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Abstract

Keywords : Conjugate gradient fast Fourier transform (CG-FFT), Discrete complex

image method (DCIM), Electric field integral equation (EFIE), Frequency selective sur-

faces (FSS), Generalized pencil-of-functions (GPOF), Green’s function (GF), Method of

moments (MoM), Prony’s method (PM), Sommerfeld integral (SI), Two-dimensional gen-

eralized exponential integral (2D-GEI)

As the need for more frequency spectrum drives the design of antennas and other mi-

crowave components at higher frequencies, compact but electrically large microwave com-

ponents are beginning to appear. Since a significant share of these components comprises

scatterers etched on planar stratified layers, efficient tools analyzing and optimizing such

structures are invaluable. The work carried out here is in fact a continuation of the re-

search performed in the past at the Department of Electronics and Telecommunications

at the Norwegian University of Science and Technology in Trondheim, Norway.

The conventional method of moments for analyzing and optimizing scatterers in strat-

ified media is simple in formulation but computationally very intensive. Moreover, the

computer memory usage of the software based on conventional MoM is high. Both these

factors have so far limited the application of conventional MoM to electrically small and

simpler stratified structures. Therefore, the present work focuses on introducing and im-

plementing an improved space domain MoM for large radiating or scattering structures

etched on planar stratified media. The space domain method of moments is selected due

to its simplicity and potential for further improvements when compared with the spectral

domain method of moments.

The major areas of space domain MoM such as finding spectral Green’s functions, de-

riving spatial Green’s functions, matrix formulation and matrix inversion are addressed.

The existing methods are evaluated with respect to their pros and cons. In addition,

in order to extract the scattering parameters a few simple de-embedding techniques are

introduced. We have attempted to optimize each stage of the conventional space domain

MoM such that it can handle electrically large scatterers in planar stratified media. Each

method is discussed independently and proved to be performing well compared with the

corresponding method applied in conventional space domain MoM. In deriving spectral

Green’s functions, a novel formulation of transmission line theory is applied easing the

analytical derivation and the software implementation significantly. A robust form of dis-
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crete complex image method (DCIM) is used in deriving spatial Green’s functions from the

corresponding spectral Green’s functions. DCIM is an accurate and efficient way of evalu-

ating Sommerfeld integrals without resorting to multi-dimensional numerical integration.

The accuracy and efficiency of DCIM are affirmed by applying it to simple scatterers. The

outcome of DCIM is a sum of complex exponential functions. These are then used to cal-

culate the impedance matrices of MoM. It is also shown that when using mixed potential

integral formulation, the original four-dimensional numerical integration can be simplified

to two-dimensional integration with no loss of accuracy, thus reducing the mathematical

complexity during matrix filling phase. Nevertheless, some of the complex exponential

functions can lead to two-dimensional singular integrals. These singular two-dimensional

generalized exponential integrals(2D-GEI) are efficiently handled by generalizing an in-

novative numerical integration method, thus saving the processing time further. The last

but most important operation of MoM, the matrix inversion is achieved by using an it-

erative algorithm known as conjugate gradient method. It is then combined with fast

Fourier transform to exploit the space invariant property present in the impedance matri-

ces of MoM. A new compact formulation of the matrices is also presented to facilitate the

programing task. To our knowledge, this is the first time such formulation is presented

explicitly. A brief chapter is reserved for de-embedding of scattering parameters from the

surface current densities resulting from MoM.

In order to present the thesis as a collection of self-containing and independent chapters,

results are included in each chapter whenever it is appropriate. These partial results

confirm the accuracy and the efficiency of each method introduced in the corresponding

chapter before we move on to the next.

The conclusion on the overall method introduced in this work is that the space domain

method of moments combined with the discrete complex image method and the conjugate

gradient fast Fourier transform presents a very powerful tool for analyzing and optimizing

large arbitrary stratified structures. However, to be competitive with commercial products

based on either spectral domain method of moments or finite element methods, further

improvements in its implementation and methodology are needed. Few improvements

such as more efficient implementation of the entire method, inclusion of surface wave

contribution in DCIM, integration of non-uniform basis and testing functions and need

for better de-embedding techniques are already identified at the end of this work.

Finally we hope that this work clarifies some important issues relating to space domain

method of moments when applied to large scatterers etched on planar stratified media

and encourages the further research on this particular method.
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Chapter 1

Introduction

The method of moments (MoM) has been used for analyzing scattering and radiation

problems for decades. According to [41], MoM can be interpreted as a method which

transforms a continuous operator equation describing the physical problem into a set of

matrix equations by first discretizing the operator equation and then performing a inner

product on it with selected weighting functions. Many varieties of MoM version have been

developed in the past though, they can be broadly divided into two groups, a spectral

domain version and a space domain version. Spectral domain MoM relies on evaluating

the matrix elements based on spectral domain Green’s functions(GFs) whereas the space

domain MoM performs the same operation based on space domain GFs.

When analyzing scatterers in planar stratified media, spectral domain MoM has the up-

per hand due to the existence of spectral GFs in closed form. On the other hand, space

domain MoM is frequently based on interpolated or asymptotic spatial GFs. However,

recently introduced discrete complex image method [28],[29],[30] has shown to eliminate

this barrier faced by space domain MoM by accurately and efficiently approximating the

spatial GFs with finite number of complex exponential functions. Nevertheless, corre-

sponding spectral GFs are to be found first. A methodical and programmer-friendly ver-

sion of determining spectral GFs for planar stratified media was also presented recently

in [7]. These two methods finally led to four-dimensional integrals which if not han-

dled carefully, could lead to time consuming numerical integrations. Aiming to reduce

these computational complexities, an analytical approach was taken in [47] to reduce the

four-dimensional integrals into two-dimensional integrals. The resulting two-dimensional

(2D) integrals were referred in [49] and were evaluated efficiently when singularities were

present. Moreover, the implicit symmetries among the matrix elements corresponding

to an uniform discretization were well known and clearly stated in [48], further relaxing

time consuming matrix filling operation in space domain MoM. When applied to large

arbitrary scatterers in stratified media, MoM results in a large matrix with poor numer-

ical properties. Inversion of such matrices are efficiently and accurately performed by

conjugate gradient fast Fourier transform method [56].

Above methods were mostly presented independently and occasionally cross referred.

However, according to our knowledge none in the past had addressed the possible combi-
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nation of all these techniques for an efficient MoM implementation, which is a must for

analyzing large arbitrary scatterers in planar stratified media, for which there is an obvi-

ous lack of analytical tools. Therefore this dissertation looks into the ways of accelerating

the traditional space domain MoM based on the preceding methods. It involves all major

steps in the conventional formulation, such as determining Green’s functions, calculating

coefficient matrices, solving the resulting matrix equations, etc. For the sake of complete-

ness, a short description on de-embedding techniques is also included. At last, a complete

space domain MoM is implemented as a set of MATLAB programs and, sample results

are demonstrated for two different cases; a linear patch array and a frequency selective

surface. In conclusion, pros and cons of the present MoM are discussed along with the

potential improvements.

The original contributions of this work include the introduction of a generalized numerical

integration technique that efficiently evaluates singular two-dimensional exponential inte-

grals encountered in space domain MoM and a compact formulation of conjugate gradient

fast Fourier transform method appropriate for solving large number of linear equations

resulting from space domain MoM for large scatterers in planar stratified media. In ad-

dition, minor modifications introduced for a stable implementation of discrete complex

image method, the discussion on symmetric properties found in impedance matrices of

MoM, and the application of the present method for analyzing finite frequency selective

surfaces are also to be in focus.

1.1 Motivation

The motivation behind this thesis is mainly to elaborate the recently developed techniques

within space domain MoM. Though the initial idea was to investigate the mutual coupling

as a non-ideal effect present in adaptive array implementation, that idea was somewhat

generalized and in other ways specialized as the years passed by. Finally, I ended up with

implementing an efficient MoM for analyzing large planar structures defined in planar

stratified media. Special attention is given to patch antenna arrays and frequency selective

surfaces. Here the main idea is to come up with a method which is more efficient than

the classical MoM without compromising the accuracy. The present method could be

applicable in other areas such as reflectarrays, fractal antennas, PBG (Photonic Band

Gap) structures etc.

1.2 Outline

I have tried my best to present each chapter of this thesis as self-contained. Therefore

each chapter contains results and partial conclusions dedicated to it. The intention for

doing so is to let the reader go through each chapter independent of the rest. Moreover,

such independency gave me the opportunity to publish the contents of each chapter with

minimum effort. Nevertheless, in order to avoid unnecessary duplication of the texts, the

chapters are rarely cross-referred. Major chapters of this dissertation are :
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1.2.1 Chapter 2 : Green’s functions for stratified media

The basics of the dyadic Green’s function for planar stratified media are discussed here.

The relationship between space domain and spectral domain Green’s functions is stated.

The mixed potential integral equation for determining fields, in terms of scalar and vector

Green’s functions, is then formulated. Moreover, a novel transmission line theory is

reviewed as an efficient way of finding spectral vector and scalar Green’s functions in

stratified media.

1.2.2 Chapter 3 : Discrete complex image method

The recently introduced robust discrete complex image method (DCIM) is reviewed and

the difficulties encountered during implementation are addressed. The techniques and

tricks used to work around the difficulties are presented. The Prony’s method and Gen-

eralized Pencil-of-Functions (GPOF) method are revisited briefly. Finally, few spectral

domain Green’s functions are transformed into space domain applying DCIM. The results

are shown to agree well with the numerical values.

1.2.3 Chapter 4 : Method of moments

This core chapter is devoted to the principles of the space domain method of moments

used in analyzing stratified media. The criteria for selecting basis and testing functions

and the symmetries existing in coefficient matrices are addressed here. This chapter is

the backbone of this dissertation whereas the other chapters are more or less concerned

with the ways of optimizing the space domain MoM.

1.2.4 Chapter 5 : Numerical evaluations in MoM

At the beginning, this chapter introduces the numerical integration techniques applied

in evaluating Sommerfeld type integrals and the problems faced during their practical

implementation. A specific method suitable for evaluating singular two-dimensional ex-

ponential integrals is then introduced and generalized. Its efficiency and accuracy are

affirmed based on simulation results.

1.2.5 Chapter 6 : CG-FFT

This chapter describes the application of the conjugate gradient method (CGM) for solv-

ing the equation system derived by the space domain MoM. The fast Fourier transforma-

tion (FFT) is associated with CGM for speeding up the matrix multiplications, thus the

name ’conjugate gradient fast Fourier transform method’ (CG-FFT). Its performance is

then assessed in terms of accuracy and efficiency.
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1.2.6 Chapter 7 : De-embedding techniques

This brief chapter outlines several methods of extracting S parameters based on the

current densities induced on striplines. It merely presents the mathematical background

for de-embedding. The de-embedding method applied here for extracting S parameters

is then verified using simple examples.

1.2.7 Chapter 8 : Results

This chapter presents a few illustrative results in analyzing practical patch antenna struc-

tures. The simulated results are also compared with measured results. This chapter tests

the software developed here for its accuracy and efficiency. More examples dealing with

frequency selective surfaces are also included in order to demonstrate the versatility of

the developed method.

1.2.8 Chapter 9 : Discussion and conclusions

This chapter includes the conclusive remarks on the present methodology and the sim-

ulation software developed. The accomplishments and the limitations are mentioned.

Potentials for further improvements are also discussed.



Chapter 2

Green’s Functions for Stratified

Media

2.1 Introduction

In the area of electromagnetism, solutions to many problems are obtained starting from an

uncoupled partial differential equation derived from Maxwell’s equations and the appro-

priate boundary conditions. The use of Green’s function offers an easy way of representing

most of these solutions in a rather compact form. With the Green’s function technique, a

solution to the partial differential equation is first obtained by considering a unit source

(i.e. impulse or a Dirac delta) as the driving function and by satisfying the imposed

boundary conditions. This solution, which is the impulse response of the given system,

is also known as the Green’s function of that system. The solution to the actual driving

function, which is often much more complex than a unit source, is then obtained by the

superposition of the impulse response with varying location of the unit source. This sum-

mation can ultimately be expressed as an integral. The major advantage of the Green’s

function technique is that when the necessary Green’s functions are derived for a given set

of boundary conditions for a particular problem, solving the same problem for a different

source constrained to the same boundary conditions is simple and straightforward.

Let us formulate these relationships mathematically. Given the linear differential equation

of the form

L y = f (2.1)

where

L denotes a linear differential operator in one dimension,
y is a scalar response function and

f is a scalar source function.

If the Green’s function G for this particular system exists, the solution for y can be
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expressed as

y =

S

G df (2.2)

where S is the domain of the source function f .

2.2 Dyadic Green’s Function

Most electromagnetic problems are vectorial in nature. Therefore, the need for extending

the above one-dimensional scalar Green’s function to multi-dimensional vectors emerges.

Vectors and dyadics are often used to describe linear transformations within a given

orthogonal system and to simplify the mathematical manipulations.

Let us write the linear vector problem that generalizes the scalar version (2.1) as

L h(r) = f(r ) (2.3)

where

L is a vector differential operator,
h(r) is a vector field function,

f(r ) is a vector source function and

r and r are position vectors of the field- and source-point, respectively.

However, the solution of (2.3) can not in general be written following the scalar solution

(2.2) since the relation

h(r) =

V

f(r )G(r, r ) dv (2.4)

with G as a scalar Green’s function would imply that a component of the source f(r )

parallel to a given axis produces a field parallel to the same axis, which is not generally

true. On the other hand, a general solution, for example in rectangular coordinate system,

can be written by expressing each component along the x, y and z direction in the same

form as (2.4).

h(r) =

V

[f x(r )Gx(r, r ) + f y(r )Gy(r, r ) + f z(r )Gz(r, r )] dv (2.5)

Gx(r, r ) = x̂Gxx(r, r ) + ŷ Gyx(r, r ) + ẑ Gzx(r, r )

Gy(r, r ) = x̂Gxy(r, r ) + ŷ Gyy(r, r ) + ẑ Gzy(r, r )

Gz(r, r ) = x̂Gxz(r, r ) + ŷ Gyz(r, r ) + ẑ Gzz(r, r )

(2.6)
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Note that Gx(r, r ), Gy(r, r ) and Gz(r, r ) in this representation are vector Green’s

functions. More compact representation of (2.5) can be given as

h(r) =

V

f (r ) · Ḡ(r, r ) dv (2.7)

The notation · denotes the dot product and Ḡ is the dyadic Green’s function, which can
be expressed as

Ḡ(r, r ) = x̂Gx(r, r ) + ŷ Gy(r, r ) + ẑ Gz(r, r ) (2.8)

Here ab defines a dyad by juxtapositioning the vectors a and b. In matrix form, a dyad

can be represented as follows [2]

ab = ( a1, a2, a3 b1, b2, b3 ) =

⎡⎣ a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤⎦ (2.9)

Accordingly, (2.7) can be written in the following matrix form

hx hy hz =
V

fx fy fz

⎡⎣ Gxx Gyx Gzx
Gxy Gyy Gzy
Gxz Gyz Gzz

⎤⎦dv (2.10)

The dyadic Green’s function Ḡ(r, r ) can be found by first solving the following individual

homogeneous differential equations (2.11). They resemble (2.3) and satisfy the specified

boundary conditions. Their individual solutions are then used to build up the more

general dyadic Green’s function by combining them according to (2.8).

L Gx(r, r ) = x̂ δ(r− r )
LGy(r, r ) = ŷ δ(r− r )
LGz(r, r ) = ẑ δ(r− r )

(2.11)

2.3 Spectral Green’s Functions vs Spatial Green’s Func-

tions

In the previous section Green’s functions are introduced solely based on spatial coordi-

nates r and r and hence is commonly known as the spatial Green’s functions or space-

domain Green’s functions. They are more intuitive when compared to their spectral

counterparts, the spectral Green’s functions. In electromagnetic field propagation ter-

minology, a spatial Green’s function simply describes the propagation of fields produced

by a point source as a function of space coordinates, whereas the corresponding spectral

Green’s function expresses the field propagation in another conveniently selected spectral

domain. The propagation constant vector is often selected as the spectral variable. Let

us further elaborate on the exact relationship between these two domains.
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2.3.1 Two-dimensional Fourier transformation

The two-dimensional (2D) Fourier transformation and 2D inverse Fourier transformations

are defined respectively by

Ψ(ς1, ς2) =
1

4π2

+∞

−∞

+∞

−∞
ψ(ξ1,ξ2)e

−j(ς1ξ1+ς2ξ2) dξ1 dξ2 (2.12)

ψ(ξ1,ξ2) =
+∞

−∞

+∞

−∞
Ψ(ς1, ς2)e

j(ξ1ς1+ξ2ς2) dς1 dς2 (2.13)

Here Ψ(ς1, ς2) is called the Fourier transformation of the function ψ(ξ1,ξ2). The variables

ς1 and ς2 represent the Fourier (or spectral) domain whereas ξ1 and ξ2 represent the

corresponding variables in the spatial domain. Although the functions Ψ and ψ given

in (2.12) and (2.13) are scaler functions, these relationships can readily be generalized

to vector quantities by applying these scalar transformations to each component of the

vector [3].

If the Green’s dyadic Ḡ(r, r ) in (2.7) is translational-invariant, i.e. Ḡ(r, r ) depends solely

on the difference (r− r ) rather than the separate values of r and r , h(r) in (2.7) can be
written as a convolution between f (r) and Ḡ(r) in 3D space.

h(r) =
V

f (r ) · Ḡ(r− r ) dv (2.14)

Assuming a rectangular coordinate system, the application of 2D Fourier transformation

(2.12) to (2.14) leads to [3]

H(k, z) =
z

F (k, z ) · Ḡ(k, z − z ) dz (2.15)

Here k is the 2D spectral domain variable given as k = x̂ kx + ŷ ky. Ḡ(k, z ) denotes
spectral dyadic Green’s function. H(k, z) and F (k, z ) denote 2D Fourier transform of

h(r) and f (r ) respectively. When (2.15) applies to a stratified medium that is parallel

to the xy plane and a source parallel to the xy plane, it can be simplified to the following

form [3]

H(k,z) =F (k, z ).Ḡ(k, z − z ) (2.16)

Therefore, based on the above Fourier transformation pair, (2.12) and (2.13), and the

Maxwell’s equations (presented in section 2.4.1) the propagation of electric and magnetic

fields in a given medium can be described in both space- and spectral domain. Since both

formulations lead to an identical solution, it is advantageous to formulate the problem in

hand using the most convenient domain. Which domain to be used depends entirely on

the nature of the problem and the complexity of the boundary conditions.
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2.4 Mixed Potential Integral Equation

2.4.1 Maxwell’s equations

The variations of electric and magnetic fields, charges and current associated with electro-

magnetic waves are governed by physical laws known as Maxwell’s equations. They were

first introduced by James Clark Maxwell based on empirical results and mathematical

reasoning. They can briefly be expressed in their differential form [2] when applied to

time-harmonic field quantities

∇ × E = −Mi − jωB (2.17)

∇ ×H = Ji + Jc + jωD = Jic + jωD = Jic + Jd (2.18)

∇ · D = qev (2.19)

∇ · B = qmv (2.20)

where

E electric field intensity (V/m),

H magnetic field intensity (A/m),

D electric flux density (C/m2),

B magnetic flux density (Wb/m2),

Ji impressed (source) electric current density (A/m
2),

Jc conduction electric current density (A/m
2),

Jd displacement electric current density (A/m
2),

Jic = Ji + Jc,

Mi impressed (source) magnetic current density (V/m
2),

Md displacement magnetic current density (V/m
2),

qev electric volume charge density (C/m
3) and

qmv magnetic volume charge density (Wb/m
3).

It is implied that all the field quantities above exhibit both space and time dependency.

Throughout this thesis, the time harmonic variation is assumed to be exp(jωt) where j,

ω and t represent
√−1, angular frequency and time, respectively.

2.4.2 Continuity equation

In addition to the above Maxwell’s equations, there is another equation, yet not an

independent relation, that expresses dependence between variations of the electric current



10 Green’s Functions for Stratified Media

density Jic and the electric charge density qev.

∇ · Jic = − jωqev (2.21)

Likewise, the magnetic current density Mi and the magnetic charge density qmv are

governed by :

∇ · Mi = − jωqmv (2.22)

2.4.3 Potentials

It is obvious that one can characterize the electromagnetic propagation completely in

three dimensional space using the six time-dependent components of electric and magnetic

fields. For example, in rectangular coordinate system, they can be chosen as three electric

field components Ex, Ey and Ez, and three magnetic field components Hx, Hy and Hz.

