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Abstract

This thesis describes the implementation of a system for analyzing circuits with
respect to their path-delay fault testability. The system includes a path-delay
fault simulator and an ATPG for path-delay faults combined into a test tool.
This test tool can run standalone on a single machine, or as one of several
clients that communicate through a central server. The test tool is used in this
thesis in order to evaluate the performance of 14 different test vector generators
that can be used in various built-in self-test arrangements.

The test generators exploit pseudo-random stimuli generation. We have
used six different strategies for weighting of input signals, and performed com-
prehensive experiments to evaluate the efficiency of the strategies. Each of the
experiments typically consists of three phases:

• In the first phase, the ATPG is used in order to find the K-longest non-
robust testable path-delay faults. The corresponding path numbers are
then saved together with the corresponding test vector for later use. The
paths constitute the target fault list during simulation. Experiments that
consider all possible faults skip this phase.

• In the second phase, weights are generated for the weighted pseudo-
random generators. These weights are stored for later use. This phase
is skipped for experiments where the generator is unweighted.

• In the third phase the actual simulation takes place. In all experiments
10M single-input-change test patterns were applied and repeated ten times
for each generator and circuit in order to cover some statistical variations.
Only non-robust faults (including robust faults) were considered.

Two groups of pseudo-random generators have been evaluated. The first
group, GA, consists of accumulator based pseudo-random generators. The sec-
ond group, GT, consists of Mersenne twister based pseudo-random generators.



iv

The result has shown that the GT group of pseudo-random patterns give
marginally better results than the GA group. Since GA generators are much less
computationally intensive, GA generators are reccommended over GT genera-
tors in practical applications. Experiments have also been conducted in order to
evaluate the benefit of weighted stimuli compared to unweighted stimuli. The
results show that test time can be reduced with up to 15 times for the circuits in
the ISCAS’85 benchmark suite.

Based upon comprehensive experiments with various weighting schemes on
ISCAS benchmarks, one can conclude that the following three-phase approach
works well: First, generate test patterns to detect the K(20000) longest paths.
Subsequently, compute weights for each input based upon the gennerated pat-
terns. Finally, employ an accumulator based BIST scheme with the weights on
non-robust path-delay faults.
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Chapter 1

Introduction to testing

1.1 A brief history of integration

1.1.1 The first integrated transistor

In 2000 the Nobel Prize in Physics was awarded to Jack S. Kilby for ”his part
in the invention of the integrated circuit”. This great achievement took place in
1958 when Kilby was working at Texas Instruments with electronic component
miniaturization (Figure 1.1). Independently and at the same time Robert Noyce,
co-founder of Fairchild Semiconductors and Intel Corp, and later known as
”Mayor of Silicon Valley”, also realized that a whole circuit could be integrated
on a single chip.

Figure 1.1: Kilbys integrated circuit. (Courtesy of Texas Instruments)
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The first thing Kilby did with his integrated circuit was probably to test it.

1.1.2 Moore’s law

Ever since that day more and more transistors have been successfully integrated,
which brings us to Gordon E. Moore and his famous prediction [Moo65] from
1965. Moore stipulated, in what is later known as Moores law, that the num-
ber of transistors that can be integrated onto one chip will double every year.
Moore’s original sketch of his prediction is shown in Figure 1.2.

Figure 1.2: In 1965, Gordon Moore sketched out his prediction of the pace of
silicon technology. Decades later, Moores Law remains true, driven largely by
Intels unparalleled silicon expertise. (Copyright 2005 Intel Corporation.)

The industry has since then successfully lived up to the expectations of
Moore’s law, although the rate of growth has been reduced to about a doubling
of the number of transistors pr 18 months.

1.1.3 International Technology Roadmap for Semiconductors

In 1977 the five innovators Robert Noyce (Intel), Wilfred Corrigan (LSI Logic),
Charles Sporck (National Semiconductor), W.J. Sanders III (AMD), and John
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Welty (Motorola) founded the Semiconductor Industry Association (SIA). This
trade association was founded with the purpose of representing the U.S. semi-
conductor industry. Among the activities of the SIA is to maintain the Inter-
national Technology Roadmap for Semiconductors (ITRS). According to SIA
the ITRS is ”the fifteen-year assessment of the semiconductor industry’s future
technology requirements”.

The ITRS maps the challenges in all areas of the semiconductor industry,
including testing. According to the 2005 edition of the roadmap ”Changing cir-
cuit sensitivities are likely to make defects that were benign in the past become
killer defects in the future. For example, shorter clock cycles mean defects that
cause 10s or 100s of picoseconds of delay are more likely to cause circuit fail-
ures. Furthermore power-optimized and/or synthesized designs will result in
fewer paths with significant timing margin, which implies that random delay-
causing defects will be more likely to cause failure. Similarly increasing noise
effects, such as crosstalk and power/ground (GND) bounce, decrease noise and
timing margins and again increase circuit susceptibility to defects” [ITR05].

In such a world, testing for delay defects is a necessity.
ITRS 2005 also emphasis the need for BIST techniques. There are mainly

two reasons for BIST: at-speed testing, and the problem of test data volume
increase at the ATE (Automatic Test Equipment).

1.2 Main contribution

The main contributions of this thesis may be summarized as follows:
A comprehensive system for path delay fault detection has been developed.

The system encompasses:

• An exact path delay fault simulator.

• An automatic test pattern generator for detecting the K longest path-delay
faults.

• Stimuli generators employing various arithmetic BIST schemes have been
investigated.

• A well known pseudorandom source, the Mersenne twister, has been ex-
ploited as a gauge for pseudorandom quality of other sources, notably
different arithmetic BIST schemes.
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• A distributed fault simulator, with encapsulation in screen savers, to fully
utilise idle computing power in a distributed network.

Exploration of the power of the system on iscas’85 circuit benchmarks, with
the following results:

• Arithmetic BIST schemes may have strong pseudorandom properties, ap-
proaching the computationally expensive Mersenne twister.

• The overall most efficient Arithmetic BIST scheme for path delay fault
detection, in terms of quality and overhead, is a weighted pseudo-random
generator. The weights are based on relating signal values applied to the
inputs of the circuit under test with the detected number of faults for that
vector.

• Due to the large variation of characteristics of digital circuitry, there ex-
ists no overall best strategy for BIST-based path delay fault detection.

1.3 Organization of this thesis

This thesis is organized in the following manner:
In Chapter 2 an overview of existing delay fault models is presented, in-

cluding the path-delay fault model which is the fault model assumed in all ex-
periments presented in this thesis.

Chapter 3 gives an overview of different test application schemes for delay
faults. One of the aspects of delay testing discussed here is that tests for delay
faults require transitions to be applied to the circuit under test (CUT), and how
such tests can be applied to the CUT.

In Chapter 4 common ways of classifying path-delay faults are presented.
The two most important fault classes mentioned are the class of robust sensi-
tizable and the class of non-robust sensitizable path-delay faults. These fault
classes are included in the path-delay simulator, and the ATPG which was used
during the experiments that will be presented in this thesis.

Chapter 5 discusses how path-delay fault simulation can be implemented,
and presents an overview of the path-delay simulator developed for use in the
experiments.

The number of paths and path-delay faults in a circuit can be exponential
in the number of gates in the circuit. For such circuits it is only feasible to test
a fraction of all the path-delay faults. Chapter 6 presents an ATPG for path-
delay faults. The purpose of the ATPG is to sort out the longest testable paths
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in the circuits. In the experiments different pseudo-random test generators were
applied to the CUT, and their ability to detect these longest path-delay faults
evaluated.

Chapter 7 presents a set of test pattern generators. The generators presented
will later be evaluated with respect to their ability to detect path-delay faults.

Chapter 8 presents various experiments carried out with the test generators
from Chapter 7, using the path-delay simulator from Chapter 5, and the path-
delay ATPG from Chapter 6.

Chapter 9 presents concluding remarks and discusses future work.
In Appendix A a software library for directed acyclic graphs is given. The

library was used as a part of the path-delay fault simulator and the path-delay
fault ATPG developed.
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Chapter 2

Delay fault models

In this chapter an overview of existing delay fault models is given. A more
elaborate overview is found in [KC98].

2.1 Introduction

A simple sequential circuit with its primary and secondary inputs and outputs
is illustrated in Figure 2.1. Let us assume that all primary inputs are driven
directly by the output of flip-flops. This illustration will be used as an aid in the
description of the delay test problem.

comb
logic

clk

pi[0]
pi[1]
si[0]
si[1]

po[0]
po[1]
so[0]
so[1]

Figure 2.1: A sequential circuit.

During operation of the circuit, the combinational part of the circuit will
receive stable input signals shortly after the flip-flops driving the input signals
have settled. If the new input vector differs from the previous vector, a series
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of signal change events will be generated through the combinational circuit to-
wards the outputs. After a while the effects of the signal changes will start
reaching the output signals, and may cause transitions. This is illustrated Fig-
ure 2.2. The boundaries of the transient region are determined by the delay
of the shortest and longest combinational path present in the circuit. After all
signals have settled, the next positive clock edge is applied and the process is
repeated.

po[0]
po[1]
so[0]
so[1]

pi[0]
pi[1]
si[0]
si[1]

clk

Clock period

Transient region

In
pu

t 
Si

gn
al

s
O

ut
pu

t 
Si

gn
al

s

Figure 2.2: Signal transitions at the outputs of the combinational part of a se-
quential circuit.

In a properly manufactured and working chip the delay of the critical path is
shorter than the clock period. Defects in the chip can however change the delay
of the circuit so that it becomes longer than the clock period. If this happens
the circuit is said to contain a delay fault.

Definition 1 (Delay fault) A delay fault is a fault that cause the combinational
delay of a circuit to exceed the clock period.

