshold regime where the effect of the charge contribution to the
electrostatics can be neglected, this gives a good estimate of the position of
the energy barrier between source and drain.

(D.4)

Uegt =

D.2 Second Derivative

The second derivative of the inter-electrode potential is given by
2
Poy _ d (2 _dud () _ GE dpy §F (D.5)
dz dzr du dz (@)2 du (d_x)i% '
du du

de?  dr \ & ar
The second derivative of the transform along the S-D symmetry line is cal-
culated to

du du

o - Lk3u (1+ k(6 + k — 8ku?)) (D.6)
: _ .
du?|,_ 1= 2(1 — ku?)s (1 + k)? — 4k2u2) /1 — (ﬁ—Z)QK (%E)

and the second derivative of the potential with respect to u is given by
_ k(1 - k)

oo/ my3 — w1 = ku?) (1+ k(2 + k — 4ku?))?

l(l + k4 2ku)*(=2 — (1 + k)u + 4ku®)Vp +

d2902

du?

X

(1+k — 2ku)?(=2+ (1 + k)u + 4ku*) Vs +

4(1 4 k(2 + k + 4ku® — 8k*u*)) Vg (D.7)
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When equation (D.2), (D.3), (D.6) and (D.7) are inserted in (D.5), the final
expression of the curvature along the S-D symmetry line simplifies to

da* |y e LPm(1+E) (14 E) — 4k°u?) (D.8)

(14 k+ 2ku)Vp + (1 + k — 2ku)Vs — 2(1 + k)Vo]

In accordance with Laplace equation the curvature in the y-direction equals
the negative of the curvature in the z-direction. Therefore, we can also find

ddz—ff = —% along the S-D symmetry line from equation (D.8).
The curvature along the G-G symmetry line (v = 0), can be derived in a

similar manner rewriting the mapping function to [42]

F(VI-F 7t)
K(Vi_R) (D:9)

Following the same steps as above we obtain

r=0, y=(tg+2t )

P, o(L = k)(L+R)2(L + ko?) (Vp — 2V + Vs) (K (VI—#2))

dy | _, T (2t 4 ty)* (1 +v2)(1 + k20?)

(D.10)
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