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Abstract

Spectrally efficient transmission schemes are becoming a more common re-
quirement for digital communication systems. Especially in wireless com-
munication since the bandwidth of available frequencies is a shared re-
source. In addition, wireless communication systems suffer from transmis-
sion media with varying conditions. Adaptive coded modulation (ACM)
has been suggested as a bandwidth-efficient transmission technique in wire-
less fading environments. The use of ACM is motivated by its ability to
improve spectral efficiency (SE) by adapting the transmission rates to the
variations in channel signal-to-noise ratio. Any ACM scheme rely on being
able to predict future states of the transmission medium. Under idealized
conditions, such as the prediction being perfect, an ACM scheme can be
configured to maximize the SE under the condition of the bit error rate
(BER) being below a specified target BER. Here, computer simulations of
an example system show that such systems in some cases fail to achieve
the target BER, since the idealized conditions used in the design process do
not hold in a realistic setup.

By limiting the number of transmission modes, introducing imperfect
prediction, and other practical conditions such as delay in the communica-
tion system and probability of outage, a more practical ACM scheme can be
considered. We show that it is still possible to optimize the performance of
such schemes. A wireless communication channel with a Rayleigh fading
envelope is assumed here since most results then can be presented in closed
form expressions. For other distributions of the fading, results can be found
numerically. By optimizing the performance of an idealized ACM scheme
using capacity achieving channel codes, we have been able to upper bound
the SE of practical ACM schemes. The results also provide us with a tech-
nique to control the average BER in the case of imperfect knowledge of
future channel states. Simulation results for a modified ACM scheme that
uses this technique is shown to have an average BER that is less than the
target BER.
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Nomenclature

Definitions of a probability density function (PDF) are written as

fX1,X2,...XN (x1, x2, . . . xN)

where Xn denotes a random variable (RV) and xn is the realization of the RV
(this notation rule is not followed for Greek letters). Subscripts I and Q are
used to represent the real and the imaginary parts (in-phase and quadra-
ture components) of a complex variable: X = XI + jXQ. In addition to the
meaning in the table below, letters a, b, x, and z and the Greek letters α, β,
µ, λ, and γ are used as both arguments and parameters in the definitions
of different functions and PDFs in Appendices A and B.

Function arguments indicate whether the function is continuous or dis-
crete; the continuous (time) variables t and τ are used for continuous func-
tions, while discrete functions have a discrete time index as argument (e.g.
k, l, and m). Also, in some cases the variable x is used as the integration
variable, and then indicating a continuous function. Vectors are written
in bold lowercase, matrices in bold uppercase. An exception is made for
this rule in Appendix C where bold uppercase letters are used for vectors
consisting of filter coefficients and random numbers that are separated in
frequency rather than time. If not otherwise defined, vectors are column
vectors.

|x| Absolute value

x∗ Complex conjugate

(·)−1 1. Matrix inversion: X−1

2. Function inversion: f −1(x)

[x]k Element number k in vector x

[X]km Element in row k and column m in matrix X

xT Transpose
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NOMENCLATURE

{xk}K
k=1 The sequence of numbers xk:

{xk}K
k=1 = {x1, x2, . . . , xK}

δ
δxk

Coordinate differentiation with respect to xk

∇{xk}K
k=1

Coordinate differentiation with respect to all
coordinates (variables) in {xk}K

k=1

X ◦ Y The Hadamard product: componentwise
multiplication of two matrices having the same
dimension

αi,k Bit number i in the tuple corresponing to the kth
channel symbol in the signal constellation

γ, γ(t) Instantaneous received CSNR at time t

γn CSNR threshold for codec n, i.e. the lowest CSNR
attaining the target BER when codec n is used

γn,τ Temporal threshold for codec n

γ Expected CSNR: γ = E[γ]

γM′(k) Empirical block-wise average of the CSNR for an
entire block of M′ channel symbols

γ̂, γ̂(t), γ̂(k) Predicted/estimated CSNR

Γ(·) Gamma function

Γ(·, ·) Complementary incomplete gamma function

δs Constant used to obtain the switching thresholds
(in dB) as a linear function of the CSNR thresholds
(in dB)

∆t Time separation [s]

∆ f Frequancy separation [Hz]

ε, εn Probability of selecting a codec that does not attain
the target BER (and index n is used when ε is codec
dependent)

ζk Channel symbol k in a signal constellation

κ Size of the tuple (sequence of bits) associated with
each channel symbol in a signal constellation
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λ Lagrange multiplier

λc Carrier wave length [m]

µX Mean or expectation of the random variable X:
µx = E[X]

ρ Correlation coefficient

ρ0 Sufficient correlation between samples of the
magnitude of the fading envelope on a
frequency-flat fading channel

σ Delay spread [s]

σ2
w Variance of additive white Gaussian Noise

σ2
X Variance of the random variable X

τ Time lag

φzz(τ) Autocorrelation of the complex fading envelope
z(t) at two time instances separatet by the time lag
τ

Φzz( f ) The Fourier transform of φzz(τ)

Φ(α, γ; z) The degenerate hypergeometric function (also
commonly denoted 1F1 (α; γ; z))

Ωp Variance of the fading, (also referred to as the
average power gain)

Ω̂p Average power gain for the predicted/estimated
fading samples

Ψs(γn, ε),Ψs(γn) Function relating switching threshold sn to CSNR
threshold γn through ε (ε is ommited when chosen
as a constant)

Ψγ(sn, ε),Ψs(γn) Function relating CSNR threshold γn to switching
threshold sn through ε (ε is ommited when chosen
as a constant)

an Constant used in the approximation of
BER-versus-CSNR for Gallager codes

ap Pilot symbol amplitude value
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NOMENCLATURE

A Vector of samples from real-valued zero-mean
Gassian random process with variance σ2

w

ASE, ASE(γ) Average Spectral Efficiency of an ACM scheme at
expected CSNR γ

ASEL Average Spectral Efficiency of an ACM scheme as a
function of the pilot spacing L

bn Constant used in the approximation of
BER-versus-CSNR for Gallager codes

B One-sided transmission bandwidth [Hz]

BER, BER(γ) Bit error rate at CSNR γ

BER0 Target BER

BERn(γ) BER of codec n at CSNR γ

BERn,τ BER of codec n at the temporal threshold γn,τ

BERn(γ) Average BER of codec n a function of CSNR γ

BER(γ|γ̂) BER of codec n as a function of γ and conditioned
on γ̂

B Vector of samples from real-valued zero-mean
Gassian random process with variance σ2

w

c Speed of light [m/s]

cn 1. Constant used in the approximation of
BER-versus-CSNR for Gallager codes
2. Check node n

c Syndrome vector

C Channel capacity [bits/s/Hz]

CAWGN Channel capacity (of an AWGN channel) [bits/s]

Cov(x, y) Covariance operator

C Matrix representing redundant (parity)
information in a linear block code

d(k) Information carrying channel symbol
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dn Constant used in the approximation of
BER-versus-CSNR for Gallager codes

d̃(k) Received channel symbols carrying information

d̂(k) Received channel symbols carrying information
after detection

d Vector of M channel symbols output from the
modulator

d̂ Vector holding M complex channel symbols after
detection

D(·, ·) Euclidean distance between two complex channel
symbols

Ei(x) The exponential integral function for negative
arguments

E[·] Expectation operator

f Frecuency [Hz]

fc Carrier frequency [Hz]

fm Maximum Doppler frequency [Hz]

fX(x) PDF for the random variable X

fX1,X2(x1, x2) Bivariate PDF

fX1|X2(x1, x2) Conditional PDF

FX(x) CDF for the random variable X

1F1 (α; γ; z) See Φ(α, γ; z)

F Vector holding filter coefficients used in the
simulation of the Rayleigh fading channel

F [·] The Fourier transform

g, gn Number of information bits in one information
word input to the channel coder (in codec n)

g(·, ·) Function producing a metric based on the
Euclidean distance between two complex channel
symbols
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NOMENCLATURE

G Generator matrix

hj(k) Filter coefficient

hj Vector of filter coefficients
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Chapter 1

Introduction to Adaptive
Coding and Modulation

Any new electronic device which includes sufficiently new or improved
technology is often adopted by a high number of users. To become popular,
electronic devices must process larger amounts of information at higher in-
formation rates to satisfy new and “greedier” applications. The increased
mobility among users results in an increased popularity for wireless ap-
plications where the information processed by the device can be updated
(downloaded) on the fly. Popular devices are also usually very small and
with a low weight, and it is commonly required that the battery life-time
(between rechargings) is long.

Examples of popular portable devices are personal computers, game
consoles, music players, and mobile (cellular or satellite) phones. As a re-
sult, the radio spectrum is being used by an increasing number of systems
and users. The available radio spectrum is a finite resource that is shared
between all users. In order to avoid in-band interference, the power con-
sumption should be kept to a minimum (allowing the use of small long-life
batteries). Keeping both the bandwidth and power used by communication
systems low limits the amount of information that can be communicated.
The increasing use of wireless transmission media therefore calls for more
spectrally efficient transmission schemes, where spectral efficiency (SE) can
be defined as the amount of information bits transmitted per time unit per
Hertz available bandwidth.

Evidently, SE or information throughput is a measurement of the per-
formance of a wireless transmission scheme. In addition, the amount of
information that is received in error may reduce the quality of the com-
munication. For applications such as voice communication relatively large
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1. INTRODUCTION TO ADAPTIVE CODING AND MODULATION

amounts of errors can be tolerated. For some pure data communication ap-
plications, such as downloading a text document to a computer, no errors
can be tolerated since one error may affect the entire amount of informa-
tion transmitted. However, voice communication and other applications,
such as streaming media, often require constant transmission of informa-
tion, thus putting a very strong demand on the so called outage probability,
which is the probability that no reliable communication is possible. Thus,
outage probability is another performance measure for a wireless commu-
nication system.

A technique commonly referred to as rate-adaptive modulation or adap-
tive coding and modulation (ACM) can be used to improve the SE in wireless
communications. In traditional investigation of ACM schemes an idealized
channel model is assumed and the technique promises the user the highest
possible average spectral efficiency (ASE). In this thesis the practical limita-
tions and possibilities of ACM schemes are investigated by removing some
of the idealized assumptions. The remainder of this introductory chapter is
organized as follows: First, in Section 1.1 existing transmission techniques
that can be used to increase the SE are described. Also, in this section, an
overview of some characteristics of a mobile radio environment is given.
Subsequently, the problems addressed in this thesis are formulated in Sec-
tion 1.2. In Section 1.3 an overview of the system model assumed in this
thesis is given. Then, in Section 1.4 a first step towards explaining the con-
straints imposed on an ACM system in the case of mobile wireless trans-
mission is discussed. This section was also presented in [Jetlund, Øien,
Hole, Markhus, and Myhre, 2002]. An outline of the remainder of the the-
sis is given in Section 1.5.

1.1 Spectrally Efficient Transmission Techniques

In this subsection a selection of established techniques that can be used
in the design of spectrally efficient communication systems are described.
The “classical” transmission system in Figure 1.1 shows how (possibly non-
redundant) information is coded into a redundant bit stream. The coded
information is subsequently modulated onto the (communication) channel
by performing a mapping of coded information and filtering the resulting
symbols. The receive filter is usually built as a matched filter taking into ac-
count the stationary characteristics of the channel [Barry, Lee, and Messer-
schmitt, 2004]. After filtering the received information carrying signal, the
information is detected (or sliced) into a set of symbols such that all sym-
bols are elements in the alphabet used at the transmitter. Subsequently,
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Source
bits� Channel

Coder

Coded
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Symbols� Transmit
Filter
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Code Bits� Channel
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bits �

FIGURE 1.1: A classic transmission system with coding and decoding of
binary information, symbol mapping and demapping, and transmit and re-
ceive filters.

the demapper produces a detected version of the coded information bits
which is then decoded producing the decoded source bits. The system in
Figure 1.1 outlines the use of a so called “hard” decoder, i.e. decisions are
made before decoding. If a “soft” decoder is used the received information
from the channel is employed directly in the decoding process.

Non-adaptive Techniques

Spectrally efficient transmission techniques, using modulation constella-
tions with a high number, S, of different channel symbols, and thus many
information bits per symbol (log2 S in the uncoded case), can be shown to
be very effective as long as the channel signal-to-noise ratio (CSNR) is suf-
ficiently high and constant. Also, employing error correcting codes may
help reduce the amount of errors introduced by the communication chan-
nel by adding redundant information to the information signal to be trans-
mitted. The expenses paid using an error correcting code are reduced SE
and increased processing delay, complexity, and power consumption in
both transmitter and receiver. The error correcting properties of such codes
are also dependent on the CSNR. However, fluctuations in the CSNR are
among the most severe restrictions in wireless communication systems [Ha-
nzo, Wong, and Yee, 2002].

Characteristics of mobile radio environments

A signal traveling in an environment with both natural and man-made ob-
jects is scattered, reflected, and diffracted, resulting in multipath transmis-
sion, and thus a composite received signal [Stüber, 2001]. Scattering oc-
curs when radio waves reach objects which are smaller than the radio wave
length, reflection occurs when radio waves interact with objects which are
much larger than the wave length, and diffraction occurs when radio sig-
nals are “bent” around an object. In addition the channel varies with shad-
owing (long-term variations in the radio environment) and path loss (vary-
ing distance between transmitter and receiver) [Rappaport, 1996]. Changes
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in the environment due to movement of objects, receiver, and transmit-
ter introduce time-varying fading on the communication channel. How fast
the communication channel—and thus the amplitude and phase of the re-
ceived signal—vary depends on the velocity of objects, receiver, and trans-
mitter. Depending on the system parameters, a wireless channel can be
modeled as a multipath fading channel (MFC) with either frequency-selective
or frequency-flat fading distribution.

When the delay spread [Greenwood and Hanzo, 1999] of the channel is
short compared to the symbol duration, the channel is said to be frequency-
flat, i.e. all frequency components of a transmitted signal are affected (atten-
uated or amplified) in the same way by the channel. In other words, the co-
herence bandwidth is large compared to the signal bandwidth [Stüber, 2001;
Greenwood and Hanzo, 1999]. By employing a multi-carrier technique like
orthogonal frequency division multiplexing (OFDM), and when the channel in
question is a sub-channel in the OFDM scheme, the fading can be assumed
to be frequency-flat [Stüber, 2001]. In addition to being frequency-flat it is
assumed in this thesis that the duration of a transmitted channel symbol
is much shorter than the coherence time of the channel, i.e. a slowly varying
fading channel is assumed.

Frequency-flat fading is usually modeled by a complex channel gain
with a certain probability distribution. In addition the signal is typically
disturbed by additive white Gaussian noise (AWGN). If a line-of-sight (LoS)
component is present between transmitter and receiver, the received signal
is said to exhibit Ricean fading [Stüber, 2001]. Rayleigh fading is often used
to describe a radio environment with no such component [Stüber, 2001].
The Nakagami m-distribution [Nakagami, 1960] can approximate both the
Rayleigh and the Rice distribution (e.g. when choosing the Nakagami pa-
rameter m = 1 the distribution becomes Rayleigh). The distribution is often
used since it in many cases is a closer fit to empirical data [Stüber, 2001],
and is also easier to manipulate analytically than the Ricean distribution.

Due to these variations in the CSNR, any combination of channel code
and modulation constellation (codec)1 can only guarantee reliable transmis-
sion, in terms of bit error rate (BER), for a fraction of the time. In the remain-
ing time period the system experiences outage. By reducing the SE of a
codec it can guarantee a low BER also for lower CSNR values. Thus, reduc-
ing the probability of outage reduces the possible information throughput
of a wireless communication system.

1The term “codec” usually refers to the encoder and decoder pair of a specific chan-
nel code, but in this thesis the term also includes the corresponding modulation and
demodulation of coded information.
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Adaptive Techniques

A low outage probability, high SE, and low BER can not be achieved simul-
taneously by a traditional system using a single codec. Hayes suggested in
1968 an “Adaptive Feedback Communications” system to combat the vari-
ations introduced by a MFC with a Rayleigh distributed envelope [Hayes,
1968]. The technique is based on some parameter(s) in the communication
system being dependent on the state of the channel. This state is commu-
nicated from receiver to transmitter on a separate feedback channel. Then
the transmitter can adapt the transmission according to the variations in
the CSNR. In [Hayes, 1968] a power-adaptation scheme was proposed. The
disadvantages of this scheme are an increased average transmit power, in-
creased co-channel interference, and strict requirements on the linearity of
amplifiers used by the transmitter and the receiver. The increased average
transmit power requires larger batteries and result in unpredictable battery
life-time.

Another approach is to adjust the data rate of the communication sys-
tem. In [Cavers, 1972] this was done by adjusting the duration of a sin-
gle channel symbol on the channel. Evidently, this will result in a vari-
able bandwidth. In order to use such a scheme a relatively wide frequency
band (compared to the average bandwidth usage) must be assigned, and
thus, reducing the overall SE in a multiuser environment. Varying the size
of the modulation constellation used (“adaptive modulation”) according to
variations in CSNR [Steele and Webb, 1991] is more attractive. In adaptive
modulation, a small constellation is used when the CSNR is low and a large
constellation when the CSNR is high, leading to increased ASE.

The motivation of adaptive schemes is in general to be able to transmit
with an ASE as close to the capacity as possible, at a BER which fulfills the
desired quality requirements. The channel capacity, or the maximum aver-
age spectral efficiency (MASE), for a communication system utilizing perfect
channel state information (CSI) was presented in [Goldsmith and Varaiya,
1997]. An optimal variable-power and variable-rate transmission scheme
can reach the channel capacity under idealized conditions [Goldsmith and
Varaiya, 1997; Alouini and Goldsmith, 2000]. In [Goldsmith and Varaiya,
1997] it was also shown that a variable-rate and constant power scheme
has a performance close to the capacity under the same idealized condi-
tions. That is, only a small fraction of the possible ASE is traded away by
keeping the transmit power constant.

In [Chua and Goldsmith, 1997; Goldsmith and Chua, 1997] adaptive
modulation was combined with channel coding leading to so-called ACM.
In ACM, not only does a channel symbol from a large signal constella-
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tion carry more code bits compared to a small signal constellation, but
also the amount of redundant information in the transmitted information
stream is varied by adjusting the code rate of the channel coder according
to variations in the communication channel. Further investigation of ACM
schemes on flat fading channels using coded modulation, with multidi-
mensional trellis codes, was presented in [Hole, Holm, and Øien, 2000].
Adaptive systems can also be designed in conjunction with other tech-
niques such as multiple-input multiple-output (MIMO) systems [Zhou and
Giannakis, 2004].

An adaptive coding and/or modulation scheme also rely on the CSI
communicated from receiver to transmitter on a separate feedback chan-
nel. The CSI itself must be obtained through prediction of future values of
one or several channel metrics. Pilot symbol assisted modulation (PSAM) is
a well established technique in which deterministic channel symbols (pilot
symbols) are multiplexed into the transmitted stream of information carry-
ing channel symbols [Cavers, 1991]. PSAM or data aided channel estimation
outperforms more traditional systems employing pilot tones since these
are more complex, sensitive to frequency shifts, use more bandwidth, and
require highly linear amplifiers in the transmitter [Meyr, Moeneclaey, and
Fechtel, 1998]. Introducing pilot symbols into the stream of transmitted
information reduces the theoretically available SE somewhat since a frac-
tion of the channel symbols transmitted does not carry information. How-
ever, using the pilot symbols help providing information on the state of
the channel that can be used to improve symbol detection, channel estima-
tion, channel prediction, and ultimately increase the practically available
SE [Meyr et al., 1998; Baltersee, Fock, and Meyr, 2001].

1.2 Problem Formulation

Traditional theoretical analysis of adaptive communication systems assume
perfect knowledge of the CSI and a return channel that is error-free and
with a zero delay (see e.g. [Hayes, 1968; Goldsmith and Varaiya, 1997; Alo-
uini and Goldsmith, 2000; Hole et al., 2000]). In [Goeckel, 1999] an adaptive
coding scheme using outdated fading estimates was considered, and it was
shown that information on the fading process should be included in the
system design since variations in the channel characteristics highly affects
the BER performance of an ACM scheme (similar conclusions were made
in [Alouini and Goldsmith, 1997a]).

The objective of this thesis is to explore some limitations and advan-
tages of an ACM scheme after removing the following idealized conditions:
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• Perfect prediction.

• Infinitely many codecs.

• Arbitrary length channel codes in the component codecs.

• Zero-delay return channel.

• Constant fading between two subsequent codec updates.

In particular, we shall take into account the prediction errors resulting from
using a practical channel predictor. An imperfect channel estimator will
also be incorporated in the detection and demodulation of received infor-
mation. The predictor performance varies with delays introduced by the
system; return channel delay, communication channel delay, and delays in-
troduced by processing in the transmitter and receiver. Thus, the predictor
used is investigated for various amounts of delay as well as for different
degrees of mobility in the communication channel.

1.3 System Overview

The Communication Channel

The communication channel under consideration in this thesis is a time-
varying wide-sense stationary (WSS),2 frequency-flat, slow3 MFC. In the com-

�x(t) ��� � � �y(t)�
z(t)

�
n(t)

FIGURE 1.2: Baseband model of a frequency-flat multipath fading channel.

plex baseband model of the MFC in Figure 1.2 the received signal can be
written as

y(t) = z(t) · x(t) + n(t), (1.1)

where x(t) is the transmitted complex-valued symbol, n(t) is complex-
valued AWGN, and z(t) is the complex fading gain. The instantaneous

2The statistical properties; expectation, autocorrelation, and cross correlation, of a wide-
sense stationary process do not depend on the observation time.

3“Slow” refers to time.
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and average CSNR are defined as

γ = γ(t) =
|z(t)|2 · P

N0B
(1.2)

and

γ = E[γ(t)] =
Ωp · P
N0B

(1.3)

respectively, where P [W] is the average transmit power, N0 [W/Hz] is the
one-sided noise power spectral density, B [Hz] is the one-sided transmis-
sion bandwidth, and Ωp = E[|z(t)|2] is the average power gain [Stüber,
2001].