Defects can be divided into two main groups, namely spot defects and dis-
tributed defects. Spot defects are local to a small area of the chip, and are e.g.
caused by fine grained dust particles. Distributed defects may be caused by
variations in the production process.

The delay fault models can also be divided into two main groups according
to the type of defect that is captured most efficiently by the fault model. The
transition fault model, the gate-delay fault model and the line-delay fault model
are all examples of delay fault models that are used for representing defects
located at single gates. The segment-delay fault and the path-delay fault, on the
other hand, are used to model defects that are distributed over several gates. All
these five fault models will be discussed in this chapter.
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2.2 An ideal fault model

Chip manufacturers want to create chips that deliver the correct function and
performance throughout the guarantee period of the product. In order to achieve
this the chips have to be tested.

The purpose of testing is to separate the functionally faulty circuits from
the good circuits. The pile of good circuits should not contain any functionally
faulty (test escapes) circuits, and the pile of bad circuits should not contain any
circuits without functional faults.

Study and modelling of physical defects and electrical problems (signal
integrity, noise) in the circuits have proven to be the most successful way to
isolate the functionally faulty circuits. Two observations are important in this
context:

• A functionally faulty circuit implies that a problem of some sort exist in
the circuit. The problem could be a defect in the circuit or signal integrity
issues.

• A defect in the circuit does not imply that the functionality or perfor-
mance of the circuit is always altered. However, a defect usually alters
the functionality or degrades the performance of a circuit.

With these observations in mind, one way to sort the bad chips from the
good is to look for defects. Throwing away all defective circuits may lead to
discarding a properly working circuit (over testing). This is however not as big
a problem as letting a defect circuit pass the test (test escape).

In order to design good tests that can isolate circuits with defects, it is neces-
sary to find a good fault model. Ideally a fault model should capture the defects
in the circuit in such a way that if a test for all possible faults is devised then
the test will be able to sort all defective circuits from the others. Furthermore,
the ideal fault model must be efficient enough to handle large designs. Efficient
software, such as fault simulators and automatic test pattern generators, must
also be possible to build around the fault model.

The following sections present some of the most successful fault models
targeting delay faults. All models considered in the following sections model
the physical defects at the logical level. Models at the electrical level is out of
the scope of this thesis but might be necessary when dealing with for instance
signal integrity problems.
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2.3 Transition fault model

The transition fault model was first introduced in [WLRI87] and a definition as
it appears in [BA02] is given in Definition 2.

Definition 2 (Transition delay fault model (from [BA02])) It is assumed that
in the fault-free circuit all gates have some nominal delay and that the delay of
a single gate has changed. The gate-delay, usually an increase over the nom-
inal value, is assumed to be large enough to prevent a passing transition from
reaching any output within the clock period, even when the transition propa-
gates through the shortest path. Possible transition faults of a gate are slow-
to-rise and slow-to-fall types and hence the total number of transition faults is
twice the number of gates. Transition faults model spot defects and are also
called gross-delay faults.”

The main advantage of the transition fault model (compared with for in-
stance the path-delay fault model) is that the number of faults is linear in the
number of gates. Additionally, an ordinary ATPG for stuck-at faults can be used
for creating transition fault tests. In order to detect a slow-to-rise or a slow-to-
fall transition fault at a given gate, a transition must be propagated through the
gate. This can only be achieved through a two pattern test T = {v1, v2}. One
way to device a test for a slow-to-rise (slow-to-fall) transition fault is to find a
test ,v2, for the output of the gate stuck-at-0 (stuck-at-1). v2 will cause the out-
put of the gate to be 1(0) in a fault-free circuit. It also ensures that the transition
fault is observable at one of the outputs. The first vector, v1, can be any vector
causing the output of the gate to be 0(1).

The transition fault model has some drawbacks as well. Figure 2.3 shows
a small circuit with a slow-to-rise transition fault present at gate h. A valid test
for the transition fault is T = {v1 = 1010000, v2 = 1110000}, which propagates
a rising transition through the faulty gate to the output y. However, the path on
which the transition propagates is very short and has a lot of slack. The large
slack on the path may prevent the transition fault from being detected although
the transition fault is present in the circuit and will cause erroneous behaviour in
another situation. The assumption that the gate-delay is always ”large enough to
prevent a passing transition from reaching any output within the clock period”,
may not always be valid in practice due to large slack on some paths.

Another, somewhat unrealistic, assumption is that the delay fault only af-
fects one gate in the circuit. A delay defect, even a spot defect, may affect more
than one gate. Individually the delay faults may not cause any erroneous be-
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Figure 2.3: Test for a transition fault.

haviour, but together the increased delays in the gates might add up to a delay
large enough to cause erroneous behaviour of the circuit.

2.4 Gate-delay fault model

The gate-delay fault model was developed by among others Iyengar [IRW90,
IRS88a, IRS88b]. The gate-delay fault model has much in common with the
transition fault model, but it tries to cope with its shortcomings by taking into
account the size of the delay fault. A definition of the gate-delay fault model is
given in Definition 3.

Definition 3 (Gate-delay fault model) It is assumed that in the fault-free cir-
cuit all gates have some nominal delay and that the delay of a single gate has
changed. The increase in this gate-delay is called the size of the gate-delay
fault. Depending on the size of the gate-delay fault the gate-delay fault might
cause performance degradation of long paths through the fault site and erro-
neous behaviour of the circuit.

The main advantage of the gate-delay fault model is that the number of
faults grow linear with the number of gates in the circuit. The main disadvan-
tage is that the gate-delay fault model may fail to detect delay faults caused by
several smaller defects.

2.5 Line-delay fault model

The line-delay fault model was proposed by Majhi et al. [MJPA96]. A defini-
tion of the line-delay fault model is given in Definition 4.
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Definition 4 (Line-delay fault model) It is assumed that in the fault-free cir-
cuit all lines (signals) have some nominal delay associated with them, and that
the delay of a single line has changed. The line-delay, is assumed to be large
enough to prevent a transition propagated along the longest sensitizable path
through the fault site to reach the output within the clock period. Possible line-
delay faults are rising and falling types and hence the total number of line-delay
faults is twice the number of lines. Tests for line-delay faults detect spot defects
and even some distributed defects.

The main advantage of the line-delay fault model is that the number of faults
is linear in the number of lines. Furthermore, it represents an improvement
compared with the transition fault and gate-delay fault model in that it also
detects some distributed defects. This can be illustrated by the following: A
vector pair that creates and propagates a transition on the longest sensitizable
path in the circuit will be a valid test for all lines on that path. A distributed
defect present at more than one line might thus be detected even though the
increased delay at the individual lines were too small to be detected by tests for
the corresponding transition faults. However, since only one propagation path
through each line is considered, it may fail to detect some distributed defects.

2.6 Segment-delay fault model

The segment-delay fault model was proposed by Heragu et al. [HPA96b, HPA96a].
A definition of the segment-delay fault model is given in Definition 5.

Definition 5 (Segment-delay fault model (from [BA02])) A segment of length
L is a chain of L combinational gates. Such a segment can be contained in one
or more input to output paths. A segment-delay fault increases the delay of a
segment such that all paths containing the segment will have a path-delay fault.
If L is taken as the maximum combinational depth of the circuit, then segment-
delay faults become the same as path-delay faults. For L = 1, segment-delay
faults become identical to transition faults. Two faults, corresponding to two
types (rising and falling) of transitions are modelled for each segment.

The segment-delay fault model represents a trade-off between the transition
fault model and the path-delay fault model. By choosing a sensible value of L,
the number of segment-delay faults will be much smaller than the number of
path-delay faults in the circuit. At the same time the set of segment-delay faults
can detect distributed defects affecting the delay of the gates in the segments.
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2.7 Path-delay fault model

The path-delay fault model was proposed by Smith [Smi85]. A definition of the
path-delay fault model is given in Definition 6.

Definition 6 (Path-delay fault model (from [BA02])) The delay defect in the
circuit is assumed to cause the cumulative delay of a combinational path to
exceed some specified duration. The combinational path begins at a primary
input or a clocked flip-flop, contains a connected chain of gates, and ends at
a primary output or a clocked flip-flop. The specified time duration can be the
duration of the clock period (or phase), or the vector period. The propagation
delay is the time that a signal event (transition) takes to traverse the path. Both
switching delays of devices and transport delays of interconnects on the path
contribute to the propagation delay.

There are two path-delay faults associated with each physical path in the
circuit: one slow-to-rise path-delay fault and one slow-to-fall path-delay fault.
Thus, the total number of path-delay faults in a circuit is equal to twice the
number of paths in the circuit.

The path-delay fault model has the ability to detect distributed defects caused
by statistical process variations. A test for a path-delay fault will also detect
eventual spot defects along the path. The delay fault model is therefore often
considered to be closest to the ideal delay fault model [KC98].

The number of paths, and thus path-delay faults, can, due to reconvergent
fan-out, be exponential in the number of gates in the circuit. An example of
this is shown in Figure 2.4. Combinational multipliers are famous for a lot of
reconvergent fan-outs and is another good example of a class of circuits with a
huge number of paths.

0 1 n-1(…)

Figure 2.4: Circuit with an exponential number of path-delay faults.

The possible exponential number of path-delay faults makes it unfeasible to
test all path-delay faults in circuits such as multipliers and other circuits with a
lot of reconvergent fan-out. This is the main problem with the path-delay fault
model.



28 Delay fault models



Chapter 3

Test application schemes

In order to reveal any delay faults, it is necessary to bring the circuit under
test, faulty or not, into a known state and then generate a transition that travels
through the fault site. This requires both a test, and an algorithm or method
for applying the delay test to the circuit under test. The latter is called a test
application scheme, and in the following sections such schemes for both com-
binational and sequential circuits are presented.