These scalar components are not independent, but are linked by Maxwell’s equations

(2.17) - (2.20). It is shown in [4] that in a source-free region, as few as two independent

quantities, suffice to determine the fields entirely. These quantities are often called the

potentials. For a stratified medium parallel to the xy-plane, Ez and Hz are often selected

as these two potentials. This is perhaps the most straightforward and apparently the

simplest choice, since it avoids the introduction of any new quantities. However, for a

planar stratified medium, spatial Green’s functions associated with these two quantities

possess the singularities of order three, i.e. O(|r− r |−3). This is an obvious disadvantage
in applying integral equation techniques because such singularities make the numerical

integration algorithm very unstable unless they are handled with caution. This calls for

an introduction of other more convenient quantities.

Vector potentials A and F

In source-free space, both the magnetic flux density B and the electric flux density D

are solenoidal, that is ∇ · B = 0 and ∇ ·D = 0 respectively. Therefore it is possible to

introduce two vector potentials A and F, which satisfy the Helmholtz equations [2]

(∇2 + k2)A = −µJ (2.23)

(∇2 + k2)F = −εM (2.24)

A and F are called magnetic vector potential and electric vector potential, respectively.

k = ω
√
µε and ∇2 denotes the Laplacian operator. Consequently, the field components

can be expressed as [2]

jωµεE =k2A+∇ (∇ ·A)−jωµ∇×F (2.25)

jωµεH =k2F+∇ (∇ · F)+jωε∇×A (2.26)
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Scalar potential V

In addition, another quantity known as the scalar potential V is defined. It is related to

magnetic vector potential A by the Lorentz’s gauge [5]

jωµεV +∇ ·A = 0 (2.27)

Therefore in the absence of an electric vector potential F, (2.25) can be written as

E = −jωA−∇V (2.28)

2.4.4 Integral equation method

The objective of the integral equation (IE) method is to set up an integral equation,

where the unknown induced current density on the surface of a scatterer is a part of the

integrand. Then, the technique known as the method of moments (MoM) is often used

to solve this equation for the unknown current density.

There are many forms of integral equations. Two of the most popular for time-harmonic

electromagnetic problems are the electric field integral equation (EFIE) and the magnetic

field integral equation (MFIE). The EFIE enforces the boundary condition on the tan-

gential electric field whereas the MFIE enforces the boundary condition on the tangential

magnetic field. Since the field propagation in stratified media is best handled by EFIE,

we shall only elaborate on it.

2.4.5 Electric field integral equation

The electric field integral equation (EFIE) is based on the boundary condition that the

total tangential electric field on a perfectly electric conducting (PEC) surface is zero. This

can be expressed as

Etotalt = Eit +E
s
t = 0 on S

Eit = −Est on S
(2.29)

where

S represents the PEC surface,

subscript t denotes the tangential fields and

superscripts total, i and s indicate the total fields, the incident fields and the scattered

fields, respectively.

Depending on the context, incident fields Eit can either be a wave incident on an an-

tenna (receiving mode) or a wave explicitly fed to an antenna (transmitting mode). The

scattered field Est is generated by the current induced on the PEC surface of the antenna.
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2.4.6 Mixed potential formulation

Although equation (2.28) expresses the electric field in terms of A and V potentials,

it does not present any practical convenience since the same degree of singularity, i.e.

O(|r− r |−3), still exists in the electric field components. A different formulation intro-
duced in [6] removes some of these higher order singularities, however. Accordingly, for

a PEC submerged in a stratified medium, A and V in (2.28) can be expressed in the

equivalent forms as follows.

A(r) =

S

ḠA(r, r ) J(r ) ds (2.30)

V =

S

Gq(r, r ) q(r ) ds (2.31)

Here,

J(r ) = Jx(r ) x̂+ Jy(r ) ŷ + Jz(r ) ẑ (2.32)

ḠA(r, r ) is the dyadic Green’s function for the vector potential A,

Gq(r, r ) is the scalar Green’s function for the scalar potential V ,

J(r ) is the surface current density,

q(r ) is the surface charge density and

S refers to the PEC surface of the scatterer.

Substituting (2.30) and (2.31) in (2.28) and applying the continuity equation (2.21), lead

to

E(r) = −jω
S

ḠA(r, r ) J(r ) ds +
∇
jω

S

Gq(r, r ) ∇ · J(r ) ds (2.33)

In the absence of magnetic currents, an electric dipole perpendicular to the dielectric

layers is associated with one component of A perpendicular to the layers [7]. Meanwhile,

a dipole parallel to the dielectric layers needs a perpendicular component and a parallel

component to the dielectric layers [7]. Hence, if we assume a stratified medium parallel

to the xy plane, ḠA(r, r ) can be expressed in matrix form.

ḠA(r, r ) =

⎡⎣ GAxx(r, r ) 0 0

0 GAyy(r, r ) 0

GAzx(r, r ) GAzy(r, r ) GAzz(r, r )

⎤⎦ (2.34)
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If the PEC surface S is a planar structure parallel to the xy plane, Jz(r ) = 0 and the

corresponding Green’s function components GAzx, G
A
zy and G

A
zz are no longer interesting.

Thus the components Ex(r) and Ey(r) of E(r) can be written as

Ex(r) = −jωGAxx(r, r ) ∗ Jx +
1

jω

∂

∂x
(Gq(r, r ) ∗ ∇ · J(r )) (2.35)

Ey(r) = −jωGAyy(r, r ) ∗ Jy +
1

jω

∂

∂y
(Gq(r, r ) ∗ ∇ · J(r )) (2.36)

where ∗ denotes the convolution operation

A ∗B =
S

A(r, r )B(r ) ds (2.37)

In rectangular coordinate system, this representation can be expanded to

A ∗B =
S

A(x− x , y − y , z, z )B(x , y , z ) dx dy (2.38)

Now, it is apparent that the operation ∗ denotes the well-known form of 2D convolution

with respect to the x and y coordinates. In brief, the equations (2.35) and (2.36) express

the electric field components Ex and Ey in terms of vector and scalar Green’s functions

and the induced current density. This formulation is thus known as the mixed potential

formulation. The Green’s functions associated with these two potentials posses singularity

of order one, O(|r− r |−1). They are therefore better suited for numerical computation
than the Green’s functions having singularities of third order, O(|r− r |−3) [8]. For

example in a homogeneous medium, the magnetic vector potential produced by an electric

current element is parallel to it [9], i.e.

A = Aaâ

and

GAa =
µ

4π

exp(−jkr)
r

(2.39)

where

a denotes either x or y direction,

µ is the permeability in homogeneous space and

r is the distance between the source point and the field point.

Likewise, the scalar potential produced by an elementary charge in homogeneous medium

can be written as

Gq =
µ

4πjω

exp(−jkr)
r

(2.40)

Here is the permittivity in homogeneous space
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2.5 Field Propagation in Stratified Media

Although the spectral Green’s functions for a stratified medium are possible to determine

exactly in closed forms, the spatial Green’s functions are not. Therefore, in general the

spatial Green’s functions are calculated point-wise, starting from the corresponding spec-

tral Green’s functions and applying the inverse 2D Fourier transformation (2.13). This

numerical transformation is time consuming and memory intensive due to the numerical

evaluation of 2D integrals. In some literature, a compromise between the accuracy and the

computer resources has been made using some carefully selected interpolation method.

In such methods, the interpolation is performed based on a few prior determined spatial

Green’s function values. Hence, the software based on such methods presumes that the se-

lected interpolation method would perform equally well for every stratified structure with

no intervene by the user. In chapter 3, we shall take a different approach when determin-

ing the spatial Green’s functions from the corresponding spectral Green’s functions. In

order to evaluate the accuracy of this approximated Green’s functions calculated there,

the spatial Green’s functions are first evaluated precisely applying the inverse Fourier

transformation to the corresponding spectral Green’s functions. This is done point-wise

at the cost of time and computer resources. Nevertheless, in order to keep the calculation

time reasonably low a few efficient techniques have been applied.

2.6 Unified Transmission Line Theory for Spectral Green’s

Functions

The derivation of spectral Green’s functions of multilayer media is analytical but tedious,

giving rise to many lengthy expressions of the spectral function for various combinations

of source and field locations in the multilayers. Hence this operation is considered as

programmer-time intensive. An effective, uniform and methodical technique introduced

in [7] is followed here to determine the spectral Green’s functions of a planar stratified

medium. It eases the analytical derivation and the software implementation of Green’s

functions of a stratified medium significantly.

When a general multilayer medium containing both magnetic and electric sources is lo-

cated in the rectangular coordinate system, there are as many as ten different types of

Green’s functions associated with three types of potentials [7]. Nevertheless, in this dis-

sertation we are concerned with only the electric surface currents parallel to the dielectric

interfaces. Therefore the number of unknown Green’s functions are limited to six, i.e.

four vector potential Green’s functions (e.g. GAxx, G
A
zx, G

A
yy and G

A
zy) and two scalar po-

tential Green’s functions (e.g. Gqxx and G
q
yy). Since x and y are orthogonal to each other

in practice, the expressions for GAxx, G
A
zx and G

q
xx resemble the corresponding expressions

for GAyy, G
A
zy and G

q
yy. Hence, G

A
yy, G

A
zy and G

q
yy can be derived from GAxx, G

A
zx and G

q
xx

by a simple coordinate transformation. It effectively reduces the necessary number of el-

ementary Green’s functions to three. We shall now employ the above mentioned method

to determine these functions. The method basically expresses the wave propagation in

each individual layer of the multilayer structure and then exploits the transmission line

analogy of the wave propagation in the stratified layers when transformed to the spectral
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�

�S
�L

ZS ZLZ0 VL

VS

Fig. 2.1: Simple one section transmission line

domain. In the sequel, we shall summarize the basic relations used in this formulation.

For a simple one-section transmission line model shown in Fig. 2.1, it can be shown that

the voltage transfer function T at the load is given by the following relationships [7]:

T =
VL
VS
2

= (1− ΓS) (1 + ΓL) e−jθ

1− ΓSΓLe−2jθ (2.41)

= (1− ΓS) (1 + ΓL) 1

1

−ΓS
T

ejθ 0

0 e−jθ
1

ΓL

= (1− ΓS) (1 + ΓL) 1

1

−ΓS
T

A
1

ΓL

= (1− ΓS) (1 + ΓL) 1
P

(2.42)

where

VL denotes the voltage drop over the load ZL,

VS denotes the source voltage,

ΓS denotes the reflection coefficient due to the source impedance ZS and is defined

by

ΓS =
ZS − Z0
ZS + Z0

(2.43)

Here, Z0 is the characteristic impedance of the transmission line.

ΓL denotes the reflection coefficient due to the load ZL and is defined by
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Fig. 2.2: Stratified medium with an infinitesimal horizontal electric dipole (HED)

ΓL =
ZL − Z0
ZL + Z0

(2.44)

θ denotes the progress in the phase front along the transmission line.

P =
1− ΓSΓLe−2jθ

e−jθ
=

1

−ΓS
T

A
1

ΓL
(2.45)

A =
ejθ 0

0 e−jθ (2.46)

A general stratified medium excited by a HED is illustrated in Fig. 2.2. Based on the

well-known transmission line analogy of the wave propagation in stratified media in the

spectral domain, we can suggest the cascaded transmission line shown in Fig. 2.3 for this

structure. Then applying the transfer function (2.41) to each section of this cascaded line

and eliminating the common load/source between each adjoint line section, the transfer

function VL for the complete stratified medium can be found [7].

VL = V (ZF ) =
VS

2
aS (1− ΓS) (1 + ΓL) aL 1

P
(2.47)

=
VS

2

aS 1 −ΓS 1 1
T

1 1 1 ΓL
T
aL

P



2.6 Unified Transmission Line Theory for Spectral Green’s Functions 17

�N
�0

Z0 ZN

VS

aN

bN

aF

+
aF

-

bF

-
bF

+

aS

+
aS

-

bS

+
bS

-

a1

b1

ZF

dF

AS-1,S

� �

�S

�F

dS

ZS

AS,S+1 AF-1,F AF,F+1

Fig. 2.3: Cascaded sections of transmission line

where

P =
1

−Γ0
T

A1A12 A2A23 . . . AS−AS+ . . . AF−AF+ . . . A(N−1)A(N−1) N AN
1

ΓN
(2.48)

aS 1 −ΓS = 1 −Γ0 A1A12 A2A23 . . . AS− (2.49)

1 ΓL
T
aL = AF+ . . . A(N−1)A(N−1) N AN

1

ΓN
(2.50)

An =
ejθn 0

0 e−jθn (2.51)

with

θn = kzndn dn is the thickness of the n
th layer

k2zn = k
2
n − k2ρ kn is the propagation constant of the n

th medium

k2ρ = k
2
x + k

2
y kρ, kx and ky are radial, x- and y-directed spectral-domain

variables, respectively

(2.52)

An (n+1) =
1

γn (n+1) + 1

1 γn (n+1)
γn (n+1) 1

(2.53)

γn (n+1) =
Zn+1 − Zn
Zn+1 − Zn (2.54)
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The transmission matrices A±S and A
±
F are defined as in (2.46) with θ replaced by θ+i =

kzi(di − ζi) and θ−i = kziζi. Here i denotes either S (stands for source) or F (stands

for field) points and ζi are the distances of source and field points from the immediately

left (lower) interface and di are the thicknesses of the layers in which the source and

field points are located. Moreover, Z0 and ZN are the wave impedances of the lower

and upper unbounded layers, respectively. Their corresponding reflection coefficients are

denoted by Γ0 and ΓN and are defined as in Fig. 2.3. As given in (2.46) and (2.53), the

evaluation of all submatrices An (n+1) and An is rather simple and straightforward. It

should also be noted that the denominator P in (2.42) is independent of the source and

field locations. This in turn means that the zeros of P , i.e. the surface wave singularities,

are not affected by the source and field locations. The independence of P on source and

field locations saves the computation time when evaluating the same Green’s function for

various source and field locations for given multilayer media. In addition, by isolating

the dependency of source and field locations (denoted by ζi) in only a few matrices,

the analytical differentiation of the above expressions with respective to ζi, an operation

which is often encountered when applying Green’s functions for field calculations, becomes

very convenient.

Following the definitions given in (2.47) - (2.54), a more general voltage transfer function

valid for multilayer media can be expressed as

T =
VL
VS
2

=
aS 1 −ΓS 1 ΓL

T
aL

P
(2.55)

2.6.1 Electric sources in multilayer media

An electric point source placed at the position vector rS and pointing in the direction û

is often denoted by

J = δ(r− rS) û (2.56)

where δ(r) is the Dirac delta function.

If this electric source radiates into an infinite homogenous space, characterized by the

permittivity εS and permeability µS, the corresponding vector potential AS is given by

[7]

AS (r, rS) =
µS
4π

exp(−jkS |r− rS|)
|r− rS| û (2.57)

where

k2s = ω2µSεS and

|x| denotes the magnitude of the vector x.
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In terms of plane-wave spectrum, (2.57) can also be expressed as [7]

AS (r, rS) = û
1

4π2

+∞

−∞

+∞

−∞
ÃS(zF , zS, kρ) exp(−jkρρ)d2kρ (2.58)

where

rS and r denote the position vectors of the source- and field locations, respectively

rS = xS x̂+ yS ŷ + zS ẑ

r = xF x̂+ yF ŷ + zF ẑ

ρ ρ̂ = (xF − xS) x̂+ (yF − yS) ŷ
kρ ρ̂ = kx x̂+ ky ŷ

d2kρ denotes the two-dimensional differential quantity in kρ and

ÃS(zF , zS , kρ) =
µS
2jkzS

exp(−jkzS |zF − zS|) (2.59)

Here kzS = k2S − k2ρ where the square root is evaluated such that Imag(kzS) ≤ 0

Separating (2.59) into the source spectral amplitude ÃS0 and the spectral transfer function

TS0 between the source and the observation point we can write

ÃS(zF , zS , kρ) = ÃS0TS0(zF , zS, kρ) (2.60)

where

ÃS0 =
µS
2jkzS

(2.61)

TS0(zF , zS, kρ) = exp(−jkzS |zF − zS|) (2.62)

In a multilayer medium the magnetic vector potentialA due to an electric current element,

that is of unit intensity and parallel to the dielectric interfaces, comprises two components.

For example, a x-directed current element parallel to xy plane (Fig. 2.8) contributes to

Axx and Azx components only. Meanwhile, an electric current element perpendicular

to the dielectric interfaces has one component, i.e. a z-directed current element in the

same medium contributes to Azz component only. In addition, in a source-free region,

the fields in a stratified medium can be conveniently decomposed into TE (Transverse

Electric) and TM (Transverse Magnetic) components. Their propagation in the spectral

domain is analogous with the wave propagation in a transmission line in the space domain.

Therefore when the plane wave spectrum representation is used for each component of

the potentials, their propagation in the spectral domain can be modelled by a cascade

of transmission lines. Thus, expressing the field generated in the source layer in terms

of a plane-wave spectrum and comparing their propagation in spectral domain with the

spatial wave propagation in a cascaded transmission line, one can determine the field

components at any location of interest. Here we are primarily concerned with the electric

current sources parallel to the dielectric interfaces, which is considered next.
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2.6.2 Horizontal electric dipole

Let us assume that current density of the horizontal source is given by (2.56) after re-

placing unit vector û by x̂. It is also assumed that the dielectric interfaces are parallel

to the xy plane. Then the expressions for vector potential components Ãxx and Ãzx and

scalar potential φ̃
q

x in spectral domain can be derived. As shown in [7], TE waves lead to

the following expression for Ãxx

Ãxx(zF , zS, kρ) = ÃS0TTE(zF , zS, kρ) (2.63)

where

TTE(zF , zS, kρ) =
Ẽx(zF )

Ẽx0
=
V (zF )

ZsIs/2
(2.64)

Here, Ẽx(zF ) and Ẽx0 denote the spectral amplitudes of the x directed electric field

intensity at the field point and at the source, respectively. V (zF ) is the voltage defined at

the field point of the corresponding transmission line model. Zs is the wave impedance

of the source layer and the current source Is represents the source in the corresponding

transmission line model.

Following the same approach which led to (2.55), but replacing the series-voltage source

Vs by parallel-current source Is and, the characteristic impedances Zn in (2.54) by their

TE equivalents given by

Zn =
ωµn
kzn

(2.65)

TTE(zF , zS, kρ) can be easily found. It will be in the form of

TTE(zF , zS, kρ) =
aS 1 ΓS 1 ΓL

T
aL

P
(2.66)

Since both TE and TM waves contribute to Ãzx it can be expressed as

Ãzx(zF , zS, kρ) = −kx
k2ρ
ÃS0

µF
µS
kzSTTM(zF , zS, kρ)− j ∂TTE(zF , zS , kρ)

∂ζF
(2.67)

Now, TTM(zF , zS, kρ) is given by (2.55) when the impedances Zn are replaced by :

Zn =
kzn

ωεn
(2.68)

In addition, the scalar potential φ̃
q

x can be written as

φ̃
q

x =
ÃS0

εFµSk
2
ρ

µSk
2
F

µF
TTE(zF , zS, kρ)− jkzS ∂TTM(zF , zS , kρ)

∂ζF
(2.69)
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Fig. 2.4: Magnitude, real and imaginary parts of the spectral scalar Green’s function of a thin

grounded dielectric layer

2.7 Characteristics of Spectral Green’s Functions for

a Stratified Medium

The properties of the spectral Green’s function for stratified media are dominated very

much by its singular points rather than zero points. Two types of singular points exist:

poles and branch points. The branch points are usually attributed to radiation into

unbounded layers whereas the poles are attributed to surface wave propagation. Because

of these singular points, one should be very cautious when dealing with spectral Green’s

functions.

In order to emphasize this point, the scalar Green’s function in spectral domain for a

grounded dielectric layer is shown in Fig. 2.4 - 2.7. The dielectric constant and the

thickness of the dielectric layer are chosen as 12.6 and 1 mm. The frequency is set to 10

GHz. The source is located at the dielectric to air interface. The fields are also calculated

at the source. Due to the branch point and the associated branch cut, the imaginary part

of the selected Green’s function shows a discontinuity, whereas the real part is continuous.

Figures 2.6 and 2.7 clearly exhibit the behavior of a branch point at kρ = k0 = 209.58.