Experimental and analytical results in this thesis are obtained assuming
Rayleigh fading. That is, it is assumed that the received complex fading
envelope |z(t)| has a Rayleigh distribution. Then, the CSNR has an expo-
nential distribution with expectation γ [Stüber, 2001]:

fγ(γ) =
1
γ

e−
γ
γ . (1.4)

Rate-adaptive Coding and Modulation: System Description

The ACM system under study in this thesis is shown in Figure 1.3. The sys-
tem consists of a transmitter and receiver employing a set of N component
codecs (each with a different SE), a communication channel, and a separate
return channel which is assumed free of errors, but with a non-zero delay.
The codecs have different SEs and are used to transmit information within

Transmitter

Infor-
mation
bits

� N Component
Channel Coders

�

Channel state information, n

� N Component
Modulators

�

� Communication
Channel

Return
Channel

�

�

Receiver

Buffer �

� Decimation

�
Buffer

�
Channel
Predictor

�
Codec
Selection

�
Buffer

�
Channel
Estimator

�

Channel state information, n

N Component
Demodulators

�

� N Component
Channel Decoders

�

�
Decoded
infor-
mation
bits

FIGURE 1.3: Transmission system utilizing an ACM scheme with N cod-
ecs, and using channel prediction to obtain the necessary information for
choosing the appropriate codec to use for transmission.
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�

�

0 γ1 γ2 γ3 γN−1 γN ∞
BER0

BER

γ

FIGURE 1.4: BER-versus-CSNR relationship and corresponding CSNR
thresholds for N codecs employed by an ACM scheme.

different CSNR ranges on the channel. If N is large the CSNR range each
codec operates in is commonly approximated by an AWGN channel. Thus,
if the BER-versus-CSNR characteristics for each codec on an AWGN chan-
nel is known, a CSNR threshold can be defined for each codec, such that
it guarantees a BER below the target BER, denoted BER0, when the CSNR
is above the CSNR threshold. The CSI at a future time instant may be ob-
tained by predicting the future CSNR at the receiver. The range of possible
CSNR values on the MFC, γ ∈ [0, ∞〉, is thus divided into N + 1 CSNR re-
gions by N + 2 CSNR thresholds, {γn}N+1

n=0 , as outlined in Figure 1.4, with
γ0 = 0 and γN+1 = ∞. The CSNR is said to fall into CSNR region n when
γn ≤ γ < γn+1. The CSNR thresholds {γn}N

n=1 are selected such that the
BER of codec n is less than or equal to BER0 when γ ≥ γn on an AWGN
channel. It is assumed that R1 < R2 < · · · < RN , where Rn denotes the
SE of codec n. Codec n is the codec with highest SE that guarantees a BER
below the target BER when γ ∈ [γn, γn+1〉. The zeroth region, the outage re-
gion, is the range [0, γ1〉 where none of the employed codecs can guarantee
a BER below the target BER.

The ASE of the ACM scheme is defined as [Goldsmith and Chua, 1997]

ASE =
N

∑
n=1

Rn · Pn [bits/s/Hz], (1.5)

where Pn is the probability of codec n being used, and can be found from
the probability distribution of the predicted fading [Goldsmith and Chua,
1997]. The scheme will use a low SE, Rn, when the predicted CSNR is low
and a high SE when the predicted CSNR is high. A well-designed ACM
system will therefore typically outperform a "traditional" system (i.e. a sys-
tem employing a single-rate codec), since it may allow for transmission,
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with reduced SE, at CSNRs below the outage level of the traditional sys-
tem, and at higher SEs as the CSNR increases above this outage level.

Assuming perfect prediction of future CSNR values and assuming the
fading to be approximately constant during a given time interval, the CSNR
thresholds can be used as switching thresholds, that is, to select the appro-
priate codec to be used for transmission. In practice however, the channel
prediction is not perfect. The system can be made more robust towards
channel prediction errors by increasing the switching thresholds so as to
be more conservative in the choice of codecs. However, we do not want
to be more conservative than necessary, as this will reduce the ASE more
than needed. The trade-off between ASE and the overall BER of an ACM
scheme, for a given set of codecs, can be seen from Figure 1.4; increasing
the ASE the CSNR thresholds are moved to the left, and on average codecs
with higher SE are used at lower CSNRs. Moving the thresholds {γn}N

n=1
to the left is equivalent of moving the horizontal line showing the inter-
section between the BER0 and the BER-versus-CSNR curves, upwards and
thus increasing BER0.

Channel Prediction and Estimation

In Figure 1.3 the predictor operates on a decimated sequence of the se-
quence of received channel symbols. Likewise a channel estimator aiding
the demodulation/detection process operates on a decimated sequence.
Unlike the channel predictor (which only uses channel symbols received
in the past) the channel estimator may use channel symbols received both
in the past and in the future to estimate the fading envelope. In this case
all channel symbols must be stored while the system waits for the chan-
nel estimation. Thus, the receiver has three buffers; one for holding the
two decimated sequences and one storing the received information carry-
ing channel symbols while waiting for the channel estimation process to
be finished. The CSI is assumed communicated to the transmitter via the
separate feedback channel. The transmitter uses this information to select
the codec with the highest SE, among the available codecs, that satisfies the
BER demand.

The transmission system considered introduces several delays (process-
ing delays in both transmitter and receiver and transmission delays in both
the communication channel and the return channel). As a result, the CSNR
value used to select the appropriate codec has to be predicted at the re-
ceiver for some time instant in the future. The relevant CSI for the ACM
scheme in the previous subsection is the appropriate codec index n: A
codec update is performed when this index is changed. To provide the
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ACM scheme with information on the fading envelope the system utilizes
PSAM [Cavers, 1991]. That is, deterministic channel symbols (pilot sym-
bols) are multiplexed into the stream of information carrying channel sym-
bols to be transmitted. It is assumed that both the receiver and the trans-
mitter knows both the pilot symbols and the pilot symbol instants. For each
received pilot symbol a maximum likelihood (ML) estimate of the fading en-
velope can be obtained. The ML-estimates are buffered at the receiver, and
filtered through a linear filter with maximum a posteriori (MAP) optimal fil-
ter coefficients (see e.g. [Øien, Holm, and Hole, 2004]) to find a predicted
value of the CSNR at some time instant in the future.

1.4 Mobility Constraints in Adaptive Coding and

Modulation

The underlying assumption used when modeling a fading channel by time
multiplexed AWGN channels, is that the channel is slowly varying in time
[Hole and Øien, 2001]. As described in the first part of this chapter, this
is the case when the coherence time of the channel is much larger than the
time slot used to transmit a channel symbol.

Coherence time is commonly defined as the reciprocal of the Doppler
Spread [Proakis, 2000] which is defined in terms of the Doppler spectrum
(the Fourier transform of the autocorrelation of the fading envelope). The
Doppler spectrum varies with both frequency and time separation, and the
Doppler spread is defined as the time separation in which the Doppler
spectrum is essentially nonzero. In other words the coherence time can
be defined in terms of the autocorrelation [Proakis, 2000]. The degree of
correlation which is sufficient will vary with characteristics of the transmit-
ter and receiver [Greenwood and Hanzo, 1999]. Since the autocorrelation
varies with the Doppler frequency, increased mobility in terms of faster
relative motion between receiver and transmitter decreases the coherence
time of a wireless channel.

In a practical ACM scheme it is not realistic to switch codec after each
transmitted channel symbol. Especially, this is the case when the codecs
employ block codes. Also, in practice, packetized transmission is used.
Thus, it is assumed here that a codec update can only be done after trans-
mitting M consecutive channel symbols. As a result the channel must be
slow enough to ensure that the CSNR stays within the same CSNR region
during transmission of M channel symbols. That is, the correlation be-
tween fading values must be high enough for lags less than or equal to
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M. This puts in effect an upper bound on the relative transmitter-receiver
velocity.

The period used to transmit a single channel symbol is, for the case
of Nyquist transmission, given as Ts = 1/B [s]. The total transmission
delay for a codeword of length M is then given as T = M · Ts [s]. The
channel variation due to the relative movement of transmitter and receiver
manifests itself as Doppler shift [Rappaport, 1996]. The Maximum Doppler
shift (or maximum Doppler frequency) is given as

fm =
v
λc

[Hz] (1.6)

where v [m/s] is the relative velocity of the receiver-transmitter movement,
and λc [m] is the wavelength of the arriving plane wave. Since carrier
frequency can be written as

fc =
c

λc
(1.7)

where c [m/s] is the speed of light, this results in the following well-known
relationship between maximum Doppler shift and carrier frequency:

fm =
v fc

c
. (1.8)

Clearly, mobility in a transmission environment changes the state of a wire-
less channel both with and without obstructing objects in the transmission
path.

The criterion for assuming both slowly varying and frequency-flat fad-
ing channels is that the correlation between received samples is “high eno-
ugh.” Assuming isotropic scattering, the correlation coefficient for two sig-
nal components4 separated by ∆ f Hz and ∆t seconds is equal to [Green-
wood and Hanzo, 1999]

ρ(∆ f , ∆t) =
J2
0 (2π fm∆t)

1 + (2π∆ f )2σ2 , (1.9)

where J0(·) is the zero-order Bessel function of the first kind (the nth-order
Bessel function is given in Equation (A.2a)) and σ is the delay spread of the
channel. In our case we may set ∆ f = 0 since we always assume frequency-
flat fading [Greenwood and Hanzo, 1999]. The channel can be viewed as
approximately constant over each codeword if

ρ(0, T) ≥ ρ0 (1.10)

4“Signal component” in this context refers to the magnitude of the complex fading gain,
|z(t)|.
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where the value of ρ0 must chosen sufficiently high. Since the parameter ρ0
controls the variations in the fading envelope it also controls at least three
parts of an ACM scheme; channel estimation for channel symbol detection,
channel prediction for determining future channel states, and the error cor-
recting properties of the channel codes used. The performance of these
three parts will all degrade as ρ0 decreases.
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FIGURE 1.5: Envelope correlation versus normalized time lag.

From the assumptions, the only phenomenon that has to be restricted to
make sure that the channel does not vary to much over each codeword, is
the velocity of relative movement between the transmitter and the receiver.
Note, that the assumption of a slowly varying channel should ensure not
only that the channel stays within a single fading region during transmis-
sion of a sequence or block of channel symbols, but also that the predicted
channel quality will be sufficiently accurate.

Using Equations (1.8)–(1.10), the maximum velocity for an almost con-
stant channel quality over a codeword is given, for a given choice of “ac-
ceptable” correlation ρ0, as

v ≤ vmax =
c · J−1

0 (√ρ0)
T2π fc

, (1.11)

were J−1
0 (·) is the inverted zero-order Bessel function of the first kind. The

13



1. INTRODUCTION TO ADAPTIVE CODING AND MODULATION

function is not one-to-one, but from Figure 1.5 it can be seen that the small-
est solution of J−1

0 (·) is the desired value. A realistic example will show
how allowed mobility is reduced with increased block lengths.

Example 1.1 (Maximum velocity under a constraint on the coherence time)
The ETSI standard HIPERLAN/2 [ETSI, 2000] is specified to use car-
rier frequencies around fc = 5.4 GHz, and a symbol period of Ts =
4 µs. If the codeword length is M = 200 symbols, and the correla-
tion demand is set to ρ0 = 0.99 the maximum velocity according to
Equation (1.11) becomes

vmax = 1.56 m/s (or 5.62 km/hr)

which is about walking speed. If the correlation is chosen to be ρ0 =
0.90 the maximum velocity increases to

vmax = 5.04 m/s.

In Figure 1.6 the maximum velocity is plotted against different values
of the envelope correlation demand, ρ0 ∈ [0.90, 0.99], and for block
lengths M ∈ [1, 450] symbols. The figure shows how increased block
lengths and increased correlation demand reduce the upper bound on
the velocity of the relative movement of transmitter and receiver.

Note, that the results from this example only indicate that there is an up-
per bound on the maximum velocity of a wireless (ACM) scheme. The
correlation function in Equation (1.9) yields the magnitude of the complex
envelope and not the complex fading envelope or the correlation between
predicted and actual CSNR. The results showed here can be used as a rule-
of-thumb regarding how high the velocity in an ACM scheme can be before
the system breaks down. It should also be noted; the choice of ρ0 depends
on the transmission scheme used and will govern the BER and the ASE. It is
therefore up to the designer to choose the appropriate ρ0. One of the main
topics in this thesis is how the codecs are selected by the ACM scheme.
Modifying strategies for selecting codecs are here done mainly to control
the BER. When such a modification reduces the BER, the choice of ρ0 may
be reduced and allowing a larger degree of mobility.

1.5 Outline of this Thesis

The main objective in this thesis is to investigate the practical possibilities
and limitations of ACM schemes. We shall do this by means of both sim-
ulations and theoretical results. Results presented are utilized when sug-
gesting new techniques that can be used in the design of ACM schemes.
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FIGURE 1.6: Maximum velocity of the relative transmitter-receiver motion
as a function of demands on envelope correlation and block length, when
carrier frequency fc = 5.4 GHz, and transmission time of one channel sym-
bol is Ts = 4µs.

The theoretical part of the thesis focus on maximizing the ASE under a
constraint on the BER. As argued previously, the outage probability is of
practical concern in wireless communication systems. Thus, the maximiza-
tion of the ASE in this thesis therefore includes an upper constraint on the
outage probability.

When evaluating an ACM scheme in terms of BER and ASE, imperfect
channel prediction should be taken into account since this in fact reduces
system performance. We shall design techniques that can be used when
maximizing the ASE under both a BER and outage probability constraint
also for the case of imperfect channel prediction. By means of simulations,
the performance of an example ACM scheme designed under idealized
conditions is compared to the performance of an ACM scheme designed
using the techniques developed in this thesis.

In Chapter 2, theoretical capacity achieving codecs of arbitrary length,
are assumed. This assumption is made to obtain the maximum achievable
ASE for an ACM scheme using a limited number of codecs. An existing
ultimate upper bound on the ASE of a practical ACM scheme is extended
to yield maximum ASE under a constraint on the outage probability.

15



1. INTRODUCTION TO ADAPTIVE CODING AND MODULATION

The specific predictor used in this thesis is investigated in Chapter 3.
The investigation includes deriving the expectation of the actual CSNR con-
ditioned on predicted CSNR, average CSNR, and correlation between ac-
tual and predicted CSNR. In this chapter a technique that can be used to ob-
tain switching thresholds from CSNR thresholds is outlined. The method
is based on controlling the event of codec mismatch, i.e. choosing a codec
that does not guarantee the target BER. In this method the probability of
codec mismatch is used as a parameter. Then, it is shown that there exists
optimal switching thresholds both for the capacity achieving codecs and
a set of more practical codecs, in the sense of maximizing ASE under an
constraint on the BER.

In Chapter 4 the optimal thresholds are found for an example value of
the probability of codec mismatch. This is done both for the case of imper-
fect channel prediction and under a constraint on the outage probability.

In Chapter 5 simulations of an ACM scheme on Rayleigh fading are
presented for different configurations (a theoretically optimal configura-
tion and more practical configurations).

Finally, in Chapter 6 the concluding remarks in this thesis are summed
up.

In addition to the content of the thesis outlined above there are four ap-
pendices. The first, Appendix A, lists all the special functions used in this
thesis, as well as tables of values for two expressions that are used in the
numerical calculations in Chapter 4. In Appendix B a set of relevant sta-
tistical distributions are listed, and the derivation of the above mentioned
expectation of the actual CSNR is shown. The method used for simulat-
ing the Rayleigh fading is described in Appendix C. Appendix D describes
the component channel codes and the modulation technique used in our
codecs.
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Chapter 2

Theoretical Spectral Efficiency
Bounds for ACM with Outage
Probability Constraints

2.1 Introduction

The performance of a rate-adaptive transmission scheme can be measured
in terms of BER and ASE. A communication system with a single codec
can only achieve an ASE that is equal to the SE of this codec. Likewise,
the ASE of an ACM scheme is upper bounded by the codec with high-
est SE. The ASE can be compared to the channel capacity [Goldsmith and
Varaiya, 1997], but since a practical ACM scheme employs a limited num-
ber of codecs a more realistic reference is the maximum ASE for an ACM
scheme (MASA) [Holm, Øien, Alouini, Gesbert, and Hole, 2003]. In [Holm
et al., 2003] a method that can be used to obtain the MASA with a limited
number of component codecs was described. A drawback of this method
in its pure form is that, although the resulting MASA is maximum, it may
result in an unacceptable high outage probability. The method is therefore
generalized here to optimize the MASA under an outage constraint.

In the following section the problems addressed in this chapter are for-
mulated. In Section 2.3 expressions for the channel capacity and the MASA
of an ACM scheme are given. The method in [Holm et al., 2003] is extended
such that the MASA can be optimized also under an outage constraint in
Section 2.4. This work was also presented in [Jetlund, Øien, Hole, and
Holm, 2004a]. Finally, Section 2.5 presents some concluding remarks re-
garding the work presented in this chapter.
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2.2 Problem Formulation

In the case of perfect channel prediction the probability of outage is given
as [Choi and Hanzo, 2002]

P0 =
∫ γ1

0
fγ(γ)dγ, (2.1)

where fγ(γ) is the probability density function (PDF) of the CSNR. Note that
P0 is a function of γ1. As a result, maximizing the MASA may increase
the outage probability above a desirable value chosen by the designer of
an ACM scheme. From an information theoretical point of view, maximiz-
ing the ASE is maximizing the information throughput over infinitely long
time periods. Thus, long periods of outage is allowed as long as the aver-
age throughput of the system is maximized. In a practical system where
quality of service (QoS) depends on e.g. continuous transmission, the out-
age probability will be of practical concern. It is therefore also desirable to
obtain the MASA under an upper constraint on the outage probability.

Obtaining the constrained MASA is the fist objective of this chapter.
This is done by assuming that we have perfect channel prediction and that
each of the codecs employed perform with BER = 0 when the CSNR is
above a certain switching threshold. The second objective is to obtain the
N thresholds {γn}N

n=1 that maximize the ASE, with a possible constraint
on the outage probability, and the resulting MASA which is the maximum
achievable SE for an adaptive scheme employing N codecs. The thresholds
are not intended as a direct guideline for the designer, but rather the result-
ing bounds could be used to evaluate the performance of ACM schemes
in terms of ASE. However, the results can be used (as a starting point) to
indicate how a practical ACM scheme should be configured. The case of
imperfect channel knowledge will be treated in the subsequent chapters of
this thesis.

2.3 Maximum Average Spectral Efficiency for

Adaptive Coded Modulation

Channel Capacity

The maximum SE, or the channel capacity, of a memoryless AWGN channel
with CSNR γ is defined as:

CAWGN(γ) = B · log2 (1 + γ) [bits/s], (2.2)
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where B [Hz] is the bandwidth of the channel, and γ = γ(t) is the CSNR
of the channel at time t (the time index t is omitted in order to simplify
notation). The channel capacity is often defined in terms of information
throughput per Hz available bandwidth and can then be written as

C(γ) =
CAWGN(γ)

B
= log2 (1 + γ) [bits/s/Hz]. (2.3)

In [Goldsmith and Varaiya, 1997] the capacity of a frequency-flat fading
channel with AWGN was investigated under the assumptions of perfect
channel knowledge at both transmitter and receiver, and that a commu-
nication system is able to instantaneously adapt to changes in the CSNR.
When the transmitter only adapts the SE, and not the transmit power, the
capacity of the channel in Figure 1.2 was given in [Goldsmith and Varaiya,
1997] as

C =
∫ ∞

0
log2(1 + γ) fγ(γ)dγ [bits/s/Hz]. (2.4)

To achieve the capacity in Equation (2.4) by means of an ACM scheme it
is required that the system can instantaneously switch between N = ∞
capacity achieving codecs designed for AWGN channels, and that codecs
for all CSNRs are available (“continuous” switching between codecs).

For adaptive transmission schemes the maximal possible SE will vary
with the instantaneous channel conditions, in our case the CSNR. The re-
sulting ASE is the expected SE over all available adaptation modes. The
MASE for the Rayleigh fading channel is the expected channel capacity in
the Shannon sense, i.e., the ultimate upper theoretical limit of the ASE in
Equation (2.4), and for the case of constant power it is given by [Alouini
and Goldsmith, 1997b, Eq. (23)]1

MASE(γ) = −e
1
γ log2(e) Ei

(
− 1

γ

)
[bits/s/Hz], (2.5)

where Ei(·) is the exponential integral function defined in Equation (A.3).
The formula in Equation (2.5) holds under the assumption that the re-

ceiver is able to estimate the CSI perfectly and transmit it back to the trans-
mitter on a noiseless zero-delay return channel. Also, achieving the MASE
requires infinitely long codewords in the channel coder, infinitely many
codecs, and the ability to instantly switch codec when the CSI changes.

1In [Alouini and Goldsmith, 1997b] the MASE was presented for the Nakagami case.
Rayleigh fading, which is treated in this thesis, is a special case of the Nakagami fading
distribution with m = 1 [Stüber, 2001]. Thus, the expression here (in Equation (2.5)) is
found by substituting m = 1 in [Alouini and Goldsmith, 1997b, Eq. (23)].
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Thus, for a practical system with limited number of codecs, non-perfect
prediction, and delay both in the transmission system and the channels,
the MASE is an impractical bound on the SE.

Maximum ASE for ACM (MASA)

A discrete approximation to the formula in Equation (2.4) can be written as

C =
N

∑
n=1

RnPn [bits/s], (2.6)

where Rn is the SE of codec n and Pn is given as

Pn = P(γn ≤ γ < γn+1) =
∫ γn+1

γn

fγ(γ)dγ. (2.7)

That is, Pn is the probability of codec n being chosen for transmission.2

When N goes towards infinity and Rn = log2(1 + γn) [bits/s] the approx-
imation in Equation (2.6) goes towards the capacity expression in Equ-
ation (2.4).

To find the largest value of Rn we make the following observations; The
sample space of the CSNR is given as γ ∈ [0, ∞〉. In rate-adaptive coding,
as explained in Section 1.3, the sample space is divided in N + 1 subsets:
[γn, γn+1〉 for n ∈ {0, 1, 2, . . . , N}. The subsets are disjoint,

[γn, γn+1〉 ∩ [γm, γm+1〉 = ∅ for n �= m, (2.8)

and the sample space can be written as

∪N
n=0[γn, γn+1〉 = [0, ∞〉 (2.9)

where γN+1 = ∞.
Now, it follows that

max Rn = C|γ∈[γn,γn+1〉, (2.10)

where C|γ∈[γn,γn+1〉 denotes the capacity conditioned on the CSNR being in
subset n, [γn, γn+1〉. Using the law of total expectations (see e.g. [Råde and
Westergren, 1990]) the capacity in Equation (2.6) can be written as

C =
N

∑
n=1

C|γ∈[γn,γn+1〉Pn. (2.11)

2Note, that in this chapter perfect prediction is assumed. This means that the predicted
CSNR is equal to the actual CSNR. In this case, Pn depends on the actual CSNR. However,
when this assumption fails the predicted CSNR is used to choose the codec index n and
Equation (2.7) is not valid.
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This formula is however independent on the choice of {γn}N
n=1, as long as

Equations (2.8) and (2.9) are satisfied. It is also irrelevant how N is chosen.
In fact, if capacity achieving fixed codes for fading channels were available,
we could choose to use only one codec (N = 1). However, note that in order
to achieve this capacity we need a codec designed for the particular fading
channel.

Following the idea in [Holm et al., 2003], it is from now on instead as-
sumed that the communication system contains N < ∞ capacity-achieving
codecs designed for AWGN channels. This implies modeling the MFC as
time-multiplexed AWGN channels, which is appropriate if the fading is
(more or less) constant between two successive codec updates. Now, the
SE for each codec n is given by the capacity of some AWGN channel, i.e.