Common to all schemes, except the rated clock tests in sections 3.5 and 3.6,
is that initialization and generation of a transition is achieved through a two-
pattern test. The first pattern initializes the circuit and the second generates the
transition through the fault site.

The following assumption applies to all delay faults considered in this book:
The maximum delay, Ts, of a faulty circuit will not exceed twice the maximum
delay, Tr, of a fault free circuit. Two clocks can be derived from this assump-
tion. The rated clock with period Tr, and the slow clock with period 2Tr.

3.1 Slow-clock combinational test

Delay test of combinational circuits and sequential circuits with flip-flops only
on inputs and outputs can be tested for delay faults by the test application
scheme illustrated in Figure 3.1. In normal mode the flip-flops on the input and
outputs are controlled by the same rated clock. However, in delay test mode, the
input flip-flops and output flip-flops are controlled by two slow clocks, skewed
relative to each other, but with the same frequency. In order to detect any delay
faults a transition must be created and propagated through the circuit. This can
be achieved by a two-pattern test V = {P1, P2}. The first test pattern initializes
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the circuit to a known state independent of the presence of any delay faults.
It is assumed that the period of the slow input clock is long enough to ensure
that. The second test pattern is then applied in order to generate a transition
and the response is sampled one rated clock period later by the output clock. A
delay fault is detected if the content of the output registers is different from the
expected result.
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Figure 3.1: Slow-clock combinational test.

3.2 Enhanced-scan sequential test

This scheme [DS91] makes it possible to apply any two-pattern test to a sequen-
tial circuit provided that the circuit is equipped with enhanced-scan flip flops.
Enhanced-scan flip-flops can store two bits instead of one. This makes it pos-
sible to scan in and store any two-pattern test in the enhanced-scan flip flops.
During test the two pre-scanned test patterns are applied in two consecutive
clock cycles. The disadvantages of this approach are very high area overhead
and long test application time.

3.3 Standard scan testing

It is possible to test standard full-scan sequential circuits for delay faults as well,
however not all two-pattern tests are possible to apply. This stems from the re-
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strictions on the second test pattern in the two-pattern test. During test, the first
test pattern is scanned into the flip-flops. The second test pattern on the other
hand must be derived by either applying a one-bit shift to the scan flip-flops, or
by using the captured response from the first test pattern. The first method is
called scan-shift delay test [CDK93] or skewed-load delay test [Sav92, PS92],
and the second method is called functional justification or broad-side delay test
[SP94].

The advantage of this method is that if the circuit is already equipped with
scan-cells it does not impose any additional costs except for the added area due
to eventual reordering of scan-flip flops. One problem with this approach is that
the fault coverage depends on the circuit under test. High coverage cannot be
guaranteed due to the dependencies between the two test patterns in a test.

3.4 Slow-fast-slow sequential test

If the circuit has only partial scan or no scan at all, it is necessary to construct
test programs. Each test program must go through three phases: Fault initializa-
tion, fault activation and fault propagation. The phases are shown in Figure 3.2.
During the fault initialization phase the inputs and flip-flops in the circuit are set
to a desired value through a sequence of input vectors. When the desired initial
state is reached the fault is activated by applying a two-pattern test T = {v1, v2}.
Both test patterns are justified functionally as described in section 3.3. Finally
a test sequence is applied in order to propagate the result to the output.

Delay faults exist in all three phases of the test. In order to avoid manifesta-
tion of faults in the initialization and propagation phases a slow-fast-slow strat-
egy is often applied where the CUT is running at the rated speed only during the
fault activation phase. The use of the slow-fast-slow simplifies the analysis of
the delay test problem and thus the test generation process. The test application
process, on the other hand, is somewhat complicated due to the need for both a
slow and a fast clock.

Unfortunately, there are one more challenge associated with this test appli-
cation scheme. The illustration in Figure 3.2 suggests that the fault effect caused
by a delay fault on the sensitized path is captured by the shaded flip-flop. How-
ever, other delay faults present in the circuit might also affect the signals and
flip-flops and thus faulty values can be captured by more than the shaded flip-
flop. This complicates fault simulation, since it is difficult to encertain what the
next-state will be in the presence of multiple path-delay faults. Analysis of this
problem has been carried out by Chackraborty et al. [CAB92].
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Figure 3.2: Slow-fast-slow sequential test

3.5 Rated-clock combinational test

Two-pattern test sequences are used in the test application schemes presented so
far. These are valid under the assumption that the combinational logic reaches
a steady state following the first test pattern before the second test pattern is
applied. In order to satisfy this assumption a dual clock strategy is used with
one slow and one rated clock.

Hsu and Gupta have stated [HG96] that circuit manufacturers rely on the
use of at-speed tests to detect delay faults. Typically, the coverage of delay
faults is obtained by using built-in self-test where tests are applied at the normal
circuit speed. Ordinary two-pattern tests are invalidated when applied at-speed
since it cannot be guaranteed that the combinational logic reaches a steady state
following the first pattern before the second pattern is applied.

The research in [BAA98] shows that the path-delay fault coverage drops
with as much as 90 % when two-pattern tests intended applied under a dual-
clock scheme are applied at-speed. It is assumed that faulty circuit delays have
an upper bound of two clock periods. Three consecutive patterns must thus be
considered compared to the two necessary in a dual clock scheme. This assump-
tion is pessimistic but necessary in order to ensure that tests are not invalidated.
A 8-valued algebra suitable for at-speed simulation and a 41-valued algebra
suitable for test generation of at-speed test patterns is presented in [BAA98].

3.6 Rated-clock sequential test

The at-speed or rated-clock test application scheme for sequential circuits is
the easiest way to apply test patterns. However, the analysis and generation of
test suitable for this test method is not trivial. The strategy assumes that the
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fault is initialized, activated and propagated under a fast clock. A target delay
fault may thus be activated in several time-frames. Analysis of this problem has
been presented for the path-delay fault model in [BA95, BAA98], and for the
transition fault model in [KT93].

3.7 Test application scheme assumed in this thesis

This thesis presents several accumulator based test generators for use in a built-
in self-test environment. The analysis of these test generators is built around
the following restrictions and assumptions:

• Only combinational circuits or sequential circuits that can be reduced to
combinational circuits through enhanced-scan are considered.

• Only two-pattern tests are considered. It is assumed that the combina-
tional logic reaches a steady state following the first test pattern before
the second test pattern is applied.

• The maximum delay of a faulty circuit will not exceed twice the maxi-
mum delay of a fault free circuit.

• The path-delay fault model is the only fault-model considered.

• Any two-pattern test generated by a generator must be possible to apply
to the circuit under test.

The only test application schemes that fulfils these requirements are the
slow-clock combinational test and the Enhanced-scan sequential test. These
are dual-clock strategies, however it is possible to apply the patterns correctly
by using only the rated clock if the first test pattern is repeated [BAA98]. The
repetition of the first test pattern will thus ensure that the signals reaches a
steady state. The test programs presented in Chapter 7 may be applied using
this test application strategy.
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Chapter 4

Classification of path-delay
faults

There are two common ways of classifying path-delay faults. The most com-
mon way of classifying path-delay faults [CC93] is based on the criteria used
for sensitizing the target path-delay fault. Tests for path-delay faults have dif-
ferent quality. A high quality test for a path-delay fault guarantees the uncondi-
tional detection of the fault. However, high quality tests require very stringent
conditions for path sensitization, and may thus be difficult to find for a given
path-delay fault. If it is not possible to find a high quality test it might still
be possible to find a lower quality test for the same path with less stringent
path sensitization criteria. However, a lower quality test only guarantees the
detection of the path-delay fault under certain assumptions, and the test may
thus be invalidated if the assumptions are not met. It is common to partition
the path-delay faults into the following classes based on sensitization criteria:
single-path sensitizable, robust, non-robust, functional sensitizable and func-
tional unsensitizable. These are found in the bottom row of Figure 4.1 [KC98].
This chapter gives an overview of these classes.

The number of path-delay faults may be exponential in the number of gates
in the circuit, but not all paths have to be tested in order to guarantee the per-
formance of the circuit. Division of paths into paths that have and don’t have
to be tested is another way of classifying path-delay faults. A lot of differ-
ent methods of dividing path-delay faults in this way have been proposed in
[KM94, GBA95, LSBSV95, SLCR95, KM95, CC96, KCC96, SS97]. By find-
ing good ways of sorting out paths that do not have to be tested, it is possible to
find a better estimate of the fault coverage. Methods for extraction of paths that
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do not have to be tested will not be covered in this thesis. (An overview of some
methods can be found in [KC98].) Hence, in this thesis the fault coverage will
thus be measured as the number of detected faults relative to the total number
of path-delay faults in the circuit.

Path Delay Faults

Single Multiple

Functional
RedundantFunctional Irredundant

Single-Path 
Sensitizable Robust

Non-Robust 
and

Validatable 
Non-Robust

Functional Un-
sensitizable

Functional 
Sensitizable

Paths that 
must be tested

Paths that 
don’t have to be tested

Figure 4.1: Classification of single path-delay faults.

First in this chapter, nomenclature used in the discussion is presented. The
classification that will be presented is based on sensitizing criteria. These cri-
teria are based on reasoning on transitions and thus a section is devoted to the
discussion of transitions in Section . The sections 4.3 through 4.7.

4.1 Terminology

This section presents some terms and symbols used throughout the discussion
in this chapter.

A combinational circuit, C(G, F), consists of a set of gates G and a set of
connections F between the gates.