This branch point is closely followed by a surface-wave pole as illustrated by Fig. 2.4 and

2.5. At this surface wave pole, the magnitude of the Green’s function approaches infinity.
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Fig. 2.7: Imaginary part of the spectral scalar Green’s function of a thin grounded dielectric layer

2.8 Numerical Evaluation of Spatial Green’s Functions

The transformation (2.13) converts spectral Green’s function into its spatial counterpart

in rectangular coordinate system. Following the approach presented in [10] this transfor-

mation can be written in cylindrical coordinate system

ψn(ρ) =
1

2
n

+∞

∞e−jπ
Ψn(kρ) H

(2)
n (kρρ) kρdkρ (2.70)

where

the integration limit ∞e−jπ denotes that the infinity is approached from the third

quadrant in the complex plane, below the branch cut and along the negative real axis

(SIP in Fig. 2.9),

H
(2)
n (x) is the Hankel function of the second kind and n’th order,

kρ is the propagation constant along the radial direction ρ̂ and

ψn(ρ) is defined exploiting the inherent periodicity present in ψ(ρ,φ) with respect to

φ (Fig. 2.8). It can be expressed as a Fourier series in φ domain,

ψ(ρ,φ) =
n

ψn(ρ,φ) =
n

ψn(ρ)e
jnφ (2.71)
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Fig. 2.8: A HED on a stratified medium

Ψn(kρ) denotes the spectral counterpart of ψn(ρ).

2.8.1 Sommerfeld integrals

A typical Sommerfeld integral (SI) is denoted by [11]

ψ0(ρ) =
1

2
SIP

Ψ0(kρ) H
(2)
0 (kρρ) kρdkρ (2.72)

where the path SIP (Sommerfeld Integration Path) is as shown in Fig. 2.9. The same

integral can be acquired by substituting n = 0 in (2.70). The resulting ψ0(ρ) component is

equivalent to ψ0(ρ,φ) in (2.71) and is obviously independent of φ. Such an independency

is typical for spectral vector and scalar Green’s functions of an infinitesimal HED placed

in a stratified medium [12]. Nevertheless, the resulting electric field components always

depend on φ.

The integral (2.72) can alternatively be expressed in terms of Bessel function of zeroth

order, J0 [10]

ψ0(ρ) =

SIP/2

Ψ0(kρ) J0(kρρ) kρdkρ (2.73)
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The path SIP/2 is shown in Fig. 2.10. This form is often preferred in evaluating spatial

Green’s functions numerically, due to its shorter range of integration.

2.8.2 Numerical evaluation of Sommerfeld integrals

Although the application of asymptotic techniques, such as the method of steepest descent

path (SDP), are widely used in literature in evaluating Sommerfeld type integral, it is the

direct numerical integration of such integrals that offers the best accuracy and insight.

However, the numerical evaluation of SI is inherently cumbersome due to the presence

of branch points, branch cuts and number of complex poles found in the vicinity of

the Sommerfeld integration path (SIP) illustrated in Fig. 2.9. The selection of a more

convenient path attracted the attention of many authors in the past [10] [3] [13]. The

trick is to traverse a path further away from the singular points (e.g. Fig. 2.11) such that

the resulting integrand along the newly selected path is well-behaved (Fig. 2.13). If this

path deforming process agrees with the Cauchy’s theory of contour integration [14], the

computed value is equal to the value along the original SIP. A typical behavior of Ψ0(kρ)

in (2.73) along SIP and modified SIP is shown in Fig. 2.13.

Im(k )�

�
Pole

�ranch point

Zero

��

SIP

Re(k )�

�ranch cuts

Fig. 2.9: Sommerfeld integration path

(SIP), branch cuts, branch points,

zeros and poles of a typical

spectral Green’s function of a

stratified medium
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�ranch cuts

Fig. 2.10: Modified Sommerfeld integration

path (denoted as SIP/2) applied

with Bessel function of zeroth or-

der

In addition to the ill-behavior manifested nearby the singular points, a typical spectral

Green’s function decays slowly with increasing kρ. Moreover, the resulting integrand is

highly oscillatory due to the presence of Bessel type functions. Hence, for large kρ the

integral can be considered as a summation of negative and positive contributions. All

these factors make the integral (2.73) either slowly convergent or, in some extreme cases,

divergent.

2.8.3 Methods for accelerating the numerical evaluations

Although the selection of a new convenient path eliminates the difficulties encountered

near the branch points and poles, it does not affect the convergent rate of the oscillatory

part. Therefore other techniques that accelerate the convergence of this part of the
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tegration path (SIP) in order

to mitigate the ill-behavior of
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Fig. 2.12: Modifying the Sommerfeld inte-

gration path (SIP) in order to

separate the contributions into

surface and space waves

integral have to be applied. An overview of different methods is given in [15], [16], [17],

and [18]. In our evaluation of spatial Green’s functions, a technique known as epsilon ( −)
algorithm is employed because it can be easily formulated and implemented in software.

Moreover, the resulting rate of convergence is adequate for our purpose. The −algorithm
was presented in [19] as an alternative way to evaluate the original Shank’s transformation

[20].

In order to evaluate ψ0(ρ) in (2.73), let us first separate the original integral into two;

ψ10(ρ) and ψ20(ρ), as shown in (2.74)-(2.76). The integral ψ
1
0(ρ) represents the part of

ψ0(ρ), on which the branch points and poles of Ψ0(kρ) have a dominant effect. On the

other hand, ψ20(ρ) corresponds to the part, which is highly oscillatory and slowly decaying.

ψ0(ρ) =

SIP/2

Ψ0(kρ) J0(kρρ) kρdkρ (2.74)

=
∞

0

Ψ0(kρ) J0(kρρ) kρdkρ

=
a

0

Ψ0(kρ) J0(kρρ) kρdkρ +
∞

a

Ψ0(kρ) J0(kρρ) kρdkρ (2.75)

= ψ10(ρ) + ψ20(ρ) (2.76)

The integration paths (and the parameter a) are selected following the same considerations

given in chapter 3. ψ10(ρ) can now be parameterized and evaluated using the efficient

numerical integration algorithms suggested in chapter 5.

However due to its oscillatory and slow-damping nature, the evaluation of ψ20(ρ) needs

a rather different approach. ψ20(ρ) is first expressed as a sum of many partial integrals

defined over each half cycle (period) of the integrand. The corresponding limits of inte-

gration are easily determined by the zeros of the Bessel function J0. These zeros are either
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Fig. 2.13: The value of a typical Green’s function along the original SIP and the suggested modified

SIP as given in Fig. 2.11

available in tabular form [21] or determined accurately using zero-finding algorithms. We

adapt a combination of both methods. The tabulated values are used whenever their ac-

curacy is adequate, which is the case for lower order zeros. When the accuracy is critical,

as required by higher order zeros, a numerical zero-finding algorithm [22] is employed.

Now, ψ20(ρ) can be expressed as

ψ20(ρ) =

∞

n=0

a+pn+1

a+pn

Ψ0(kρ) J0(kρρ) kρdkρ (2.77)

=

∞

n=0

In

where

pn denotes the n’th zero of J0(kρρ) and p0 is set to zero thereby including the

contributions over the region [a, p1] and

In represents the subintegrals resulted from integrating in between two adjoint zeros.

All the subintegrals In are now added together applying -algorithm [19]. Since the -

algorithm significantly improves the convergence of the summation given in (2.77), the

number of In terms to be calculated numerically are reduced significantly. This means

that the application of -algorithm to determine ψ20(ρ) reduces the computational time

dramatically and eases memory requirements.
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2.8.4 Surface and space wave components

When the spatial Green’s functions are found applying either (2.72) or (2.73), the total

field produced by a more general source can be calculated. Such fields generally comprise

two distinct wave components: a space wave component and a surface wave component.

The space wave component propagates away from the source in all directions contribut-

ing to the far-field radiation whereas the surface wave component propagates along the

dielectric-to-dielectric interface.

In order to demonstrate the effect of these two wave components on the spatial Green’s

function, we shall calculate, for example, the spatial scalar Green’s functions of a dielectric

layer over an ideal ground plane. We assumed that a HED is located on the dielectric-

to-air interface. The relative dielectric coefficient εr of the dielectric material is 12.6

and the operational frequency is 10 GHz. The spatial scalar Green’s function at the

location of the source is evaluated. Figure 2.14 shows the magnitude of this spatial

scalar Green’s function as a function of k0ρ, when the dielectric layer is 1mm-thick. The

same quantity for a 3mm-thick dielectric layer is given in Fig. 2.15. Comparing these two

figures, it is obvious that spatial scalar Green’s function of the 1mm-thick substrate decays

rapidly away from the source whereas the spatial scalar Green’s function of the 3mm-thick

substrate shows an oscillatory behavior away from the source. Such an oscillatory behavior

is very typical for spatial Green’s functions with a dominant surface wave component. For

the sake of completeness we illustrate the corresponding phase values for both instances

in Fig. 2.16 and 2.17 as well.

Note that if the lateral distance between two sources situated side by side in a stratified

medium is large enough, the mutual coupling between them is dominated by the contribu-

tion from surface waves whereas the space wave contributes significantly less. On the other

hand, if they are aligned on a vertical plane and the vertical separation between them are

large enough, the space wave would contribute more to the mutual coupling because the

surface waves decay exponentially away from the dielectric-to-dielectric interfaces [23].

By deforming the SIP of the Sommerfeld integral in the particular way shown in Fig.

2.12, the contributions from space waves and surface waves can be determined separately.

According to the Cauchy’s theory of contour integration, this deformed path captures

some singular points. It is shown in [23] that these singular points directly contribute to

the surface waves while the rest of the integration path contributes to the space wave.

In particular, the integration path around the branch cut contributes significantly to the

radiated far fields.
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Fig. 2.14: Magnitude of the space domain scalar Green’s function of a thin (1 mm thick) grounded

dielectric layer
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Fig. 2.15: Magnitude of the space domain scalar Green’s function of a thick (3 mm thick) grounded
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Fig. 2.16: Phase angle of the space domain scalar Green’s function of a thin (1 mm thick) grounded

dielectric layer
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Fig. 2.17: Phase angle of the space domain scalar Green’s function of a thick (3 mm thick) grounded

dielectric layer
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Chapter 3

Discrete Complex Image

Method

3.1 Introduction

The use of various image principles in electromagnetic field calculations has been popular

since the introduction of the famous Maxwell’s equations. These methods do not only

save much of the calculation effort but also provide an intuitive explanation of the results.

Until recently, the images have been real and are located in the real space [24][25][26].

Following the introduction of images in complex space to represent reflected fields of a

vertical magnetic dipole (VMD) in the presence of a lossy half space, I. S. Lindell extended

the image theories into the complex space [27]. In [27], the reflected fields from a VMD

over a lossy dielectric were represented by a continuous complex line source located in

complex space. Although it was analytically proved that this image led to an accurate

result, their continuous nature still made them difficult to apply in numerical calculations.

The discretization of this continuous complex image was later accomplished by D. G.

Fang et al. [28]. They introduced an alternative method for approximating the space

domain Green’s functions (GFs) of a thick dielectric substrate. It is well known that even

though the spectral domain GFs of a stratified media can be found in closed form, there

is no general way to find a closed form expression for its space domain counterpart. The

only way to find a value of a space domain Green’s function is to perform the (Inverse)

Hankel transformation numerically, in other words, to evaluate Sommerfeld integral (SI)

numerically. The evaluation of Sommerfeld integrals in this context is time consuming

and numerically unstable due to the presence of branch points, branch cuts and poles

in spectral GFs and the slowly-decaying-oscillatory nature of the integrand (chapter 2).

However, the innovative method in [28], which was later known as the discrete complex

image method (DCIM) led to well-approximated closed form expressions for space domain

GFs.

The method basically expresses the spectral domain GF as a sum of complex exponen-

tial terms and afterwards uses the Sommerfeld identity for transforming them into the
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corresponding space domain GF. The originally proposed method is a three-step-process,

which is a combination of both analytical and numerical methods. It uses Prony’s method

for extracting exponential terms in spectral GFs. Later, M. I. Aksun et al. made the

DCIM more robust by introducing it as a pure numerical method [29]. The powerful

generalized pencil-of-function (GPOF) method, which is based on singular value decom-

position (SVD), was applied for extracting exponential terms. The method has shown to

perform very well in near- and intermediate regions where the existence of surface waves

hardly affects the results.

In this chapter, we introduce a practical implementation of the DCIM. We begin with

the version published [29]. The problems encountered during the implementation and

the solutions applied, are discussed. In order to reduce the numerical instabilities and

to achieve the best performance, we suggest several minor modifications of the GPOF

algorithm. We shall also discuss the limitations of the present version of DCIM and the

ways to alleviate them.

3.2 Discrete Complex Image Method

3.2.1 Original approach

Although it was Fang et al. who introduced the discrete complex images for stratified

media [28], it was indeed Y. L. Chow et al. who presented them as a methodical way

of approximating spatial (space domain) Green’s functions with sufficient accuracy [30].

Therefore, we consider the method introduced by Y. L. Chow et al. as the original method

which laid the foundation for the robust method introduced later by A. I. Aksun.

The original method represents the spatial Green’s function in terms of three sets of

complex images [30];

• a set of images that dominate in the near-field region and correspond to quasi-static
waves

• a set of images that dominate in the far-field region and represent the contribution
from surface waves

• a set of images that dominate in the intermediate region and represent the contri-
bution from leaky waves

It is obvious that each component is dominant in rather mutually exclusive areas. They

together lead to an adequate representation of spatial GF over the entire domain of the

radial distance. In a nutshell, this method can be illustrated by the block diagram in Fig.

3.1.

3.2.2 Robust approach

In order to eliminate shortcomings such as less robustness and difficulty in automating

etc. found in the original approach, a robust DCIM was introduced [29]. We shall now
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Sommerfeld Integrals evaluated along a deformed
and truncatied integration path

Extraction of quasi-dynamic images from the integrals

Extraction of surface waves from the residue
remaining after quasi-dynamic image extraction

Spectral Green’s function (GF) in closed form

Spatial GF defined as a Sommerfeld integral

Extraction of complex images from the residue after
surface waves and quasi-dynamic image extraction

Final Solution for corresponding spatial Green’s function

Application of Sommerfeld identity on extracted images

Fig. 3.1: The block diagram showing the major steps in original [30] discrete complex image method
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present this method, and all future occurrences of DCIM will refer to this method. The

basic distinction of this version of DCIM is that it does not explicitly handle either the

quasi-static images or the surface wave poles. Instead, they are partially taken care of by

the same uniform method of extracting complex images. Nevertheless, the extraction of

images are still divided into different phases. Although the surface waves can not be fully

represented by complex images due to their 1/
√
r radial decay versus the 1/r radial decay

of complex images, this method still gives satisfactory results in near and moderately far

regions.

We shall divide the implementation of this method into two major steps.

Step one In this step the slowly varying part of the spectral Green’s function is ap-

proximated by a sum of complex images. It is comparable with the extraction of

quasi-static images mentioned in the original method. Therefore these images are

dominant in the near field region of the corresponding spatial Green’s function.

Step two Extraction of complex images in the second steps is carried out to approximate

the residue of the spectral Green’s function, remained after the extraction of complex

images in step one. Thus, the rapidly varying components of the spectral Green’s

function are represented by the images found in step two. Their contribution to the

spatial Green’s function is especially significant in the intermediate- and moderately-

far-field regions.

In the following, we shall go into details of the algorithm.

Sommerfeld integral with a deformed integration path

In contrast to the single deformed integration path used in the original method, the

integration path now comprises two distinct contours. Continuing the discussion on Som-

merfeld integral started in chapter 2 these contours in complex kzs, C
1
kzs

and C2kzs , are

chosen as in Fig. 3.2. The complex domain kzs is defined as kzs = k2s − k2ρ where
the square root is evaluated such that Imag(kzs) ≤ 0. ks denotes the propagation con-
stant in the source layer. The same figure denotes the original Sommerfeld integral path

in complex kzs as C
SIP . Meanwhile Fig. 3.3 maps the contours C1kzs and C

2
kzs

to the

contours C1kρ and C
2
kρ
in complex kρ plane, respectively. Comparing this figure with the

typical behavior of the spectral GF illustrated in Fig. 2.4 and Fig. 2.13, it is obvious that

C1kρ and C
2
kρ
traverse the static and dynamic parts of the spectral GF, respectively. The

parametric representations of contours C1kzs and C
2
kzs

is straight forward and given as

C1kzs : kzi = −jks (T2 + t) 0 ≤ t ≤ T1
C2kzs : kzi = ks −jt+ 1− t

T2
0 ≤ t ≤ T2 (3.1)

Here, ks is the propagation constant in the source layer and t defines the parametric

domain. The value of T1 is chosen to ensure the behavior of spectral GF for large kρ
is captured whereas the parameter T2 decides how accurate the path C

2
kρ
captures the

dynamic behavior of the spectral GF. Therefore, T2 has to be chosen such that it is
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small enough to capture the significant characteristics of the GF accurately. At the same

time, it should be large enough to acquire numerically well-behaved spectral GF over

C2kρ . So the selection of the parameter T2 is based on the judicious compromise. It can

be shown that when T2 is selected as the square root of the maximum dielectric constant

of the stratified media, it will lead to satisfactory results [29]. This selection is quite

logical because it is well known that all the poles of a spectral GF of a lossless stratified

structure are confined to the region of [k0 ,
√
εmaxk0] in kρ domain; where εmax is the

maximum dielectric constant of the media and k0 is the propagation constant in free

space [5]. Therefore by selecting T2 as the square root of εmax, all the potential spikes

along the integration path due to the nearby poles are satisfactorily smoothed out. This

selection also sets the value of kmaxρ , specified in Fig. 3.3, to ks
√
1 + εmax. The other

contour segment C1kρ is a part of the original Sommerfeld integration path (Fig. 3.2).

Here the parameter T1 has to be selected in such way that the spectral GF should be well

stabilized at the end of the path C1kρ .

Let us assume that the original spectral GF is denoted by G̃(kzs). In order to facilitate

the application of Sommerfeld identity later in the procedure, we both divide and multiply

G̃(kzs) with 2jkzs, then define the normalized spectral GF, G̃n(kzs) as follows [31].

G̃(kzs) =
2jkzs

2jkzs
G̃(kzs) =

1

2jkzs
(2jkzsG̃(kzs))

=
1

2jkzs
G̃n(kzs) (3.2)

where k2zs = k
2
s − k2ρ.

Extraction of first group of complex images: step one

In order to extract the first group of complex images which dominate in the near field

region, we have to approximate G̃n(kzs) with some finite number of real or complex

exponential terms. Their amplitudes can in general be complex. Both the Prony’s method

(PM) and the generalized pencil-of-function (GPOF) method are widely applied in the

literature to accomplish this task. They both equally require the spectral data to be

discrete. Therefore we have to convert the continuous and generally complex spectral

GF values into a discrete complex data sequence without any significant loss of accuracy.

Typically the spectral GF over the path C1kρ is not rapidly varying. For example a

typical variation of spectral GF over C1kρcan be shown as in Fig. 3.6. Therefore, it is not

necessary to have samples which are tightly close to each other in order to represent the

full dynamics of the spectral GF over this region. It is also understood that the number

of samples depends on the value selected for the parameter T1 defining the path segment

C1kρ . The smaller T1 is, the fewer the required number of samples are.

Following the discretization process, either the PM or the GPOF can be used to extract the

complex exponential functions. We shall later in this chapter discuss these two methods.

The extraction of exponential terms in t-domain leads to the following approximation for
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the normalized spectral GF over path C1kρ ,

G̃1napprox(kρ) =

N1

l=1

atl exp(b
t
lt) (3.3)

Here the superscript 1 of G̃1napprox(kρ) denotes that the approximation is only valid in the

region defined by parameter t ∈ [0, T1]. The superscript t over a and b denotes that a and
b are constants defined in t-domain. atl and b

t
l are easily extracted using either Prony’s

method or GPOF method. N1 is the number of images found. These images are often

referred to as quasi-static images.

When these exponential terms are transformed back to kzs-domain, following a similar

notation as above [29],

G̃1napprox(kzs) =

N1

l=1

akzsl exp(bkzsl kzs) (3.4)

where

bkzsl = − btl
jks

(3.5)

akzsl = atl exp(jksb
kzs
l T2) (3.6)

Extraction of second group of complex images: step two

Since the first approximation is only based on the spectral GF evaluated over the contour

C1kρ , it may not in general give the correct values when extrapolated into the region

defined by the contour C2kρ . In order to approximate the correct spectral GF over C
2
kρ
,

we should include more complex exponential terms, which approximate the residue over

C2kρ . The residue over C
2
kρ
is the difference between the spectral GF over C2kρ and the

approximated spectral GF over C1kρ extended to C
2
kρ
. Hence, the residue G̃rn(kρ) can be

defined as

G̃rn(kρ) = G̃n(kρ)− G̃1
extended

napprox
(kρ) (3.7)

where G̃1
extended

napprox
(kρ) represents the extrapolated G̃

1
napprox

(kρ) into the region C
2
kρ
.