Rn(γ′) = log2(1 + γ′) where γ′ ∈ [γn, γn+1〉 (2.12)

and γ′ is the CSNR of the AWGN channel in question. The BER for a ca-
pacity achieving codec on an AWGN channel with CSNR γ′ can be tightly
upper bounded as

BER(γ) ≤
{ 1

2 γ < γ′

0 γ ≥ γ′.
(2.13)

Since codec n is selected when γ ∈ [γn, γn+1〉, we know that γ′ must be in
the same region (or subset): γ′ ∈ [γn, γn+1〉. However, choosing γ′ > γn
would result in a BER up to 1/2 when γ ∈ 〈γn, γ′〉 and since

P(γn < γ < γ′) =
∫ γ′

γn

fγ(γ)dγ > 0 if γ′ > γn, (2.14)

we must require γ′ = γn for error-free transmission. Thus, the maximum
SE for the codec to be used in region n is given as

max Rn = log2(1 + γn). (2.15)

The MASA is obtained when each of the N codecs employed have the
maximum SE in the corresponding CSNR regions. Thus, the MASA de-
fined as (see e.g. [Holm et al., 2003])

MASA =
N

∑
n=1

log2(1 + γn)Pn (2.16)

is an upper bound on the ASE when assuming block wise multiplexed
AWGN channels and capacity achieving codecs. Note, the MASA is not
the capacity for an ACM scheme unless we restrict the individual codecs
to be optimal for AWGN channels with CSNR levels equal to the CSNR
thresholds {γn}N

n=1 (see Figure 1.4).
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2.4 Optimal CSNR Thresholds and Optimal MASA

In order to optimize Equation (2.16) with respect to the CSNR thresholds
{γn}N

n=1, the gradient with respect to the CSNR thresholds is first obtained.
Setting the result to zero produces N equations:

∇{γn}N
n=1

MASA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δMASA
δγ1

δMASA
δγ2

...
δMASA

δγn

...
δMASA

δγN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (2.17)

Solving these equations with respect to the CSNR thresholds involves in-
verting the cumulative distribution function (CDF) of the CSNR. Assuming
Rayleigh fading the CSNR has an exponential PDF (see Equation (1.4)) with
corresponding CDF:

Fγ(γ) =
∫ γ

0
fγ(x)dx =

∫ γ

0

1
γ

e−
x
γ dx = 1 − e−

γ
γ . (2.18)

Optimal MASA under a Constraint on the Outage Probability

By expressing γ1 in terms of P0 (using Equations (2.1) and (2.18)),

γ1 = γ ln(P0 − 1), (2.19)

the optimal MASA can be constrained by an outage probability demand:
P0 ≤ Pout. By selecting the outage probability before obtaining the op-
timal CSNR thresholds, the optimal MASA is not necessarily found for
∇MASA = 0. Introducing a single Lagrange multiplier, λ, the optimiza-
tion procedure under an outage constraint can be written as

∇{sn}N
n=1

MASA + λPout = ∇{sn}N
n=1

MASA + λ

∫ γ1

0
fγ(γ)dγ = 0. (2.20)

Thus, obtaining the optimal thresholds involves finding the Lagrange mul-
tiplier that satisfies Equation (2.20). To simplify the notation Equation (2.20)

22



OPTIMAL CSNR THRESHOLDS AND OPTIMAL MASA

is multiplied by the constant ln 2, resulting in the following N equations:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
(1+γ1)

P1 − ln (1 + γ1) fγ (γ1) + λ ln (2) fγ (γ1)

ln (1 + γ1) fγ (γ2) + 1
(1+γ2)

P2 − ln (1 + γ2) fγ (γ2)

...

ln (1 + γn−1) fγ (γn) + 1
(1+γn) Pn − ln (1 + γn) fγ (γn)

...

ln (1 + γN−1) fγ (γN) + 1
(1+γN) PN − ln (1 + γN) fγ (γN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0, (2.21)

where Pn is given by Equation (2.7). Assuming Rayleigh fading and using
Equation (2.18) the finite integrals Pn are given as

Pn = Fγ(γn+1) − Fγ(γn) = e−
γn
γ − e−

γn+1
γ . (2.22)

Now, the first row in Equation (2.21) can be used to express γ2 in terms of
γ1. Likewise, using the second row for expressing γ3, and the nth row for
expressing γn+1 results in the complete set of equations to find the optimal
CSNR thresholds {γn}N

n=1:

γ1 = − ln (1 − Pout) γ (2.23)

γ2 = γ1 − γ ln
(

1 − 1
γ

(1 + γ1) (ln (1 + γ1) − λ ln (2))
)

(2.24)

γ3 = γ2 − γ ln
(

1 +
1
γ

(1 + γ2) ln
(

1 + γ1

1 + γ2

))
(2.25)

...

γn = γn−1 − γ ln
(

1 +
1
γ

(1 + γn−1) ln
(

1 + γn−2

1 + γn−1

))
(2.26)

...

γN = γN−1 − γ ln
(

1 +
1
γ

(1 + γN−1) ln
(

1 + γN−2

1 + γN−1

))
. (2.27)

Note, for λ = 0, which is the case of no constraint on the outage proba-
bility, the equations for γn, n ≥ 2, is equal to the result presented in [Holm
et al., 2003]. Equations (2.23) through (2.27) can in principle also be used
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FIGURE 2.1: MASA plotted as a function of γ1 for N ∈ {1, 2, 4} and γ ∈
{10, 20} dB.

to obtain the optimal thresholds for this case, by first obtaining the outage
probability that maximize the ASE (for λ = 0).

When the outage probability is chosen according to some design cri-
teria, the optimal thresholds are found by first obtaining the λ that maxi-
mizes the ASE.3 In the following the MASA for the Rayleigh fading channel
is plotted for different values of the CSNR, number of codecs, and for dif-
ferent given values of γ1 or, correspondingly, the outage probability.

In Figure 2.1 the MASA is plotted for different given values of γ1, γ ∈
{10, 20}dB, and for N ∈ {1, 2, 4}. From the curves it can be seen that, for a
given N, the MASA can always be maximized by choosing the appropriate
γ1 if there are no outage constraints. It can also be observed that the MASA
is always increasing for increasing N for any given value for γ1. However,
increasing γ1 beyond an optimal value will reduce the MASA, and in the
extreme there is almost no gain in increasing the number of codecs (see
Figure 2.1 for γ1 > 15 dB when γ = 10 dB).

In Figure 2.2, the plots were again generated for γ ∈ {10, 20} dB and

3In either case (λ = 0 or λ �= 0) a search must be made to obtain the optimal value of the
outage probability or λ. For each search all thresholds must be obtained and the resulting
MASA calculated.

24



OPTIMAL CSNR THRESHOLDS AND OPTIMAL MASA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
out

M
A

S
A

 [b
its

/s
/H

z]

CSNR = 10 [dB], N = 1
CSNR = 10 [dB], N = 2
CSNR = 10 [dB], N = 4
CSNR = 20 [dB], N = 1
CSNR = 20 [dB], N = 2
CSNR = 20 [dB], N = 4

FIGURE 2.2: MASA plotted as a function of Pout for N ∈ {1, 2, 4} and
γ ∈ {10, 20} dB.

N ∈ {1, 2, 4}, but the MASA is plotted for varying values of the designer-
chosen outage probability. Assuming that Pout is never chosen to be larger
than the value that maximize MASA, for a given N, the figure shows that
there is a trade-off between MASA and Pout. For small values of Pout and
high values of N the optimal MASA varies less with Pout, compared to low
values of N. That is, the trade-off between high ASE and low Pout is not
as crucial for higher values of N. From Figure 2.1 it can also be observed
that as γ increases the optimal γ1 increases. As a consequence the MASA
is more sensitive to an outage demand for high average CSNRs (as seen in
Figure 2.2).

The resulting MASA for the case of no outage demand is plotted for
N ∈ {1, 2, 4, 8, 16}, along with the MASE of the Rayleigh fading channel,
in Figure 2.3. As the results in the figure show, increasing the number of
codecs increases the optimal MASA towards the MASE. The increasing gap
between the MASA curves and the MASE curve for increasing CSNR is
somewhat misleading, as can be seen in Figure 2.4. In this figure the loss
in SE (measured in percent of the MASE), in terms of difference between
MASE and optimal MASA, is plotted for the choices of N in Figure 2.3. The
figure shows that the percent wise reduction in SE is decreased as CSNR
increases. For a high value of N the difference between the MASE and the
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FIGURE 2.3: Unconstrained MASA of an ACM system on a Rayleigh fad-
ing for N ∈ {1, 2, 4, 8, 16} codecs.

MASA is lower than for low values of N. And also, the reduction is not as
sensitive to variations in the average CSNR for systems with a high number
of codecs.

The outage probability is plotted for N ∈ {1, 2, 4} and γ ∈ [0, 20] dB in
Figure 2.5. As N and/or γ increase the outage probability is reduced. This
implies that for a system with an outage demand, increasing the number of
codecs is one obvious solution. However, adding an extra codec might be
too expensive or impractical for the designer of an ACM scheme. Instead
an ACM scheme with N codecs can be specified to have a given outage
probability, at the price of a certain loss in ASE.

2.5 Concluding Remarks

In this chapter a unified tool for obtaining the SE bounds for a ACM scheme
and the corresponding optimal CSNR was presented. The bounds can be
used to evaluate the performance of realistic adaptive schemes in the sense
that only N < ∞ codecs are used. The optimization procedure outlined
results in a recursive procedure such that all CSNR thresholds can be rep-
resented as functions of the first CSNR threshold. For the case of Rayleigh
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fading the PDF and CDF of the CSNR are of such beneficial forms that the
equations used in the recursion can be solved analytically. For the case of
e.g. the Nakagami fading channel it is necessary to optimize the system
using numerical approximations [Holm et al., 2003]. The resulting MASA
is a function of the CSNR threshold corresponding to the codec with the
lowest SE. Then, optimizing MASA is done by searching for the optimal
value of this threshold. The resulting MASA, which is also a function of
this threshold, is then an upper bound on the ASE.

The tool also include optimization under an outage constraint. The re-
sulting method is a powerful tool that can be used to improve certain QoS
measures (that are defined in terms of outage probability). The results show
that an ACM scheme using a high number of codecs can allow for a reduced
outage probability without trading large proportions of the ASE. However,
one should note that certain idealized conditions are still assumed during
this chapter; perfect prediction and zero-delay return channel (these as-
sumptions will be removed in the following chapters).

Since the method also produce the thresholds of the capacity achiev-
ing codecs employed it can be used as a guide in system design. That is,
practical system design should strive towards finding codecs that perform
with a BER close to the target BER at the optimal thresholds. Or equiv-
alently, the optimal SE of each codec can be calculated (from the optimal
thresholds) and system design should include searching for codecs with
SEs close to these optimal codecs. There will of course be a loss, in terms of
either ASE or BER or both, since a practical codec has a BER that is larger
than zero also when the CSNR is above the corresponding threshold. It
is shown how the optimal MASA increases as N increases, and that the
gained MASA achieved by increasing γ also increases for increased N.
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Chapter 3

ACM Design under Imperfect
Channel State Information

3.1 Introduction

The time-varying nature of an MFC results in several issues which need to
be addressed by the designer of a wireless communication system. Since
the fading gain varies there is a need for channel estimation to improve detec-
tion and demodulation of the information carrying channel symbols. For
an ACM scheme the selection of the appropriate codec for transmission is
based on predicted CSI at some point in the future. Thus, some sort of chan-
nel prediction is required in order for an ACM scheme to operate properly.

Traditionally, and in the previous chapter, ACM schemes have been de-
signed assuming perfect prediction of future CSNR values. Thus, the true
CSNR thresholds can be used as switching thresholds. The codec with high-
est SE among those with switching thresholds smaller than the predicted
CSNR, is selected for transmission.

In practice, the prediction is not perfect, and the switching thresholds
should be chosen such that they ensure (with a high probability) that the
ACM scheme does not select a codec that cannot guarantee the target BER.
That is, it is desirable to control the probability (denoted ε) of the actual
CSNR being above a certain CSNR threshold when the predicted CSNR is
above the corresponding switching threshold.

In the case of perfect prediction, an ACM scheme can be designed such
that the instantaneous BER is always smaller than the target BER. Assum-
ing imperfect channel prediction, the probability ε of selecting a codec that
cannot guarantee the target BER will always be larger than zero. A more
practical requirement is to configure the ACM scheme such that the average
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3. ACM DESIGN UNDER IMPERFECT CHANNEL STATE INFORMATION

BER (over all predicted CSNRs) for each codec is less than the target BER.
Then it is also ensured that the overall average BER for the ACM scheme is
below the target BER.

In this chapter, we shall provide the necessary tools for designing swit-
ching thresholds for different values of the (designer chosen) probability
ε. Choosing switching thresholds higher than the CSNR thresholds will
clearly reduce both the average BER and the ASE. Therefore, a method for
upper bounding the choice of ε under the constraint of the average BER
being below the target BER will also be shown.

Most of the results presented in this chapter were presented in [Jetlund
et al., 2004a; Jetlund, Øien, and Holm, 2004b]. The remainder of this chap-
ter is organized as follows; In Section 3.2 the system model and a MAP-
optimal filter that can be used in both channel prediction and channel esti-
mation is briefly outlined. The main objective of this section is the resulting
normalized correlation ρ between predicted and actual CSNR, which can be
used to relate switching thresholds to CSNR thresholds taking into account
the variations in the communication channel.

In Section 3.3 the theoretical performance of the predictor is investi-
gated by means of the PDF for γ conditioned on γ̂. The expectation of this
PDF is derived (the derivation is shown in Appendix B) in order to gain
more insight in the relationship between predicted and actual CSNR.

In Section 3.4 the problem of obtaining the switching thresholds by
means of the probability of codec mismatch ε is described. The Result-
ing expressions for the case of Rayleigh fading channels are outlined in
Section 3.5.

In Section 3.6 expressions for the upper bound on ε are found for both
capacity achieving codecs and for practical codecs that can be realized for
use in an ACM scheme. The BER-versus-CSNR relationship for a set of
Gallager codes is used in Section 3.7 to show the practical limitations and
properties of ε and how choices of ε will affect the ASE. Concluding re-
marks on the contributions made in this chapter are given in Section 3.8.

3.2 MAP-optimal Estimation with PSAM

In this and the following section we shall consider the system outlined in
Figure 3.1. The information-carrying channel symbols at the transmitter
are denoted d(k) where k is a discrete time index. Deterministic pilot sym-
bols, p(k), are multiplexed into the information stream at pilot time instants
known at both transmitter and receiver. The resulting stream of channel
symbols, x(k), are transmitted on the communication channel described in
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FIGURE 3.1: Pilot symbol assisted modulation used in both channel pre-
diction and channel estimation.

Figure 1.2 and Equation (1.1). That is, for the case of discrete time indexes
the received signal is given as

y(k) = z(k) · x(k) + n(k). (3.1)

It is here assumed that the pilot symbols are inserted after equal spaced
intervals, such that x(k) is the information signal except at the pilot instants
k = lL where l is an integer and L is a constant integer larger than zero.

For simplicity, although it has recently been shown not to be optimal
[Chai and Giannakis, 2005; Duong and Øien, 2004], it is also assumed here
(as in [Holm, 2002]) that all pilot symbols have the same amplitude value

x(lL) = ap, (3.2)

and that the transmit power for pilots is equal to the average transmit
power for information carrying channel symbols, that is,

|ap| =
√

P. (3.3)

Since every Lth channel symbol x(k) is a pilot symbol, the SE of codec n
is reduced by a factor (L − 1)/L. The resulting ASE for an ACM scheme
using this configuration then becomes

ASEL =
N

∑
n=1

L − 1
L

Rn · Pn [bits/s/Hz]. (3.4)

At the receiver the channel symbols y(k) from the channel are separated
into channel symbols carrying information, d̃(k), and pilot symbols, p̃(k).
At each pilot symbol instant k = lL, the following ML-estimate at the pilot
instants (based on one received observation [Meyr et al., 1998]) of z(lL) is
calculated by the receiver:

z̃(k) =
p̃(k)
ap

=
y(k)
ap

= z(k) +
n(k)
ap

, k = lL. (3.5)
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3. ACM DESIGN UNDER IMPERFECT CHANNEL STATE INFORMATION

The channel predictor uses the ML-estimates to predict the fading at
time instant k + j, where j > 0 represents the prediction lag. Through-
out this thesis, it is assumed that the prediction lag takes into account both
transmission delays and processing delays. The ML-estimates are also used
by the channel estimator which produces estimates of the fading, ẑ(k), at
every time instant k between two consecutive pilot symbol time instants.
The predictor and the estimator are linear filters of length Kp and Ke, re-
spectively.

MAP-optimal Filter Coefficients

Obtaining the filter coefficients for the MAP-optimal filter requires knowl-
edge of the autocorrelation function of the fading envelope. As described
in Section 1.4 a WSS MFC can be characterized by its maximum Doppler
frequency fm = v · fc/c [Hz]. Under the assumption of isotropic scattering,
the fading is said to have a Jakes spectrum, and the autocorrelation of the
complex fading envelope can be written as [Stüber, 2001]

φzz(τ) =
1
2

E[z∗(t)z(t + τ)] =
Ωp

2
J0(2π fmτ), (3.6)

where τ is the time delay between samples. The normalized autocorrela-
tion function sampled at a period equal to Ts is then defined as

R(l) =
1

Ωp
E[z∗(k)z[k + l]] = J0(2π fmTsl) =

2
Ωp

φzz(Tsl). (3.7)

The higher v, and thus fm, the less correlated the fading typically is for a
given l. Also, the correlation is reduced as l increases.

A sequence of ML-estimates represents estimated values of a decimated
sequence of the actual fading. In this case, a channel predictor can be im-
plemented as a Wiener filter with precomputed filter coefficients for all ML-
estimates z̃(k) [Meyr et al., 1998]. The realization of the channel predictor
in Figure 3.1 uses Kp ML-estimates on received pilot symbols in the past
of the fading sample to be predicted. The ML-estimates are shifted into a
buffer of size Kp, where Kp is an even integer. The buffered estimates, at
time instant k, can be written as

z̃k = [z̃(k), z̃(k − L), . . . , z̃(k − (Kp − 1)L)]T, (3.8)

where k = lL. The predicted value can be written as (see e.g. [Meyr et al.,
1998])

ẑ(k + j) = hT
j z̃k, (3.9)
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where
hj = [hj(0), hj(1), . . . , hj(Kp − 1)]T (3.10)

is the vector holding the estimation filter coefficients which correspond to
estimating the symbol at time instant k + j.

The MAP-optimal filter coefficient vector of length K on a Rayleigh fad-
ing channel is given as (see e.g. [Meyr et al., 1998; Øien, Holm, and Hole,
2002c])

hj,MAP = rT
j,K

(
RK +

1
γ

IK×K

)−1

, (3.11)

where IK×K is a K × K identity matrix. The vector rj,K is of length K and
the elements represent the normalized covariance between the fading to
be predicted at time k + j and the fading at the pilot instants k, k − L, k −
2L, . . . , k − (K − 1)L. RK is the normalized covariance matrix, but can be
viewed as a K × K-matrix holding the normalized autocorrelation of the
fading process sampled at a period equal L · Ts. With the assumption of
Jakes spectrum in the fading process, the elements of rj,K and RK can be
calculated from the following equations (using the normalized autocorre-
lation in Equation (3.7)):[

rj,K
]

l =
1

Ωp
E [z∗ (k + j) z (k − lL)] =

2
Ωp

φzz ((j + lL) Ts) (3.12)

and

[R]lm =
1

Ωp
E [z∗ (k − lL) z (k − mL)] =

2
Ωp

φzz (|l − m|LTs) (3.13)

where l and m are integers.
The channel predictor can now be implemented using the filter coef-

ficients in Equation (3.11) with K = Kp. The filter coefficients in Equ-
ation (3.11) can also be used in the channel estimator (with K = Ke), but it
is here assumed that the channel estimator is allowed to use ML-estimates
from pilot symbols both in the past and the future of the fading sample to
be estimated. That is, elements of rj,K are calculated for both negative and
positive values of j.

Channel State Information

The predicted CSNR at time instant k + j, γ̂(k + j), must be estimated from
the predicted fading ẑ(k + j). Defining

E
[
|ẑ(k + j)|2

]
= Ω̂p, (3.14)
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3. ACM DESIGN UNDER IMPERFECT CHANNEL STATE INFORMATION

then there exists a constant r such that [Tang, Alouini, and Goldsmith, 1999;
Øien et al., 2002c]

Ω̂p = r · Ωp. (3.15)

Since the predicted fading envelope is a linear combination of complex
Gaussians, it is itself a complex Gaussian. It follows that the predicted fad-
ing is Rayleigh distributed, and that the corresponding predicted CSNR,

γ̂(k + j) =
|ẑ(k + j)|2P

N0B
, (3.16)

is exponentially distributed [Øien et al., 2004],

fγ̂(γ̂) =
1

rγ
e−

γ̂
rγ , (3.17)

with expectation

E[γ̂] =
Ω̂pP
N0B

= r · γ. (3.18)

The normalized correlation between the actual and predicted CSNR given as

ρ =
Cov(γ̂, γ)√

Var(γ̂)Var(γ)
≤ 1, (3.19)

where Cov(·, ·) and Var(·) are the covariance and variance operators, re-
spectively. It is shown in [Holm, 2002; Øien, Holm, and Hole, 2002a] that
for the MAP-optimal predictor, the ratio r and the correlation coefficient ρ
are both equal to

ρ = r = rT
j,K

(
RK +

1
γ

IK×K

)−1

rj,K, (3.20)

with K = Kp.

3.3 Predictor Performance

The predictor performance (i.e. the accuracy of the predictor) depends on
the ML-estimates employed in the prediction, the variations in the com-
munication channel, and the bias of the predictor. The ratio r between
the average actual CSNR and the average predicted CSNR lies between
zero and unity since the ratio is equal to the normalized correlation (Equ-
ation (3.20)). Thus, the MAP-optimal prediction filter has a negative bias
(i.e. the predicted CSNR will on average be smaller than the average CSNR).
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The variation of the fading envelope is described by the normalized
correlation which is controlled by φzz(τ) or equivalently by R(m) (through
Equations (3.20), (3.12), and (3.13)), which again varies with the maximum
Doppler frequency fm and the time delay τ (or j · Ts). Also, the normal-
ized correlation in Equation (3.20) depends on the filter length Kp, the pilot
spacing L, and the average CSNR γ through Equations (3.12) and (3.13).

In order to relate general results to a more practical case the following
example can be considered, both here and in later chapters.

Example 3.1 (Correlation properties of the MAP-optimal predictor)
Using a carrier frequency fc = 5.4 GHz and a symbol time duration
Ts = 4 µs (collected from the ETSI HIPERLAN/2 standard [ETSI,
2000]), a normalized Doppler frequency fmTs ∈ [0, 8 · 10−4] corre-
sponds to a Doppler frequency and a relative transmitter-receiver ve-
locity of

fm ∈ [0, 200] Hz

and
v ∈ [0, 11.11] m/s,

respectively. Likewise the normalized prediction lag j fmTs ∈ [0, 0.2]
corresponds to a prediction lag measured in channel symbols and sec-
onds of

j ∈ [0, 555] symbols

and
τ ∈ [0, 2.22] ms,

respectively, when the normalized Doppler frequency is set to fmTs =
3.6 · 10−4 (or equivalently v = 5 [m/s]).