Each physical path P = {g0, f0, g1, f1, ..., fk−1, gk} in the combinational cir-
cuit C(G, F), is identified by the list of alternating gates g and connections f
the path passes through. The first gate g0 is a primary input and the last gate in
the path gk is a primary output.

Two path-delay faults Px, x ∈ {rising, f alling}, are associated with each
physical path one for each type of transition applied to the input of the physical
path.

The connection fi, 0 ≤ i ≤ k − 1, is a signal on the path Px and connected
to one input of gate gi+1. Such signals are referred to as on-inputs to Px. The
gates on the path Px also have other inputs which are not on the path. These are
called off-input signals to Px.

The input of a gate can either have a controlling (cv) or non-controlling



4.2 The nature of transitions 37

(ncv) value. A controlling value applied to the input of a gate determines the
value at the output of the gate alone (i.e. independent of values at other inputs
of the gate). The controlling value for AND and NAND gates is 0, and for OR
and NOR gates the controlling value is 1. The non-controlling value for a gate
is the complement of the controlling value.

Detection of path-delay faults requires a two-pattern test T = {v1, v2} to be
applied to the circuit under test. Further details may be found in Chapter 3.

4.2 The nature of transitions

4.2.1 Transition

The classification of path-delay faults is based on an analysis of the way tran-
sitions are propagated along the different paths in the circuit. It is therefore
important to have a good understanding of how transitions behave on the way
through the circuit. A transition should be understood as described in Defini-
tion 7.

Definition 7 (Signal transition) A transition at a signal or a gate in a circuit
is a single change in the logic level. A transition may be of one of two different
types. A signal change from 0 to 1 is called a rising transition, and a signal
change from 1 to 0 is called a falling transition.

4.2.2 The maximum number of transitions and their position in
time

In order to test a path-delay fault a transition must be applied to the input of
the path. Although only one transition is applied to only one input, one might
observe several transitions at the output of the path, and at other outputs as well.
This effect is caused by fan-out present in the circuit. Figure 4.2 a illustrates
how one transition at each of the inputs of a gate might result in two transitions
at the output of the gate. Another example is shown in Figure 4.2 b.

The maximum number of transitions that can be observed at the output of
a gate is equal to the sum of the maximum number of transitions observable at
each input of that gate. One pass through a topologically sorted netlist using
this rule will yield the maximum number of potential transitions observable at
any gate in the circuit. This is illustrated in Figure 4.2 c where it is assumed
that one transition is applied to each input. An interesting observation is that
the maximum number of transition observable at the output of the circuit is
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Figure 4.2: The maximum number of transitions at a gate.

equal to the number of paths in the circuit. However, in practice one will not
experience the maximum number of transitions because transitions are often
masked (see Figure 4.3) and prevented from further propagation through gates
by controlling values on the other gate inputs. The actual number of observed
transitions depends on the exact delay of the gates and nets in the circuit under
test in addition to its structure and the applied test patterns.

0

Figure 4.3: Masking of transitions.

A transition propagating through a circuit is delayed by an amount equal
to the sum of the delays through the gates and nets on the path it is travelling
through. An example, using a simple transport delay, is shown in Figure 4.4 a.
The circuit contains two paths and a maximum of two transitions may thus be
observed at the output o. The first transition stems from the transition propa-
gated through the shortest path i − k − o with a delay of 1 unit, and the second
transition stems from the transition propagated through the longest path i− j−o
with a delay of 2 units. If the delay of a path is increased, the position of the
corresponding transition observable at the output will be adjusted with the same
amount. This is illustrated in Figure 4.4 b where the longest path is increased
by 1 unit.

The number of paths in the circuit and the delay of the paths determine the
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Figure 4.4: Propagation delay through paths.

points in time where transitions might occur at the output of an circuit. Whether
or not an transition is observable at the output depends on, as mentioned earlier,
both the structure of the circuit, the delay of the paths and the applied test
patterns. Figure 4.5 a shows an imagined circuit with 6 paths from the inputs
to the output. The delay of the paths is shown in Figure 4.5 b. From this
information one can deduce that maximum 1 transition may be observed at the
output 1 unit after a transition is applied to the input of the circuit, no transitions
may occur after 2 units, a maximum of three transitions may occur after 3 units,
and maximum 2 transitions may occur after a delay of 4 units. The observed
waveforms at the output of the circuit might thus be similar to the ones shown
in Figure 4.5 c for three different two pattern tests vectors.

4.2.3 Hazards

When more than one transition occurs during a short time interval, the transi-
tions are referred to as a hazard. There are two types of hazards static and dy-
namic. Static hazard is the term used on a group of two rapid transitions from
the initial value and back again. There are two types of static hazards static one
hazard (also called low going glitch) and static zero hazard (also called high
going glitch). The hazard is called a static one hazard when the initial signal
value is 0 followed by a 0 → 1 transition and a 1 → 0 transition. The hazard
is called a static zero hazard when the initial signal value is 1 followed by a
1→ 0 transition and a 0→ 1 transition. Dynamic hazard is the term used on a
group of three rapid transitions from the initial value to the final value, back to
the initial value, and back to the final value again.
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Figure 4.5: Possible transitions and their location in time.

4.3 Single-path sensitizable path-delay faults

A delay fault on a path that is single-path sensitizable is called a single-path
sensitizable path-delay fault. The criterion for a path to be single-path sensitiz-
able is that all off-inputs must be set to ncv for both test vectors. If a transition
is propagated through a path with stable values on the off-inputs, only one tran-
sition will be observed at the output of the path. A single-path sensitizable
path-delay fault is very rare but it is of highest quality and guarantees that the
design under test will fail if and only if the path under test has excessive delay.
Since only a fault on the target path will be detected, single-path sensitizable
path-delay faults are suited for diagnostic purposes. However, only a very small
number of paths are single-path sensitizable.

Figure 4.6 shows a typical waveform observed at the output of a single-path
sensitized path for a good circuit, a circuit where the target path has excessive
delay, and a circuit with several path-delay faults (including the target path).
Since all off-inputs have stable non-controlling values under both vectors (see
Figure 4.7), no other paths will be able to interfere with the propagation of the
transition along the target path, and thus the detection of a path-delay fault on
the target path will be guaranteed even if the circuit contains multiple path-
delay faults. The arrival time tp of the transition is a measure of the delay of the
path. The target path contains a path-delay fault if and only if tp is larger than
the clock period T .
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Figure 4.6: Test of single-path sensitizable path-delay fault.
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Figure 4.7: Fault classes and sensitization criteria.

Figure 4.7 summarizes the sensitiziation criteria for the fault classes pre-
sented in this chapter. The first column lists the different fault classes together
with two examples of each fault class. The two last coloumns lists the particular
requirements for on− inputs and o f f − inputs. A path-delay fault can be tested
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according to a particular sensitization criterion if one or more gates on the path
(shaded in Figure 4.7) is sensitized according to the particular criterion, and
the rest of the gates are sensitized according to a more restricted sensitization
criterion (white in Figure 4.7).

4.4 Robust testable path-delay faults

In 1985 Smith wrote the paper Model for Delay Faults Based upon Paths [Smi85]
where he introduced the path-delay fault model. Delay simulation using phys-
ical models is very computationally expensive. This motivated Smith to find a
detection criterion for path-delay faults (see Definition 8) that was independent
of the numerical delay values of the gates in the circuit. The detection criterion
was formalized by Lin and Reddy [LR87], which also gave the name robust
path-delay faults to the set of path-delay faults detected by this criterion. A
short description of the detection criterion follows.

For a target path-delay fault to be robustly tested a transition must be applied
to the input of the path and propagated through the path to the output. The test is
robust if no transition is propagated to the output of any gate on the target path
before a transition has occurred on the on-input of that gate. The first transition
observed at the output of the path is thus known to be delayed with at least as
much as the delay on the target path. If this transition is late at the output, the
test has detected a robust path-delay fault. A robust sensitizable path-delay fault
is of highest quality and guarantees that the fault can be observed independently
of the delays on signals outside the target path.

The robust sensitization criterion can be described in terms of transitions
produced on the paths on- and off-inputs as follows [CKC96, KC98]: The ro-
bust sensitization criterion is equal to the criterion for single-path sensitization
except that it is also allowed for off-inputs to have cv → ncv transitions if the
corresponding on-inputs of the gates have a cv → ncv transitions (see Fig-
ure 4.7).

Definition 8 (Robust path-delay test [BA02]) A robust path-delay test guar-
antees to produce an incorrect value at the destination if the delay of the path
under test exceeds a specified time interval (or clock period), irrespective of the
delay distribution in the circuit.

Figure 4.8 shows a typical waveform observed at the output of a robustly
sensitized path for a good circuit, a circuit where the target path has excessive
delay and a circuit with several path-delay faults (including the target path). It
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is guaranteed, in all three cases, that the first transition observed at the output
of the path is delayed with a time tp that is equal or larger than the delay on the
target path. This property holds even if the circuit contains multiple path-delay
faults. Eventual transitions observed subsequently stems from paths with even
larger delay.

time

v2 applied output captured

T tp

good

several paths are 
slow

target path is slow

Figure 4.8: Test of robust path-delay fault.

4.5 Non-robust testable path-delay faults

A delay fault on a path that is non-robust sensitizable is called a non-robust
testable path-delay fault (see Definition 9).

Definition 9 (Non-robust path-delay test [BA02]) A test that guarantees to
detect a path-delay fault, when no other path-delay fault is present, is called
a non-robust test for that path. A path-delay fault for which a non-robust test
exists is called a ”singly testable path-delay fault [GBA95].”

The non-robust sensitization criterion can be described in terms of transi-
tions produced on the paths on- and off-inputs as follows [CKC96, KC98]: The
criteria for a path to be non-robust sensitizable is equal to the criteria for ro-
bust sensitization except that it also allows for the off-inputs to have cv → ncv
transition if the corresponding on-input of a gate has a ncv→ cv transition (see
Figure 4.7).