Now the residue G̃rn(kρ) can also be expressed in complex exponential terms as we did

in step one. Here, in order to take care of rapid variations of spectral GF over C2kρ , due

to its proximity to branch points and complex poles, the sampling frequency has to be

chosen considerably higher than that of step one. In other words, samples have to be

close enough to represent the complete dynamic of the spectral GF over C2kρ . Upon the

extraction of complex exponential terms, we can approximate the residue G̃rn(kρ) in the

t-domain as

G̃rnapprox(kρ) =

N2

l=1

ctl exp(d
t
lt) (3.8)
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Finally the residue in the kzs-domain can be expressed as [32]

G̃rnapprox(kzs) =

N2

l=1

ckzsl exp(dkzsl kzs) (3.9)

where

dkzsl = − dtlT2

ks(1 + jT2)
(3.10)

ckzsl = ctl exp(−ksdkzsl ) (3.11)

Final Solution

Now, if we collect all the complex exponentials terms found in both steps, it will be a

good approximation to G̃n(kzs) over both C
1
kρ
and C2kρ . Hence, an alternative expression

for G̃n(kzs) would be

G̃n(kzs) G̃rnapprox(kzs) + G̃
1
napprox

(kzs)

=

N2

l=1

ckzsl exp(dkzsl kzs) +

N1

l=1

akzsl exp(bkzsl kzs) (3.12)

In addition, the relationship between the spatial GF and the spectral GF in the kρ-domain

can be written as

G(z, ρ) =
1

2 SIP

H2
0 (kρρ)G̃(kρ)kρdkρ (3.13)

where

G̃(kρ) is the spectral Green’s function,

G(z, ρ) is the corresponding spatial Green’s function,

H2
0 (kρρ) is the Hankel function of second kind and zeroth order and

SIP
denotes that the integration is performed along the Sommerfeld integration

path (SIP).

Finally, substituting (3.12) for G̃n(kρ) in (3.2) and noting the relations k
2
ρ = k

2
s − k2zs, an

alternative expression for G̃(kρ) is found.

G̃(kρ) =
1

2jkzs

N2

l=1

ckzsl exp(dkzsl kzs) +

N1

l=1

akzsl exp(bkzsl kzs) (3.14)

Then setting this expression into (3.13) leads to

G(z, ρ) =
1

2 SIP

H2
0 (kρρ)

1

2jkzs

N2

l=1

ckzsl exp(dkzsl kzs) +

N1

l=1

akzsl exp(bkzsl kzs) kρdkρ

(3.15)
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Interchanging the integration and summation operators,

G(z,ρ) = ckzsl

N2

l=1

1

2 SIP

H2
0 (kρρ)

exp(dkzsl kzs)

2jkzs
kρdkρ (3.16)

+akzsl

N1

l=1

1

2 SIP

H2
0 (kρρ)

exp(bkzsl kzs)

2jkzs
kρdkρ

Now we compare each term at the right hand side of (3.16) with the Sommerfeld identity

(SI) given as [11]

exp(−jkr)
r

=
SIP

H2
0 (kρρ)

exp(−jkz |z|)
2jkz

kρdkρ (3.17)

where

k is the propagation constant in the media,

kz is the z-directed component of k,

kρ is the radial component of k,

r = ρ2 + z2 where ρ and z are spatial cylindrical coordinates,

H2
0 (kρρ) is the zeroth-order Hankel function of the second kind and

SIP is the Sommerfeld integration path defined in chapter 2.

Applying the Sommerfeld identity term wise, the final expression for the spatial GF can

be written in the following closed form:

G(z,ρ) =

N2

l=1

ckzsl

exp(−jksrdl )
2rdl

+

N1

l=1

akzsl

exp(−jksrbl )
2rbl

(3.18)

where

ks is the propagation constant in the source medium,

rdl = ρ2 + (jdkzsl )2 and

rbl = ρ2 + (jbkzsl )2.

3.2.3 Methods for extracting exponential functions

3.2.4 Prony’s method

Prony’s method is a technique which models a set of discrete data as a linear combination

of exponential functions. In other words it tries to fit a deterministic exponential model

to the given data.
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If we assume that the given discrete data x(n) can be approximated by a sum of complex

exponentials x̂(n)

x̂(n) =
p

k=1

hkz
n−1
k for n = 1, 2, .., N (3.19)

where

hk = Ak exp(jθk),

zk = exp[(αk + j2πfk)T ],

Ak is the amplitude of the complex exponential,

θk is the initial phase,

fk is the frequency of the exponential function,

αk is damping factor,

T is the sampling interval and

p is the number of exponential functions.

The error due to the approximation is

(n) = |x(n)− x̂(n)| = x(n)−
p

k=1

hkz
n−1
k (3.20)

The corresponding mean square error is then expressed as

ρ =

N

n=1

| (n)|2 (3.21)

The straightforward method to find the least square estimator (LSE) for x̂ is to minimize

ρ with respect to all the parameters; Ak, θk, αk and fk. This is a difficult nonlinear

problem even when the value of p is known. Gaspard Riche, Baron de Prony introduced

a method to eliminate this multidimensional nonlinear minimization by including the

nonlinearity of the exponential model in a polynomial factoring [33]. For this purpose,

reasonably fast algorithms are available. The Prony’s method was first introduced to fit

a given data sequence exactly. It implies that the number of data samples is equal to the

number of unknown parameters. This constraint was later removed. In the sequel, we

shall briefly present the original Prony’s approach and the main features of its successors.

Original Prony’s Method

Since 2p complex samples x(1),x(2), ..., x(2p) are required to fit the 2p complex parameters

of the exponential model exactly, we write (3.19) as

x(n) =
p

k=1

hkz
n−1
k for n = 1, 2, 3, ..., p (3.22)
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Here, x̂(n) has already been replaced by x(n) because exactly 2p complex samples of x(n)

are used to fit an exact exponential model to the 2p complex parameters of hk and zk.

The equation (3.22) can be expressed in matrix form.

ZH = X (3.23)

where

Z =

⎡⎢⎢⎢⎢⎣
z01 z02 · · · z0p
z11 z12 · · · z1p
...

...
...

z
p−1
1 z

p−1
2

... zp−1p

⎤⎥⎥⎥⎥⎦ (3.24)

H =

⎡⎢⎢⎢⎣
h1
h2
...

hp

⎤⎥⎥⎥⎦ (3.25)

X =

⎡⎢⎢⎢⎣
x(1)

x(2)
...

x(p)

⎤⎥⎥⎥⎦ (3.26)

The matrix Z has a Vandermonde structure [34]. Prony suggested an ingenious method

to find the matrix Z separately. After Z is calculated, the resulting set of linear equations

are solved for the unknown vector H.

The key to the separation is to recognize that (3.22) is the solution to some homogeneous

linear constant-coefficient difference equation. In order to find this difference equation, we

proceed as follows. Let us define the polynomial φ(z) having roots zk for k = 1, 2, 3, ..., p.

φ(z) =

p

k=1

(z − zk) (3.27)

Expanding (3.27) into a power series

φ(z) =

p

m=0

a(m)zp−m (3.28)

where a(m) are in general complex constants and a(0) is normalized to one, i.e. a(0) = 1.

After some elementary operations it can be shown [35] that

p

m=0

a(m)x(n−m) =
p

i=1

hiz
n−p−1
i

p

m=0

a(m)z
p−m
i = 0 (3.29)
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Now it is obvious that (3.29) is the linear difference equation whose homogeneous solution

is given by (3.27). Moreover the polynomial (3.28) is the characteristic equation associated

with this linear difference equation [35].

Evaluating (3.29) for n = (p+ 1), . . . , 2p and expressing the results in matrix form⎡⎢⎢⎢⎢⎣
x(p) x(p− 1) · · · x(1)

x(p+ 1) x(p) · · · x(2)
...

...
...

x(2p− 1) x(2p− 2) ... x(p)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a(1)

a(2)
...

a(p)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
x(p+ 1)

x(p+ 2)
...

x(2p)

⎤⎥⎥⎥⎦ (3.30)

Using the above formulations, we can now summarize Prony’s original method as follows:

Step one Polynomial coefficients a(m) are found solving (3.30).

Step two Roots zk of the polynomial (3.28) are found.

Step three These roots are used to complete the matrix Z in (3.23) and then vector H

is found solving (3.23).

We have now presented the basic Prony’s method. It was later modified to include more

data samples. This corresponds to the overdetermined case and is known as the least

square Prony’s method (LSPM). In addition to LSPM, other improved versions like total

least square Prony’s method and SVD (Singular Value Decomposition) Prony’s method

[36] are commonly used in signal processing applications.

3.2.5 Generalized pencil-of-functions method

The GPOF method is relatively new even if its roots go back to the pencil-of-functions

(POF) approach [37], which is a remote successor of Prony’s method. The GPOF is

more computationally efficient and is presented as an one-step-procedure in extracting

the complex exponentials as opposed to the POF method, which is a two-step procedure

[38].

Assume that a discrete data sequence x(n) is expressed as

x(n) =
M

k=1

bk exp(skδtn) for n = 0, 1, . . . , N − 1 (3.31)

where

M is the number of exponential function used to approximate data samples x(n),

bk are the complex amplitudes,

sk are the complex poles and

δt is the sampling interval.
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Introducing zk = exp(skδt), (3.31) can be written

x(n) =

M

k=1

bk z
n
k (3.32)

We also introduce the following set of data vectors

yi = [x(i), x(i+ 1), . . . , x(i+N − L− 1)]T for i = 0, 1, ...., L (3.33)

Here the superscript T denotes the transpose of a matrix or a vector and L is chosen to

be M ≤ L ≤ N −M . In terms of the above defined vectors yi, the following submatrices
are built:

Y1 = [y0,y1, . . . ,yL−1]
Y2 = [y1,y2, . . . ,yL]

(3.34)

They can alternatively be expressed in the matrix form

Y1 = Z1BZ2
Y2 = Z1BZ0Z2

(3.35)

where

Z1 =

⎡⎢⎢⎢⎢⎣
1 1 · · · 1

z1 z2 · · · zM
...

...
...

zN−L−11 zN−L−12

... zN−L−1M

⎤⎥⎥⎥⎥⎦ (3.36)

Z2 =

⎡⎢⎢⎢⎢⎣
1 z1 · · · zL−11

1 z2 · · · zL−12
...

...
...

1 zM
... zL−1M

⎤⎥⎥⎥⎥⎦ (3.37)

Z0 =

⎡⎢⎢⎢⎢⎣
z1 0 · · · 0

0 z2 · · · 0
...

...
...

0 0
... zM

⎤⎥⎥⎥⎥⎦ = diag[z1, z2, . . . , zM ] (3.38)

B =

⎡⎢⎢⎢⎢⎣
b1 0 · · · 0

0 b2 · · · 0
...

...
...

0 0
... bM

⎤⎥⎥⎥⎥⎦ = diag[b1, b2, . . . , bM ] (3.39)

Now consider the matrix pencil Y2 − zY1 expressed as

Y2 − zY1 = [Z1][B][Z0 − zI][Z2] (3.40)
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For an arbitrary z, the rank of Y2 − zY1 will be M , i.e. the number of exponential

functions, provided thatM ≤ L ≤ N−M . However, if z = zk, for k = 1, 2, ...,M the k th

row of [Z0−zI] is zero and the rank of this matrix isM−1. Namely, ifM ≤ L ≤ N−M ,
z = zk is a rank-reducing number of Y2 − zY1. Hence, the parameters zk may be seen
as the generalized eigenvalues of the matrix pair Y2 and Y1. Equivalently the problem of

solving for zk can be cast as an ordinary eigenvalue problem

Y +1 Y2 − zI = 0 (3.41)

where Y +1 is the Moore-Penrose pseudoinverse of Y1 and is defined as [36]

Y +1 = (Y H1 Y1)
−1Y H1 (3.42)

Here, the superscripts −1, + and H denote the standard matrix inverse, pseudoinverse

and complex conjugate (Hermitian) transpose, respectively. We have also assumed that

(Y H1 Y1)
−1 exists.

In the case of noiseless data samples x(n), the rank of matrix Y1 can with no loss of

generality be assumed to be M. Using the singular value decomposition (SVD) of Y1

Y1 = UDV
H (3.43)

where

U = [u1, , uM ] is an unitary matrix whose columns are eigenvectors of Y1Y
H
1 ,

D = [σ1, ,σM ] is a diagonal matrix whose diagonal elements are singular values (i.e.

the square roots of the nonzero eigenvalues) of both Y1Y
H
1 and Y H1 Y1 and

V = [v1, , vM ] is an unitary matrix whose columns are eigenvectors of Y
H
1 Y1.

Then, the pseudoinverse of Y1 defined in (3.42) can alternatively be expressed as

Y +1 = V D−1UH (3.44)

Although it is correct to assume that the number of non-zero singular values of Y1 is

equal to M in the case of noiseless data samples, for a general data set the number of

non-zero singular values is in fact equal to the minimum of the dimensions of Y1, i.e.

the minimum of N − L and L. Let us denote this value by P . Then the corresponding
diagonal matrix D would be P by P in dimension. When the samples are noiseless, M

diagonal elements of D will be non-zero and the rest of P −M elements will be zero.

However, in the case of noisy data, either due to inherent inaccuracies in the given data

values or the round-off errors generated during digitization procedure, all the P singular

values may be non-zero. Nevertheless, out of these P singular values only M elements

will be significant. As an attempt to separate the data from the noise, we shall only use

those significant singular values corresponding to noiseless data. Then Y +1 given in (3.44)

can in practice be considered as the truncated pseudoinverse defined based on the most

significant singular values and corresponding singular vectors in V and U respectively.

Then following the relationship between the eigenvectors and eigenvalues, we can write

Y +1 Y2ρk = zkρk (3.45)
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where

zk is the eigenvalues of Y
+
1 Y2 and

ρk is the corresponding eigenvectors Y
+
1 Y2.

The significant eigenvalues zk for k = 1, 2, ...,M can be acquired with the help of a

well-known algorithm like QZ algorithm [39]. Once zk are known, their corresponding

amplitudes bk in (3.31) are found by solving (3.46) in the least square sense for bk.

ZB0 = X0 (3.46)

where

Z =

⎡⎢⎢⎢⎢⎣
1 1 · · · 1

z1 z2 · · · zM
...

...
...

zN−11 zN−12

... zN−1M

⎤⎥⎥⎥⎥⎦ (3.47)

B0 =

⎡⎢⎢⎢⎣
b1
b2
...

bM

⎤⎥⎥⎥⎦ (3.48)

X0 =

⎡⎢⎢⎢⎣
x(0)

x(1)
...

x(N − 1)

⎤⎥⎥⎥⎦ (3.49)

One can now express the least square solution of (3.46) in terms of the pseudoinverse of

matrix Z, Z+.

B0 = Z
+X0 = (Z

HZ)−1ZHX0 (3.50)

This completes the introduction of the GPOF method for extracting complex exponential

terms from a given discrete data sequence. One should notice that this method resem-

bles the other eigenvalue based methods like the ESPRIT algorithm popular in signal

processing applications [36].

3.2.6 Prony’s method vs GPOF method

The major drawback of the original PM is its sensitivity to additive noise. The presence of

additive noise degrades the performance of the original PM significantly. Even though this

weakness is somewhat improved in the descenders of the original PM, their performance

is still poorer than the alternative methods like GPOF.

In addition, the original PM can not take care of the dynamic nature of GFs due to the

limited number of data samples allowed. However, the least square PM is able to supply

the required dynamic range using all the data samples available. One other limitation of
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PM is that it assumes that the number of exponential functions are known in advance.

This is not realistic in practice. Moreover, it is difficult to introduce some systematic

procedure into PM such that the number of exponential functions can be selected logically,

especially in the presence of noise [40].

The GPOF method is less restrictive than some versions of PM because it does not

require that all system poles are either stable or nonstable. Moreover, the GPOF is

computationally more efficient because it does not solve an L th degree polynomial [38].

After all, the most distinguished feature of the GPOF method is that it introduces a

methodical way of combating noise.

3.3 On the Implementation of DCIM

We have implemented the robust version of DCIM for transforming the spectral GF

into the spatial GF. We have followed the above mentioned approach with some self-

explanatory modifications. These modifications are necessary to eliminate the numerical

instabilities and to secure an efficient implementation.

Although the number of exponential functions is determined on the basis of the most

significant singular values of the data matrices as explained in section 3.2.5, in an ap-

proximating procedure filled with small numerical inaccuracies it is difficult to pick the

significant singular values in a decisive manner due to small variations among the sin-

gular values. Therefore, we select the largest singular values such that the relative error

of the approximated spectral GF, compared with the original spectral GF, is less than a

pre-defined threshold. This method improves the stability of algorithms by avoiding the

insignificant singular values.

3.4 Exact vs Approximated Spatial Green’s Functions

We shall now compare the spatial GF obtained by DCIM and the exact spatial GF. The

exact spatial GF is calculated following the methods presented in chapter 2. The scalar

Green’s function is calculated for a dielectric layer over an ideal ground plane (Fig. 4.1).

The relative dielectric coefficient εr and the thickness of the dielectric material are 12.6

and 1 mm, respectively. The operating frequency is fixed at 10 GHz. Both the source

point and the field point are assumed to be on the top surface of the dielectric layer.

The corresponding spectral GF, when evaluated along the integration path defined by

(3.1), is shown in Fig. 3.4. Figures 3.5 and 3.6 illustrate the dynamic part and static

part respectively. Following the quasi-static image extraction performed in step one, Fig.

3.7 compares the static part with the quasi-static image approximation. They are almost

identical. Moreover, the corresponding image approximation performed on the residue

remained after quasi-static image extraction, agrees well with the actual residue (Fig.

3.8).

Finally, Fig. 3.9 and 3.10 compare the exact spatial scalar Green’s function with the

respective quantities obtained by DCIM. The differences are virtually unnoticed. Other
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Fig. 3.4: Spectral Green’s function including both static part (over C1kρ) and dynamic part (over

C2kρ )

structures are also examined to confirm the accuracy of DCIM in approximating GFs.

In general a very good agreement is observed. Therefore we can safely replace the exact

spatial GF by the current approximated spatial GF without compromising the accuracy.

3.5 Comments on Numerical Stability and Conver-

gence

If the guidelines mentioned above are followed the method can be implemented in soft-

ware with good numerical stability and convergence. Therefore DCIM gives the spatial

GF which is in good agreement with the corresponding so-called exact GF obtained by

means of numerical integrations and other convergence-accelerated methods. It is also no-

ticed that this agreement is restricted mainly to the near- and intermediate regions. The

far-field results may be somewhat unstable, especially when the far-fields are dominated

by the surface waves. The deviations of approximated spatial far-field are prominent when

the source is situated in a bounded layer and the observation point is in an unbounded

layer. In the original version of the robust DCIM [29], stratified media are handled by ap-

proximating the spectral GFs with exponential terms, which are functions of the electrical

parameters of the source layer. In [31], it is shown that a better convergence is obtained

if this approximation is done in terms of unbounded media parameters. Doing so, one

can avoid the introduction of new branch cuts into the existing spectral GF. Otherwise,

the introduction of new branch cuts may complicate the extraction of exponential terms

in the subsequent stages.
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Fig. 3.5: Spectral Green’s function closer to branch point and surface wave pole, dynamic part (over

C2kρ )
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Fig. 3.6: Spectral Green’s function away from branch cut and surface wave pole, static part (over

C1kρ )
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3.6 Advantages and Limitations of Robust-DCIM

The present version of DCIM eliminates the cumbersome trade-off between the parame-

ters and the sampling frequency in the original DCIM. Instead, two different sampling

frequencies that match the dynamic behavior of the spectral GFs are now selected. Nev-

ertheless, the number of parameters to be chosen have increased compared to the basic

approach. But they are to be determined once, based on the geometries and the electrical

constants. The same parameters are then applied to find the different components of the

dyadic GF.
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Chapter 4

Method of Moments

4.1 Introduction

Due to the revolutionary advances in digital computers, more and more emphasis is

given to accurate numerical solutions of electromagnetic problems. Thereby, engineers

are able to avoid rather mathematically complex analytical approaches. Even though the

numerical approach does not in general give the exact solution, extremely fast and high

capacity computers have been able to solve the corresponding numerical formulation with

such an accuracy that the inherent approximate nature of the numerical solutions has

been faded away. In some context, these solutions have already been referred to as the

exact solution due to the fact that the analytical, in other word the truly exact solution

either does not exist in closed form or is too tedious to be evaluated.