The normalized correlation between the actual and predicted CSNR
was studied in [Holm, 2002]. It was shown that ρ was severely reduced
when the pilot spacing L was increased. Increasing the number of filter
coefficients Kp showed an improvement in terms of increased ρ. However,
the results in [Holm, 2002] indicated that (at least for large values of Kp)
the correlation was not very sensitive to changes in Kp. In the subsequent
chapters it is assumed that the MAP-optimal predictor is used, that the
correlation between actual and predicted CSNR is known, and that the cor-
relation is high, typically 0.9 < ρ < 1. It is then effectively assumed that
the normalized prediction lag is kept low (in [Holm, 2002] it was shown
that the normalized correlation for a predictor with Kp ≥ 500 and L = 10 is
above 0.9 as long as the average CSNR is above 10 dB and the normalized
prediction delay is less than 0.25 seconds).
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Properties of the Fading Envelope

In [Falahati, Svensson, Sternad, and Mei, 2003] the BER performance of
an adaptive trellis coded modulation system was compared to the per-
formance of an adaptive uncoded quadrature amplitude modulation (QAM)
scheme. The BER was evaluated as a function of γ̂. The results in [Falahati
et al., 2003] indicate that the CSNR thresholds should be increased when
the average CSNR increases. This may seem somewhat counter intuitive
since the correlation of a channel predictor increases with γ, and yields a
more accurate prediction.

The performance of an ACM scheme depends on the accuracy of the
predicted CSNR γ̂, and the probability of this prediction being sufficiently
close to the actual CSNR. For the case of Rayleigh fading the two CSNRs are
exponentially distributed. Using Equation (B.4) the PDF of γ conditioned
on γ̂ can be written as

fγ|γ̂ (γ|γ̂) =
1

γ (1 − ρ)
I0

(
2
√

γγ̂

γ (1 − ρ)

)
e−

(
γ

γ(1−ρ) +
γ̂

γ(1−ρ)

)
(3.21)

where the expectation of γ and γ̂ is γ and ργ, respectively and ρ is the
normalized correlation between γ and γ̂. The expectation of γ conditioned
on γ̂ and ρ is given as

E [γ|γ̂, γ, ρ] = (1 − ρ)γ + γ̂ (3.22)

(for the derivation of the expectation of the conditional exponential distri-
bution see Section B.3).

In Figure 3.2 the conditional PDF in Equation (3.21) is plotted against
γ for a predicted CSNR γ̂ = 10 dB, different values of the normalized pre-
diction lag, γ ∈ {0, 10, 20} dB, Kp = 500, and L = 10. In the upper and
lower plot the normalized prediction lag was set to j fmTs = 4 · 10−2 and
j fmTs = 10−1, respectively. The PDF has its maximum at (or very close to)
γ̂, indicating the most likely value for γ. As γ increases the PDF is flat-
tened (i.e. the uncertainty in the actual value for γ increases with γ). This
behavior can be explained by observing that γ̂ � γ corresponds to predict-
ing a deep fade in the fading envelope. Any channel symbols transmitted
during a deep fade is severely degraded by additive noise. Since this also
holds for the pilot symbols a deep fade reduces the accuracy of the channel
predictor. This can also be deduced from the plots in Figure 3.3 where the
expected value of γ conditioned on γ̂, γ, and ρ, is plotted against γ; the ex-
pected value of γ increases with γ and increased normalized prediction lag
(reduced ρ). That is, as γ increases a larger proportion of the probability

36



PREDICTOR PERFORMANCE

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

f  
 | 

 ( 
 | 

 )

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

f  
 | 

 ( 
 | 

 )

E[ ] =   0[dB]
E[ ] = 10[dB]
E[ ] = 20[dB]

E[ ] =   0[dB]
E[ ] = 10[dB]
E[ ] = 20[dB]
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tion of γ, for γ̂ = 10 dB.
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mass is moved to the right of γ̂ in Figure 3.2, reducing the probability of
the actual CSNR being equal to the predicted CSNR. The increased expec-
tation of γ when ρ is reduced is to be expected since a reduced ρ reduces
the performance of a predictor. The switching thresholds should then be
increased to maintain a constant probability of a codec mismatch.

3.4 Obtaining the Switching Thresholds: Problem

Formulation

An imperfect channel predictor as described in previous sections will in-
crease the average BER of an ACM scheme. The predicted CSNR might
be higher than the actual CSNR and falling in a higher indexed CSNR re-
gion than the actual CSNR. As discussed previously the switching thresholds
used to select codecs should be increased to reduce the probability of error.1

These thresholds take into account the probability of the predictor making
an error that result in choosing an inappropriate codec for transmission (a
codec mismatch). The switching thresholds should then be found by tak-
ing into account predictor performance. However, in order to do this the
correlation between actual and predicted CSNR must be known. We shall
assume that the MAP-optimal estimator is used. The necessary expressions
for the properties of the predicted CSNR were given in Section 3.2.

Since the actual CSNR is unknown at the receiver we define a codec swit-
ching strategy (CSS) by means of a new set of thresholds, for the predicted
CSNR, that are used to select a codec based on the predicted CSNR. The
switching thresholds are denoted

{sn}N+1
n=0 = {s0, s1, s2, . . . , sN , sN+1}, (3.23)

with s0 = 0 and sN+1 = ∞. Codec n is selected when γ̂ falls in switching
region n, defined as [sn, sn+1〉. The probability of selecting codec n can, in
the case of imperfect channel prediction, be written as (using Equations
(3.17) and (3.20))

Pn =
∫ sn+1

sn

fγ̂(γ̂)dγ̂ =
∫ sn+1

sn

1
ργ

e−
γ̂

ργ dγ̂. (3.24)

1Recall that, in this thesis, switching thresholds defines the regions used when the pre-
dicted CSNR is used for codec selection. CSNR thresholds (which can be used as switching
thresholds when the normalized correlation between predicted and actual CSNR is ρ = 1)
are defined as the CSNR level at which the corresponding codec performs with a BER equal
to BER0 on an AWGN channel. The set of switching thresholds should be found such that
the average BER is less than or equal to BER0 when ρ < 1.

38



OBTAINING THE SWITCHING THRESHOLDS: THE SOLUTION

When γ̂ ∈ [s0, s1〉 the system experiences an outage and only pilot infor-
mation is transmitted. The probability of outage is thus given by P0 (and is
found by substituting n = 0 into Equation (3.24)).

When perfect prediction is assumed (ρ = 1), the CSNR thresholds in Fig-
ure 1.4 can be used directly as switching thresholds: That is, sn = γn for
n ∈ {1, . . . , N}. As the normalized correlation ρ is reduced (corresponding
to either a lower γ, a larger prediction channel delay, or a higher termi-
nal velocity) there is an increasing probability of mismatch between the
predicted and actual CSNR. This will result in an increased BER, since the
actual CSNR sometimes will fall into a lower indexed region than the pre-
dicted CSNR. Although this cannot be completely avoided with any CSS
it is desirable to control the probability of this event. It is then natural to
demand

P(γ < γn|γ̂ = sn) =
∫ γn

0
fγ|γ̂(γ|γ̂ = sn)dγ = ε, (3.25)

where ε is some (small) constant chosen by the designer [Øien, Holm, and
Hole, 2002b]. Thus, by increasing the switching thresholds {sn}N

n=1 to ob-
tain a certain desired (sufficiently small) ε the probability of a codec mis-
match can be reduced in a more controlled manner.

3.5 Obtaining the Switching Thresholds: The

Solution

Assuming that the actual CSNR is constant, an increase in the predicted
CSNR reduces the probability of a codec mismatch. If sn is chosen to fulfill
Equation (3.25) this can be expressed as

P(γ < γn|γ̂ ≥ sn) ≤ ε. (3.26)

One can in principle imagine ε chosen such that the BER always stays be-
low BER0, or so that it stays below BER0 with a certain (sufficiently high)
probability. The choice of ε can also be made codec dependent (if some
codecs are used more frequently than others, a smaller ε might be appro-
priate for these codecs). Minimizing the probability of γ falling into a lower
indexed region than γ̂ involves solving Equation (3.25), with respect to sn,
n ∈ {1, 2, . . . , N}. Equivalently the equation for the probability of the com-
plementary event, given as

1 − ε = P(γ > γn|γ̂ = sn), (3.27)

can be solved with respect to sn. In the following subsection a closed form
expression that relates γn, sn, and ε for the Rayleigh fading case is obtained.
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Rayleigh Fading Case

Assuming a Rayleigh faded envelope the actual and predicted CSNRs are
(as discussed previously in this chapter) correlated with normalized corre-
lation ρ, and have expectations γ and ργ, respectively. The two then follow
a joint exponential PDF and the probability in Equation (3.27) can be ob-
tained as follows (using the conditional PDF in Equation (B.4)):

P(γ > γn|γ̂ = sn) =
∫ ∞

γn

fγ|γ̂(γ|γ̂ = sn)dγ

=
∫ ∞

γn

1
γ (1 − ρ)

× I0

(
2
√

γsn

γ (1 − ρ)

)
×e−

(
γ

γ(1−ρ) +
sn

γ(1−ρ)

)
dγ

=
∫ ∞

γn

1
γ (1 − ρ)

I0

(√
2γ

γ (1 − ρ)

√
2sn

γ (1 − ρ)

)

×e−
1
2

(
2γ

γ(1−ρ) +
2sn

γ(1−ρ)

)
dγ.

Substituting

a =

√
2sn

γ (1 − ρ)
,

b =

√
2γn

γ (1 − ρ)
,

and

x =

√
2γ

γ (1 − ρ)

and changing the integration variable results in

P(γ > γn|γ̂ = sn) =
∫ ∞

b
xI0 (ax) e−

1
2 (a2+x2)dx = Q (a, b) (3.28)

where Q(·, ·) is the Marcum-Q function [Marcum, 1948]. This closed form
expression was also presented in [Øien et al., 2002b] with a different version
of the Marcum-Q function,2 but the derivation was not shown. In [Øien

2Note, there exist multiple definitions of the Q-function, the generalized Q-function,
and the mth order Q-function that are all referred to as the Marcum Q-function. In [Øien
et al., 2002b] the generalized (mth order) Marcum Q-function from [Temme, 1996] was used.
The relationship between the Q-function used in [Øien et al., 2002b] and the Q-function
used here can be found by substitution.
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et al., 2002b] this result was actually presented for a Nakagami-m fading
channel.

The new switching thresholds can now be found by solving

Q

(√
2sn

γ (1 − ρ)
,

√
2γn

γ (1 − ρ)

)
= 1 − ε (3.29)

with respect to every sn, n ∈ {1, 2, . . . , N} for given values of γ, ρ, and
{γn}N

n=1, and a chosen ε ∈ 〈0, 1〉. To the author’s knowledge there does
not exist a closed form expression for the inverse of the Marcum-Q func-
tion. But the inverse of one of the arguments can be obtained, with a given
accuracy, using e.g. Ridders’ method [Ridders, 1979]. The inverse of the
complementary Marcum-Q function, 1 − Q(a, b), with respect to its first
and second argument can be defined as

a = qa(b, ε) (3.30)

and
b = qb(a, ε), (3.31)

respectively. Tables of values of a = qa(b, ε) and b = qb(a, ε) are given
in Appendix A. The inverse of Equation (3.29) with respect to sn can then
be written as (for n ∈ {1, 2, . . . , N})

sn(ε) = Ψs (γn, ε) =

⎧⎪⎨⎪⎩
(√

γ(1−ρ)
2 · qa

(
√

sn√
γ(1−ρ)

2

, ε

))2

ρ < 1

γn ρ = 1

(3.32)

and with respect to γn as

γn(ε) = Ψγ (sn, ε) =

⎧⎪⎨⎪⎩
(√

γ(1−ρ)
2 · qb

(
√

sn√
γ(1−ρ)

2

, ε

))2

ρ < 1

sn ρ = 1.

(3.33)

Note that, the case of perfect prediction (ρ = 1) is not included in Equ-
ation (3.29), but is included in Equations (3.32) and (3.33) for completeness.

In the following curves sn versus γn are plotted for different values of
ε, γ, and the normalized prediction lag (or equivalently ρ). The correlation
properties results from using a MAP-optimal predictor with Kp = 500 co-
efficients and a pilot spacing of L = 10 symbols. Figure 3.4 shows sn versus
γn for different values of ε, with γ = 10 dB and ρ = 0.95. The switching
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FIGURE 3.4: Plot of γn versus sn for γ = 10 dB, ρ = 0.95, and different
values of ε.

thresholds are always greater than or equal to the CSNR thresholds, imply-
ing a more conservative choice of codecs. From the curves it can however
be seen that the difference between the CSNR threshold and the new swit-
ching threshold is reduced as the CSNR threshold increases. This indicates
that the ASE loss will be smaller for the high-rate codecs as long as γ, ρ
and ε are kept constant. The reason is that the prediction is typically more
accurate at high CSNRs.

In Figure 3.5 the sn versus γn curves are plotted for ε = 2 · 10−3, γ =
10 dB, and different values of the normalized prediction lag j fmTs. Since the
correlation is reduced for increasing values of j fmTs the results show that
sn increases with reduced ρ. This is an expected result since the amount
of predictor errors increase as ρ is reduced, and to keep the probability of
codec mismatch constant the value of sn must be increased accordingly.

The sn versus γn curves in Figure 3.6 were found for j fmTs = 7.9 · 10−2,
ε = 2 · 10−3, and γ ∈ {0, 10, 20, 30, 40} dB. It can be observed that the
switching thresholds are increased when γ is increased, as long as the nor-
malized correlation is kept constant. This may seem counter intuitive, but
can be explained by the properties of the conditional PDF—as discussed
earlier in this chapter. That is, keeping the predicted CSNR constant and
increasing the average CSNR also increases the probability of a higher ac-
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FIGURE 3.5: Plot of γn versus sn for γ = 10 dB, ε = 2 · 10−3, K = 500,
L = 10, j = 200 symbols, and different values of j fmTs.

tual CSNR, and vice versa. Note, that the choice of ε can be made codec
dependent, and it is not yet clear whether ε should be increased or reduced
as γ increases. This will be investigated in Section 3.7.

3.6 An Upper Bound on the Probability of Codec

Mismatch

In order to find maximum values for the choice of ε the following assump-
tions are made; a switching threshold is always larger than the correspond-
ing CSNR threshold, a codec n is chosen for a period of time when the
fading is constant enough for BER performance to be closely approximated
by the BER-versus-CSNR performance on an AWGN channel, and the pre-
diction of future channel states is assumed to be imperfect.

Both capacity achieving codecs and practical codecs are considered as
components in the ACM scheme. The BER-versus-CSNR performance of
a capacity achieving codec and the typical waterfall curve for a practical
codec is shown in Figure 3.7. The CSNR threshold γn is the CSNR level at
which the practical codec performs with a BER equal to the target BER, and
at which the capacity achieving codec achieves capacity.
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FIGURE 3.6: Plot of γn versus sn for ε = 2 · 10−3, K = 500, L = 10, j =
200 symbols, j fmTs = 7.9 · 10−2 , and different values of γ.

The BER of a capacity achieving codec was given in Equation (2.13).
Thus, for codec n the actual BER is given as

BERn(γ) =
{ 1

2 γ < γn
0 γ ≥ γn.

(3.34)

In this case the event of choosing a wrong codec controls the overall BER.
That is, only a codec mismatch may result in bit errors. However, for a
practical codec contributions to the overall BER will occur at any CSNR.
The BER of the practical codec can be approximated as

BERn(γ) ≤
⎧⎨⎩

1
2 γ < γn
BER0 γn ≤ γ < γn,τ
BERn,τ γ ≥ γn,τ.

(3.35)

The temporal threshold, γn,τ, utilized in the approximation is used for calcu-
lating the switching threshold sn. How much a practical codec contributes
to the overall BER depends on how rapid the BER falls as a function of the
CSNR. The temporal threshold can be imagined as a the equivalent of the
CSNR threshold of a capacity achieving codec. That is, the temporal thresh-
old, or rather the BER for codec n at γn,τ denoted BERn,τ, should be chosen
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FIGURE 3.7: CSNR, temporal, and switching threshold for codec n for a
practical codec. The two curves show the BER-versus-CSNR performance
of a typical practical codec and for a theoretical codec achieving capacity at
γn.

such that the average BER as a function of the predicted CSNR is always
less than the target BER. A closer bound for the BER of a practical codec
can be found by obtaining the BER for more CSNR values. Especially, for
the part of the waterfall curve that decreases slowly (γ < γn) the bound
will typically not be very close to the true BER-performance.3

In the following two subsections bounds for ε, for the capacity achiev-
ing and practical codecs respectively, are found. The bounds are found
requiring that the average BER of codec n as a function of the predicted
CSNR, denoted BERn(γ̂), is less than the target BER:

BERn(γ̂) ≤ BER0. (3.36)

Since codec n is only used when γ̂ ∈ [sn, sn+1〉 the actual BER of codec n as
a function of γ and conditioned on γ̂ can be written as

BERn(γ|γ̂) =
{

BERn(γ) γ̂ ∈ [sn, sn+1〉
0 otherwise.

(3.37)

where BERn(γ) is the BER of codec n on an AWGN channel with CSNR γ.

3The resulting upper bound for ε, presented in the following, can be closer to the true
upper bound using a tighter bound on the BER of codec n. The method will still be same
as what is outlined here, and since the bound will vary from codec to codec depending on
the shape of the waterfall curve we only use the three values 1

2 , BER0, and BERn,τ in the
outline.
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The average BER of codec n conditioned on γ̂ can now be written as

BERn(γ̂) =
∫ ∞

0
BERn(γ|γ̂) fγ|γ̂(γ|γ̂)dγ

=
∫ ∞

0
BERn(γ) fγ|γ̂(γ|γ̂)dγ (3.38)

when γ̂ ∈ [sn, sn+1〉.

Capacity Achieving Codecs

Using Equation (3.34), the integral over γ in Equation (3.38) can be splitted
in two parts and written as

BERn(γ̂) =
∫ γn

0
BERn(γ) fγ|γ̂(γ|γ̂)dγ +

∫ ∞

γn

BERn(γ) fγ|γ̂(γ|γ̂)dγ

=
∫ γn

0

1
2
· fγ|γ̂(γ|γ̂)dγ +

∫ ∞

γn

0 · fγ|γ̂(γ|γ̂)dγ

=
1
2

∫ γn

0
fγ|γ̂(γ|γ̂)dγ. (3.39)

Using Equation (3.26) the following inequality is obtained∫ γn

0
fγ|γ̂(γ|γ̂)dγ = P(γ < γn|γ̂)

≤ ε (3.40)

when γ̂ ∈ [sn, sn+1〉. The average BER of codec n is now upper bounded by

BERn(γ̂) ≤ ε

2
. (3.41)

Using the BER demand in Equation (3.36), the maximum value of ε is found
found from

ε

2
≤ BER0

⇓
ε ≤ 2 · BER0. (3.42)

Practical Codecs

In this subsection, practical codecs with a BER performance that can be
described by the approximation in Equation (3.35) are considered. As in the
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previous subsection, the expression for the average BER in Equation (3.38)
can be splitted using a bound on the actual BER for codec n. Using the
approximations in Equation (3.35), the average BER can be written as

BERn(γ̂) =
∫ γn

0

≤ 1
2︷ ︸︸ ︷

BERn(γ) fγ|γ̂(γ|γ̂)dγ +
∫ γn,τ

γn

≤BER0︷ ︸︸ ︷
BERn(γ) fγ|γ̂(γ|γ̂)dγ

+
∫ ∞

γn,τ

≤BERn,τ︷ ︸︸ ︷
BERn(γ) fγ|γ̂(γ|γ̂)dγ

≤ 1
2

∫ γn

0
fγ|γ̂(γ|γ̂)dγ + BER0

∫ γn,τ

γn

fγ|γ̂(γ|γ̂)dγ

+BERn,τ

∫ ∞

γn,τ

fγ|γ̂(γ|γ̂)dγ. (3.43)

From Equations (3.26) and (3.27), we can upper bound the integrals as∫ γn

0
fγ|γ̂(γ|γ̂)dγ = P(γ < γn|γ̂) ≤ ε, (3.44)

∫ γn,τ

γn

fγ|γ̂(γ|γ̂)dγ = P(γn < γ < γn,τ |γ̂) ≤ ε, (3.45)

and ∫ ∞

γn,τ

fγ|γ̂(γ|γ̂)dγ = P(γ > γn,τ |γ̂) ≤ 1 − ε < 1. (3.46)

The BERn(γ̂) in Equation (3.43) can now be further bound as follows

BERn(γ̂) ≤ 1
2

≤εn︷ ︸︸ ︷∫ γn

0
fγ|γ̂(γ|γ̂)dγ +BER0

≤εn︷ ︸︸ ︷∫ γn,τ

γn

fγ|γ̂(γ|γ̂)dγ

+BERn,τ

<1︷ ︸︸ ︷∫ ∞

γn,τ

fγ|γ̂(γ|γ̂)dγ

<
εn

2
+ εn · BER0 + BERn,τ.

Here the choice of ε is made codec dependent and is upper bounded using
Equation (3.36):

εn
2 + εn · BER0 + BERn,τ ≤ BER0

⇓
εn ≤ 2 BER0−BERn,τ

1+BER0
< 2 · BER0. (3.47)
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Increasing γn,τ result in a higher bound for εn (since BERn,τ is reduced).
Reducing both BER0 and BERn,τ (or equivalently increasing γn and γn,τ
the bound approaches 2 · BER0 which is the bound in the case of capac-
ity achieving codecs. That is, for a codec with a steep waterfall curve the
bound will be closer to that of a capacity achieving codec then for a codec
with a slowly decreasing waterfall curve. Considering the ASE of an ACM
scheme it is therefore favorable to use component codecs with very low
BERs for CSNRs above the CSNR thresholds. A code class that has very
steep waterfall curves are the Gallager codes discussed in the following
section and Appendix D.

3.7 An Example System and Optimal Thresholds

In this section the codecs are composed of Gallager codecs and subsequent
high level modulation. All codecs have a block length of M = 200 symbols.
The code rate, rn, SE Rn, and constellations size and type for each of the
N = 6 codecs indexed with n ∈ {1, 2, . . . , N} are listed in Table 3.1. Simu-
lated BER against average CSNR is plotted in Figure D.4. A more compre-
hensive treatment of the component codecs, how the BER-versus-CSNR
relationship is obtained, and the approximation used to describe this rela-
tionship are given in Appendix D. For now the codecs are used as cod-
ecs with known SEs and BER performance (the approximation of the BER-
versus-CSNR is given in Equation (D.22), and the parameters used in the
approximation for the BER performance in Figure D.4 is given in Table D.2).