Figure 4.9 shows a typical waveform observed at the output of a non-
robustly sensitized path for a good circuit, a circuit where the target path has
excessive delay and a circuit with several path-delay faults (including the target
path). It is guaranteed that excessive delay on the target path will be detected if
the target path is the only faulty path in the circuit. However, if multiple faulty
paths are present, the fault effect might be masked by the delays on other paths
than the target path. In such cases the delay fault is said to be invalidated.
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Figure 4.9: Test of non-robust path-delay fault.

A non-robust test can be invalidated if the cv → ncv transition on the off-
input occurs arrives later than the on-input ncv → cv transition. The following
example illustrates invalidation of a non-robust test. Figure 4.10 (top) shows the
situation when the path leading to the off-input is fault free and arrives early.
The transition on the on-input is thus successfully propagated to the output of
the gate and the test is thus not invalidated. The opposite happens in Figure 4.10
(bottom). In this situation the path leading to the off-input is faulty and arrives
later than the transition on the on-input. The transition on the on-input is thus
masked and the test invalidated. Cheng et. al presents methods in [CKC96]
for reducing the probability of invalidation and thus increasing the quality of
non-robust tests.

Test is not invalidated:

Test is invalidated:

Figure 4.10: Invalidation of a non-robust test.

4.6 Functional sensitizable path-delay faults

A delay fault on a path that is functional sensitizable is called a functional sensi-
tizable (FS) path-delay fault. The criteria for a path to be functional sensitizable
is equal to the criteria for non-robust sensitization except that it is also allowed
for the off-inputs to have ncv→ cv transition if the corresponding on-input of a
gate also has a ncv→ cv transition (see Figure 4.7).
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A functional sensitizable path-delay fault requires that there exists more
than one faulty path in the circuit in order for the target fault to be detected. If
at least one FS off-input is not late, the FS path cannot impact the performance.

For the other faults so far it has been enough to find one test per fault in
order to detect the fault. FS paths on the other hand always works in groups.
Thus, it is necessary to create a number of tests for a target FS path; one for
each group it is a part of. A group of such collaborating FS faults are classified
as a primitive fault [KM94, KM95, KC98].

Fortunately not all FS paths have to be tested. A functional sensitizable
path-delay fault cannot affect performance unless some other fault exists in the
circuit as well. If all these other faults are tested and pass the tests, the func-
tional sensitizable path cannot affect performance and hence does not have to
be tested. There are a lot of different ways to partition the set of paths that
does not have to be tested. Every approach agrees on how to deal with func-
tional unsensitizable faults: they don’t have to be tested at all, but the big group
of functional sensitizable faults can be divided in many different ways. The
goal is of course to reduce the number of paths that needs to be tested down
to a minimum. Some approaches can be found in [KM94, GBA95, LSBSV95,
SLCR95, KM95, CC96, KCC96, SS97].

4.7 Functional unsensitizable path-delay faults

Functional unsensitizable (also called functional redundant) path-delay faults
do not need to be tested at all. A definition is given in Definition 10 (see also
Figure 4.7).

Definition 10 (Functional unsensitizable path-delay fault [KC98]) Functional
unsensitizable path-delay faults are defined as the faults for which under all
possible input vector pairs, either (1) at least one off-input in the path has a
controlling value under vector v2 when the corresponding on-input has a non-
controlling value, or (2) at least one off-input is assigned a stable controlling
value. Such off-inputs are called functional unsensitizable off-inputs.
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Chapter 5

Path-delay fault simulation of
combinational circuits

This chapter is devoted to the discussion of the path-delay fault simulator con-
structed in order to experiment with the stimuli generators found in Chapter 4.2.
The path-delay fault simulator [GA05a, GA05c, GA05b], named PDFSim, is a
part of the GFault test-tool suite. Successful construction of a path-delay simu-
lator requires careful attention to the following:

• Simulation algebra. It is necessary to have a good understanding of the
path-delay fault model and the different path-delay fault classes. This was
discussed in Chapter 4. The sensitization rules discussed Chapter 4 can
be implemented in a simulation algebra (alphabet and logic rules) which
is a crucial part of any logic/fault simulator. PDFSim uses the algebra
developed by Smith and presented in [Smi85].

• Netlist representation. A thought-through computer representation of the
netlist simplifies the implementation of algorithms on top of the netlist
representation (simulation, fault grading, etc.) as well as increasing the
speed of the simulator. It also makes it easier to extend the simulator with
other features.

• Logic simulation. There are two common ways of implementing the sig-
nal propagation procedure in a logic simulator: compiled-code simula-
tion and event-driven simulation. PDFSim is an event-driven simulator.

• Fault grading. Fault grading, the process of finding the number of de-
tected faults to the total number of faults, is an important task in any fault
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simulator. However, fault grading is much more complicated in a path-
delay fault simulator than in e.g. a stuck-at fault simulator because the
circuit under test may contain an exponential number of path-delay faults
in the number of gates. Relations between fault grading and estimation
of real defect coverage is important to assess the overall test quality.

• Stimuli generators. The main purpose of designing the simulator was to
experiment with different stimuli generators. It must therefore be easy to
add new generators to the simulator.

• Other aspects. Result presentation, test cases, parallel processing.

A discussion of all these important aspects of designing path-delay simula-
tors follows, using the features and choices made during the implementation of
PDFSim as an example. The software architecture of PDFSim is presented in
the end of this chapter.

5.1 Simulation algebra

This section presents simulation algebras for the two path-delay fault classes
supported by the PDFSim path-delay fault simulator: robust and non-robust
path-delay faults. The algebras presented is based on the algebra presented by
Smith in [Smi85]. Other algebras can be found in e.g. [LR87, BAA98].

5.1.1 Algebra for robust propagation of path-delay faults

Smith presented a six value alphabet for simulation of robust path-delay faults
in [Smi85]. The signal values during the two pattern test is encoded into these
symbols. Each symbol consist of two ordered pairs: S 0, S 1, P0, P1, −0, −1.
The second element in each symbol is a boolean 0 or 1 indicating the final
value after the second test pattern has settled. The first element can be one of S
(steady), P (path), − (neither S nor P).

The value S is reserved for gates with stable, hazard free, values during
both test vectors. S 0 is assigned to stable low signals and S 1 is assigned to
stable high signals.

The value P is reserved for gates gi that satisfy the following conditions:

• At least one of the gate-inputs must be P. This ensures that at least one
path exists, on which all gates have a P-value, from the inputs of the
circuit to the gate gi.
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• The initial and final signal values at gi must be different. P0 is given to
gates with a low final value. P1 is given to gates with a high final value.

• Any odd number of transitions may take place at the output of gi, but the
output must be guaranteed not to change before the first transition on all
the inputs of gi with a P-value has arrived.

Signals that do not meet the criteria for S and P are given the value −. A
gate with the value − assigned to it, may have none, one or many transitions.
Thus the initial and the final value of such a signal may and may not differ. The
final value is the only value that can be determined. −0 is assigned to signals
with a low final value. −1 is assigned to signals with a high final value.

Illustrations of the symbols in Smith’s alphabet is given in Figure 5.1.

S0

S1

P0 XXX

P1 XXX

-0 XXXXXXXXX

-1 XXXXXXXXX

Figure 5.1: Symbols in Smith’s alphabet.

A test will be a robust test for a path if all the gates on that path have been
assigned either the P0 or the P1 value, otherwise the test is not a robust test for
that path. Many paths can satisfy this condition at the same time, thus a two
pattern test may detect more than one robust path-delay fault.

5.1.2 Implication tables for robust propagation

By using the rules for robust propagation of path-delay faults explained in Sec-
tion 5.3, it is straightforward (details can be found in [Smi85]) to create truth
tables for common gate types. Truth tables for the two-input and-gate, or-gate
and the inverter are presented in Figure 5.2.

Truth tables for other gates such as NAND, nor, XOR and XNOR are found
easily by creating functionally equivalent circuits out of and-gates, or-gates,
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S0 S0 S0 S0 S0 S0

S0 -0 -0 P0 -0 -0

S0 -0 -0 -0 -0 -0

S0 P0 -0 S1 P1 -1

S0 -0 -0 P1 P1 P1

S0 -0 -0 -1 P1 -1

S0

P0

-0

S1

P1

-1

S0 P0 -0 S1 P1 -1

AND

S0 P0 -0 S1 P1 -1

P0 P0 P0 S1 -1 -1

-0 P0 -0 S1 -1 -1

S1 S1 S1 S1 S1 S1

P1 -1 -1 S1 -1 -1

-1 -1 -1 S1 -1 -1

S0

P0

-0

S1

P1

-1

S0 P0 -0 S1 P1 -1

OR

S1 P1 -1 S0 P0 -0

NOT

S0 P0 -0 S1 P1 -1

Figure 5.2: Implication tables for robust propagation of and-gates, or-gates and
inverters (not).

and inverters. Correct output value of gates with more than two inputs may be
found in a similar manner. Truth tables may also be generated and stored for
larger boolean functions as well. The size of a truth table for a function with n
inputs is 6n, so it is only feasible to store truth tables for functions with a small
number of inputs. Only truth tables for inverter and two-input and, NAND, or,
nor, XOR, and XNOR gates are stored in PDFSim.

A logic simulator must be able to efficiently compute the correct output
value of a gate given the values on the inputs of the gate. One way to do this
is by enumerating the symbols in the simulation alphabet with integers from 0
to |A| − 1 (|A| is the number of symbols in the alphabet). The truth table for
a gate with n inputs can thus be stored as an n-dimensional array indexed by
the integer value of the simulation value present on the inputs of the gate. This
lookup table approach is used in PDFSim.