Therefore the need arises to reformulate the functional equations, which naturally result

from integral equations, into a numerically convenient form. The technique called method

of moments (MoM) has been effective in this process [41]. The application of MoM

to functional equations results in a matrix equation, which can be solved by applying

known methods of matrix inversion. In this chapter, we shall present MoM for solving

electromagnetic problems encountered in planar stratified media.

4.2 General Formulation

Let us assume the relationship

Ly = f (4.1)

where

L is the known linear operator,
f is the known excitation function and

y is the unknown response function.
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Then, the method of moments (MoM) would be a viable, or probably the most numerically

efficient, way of determining y. In electromagnetic propagation, the linear operator L
often represents an integrodifferential operator. MoM begins with expanding the function

y as a linear combination of N terms yn.

y =

N

n=1

anyn (4.2)

where

an are unknown constants to be determined and

yn are user-selected functions, which are often referred to as basis or expansion func-

tions. Their domains are the same as that of y.

For a finite N and a general y the equality given in (4.2) is not always true, and in

fact it can only be considered as an approximation. However for large N , (4.2) can be

considered as an equality. Now, substituting (4.2) into (4.1) and exploiting the linearity

of the operator L, one obtains
N

n=1

anLyn = f (4.3)

It is now obvious that the selection of yn should be done in such a way that each Lyn
term can be evaluated conveniently, preferably in closed form. Since (4.3) represents a

relationship consisting of N unknowns, solving it requires N linearly independent equa-

tions. This can be accomplished by evaluating and weighting (4.3) at N distinct points or

regions. Such an operation implicitly imposes the given boundary condition as a weighted

average. To perform this operation easily, an inner product operator w, g between two

arbitrary functions w and g is defined. By definition it satisfies the following axioms.

w, g = g,w
∗

w1 +w2, g = w1, g + w2, g

aw, g = a w, g

g, g > 0 if g = 0

g, g = 0 if g = 0

(4.4)

Here a is a scalar and the superscript ∗ indicates complex conjugation.

For example, a common inner product operator can be defined as

w, g =

S

w∗ · g ds (4.5)

where

w is called a testing (weighting) function

g is the function being tested (or weighted) and

S denotes the domain of the functions w and g.
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Defining a set of N testing functions {wm} = w1, w2, ..., wN in the domain of the operator

L and exploiting the properties (4.4), the relationship (4.3) can be weighted to give.
N
n=1 an wm,Lyn = wm, f m = 1, 2, ...., N (4.6)

This can be expressed in matrix form

[Lmn] [an] = [fm] (4.7)

where

[an] =

⎡⎢⎢⎢⎣
a1
a2
...

aN

⎤⎥⎥⎥⎦ (4.8)

[fm] =

⎡⎢⎢⎢⎣
f1
f2
...

fN

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

w1, f

w2, f
...

wN , f

⎤⎥⎥⎥⎦ (4.9)

[Lmn] =

⎡⎢⎢⎢⎢⎢⎢⎣
w1,Ly1 w1,Ly2 · · · · · · w1,LyN
w2,Ly1 w2,Ly2 · · · · · · w2,LyN
...

...
...

...
...

...

wN ,Ly1 wN ,Ly2 · · · · · · wN ,LyN

⎤⎥⎥⎥⎥⎥⎥⎦ (4.10)

The equation (4.7) can now be solved by matrix inversion.

[an] = [Lmn]−1 [fm] (4.11)

4.3 Basis and Testing Functions

The basis and testing functions are divided into two general classes:

1. Entire domain functions that exist over the entire domain of y

2. Subdomain functions, which, as implied by the name, are non-zero only within a

part of the domain of y

4.3.1 Entire domain functions

The main advantage of entire domain basis functions occurs in problems whose unknown

function y can be assumed a priori known distribution. Then the entire domain functions

may render an acceptable representation of the unknown y using far fewer terms in the

expansion of (4.2) than using subdomain functions. However, since the number of func-

tions (or modes) are finite, entire domain functions are usually not capable of modeling

either arbitrary or complicated unknowns.
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4.3.2 Subdomain functions

The distinct advantage of subdomain functions over entire domain functions is that they

may be used without any prior knowledge of the nature of the unknown function y.

When defining a set of subdomain functions, they can be selected as either uniform or

non-uniform, collinear or non-collinear, overlapping or non-overlapping, limited only by

the resulting complexity [42].

4.3.3 Galerkin’s method

In general, the basis functions and the testing functions are selected in such a way that the

resulting equations (4.6) are linearly independent and, at the same time the computational

complexity associated with the inner product evaluations is minimized. One particular

choice of these functions may let both basis and testing functions be the same, that is,

wm = yn. This special procedure is known as Galerkin’s method. The prevalent usage of

Galerkin’s method in direct MoM can be attributed to its numerical advantages. When

Galerkin’s method is combined with inner product, real-valued basis functions preserve

both reciprocity and conservation of energy [43]. In addition, since in this method both

basis and testing functions are defined over the same domain, it is possible to either

exchange the integral signs, to integrate by parts or to manipulate the integrals as they

are. Such techniques are often used to reduce the degree of singularity of the resulting

integrands [43].

4.4 Application of MoM to Stratified Media

The mixed potential integral equations in chapter 2 provide the desired linear relation-

ship for determining induced current densities on an arbitrary metalization submerged

in a stratified medium (Fig. 4.1). This sort of formulation is very common in analyzing

antennas consisting of microstrip lines and microstrip patches on multi layer dielectric

structures. Since the Green’s function formulations can be done in either space or spec-

tral domain, the corresponding MoM formulation can also be either in space or spectral

domain. We shall now have a closer look on space domain MoM.

4.4.1 Space domain method of moments

Based on the mixed potential integral formulation described in subsection 2.4.6 the electric

field can be expressed in terms of vector potential GA and scalar potential Gq.

Ex = −jωGAxx ∗ Jx +
1

jω

∂

∂x
(Gq ∗ ∇ · J) (4.12)

Ey = −jωGAyy ∗ Jy +
1

jω

∂

∂y
(Gq ∗ ∇ · J) (4.13)
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Fig. 4.1: Simple planar metallic structure on a grounded substrate

where * denotes linear convolution. GAaa represents the a-directed vector potential due

to an a-directed electric dipole of unit dipole moment, while Gq represents the scalar

potential produced by a unit point charge associated with a horizontal electric dipole

(HED).

We express the surface current density on the patch as a linear combination of x- and

y-directed sub-domain functions. Rectangular rooftop functions, as shown in Fig. 4.2,

are selected following the theoretical and practical considerations given in section 4.4.2.

Therefore, x- and y-directed induced surface current densities can be expressed as

Jx(x, y) =
n m

Inmx Jnmx (x, y) (4.14)

Jy(x, y) =
n m

Inmy Jnmy (x, y) (4.15)

where Jnmx (x, y) and Jnmy (x, y) are the rooftops in x and y directions, respectively. Inmx
and Inmy are all unknown coefficients that have to be determined. After substituting (4.14)

and (4.15) into (4.12) and (4.13), and imposing the boundary conditions on the perfectly

conducting planar scatterer where the total tangential electrical field vanishes, Galerkin’s

procedure leads to the matrix equation

ZI = V (4.16)
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Load functions

Source functions

General functions

Fig. 4.2: Basis functions representing the current densities within a metallic plate, at the source and

at the load

Zn m,n m
xx Zn m,n m

xy

Zn m,n m
yx Zn m,n m

yy

In m
x

In m
y

=
V n mx

V n my

(4.17)

where

Zp q, p qaa = Jp qa , GAaa ∗ Jp q
a

− 1

ω2
∂

∂a
Jp qa , Gq ∗ ∂

∂a
Jp q
a (4.18)

Z
p q, p q
ab = − 1

ω2
∂

∂a
Jp qa , Gq ∗ ∂

∂b
J
p q
b (4.19)

Z
p q,p q
ab denotes the mutual impedance coefficient between the (p, q) th testing func-

tion and the (p , q ) th basis function,

∗ denotes the linear convolution defined in (2.38) in chapter 2,
is the inner product defined in (4.5),

a and b stand for either x or y,

V p qa is the weighted excitation which is an external incident electric field and

Jp qa and Jp q
a denote testing and basis functions, respectively.
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4.4.2 Admissible class of basis and testing functions for MoM

In [44], [45] and [46], it has been concluded that the classes of functions from which the

basis and testing functions are chosen must satisfy the following criteria :

• In the direction of the current, the sum of the order of the differentiability of the

basis and testing functions must be equal to or greater than one

• In the orthogonal direction of the current, any piecewise continuous functions or
functions with singularities of the order of less than one are admissible.

In addition, it is sometimes essential to use piecewise continuous basis functions with finite

discontinuities in the direction of the differentiation, for the geometries that have junction

or load connections in the domain of interest (Figure 4.2). If these piecewise continuous

basis functions represent the currents at the load or the source terminals, which are on the

same plane as the microstrip geometry under study, the impulse functions generated by the

differentiation should not be included in the calculations, because the divergence of these

current densities in (4.12) and (4.13) must be finite at these junctions. This is due to the

continuity of the current at the junctions, which is equivalent to saying that discontinuity

of the current in one direction must be equal to the negative of the discontinuity either in

the same direction or in another direction. It is relatively easy to treat the discontinuous

basis functions in the spatial domain MoM because the contribution of the surface charge

density (∇ · J) can be isolated as given in (4.12) and (4.13).

4.4.3 Simplifying the elements in Z

In (4.18) and (4.19), we have already transferred the differential operator up to the testing

functions. Following the approach taken in [47], we interchange the convolution operator

and the inner product operator in each term of (4.18) and (4.19). After some algebraic

manipulations, the first term in (4.18), for example, can be expressed in the form of

Jp qa , GAaa ∗ Jp q
a = dudv GAaa(u, v) J

p q
a ⊗ Jp q

a (4.20)

where

f⊗g denotes the cross-correlation function between the functions f and g. We define
the 2D cross-correlation as follows :

f(u, v)⊗ g(u, v) = dt ds f(t, s) g∗(t− u, s− v) (4.21)

Here, g∗ denotes the complex conjugate of g.

Since the basis and testing functions are analytical functions, their cross-correlation func-

tions can in general be expressed as piecewise continuous functions. Hence the four-fold

integral in (4.20) can be reduced to two-fold integral.

Figure 4.3 shows for example a resulting cross-correlation Jp qx ⊗ Jp qx when both basis

and testing functions are assumed to be rectangular rooftop functions. There are certain
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Fig. 4.3: Example of a piecewise continuous cross-correlation function when both basis and testing

functions are rooftop functions

symmetries that exist within and among these cross-correlation terms. Moreover, they

are separable in both x and y directions. All these properties of the cross-correlation

terms can be exploited to reduce the computational complexity involved in calculating

the impedance matrix Z.

Now, if we assume that the Green’s functions GAaa(u, v) are expressed as a sum of expo-

nential terms (Section 3.2.2), it is apparent that each Z
p q, p q
ab can be found by evaluating

few two-dimensional generalized exponential integrals (2D-GEI) of the form

I =

∆S

exp(−jkr)
r

f(x , y )dx dy (4.22)

where

r = x 2 + y 2 + α2 (4.23)

with α denoting a complex image and

f(x , y ) is a separable cross-correlation function in x and y coordinates, that is,

f(x , y ) = g(x )h(y ) (4.24)

where g(x ) and h(y ) are polynomials in x and y respectively.

The numerical method introduced in section 5.2 evaluates these 2D-GEI efficiently.
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4.4.4 Symmetries exist in impedance matrix Z

The space domain vector potentialGAaa and scalar potentialGq are cylindrically symmetric

(Section 2.8.1). Hence, when the planar structure is uniformly partitioned in both x- and

y-directions, even with unequal partition length in x- and y-directions, the following

implicit symmetries exist among the coefficients Z
p q, p q
ab in (4.17) [48]. We can denote

them as follows:

Zp q, p qaa = Zp q , p qaa (4.25)

= Zp q, p qaa

= Zp q , p qaa

where a can be either x or y.

Zp q, p qxy = −Zp q , p (q+1)xy (4.26)

= −Z(p +1) q, p qxy

= Z(p +1) q , p (q+1)xy

Zp q, p qxy = Zp q , p q
yx (4.27)

In order to clarify how the above mentioned relationships are obtained, for example, let

us start from (4.18) and obtain the relationship given in (4.25).

Zp q, p qaa = Zaa(p q, p q )

= Jp qa , GAaa ∗ Jp q
a − 1

ω2
∂

∂a
Jp qa , Gq ∗ ∂

∂a
Jp q
a

= GAaa, J
p q
a ⊗ Jp q

a − 1

ω2
Gq,

∂

∂a
Jp qa ⊗

∂

∂a
Jp q
a

= GAaa, Jaa(|p− p | , |q − q |) −
1

ω2
Gq, Jaa(|p− p | , |q − q |)

= Zp q , p qaa (4.28)

Jaa(|p− p | , |q − q |) and Jaa(|p− p | , |q − q |) denote the cross-correlation functions Jp qa ⊗
Jp q
a and ∂

∂a
Jp qa ⊗ ∂

∂a
Jp q
a respectively. Here, |x| reads the absolute value of x. Hence

it is obvious that Zp q, p qaa does not depend on the particular values of p, q, p and q ,

but rather depends on the values of |p− p | and |q − q |. Therefore, together with the
fact that GAaa and Gq are cylindrically symmetric, the existence of four-fold symmetry

represented by (4.25) is quite evident. Likewise, the rest of the symmetries can be proved

analytically.

We can take advantage of these relationships to reduce the computational complexity

in determining Z matrix in (4.16). Our implementation first calculates the essential
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Zp q, p qaa and Z
p q, p q
ab forms only once, and the rest are found just mapping these coeffi-

cients according to (4.25) and (4.26). This will cut down the computational cost of matrix

filling to less than one fifth of the original. In addition, when dynamic mapping is used

rather than physically storing all the coefficients, one can even reduce the usage of the

computer memory by the same factor.



Chapter 5

Numerical Evaluations in MoM

5.1 Introduction

In this chapter the numerical methods used in our implementation are discussed. First,

we present some basics of numerical integration. Then the features of the particular nu-

merical integration algorithm used are discussed without going into subtle mathematical

details. We also introduce a novel approach of evaluating singular two-dimensional gen-

eralized exponential integrals (2D-GEI). This method was originally presented in [49] for

evaluation of a simple 2D-GEI. It is now adapted to separable functions, which come up

in space domain MoM based on subdomain basis and testing functions. Since the same

integral reappears in other areas related to electromagnetic wave propagation, we shall

discuss it in detail. Its performance is compared with the traditional approach in order

to confirm its accuracy and efficiency. At last, the results are presented for a simple

scatterer, a perfectly conducting square plate in free space.

5.2 Quadrature Integration

Numerical integration is essential to evaluate a definite integral, which has no analytical

solution or whose analytical solution is too complex to be useful. The basic method of

finding any given definite integral, either exactly or approximately, is called numerical

quadrature. The method can be expressed mathematically as

b

a

f(x) dx

n

i=0

ai f(xi) (5.1)

where

b

a

f(x) dx is the definite integral to be evaluated,

ai are constants and
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f(xi) are functional evaluations of the given integrand f(x) at some properly selected

points xi.

Equation (5.1) is a result of interpolating the given integral with some known and conve-

nient functions whose integrations over the given limits are readily available [50]. These

derived functional integrals are independent of the original integrand being evaluated and

are collected as constants ai. The part that depends on the original integrand is f(xi).

The method of selecting xi is dictated by the quadrature method used. Although equa-

tion (5.1) is supposed to be an approximation for a general function f(x), depending on

the quadrature method applied, it is capable of exact evaluation of some limited set of

integrals. For example, the simple Newton-Cotes method which spaces the xi equally in

the interval [a, b], is exact for all integrands consisting of polynomials up to degree n.

Meanwhile a more powerful method, the Gaussian quadrature method, chooses points xi
such that the right hand side of (5.1) exactly evaluates integrals consisting of polynomials

up to degree 2n+1. In the following section, let us elaborate on the Gaussian quadrature

method.

5.2.1 Gaussian quadrature integration

Gaussian quadrature chooses the points xi in an optimal, rather than equally spaced,

manner. The nodes xi and coefficients ai are all chosen to minimize the expected error

obtained in performing the approximation (5.1) for an arbitrary function f . The best

choice of these parameters is the one that produces the exact result for the largest possible

class of polynomials. For an arbitrary f , there are total 2(n + 1) parameters, both xi
and ai. If the coefficients of a polynomial are considered as parameters, the class of

polynomials of degree at most 2n + 1 also contains 2(n + 1) parameters. Hence this is

the largest class of polynomials for which it is possible to expect the formula to be exact

in the given interval [50]. It can be shown [51] that the nodes xi needed to produce

exact results for any polynomial of degree less than 2n + 1, are the roots of the n th

degree Legendre polynomial [51]. These roots are distinct, lie in the interval of [−1, 1]
and symmetric with respect to the origin. Upon choosing xi, the ai parameters can be

easily determined. In fact both these xi and ai parameters are extensively tabulated for

the predetermined interval [−1, 1]. They can easily be stored in the computer memory in
advance and accessed on demand. In addition, a simple linear transformation is needed

to map a general interval [a, b] to the interval [−1, 1].

5.2.2 Adaptive quadrature integration

Adaptive quadrature methods are intended to compute definite integrals by automati-

cally taking into account the behavior of the integrand. Ideally, the user supplies only the

integrand f , the interval [a, b] and the accuracy desired for the integral
b

a

f(x) dx. The

program then divides the interval into pieces of varying length so that numerical integra-

tion on the subintervals will produce results of acceptable precision. Therefore the final

integration error is rather evenly distributed. Using the adaptive version of a particular

quadrature method, one can save much of the unnecessary computation effort involved
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in integrating a function that contains both regions with large functional variation and

regions with small functional variation.

5.2.3 Quadrature method in our implementation

The quadrature method we used, is a modified version of the adaptive Gaussian quadra-

ture. It is modified to minimize the number of functional evaluations of f(xi). This

particular numerical integration algorithm was introduced in [52] and [53], and later re-

fined in [54]. It was applied to complex functions in [10]. The method starts with the

basic Gaussian quadrature and then, augments more xi points, which are chosen to eval-

uate the highest possible degree of polynomials rather than calculates a completely new

set of xi points as done in GQ. This is very important if the function f is complicated and

its evaluation is time consuming. As a result, already calculated f(xi) are reused in the

later iterations. However, this modification to the original GQ does not go unpunished.

For a given number of points xi, GQ would exactly evaluate a higher degree polynomial

than the current method. Nevertheless, this modified version of GQ is believed to be the

most effective method available for use in an automatic quadrature routine [54]. In the

present implementation, an adaptive version of this quadrature method is applied.

5.3 Evaluating Two-Dimensional Generalized Expo-

nential Integral

The rest of this chapter explores an innovative technique for evaluating a particular in-

tegral introduced in chapter 3. This integral is known as two-dimensional generalized-

exponential integral (2D-GEI). It often appears in electromagnetic calculations. In the

following we will generalize the efficient method introduced in [49] to evaluate this integral.

5.3.1 Theory

We define the 2D-GEI in Cartesian coordinates (Fig. 5.1) as:

I =

∆S

exp(−jkr)
r

f(x , y ) dx dy (5.2)

where

r = x 2 + y 2 + a2 (5.3)

a is generally a complex constant and

f(x , y ) is a separable function in the x - and y - coordinates, that is,

f(x , y ) = g(x )h(y ) (5.4)
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where g(x ) and h(y ) are polynomials in x and y respectively.

It is obvious that when ∆S includes the origin, that is x = 0 and y = 0, and a is zero or

almost zero, 1/r is either singular or nearly singular. When 1/r is far from being singular

over ∆S, a simple numerical quadrature method can evaluate the integral accurately.

But when 1/r is either singular or nearly singular, these methods are obviously not

effective because they fail to achieve the required accuracy within a reasonable number

of iterations. Therefore, an alternative method which effectively removes the singular

behavior is to be applied. This can be achieved by transforming the integral (5.2) in

Cartesian coordinates to polar coordinates and applying integrations by parts to evaluate

the resulting integral [49]. We shall now present this method in detail.