The upper bound on εn in Equation (3.47) is a function of the BER at the
CSNR threshold and the BER at the temporal threshold. In this section the

n rn Rn Constellation size and type
1 1/2 1 4 QAM
2 2/3 2 8 PSK
3 3/4 3 16 QAM
4 4/5 4 32 QAM
5 5/6 5 64 QAM
6 6/7 6 128 QAM

TABLE 3.1: Codec indices, code rates, SEs, and constellations sizes and
types for the 6 example codecs employing Gallager coding.
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FIGURE 3.8: Plot of the difference sn − γn versus BERn,τ for the N = 6
Gallager codecs.

upper bound is used to obtain the value of εn. That is,

εn = 2
BER0 − BERn,τ

1 + BER0
. (3.48)

The CSNR thresholds {γn}N
n=1 are found from the simulated data. Then,

by setting the normalized correlation to ρ = 0.95, BER0 = 10−3, and the
average CSNR to γ = 10 dB, Figures 3.8, 3.9, and 3.10 are obtained. The
difference between the resulting switching thresholds and the CSNR thres-
holds are plotted against BERn,τ and εn in Figure 3.8 and Figure 3.9, respec-
tively. As can be seen from the figures there exists an optimal BERn,τ (or
equivalently εn) that gives the lowest switching threshold that guarantee
an average BER that is less than or equal to BER0. That is, optimality in the
sense of maximizing the ASE.

From the figures it can also be seen that the optimal εn is reduced and
the optimal BERn,τ is increased as the codec index increases. This is plotted
in the upper and middle sub plot of Figure 3.10. In the lower sub plot in Fig-
ure 3.10 the difference sn − γn is plotted against n for values of sn obtained
by using the optimal εn. The simulations were replicated for BER0 = 10−4

resulting in the stem-plots in Figure 3.11. In both simulations the optimal
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FIGURE 3.9: Plot of the difference sn − γn versus εn for the N = 6 Gallager
codecs.

εn is always less than 2 · BER0 and is reduced as n increases. For the ex-
ample codecs choosing εn = BER0 does not produce thresholds that are
significantly higher than the optimal values. However, high rate codecs are
more sensitive to the choice in εn (around the optimal value) than low rate
codecs.

Although the results found here are empirical results from a specific set
of codecs the results indicate that the choice of εn should be made codec
dependent. It might seem counter intuitive that the optimal value of εn
is reduced for increased n since increased optimal BERn,τ (or equivalently
reduced sn − γn) indicates that less protection against predictor errors is
needed. It was earlier argued that an increased εn provides less protection
against predictor errors. However, this is only true when γn is kept con-
stant. From the curves in Section 3.5 (see e.g. Figure 3.4) it can be seen that
as γn increases sn is approaching γn when εn is held constant. That is, al-
though the difference sn − γn is reduced it might be necessary for a lower
εn, since εn merely controls the probability of prediction errors resulting in
codec mismatch.
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FIGURE 3.10: Optimal values for BERn,τ and εn and the corresponding
(minimum) distance sn − γn plotted for n ∈ {1, 2, . . . , 6} and BER0 = 10−3

for the Gallager codecs.

3.8 Concluding Remarks

In this chapter a technique that can be used to find a set of switching
thresholds (from the CSNR thresholds) is outlined. The technique requires
knowledge of the expected CSNR and the correlation between predicted
and actual CSNR. This knowledge is, in our study, provided by a MAP-
optimal predictor, by assuming a known Doppler spectrum of the MFC,
and known average CSNR. Clearly, increasing the switching thresholds
will improve the BER performance. However, any increase of the swit-
ching thresholds will reduce the ASE, since the higher indexed codecs (the
ones with highest SE) then have lower probability of being selected. For
any combination of ρ and γ it is also seen that the threshold increase is
larger the smaller ε is. Keeping ε and γ constant, the reduction in SE will
be smaller for higher values of ρ, which again corresponds to lower termi-
nal velocity and/or feedback delay.

The next step towards finding the appropriate switching thresholds
was to obtain the maximum allowed probability of the predicted CSNR
falling in a higher indexed region than the actual CSNR. This corresponds
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FIGURE 3.11: Optimal values for BERn,τ and εn and the corresponding
(minimum) distance sn − γn plotted for n ∈ {1, 2, . . . , 6} and BER0 = 10−4

for the Gallager codecs.

to choosing reasonable values for ε, securing the necessary robustness level.
The probability should ideally be chosen such that the ASE is maximized
under the constraint of an upper bound on the BER, for any given values of
the expected CSNR, the prediction lag, and the degree of mobility. The ap-
propriate value for ε in Equation (3.29) can also be made codec dependent.
Equivalently, the sufficient value of BERn,τ for n ∈ {1, 2, . . . , N} can be ob-
tained. For the capacity achieving codecs it is the possible to find a close
bound on the sufficient protection against prediction errors resulting in a
codec mismatch. Using this bound the minimum value of the switching
thresholds can be found, resulting in the maximum ASE under a constraint
on the average BER. In the case of practical codecs this bound will vary with
the BER-versus-CSNR performance of the codecs on AWGN channel. Es-
pecially, a practical codec does not perform with zero BER for CSNR values
larger than the CSNR threshold. Thus, simply modifying the CSNR thresh-
old according to the technique in Section 3.5 may produce an average BER
that is higher than the target BER. Instead, a temporal threshold (which is
larger than the CSNR threshold) is utilized to find the switching thresholds
that provides an average BER smaller than the target BER. Thus, if the BER
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at the temporal threshold can be used to bound ε it is again possible to find
the minimum switching thresholds that provide an average BER satisfying
the BER demand.

The maximum value for the probability of a codec mismatch ε has been
found for both theoretical codecs achieving capacity and for practical cod-
ecs with a more realistic BER performance. It is also shown how the opti-
mal switching thresholds, in the sense of maximizing ASE, for a given set
of practical codecs could be found. For the practical codecs it is shown that
the choice of ε should be made codec dependent, but also that as a rule of
thumb (for these codecs) the choice of ε should be around BER0. Note, that
codecs with slower falling waterfall curves might require a lower value for
ε since CSNRs above the CSNR threshold then contribute more bit errors
to the overall average BER.

The optimal switching thresholds for the capacity achieving codecs, re-
sulting from the optimization, can be used to find a new upper bound on
the MASA. That is, the switching thresholds should be minimized such that
high rate codecs have a higher probability of being chosen for transmission
and thus increasing the resulting MASA.
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Chapter 4

MASA for the Case of
Imperfect Channel Knowledge

4.1 Introduction

It was indicated in Chapter 2 that the optimal CSNR thresholds for perfect
CSI could be used as a starting point in the design of an ACM scheme. That
is, one could attempt to find codecs with SE close to the SE of the capacity
achieving codecs, and with BER close to the target BER at these thresholds.
However, since imperfect channel knowledge was not taken into account,
the ASE performance of a more realistic ACM scheme might not be close
to the MASA obtained for the perfect CSI case. Therefore, it is desirable
to obtain the MASA also for the case of imperfect channel prediction. The
resulting CSNR thresholds can now be used as a more reliable guideline
for the designer when assessing system performance.

This work was also presented in [Jetlund et al., 2004a]. The remainder
of this chapter is organized as follows: In Section 4.2 an overview of the
system model is given, and the expression for the MASA is revised after
taking into account imperfect channel knowledge. Section 4.3 develops a
unified tool for obtaining the MASA. Results in Section 4.4 show how im-
perfect channel knowledge affect the MASA and how an outage constraint
will affect the design of an ACM scheme. In Section 4.5 the contributions
in this chapter are summed up.

4.2 System Model and Problem Formulation

The system model in Figure 1.3 is considered in this chapter. The codecs
are (as in Chapter 2) assumed to be capacity achieving codecs—for the pur-
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pose of obtaining the MASA. To do this, the correlation properties of the
channel predictor, the tool for designing switching thresholds from CSNR
thresholds, and the upper bound on the probability of a codec mismatch
found in Chapter 3 are all utilized. Now, it is possible to find an upper
bound on the ASE of an ACM scheme for the case of imperfect channel
knowledge. The method used here is similar to that in Chapter 2. The
MASA in Equation (2.16) can now be written as

MASA(ε) =
1

ln(2)

N

∑
n=1

[
ln

(
1 + Ψγ (sn, ε)

) ∫ sn+1

sn

fγ̂(γ̂)dγ̂

]
(4.1)

using Equations (3.24) and (3.33). This formula is found by observing that
the SE efficiency of the optimal codecs relates to the actual CSNR, that γn =
Ψγ (sn, ε), and that Rn = log2(1 + Ψγ (sn, ε)).

The MASA can now be optimized with respect to the switching thres-
holds {sn}N

n=1 and the corresponding CSNR thresholds can be found us-
ing Equation (3.33). Both the MASA and each of the switching thresholds
{sn}N

n=1 will be a function of ε. To find the true MASA, ε should be as
large as possible. In the numerical examples in the following ε is set to
ε = 2 · BER0, with BER0 = 10−3. The reader should however note that this
is shown empirically to be a rather conservative (small) value of ε and that
the true MASA may be increased beyond the numerical results presented
here. How to optimize ε is still a partially open problem, but it is worth
notifying that the theoretical analysis here is independent of the value of ε.

4.3 A Theoretical Upper Bound On the MASA

Finding the MASA in Equation (4.1) is done by first obtaining the gradi-
ent of the MASA expression with respect to the switching thresholds for a
given ε. Setting the gradient equal to zero results in N equations that can be
used to find expressions for the optimal switching thresholds. Again, opti-
mizing MASA with a condition on the outage probability P0 = Pout is done
by introducing a Lagrange multiplier, λ, into the optimization procedure
as follows:

∇{sn}N
n=1

(MASA + λ · Pout) = 0. (4.2)

Setting λ = 0 the solution to Equation (4.2) yields the optimal switching
thresholds that produce the MASA without any outage constraint. Solving
Equation (4.2) (and multiplying the result with ln(2)) produce the follow-
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ing set of equations:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fγ̂ (s1)
(
ln (2) λ − ln

(
1 + Ψγ (s1)

))
+

δ
δs1

Ψγ(s1)

1+Ψγ(s1)
P1

ln
(

1+Ψγ(s1)
1+Ψγ(s2)

)
fγ̂ (s2) +

δ
δs2

Ψγ(s2)
1+Ψγ(s2)

P2

...

ln
(

1+Ψγ(sn−1)
1+Ψγ(sn)

)
fγ̂ (sn) +

δ
δsn Ψγ(sn)
1+Ψγ(sn) Pn

...

ln
(

1+Ψγ(sN−1)
1+Ψγ(sN)

)
fγ̂ (sN) +

δ
δsN

Ψγ(sN)

1+Ψγ(sN) PN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (4.3)

where Pn is given in Equation (3.24). Then, by setting P0 = Pout, solving
Equation (3.24) (with n = 0) for s1, and solving equation n in Equation (4.3)
for sn+1 the following N equations are obtained:

s1 = − ln (1 − Pout) γρ (4.4)

s2 =s1 − γρ

× ln

(
1 − 1 + Ψγ (s1)

γρ δ
δs1

Ψγ (s1)
ln

(
1 + Ψγ (s1)

2λ

))
(4.5)

sn =sn−1 − γρ

× ln

(
1 − 1 + Ψγ (sn−1)

γρ δ
δsn−1

Ψγ (sn−1)
ln

(
1 + Ψγ (sn−1)
1 + Ψγ (sn−2)

))
for n ∈ {3, 4, . . . , N}. (4.6)

Now, every switching threshold sn (for n > 1) can be found recursively,
and as a result the MASA is a function of s1 and λ. In order to obtain the
optimal MASA (λ = 0) a search through all possible values of s1 (or equiv-
alently Pout ∈ 〈0, 1〉) must be made, and subsequently the s1 that maximize
Equation (2.16) must be chosen. When the outage constraint is employed
the value of s1 is given from Equation (4.4), and a similar search must be
made through all possible values of λ.
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FIGURE 4.1: MASA(ε) plotted as a function of Pout for N ∈ {1, 2, 4}, γ ∈
{10, 20} dB, ρ = 0.99, and ε = 2 · 10−3.

4.4 Results and Discussion

In this section the MAP-optimal predictor is assumed used with Kp = 500
and L = 10. Inserting pilot symbols at equally spaced intervals reduces the
MASA(ε) by a factor 1 − (L − 1)/L = 10%. This reduction is taken into
account for all plots of MASA(ε) as function of s1, Pout, and γ.

In Figure 4.1 the MASA(ε) is plotted as a function of Pout for or γ ∈
{10, 20} dB, ρ = 0.99, and N ∈ {1, 2, 4}. For each of the curves the max-
imum value corresponds to the unconstrained MASA(ε) (λ = 0). The
MASA(ε) for a given ε increases with both N and γ. That is, for higher
values of N an optimally designed ACM system will use some codecs with
higher SEs, resulting in an overall increased ASE. Increasing γ increases the
probability of actually having a higher instantaneously CSNR; thus codecs
with higher SEs can be used by an ACM scheme and the resulting optimal
switching thresholds increase. In Figure 4.2 the same result is plotted as a
function of s1 (for the values of Pout in Figure 4.1). In this figure it can be
seen that for low values of s1 and N > 1 the MASA reduction from reduc-
ing s1 is negligible. Thus, it can then be concluded that an ACM scheme
with a relatively high number of codecs does not trade much of the MASA

58



RESULTS AND DISCUSSION

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

s
1
 [dB]

M
A

S
A

 [b
its

/s
/H

z]

CSNR = 10 [dB], N = 1
CSNR = 10 [dB], N = 2
CSNR = 10 [dB], N = 4
CSNR = 20 [dB], N = 1
CSNR = 20 [dB], N = 2
CSNR = 20 [dB], N = 4

FIGURE 4.2: MASA(ε) plotted as a function of s1 for N ∈ {1, 2, 4}, γ ∈
{10, 20} dB, ρ = 0.99, and ε = 2 · 10−3.

when introducing an outage constraint (this can also be observed from Fig-
ure 4.2).

Increasing the value of N also reduces the unconstrained outage proba-
bility. That is, increasing N also allows a capacity maximizing ACM scheme
to support codecs with lower SEs, and thus the switching threshold of the
first codec s1 is reduced producing a lower Pout. Increasing the average
CSNR increases all the optimal thresholds since the probability of predict-
ing a higher CSNR increases. Thus, s1 increases with γ. Then reducing s1
according to a decrease in Pout results in a larger decrease in MASA(ε) as
the average CSNR increases.

In Figure 4.3 the correlation was reduced to ρ = 0.90. Comparing this
figure and Figure 4.1 it can easily be seen that the MASA(ε) decreases with
decreased ρ for a given ε. Also, the value of Pout that result in the uncon-
strained MASA(ε) increases with decreased ρ. The sensitivity to changes
in Pout is less for lower values of ρ. This can be explained by the plots
of s1 and γ1 against γ in Figure 4.4 which were generated for normalized
prediction lags j fmTs ∈ {2 · 10−2, 4 · 10−2}. As can be observed from this fig-
ure, the switching thresholds increase for reduced ρ. However, the CSNR
thresholds are reduced and thus so are the SE of each codec and thus the
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FIGURE 4.3: MASA(ε) plotted as a function of Pout for N ∈ {1, 2, 4}, γ ∈
{10, 20} dB, ρ = 0.90, and ε = 2 · 10−3.

overall MASA. Then by reducing s1 according to a reduced Pout the SE of
the first code is already very low and does not contribute much to the over-
all ASE. This is confirmed in Figure 4.5 where the SE of all codecs in an
ACM scheme with N = 4 codecs are plotted against γ for the normalized
prediction lags in Figure 4.4. In both these figures, results for ρ = 1 are
plotted for reference. From both figures it can be seen that as γ increases
the difference sn − γn is decreased. Also, all thresholds increase with γ,
switching thresholds are increased when j fmTs increases while the CSNR
thresholds are reduced.

Comparing Figures 4.1 and 4.3 it can be seen that the MASA(ε) increases
more for increasing values of N when γ and ρ increases. That is, when
the channel conditions are good and the channel variations are slow the
increased gain in terms of SE by adding another codec is higher than for
the case of a severely noisy and fast varying channel. Since the MASA is
not sensitive to an outage constraint for low values of ρ and γ it might
therefore be sufficiently to employ only a small number of codecs.

Finally, in Figure 4.6 the optimal MASA(ε) is plotted against γ for dif-
ferent values of j fmTs with both the MASE and MASA(ε) with ρ = 1 for
reference. It can now be seen how the MASA is reduced as the correlation
is reduced. When the CSNR is high (close to 20 dB) the MASA for ρ < 1
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FIGURE 4.4: The optimal values for s1 and γ1 plotted as a function of γ for
N = 4 and different values of the normalized prediction lag.

is closer to the MASA for ρ = 1 than for low CSNRs. Note that in Fig-
ure 4.6, both the MASE and the MASA (for all values of ρ) are affected by
the ASE reduction caused by the inserted pilots.1 The results presented
here show that the MASE is not a very good reference for the ASE of an
ACM scheme since it is not possible to get close to the MASE even for high
CSNRs. Note, this conclusion is based on the results presented for a given
ε. Choosing a less conservative (larger) ε would increase the MASA to-
wards the MASE, since the switching thresholds are reduced. However,
even for the case of switching thresholds equal to the CSNR thresholds, the
MASE will be much higher than the MASA unless N is chosen very high
(as seen in Chapter 2).

4.5 Concluding Remarks

We have found bounds for the ASE of a rate-adaptive communication sche-
me employing a limited number of codecs when imperfect channel knowl-
edge is taken into account. The correlation between predicted and actual

1It can be argued that it is unfair to reduce the MASE. However, this is done to be able
to have a fair comparison between the MASE and the MASA at the given channel quality,
which is a result of the information provided by the pilots.
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FIGURE 4.5: Resulting SE for all codecs resulting from the optimal CSNR
thresholds plotted as a function of γ for N = 4 and different values of the
normalized prediction lag.

FIGURE 4.6: MASA(ε) for different values of the normalized prediction lag
plotted against average CSNR, for ε = 2 · 10−3.
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values of the fading envelope affects the bound in the sense that the bound
is reduced as the correlation is reduced. Likewise, the bound increases with
increasing average CSNR. It should be noted that the correlation between
predicted and actual correlation itself depends on the average CSNR as
well as the choice and complexity of the predictor employed by the ACM
scheme.

All the numerical results presented in this chapter are obtained using a
specific ε. It has been argued in this and the previous chapter that a low ε
result in conservative design which reduces the MASA. Thus, in order to
find the true MASA the optimal ε should be found. However, as was shown
in the previous chapter the choice of ε is codec dependent. For the chosen
ε the results presented here show that as long as the average CSNR and the
correlation between predicted and actual CSNR is sufficiently high there is
a substantial gain in using a high number of codecs in an ACM scheme.
Finally, it is observed that the MASE is an impractical upper bound, and
that the MASA (at least for ρ = 1) should be used as an ultimate upper
bound on the ASE.
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Chapter 5

Simulation of Adaptive
Gallager Coded Modulation on
Correlated Fading Channels

5.1 Introduction

In this chapter simulation results for a practical ACM scheme perform-
ing on a frequency-flat MFC with a Rayleigh distributed envelope are pre-
sented. The system employs PSAM, MAP-optimal channel estimation, and
MAP-optimal channel prediction. Results from this chapter regarding the
theoretical ASE performance for the transmission scheme were investigated
in [Jetlund et al., 2002]. The first simulation results for the average BER and
ASE of our scheme were presented in [Jetlund, Øien, and Hole, 2003a], for
the case of both perfect channel prediction and perfect channel estimation.
The correlation properties of the predicted and actual CSNR, as well as the
average BER and ASE performance of the system after introducing imper-
fect channel prediction, were investigated in [Jetlund, Øien, Holter, and
Hole, 2003c]. In [Jetlund, Øien, Hole, and Holter, 2003b] imperfect chan-
nel estimation was introduced and the resulting performance in terms of
average BER and ASE presented.

As concluded in the Chapter 3, it is desirable to have codecs with rapidly
decreasing BER-versus-CSNR curves (for CSNRs higher than the CSNR
threshold) in order to maximize the ASE. It is also desirable to employ cod-
ecs that perform as close as possible to the channel capacity. As indicated
by Shannon’s Channel Coding Theorem [Shannon, 1948], the best perfor-
mance is achieved when using a code consisting of very long codewords.
In practical systems the codewords have to be short enough for complex-
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ity, buffering, and delay not to represent a problem. For ACM schemes,
the codeword length must be restricted to the time over which we can rea-
sonably assume that the CSNR stays within one CSNR region. Gallager
codes1 are well known for their extremely good performance on AWGN
channels. Results from e.g. [MacKay and Hesketh, 1997] show that Galla-
ger codes perform quite close to the capacity even for relatively short (and
practical) block lengths using a low-latency decoder. The Gallager codes in
Section 3.7 (also see Section D.5) will be used as components in the codecs
in our simulation system.

In this chapter, simulation results for the performance of the predictor
presented are used both to confirm the theoretical properties of the channel
predictor, and to gain more insight into the behavior of our ACM scheme.
The simulated performance of the ACM scheme is measured through av-
erage BER, outage probability, and ASE. The remainder of the chapter is
organized as follows: First, in Section 5.2 the simulation model is outlined.
In Section 5.3 the theoretical ASE performance of the simulated scheme is
shown, and by means of an example it is shown how the choice of codecs
affect the system performance. The correlation properties of the predic-
tor used are investigated in Section 5.4. The strategies used for selecting
codecs, in our simulations, and the resulting switching thresholds are dis-
cussed in Section 5.5. In Section 5.6 simulation results for the ASE, av-
erage BER, and outage probability are presented for three different meth-
ods (codec selection strategies) of obtaining the switching thresholds. As a
starting point, a CSS in which the CSNR thresholds are used as switching
thresholds is employed. Next, the switching thresholds are modified by
simply adding a constant (in dB) to the existing thresholds. The last CSS
uses the technique outlined in Chapter 3 to obtain the switching thresholds.
Finally, the contributions from this chapter are summed up in Section 5.7.

5.2 System Model

We shall consider the baseband system in Figure 5.1. All bold-faced sym-
bols in the figure are column vectors.

The source generates uniformly distributed information bits. Codec n
receives a binary information vector s of length gn. The gn information bits
are encoded by a binary block code (a Gallager code) into a binary vector t

1Gallager codes were presented as Low Density Parity Check Codes (LDPC codes) in
[Gallager, 1963]. The change of name is simply a tribute to the inventor R. J. Gallager.
The Gallager codes was not a subject for further research until recently when they were
rediscovered by D. J. C. MacKay [MacKay and Hesketh, 1997].
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FADING CHANNELS

of length qn. The code rate of codec n in the simulation setup is chosen to
be

rn =
gn

qn
=

n
n + 1

[information bits per code bit]. (5.1)

The size of the QAM/PSK constellation used by the modulator is denoted
Sn and is here defined to be Sn = 2n+1. The modulator is designed such
that the resulting channel symbol block, d, is always of length M. That is,
the constellation size S, channel symbol block length M, code vector length,
and information vector length satisfy

qn

log2(Sn)
=

gn

rn log2(Sn)
= M, for n ∈ {1, 2, . . . , N}. (5.2)

The length of the information and code vectors, gn and qn, and the con-
stellation size Sn will vary with the specific code, but to simplify notation
the subscript index n is omitted in the following unless there is a need to
distinguish between the different codecs.