Other methods, that avoids lookup-tables, exist as well. One method is to
encode each symbol in the alphabet in such a way that the boolean instructions
in the computer, such as and/or instructions, can be used directly to compute
the correct output of the corresponding gate. This approach is not more efficient
than the lookup-table approach, but by packing k symbol into each computer
word it is possible to simulate k vectors at a time. Word-parallel event driven
simulation will however not give k times speedup, since an word-parallel sim-
ulator would generate more events than a simulator simulating only one test
vector at a time.
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5.1.3 Algebra for non-robust propagation of path-delay faults

It is possible to modify the algebra for robust propagation presented in Sec-
tion 5.1.1 so that it performs non-robust propagation instead. This can be
achieved by consulting the sensitization criteria for non-robust propagation of
path-delay faults is described in Section 4.5. The criteria for a path to be non-
robust sensitizable is equal to the criteria for robust sensitization except that it
is also allow for the off-inputs to have cv→ ncv transition if the corresponding
on-input of a gate has a ncv → cv transition (see Figure 4.7). In other words,
in order for a path to be non-robust testable, all off-inputs have to settle to the
non-controlling value under v2.

If the on-input of an AND gate has a ncv → cv transition, the on-input will
be assigned the value P0. If the path is non-robustly sensitized it is allowed for
the off-input to have a cv → ncv transition (in addition to the values allowed
by the robust sensitization criteria). This corresponds to −1/P1 assigned to the
off-input. The output of the AND gate should thus be assigned the value P0
if one input has the value P0 and the other −1/P1. These modifications are
implemented in the implication table presented in Figure 5.3.

If the on-input of an OR gate has a ncv → cv transition, the on-input will
be assigned the value P1. If the path is non-robustly sensitized it is allowed for
the off-input to have a cv → ncv transition (in addition to the values allowed
by the robust sensitization criteria). This corresponds to −0/P0 assigned to the
off-input. The output of the OR gate should thus be assigned the value P1
if one input has the value P1 and the other −0/P0. These modifications are
implemented in the implication table presented in Figure 5.3.

5.1.4 Implication tables for non-robust propagation

Implication tables [SFF89] for non-robust propagation is presented in Figure 5.3.

5.2 Netlist representation

The fundament on to which every other part of the simulator is built is the
netlist representation. In this context the representation of the netlist involves
the gates, the connections between the gates, and attributes associated which
each gate or connection in the graph. Since the netlist usually pervades the
whole simulator it is important to carefully think through the implications of
the netlist architecture, or one can easily end up with a slow simulator that is
difficult to maintain and extend with new features.
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S0 S0 S0 S0 S0 S0

S0 -0 -0 P0 P0 P0

S0 -0 -0 -0 -0 -0

S0 P0 -0 S1 P1 -1

S0 P0 -0 P1 P1 P1

S0 P0 -0 -1 P1 -1

S0

P0

-0

S1

P1

-1

S0 P0 -0 S1 P1 -1

AND

S0 P0 -0 S1 P1 -1

P0 P0 P0 S1 P1 -1

-0 P0 -0 S1 P1 -1

S1 S1 S1 S1 S1 S1

P1 P1 P1 S1 -1 -1

-1 -1 -1 S1 -1 -1

S0

P0

-0

S1

P1

-1

S0 P0 -0 S1 P1 -1

OR

S1 P1 -1 S0 P0 -0

NOT

S0 P0 -0 S1 P1 -1

Figure 5.3: Implication tables for non-robust propagation of and-gates, or-gates
and inverters (not).

Experience with four early versions of the path-delay fault simulator have
lead to a netlist representation that is built around a library of graph manipu-
lation subroutines for directed acyclic graphs. This unlocks all the power of
graph-theoretic terminology, concepts and algorithms developed through the
years1. This makes it very easy to maintain, extend and modify the source
code. A presentation of the graph library is found in Appendix A. The netlist
architecture is illustrated in Figure 5.4 and contains the following components:

• Two instances of a directed acyclic graph class is used in order to rep-
resent the structure of the netlist. One of the DAGs stores the fan-outs
associated with each gate and the other stores the fan-ins associated with
each gate in the netlist. This makes it very easy to perform forward and
backward propagation through the circuit.

• The netlist also contains two instances of a event-list class. One event-
list associated with each DAG. The event-list is used both during signal
propagation and fault grading. More information about the event list is
found in Section 5.3.

• A container for storing attributes associated with each gate and net in the
netlist. This includes the gate type associated with each gate, the delay
associated with each gate or net, and also the driver and readers of a

1Leonhard Euler’s solution to the Seven Bridges of Königsberg problem in 1736 is considered
the first theorem of graph theory
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particular net. It also contains structural information extracted from the
DAG instances such as lists of sources and sinks in the graph.

• It is possible to reduce the size of the netlist by extracting fan-out free
logic cones. These cones can be thought of as super-gates containing
other gates. Common for all gates in a cone/super-gate is that all gates
have a fan-out of one, except the gate driving the output of the cone.
If a netlist is built by such super-gates, it will result in a smaller netlist
measured in the number of gates, but it will nevertheless retain the fan-out
structure of the original netlist. This can be used in order to speed up e.g.
the fault-grading algorithm in the path-delay fault simulator. The netlist
representation contains two such cone-extracted DAGs corresponding to
the two un-reduced DAGs also representing the netlist. Cone extraction
is described in detail in Section A.16.

• Two event-list associated with the two cone extracted DAGs.

DAG

DAG

Event List

Event List

CONE
DAG

CONE
DAG

Event List

Event List

Attribute 
Store

Figure 5.4: Netlist architecture.

5.3 Logic simulation

Each gate in the CUT has a signal value associated with it. Logic simulation is
the process of computing the correct simulation value of all gates in the circuit.
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There are two common logic simulation algorithms: compiled-code simulation
and event-driven simulation.

In a compiled-code simulator, the netlist is levelized (topologically sorted),
represented in some programming language and compiled. During simulation,
the correct signal value of each gate is computed one at a time in topologi-
cally sorted order. The levelization assures that the signal value of a gate is not
computed before the signal values of the gates driving the inputs of that gate is
computed. All gates in the netlist are visited once.

When a new test vector is applied during simulation, it can cause one or
more signal changes at the inputs of the circuit. These signal changes are called
events. If an event reaches one of the inputs of a gate, it might cause the out-
put of that gate to change as well. The result is a chains of events that ends
at primary outputs or internal gates that block the event propagation. Event-
driven simulators traces such event chains in order to identify the gates that
need recomputation of the signal value, and thus avoid unnecessary signal value
recomputation of gates that cannot change signal value.

The rightmost graph in Figure 5.5 illustrates how a signal-change at one
input generates a chain of events. In an event-driven simulator, only the simula-
tion value of the gates on the chain need to be recomputed. The leftmost graph
illustrates how all simulation values are updated in a compiled-code simula-
tor. The PDFSim path-delay-fault simulator is implemented as an event-driven
simulator in order to avoid updating unnecessary signals. This is especially
important since the test generators generate single-input-change test patterns.

Compiled-Code Event-Driven

Figure 5.5: Compiled-code and event-driven simulation.

Crucial to any event-driven simulator is the event-list datastructure. The
purpose of the event-list is to sort the events according to the logic level of
which they occur in order to provide evaluation of the gates in levelized order.
(Events can also be scheduled in time in order to facilitate simulation of arbi-
trary delays. This makes it possible to simulate switching activity as a function
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of time. This is, however, not implemented in PDFSim.)
Figure 5.6 illustrates the architecture of the event-list found in PDFSim.

The event-list is actually made up from several small lists, one associated with
each level in the netlist. The size of these list is equal to the number of gates
in the corresponding level. Each entry in these lists identifies a gate that must
recompute its simulation value due to a change in its input values (an event).
Glitches are filtered out by allowing each gate to occur only one time in the
event-list. An array of visited-flags are used in order to keep track of whether a
gate exists in the event-list or not.

Imagine that a new test vector is applied to the little netlist in Figure 5.6
(top) that changes the state of both input ports 0 and 1. The following ini-
tialization steps are then taken by the simulator for this particular case: The
input-ports 0 and 1 are added to the event list associated with Level 0. The
event-list pointer is updated to 1 to indicate the position of the last entry in the
list. The visited-flags for input-ports 0 and 1 are changed from false to true.

0

1
2 3

0 1 2Level:

0
1

X XEvent-list:

1 -1 -1Event-list pointer:

T T F FVisited flag:
0 1 2 3Gate name:

DAG 
representing a 
CUT:

Figure 5.6: Event list architecture.

When the initialization steps are finished, the simulator starts recomputing
the signal values of the gates according to Algorithm 1. If the event-list is not
empty the event-list removes a gate g from the non-empty list with the lowest
level (see Figure 5.6) and clears the corresponding visited-flag. A new signal
value is computed for gate g, and if it differs from the old signal value, the fan-
out gates of g are inserted into the event-list in the appropriate position if they
are not already in the event-list. The simulation finishes when the event-list is
empty.
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Algorithm 1 (Event-based simulation)
EventSimulate(E, G, S){
  /*INPUT    : E, an event-list                                                    */
  /*INPUT    : G, a directed acyclic graph                                 */
  /*INPUT    : S, an array of signal values                                */
while(E is not empty){

g = E.Remove();
    OldSignalValue = S[g];
    NewSignalValue= UpdateSignalValue(g);    

S[g] = NewSignalValue;

if (NewSingalValue != OldSignalValue){
E.InsertOutgoingEdges(g);

    }
}

}

5.4 Fault grading

When the logic simulation algorithm presented in Algorithm 1 is finished with
computing the signal values, it is time for the fault grading algorithm to count
the exact number of detected path-delay faults. This problem is very hard for
one reason: The possibly exponential number of path-delay faults in the num-
ber of gates that a circuit can contain. One good example is the ISCAS’85
benchmark C6288 that contains 1.98 ∗ 1020 path-delay faults.