Substituting (5.3) in (5.2)

I =

x2

x1

y2

y1

f(x , y )
exp(−jk x 2 + y 2 + a2)

x 2 + y 2 + a2)
dx dy (5.5)

and setting

x = ρ cos θ (5.6)

y = ρ sin θ (5.7)

we get the polar equivalent of (5.2)

I =

2π

0

ρc(θ )

0

f(ρ cos θ ,ρ sin θ )
exp(−jk ρ 2 + a2)

ρ 2 + a2
ρ dρ dθ (5.8)

Here x1, x2, y1, y2 and ρc(θ ) are defined in Fig. 5.1. ρc(θ ) is continuous over the entire

θ range and can be expressed as piecewise functions. According to Fig. 5.1,

ρc(θ ) =

⎧⎪⎪⎨⎪⎪⎩
y2 csc θ for θ1 ≤ θ < θ2
x1 sec θ for θ2 ≤ θ < θ3
y1 csc θ for θ3 ≤ θ < θ4
x2 sec θ for (θ4 ≤ θ < 2π ) ∪ (0 ≤ θ < θ1)

(5.9)

The use of the identity

d

dρ
exp(−jk ρ 2 + a2) =

exp(−jk ρ 2 + a2)

ρ 2 + a2
ρ .(−jk) (5.10)

then leads to

I =
j

k

⎡⎢⎣ 2π

0

ρc(θ )

0

f (ρ , θ )
d

dρ
exp(−jk ρ 2 + a2)dρ dθ

⎤⎥⎦ (5.11)
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Fig. 5.1: Two-dimensional generalized exponential integral defined over a rectangular region

where, f (ρ , θ ) = f(ρ cos θ , ρ sin θ ).

The integration by parts is generally expressed as [55]

u(x)
dv(x)

dx
dx = u(x) v(x)− v(x)

du(x)

dx
dx (5.12)

When applied with respect to ρ , we obtain

I =

2π

0

exp(−jk ρ 2 + a2)f (ρ , θ )

ρc(θ )

0

dθ

I1

−
2π

0

ρc(θ )

0

exp(−jk ρ 2 + a2)
d

dρ
f (ρ , θ )dρ dθ

I2

(5.13)

From (5.13), it is obvious that the singularity found in (5.5) is no longer present. We

shall now consider the subintegrals I1 and I2 separately.

I1 =

2π

0

exp(−jk ρc(θ )
2
+ a2)f (ρc(θ ), θ )− exp(−jka)f (0, θ ) dθ (5.14)

I1 is now in a numerically integrable form.
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In order to find the derivative with respect to ρ present in I2, we shall apply the chain

rule for multivariable functions [55] and exploit the separable nature of f(x , y ) given in

(5.4).

I2 =

2π

0

ρc(θ )

0

exp(−jk ρ 2 + a2)
dx

dρ

d

dx
+
dy

dρ

d

dy
f (ρ , θ ) dρ dθ (5.15)

I2 =

2π

0

ρc(θ )

0

exp(−jk ρ 2 + a2) cos θ g (ρ cos θ )h(ρ sin θ )dρ dθ (5.16)

+

2π

0

ρc(θ )

0

exp(−jk ρ 2 + a2) sin θ g(ρ cos θ )h (ρ sin θ ) dρ dθ (5.17)

Here g (x ) and h (y ) are derivatives with respect to x and y , respectively. Although

the functions g(x ) and h(y ) are continuous, neither g (x ) nor h (y ) are necessarily con-

tinuous over entire ∆S region. They are often piecewise continuous. Therefore ∆S has

to be divided into piecewise continuous regions prior to the above process. These subin-

tegrals are then evaluated numerically. Hence I2 can be found by adding the individual

contributions. This might give the impression that we have to evaluate more integrals

than we originally started with. But a closer look will reveal that the division into smaller

regions can be interpreted as a fixed numerical integration scheme, thereby not increasing

the computation complexity proportionally but adding only a slight amount of computa-

tional overhead. Moreover, this division helps to increase the convergence of the adaptive

integration quadrature. The numerical integration with respect to θ in both I1 and I2
can be performed during one common cycle of program codes. This concludes the math-

ematical presentation of the evaluation of 2D-GEI. A comparison of the present approach

and the conventional approach is now in order.

5.3.2 Accuracy and efficiency

The better accuracy of the present method for small a is already demonstrated in [49] and

illustrated in Fig. 5.2. There, the function f is a simple triangular function in x-direction

and 2D-GEI is evaluated for small values of a using a non-adaptive GQ method. In the

inset of Fig. 5.2 the same integral is once again evaluated using more integration points

(96x96 points vs 6x3 points) for the conventional method. The more computationally

intensive result converges to the former result obtained by the present method with no

additional increase in integration points. It is thus obvious that a higher accuracy can be

attained by the present method for small values of a. Conventional quadrature methods

in the Cartesian domain do not converge for very small a.

Figure 5.3 illustrates the efficiency of the present method. It shows that the number

of floating point operations needed to acquire a particular accuracy when an adaptive

quadrature method is applied, and a = 0. It is obvious that the number of floating point

operations needed to acquire the same accuracy using the traditional adaptive method is
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Fig. 5.2: Accuracy of 2D-GEI evaluated for different value of the parameter a using the traditional
method (dashed) and the present method (solid). The numbers within brackets represent

the number of points used during the integration. [49]

much higher than the present method. It is also noted that the traditional method fails

to converge when higher accuracies, in other words lower relative errors, than those given

in Fig. 5.3 are demanded. On the other hand, the proposed method produces converged

results with the required accuracy.

5.3.3 Applications

We shall determine the current distribution of a square patch (λ × λ) in free space in

the presence of an incident plane wave as shown in Fig. 5.4. λ denotes the wavelength

in free space. This simple structure is selected to keep other unnecessary details on

DCIM (Discrete Complex Image Method) and MoM (Method of Moments) techniques to

a minimum and demonstrate the current method merely as an independent technique.

However, the full power of the suggested method can only be seen when combined with

DCIM and MoM described in chapters 3 and 4, respectively.

We shall apply MPIE (Mixed Potential Integral Equation) formulation presented in sec-

tion 2.4. The relevant magnetic vector- and scalar potential Green’s functions in free

space are given by [9]

Ax =
µ0
4π

exp(−jkr)
r

x̂ (5.18)
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wave.
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Ay =
µ0
4π

exp(−jkr)
r

ŷ (5.19)

Q =
µ0

4πjω 0

exp(−jkr)
r

(5.20)

where

µ0 and 0 are the permeability and permittivity of free space, respectively, and

r is the radial distance defined by r = x2 + y2 + z2 with x, y and z denoting

Cartesian coordinates.

Applying the space domain MoM and proceeding as in chapter 4 lead to

ZI = V (5.21)

where

Z is the mutual impedance coefficient matrix,

I is the current distribution vector and

V is the excitation vector.

Evaluating the singular numerical integrals using the present method, the elements in Z

can be accurately determined. Solving (5.21), the induced surface current densities are

found. We have illustrated the x-directed and y-directed induced surface current densities

in Fig. 5.5 and 5.6 respectively. For comparison, the results for the same structure based

on conventional quadrature methods [1] have also been reproduced in Fig. 5.7 and 5.8.

A very good agreement is observed.

Fig. 5.5: Normalized magnitude of the induced

surface current density in x direction
using the present method.

Fig. 5.6: Normalized magnitude of the induced

surface current density in y direction
using the present method.
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Fig. 5.7: Normalized magnitude of the induced

surface current density in x direction
from [1].

Fig. 5.8: Normalized magnitude of the induced

surface current density in y direction
from [1].



Chapter 6

Conjugate Gradient Fast

Fourier Transform Method

6.1 Introduction

This chapter intends to introduce an efficient implementation of the conjugate gradient

method (CGM) for computational electromagnetics. CGM is basically an iterative opti-

mization procedure and is well suited for the treatment of operator equations. One such

operator can be found in the system of linear equations already presented in chapter 4.

It is also shown there that when expressed in matrix form, this system can be written as

[V ] = [Z] [I] (6.1)

where V and I are vectors and Z is a matrix. For such operator equations, CGM results

in a properly converged solution in a finite number of iterations, if all computations are

performed exactly [56]. However, due to the round-off errors introduced by the finite-

length representation of digital computers, in practice convergence cannot be guaranteed

in a finite number of steps. Nevertheless, CGM is considered as one of the fastest and

most powerful methods for systems of linear equations characterized by ill-conditioned

matrices.

The conjugate gradient method combined with fast Fourier transform exploits the lin-

earity and space-invariant properties that are frequently found in many electromagnetic

problems. Linearity implies that the superposition principle is applicable, i.e. the fields

created by a complex source can be computed as the summation of the fields originated

by each one of the elemental sources into which this source can be split. The space-

invariant property suggests that the electromagnetic fields of each point source measured

at an observation point depend only on the relative positions of the source point and the

observation point. The systems with these two properties are called linear space invariant

(LSI) systems.

According to chapter 4, the uniform discretization in MoM leads to a matrix equation

of the form given by 6.1. The matrix Z is dense and has a Toeplitz (or block Toeplitz)
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structure. Often these matrices are ill-conditioned and the standard Gaussian elimination

procedure [34] performs poorly. Nevertheless, it has been reported that such equation

systems can be solved efficiently by using special technique developed ad hoc for matrices

with a Toeplitz structure [57]. Greater advantages can be fetched by exploiting the LSI

nature of the system. For example, the LSI property manifests in the space domain as a

convolution, which can be calculated in the spectral domain using fast Fourier transform

(FFT). Moreover, operations like derivatives that are cumbersome in the space domain,

turn into simple algebraic operations in the spectral domain. Nevertheless, the complete

transformation of a space domain problem into the spectral domain is very complicated

because the boundary conditions often given in the spatial domain can not easily be

expressed in the spectral domain [58].

6.2 Direct Methods vs Iterative Methods

The methods for solving a set of linear equation system are mainly divided into two

classes; direct methods and iterative methods.

6.2.1 Direct methods

The two most popular direct methods used for solving a linear equation system are

Cramer’s rule and Gaussian elimination [34]. They proceed through a finite number

of steps and produce a solution that would be exact were it not for round-off errors.

Hence, the direct methods are really optimum in obtaining an exact solution, under the

assumption that there are no truncation or round-off errors. However the advantage of

obtaining a solution in a finite number of steps is overshadowed by the building up of

truncation and round-off errors in direct methods. The effect of round off errors are more

prominent for ill-conditioned large matrices and may lead to either inaccurate solutions

or numerical instabilities.

6.2.2 Iterative methods

An iterative method is a self-correcting one. It repeats the corrections over and over, and

produces a sequence of vectors that ideally converges to the solution. However, it may

never reach the exact solution. The objective of the iterative methods is to get close to

the exact solution faster than the direct methods. The computation is halted when an

approximate solution is accurate enough, i.e. having achieved the specified accuracy or in

the worst case, reached the preset maximum number of iterations. For large linear systems

containing thousands of unknowns, iterative methods often have decisive advantages over

direct methods. When the accuracy requirements are not stringent, a modest number of

iterations will suffice to produce an acceptable solution. For sparse systems [34], iterative

methods are often very efficient. Another advantage of iterative methods is that they

are usually numerically stable and their round-off errors are limited only by the most

recent stage of iteration [59]. Hence iterative methods are more suitable for large and

ill-conditioned matrix inversions.



6.3 Basic Conjugate Gradient Method 77

6.3 Basic Conjugate Gradient Method

6.3.1 Adjoint operator

The application of a CG scheme requires the adjoint operator defined with respect to a

inner product operator, often denoted by < >. We define the adjoint operator LA of the

linear operator L based on the two arbitrary functions Ia and Ib.

< LIa, Ib >=< Ia, L
AIb > (6.2)

Here, the inner product is defined as in chapter 4 over the 2D vector functions Ia and Ib
[56]. The linear operator L is denoted by the following matrix multiplication.

V = LI (6.3)

Vix
Viy

=
Zxx Zxy
Zyx Zyy

Ix
Iy

(6.4)

with Vix, Viy, Ix and Iy representing x- and y- directed excitations and current density

coefficients, respectively. Zxx, Zxy, Zyx and Zyy are complex block matrices (chapter 4).

By imposing condition (6.2) on two arbitrary vectors Ia and Ib in the definition domain

of the operator L, we can show that [58]

LA = (LT )∗ (6.5)

= LH

where LT and LH represent the transpose and Hermitian of the matrix L.

Assuming the block matrices in (6.4) are complex symmetric, which is the case when

MoM is applied to uniformly discretized planar structure, LA can be written as

LA =
Z∗xx Z∗yx
Z∗xy Z∗yy

(6.6)

When L = LA the operator L is said to be self-adjoint and otherwise L is non self-adjoint.

Hence, when the space domain MoM is applied to uniformly discretized planar stratified

structures, the resulting operator L is non self-adjoint.

6.3.2 CGM algorithm

Using the following notations, we present one version of CGM as in the following algo-

rithm.

The notation

In - Unknown vector

L - Linear operator in matrix form
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V - Excitation vector

ε - Required accuracy

Input

L, V and ε

Initialization

I0 is set to an arbitrary value. It is with no loss of generality set to zero.

I0 = 0 (6.7)

r0 = V − LI0
P1 = LAr0

a1 =
LAr0

2

LAP1
2

I1 = I0 + a1P1

r1 = V − LI1

Iteration

Algorithm proceeds until

V − LI
V

< ε (6.8)

where ε is the required accuracy.

Following operations are repeated until the above condition is met.

rn,n−1 =
LArn−1

2

LArn−2
2 (6.9)

Pn = LArn−1 + rn,n−1Pn−1

an =
LArn−1

2

LAPn
2

In = In−1 + anPn
rn = rn−1 + anLPn

Output

In and the ultimate value for
V−LI
V

, which is a measure of the quality of the solution

In unless the operator L is extremely ill-conditioned.
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6.4 Conjugate Gradient Method Combined with Fast

Fourier Transform

6.4.1 Discrete Fourier transform

Definitions

The Discrete Fourier Transform (DFT) allows a discrete periodic function to be expanded

in a series of complex exponentials.

One-dimensional discrete Fourier Transform (1D DFT) Let us consider a 1D

discrete periodic function x(n) of period N ,

x(n) = x(n+mN) for n = 0, 1, 2, ..., N − 1
m = 0, ±1, ±2, ... (6.10)

Then 1D DFT of x(n), denoted as X(k), is written as

X(k) =
N−1

n=0
x(n) exp −j2π kn

N
for k = 0, 1, 2, ..., N − 1 (6.11)

Given X(k), the corresponding x(n) is found using the one-dimensional inverse discrete

Fourier transform (1D IDFT) expressed as

x(n) = 1
N

N−1

k=0

X(k) exp j2π kn
N

for n = 0, 1, 2, ..., N − 1 (6.12)

Note that parameters n and k are just indices in time and spectral domain. The index k

should not to be mixed up with the propagation constant introduced in chapters 2 and 3.

Figures 6.1 and 6.2 show an example of a discrete sequence and its DFT, respectively.
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Two-dimensional discrete Fourier Transform (2D DFT) Discrete periodic func-

tions of more than one variable can also be expanded in terms of complex exponentials

with the help of DFT. We shall limit our attention here to the two-dimensional case. A

general 2D discrete periodic function of periods M and N can be expressed as

x(n,m) = x(n+ pN,m+ qM) for n = 0, 1, 2, ..., N − 1
m = 0, 1, 2, ..., M − 1
p = 0, ±1, ±2, ...
q = 0, ±1, ±2, ...

(6.13)

Then the 2D DFT of this x(n,m), denoted by X(k, l), is given as

X(k, l) =
N−1

n=0

M−1

m=0
x(n,m) exp −j2π kn

N
− j2π lm

M
for k = 0, 1, 2, ..., N − 1

l = 0, 1, 2, ..., M − 1
(6.14)

Given X(k, l), the corresponding x(n,m) is found using the two-dimensional inverse dis-

crete Fourier transform (2D IDFT)

x(n,m) = 1
NM

N−1

k=0

M−1

l=0

X(k, l) exp j2π kn
N
+ j2π lm

M
for n = 0, 1, 2, ..., N − 1

m = 0, 1, 2, ..., M − 1
(6.15)

Properties of DFT

The most important properties of 1D-DFT and 2D-DFT are summarized in Table 6.1 and

Table 6.2, respectively. In addition, both spatial and spectral sequences are implicitly

periodic. That is in 1D

x(n+N) = x(n) for all n (6.16)

X(k +N) = X(k) for all k (6.17)

Here N is the period of the sequences x(n) and X(k). Equivalently in 2D,

x(n+N,m+M) = x(n,m) for all n and m (6.18)

X(k +N, l +M) = X(k, l) for all k and l (6.19)

N and M are the periods of the sequences x(n,m) and X(k, l). The circular shifting of a

periodic sequence is obtained by linearly shifting the periodically extended version of the

given sequence. In general the circular shift of the sequence may be represented as the
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index modulo N . Thus we may represent a circularly shifted sequence by an amount of

n0 as

xcircularly shifted(n) = x((n− n0)modN) (6.20)

= x(n− n0)N

Here, the operation xmod y returns the signed remainder after the division x
y
, i.e.

xmod y =
x− y floor(x

y
) if y = 0

x if y = 0
(6.21)

where the operation floor(x) rounds x to the nearest integer less than or equal to x.

Property Spatial domain Transformed (spectral) domain

Linearity αx(n) + βy(n) αX(k) + βY (k)

Circular space shifting x(n− n0)N X(k) exp(−j2π kn0
N
)

Circular spectrum shifting x(n) exp(j2πnk0
N
) X(k − k0)N

Time reversal x(N − n) X(N − k)
Circular space convolution x(n) y(n) X(k)Y (k)

Multiplication x(n)y(n) 1
N
X(k) Y (k)

Complex-conjugate properties x∗(n) X∗(N − k)
Parseval’s theorem

N−1

n=0
x(n)y∗(n) 1

N

N−1

k=0

X(k)Y ∗(k)

Table 6.1: Properties of one-dimensional DFT

Property Spatial domain
Transformed (spectral)

domain

Linearity αx(n,m) + βy(n,m) αX(k, l) + βY (k, l)

Circular space

shifting
x(n− n0,m−m0)NM X(k.l) exp[−j2π(kn0

N
+ lm0

M
)]

Circular spectrum

shifting
x(n,m) exp(j2π(nk0

N
+ ml0

M
)) X(k − k0, l− l0)NM

Time reversal x(N − n,M −m) X(N − k,M − l)
Circular space

convolution
x(n,m) y(n,m) X(k, l)Y (k, l)

Multiplication x(n,m)y(n,m) 1
NM

X(k, l) Y (k, l)

Complex-conjugate

properties
x∗(n,m) X∗(N − k,M − l)

Parseval’s theorem
M−1

m=0

N−1

n=0
x(n,m)y∗(n,m) 1

NM

M−1

l=0

N−1

k=0

X(k, l)Y ∗(k, l)

Table 6.2: Properties of two-dimensional DFT



82 Conjugate Gradient Fast Fourier Transform Method

6.4.2 More on convolution property of DFT

Definitions

1D Linear convolution

When x(n) and y(n) are discrete sequences, the linear convolution between them is an-

other discrete sequence zlin(n) defined by

zlin(n) =

∞

p=−∞
x(p)y(n− p) (6.22)

Hence, the linear convolution is a composite operation of folding, shifting, multiplication

and summation [60].

1D Circular (cyclic) convolution

When x(n) and y(n) are discrete periodic sequences of period N , the circular convolution

between them is another discrete periodic sequence zcir(n) defined by

zcir(n) =

N−1

p=0

x(p)y(n− p)N (6.23)

The circular convolution involves basically the same four steps as the linear convolution,

i.e. folding, shifting, multiplying and summing. The basic difference between these two

types of convolution is that, in circular convolution, the folding and shifting operations

are performed in a circular fashion by computing the index of one of the sequences after

modulo N operation, whereas in linear convolution there is no modulo N operation.

Likewise, the corresponding 2D linear and circular convolution can be expressed by

zlin(n,m) =

∞

p=−∞

∞

q=−∞
x(p, q)y(n− p,m− q) (6.24)

and

zcir(n,m) =

N−1

p=0

M−1

q=0

x(p, q)y(n− p,m− q)NM (6.25)

Efficient computation of DFT : FFT algorithm

The direct computation of DFT following either (6.11) or (6.14) is basically inefficient

since it does not exploit the symmetry and periodicity properties of the phase factor of the

transformation. Consequently, computing N values of the 1D-DFT requires N2 complex

multiplications and (N2 − N) complex additions. Using the symmetry and periodicity
properties of the phase factor, it is shown in [60] that the total number of complex
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Fig. 6.3: Number of complex multiplications needed by FFT and DFT as a function of number of

terms N

multiplications can be reduced to (N/2) log2N . The number of complex additions is also

reduced to N log2N . Such computationally efficient algorithms are collectively known

as fast Fourier transform (FFT) algorithms. Figures 6.3 and 6.4 show the number of

multiplications and additions required by DFT and FFT (radix-2) as a function of N .