Each channel symbol can uniquely represent κ = log2 S bits. That is,
each channel symbol ζi, i ∈ {1, 2 . . . , S} corresponds to a κ-tuple of code
bits, and channel symbols (in d) are generated by mapping consecutive
sub-vectors of length κ from t to channel symbols in the constellation. The
mapping to channel symbols is done using Gray mapping [Stüber, 2001],
i.e. the κ-tuple corresponding to two horizontal or vertical neighboring
symbols in the complex plane differ at only one position (for an exam-
ple see Figure D.2). The modulation/demodulation process is further de-
scribed in Section D.3 in Appendix D.

The piloting is implemented such that pilots (the pilot vector is denoted
p) are inserted periodically into a block of channel symbols of length M,
producing a piloted block, x, of length M′. Note that, both d and x are
complex vectors representing complex channel symbols. An additional re-
striction used here is that M′ should be constant for a given M and a given
pilot spacing L. This is fulfilled when

M mod L = 0. (5.3)

For simplicity all pilot symbols have the same value [x]k = ap and equal
power is used for pilots and information symbols, i.e. |ap| =

√
P.

Communication is simulated by multiplying the transmitted complex-
valued vector x by a complex fading envelope vector, z, and adding a com-
plex valued additive white Gaussian noise vector, n. The received vector
becomes

y = z ◦ x + n (5.4)
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where the Hadamard product “◦” represents component-wise multiplica-
tion.

The average power gain of the fading envelope is set to Ωp = 1, the
transmit power is P = 1 W, and the variance of the AWGN σ2

w = N0B is
varied such that the expected CSNR is γ ∈ [1, 25] dB. The vector z repre-
sents a sampled correlated random process, where the correlation is depen-
dent on the maximum Doppler frequency and thus terminal velocity. The
fading simulator is described in greater detail in Appendix C.

At the receiver the M′ − M noisy pilots, p̂, are extracted form the re-
ceived symbol vector y. For each of the received pilot symbols a ML-
estimate of the fading (see Equation (3.5) in Section 3.2) is calculated pro-
ducing a vector z̃ of length M′ − M. The result is shifted into two buffers.
One of the buffers stores values to be used in prediction of the fading en-
velope, which is used in the codec selection. The other buffer stores values
to be used in estimation of the fading envelope, which is used in the sym-
bol detection. The complete received vector y also has to be buffered since
channel estimation and detection are performed after pilot symbols in the
future are received. Detection is performed by simply dividing the received
channel symbols with the MAP-estimated fading. After the detection the
symbols at the pilot symbol time instants are removed from the detected
sequence, x̂, producing an estimated vector d̂ of the information carrying
channel symbols transmitted.

Using MAP-prediction an estimate of the CSNR at the appropriate fu-
ture time instant is obtained. The codec index n, the relevant CSI for our
system, is chosen by finding which CSNR region the predicted CSNR falls
in. This information is passed on to the demodulator and decoder in the
receiver. The CSI is also transmitted to the transmitter on the error-free
return channel where it is used to choose the correct codec.

Since x and n are uncorrelated and the modulation is memoryless, the
received vector can be demodulated symbol-by-symbol producing a hard
decision, t̂, on the received coded information (hard-demodulation). The
Gallager decoder uses this vector and the probabilities of each of the bits
being demapped with error, p0, or without error, p1. These probabilities
are calculated by the demodulator (this “soft-demodulation” is described
in Section D.3). The Gallager decoder uses the iterative decoding described
Section D.4. The decoding algorithm ends after either successfully decod-
ing a legal codeword or after reaching a maximum number of iterations,
IN . The decoded information is represented by the vector ŝ in Figure 5.1.

Relevant simulation parameters are listed in Table 5.1. The terminal ve-
locity (equivalently normalized Doppler frequency), prediction lag and the
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Parameter Symbol Value(s)
Carrier frequency fc 5.4 GHz
Symbol duration Ts 4 µs
Pilot spacing L 10 symbols
Codec block length M 200 symbols
Block length (including pilots) M′ 220 symbols
Number of codecs N 5
Average Power Gain Ωp 1
Average Transmit Power P 1 W
Pilot transmit power |ap| 1 W
Average CSNR γ [0, 25] dB
Prediction lag j {0, M′, 2M′, . . .} symbols
Terminal velocity v {1, 2, . . .} m/s
Target BER BER0 10−3

Predictor length Kp 500
Estimator length Ke 1000
Decoder iterations IN 100
Constellation size S {4, 8, 16, 32, 64}

TABLE 5.1: Simulation parameters.

average CSNR are varied to obtain simulation results under different chan-
nel conditions. It is assumed that each block in the system model knows
these parameters.

5.3 Theoretical ASE Performance - Selecting Codecs

for an ACM Scheme

The theoretical ASE for an ACM system can be found from Equation (1.5).
Assuming that the prediction of future channel states is perfect and that the
CSNR thresholds are used as switching thresholds the ASE is given as

ASE(γ) =
N

∑
n=1

Rn · Pn =
N

∑
n=1

Rn ·
∫ γn+1

γn

fγ|γ(γ|γ)dγ [bits/s/Hz], (5.5)

where fγ|γ(γ|γ) denotes the PDF of γ for a fixed expected CSNR, E[γ] = γ.
Using the first N codecs in Table D.2 as components in the ACM scheme,
the ASE versus γ plots for N ∈ {1, 2, . . . , 6} in Figure 5.2 are obtained. It
can be seen that the ASE approaches the SE of the Nth codec as γ increases

70



THEORETICAL ASE PERFORMANCE - SELECTING CODECS FOR AN ACM SCHEME

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

E[ ] [dB]

A
S

E
 [b

its
/s

/H
z]

ASE, N=1
ASE, N=2
ASE, N=3
ASE, N=4
ASE, N=5
ASE, N=6

FIGURE 5.2: Theoretical ASE on a Rayleigh MFC when perfect prediction
is assumed. The first N codecs in Table D.1 are employed in order to obtain
the ASE curves for N ∈ {1, 2, . . . , 6}.

(since the SE of codec n in the results presented here is Rn = n). The sim-
ulation system is specified to use only N = 5 codecs, and a choice has to
be made regarding which codecs to employ. In the following four different
subsets of the available codecs are used in an example to indicate some of
the practical implications of choosing a subset of available codecs.

The ASE obtained by using the N = 5 first codecs is given by the curve
in Figure 5.2 with the square labels. Using these first five codecs will be re-
ferred to as configuration 0. Any other configuration is found by removing
one of the codecs and adding the last codec in Table D.2 (codec n = 6). In
the upper plot in Figure 5.3 the extra gains in terms of ASE from using three
other configurations are plotted. Configuration 1 uses the last 5 codecs, i.e.
n ∈ {2, 3, 4, 5, 6}, configuration 2 uses n ∈ {1, 2, 4, 5, 6}, and configuration 3
employs every codec except the fifth, n ∈ {1, 2, 3, 4, 6}.

As can be seen from the figure, all configurations have gains approach-
ing 1 bit/s/Hz for high values of γ. However, for low values of the average
CSNR the ASE is reduced. For configuration 1 the reduction in ASE is ap-
proximately 0.4 bits/s/Hz at γ ≈ 5 dB. The ASE of configurations 2 and 3
are approximately equal to configuration 0 up to γ = 5 dB and γ = 10 dB,
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FIGURE 5.3: The upper plot shows the gained ASE by using permutations
of the six available codecs other than the first N = 5 codecs. The lower plot
shows the outage probability when the first and the second of the available
codecs govern the outage.

respectively. When the average CSNR is sufficiently high (above approx-
imately 15 dB) configuration 1 has the highest ASE, which is as expected
since this configuration uses all the codecs with the highest SEs.

However, since the first codec in an ACM scheme also governs the out-
age probability, configuration 1 (which does not use codec n = 1) will have
a higher outage probability than the other configurations. This is shown in
the lower plot in Figure 5.3, where the outage probability is plotted against
γ for outage levels (the CSNR threshold of the first codec used) of 2.7219 dB
and 8.0256 dB (the CSNR thresholds for our codecs are listed in Table D.3).
The outage probability is increased very much for low values of γ when the
first of the available codecs is not used (e.g. for γ = 5 dB the outage proba-
bility is approximately doubled). Only for very high average CSNRs does
the outage probability of configuration 1 become approximately as low as
the outage probability for the other three configurations (0, 2, and 3).

The results show the trade-off between maximizing the ASE and man-
aging the outage probability, but also the ASE trade-off when using differ-
ent codec sets at different average CSNR values. Throughout this chapter
configuration 0 will be used from now on. This choice is made to keep
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the outage probability low and to have the highest ASE for most average
CSNRs.2

In Figure 5.4 the ASE of the chosen configuration is plotted along with
the MASE of a Rayleigh fading channel, the MASA for N = 5 codecs (as-
suming perfect prediction), and the SE of the highest indexed codec (n = 5).
For any value of γ there is a reduction in SE when comparing the ASE

FIGURE 5.4: The ASE obtained by using the first five codecs available, the
MASE, and the MASA for N = 5 and ρ = 1 plotted against γ. The reduced
ASE due to a pilot spacing of L = 10 symbols and the SE of the fifth codec
R5 are also plotted.

to either the MASA or the MASE. However, for CSNR values lower than
the CSNR at the intersection between the SE of the fifth codec R5 and the
MASA, the difference between the MASA and the ASE is approximately
equal to or less than 1 bit/s/Hz. The reduced ASE resulting from using
PSAM with L = 10 symbols is also plotted in Figure 5.4 such that the sim-
ulated performance of the ACM scheme (presented in Section 5.6) can be
compared to the theoretical ASE. In this case, the maximum spectral effi-
ciency for the ACM scheme is reduced to

R5 · L − 1
L

= 4.5 bits/s/Hz.

2Note, there exists other configurations, but in the discussion here we have assumed
that there are only four configurations.
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FIGURE 5.5: Scatter plots of the predicted CSNR versus (in the upper plots)
actual CSNR and (in the lower plots) averaged actual CSNR, for varying
normalized prediction lags.

5.4 Predictor Performance

The upper plots in Figure 5.5 show scatter plots of outcomes of the pre-
dicted CSNR versus the actual CSNR. In this experiment, γ(k) is the actual
CSNR for the first symbol in a block of M′ channel symbols, and γ̂(k) is
the corresponding predicted value.3 The scatter plots show 100 simulated
points per γ ∈ {1, 2, . . . , 25} dB. In the lower plots the same values of the
predicted CSNR are plotted as function of the empirical block wise average
of the CSNR for the entire block of channel symbols (γ̂(k) versus γM′(k)),

γM′(k) =
1

M′
k+M′−1

∑
l=k

γ(l). (5.6)

In both the upper and lower plots the normalized prediction lag is varied,
between the sub plots.

3k is a discrete time index. In Figure 5.5 the values of γ(k), γ̂(k), and γM′ (k) are found
for k ∈ {1 · M′, 2 · M′, . . .}.
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Perfect prediction would yield γ̂(k) = γ(k), thus all points in the scatter
plots showing γ̂(k) versus γ(k) would be located on a reference line with a
positive slope equal to one (going through the point (0, 0)). If constant fad-
ing during a block of channel symbols was assumed the upper and lower
plots (for a constant value of j fmTs) would be identical.

For a relatively small normalized prediction lag (see the plot in Fig-
ure 5.5 for j fmTs = 7.9 · 10−2), the points in the scatter plot are quite close to
the reference line when γ(k) > 0 dB. As we could expect, the largest predic-
tion errors occur at the deepest fades of the fading envelope γ(k) < 0 dB.
By increasing j fmTs, larger prediction errors can be observed from the scat-
ter plots.

Comparing the upper and lower plots we observe that the prediction
error increases somewhat, although not dramatically. This is explained by
the fact that the fading is highly correlated (not far from constant over a
block) due to the low normalized prediction lags used. For larger predic-
tion lags (caused by either longer delays or higher degree of mobility) it can
be observed (see Figure 5.5 for j fmTs = 4 · 10−1) that the prediction tends
to be lower than the actual CSNR, i.e. the predictor tends to underestimate
the CSNR.

FIGURE 5.6: Simulation results for the normalized correlation ρ between
predicted CSNR and actual CSNR are plotted against average expected
CSNR and normalized prediction lag.
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FIGURE 5.7: Switching thresholds for the codecs used in the simulations; a)
CSNR thresholds used as switching thresholds, b-c) CSNR thresholds plus
a constant (in dB) used as switching thresholds; d-f) switching thresholds
found for γ ∈ {5, 15, 25} dB using ε = BER0.

Simulation results for the normalized correlation ρ between predicted
CSNR and actual CSNR are plotted against average expected CSNR and
normalized prediction lag in Figure 5.6. The theoretical correlation is plot-
ted for reference. The figure shows how ρ increases as γ increases and j fmTs
decreases. As can be seen from the figure, the simulated correlation coeffi-
cient is less or equal to the theoretical correlation in Equation (3.20). From
this and Equation (3.18), we could expect that the predicted CSNR on av-
erage is lower than the actual CSNR, as was also observed from the scatter
plots.

The minor differences between the simulated and theoretical ρ can be
explained as follows; The simulated ρ was estimated using the normalized
covariance between predicted CSNR values and the corresponding actual
CSNR values. The results in Figure 5.6 was generated using 500 pairs of
predicted and actual CSNR values per simulation point. This might not
be a high enough number to provide high confidence for each simulation
point. We still have a high confidence in the results since the shape of the
simulated ρ is very close to the shape of the theoretical ρ.

5.5 Codec Selection Strategies

In the following section, the resulting ACM performance is presented for
different CSSs, that is, different choices of the switching thresholds:
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CSS 1: sn = γn, n ∈ {1, 2, . . . , N}—original thresholds are used as swit-
ching thresholds.

CSS 2: sn = γn + δs, n ∈ {1, 2, . . . , N}—A constant δs (in dB) is added to
the CSNR thresholds to obtain the switching thresholds.

CSS 3: sn(ε) = Ψs (γn, ε)—the switching thresholds are obtained from the
CSNR thresholds with the probability ε of a codec mismatch.

It will be shown, later in this chapter, that using the value for ε obtained
in Chapter 3 results in a conservative design, but also that the performance
of the ACM scheme can be improved by using a higher value of ε. This is
indicated in Figures 5.7 and 5.8 which show the resulting switching thres-
holds, for our chosen codecs, using CSS 1, 2, and 3. In these bar-plots, the
switching thresholds are plotted in rows for one specific codec (marked
with γ1, γ2, . . . γ5), and the columns (marked with letters a-f) represent the
CSS used; In both figures the bars in column a) are obtained using CSS 1.
Bars in columns b) − c) are obtained using CSS 2 with δs equal to 0.5 and
1.0 dB, respectively. The last three columns, d) − f), are obtained for CSS
3 with γ ∈ {5, 15, 25}. In Figure 5.7 CSS 3 with ε = BER0 is used while
ε = 200BER0 is used in Figure 5.8.

When ε is set to the value in Chapter 3, the switching thresholds are
always larger than or equal to the CSNR thresholds (see Figure 5.7). Es-
pecially, the lower switching thresholds are increased much when CSS 3
is used. This will reduce the average BER, but the resulting ASE may be
reduced too much if the average BER is much lower than the target BER.
In Figure 5.8 the choice of ε is increased to 200BER0 (this choice of ε will
become evident at the end of this chapter). It can now be observed that the
switching thresholds obtained using CSS 3 are reduced.

5.6 ACM Performance

Monte Carlo Simulations

The average BER, ASE, and outage probability are performance measures
for an ACM scheme. In this section simulation results for the ACM scheme
with N = 5 component codecs (utilizing Gallager codes) are presented.
The simulation results were obtained using Monte Carlo simulations. The
simulation software uses the parameters in Table 5.1, and the average BER,
ASE and outage probability has been simulated for varying normalized
prediction lags and average CSNRs. In order to terminate the simulations
the following definition of events were used:
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FIGURE 5.8: Switching thresholds for the codecs used in the simulations; a)
CSNR thresholds used as switching thresholds, b-c) CSNR thresholds plus
a constant (in dB) used as switching thresholds; d-f) switching thresholds
found using ε = 200 · BER0 with γ ∈ {5, 15, 25} dB.

• A block error: The event of a block of information received at the de-
coder being decoded with error. There are two events leading to a
block error; the decoder reaches the maximum number of iterations
IN and is unable to find a legal codeword, or the decoder finds a legal
codeword which is different from the transmitted codeword.4

• An outage: The event of the channel not being used and that the ACM
scheme waits M′ · Ts seconds5 before checking if the CSNR on the
channel is high enough to be used for transmission.

• BER above the minimum average BER: The experienced average BER
is larger than or equal to the minimum average BER (which is set to a
low value much smaller than the target BER).

Using these definitions the Monte Carlo simulations are terminated for
each simulation point (given values of j fmTs and γ) when one of the fol-
lowing conditions are met:

I. The total number of block errors is larger than or equal to 103.

II. The number of outages experienced is larger than or equal to 5 · 106.

4A codeword consists of the coded bits transmitted in a block of channel symbols of
length M.

5Recall that M′ is the number of channel symbols in the transmitted block (including
pilots).
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III. The experienced average BER is larger than zero and less than or equal
to the minimum average BER, which is set to 10−6, after a minimum
of 106 channel blocks are transmitted. That is, the simulated average
BER is set to the minimum average BER when at least one bit error has
occurred after transmitting 106 blocks of channel symbols.

The first condition guarantees a high confidence in the simulated ASE, av-
erage BER, and outage probability. The two last conditions are introduced
to reduce simulation times. If one of the two last conditions are met only
the simulation results for the ASE and the outage probability are presented
here and the average BER is treated as unknown, but smaller than the min-
imum average BER.

FIGURE 5.9: The average BER of CSS 1 plotted for j fmTs ∈ [1.6 · 10−2, 7.9 ·
10−2] and γ ∈ [1, 25] dB. The circle-markers show simulation points with
average BER equal to the target BER.

Average BER, ASE, and outage probability for CSS 1

In Figure 5.9 the average BER is plotted as a function of normalized pre-
diction lag for varying CSNRs. Simulation points resulting in a simulated
average BER equal to the target BER are included and plotted with circle-
markers. The figure shows that there is an upper limit on the prediction lag
resulting in an average BER equal to the target BER, but also that this up-
per limit increases with increased CSNR. Thus, there is a trade-off between
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j fmTs and γ. In most cases the average BER is reduced when increasing the
CSNR.6

FIGURE 5.10: The ASE of CSS 1 plotted for γ ∈ [1, 25] dB and j fmTs ∈ [1.6 ·
10−2, 7.9 · 10−2]. Dash-dot lines indicate that the target BER is not attained
while solid lines show the region where the average BER is below BER0.

For the average BER plot in Figure 5.9 the corresponding ASE and out-
age probability are plotted in Figures 5.10 and 5.11, respectively. Note
that, in these figures solid lines mean that the target BER is attained while
dashed lines mean that the average BER is above the target BER. In Fig-
ure 5.10 it can be observed that the ASE is almost constant for varying nor-
malized prediction lags, except for at low CSNR values (see e.g. Figure 5.10
for γ = 0 dB). By comparing the ASE in Figure 5.10 to the theoretical ASE
in Figure 5.4 it can be observed that the simulated ASE for low values of
j fmTs is equal (with only minor deviations) to the theoretical ASE. Since
the spectral efficiencies are fixed for the N = 5 codecs used, and the swit-
ching thresholds are kept constant, the only parameter that varies with the
normalized prediction lag is ρ. Reducing the correlation also reduces the

6For high values of the normalized prediction lag and low values of the CSNR it can be
observed that the average BER increases with increased CSNR. This effect is a result of the
outage probability behavior of the ACM scheme when the normalized correlation and the
average CSNR is kept low.
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average predicted CSNR value, thus it might have been expected that the
ASE was reduced more notably as the prediction lag increases. However, it
can be observed from Figure 5.6 that only for very low CSNR values does
ρ drop notably. Also, for all the simulation results presented in this chap-
ter we have ρ ∈ [0.9, 1〉, i.e. on average the expected predicted CSNR will
only deviate a maximum of 10% compared to the expectation of the actual
CSNR.

FIGURE 5.11: The outage probability of CSS 1 plotted for γ ∈ [1, 25] dB
and j fmTs ∈ [1.6 · 10−2, 7.9 · 10−2]. Dash-dot lines indicate that the target
BER is not attained while solid lines show the region where the average
BER is below BER0.

The plot in Figure 5.11 shows how the probability of outage is reduced
as CSNR increases. Also, the outage probability increases somewhat with
increased prediction lag, especially for low CSNRs. This can again be ex-
plained by observing that ρ only varies much for increasing j fmTs when the
CSNR is low.

Average BER performance for CSS 2

In this subsection the simulated average BER is presented after increasing
the switching thresholds by a constant δs. The BER plots in Figures 5.12 and

81



5. SIMULATION OF ADAPTIVE GALLAGER CODED MODULATION ON CORRELATED
FADING CHANNELS

5.13 were obtained for δs = 0.5 dB and δs = 1.0 dB, respectively. As can be
seen by comparing these figures and Figure 5.9, there is an increased toler-
ance for increasing prediction lag after increasing the switching thresholds.
As an example, for j fmTs = 7.9 · 10−2 the average BER of CSS 1 and CSS 2
with δs = 0.5 dB is above BER0, but for CSS 2 with δs = 1.0 dB the aver-
age BER is below BER0 for all simulated CSNRs except in a small region:
γ ∈ 〈8.7, 12.2〉 dB.

The reduced average BER comes to the expense of a reduced ASE. In-
creasing δs will also increase the outage probability since the first switching
threshold is increased. Results for the ASE and outage probability will be
shown in the next subsection where the performance of all three strategies
are compared.

FIGURE 5.12: The average BER of CSS 2 plotted for δs = 0.5 dB, average
CSNRs γ ∈ [1, 25] dB, and j fmTs ∈ [1.6 · 10−2, 7.9 · 10−2]. The circle-markers
show simulation points with average BER equal to the target BER.

Performance of CSS 3 and comparison of all the three strategies

In CSS 3, the switching thresholds are given as sn = Ψs(γn, ε), where Ψs(·, ·)
is defined in Equation (3.32), and are controlled by the parameter ε. How-
ever, in this case the switching thresholds also vary with the normalized
correlation ρ (through normalized prediction lag and average CSNR). In
this subsection simulation results are presented for j fmTs = 7.9 · 10−2 and
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FIGURE 5.13: The average BER of CSS 2 plotted for δs = 1.0 dB, average
CSNRs γ ∈ [1, 25] dB, and j fmTs ∈ [1.6 · 10−2, 7.9 · 10−2]. The circle-markers
show simulation points with average BER equal to the target BER.

γ ∈ [1, 25]. The performance of CSS 3 is presented for five different values
of ε:

ε

BER0
∈ {1, 2, 10, 100, 200},

and as in the previous section the performance of CSS 2 is evaluated for
δs ∈ {0.5, 1.0} dB. The resulting ASE, outage probability, and average BER
are plotted in Figures 5.14, 5.15, and 5.16, respectively. In all three figures
dashed lines are utilized to indicate where the target BER is not attained.