There are two different types of fault-grading algorithms: enumerative and
non-enumerative. Enumerative algorithms assigns a unique number [BAA93]
to each path-delay fault and when a fault is detected the corresponding number
is stored in a list. The enumerative version of the problem is intractable by defi-
nition since an exponential number of path-delay faults are counted one by one.
Non-enumerative algorithms avoid enumeration and handles the detected faults
implicit instead. Unfortunately, the non-enumerative version of the problem
was shown in [KT02] to be intractable as well.

5.4.1 The simplest fault grading algorithm

A path-delay fault is detected, as described in Section 5.1.1, if the simulation
value of all gates on the path is either P0 or P1. The simplest way of extracting
the path-delay faults detected by a particular test vector, is to carry out a depth-
first search along the sensitized paths in the graph starting at primary outputs
with simulation value equal to either P0 or P1. (The search can be conducted
in the other direction as well, but that is more inefficient since a partial path
might not be sensitized all the way to an output. This is however guaranteed
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when starting the search at an output.) Each time the search visits a primary
input, it indicates that a new path-delay fault has been detected by the current
test vector. If the path-delay fault has not already been detected by some other
test vector, it is added to the list of detected faults as a list of vertices together
with the transition applied to the input of the path.

5.4.2 The enumerative algorithm implemented in PDFSim

This section is devoted to the discussion of the fault grading algorithm imple-
mented in PDFSim. The presentation is divided into three parts. The method
used for assigning a unique number to each structural path is explained first.
Then the method for extracting the detected path-delay faults detected by one
test vector is described. Finally it is explained how the detected faults are stored
and checked against previously detected faults.

Path enumeration

The fault grading algorithm is an enumerative algorithm. Such algorithms as-
signs a unique number to each path. The method used is similar to the one in
[BAA93], and is easiest explained by an example. Figure 5.7 shows a DAG that
represents a simple combinational circuit. This particular circuit is fanout-free
in order to make the method easier to understand. Note that the method works
just as well, in the general case, with reconvergent fanouts. The black vertices
correspond to gates in the combinational circuit. The total number of structural
paths from each vertex to any sink, as computed by Algorithm 6, is printed
inside each vertex. The outgoing edges are ordered and labelled by an index.

The circuit in Figure 5.7 obviously contains nine structural paths. And since
this circuit happens to be fan-out free, there is exactly one path from the source
in the graph to each of the sinks. It is thus very easy to come up with the intu-
itively enumeration shown to the left in the Figure 5.7, next to the corresponding
sink. Fortunately, this particular enumeration can be found more systematically
as well.

Look at the highlighted path through the gates G1, G2 and G3. This path
defines three subtrees, one subtree rooted at each of the three gates. A proper
enumeration of the paths in the subcircuit defined by the subtree rooted at G1
is easy, the only path must be assigned the number 1. The subtree rooted at G2
combines three smaller threes into one larger tree. One way to enumerate the
paths is to reserve the first path number to the subtree accessed by the edge 0.
The second path number can be reserved to the subtree accessed by edge 1, and
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the last path number can be reserved for the subtree accessed by edge 2. The
highlighted path will thus get path number 2 in the graph rooted at G2.

The subtree rooted at G3 combines three smaller threes into one larger tree.
One way to enumerate the paths is to reserve the first three path numbers to the
subtree accessed by the edge 0. The next three path number can be reserved to
the subtree accessed by edge 1, and the last three path number can be reserved
for the subtree accessed by edge 2. The highlighted path will thus get path
number 8 in the graph rooted at G3. Since G3 is the only source in the graph,
the computation is finished and the highlighted path is assigned the path number
8. If the circuit contains more than one output, the corresponding DAG will
contain an equal number of sources. In such cases it is necessary to add a help-
vertex that combines the sources into one single source.
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Figure 5.7: Path enumeration example.

Fault detection

A path-delay fault is detected, as described in Section 5.1.1, if the simulation
value of all gates on the path is either P0 or P1. This is the case for the high-
lighted paths in the circuit in Figure 5.8. The detected path-delay faults are
found by traversing the netlist breadth-first along the edges with signal values
P0 and P1, while computing the path numbers as described in Section 5.4.2.



5.4 Fault grading 59

Since more than one path-delay fault may be detected, a list of faults is propa-
gated along the highlighted paths in Figure 5.8. Each path-delay fault is iden-
tified by its structural path number together with the direction of the transition
applied at the input of the path. This is solved in PDFS im by propagating two
set of lists, one for each transition.
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Figure 5.8: Fault detection example.

At this point two lists have arrived at the output of the netlist. One list
contains the structural path number of detected path-delay faults with rising
transition applied at the input of the path, and the other contains the structural
path numbers for path-delay faults with a falling transition applied to the input
of the path. (Only the list with rising path-delay faults is shown in Figure 5.8).

The procedure for collecting detected path-delay faults is equal for both
robust and non-robust faults, with one important exception. In both cases paths
with P0/P1 on all signals are traced, but in the case of non-robust faults not all
such paths represent detected faults. When robust detection is considered, if all
inputs of a gate have ether the P0 or the P1 value, each input represents one or
more robustly sensitized subpath. Each input must thus be an on-input of the
corresponding set of subpaths. When non-robust detection is considered on the
other hand, there are one situation [SFF89] for each gate (AND/OR) that will
block further non-robust sensitization for some subpaths. An AND gate with
P0 on one input and P1 on the other will result in P0 on the output of the gate,
and will thus only sensitize subpaths rooted at the input with the S 0 value, the
other input is an off-input for this path. A similar situation exist for OR gates.

Storing detected faults

Lists of detected faults are produced for each test vector applied to the CUT.
When this is done the detected faults are stored in a datastructure together with
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previously detected faults. Since the number of faults can be huge, it is impor-
tant to use an efficient method to store the faults. Kapoor developed a method
[Kap95] for storing detected path-delay faults based on intervals of consecutive
path numbers. According to this method, the path numbers: 1, 2, 3, 4, 7, 8, 11,
12, 13, 14, 15, 20 would be represented by the intervals : [1,4], [7,8], [11,15],
[20, 20]. A 2,3-three based datastructure is used for storing and manipulating
the intervals.

The fault grading algorithm implemented in PDFSim is based on the fault
grading method [Kap95] by Kapoor. But instead of using the 2,3-based datas-
tructure that Kapoor used, skip-lists [Pug90] have been used instead. The skip-
list is a probabilistic alternative to balanced trees. Skip-lists was chosen because
the manipulation algorithms are easy to implement, and the expected running
time is at least as fast as for the original 2,3-three based datastructure (the worst-
case running time is worse because skip-lists can degenerate to ordinary lists).

When a path-delay fault is detected, a search in the skip-list is performed
in order to find the proper position to store the fault. If the position is empty
the new path-delay fault is stored, otherwise the fault is already detected. Two
different situations can arise when a new path-delay fault is inserted into the
skip list. If the path number is not adjacent to any other path number it is stored
as a new interval. However, if the interval is adjacent with one or two other
intervals then the path-delay fault is combined with the existing interval(s) into
a larger interval.

Enhancements in PDFSim over the method by Kapoor

The fault grading algorithm used in PDFSim is based on the algorithm by
[Kap95], but is enhanced on several points compared to the original algorithm.

When the list of detected faults are compiled in [Kap95], this is done by
a breadth-first traversal of the netlist from the inputs to the outputs as shown
in Figure 5.8. This is however not optimal since this some of the partial paths
starting at the inputs of the netlist will not be sensitized all the way through
the circuit under test. This will cause unfruitful propagation of some path-
numbers through the netlist until the fault grading algorithm realizes that the
path is blocked for further sensitization. An example of paths that is partially
sensitized, but blocked before they reaches any outputs is shown in Figure 5.9.
Fortunately, there is a method that can be used in order to avoid tracing partially
sensitized paths, and that is to start the search from the outputs instead of from
the inputs. Since a P0/P1 value at an output guarantees that there exist at least
one sensitized path from the inputs to that output, there will be no unnecessary
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propagation of path numbers. This method would for instance immediately
conclude that no path-delay faults was detected since no outputs has a P0/P1
value.
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Figure 5.9: Partially sensitized path-delay fault.

Another enhancement over the method described in PDFSim, is the use
of fan-out free cones (Algorithm 10). Cone-extraction reduces the number of
vertices in the DAG representing the netlist while the number of the paths in the
new DAG is the same as in the original DAG. Since the number of vertices is
reduced, the running time of the fault grading algorithm is reduced as well.

5.4.3 State of the art non-enumerative fault grading algorithms

The fault grading algorithm implemented in PDFSim is fast and efficient for
circuits with a small number of path-delay faults. However, when the number
of path-delay faults are very high it is necessary with non-enumerative algo-
rithms. They are usually more complex to implement and slower than simpler
algorithms for circuits that contains few paths, but faster and much more effi-
cient when the circuit under test contains a large number of paths.

The best fault grading algorithm today for circuits with a large number of
path-delay faults has been developed by Padmanaban Michael and Tragoudas
[PMT03]. The method uses a special type of binary decision diagrams called
zero-suppressed binary decision diagrams [Min93] (ZBDD). ZBDDs is a canon-
ical data structure that can be used to represent sets very efficiently. In this case
sets of path-delay faults. This work has resulted in many good papers about
fault simulation, fault grading and identification of detectable and undetectable
path-delay faults [PMT03, PT04b, PT04a, PT05, KGT04, KG05].