Accordingly for larger N , the use of FFT to determine DFT will cut down the processing

time significantly.

Linear convolution based on FFT

The efficient computation of DFT using FFT leads in turn to efficient computation of

spatial circular convolution, since the spatial circular convolution of two periodic se-

quences when performed in spectral domain mainly involves computing DFT of the two

sequences, multiplication of computed DFTs and then computing IDFT of the resulting

product. Unfortunately, it is the linear convolution that is frequently encountered in

practical applications, not the circular convolution. Therefore, attempts have been made

to compute the linear convolution via circular convolution.

Following the definition (6.22) of linear convolution, the length Lz(n)linof the resulting

sequence z(n) is equal to Lx(n)+Ly(n)−1, where Lx(n) and Ly(n) are the lengths of finite
sequences x(n) and y(n). On the other hand, the circular convolution between two peri-

odic sequences of period N results in another sequence of period N . However, both these

sequences resulted from linear and circular convolution can be made equal, if the period

N of the circular convolution is selected as Lz(n)lin , the length of the sequence resulted

from linear convolution. This implies that both sequences used in circular convolution
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Fig. 6.4: Number of complex additions needed by FFT and DFT as a function of number of terms

N

should be extended to the periodic sequences of length Lz(n)lin by adding additional ze-

ros, a process known as zero-padding. These additional zeros avoid the aliasing effect due

to the circular convolution and make the final result equivalent to the result from the

corresponding linear convolution. Since the circular convolution is efficiently calculated

using FFT, the use of circular convolution for calculating linear convolution now extends

these efficiencies to linear convolution computations as well.

Although the previous discussion explained the scenario in one dimension, the same prin-

ciples are equally valid for higher dimensions. Applying MoM to analyze stratified media

frequently leads to matrix multiplications, which resemble 2D linear convolutions. There-

fore, much of the mathematical complexity involved in these matrix multiplications can

be reduced by exploiting FFT.

Performing Matrix multiplication based on FFT

The single matrix multiplication in (6.4) can be expanded to the following two matrix

equations:

Vix = Zxx · Ix + Zxy · Iy
Viy = Zyx · Ix + Zyy · Iy (6.26)

When the number of discretization cells in x- and y directions areM and N , respectively

Ix and Iy are vectors of length MN . Then the corresponding dimensions of each Zxx,

Zxy, Zyx and Zyy would beMN byMN . In practice, each matrix multiplication in (6.26)
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resembles a two-dimensional linear convolution. For example, let us denote any one of

these four multiplications as

V NM×1 = ZMN×MN · INM×1 (6.27)

where

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(0,0)
I(0,1)
...

I(0,N−1)
I(1,0)
I(1,1)
...

I(1,N−1)
...
...

I(M−1,0)
I(M−1,1)
...

I(M−1,N−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.28)

ZT=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z(0,0) Z(0,1) Z(0,2) · · · Z(M−1,N−1)
Z(0,−1) Z(0,0) Z(0,1) · · · Z(M−1,N−2)
... · · · · · · · · · ...

Z(0,1−N) Z(0,2−N) Z(0,3−N) · · · Z(M−1,0)
Z(−1,0) Z(−1,1) Z(−1,2) · · · Z(M−2,N−1)
Z(−1,−1) Z(−1,0) Z(−1,1) · · · Z(M−2,N−2)

... · · · · · · · · · ...

Z(−1,1−N) Z(−1,2−N) Z(−1,3−N) · · · Z(M−2,0)
... · · · · · · · · · ...
... · · · · · · · · · ...

Z(1−M,0) Z(1−M,1) Z(1−M,2) · · · Z(0,N−1)
Z(1−M,−1) Z(1−M,0) Z(1−M,1) · · · Z(0,N−2)

... · · · · · · · · · ...

Z(1−M,1−N) Z(1−M,2−N) Z(1−M,3−N) · · · Z(0,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.29)
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V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V(0,0)
V(0,1)
...

V(0,N−1)
V(1,0)
V(1,1)
...

V(1,N−1)
...
...

V(M−1,0)
V(M−1,1)
...

V(M−1,N−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.30)

It can also be expressed in as

V (n,m) =

M−1

p=0

N−1

q=0

I(p, q) · Z(n− p,m− q) (6.31)

This is the same as 2D linear convolution between I and Z matrices, which can be

expressed in matrix form

[V ]M×N
folded = [Zcompact]

(2M−1)×(2N−1) ∗ [I]M×N
folded (6.32)

where

Vfolded =

⎡⎢⎢⎢⎢⎣
V(M−1,N−1) V(M−1,N−2) · · · V(M−1,0)

V(M−2,N−1) V(M−2,N−2) · · · ...
...

...
...

...

V(0,N−1) V(0,N−2) · · · V(0,0)

⎤⎥⎥⎥⎥⎦ (6.33)

Zcompact =

⎡⎢⎢⎢⎢⎣
Z(M−1,N−1) Z(M−1,N−2) · · · Z(M−1,1−N)

Z(M−2,N−1) Z(M−2,N−2) · · · ...
...

...
...

...

Z(1−M,N−1) Z(1−M,N−2) · · · Z(1−M,1−N)

⎤⎥⎥⎥⎥⎦ (6.34)

Ifolded =

⎡⎢⎢⎢⎢⎣
I(M−1,N−1) I(M−1,N−2) · · · I(M−1,0)

I(M−2,N−1) I(M−2,N−2) · · · ...
...

...
...

...

I(0,N−1) I(0,N−2) · · · I(0,0)

⎤⎥⎥⎥⎥⎦ (6.35)
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Despite both (6.27) and (6.32) result in the same 2D matrix V (n,m), the later form is

very compact, where the GF coefficient matrix only consists of (2N − 1) × (2M − 1)
coefficients rather than NM × NM coefficients needed in the representation of (6.27).

Thus the representation (6.32) eliminates much of the duplicating coefficients in matrix

Z, with no loss of accuracy. To our knowledge, this is the first time this representation

has been reported explicitly. It eliminates the use of unnecessarily larger matrices in a

typical computer implementation and spare the much needed processor time and memory

space. In addition this representation eases the software coding and allows the use of

efficient codes, for example, codes written for matrix computations on parallel processors.

Since the 2D linear convolution can be efficiently calculated by 2D-FFT as explained in

section 6.4.2, the representation (6.32) with its compact 2D matrices is compatible with

the rest of the implementation.

The basic CGM algorithm introduced in section 6.3 does contain several matrix multipli-

cations. For large matrices these multiplications, unless they are handled efficiently, will

waste much of the computer resources, both in terms of processing time and memory.

However, these matrix multiplications can be performed efficiently by exploiting the LSI

property inherent to matrices, which are results of space domain MoM with uniform dis-

cretization. Thus, using 2D-FFT, as illustrated above, one can make the CGM algorithm

much faster and more efficient. The resulting algorithm, CGM combined with FFT, is

called the conjugate gradient fast Fourier transform (CG-FFT).

6.4.3 Practical 2D CG-FFT implementation

We implement the CG-FFT algorithm based on (6.32). When applied to electromagnetic

scattering and radiation problems, the compact versions of Zxx, Zxy, Zyx and Zyy contain

all the necessary GF coefficients (GFCs) needed for the calculations. There are still some

redundancies present among the coefficients of these matrices due to not yet exploited

implicit symmetries. Hence, a further reduction of the size of these matrices is possible

during a particular implementation. The final version of the implementation follows the

CGM outlined in section 6.3.2. In addition, 2D FFT is used when performing all the

matrix multiplications.

Another advantage of using the above mentioned representation now becomes obvious

when analyzing large arbitrary planar structures. Since the discretization of large arbi-

trary structures requires the calculation of a large number of different GFCs, a systematic

way to calculate them in advance would be difficult. Moreover, a minor modification to

the structure may require the complete recalculation of all the matrices or, in a rather

smart method, the calculation of only a few GFCs on the fly to make the necessary

alterations to the previous GFC matrices. This may slow down certain functionalities

like optimization of a complex planar structure with respect to a particular geometrical

parameter. However, the representation in (6.32) assumes that matrix Zcompact contains

all possible GFCs which are needed for a selected discretization of the considered planar

area, thus eliminating such problems. On the other hand, calculating the entire spectrum

of GFCs in advance would be a drawback in a situation where the most of the calculated

coefficients do not actively contribute to the solution, thus wasting expensive processing

and memory resources. Therefore, the above formulation is recommended when the pla-
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nar structure is complex and dense, thereby minimizing the calculation and storage of

unnecessary GFCs.

6.4.4 Convergence and accuracy of 2D CG-FFT

Convergence of CG-FFT

The minimum number of iterations needed to solve (6.1) using CG algorithm has shown to

be equal to the number of unknowns [56]. This limit is purely theoretical and assumes that

all mathematical operations are carried out exactly. The finite accuracy offered by modern

computers, though quite satisfactory for most practical purposes, does not guarantee full

convergence of the CG algorithm within this minimum number of iterations. Therefore a

practically implemented CGM may require more iterations than the theoretical minimum

for a proper convergence. For a non-self adjoint operator, which is the case here, CGM

guarantees a monotonic convergence. This means that the relative mean square error

always decreases with the number of iterations. As a result, the exact point of convergence

is not uniquely defined. Therefore the number of iterations needed also depends on the

required accuracy of the final solution as well. It is stated in [61] and [62] that for most

practical purposes the number of iterations needed in CG algorithm often lies between

N/4 and N/2, where N is the number of unknowns. However, such limits are far from

being universal since the number of iterations highly depends on the properties of the

linear operator concerned. As the point of exact convergence is difficult to determine, the

common practice is to impose the following criterion on the residual norm in order to keep

track of the convergence. This criterion which is already applied in the CG algorithm in

section 6.3.2, is expressed as

V − ZI
V

< ε

Here, ε is a predetermined value, and the left hand side denotes the residual norm.

For example choosing ε = 10−4, it is expected that a solution accurate to few decimals
would be achieved. Nevertheless, this criterion does tend to fail when the linear operator,

or the matrix representing the linear operator, is badly conditioned [63].

Let us demonstrate the convergence properties of CG-FFT, when applied to a simple

electromagnetic scattering problem. Figure 5.4 shows that a plane wave is incident on

a perfectly conducting square patch located in free space. The size of the patch is λ

by λ where λ denotes the wave length in free space. The induced current densities on

the patch are found by solving the linear equation system resulting from a space domain

MoM formulation. The same structure is analyzed for different discretizations and the

residual norm is found as a function of the number of iterations for each discretization.

Figure 6.5, summarizes the convergence properties of the above algorithm for different

discretizations.

It is obvious that CG-FFT for this particular structure converges monotonically and

rapidly. Typical profiles of the x-directed and y-directed induced surface current densities

Jx and Jy are shown in Fig. 6.6 and 6.7, respectively. The current densities along the
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Fig. 6.5: The monotonic decrease of residue norms as a function of the number of iterations. Different

grades of discretizations such as 5 by 5, 10 by 10 , 20 by 20 and 40 by 40 are used

lines y = λ/2 and x = λ/2 are shown in Fig. 6.8 and 6.9 respectively for different grades

of discretizations.

Illustrating the accuracy of CG-FFT

In order to illustrate the accuracy of the implemented CG-FFT algorithm, we solve the

same structure using the direct matrix inversion. The matrix inversion is performed

using the routines available in MATLAB 6.1. The result is then compared with the

previous results obtained by applying CG-FFT method. Figures 6.10 and 6.11 compare

the x-directed surface current density along the lines y = λ/2 and x = λ/2 obtained

by CG-FFT and direct matrix inversion. Both solutions are found for a 20 by 20 mesh.

Almost a perfect agreement is noted.

It is also worth mentioning a last comment on convergence and accuracy of CG-FFT

method. The proper convergence of CG-FFT to a particular solution does not necessarily

mean that we have found the correct solution for the problem at hand because it is possible

for a given linear operator and an excitation possess more than one possible solution. Such

non uniqueness often results from the internal resonances generated within the structure

[61].
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Chapter 7

De-embedding Techniques

7.1 Introduction

7.1.1 De-embedding

De-embedding generally refers to the process of extracting unknown parameters from

a known set of data. However, the concrete meaning of the de-embedding depends on

the context. In this chapter, de-embedding refers to the process of extracting scattering

parameters from the current density distributions induced on strip structures etched on

planar stratified media.

7.1.2 Scattering (S) parameters

S parameters commonly characterize the port behavior of a general multiport network.

Such a characterization eliminates the exhaustive electromagnetic wave considerations of

the multiport networks and, allows the designer to represent a complex microwave network

in terms of a few parameters. S parameters are defined in terms of either voltage-,

current- or power waves. Hence they are respectively referred to as voltage, current

and generalized S parameters. The transformations among these different types of S

parameters are simple and depend only on the characteristic impedances of the ports.

For example, the generalized S parameters, which are defined in terms of power waves

are simply normalized versions of either voltage or current waves with respective to the

corresponding characteristic impedances of the ports [64]. Since planar structures in

stratified media are often characterized by their current density distributions, we shall

confine ourselves to S parameters defined in terms of current waves. Nevertheless for

reciprocal networks, they are equivalent to S parameters defined in terms of voltage

waves.
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For the multiport network shown in Fig. 7.1, the S parameters can be defined as

Sij =
I−i
I+j

I+j = 0 for i = j (7.1)

where

I+j is the amplitude of the incident current wave on port j and

I−i is the amplitude of the reflected current wave on port i.

Therefore, for a given multiport, all currents are coupled together according to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I−1
I−2
...

I−i
...

I−N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 · · · S1j · · · S1N
S21 S22 · · · S2j · · · S2N
...

...
...

...

Si1 Si2 Sij
... SiN

...
... · · · ...

SN1 SN2 · · · SNj · · · SNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I+1
I+2
...

I+i
...

I+N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.2)

or

I− = [S] I+ (7.3)

Accordingly, there is a number of N2 of S parameters for a general N port network.

In order to determine them, we excite each port, one at a time, by a delta gap voltage

generator and determine the resulting incident and reflected waves on each port. Since
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Fig. 7.2: Common feeding techniques for patch antenna element (a) Direct excitation using mi-

crostrip line (b) Direct excitation using coaxial probe (c) Aperture coupling (d) Proximity

coupling

this process leads to N2 equations of N2 unknowns, the corresponding S parameters can

be found simply by solving the set of equations. Although this method of determining S

parameters is time-consuming and leads to unnecessary large matrix equations, we apply

it here due to its simplicity.

7.1.3 Common feeding techniques

There are a few common feeding techniques widely used for exciting planar metal struc-

tures defined in stratified media. They are

• Direct excitation
• Aperture coupling
• Proximity coupling

Figure 7.2 illustrates these excitation methods when the excited planar structure is a

simple patch antenna. Direct excitation can be done by using either a microstrip line

or a coaxial probe. In our future discussions, we shall confine ourselves to microstrip
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line excitation because the complete structure can then be analyzed by the same meth-

ods described in the previous chapters. The extensions to other excitation methods are

somewhat complex but mathematically viable.

7.2 Different De-embedding Techniques

The wave propagation along microstrip line is well characterized by the transmission line

theory. The dominant mode that propagates along a microstrip line is quasi transverse

electromagnetic (TEM). The higher order modes, for example transverse electric (TE) and

transverse magnetic (TM) are less significant and are negligible for our purpose. However,

the effect of these higher order modes may be significant in the vicinity of a discontinuity

in the microstrip line, for example at the transition to a patch antenna or at the generator

of the excited wave. It is also known that these higher order modes attenuate rapidly

along the line and away from the discontinuity. Hence when de-embedding, the data

should be acquired over a region where the effect of the higher order modes is negligible.

In particular, when extracting scattering parameters the current density distributions

are often calculated along an extended microstrip line. Such extensions increase the

computational cost dramatically.

The choice of the de-embedding technique depends mostly on the excitation mecha-

nism and the subsequent mathematical modeling. In order to limit the scope of the

de-embedding process, we assume that the stratified configurations encountered here are

solely excited by microstrip lines. In common usage, these microstrip lines are kept as

close to the ground as possible and are excited by a coaxial line of the same characteristic

impedance. Such constructions weaken impedance discontinuities at the excitation point,

suppressing possible higher order modes. Therefore a current distribution on a microstrip

feed line, sufficiently away from any potential discontinuities, forms a standing wave pat-

tern of a TEM-like mode. Hence such a microstrip feedline can safely be modeled as an

ideal transmission line of some proper characteristic impedance. It is already shown in

[65], that the reflection coefficient along the microstrip line remains unchanged in ampli-

tude and in phase when the coaxial line feed is modeled by a voltage gap generator and

the microstrip line is open circuited at the excitation end.

Using the present MoM, the current standing wave pattern (CSWP) along the microstrip

line can easily be determined. For example, Figure 7.3 illustrates the normalized CSWP

of a microstrip line fed by voltage gap generator. Here, the width and the length of the

line are assumed to be 0.223 cm and 16.04 cm respectively. The dielectric constant of the

layer is chosen as 2.55. The operational frequency is fixed at 2.30 GHz. Such patterns can

be used to determine the necessary scattering parameters of the stratified structure. Since

the S parameters are defined in terms of incident and reflected waves as in (7.1), a method

is needed to extract the corresponding amplitude and phase of these wave components

from the CSWP. A few different methods are available for this purpose.
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Fig. 7.3: The normalized current standing wave pattern of a micostrip line of width 0.223 cm and

length 16.04 cm. The dielectric constant is 2.55 and operational frequency is 2.30 GHz. λ
denotes the wavelength in free space
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Fig. 7.4: Current wave propagation in a transmission line terminated by impedance ZL
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7.2.1 A method based on transmission line theory

Although it is more common in scientific literature on transmission line theory to work

with voltage waves, we shall here proceed with current waves instead. This is due to the

fact that the outcome of the MoM is inherently a current density distribution. According

to the notation given in Fig. 7.4, the current on an ideal lossless transmission line is

expressed as [64]

I(l) = Iinc exp(−jβl)− Iref exp(jβl) (7.4)

where

I(l) is the longitudinal component of the current at x = l,

β is the propagation constant of the fundamental TEM mode along the line,

l denotes the longitudinal coordinate along the line such that l = 0 corresponds to

the position of the load ZL and

Iinc and Iref are the complex amplitudes of the incident and reflected current waves

at the load ZL respectively.

The reflection coefficient Γ or equivalently S11, at ZL is defined as

Γ =
Iref

Iinc
(7.5)

Let us denote the maximum and minimum value of the CSWP as Imax and Imin respec-

tively. Then the current standing wave ratio (CSWR) [64]

CSWR =
Imax

Imin
(7.6)

The amplitude of the reflection coefficient Γ is then related to CSWR by [66]

|Γ| = CSWR− 1
CSWR+ 1

(7.7)

The reflection coefficient Γ at the point located a distance d away from the above consid-

ered maximum and towards the load, can be expressed as [64]

Γ(d) = |Γ| exp(jβd)
exp(−jβd) = |Γ| exp(2jβd) (7.8)

The corresponding impedance Z at the same point is then given by [64]

Z(d) =
1 + Γ

1− ΓZ0 =
1 + |Γ| exp(2jβd)
1− |Γ| exp(2jβd)Z0 (7.9)

where Z0 is the characteristic impedance of the transmission line.

Although the previous method based on transmission line theory is simple, it calculates |Γ|
based on only two discrete values of the derived CSWP, namely Imax and Imin. Therefore

the result is prone to considerable computational errors. Such errors can be reduced if

one uses more points on CSWP in determining Imax and Imin (or alternatively Iinc and

Iref ). The following methods exploit the complete CSWP when evaluating Iinc and Iref .



7.2 Different De-embedding Techniques 101

7.2.2 A method based on Prony’s method

In chapter 3, Prony’s method has been suggested for extracting exponential functions from

spectral Green’s functions. A very similar and straightforward method can be adapted

here for extracting incident and reflected current waves from the corresponding CSWP.

7.2.3 A method based on GPOF method

The generalized pencil of function (GPOF) method described in chapter 3, presents a

more robust approach for extracting exponential functions and their amplitudes from a

given data set. An analogous approach can also be adapted here for extracting amplitudes

Iref and Iinc from CSWP.