The ASE plots for CSS 1 and CSS 2 in Figure 5.14 show that the ASE
is reduced when adding the constant δs to the CSNR thresholds to obtain
the new switching thresholds. It can be observed that the reduction in ASE
is approximately a linear function of the constant δs (e.g. at γ = 10 dB the
reduction in ASE by using CSS 2 with δs = 1.0 dB compared to CSS 1 is
0.22 bits/s/Hz and the reduction in ASE using CSS 2 with δs = 0.5 dB com-
pared to CSS 1 is 0.11 bits/s/Hz). The same behavior can be observed in
Figure 5.15 where the outage probability increases (approximately linearly)
with δs.

As argued previously in this chapter; using switching thresholds ob-
tained from CSS 3 with ε = BER0 would result in a very conservative de-
sign. This is confirmed in Figure 5.16; Using a low value for ε (less than
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FIGURE 5.14: Plots of the ASE versus average CSNR for γ ∈ [1, 25] dB
and j fmTs = 7.9 · 10−2. Solid lines indicate that the average BER is less than
BER0. In a) the ASE of CSS 1, CSS 2, and CSS 3 is plotted for different values
of δs and ε. In b) the difference in the ASE of CSS 3 with ε = 200 · BER0 and
CSS 2 with δs = 1.0 dB is plotted, and here the dotted line indicate the area
where CSS 2 with δs = 1.0 dB does not satisfy the target BER.

100 · BER0) results in a very low average BER, especially at low CSNRs.
As a result of this the ASE is reduced more than necessary and the outage
probability becomes very high. Using ε = 200 · BER0 results in an average
BER that is quite close to the average BER of CSS 2 with δs = 1.0 dB, but
always below BER0. It should be noted that this choice of ε does not guar-
antee that the average BER stays below BER0 for increasing normalized
prediction lags.

When referring to CSS 2 and CSS 3 in the following it is implied that
δs = 1.0 dB and that ε = 200 · BER0. In the lower sub plot of Figure 5.16 the
average BER-versus-CSNR plot is zoomed in on the average BER of CSS
2 and CSS 3 for this case. The resulting ASE for the two strategies can be
compared in the lower sub plot of Figure 5.14 where the plots shows the
difference in ASE between CSS 2 and CSS 1, and between CSS 3 and CSS 1
as a function of γ.

It can now be observed that for γ < 15 dB the average BER of CSS 2 is
higher than that of CSS 3, and lower for higher CSNRs. Likewise, the ASE
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FIGURE 5.15: Plots of the outage probability versus average CSNR for all
three strategies with different values of δs and ε, γ ∈ [1, 25] dB, and j fmTs =
7.9 · 10−2. Solid lines indicate that the average BER is less than BER0.

of CSS 3 is larger than the ASE of CSS 2 for γ > 15 dB, and lower for CSNRs
below 15 dB. Thus, for this example we may conclude as follows; CSS 3 is
the best candidate strategy for CSNRs above 15 dB since it provides the
highest ASE, and for lower CSNRs since CSS 2 does not attain the average
BER demand for all CSNRs below 15 dB.

In Figure 5.15 it can be seen that the outage probability of CSS 3 is al-
ways larger than that of CSS 2. This might seem strange since the average
BER of CSS 3 in some instances is higher than that of CSS 2. This behav-
ior can easily be explained by the fact that the ASE and the average BER
will depend on all the switching thresholds while the outage probability
depend only on s1. In this figure it can also be observed that the outage
probability (as expected) is reduced with increasing ε.

5.7 Concluding Remarks

A simulation tool has been developed for the purpose of evaluating trans-
mission of information using an ACM scheme, in terms of ASE, average
BER, and outage probability. In this chapter we have presented simula-
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FIGURE 5.16: Plots of the average BER versus average CSNR for γ ∈
[1, 25] dB and j fmTs = 7.9 · 10−2. Solid lines indicate that the average BER is
less than BER0. In a) the average BER of CSS 1, CSS 2, and CSS 3 is plotted
for different values of δs and ε. In b) the average BER-versus-CSNR plot is
zoomed in on CSS 2 with δs = 1.0 dB, and CSS 3 with ε = 200 · BER0 for
γ ∈ [7.5, 22.5] dB.

tion results for one particular ACM system, performing on a flat Rayleigh
fading channel with correlated fading gain. The system has not been de-
veloped for the sole purpose of simulating ASE, average BER, and outage
probability, but also to gain more insight in the components in a ACM sys-
tem. The simulation tool has been used to investigate the performance of
the MAP-optimal channel predictor as well as the overall performance of
the ACM scheme.

One of the first steps in designing an ACM scheme is to select the codecs
to be used as components. In this chapter it was shown that there is not
only a trade-off between a high ASE and a low outage probability, but also
a trade-off between the ASE at low and high average CSNRs.

The average BER will vary with the switching thresholds used, the
normalized correlation ρ between predicted and actual CSNRs, variations
in the fading envelope (equivalently variations in the correlation between
samples of the fading envelope), and the bit error correcting properties of
the codecs. The codecs used in our simulation tool are designed for AWGN
channels, and thus, the bit error correcting properties of the codecs may
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vary with the correlation between the fading samples. A possible way of
improving BER performance which would not reduce the ASE might be
to include an interleaver. But as indicated by the results in [Guo, Ng, and
Hanzo, 2003], the BER performance of a Gallager code on a correlated Ray-
leigh fading channel yields only very small improvements by introducing
an interleaver.

The normalized correlation ρ also affects the ASE and the outage prob-
ability since these to quantities depends on the PDF of the predicted CSNR.
The system uses predictions of the fading for first symbols in each block of
M′ symbols to select the appropriate codec. That is, the system is designed
assuming that the CSNR is approximately constant during transmission of
one block. Since the fading is time varying also within one block, the in-
stantaneous CSNR may fall below the corresponding CSNR threshold dur-
ing the block transmission. From the scatter plots of γ̂(k) versus γ(k) it can
be observed that the prediction error is largest when the actual CSNR is
low. By comparing the scatter plots for γ̂(k) versus γ(k) to the γ̂(k) versus
γM′(k), we observe that the assumption of approximately constant fading
during transmission of a block of channel symbols is slightly optimistic,
but still quite accurate for the simulations presented here.

In our simulations the filter length and pilot spacing are kept constant
while the correlation between fading samples are varied by varying the
normalized prediction lag. Simulations of ρ show that the implemented
predictor performs quite close to the theoretical performance of the pre-
dictor outlined in Chapter 3. Both the scatter plots and the plots of ρ as a
function of j fmTs confirms that the MAP-optimal predictor has a negative
bias.

In the simulation results presented in this chapter three different meth-
ods have been used to obtain the switching thresholds; in CSS 1 the CSNR
thresholds are used as switching thresholds, in CSS 2 switching thresholds
are obtained by adding a constant (in dB) to the CSNR thresholds, and in
CSS 3 the method in Chapter 3 is used to obtain the switching thresholds.
In CSS 2 the switching thresholds vary with the constant δs added, and in
CSS 3 the switching thresholds are controlled by the probability of a codec
mismatch ε, but are also dependent on the average CSNR and on ρ.

We have shown by means of simulation results that; Obtaining the swit-
ching thresholds by adding the same constant to all the CSNR thresholds,
in order to attain the target BER, result in a too large ASE reduction for
some average CSNRs. To maximize the ASE the constant added to the
thresholds should be dependent on the correlation properties of the chan-
nel and the predictor. This can be done by designing the switching thres-
holds such that the probability of a codec mismatch ε is kept below a cer-
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FADING CHANNELS

tain bound. Then the overall average BER will be below the target BER.
However, the upper bounds found in Chapter 3 are too low and result in
a conservative design. It has been shown that the technique could still be
used by using higher values for ε (obtained by manually testing different
values). The results from these simulations showed that using the tech-
nique (CSS 3) can provide an ACM scheme with a BER very close to (and
below) the target BER, and thus a maximized ASE.
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Chapter 6

Conclusions and Further
Research

This chapter gives a summary of the work presented in this thesis. The
work is separated into three categories; The contributions made (see Sec-
tion 6.1), general concluding remarks (in Section 6.2), and topics for further
research (described in Section 6.3).

6.1 Contributions

The main contributions in this thesis are:

• A method for upper bounding the probability of codec mismatch (the
event of choosing a codec that cannot guarantee the target BER) in the
case of imperfect channel prediction.

• New upper bounds for the ASE of an ACM scheme (the MASA) with
outage constraint and imperfect channel knowledge.

• Development of an extensive software tool for simulating communi-
cation utilizing ACM on a correlated Rayleigh fading channel.

• Simulation results in which the above tool is used to confirm and il-
lustrate the theory from previous works.

• New theoretical results have been obtained by investigating the PDF
of the actual CSNR conditioned on the predicted CSNR, the corre-
lation between the two, and on the average CSNR. The knowledge
gained from these results can be used in the design of thresholds (for
switching between codecs) to be used in a practical ACM scheme.
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In this thesis the practical possibilities and limitations of ACM schemes
were investigated by means of both simulations and theoretical results.
New techniques that can be used in the design of ACM schemes were pre-
sented. As a starting point, the MASA was optimized under an outage
constraint. The optimization is important since the existing method for op-
timizing the MASA in some cases result in very high outage probabilities.
A high probability of outage might conflict with certain requirements for
the QoS in a communication system.

The assumption of perfect channel prediction in the design of ACM
schemes has been addressed since this is unlikely to be true for realistic
communication scenarios. Imperfect channel prediction may lead to codec
mismatch. We have described a method for designing ACM schemes us-
ing the probability of codec mismatch as a parameter. We have presented a
method that can be used to obtain optimal values for this parameter. Using
the new method, the resulting ACM scheme provides an average BER al-
ways below the target BER while still keeping the ASE as high as possible.
Using the optimal values of the probability of codec mismatch for capac-
ity achieving codecs we have found a unified tool for optimization of the
MASA that take into account both imperfect channel prediction and outage
constraints.

In order to investigate the performance of a practical ACM scheme uti-
lizing a limited number of transmission modes, pilot symbols, channel es-
timation, and channel prediction a software tool has been developed and
simulation results are presented in this thesis. The simulation software
includes MAP-optimal filtering for both channel estimation (used in de-
tection of channel symbols) and channel prediction, piloting of transmit-
ted information, a correlated Rayleigh fading simulator, Gallager coding,
and soft iterative Gallager decoding. The results include the average BER,
ASE, and outage probability for different methods of selecting the swit-
ching thresholds as well as simulated performance of the channel predictor.
The results are shown for an example system using a subset of the available
codecs in the software. By means of an example, we have illustrated some
practical implications, in terms of ASE and outage probability, of selecting
a subset of codecs.

Most of the contributions in the thesis has been previously documented
in [Jetlund et al., 2002, 2003a,b,c, 2004a,b].
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6.2 Conclusions

The list below gives a summary of the conclusions in this thesis.

• The optimal MASA can be found for the case of imperfect channel
prediction and for the case of a constraint on outage probability.

• The methods presented here (to do the optimization of the MASA)
can be used as an aid or as a starting point in system design.

• System design involves finding the maximum value for the probabil-
ity of a codec mismatch, and this value is codec dependent.

• The target BER is only attained for low degrees of mobility and pre-
diction lags when the CSNR thresholds are used as switching thres-
holds.

• Increasing all switching thresholds by a constant (in dB) allows for in-
creased mobility and/or prediction lags. However, such an increase
reduces the ASE unnecessary.

• The approximations used to find the optimal value of the probability
of codec mismatch result in a conservative designed ACM scheme.
However, simulation results show that increasing the probability of
codec mismatch results in an average BER very close to (but below)
the target BER.

The optimized MASA under an outage constraint shows that increas-
ing the number of codecs in an ACM scheme not only may increase the
ASE, but also reduce the outage probability. That is, for an optimally de-
signed system adding another codec allows for stricter outage probability
constraints without trading away large amounts of the ASE.

There is a trade off between ASE and outage probability and a trade off
between ASE at different CSNRs when choosing a subset of available cod-
ecs to be used in an ACM scheme. It is not necessarily always best to use the
codecs with the highest SEs since this may increase the outage probability,
and since the ASE may become too small at lower average CSNRs.

Comparing the MASA to the MASE (the channel capacity) it can be
observed that the MASA is always below the MASE. This result is as ex-
pected since achieving the MASE would require infinitely many codecs. It
can then be concluded that the MASA for a given number of codecs is a

91



6. CONCLUSIONS AND FURTHER RESEARCH

much better (closer) upper bound on the ASE of an ACM scheme with the
same number of codecs.

Simulation results show a trade off between allowed terminal velocity
and allowed prediction lags in an ACM system. The tolerance towards pre-
diction lags and mobility could easily be improved by adding a constant (in
dB) to all the CSNR thresholds. As expected (and also shown by simula-
tion results) this will reduce not only the average BER, but also the ASE. In
fact, the reduction in ASE is approximately a linear function of the constant
added. Increasing the switching thresholds will also increase the outage
probability. From the simulation results of this strategy and from simu-
lation results of the channel predictor it can be concluded that the lower
CSNR thresholds should be increased more than the switching thresholds
for the higher indexed codecs. This conclusion can also be seen from the
optimization of the probability of a codec mismatch where it is seen that
the difference between the switching thresholds and the CSNR thresholds
is highest for the lowest indexed codecs.

Also shown by simulation results of average BER and by the behavior
of the simulated channel predictor; the optimal value for the probability
of a codec mismatch found using the approximate description of the BER-
versus-CSNR relationship for our codecs result in a conservative design.
That is, we conclude that although we have found a method for obtaining
the optimal values of the probability of codec mismatch, the resulting codec
mismatch probabilities found in this thesis are too low.

6.3 Suggested Topics for Further Research

There are many directions in which to go from the results provided in this
thesis. Even more practical considerations could be taken into account in
the design of ACM schemes. Alternative techniques could be treated in
the same fashion as the ACM scheme is treated here, and the performance
could be compared by means of simulation. In addition some of the topics
considered here could be investigated further. The list below gives some of
the possible directions for future research.

• Extensions of the simulation software:

– More advanced channel models, such as e.g. unknown average
CSNR, time varying power density spectrum, and frequency-
selective fading channels.

– Other code families.
– Multiuser scenarios.
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– System employing OFDM and/or multiple antennas.

– Packet based transmission, in which the packet error rate is a
more relevant performance measure than the BER.

• Alternatives to ACM based on forward error correction:

– Automatic repeat request protocols.

– Incremental redundancy schemes.

– Hybrid schemes.

• Extension to topics addressed in this thesis:

– More accurate bounds on the probability of codec mismatch.

– System performance as a function of other system parameters.

– An extensive search for codecs that result in better system per-
formance.

Currently, the software system assumes a flat Rayleigh fading channel
with a Jakes spectrum. The software can easily be extended to take into ac-
count e.g. frequency selectivity, co-channel interference, shadowing, other
fading statistics, non-stationary channel statistics, and synchronization er-
rors. Estimation of other parameters of the channel besides the instanta-
neous CSNR should also be taken into account. Examples of such param-
eters are the average CSNR and the normalized Doppler frequency. The
return channel is, in this thesis, assumed to be error-free. If a noisy return
channel is included, the system performance could be evaluated for dif-
ferent amounts of errors in this channel. By introducing more advanced
channel models it is also natural to incorporate other techniques such as
OFDM and the use of multiple antennas (MIMO systems).

The performance of the ACM scheme is dependent on the codecs em-
ployed. There also exist other practical and popular types of channel codes
(besides the Gallager codes used in this thesis) e.g. trellis codes (trellis
coded modulation), turbo codes, and bit-interleaved coded modulation. In-
cluding other code families is a natural extension of the software.
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Employing ACM in a wireless network/communication system with
multiple users introduces many new possibilities and restrictions on the
ACM scheme. The multi-user scenario should take into account cellular
networks with link adaptation, feedback (return channel) load, different
traffic classes and QoS, and overall system aspects such as multi-user access
protocols.

The main idea behind ACM is to vary the information throughput with
the variations in the CSNR. However, techniques such as automatic repeat
request protocols and incremental redundancy schemes, can also vary the
information throughput. The ACM scheme presented here could be com-
pared to other techniques with regard to system performance, power con-
sumption, complexity, and latency.

By using more accurate approximations of the performance of each of
the codecs or by developing a more accurate method values of the probabil-
ity of codec mismatch closer to the true optimal values could be found. The
design strategies presented here can then be further improved. One could
easily extend the simulation results presented (with the existing simulation
software) to include e.g. varying predictor lengths and other configurations
for the pilot symbols.
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Appendix A

Special Functions

Definition 1 (The gamma function)
The gamma function, also known as Euler’s integral of the second kind, is
defined as follows [Gradshteyn and Ryzhik, 1980, Equation 8.310.1]:

Γ(x) =
∫ ∞

0
tx−1e−tdt for x > 0. (A.1)

Definition 2 (The nth-order Bessel functions of the first kind)
The nth-order Bessel function of the first kind and the nth-order modified
Bessel function of the first kind are defined as follows [Gradshteyn and
Ryzhik, 1980, Equations 8.402, 8.406.3]:

Jn(x) =
xn

2n

∞

∑
k=0

(−1)k x2k

22kk!Γ (n + k + 1)
(A.2a)

In(x) = j n Jn(jx)

=
xn

2n

∞

∑
k=0

x2k

22kk!Γ (n + k + 1)
. (A.2b)

Definition 3 (The exponential integral)
The Exponential Integral is defined as [Gradshteyn and Ryzhik, 1980, Equ-
ations 8.211.1]:

Ei(x) = −
∫ ∞

−x

e−t

t
dt for x < 0. (A.3)
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Definition 4 (The degenerate hypergeometric function)
The degenerate hypergeometric function can be defined in terms of a se-
ries [Gradshteyn and Ryzhik, 1980, Eq. 9.210.1]

Φ (α, γ; z) = 1 +
α

γ
· z

1!
+

α

γ
· α + 1

γ + 1
· z2

2!
+

α

γ
· α + 1

γ + 1
· α + 2

γ + 2
· z3

3!

+
α

γ
· α + 1

γ + 1
· α + 2

γ + 2
· α + 3

γ + 3
· z4

4!
+ · · · . (A.4)

This function is also commonly denoted 1F1 (α; γ; z).

Definition 5 (The Whittaker function)
The Whittaker function can be defined in terms of the degenerate hyper-
geometric function as [Gradshteyn and Ryzhik, 1980, Eq. 9.220.1]

Mλ,µ(z) = zµ+ 1
2 e−

z
2 Φ

(
µ − λ +

1
2

, 2µ + 1; z
)

. (A.5)

Definition 6 (The Marcum Q-function)
The Q-function was defined by Marcum as (see [Marcum, 1947, 1948]:

Q (a, b) =
∫ ∞

b
xe−1/2 x2−1/2 a2

I0 (ax) dx. (A.6)

Definition 7 (The inverse of the complementary Marcum Q-function)
The inverse of the complementary Marcum Q-function

ε = 1 − Q(a, b) (A.7)

with respect to its first and second argument is here denoted as:

a = qa(b, ε) (A.8)

and
b = qb(a, ε) (A.9)

respectively.
The example values of a = qa(b, ε) and b = qb(a, ε) for different ar-

guments ε, a, and b in Tables A.1 and A.2 were found using an iterative
method1 commonly known as Ridders’ method [Ridders, 1979] (there is a
C-implementation available in [Press, Teukolsky, Vetterling, and Flannery,
2002]).

1The values were originally found with an accuracy of 10−10, but is here presented with
only 3 decimals, i.e. the round-off error is much larger than the error in the values found
from the iterative procedure.
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Appendix B

Statistics and Probability
Density Functions

B.1 Rayleigh distribution

A random variable X = XI + jXQ, where XI and XQ are independent and
identically distributed (IID) zero-mean Gaussian random processes with vari-
ance β, has a Rayleigh distribution [Råde and Westergren, 1990]

fX(x) =
x
β

e−
x2
2β , x ≥ 0 (B.1)

with mean and variance:

µX =

√
πβ

2

σ2
X =

4 − π

2
β.

B.2 Exponential distribution

An exponentially distributed random variable X with expectation β has a
PDF [Stüber, 2001]

fX (x, β) =
1
β

e−
x
β (B.2)

with mean and variance:

µX = β

σ2
X = β2.
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B.3 Bivariate Exponential Distribution

Two correlated exponentially distributed random variables X1 and X2 with
expectations β1 and β2 respectively, and correlation denoted ρ has a joint
PDF [Nagao and Kadoya, 1971]

fX1,X2 (x1, x2, β1, β2, ρ) =
e−

(
x1

β1(1−ρ) +
x2

β2(1−ρ)

)
I0

(
2

√
ρ

1−ρ

√
x1x2
β1β2

)
β1β2 (1 − ρ)

(B.3)

with mean and variance:

µX1 = β1

µX2 = β2

σ2
X1

= β2
1

σ2
X2

= β2
2.

A conditional exponential PDF

The conditional PDF of X1 and X2 can be obtained using Bayes rule as
follows:

fX1|X2 (x1|x2, β1, β2, ρ) =
fX1,X2 (x1, x2, β1, β2, ρ)

fX2 (x2β2)
(B.4)

=
1

β1 (1 − ρ)
(B.5)

×I0

(
2 √

ρ

1 − ρ

√
x1x2

β1β2

)
×e−

(
x1

β1(1−ρ) +
ρx2

β2(1−ρ)

)
.