Since the incident and reflected waves represent two waves traveling in opposite direc-

tions along the same microstrip line, the corresponding exponential functions should have

equal magnitudes but opposite signs in the imaginary parts of their arguments, i.e. the

arguments of these exponential functions should ideally be complex conjugates. Although

the method based on transmission line theory explicitly assumes this, both Prony’s and

GPOF methods independently determine the two exponential functions thus providing

an additional mechanism for verifying their accuracy. The degree of equality possessed

by the magnitude of the arguments of these two exponential functions, is a measure of

the numerical accuracy of the respective method. We shall henceforth utilize the rather

robust GPOF based method for determining S parameters from CSWP.

7.2.4 Example 1: Microstrip patch antenna

We shall now determine the reflection coefficient at the input of the patch antenna outlined

in Fig. 7.5. This is the same as S parameter S11 for one port network. This patch

has been studied in [8] and [67], and the measured S parameters are also available.

Figure 7.6 compares S11 found by the current method, where we use space domain MoM

for determining induced current densities and GPOF technique for de-embedding, with

the measured results in [8]. In addition, the commercially available software, Agilent

Momentum, which is a subsystem of Advanced Design System 2002, has also been used

to analyze the same patch structure. Figure 7.6 shows that both simulation results are in

fair agreement with the measured values. The minor deviations between the measured and

the simulated values may be due to the approximated dimensions used in the simulations

in order to match the structure with a proper discretization. It is also obvious that the

present antenna is far from being optimum with respect to the impedance match between

the feed line and the patch. Moreover, figures 7.7 - 7.9 show the normalized magnitude

of the x-current density, the y-current density and the total current density on the patch

at the operating frequency of 2.30 GHz.
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Fig. 7.5: Stand alone patch antenna
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Fig. 7.6: Comparison of S11 obtained for the single patch antenna in Fig. 7.5 using both the current
method and Agilent Momentum, with the measured values from [8]
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Fig. 7.7: Normalized magnitude of the induced x-current density of the patch antenna in Fig. 7.5 at
the frequency of 2.30 GHz

Fig. 7.8: Normalized magnitude of the induced y-current density of the patch antenna in Fig. 7.5 at
the frequency of 2.30 GHz



104 De-embedding Techniques

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2 0.4 0.6 0.8 1 1.2

0.05

0.1

0.15

0.2

0.25

0.3

X

Y

Fig. 7.9: Normalized magnitude of the total induced current density of the patch antenna in Fig. 7.5

at the frequency of 2.30 GHz

7.2.5 Example 2 : Two patches close to each other

A simple array consisting of two equivalent patches located close to each other is also

simulated. Two patches are etched adjacent to each other as shown in Fig. 7.10. The

distance between the two patches is 0.223 cm. S parameters for this structure are deter-

mined using the present method and the Agilent Momentum. They are compared in Fig.

7.11 and 7.12. The measured results for this construction are not available. However, we

can see from the S parameter plots that the results acquired by the current method are

almost equivalent to the results from the Agilent Momentum. The corresponding induced

current densities at 2.30 GHz are also shown in Fig. 7.13 - 7.15.
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Fig. 7.10: Two equivalent patches placed side by side
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Fig. 7.13: Normalized magnitude of the induced x-current density of the two patches in Fig. 7.10
when only patch 1 is excited ( The frequency equals to 2.30 GHz)

Fig. 7.14: Normalized magnitude of the induced y-current density of the two patches in Fig. 7.10
when only patch 1 is excited (The frequency equals to 2.30 GHz)
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Fig. 7.15: Normalized magnitude of the total induced current density of the two patches in Fig. 7.10

when only patch 1 is excited ( The frequency equals to 2.30 GHz)
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Chapter 8

Results

8.1 Introduction

This chapter presents a few sample results obtained by the current method. The results

are twofold.

• Application to linear patch antenna array consisting of three patches etched on a
single dielectric layer

• Application to finite frequency selective surface (FSS)

The above examples are chosen due to their simplicity and easy-to-verify nature. Since

the current method does not impose any constraint on the shape of the metallic structure,

other than that it is planar, analysis of intricate structures is possible with the present

codes. Since the codes are written only to implement the method and to verify the

current approach with simple algorithms, the intention of this chapter is only to affirm

their accuracy rather than to prove their efficiency over commercially available software.

8.2 Application to Linear Patch Antenna Array

8.2.1 Stand alone patch antenna with inset microstrip line feed

A stand alone rectangular patch antenna fed by a microstrip line was first designed. It

was etched on a simple dielectric layer of Rogers RT/duroid 5880. The dielectric constant,

loss tangent and thickness of the substrate are given as 2.2, 0.0009 and 0.381 mm (15

mil) respectively. In order to match the characteristic impedance of the microstrip line

to the impedance seen by the microstrip line, the microstrip line was inset as shown in

Fig. 8.1. The dimensions of the structure were determined using mathematical formulas

in [42] and other commercial software. A long stripline feed was purposely selected to

facilitate the accurate extraction of S parameters during the simulations.
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Fig. 8.1: Layout of the patch antenna fed by microstrip line

Simulated and measured results

This single patch was analyzed with the present method in the frequency range from 2.35

GHz to 2.45 GHz. This patch was then etched on 15 cm by 13.5 cmRogers RT/duroid 5880

plate (Fig. 8.2). The reflection coefficient, equivalently S11, was measured in an anechoic

chamber using the network analyzer HP8720C. Figure 8.3 compares the measured results

with the simulated results. The measurements show a good agreement with the simulated

results. The simulated resonant frequency deviates less than 1 percent from the measured

resonant frequency. In addition, the x-, y- and total current density distributions at the

frequency 2.40 GHz are also given in Fig. 8.4 - 8.6.

8.2.2 Linear antenna array consisting of three patches

Simulated and measured results

A linear array consisting of three equivalent patches in Fig. 8.1 was designed (Fig. 8.7).

Their mutual coupling coefficients and reflection coefficients were determined in the fre-

quency range from 2.35 GHz to 2.45 GHz using the present method. When the port

feeding patch 1 is excited by a delta gap voltage generator, the resulting x-, y- and total

current density distributions at frequency 2.4 GHz are given in Fig. 8.9 - 8.11. Moreover,

the same configuration was simulated using Momentum, which is a part of the commercial

software package ADS (Advanced Design System).

The linear patch array was etched on 27.5 cm by 14.2 cm Rogers RT/duroid 5880 plate

(Fig. 8.8). The S11, S22 and S33 were measured in an anechoic chamber using the network

analyzer HP8720C. The ports which were not connected to probes were terminated with 50

Ω. The measured S-parameters together with the corresponding simulated S parameters,

both using the present method and Momentum, are plotted in Fig. 8.12 - 8.14. Likewise,
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Fig. 8.2: Prototyped inset patch antenna in Fig. 8.1
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Fig. 8.3: Measured and simulated reflection coefficient (S11) of the stand alone patch shown in Fig.
8.1
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Fig. 8.4: Converged x-directed surface current density on the stand alone inset patch in Fig. 8.1 at
the frequency 2.40 GHz

Fig. 8.5: Converged y-directed surface current density on the stand alone patch in Fig. 8.1 at the
frequency 2.40 GHz
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Fig. 8.6: Converged total surface current density on the stand alone patch in Fig. 8.1 at the frequency

2.40 GHz

the measured S12, S13 and S23 together with simulated results are shown in Fig. 8.12

- 8.14. Again, the measurements of reflection coefficients, i.e. S11, S22 and S33, show a

good agreement with the simulated results. However, the simulated mutual coefficients,

i.e. S12, S13 and S23, both from the present method and Momentum, show a few decibel

deviation at the resonant frequency. Though we can not pin-point the exact reasons for

such deviation, the finite nature of the substrate, the loss due to port contacts and feed

lines, and the change in properties of the substrate from specified values, may contribute

significantly.

8.3 Application to Finite Frequency Selective Surfaces

8.3.1 Introduction

Frequency selective surfaces (FSS) typically consist of either a periodic array with ar-

bitrarily shaped conductors or a periodic array with arbitrarily shaped apertures. The

former type is known as normal type whereas the later as inverse type. Both types are

often backed by one or several dielectric layers. FSSs are bandpass or bandstop filters

of electromagnetic waves and useful for efficient use of the frequency spectrum. Their

spectral responses depend on element configuration, element spacing and characteristics

of the dielectric layer, if there is any. FSS are used in, for example, hybrid radomes,

dichroic reflectors, circuit analog absorbers, polarizers, etc. [68]
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Fig. 8.8: Prototyped linear patch array in Fig. 8.7
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Fig. 8.9: Converged x-directed surface current density on the linear patch array shown in Fig. 8.7
at the frequency 2.40 GHz

Fig. 8.10: Converged y-directed surface current density on the linear patch array shown in Fig. 8.7
at the frequency 2.40 GHz
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Fig. 8.11: Converged total surface current density on the linear patch array shown in Fig. 8.7 at the

frequency 2.40 GHz
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Fig. 8.12: Measured and simulated reflection coefficient S11 of the linear patch array in Fig. 8.7
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Fig. 8.13: Measured and simulated reflection coefficient S22 of the linear patch array in Fig. 8.7
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Fig. 8.14: Measured and simulated reflection coefficient S33 of the linear patch array in Fig. 8.7
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Fig. 8.15: Measured and simulated mutual coupling coefficient S12 of the linear patch array in Fig.
8.7
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Fig. 8.16: Measured and simulated mutual coupling coefficient S13 of the linear patch array in Fig.
8.7
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Fig. 8.17: Measured and simulated mutual coupling coefficient S23 of the linear patch array in Fig.
8.7
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Fig. 8.19: A plane wave incident on an ar-

ray of Jerusalem crosses

8.3.2 Element structure : Jerusalem cross

The geometric shape of the element is utmost important in designing a proper FSS.

Fortunately, there are myriads of types of elements available to the designer. We shall

in our analysis confine ourselves to a rather complicated geometry known as Jerusalem

cross. The loaded version of the Jerusalem cross is shown in Fig. 8.18.

Free standing Jerusalem cross

A free standing loaded Jerusalem cross shown is in Fig. 8.18. It is analyzed when a

perpendicularly incident plane wave is scattered from it (Fig. 8.19). The dimensions of

the Jerusalem cross are selected following [69], so that the results acquired here can be

easily verified. A single cross is first analyzed at 8 GHz applying the grid shown in Fig

8.20. The resulting normalized x-, y- and total current densities are illustrated in Fig.

8.21 - 8.23.

Two configurations of finite arrays of free standing Jerusalem crosses are next simulated:

an array of four by four elements and an array of eight by eight elements. Their scattered

fields in the direction of incidence, as a function of frequency are calculated based on the

induced surface current densities acquired by the present method. Figure 8.24 shows the

normalized magnitude of the scattered field in the direction of incidence as a function of

frequency for the four by four array. It illustrates that the scattering in the direction of

incidence is maximum around 8.2 GHz. The corresponding total surface current densities

at 6 GHz, 8 GHz and 10 GHz are shown in Fig 8.25, 8.26 and 8.27 respectively. They

illustrate the existence of different types of current modes at these frequencies [68].



124 Results

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Grid Index No.

G
rid

 In
de

x 
N

o

Fig. 8.20: Grid applied for a loaded

Jerusalem cross

0.1
0.2

0.3

0.1

0.2

0.3

0

0.2

0.4

0.6

0.8

1

X / λY / λ

N
or

m
al

iz
ed

 |J
x|

Fig. 8.21: Normalized x directed surface current

density at 8 GHz

0.1
0.2

0.3

0.1

0.2

0.3

0

0.2

0.4

0.6

0.8

1

X / λY / λ

N
or

m
al

iz
ed

 |J
y|

Fig. 8.22: Normalized y directed surface cur-
rent density at 8 GHz
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Fig. 8.24: Scattering patterns of a free standing 4 by 4 array of Jerusalem crosses at frequencies 6 -

10 GHz

An eight by eight array of loaded Jerusalem crosses is also investigated in the frequency

range of 6 GHz - 10 GHz for their scattering properties (Fig 8.28). The normalized

total surface current density at 8 GHz is shown in Fig 8.29. It reveals the subtle details

of the current distribution of a finite FSS. In order to highlight the accuracy of the

present method, an already published result for an infinite FSS consisting of the same

elements is given in Fig. 8.30, where the reflection coefficient is illustrated as a function

of frequency. It agrees well with both scattering patterns in Fig. 8.24 and 8.28 based on

the present method even though the finite FSSs tried out here are quiet small. Hence,

the present method would be a significant tool when analyzing different planar finite FSS

and optimizing their behavior for some particular application. For example, Fig. 8.25 -

8.27 imply that the small secondary crosses used to load the Jerusalem cross do not have

a significant effect on the performance of the FSS due to their negligible surface current

densities. This fact is also obvious in Fig. 8.30.
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Fig. 8.25: Normalized surface current density on 4 by 4 array of FSS at 6 GHz
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Fig. 8.26: Normalized surface current density on 4 by 4 array of FSS at 8 GHz
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Fig. 8.27: Normalized surface current densit on 4 by 4 array of FSS at 10 GHz
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Fig. 8.28: Scattering patterns of a free standing 8 by 8 array of Jerusalem crosses at frequencies 6 -

10 GHz

Fig. 8.29: Normalized surface current density on 8 by 8 array of FSS at 8 GHz
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Fig. 8.30: Magnitude of reflection coefficient versus frequency for an infinite structure of loaded

Jerusalem crosses in Fig. 8.18 (solid line) and unloaded ( i.e. without the secondary

crosses) Jerusalem crosses (dashed line) [69]



Chapter 9

Discussion and Conclusions

This chapter starts with a brief discussion of the pros and cons of the present method. We

then summarize the major conclusions, which have already been drawn in the previous

chapters. A short list of future directions is also appended at the end.

9.1 Discussion

The various forms of MoM have been applied in analyzing stratified planar structures for

decades. The favorite has been MoM in the spectral domain. The space domain MoM

has on the other hand been applied only when the necessary spatial Green’s functions are

available in closed forms. In the present work, we have focused on applying space domain

MoM for arbitrary stratified planar structures even if the spatial Green’s functions are

not available in such a prerequisite form.

In addition, an attempt has also been made here to develop a more efficient space do-

main MoM than the conventional space domain MoM. Each major step of the MoM was

addressed separately and enhanced independently. Finally, all these subsystems were

linked together to form a complete space domain MoM suited for analyzing arbitrary pla-

nar stratified structures. The method was then realized in MATLAB codes. MATLAB

was selected solely due to its user-friendly interface and easy-to-use software routines

available for graphical illustrations. The method was then applied to practical planar

stratified structures such as microstrip patch arrays and frequency selective surfaces. The

MATLAB codes implementing the present method were far superior to MATLAB codes

implementing an conventional MoM. They also led to accurate results that were com-

parable with the results obtained by commercial software and measurements. We have

also attempted to justify the efficiency of the present method by simply comparing each

novel method with the corresponding conventional method. These comparisons were done

either based on simulations, mathematical or logical reasonings.

Nevertheless, we were unable to affirm the efficiency of the final product of the present

method due to unavailability of a proper reference code for the conventional space domain

MoM. A direct and very unfair comparison with commercial codes showed that the present
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method still needs some improvements in order to be commercially competitive. Such

comparison is truly unfair because these commercial software are often well optimized

with respect to processing time and memory usage. However, this does not imply that

the methods behind the commercial software are more efficient than the method developed

here.

9.2 Conclusions

In the following, we summarize the conclusions made in the previous chapters.

The DCIM was introduced to find closed form expressions for spatial Green’s functions

that are critical to the space domain MoM implementation. The present formulation of

DCIM was equally accurate and more efficient compared to traditional way of evaluating

Sommerfeld integrals based on the corresponding spectral Green’s functions. The robust

GPOF method was applied in extracting the complex exponential functions from a known

discrete data set. The examples of closed form expressions derived by DCIM were very

accurate when compared with so-called exact spatial Green’s functions found by evalu-

ating the Sommerfeld integrals numerically. Moreover, the DCIM was far more efficient

compared with the numerical integration methods. Therefore, we can safely conclude

that the closed form expressions derived by DCIM are accurate, and they make the space

domain MoM more efficient. In other words, DCIM facilitates the application of space

domain MoM to large arbitrary scatterers on planar stratified media.

The resulting closed form expressions for the spatial Green’s functions comprise complex

exponential terms. During the matrix filling process, some of these terms led to sin-

gular two-dimensional exponential integrals, which were time-consuming and inaccurate

if evaluated using common quadrature methods. We therefore generalized the method

suggested in [49]. This method was shown to be very accurate and efficient when ap-

plied to singular 2D exponential integral. Since this particular method could be useful

in evaluating 2D generalized exponential integrals encountered in other context, it was

formulated as a simple numerical integration algorithm that can easily be integrated with

other software as well. It is thus concluded that the present extension results in more

efficient space domain MoM that is applicable to large planar scatterers.

Conjugate gradient fast Fourier transform was employed in solving the linear equation

system resulting from the space domain MoM. We implemented a compact formulation

of CG-FFT by exploiting the implicit symmetries and the linear invariant property in-

herent in coefficient matrices. It was found that this novel formulation reduces memory

requirement significantly without compromising the accuracy. As predicted in the liter-

ature, the number of iterations needed to achieve a solution of some given accuracy was

shown to be quiet smaller than the theoretically predicted number of iterations required

for convergence, which is equal to the number of unknowns. The convergence was mostly

monotone and fast. The present algorithm was shown to be far superior to the direct

matrix inversion algorithms when large number of unknowns were involved. The method

was also flexible, in the sense that one could easily modify the planar metal structure

without repeating the process of matrix filling. However, the present form of CG-FFT

is unable to solve the same structure for various excitations, either consequently or in
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parallel, without restarting the iterations. Nevertheless, we can confidently declare that

the present version of CG-FFT effectively extends the application of space domain MoM

to large planar scatterers in stratified media.

The present method was applied to analyze stratified planar structures and finite FSS

structures. The results were found to be in agreement with the results obtained from

the contemporary commercial software and the results stated in publications. In the case

of the stand-alone patch and three element patch array, the simulated and measured S-

parameters were comparable, thus leading to the ultimate conclusion that the present

space domain MoM is an accurate and efficient tool for analyzing large arbitrary pla-

nar scatterers in stratified structures. However, the current version still requires further

optimizations in order to be an attractive competitor to the commercial software based

mostly on spectral domain MoM.

9.3 Suggestions for Future Work

The work performed here has basically been focused on methods improving the classical

space domain method of moments such that it can handle larger and more complex

2D planar structures. Each step of the classical space domain MoM is improved, thus

achieving an overall efficient method. From the experience gained during this work, we

believe that there is still room for further improvements. Such improvements are desired

and feasible. Hence the following specific research activities are suggested for further

elaboration.

9.3.1 Implementation

The method is implemented in MATLAB, which is not efficient compared to more dedi-

cated software languages like C, C++, Fortran, etc. So in order to compare the present

method with commercially available software, it is advisable to implement the present

method in more efficient programming language and codes. It is also necessary to iden-

tify the existing bottlenecks in the present implementation. For example, the calculation

of 2D Fourier transforms in implementing the current version of CG-FFT has shown

to consume a significant amount of processing time and memory. Such bottlenecks can

presumably be eliminated by writing tailor-made program codes.

9.3.2 Discrete complex image method

The present version of DCIM does not explicitly take care of surface wave contributions.

For thicker dielectric layers with higher dielectric constant, surface waves contribute sig-

nificantly to the far field just above the stratified planar structures. Thus, the extraction

of surface wave poles as suggested by [28] would be preferred. It will also be neces-

sary to address the issues connected to numerical stability of DCIM more precisely and

quantitatively to further confirm its robustness.
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9.3.3 Method of moments

The present method is implemented using a uniform grid of rooftop subdomain basis and

testing functions. It enables the analysis of arbitrarily complex structures at the cost of

efficiency. For this method to be competitive in analyzing general stratified structures, a

way of integrating non-uniform grids of subdomain basis and testing functions, or eventu-

ally combining them with entire domain basis and testing functions, has to be found. In

addition, this should be done in such a way that the existing symmetries in the coefficient

matrices do not disappear entirely.

9.3.4 De-embedding

Although we devoted a short chapter to de-embedding methods, it is not by any means

intended to cover the de-embedding techniques in detail. Consequently, we only presented

the most simple and straightforward feeding technique, the microstrip feedlines and the

ways of extracting corresponding S parameters from it. For accurate results, an extended

microstrip feedline was used in simulations, subsequently increasing the processing time

and memory requirements drastically. Therefore more efficient de-embedding methods

need to be suggested for microstrip feedlines and other feeding techniques. For example,

in [70], [71] and [72], a novel model suitable for planar stratified media is discussed. It

avoids extended feedlines and takes into account the effect of the finite ground plane, thus

acquiring more accurate results.
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