Expectation of the conditioned exponential variable

The expectation of X1 conditioned on X2 is defined as

E[X1|X2] =
∫ ∞

0
x1 · fX1|X2 (x1|x2, β1, β2, ρ) dx (B.6)

Thus, obtaining the expectation yields solving the following integral:1

H(a, b) =
∫ ∞

0
xI0

(
a
√

x
)

e−x/bdx (B.7)

1For simplicity we refer to the function in Equation (B.7) as the H-function.
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From [Gradshteyn and Ryzhik, 1980, Eq. 6.643.2] we have

∫ ∞

0
xµ− 1

2 I2v
(
2β

√
x
)

e−αxdx =
Γ
(
µ + v + 1

2

)
Γ (2v + 1)

β−1e
β2
2α α−µM−µ,v

(
β2

α

)
(B.8)

when

Re
(

µ + v +
1
2

)
> 0, (B.9)

where Mλ,µ(z) is the Whittaker function defined in Equation (A.5) and Γ(·)
is the gamma function defined in Equation (A.1). Thus, by substituting

µ = 3
2 ,

v = 0,
β = a

2 , (B.10)

α = 1
b

into Equation (B.8) the H-function can be written as

H(a, b) =
Γ (2)
Γ (1)

2
a

e
a2b

8
√

b3M− 3
2 ,0

(
a2b
4

)
=

2
a

e
a2b

8
√

b3M− 3
2 ,0

(
a2b
4

)
. (B.11)

Substituting the definition of the Whittaker function (in Equation (A.5)) this
result can be written as

H(a, b) =
2
a

e
a2b

8
√

b3

(
a2b
4

) 1
2

e−
a2b

8 Φ
(

2, 1;
a2b
4

)
, (B.12)

where Φ (α, γ; z) is the degenerate hypergeometric function which is defined as
a series in Equation (A.4). The following relationship for Φ (α, γ; z) can be
used to reduce the number of terms in the series to a finite number [Grad-
shteyn and Ryzhik, 1980, Equation 9.212.1]:

Φ (α, γ; z) = ezΦ (γ − α, γ;−z) . (B.13)

In our case, the series now reduces to a sum with only two terms since

Φ (2, 1; z) = ezΦ (−1, 1;−z)

= ez

(
1 − 1

1
· (−z)

1!
− 1

1
· 0

2
· (−z)2

2!
− 1

1
· 0

2
· 1

3
· (−z)3

3!
− · · ·

)
= ez (1 + z) . (B.14)
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The H-function in Equation (B.7) can now be written with the following
closed form expression

H(a, b) =
2
a

e
a2b

8
√

b3

(
a2b
4

) 1
2

e−
a2b

8 e
a2b

4

(
1 +

a2b
4

)
= b2

(
1 +

a2b
4

)
e

a2b
4 . (B.15)

The expectation in Equation (B.6) can now be written as

E[X1|X2] = β1 (1 − ρ)
(

1 +
ρ

1 − ρ

x2

β2

)
(B.16)

B.4 Nakagami distribution

A Nakagami distributed random variable X with Nakagami parameter m
and average power E[X2] = Ω has a PDF [Nakagami, 1960]

fX(x) =
2mmx2m−1

Γ(m)Ωm e−
mx2

Ω , m =
Ω2

E[(X2 − Ω)2]
≥ 1

2
. (B.17)
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Appendix C

Simulating Correlated Fading

C.1 Filtering Gaussian Random Variables

The Doppler power spectrum of the fading envelope is found by taking the
Fourier transform of the autocorrelation in Equation (3.6):

Φzz( f ) = F [φzz(τ)] =

⎧⎨⎩
Ωp

2π fm
1√

1−
(

f
fm

)2
| f | ≤ fm

0 otherwise.
(C.1)

It is possible to generate samples from the Rayleigh fading channel model
having the correlation in Equation (3.6) from a sampled version of the Dop-
pler power spectrum. The model was first introduced by Bell Labs in the
1970s, and in [Arredondo, Chriss, and Walker, 1973], results from a hard
wired simulator was presented. Smith presented an example of a simi-
lar model for computer based simulations of Rayleigh fading in [Smith,
1975]. The model has later been generalized as described in e.g. [Rappa-
port, 1996]. There also exist several other models, e.g the sum of sinusoids
method [Stüber, 2001]), but these do not always satisfy the stationary be-
havior demanded or other statistical criteria [Young and Beaulieu, 2000].
A comprehensive description of both the statistical properties of Smith’s
method and a modified version were presented by Young and Beaulieu
in [Young and Beaulieu, 2000]. In our computer simulations we have used
the modified version, which reduces the number of calculations needed to
generate fading samples.

A block diagram of this method is shown in Figure C.1. The elements
of the K-dimensional column vectors A and B are real-valued zero-mean
identical and independent distributed Gaussian random variables with var-
iance σ2

w (the random process is denoted N (0, σw)). The filter coefficients in
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the real-valued column vector F are found by sampling the Doppler power
spectrum in Equation (C.1). The two boxes marked F perform element
wise multiplication between vectors A and F (on the upper branch), and
vectors B and F (lower branch). The resulting vectors are added together
component-wise such that

Z = F ◦ A − iF ◦ B. (C.2)

Thus, Z is a complex vector. The sampled version of the complex fading
envelope z of length K is computed by taking the K-point inverse discrete
Fourier transform (efficient implementation if the discrete Fourier Transform
and its inverse can be achieved by using the fast Fourier transform in e.g.
[Press et al., 2002]).

N (0, σw) �B

N (0, σw) �A

F

F

⊕
⊗

�
�

�
�

�

Z

−j

K-point
IDFT

�z

FIGURE C.1: Smith’s method for generating K samples of a fading channel.

C.2 A Note on the Generation of Random Numbers

There are three components in the simulation model in Figure 5.1 using
random numbers; the source, the fading gain and the additive noise. The
source is specified to have a uniform distribution, the AWGN of the chan-
nel is complex with IID imaginary and real components, and the fading
simulator described above also uses Gaussian random numbers. It is nec-
essary to use a random number generator (RNG) for each of these operations
that is independent of the others such that the results produced from Monte
Carlo simulations of the system have high confidence. Also, since the fad-
ing simulator produces correlated vectors with a specific autocorrelation it
is important that the random variables used are uncorrelated.

Any RNG implemented in a computer will not be “truly” random, since
the output of any algorithm used can be predicted. In fact any RNG will
have a given period. An excellent description of the limitations of practical
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RNGs is available in [Press et al., 2002]. The simulation model used here is
implemented in the ANSI C programming language, and the func-
tion that returns an uniformly distributed integer in a range of (usually)
216 numbers could have been used. The outcome of this function can eas-
ily be transformed into any other uniform distribution or a Gaussian dis-
tribution. However, the number of evaluations performed in our system
might reach a much higher number then the period of this specific RNG
(the period depends on the architecture of the processor used). As an ex-
ample: calculations in a Monte Carlo simulation obtaining 100 block errors
for a Gallager codec with block length M = 200 performing on a complex
AWGN channel at a BER of 10−6 requires at least 100 · 200 · 2 · 106 > 235

random numbers. Thus, confidence in simulation results are reduced since
simulation may evaluate the same outcomes of the RNGs multiple times.
Marsaglia and MacLaren proposed a series of RNGs in the 1960’s (see e.g.
[Marsaglia, 1963; MacLaren and Marsaglia, 1965]). Results presented in
this thesis were obtained using an implementation of Marsaglia’s so called
“Mother of all random number generators” (the C-code is available freely
on the world wide web e.g. in [Wheeler]). This RNG produces uniformly
distributed random variables and has a period of approximately 2250 which
is more than sufficient for the simulations in this thesis. Gaussian random
variables are generated from uniform variables using the Box-Muller algo-
rithm [Press et al., 2002] (available in [Carter]).
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Appendix D

Gallager based codecs

D.1 Introduction

In this appendix the design of codecs using Gallager codes with subse-
quent modulation is outlined. In order to obtain N codecs with different
SEs Gallager based codecs with varying code rates and different modula-
tion constellations are used. Note, the combination of a specific Gallager
code and corresponding constellation is not optimized. The set of codecs
presented here is an example set of codecs that can be used in a practical
ACM scheme.

First, in this appendix a model for the use of a Gallager based codec
on an AWGN channel is outlined in Section D.2. The modulation and
demodulation technique and the Gallager encoder/decoder are described
in Section D.3 and Section D.4, respectively. In Section D.5 the example
codecs, used in simulations in Chapters 3 and 5, are presented.

D.2 System Model

�s Gallager
Encoder

�t QAM/PSK
Modulator

�x ⊕
�n

�y Demod-
ulator

�t̂
�

p0, p1

Gallager
Decoder

�ŝ

FIGURE D.1: System model for Gallager coded information transmitted on
an AWGN channel using complex valued channel symbols.

Figure D.1 shows the system model for transmission of information en-
coded with a Gallager code and subsequently QAM or PSK modulation on
an AWGN channel. A g-dimensional column vector of information bits, s,
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D. GALLAGER BASED CODECS

is coded into a q-dimensional codeword, t, (column vector) by the Galla-
ger encoder. The vector of channel symbols, x is generated by mapping
sub-vectors of length log2(S) from t to channel symbols by the QAM/PSK
modulators, here S is the size of the constellation and it is assumed that
q = M log2(S) where M is an integer. The received vector becomes

y = x + n, (D.1)

where n is a complex AWGN vector. The vectors y, x, and n are all col-
umn vectors of length M = q

log2(S) . Since x and n are uncorrelated and
the modulation is memoryless, the received vector can be demodulated
symbol-by-symbol producing a hard decision, t̂, on the received coded in-
formation (hard-demodulation). The Gallager decoder uses this vector and
the probabilities p0

l and p1
l of bit l in t̂ = {t̂l}q

l=1 being demapped without or
with error, respectively. Soft-demodulation (calculation of the probabilities
of the decisions in t̂ ) is also performed by the demodulator. The Gallager
decoder produces the decoded information vector ŝ.

The noise added by the AWGN channel affects the modulated channel
symbols. However, it is in the following useful to express the relationship
between the binary transmitted and received information vectors, t̂ and t.
This relationship can be modeled as

t̂ = t + w (D.2)

where w is a binary column vector of length q representing additive noise
as a result of demodulating noisy channel symbols. In the following, t and
w are assumed independent.

D.3 Modulation and Demodulation

Each channel symbol in a constellation of size S, ζi (i ∈ {1, 2, . . . , S}), can
uniquely represent κ = log2 S bits. The κ-tuple corresponding to chan-
nel symbol ζi is denoted {αi,n}κ

n=1 = {αi,1, αi,2, . . . , αi,κ}. The modulation
procedure is done by mapping tuples from t to channel symbols in the
constellation. The mapping to channel symbols is done using Gray map-
ping [Stüber, 2001]. That is, the κ-tuple corresponding to two horizontal or
vertical neighbors—in the complex plane—differ at only one position. In
Figure D.2 a QAM constellation with 16 symbols is shown with the corre-
sponding 4-tuples used in the Gray mapping.
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FIGURE D.2: 16 QAM constellation with Gray mapped binary sequences.

Symbol-by-Symbol Hard-Demodulation

Hard-demodulation of the kth received channel symbol [y]k is defined as
finding the symbol in the constellation with the smallest Euclidean distance
to the received channel symbol. Define the Euclidean distance between a
received channel symbol [y]k and ζi as

D([y]k, ζi) =
√

([y]k,I − ζi,I)2 + ([y]k,Q − ζi,Q)2. (D.3)

where the indexes I and Q are used to separate the real and imaginary parts
of channel symbols. Then, symbol-by-symbol demodulation can be done
by first solving

[x̂]k =
{

ζi : D([y]k, ζi) = min
l∈{1,2,...,S}

{D([y]k, ζl)}
}

, (D.4)
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where [x̂]k denotes the hard detected channel symbol.1 Demapping is then
done by using the κ-tuple corresponding to ζi:

{t̂l}m+κ−1
l=m = {αi,n}κ

n=1, m = (k − 1)κ + 1 (D.5)

Symbol-by-Symbol Soft-Demodulation

Soft demodulation is here defined as obtaining the prior probability of each
bit in t̂ being correct. Again, this is done on a symbol-by-symbol basis.
There are two obvious approaches that can be used to obtain this probabil-
ity. The probability of [x̂]k = ζi being the channel symbol transmitted can
be calculated from

P(ζi|[y]k) =
g(ζi, [y]k)

∑S
l=1 g(ζl , [y]k)

, (D.6)

where

g(ζl , [y]k) =
1√

2πN0B
exp

(
−D2([y]k, ζi)

2N0B

)
, (D.7)

and the standard deviation
√

N0B of the samples in the AWGN vector n is
assumed known. A straight forward approach is now to assign the proba-
bility in Equation (D.6) to each code bit {t̂l}m+κ−1

l=m resulting from detecting
[x̂]k as channel symbol ζi:

p0
l = P(ζi|[y]k) (D.8)

and
p1

l = 1 − p0
l . (D.9)

A more sophisticated approach, which is used here, is to calculate the
probability of each bit in the κ-tuple found from the demapping of ζi being
correct based on the κ-tuples for the other symbols in the constellation as
follows; assume that the lth bit in the demapping of a hard-demodulated
channel symbol [y]k is αi,l . Now, the prior probability of αi,l being correct
can be found by summing the probability P(ζm|[y]k) for each of the symbols

1Using the Euclidean distance in detecting channel assumes that a QAM constellation
is employed. For PSK constellations channel symbols can be separated into amplitude and
phase. Then, instead of the Euclidean distance the absolute value of the difference between
phase of each symbol in the constellation and the phase of the received signal is used as a
distance measure. Subsequently hard-detection is done by choosing the ζi that minimizes
this distance measure.
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in the constellation weighted by the probability of bit l, αi,m, in the tuple
being equal to αi,l :

p0
l =

S

∑
m=1

P(ζm|[y]k,I)P(αm,l = αi,l) (D.10)

where

P(αm,l = αi,l) =
{

1 when αm,l = αi,l
0 otherwise

(D.11)

and again p1
l = 1 − p0

l .

D.4 The Concept and Properties of Gallager Codes

Linear Block Codes

An error-correcting code can be used to correct information that has chang-
ed (e.g. communicated on a distorted channel or stored on a lossy medium)
based on the redundancy in the code. A specific class of error-correcting
codes are called “linear block codes.”2 A (q, g) linear block code receives a
block of information (an information word) of finite length g and produce a
codeword of finite length q. The rate of the code is then defined as

r = g/q [information bits per code bit]. (D.12)

Considering only binary codes there are 2g valid codewords. A linear block
code (q, g) can be described by its parity check matrix H and the generator
matrix G. The codeword t can be found from

t = GTs (D.13)

where G is a matrix of dimension g × q, and s is the information word.
The parity check matrix of a (q, g) linear block code of dimension (q −

g) × q is defined such that
HGT = 0. (D.14)

Then, it follows that

Ht̂ = H(t + w) = H(GTs + w) = Hw (D.15)

where c = Ht̂ = Hw is commonly referred to as a “syndrome” vector.

2A linear combination of two valid codewords produced by a linear block code is also
a valid codeword.
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The optimal decoder for a block code returns the information vector ŝ
that maximize the posteriori probability [MacKay and Hesketh, 1997]

P(s|̂t, G) =
P(̂t|t, G)Ps

P(̂t|G)
. (D.16)

However, this decoding problem is NP-complete and can not implemented
in practice [MacKay and Hesketh, 1997]. Instead suboptimal algorithms
can be used to obtain a solution.

Gallager Codes

Gallager’s invention was to construct the parity check matrix H, which is
used in the decoding, such that it has a low density of ones (i.e. it is sparse).
This ensures that the code can be decoded with a relatively low complex-
ity decoder (with simple implementation), while also allowing good error
correcting properties [MacKay and Hesketh, 1997].

A binary Gallager parity check matrix H has q columns (where q is the
codeword length) and u = q − g rows. In order for the matrix to be sparse
the number ones in each column must much less than the number of rows,
and the number ones in each row must be much less than the number of
columns.

A regular parity check matrix has an equal number of ones in each row
and an equal number of ones in each column. In this thesis a brute force
approach is used to generate the parity check matrix. This is done by gen-
erating the rows randomly one-by-one and for each row checking that the
row generated last is not a linear combination of one or more of the other
rows. Then it follows, that the matrix is of full rank. In order to simplify the
creation of the generator matrix the parity check matrix is made systematic
by performing Gauss elimination. That is, H can be written as a concate-
nation between a matrix C representing the redundant information and an
identity matrix representing the source information to be transmitted:

H = [C|Iu×u] . (D.17)

The generator matrix can now be written as

GT =
[

Ig×g
C

]
. (D.18)

Decoding of Gallager Codes by the Message Passing Algorithm

Several soft decoding algorithms have been developed for Gallager codes.
Examples of such algorithms are the message passing propagation (also
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known as the sum-product algorithm) and an a posteriori probability de-
coding algorithm [Lin and Costello, Jr., 2004]. In this thesis message pass-
ing has been used in the decoder. In this section the main idea behind the
message passing algorithm is described. The mathematical expressions for
the algorithm (i.e. for the messages passed) is text book material and out
of scope for this thesis. Excellent descriptions of decoding algorithms can
be found in [MacKay and Hesketh, 1997; Davey, 1999; Lin and Costello, Jr.,
2004].

The task of the decoder can be formulated as finding a noise vector, ŵ,
that satisfies

Hŵ = Ht̂ = Hw. (D.19)

In other words, the task of the decoder is to obtain the most likely noise
vector. When this noise vector is found it can be subtracted from received
codeword producing a new codeword, t̃. When t̃ = t the coded information
can be reproduced without error. For a binary systematic code with rate
g/q the first g bits of the codeword is equal to the information encoded and
the remaining q − g bits are parity bits, i.e. decoding information from a
legal codeword is done by extracting the first g bits.

An iterative decoding algorithm can be designed such that the poste-
rior probability of the value of each noise sample in the noise vector is es-
timated, given t̂ and the prior probabilities calculated in the previous sec-
tion. A Gallager code can be described by a bipartite graph with two sets
of nodes3 defined by H [Lin and Costello, Jr., 2004]. One set represents the
noise samples in ŵ. The nodes in the second set are denoted check nodes
and represent the symbols in the syndrome vector c. The syndrome vector
contains g samples:

c = [c1, c2, . . . , cg]T. (D.20)

For simplicity, the noise samples in ŵ are denoted wl resulting in the col-
umn vector

ŵ = [w1, w2, . . . , wq]T. (D.21)

An example bipartite graph is shown in Figure D.3. Nodes cm and wl are
now connected if [H]ml = 1. The message passing is done in two steps.
First each noise node wl passes two messages to each of the check nodes it
is connected to (i.e. a message is passed from wl to cm if and only if [H]ml =
1). The messages represent the belief the node wl has of being zero and
one, respectively.4 After all check nodes have received messages from all

3A bipartite graph is a graph with two disjoint set of nodes; noise nodes and check
nodes.

4Recall that all vectors are assumed to be binary vectors. Thus, each node can only take
on two values: zero and one.
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FIGURE D.3: Example of a bipartite graph built from the parity check ma-
trix. Message passing is done in both directions of an edge.

noise nodes they are connected to, a belief in whether the noise nodes are in
state zero or one from the view of the check node can be calculated. Then,
each check node cm in c passes on this belief.5 When these two steps are
performed the most likely noise vector, based on all received messages at
each noise node, is selected and tested. That is, if Hŵ = c the decoding
ends by subtracting ŵ from t̂. If a proper noise vector is not found the
algorithm repeats the two steps until such a vector is found or a maximum
number of iterations is reached.

The probabilities produced by the demodulator (see Equation (D.10))
can be used to initialize the message passing algorithm. That is, the mes-
sages passed from the noise nodes in the first initialization are set equal to
the prior probabilities p0

l and p1
l .

D.5 Example Codecs

In this section an example codec set with N = 6 codecs are described.
Codec n is defined to use a constellation of size Sn = 2n+1, n ∈ {1, 2, . . . , 6}.
The number of information bits input to Gallager code in codec n is de-
noted gn and the number of bits in the codeword produced is denoted
qn. The code rate is defined as rn = gn/qn = n/(n + 1) information bits

5Note, both the check nodes and the corresponding syndrome samples are denoted cm.
Likewise, both the noise nodes and the noise samples are denoted wl . The value for noise
sample wl is updated after each iteration, while the syndrome sample cm is kept constant.
Thus, each node has two functions; holding the value of its noise or syndrome sample and
passing messages.
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per code bit. This is done to keep the length M of a block of channel
symbols produced by the codecs constant. For codec n there are M · n =
M · (log2(Sn)− 1) information bits per block of M channel symbols, and for
all codecs there are M parity bits in a block of M channel symbols of length
M. The SE of codec n now becomes Rn = log2(Sn) − 1 = n information
bits. Fixing the choice of the block length as M = 200 symbols produce the
parameters for the Gallager codecs in Table D.1. The coded bits are mod-

n rn gn Sn Rn

1 1/2 200 4 1
2 2/3 400 8 2
3 3/4 600 16 3
4 4/5 800 32 4
5 5/6 1000 64 5
6 6/7 1200 128 6

TABLE D.1: Simulated Gallager codes with block length M = 200 channel
symbols.

ulated to channel symbols using Gray mapping. The iterative decoder in
simulation results presented in this thesis is set to terminate if no errors are
detected or if the number of iterations reached 100.

Note, there exists more than one Gallager code for a given rate and
block length. Since the parity check matrices are generated in a stochastic
manner, it is not claimed here that the codecs presented are the best codecs;
rather a set of codecs that can be employed in a rate-adaptive scheme.

The BER-versus-CSNR performance for the codecs is shown in Fig-
ure D.4. Points in the figure were obtained using Monte Carlo simulations
terminating when a minimum of 200 errors were found. An error is here de-
fined as a block of M = 200 channel symbols decoded in error (not just one
single information bit decoded in error). The points on the curves represent
actual simulation results while the solid line represents an approximation
of the BER-versus-CSNR performance for each of the codecs.

For the BER-versus-CSNR relationship of Gallager codes, MacKay et.al.
have found a closed form approximation [MacKay and Hesketh, 1997]. In
this thesis, a generalized version of the approximation is used (the gener-
alization being the constant an, which in [MacKay and Hesketh, 1997] was
set to 1):

BERn(γ) =
an

(1 + ecn(γ−bn))dn
. (D.22)
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The parameters an, bn, cn, and dn can be found using nonlinear curve fitting
(results presented here were obtained employing the least squares method

in the Optimization Toolbox of MATLAB).
The CSNR thresholds {γn}N

n=1 depend on the target BER and can be
calculated by demanding that BER(γn) = BER0 for code n, and then using
the inverse of the approximation describing the simulated data points

γn =
1
cn

ln

((
an

BER0

)1/dn

− 1

)
+ bn. (D.23)

Then, by setting BER0 = 10−3 and 10−4 the CSNR thresholds {γn}N
n=1 in

Table D.2 were obtained. In this table the values found for the constants an,
bn, cn, and dn for all of the codecs are also shown. In Table D.3 the simulated
CSNR thresholds for the N = 6 codecs where obtained for block lengths up
to M = 2000 symbols.
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FIGURE D.4: Simulated and approximated BER-versus-CSNR for the
Gallager based codecs.
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γn (in dB)
n an bn cn dn BER0 = 10−3 BER0 = 10−4

1 14.0168 1.0620 4.2335 1.4013 2.7 3.1
2 13.0823 6.1563 4.0004 1.3176 8.0 8.4
3 13.4064 9.7041 4.3240 1.3151 11.4 11.8
4 13.4105 13.6210 4.5389 1.5632 14.9 15.3
5 0.0272 18.0941 6.5885 2.0968 18.3 18.5
6 0.0513 21.0407 4.5350 2.8911 21.3 21.5

TABLE D.2: Values of the parameters used in the estimation of the
BER-versus-CSNR relationship, and the CSNR thresholds for BER0 ∈
{10−3, 10−4}.

Block CSNR thresholds (in dB)
length M γ1 γ2 γ3 γ4 γ5 γ6

200 2.7219 8.0256 11.2111 14.9086 17.8923 21.0884
300 2.5665 7.8967 11.1120 14.8267 17.8091 21.0249
400 2.4910 7.8228 11.0699 14.7725 17.7721 20.9808
500 2.4356 7.7734 11.0349 14.7462 17.7479 20.9555
600 2.3992 7.7461 11.0075 14.7241 17.7338 20.9477
700 2.3690 7.7092 10.9962 14.7108 17.7276 20.9443
800 2.3469 7.7010 10.9717 14.6881 17.7120 20.9313
900 2.3307 7.6872 10.9619 14.6839 17.7149 20.9371
1000 2.3105 7.6672 10.9491 14.6653 17.7034 20.9283
1500 2.2545 7.6132 10.9145 14.6411 17.6863 20.9139
2000 2.2305 7.5991 10.8976 14.6076 17.6600 20.8903

TABLE D.3: CSNR thresholds for the N = 6 codecs for varying block
lengths M.
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