Other good fault grading algorithms are the color counting based algorithm
by Deodhar and Tragoudas [DT01] and the algorithm based on a datastructure
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called the Path-Status Graph (PSG) [GBA96, PABS98] by Parodi, Agrawal,
Bushnell, Gharaybeh and Wu.

5.4.4 Lower bound on the number of untestable faults and the
computation of fault coverage

Fault coverage refers to the percentage of path-delay faults detected, under
some sensitization criteria, during the test of an integrated circuit. Ideally the
fault coverage should be computed relative to the total number of path-delay
faults sensitizable under the given sensitization criteria (e.g. non-robust sensi-
tization).

For the same reasons as counting the number of detected faults is intractable,
the problem of determining the exact number of testable path-delay faults under
a given sensitization criteria is also intractable. One possible solution would be
to feed an ATPG with all possible path-delay fault and use the ATPG to deter-
mine if the path is testable or not. This procedure is only feasible for circuits
with a few number of paths. The best solution to this problem to this date was
presented by Padmanaban and Tragoudas in [PT05]. The method identifies a
subset of untestable PDFs using static implication techniques. The remaining
faults are potentially testable and targeted by a special ATPG that avoids path-
enumeration. The testable paths are stored non-enumeratively in a ZBDD.

If speed is crucial, it is possible to find a lower bound [HPA97, LMB97,
SRKP01] on the number of testable-path-delay faults instead. On obviously
very pessimistic estimate would be twice the total number of structural paths
in the circuit. Another method would be to identify a set of untestable path-
faults and then regard the rest of the path-delay faults as potentially testable
path-delay faults.

Fault coverage can also be computed relative to the number of faults in
a fault-list. An algorithm for creation of fault lists containing the K-longest
testable paths is the topic of Chapter 6.

5.5 Stimuli generators

Path delay simulation is initiated by applying a test vector to the inputs of the
CUT. This task is carried out by the stimuli generator. The purpose of design-
ing PDFSim was to evaluate different stimuli-generators with respect to their
ability to detect path-delay faults. Several test generators have been tested, and
it was important that the process of adding and modifying test generators was
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straightforward, without sacrificing too much performance.
The way this is solved in PDFSim is by adding a python [Pyt06] script in-

terface to the simulator, so that the test generators can be programmed in the
python. Two aspects of this architectural decision makes it easy to add and mod-
ify test generators: 1) Since the generators are implemented in an interpreted
language, no recompilation is needed each time a new generator is added. 2)
Python offers a much cleaner syntax and a much more compact representation
than would have been possible by using C++ (the simulator core is written in
C++).

5.6 Other aspects

Other aspects of importance when designing a path-delay simulator are for in-
stance the user interface and presentation of simulation results.

5.7 PDFSim software architecture

The core of PDFSim is shown in Figure 5.10. The path-delay simulator is built
around the representation of the netlist which the other components interacts
with during simulations. The stimuli generator applies test vectors to the in-
puts of the netlist, the logic simulator propagates the stimuli vector through the
netlist, and the fault grader finally counts the number of detected faults. All of
these tasks are controlled by the controller.

Logic 
Simulator

PDFSim Controller

Stimuli 
Generator

Fault 
Grader

Netlist

Figure 5.10: The PDFSim path-delay fault simulator.

One of the choices that must be made when creating a computer program is
to choose a programming language. Different languages have different proper-
ties, and the choice of the wrong programming language can have severe impact
on the end product. One way to categorize programming languages is to distin-
guish between interpreted languages and languages that can be compiled into
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native machine code. Programs implemented in a interpreted language is usu-
ally much slower than programs implemented in programs compiled into native
machine code. However, programs implemented in scripting languages tend to
be more compact and much faster to create and modify than similar programs
implemented in languages compiled down to machine code.

It was desired that the path-delay simulator and the ATPG presented in
Chapter 6 should be both fast and at the same time flexible. This was solved by
using the best of the two worlds. The simulator and ATPG cores are both writ-
ten in C++ for maximum performance, but in order to make it easy to change
generators and run repeated simulations with different parameters, the cores
have been implemented as python extension modules. This allows the modules
to be accessed from within a python program.

The building blocks of the python program that integrates the two cores
(PDFSim and PDFAtpg) is illustrated in Figure 5.11. In addition to the two
algorithm cores is a collection of Test generator scripts. New stimuli generators
are easily added by just adding a new or modifying an existing script. No
recompilation is needed after a new script is added. The program also contains
a Command-line interpreter. The purpose of this module is to interpret the
commands given to the PDFTestTool program by the user. One of the options
that can be chosen during startup is the mode the program will be running in.
Two modes are possible: local or remote. In the local mode the PDFTestTool
program runs the job specified on the command line and dumps the result to
file. In the remote mode on the other hand, the program connects to a remote
server through the Remote communicator, and downloads an open job. The
PDFTestToolController controls the overall behaviour of the program.

Python interface

PDFSim PDFAtpg

Python interface

PDFTestTool Controller

Test Generator 
Scripts 

Remote
Communicator

Command Line 
Interpreter

Figure 5.11: PDFSim and PDFAtpg are two modules in the scriptable PDFTest-
Tool program.

There are two ways of improving the speed of a computer program. The
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best way is to improve the algorithm or come up with an algorithm with better
asymptotic running time. When time or creativity does not allow for further
improvements in the algorithm, its time to add more processing power. This
is exactly what have been done by the PDFTestTool program and the reason
behind the mysterious remote mode. When PDFTestTool runs in remote mode
(see Figure 5.12), it downloads an unfinished job from a Job Server that typ-
ically contains a long list of simulation jobs. These jobs have been uploaded
to the job server from one or more Command centers. When a PDFTestTool
instance is finished with a job it uploads the results to the JobServer which for-
wards the result to the Command center that requested the simulation job. Some
companies and all universities have access to large rooms filled with computers
doing nothing, such grid computing arrangements is thus a way to make use of
otherwise wasted CPU time, and improve total simulation time.
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Figure 5.12: Grid computing.
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Chapter 6

Automatic test pattern
generation for the K-longest
testable path-delay faults

It is infeasible to test all path-delay faults in circuits with an exponential number
of paths. One common strategy is instead to test a subset of all possible path-
delay faults. The fault list is often set equal to the K longest testable paths, or
to all testable path-delay faults longer than a predefined limit.

This chapter describes an algorithm for extracting the K-longest testable
path-delay faults in a circuit. The engine presented here has been integrated
with the fault simulator presented in the previous chapter. In Chapter 7 test pat-
tern generators for use in Built-In Self-Test arrangements are presented. These
test generators will be evaluated against the fault lists extracted by the ATPG
presented in this chapter.

The earliest attempts at creating an ATPG for path-delay faults that could
extract the K-longest testable path-delay faults was very inefficient. ATPGs
were often divided into two separate parts. A structural path extractor that
sorted the structural paths in the circuit according to the length or delay of the
paths. Paths where then passed to the test generator, one at a time, which
decided whether or not a test could be found for that path. Usually a lot of
paths are untestable, and the structural path extractor would thus pass on a lot
of untestable paths to the test generator. Fortunately, by combining the struc-
tural path extractor and the test generator, it is possible to prune the search
space significantly by sorting out untestable set of paths at an early stage. This
approach was used by Qiu and Walker [WW03].
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First in this chapter, terms that will be used in the presentation of the ATPG
algorithm are introduced. Next the path-delay fault ATPG algorithm itself is
described. It is based on lessons learned from [WW03]. The final step of
the algorithm involves finding a test vector for the path-delay fault, and this
is achieved with a version of the FAN algorithm [FS83] together with recursive
learning [KP94].

6.1 Terminology

This section presents terms that will be used in the discussion in this chapter. A
three value logic, B={0,1,X} is assumed.

6.1.1 Implications

One very important notion in the world of ATPG is the implication. Defini-
tion 11 defines implication. In this context implications are used for describing
relations between signal values of different signals in a circuit. An implication,
(x = 1) → (y = 0), between the two signals x and y means that if the signal x
happens to have the value 1, then signal y must have the value 0.

Definition 11 (Implication) An implication, p → q, is a logical relation that
indicates that if one condition, p, is true, then another condition, q, must also
be true. The implication, p→ q, only fails to hold (i.e. is false) if p is true and
q is false.

Implications are used in order to find the necessary value assignments fol-
lowing from an initial value assignment in the circuit. For instance, when find-
ing a test for a net stuck-at 0, it is necessary to assign a 1 to the net in order to
activate the fault. An example is shown in Figure 6.1. This initial assignment
might force other signals to specific values as indicated in the figure.

When testing for stuck-at faults, it is sufficient with one vector per test.
However, tests for path-delay faults require two-pattern tests. According to
Figure 4.1 in Chapter 4, a non-robust test for a path-delay fault, requires that
all off-inputs have non-controlling values under v2. An example is shown in
Figure 6.2. Here the initial value assignments constitute the rising transition
that is propagated on the target path, and the non-controlling values assigned
to the off-inputs. These initial value assignments might force other signals to
specific values as shown in the figure.
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Figure 6.1: Test for a stuck-at fault.
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Figure 6.2: Test for a path-delay fault.

Usually one partitions implications into two groups, direct implications and
indirect implications. Some examples of direct implications are shown in Fig-
ure 6.3. The first two implications illustrated are examples of direct backward
implications. The two last implications are direct forward implications.

c=1a=1
b=1

(c=1) => (a=1)

(c=1) => (b=1)

c=0a=0 (a=0) => (c=0)

c=0b=0 (c=0) => (b=0)

Figure 6.3: Example of direct implications.
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Modus tollens is Latin for mode that denies, and is the formal name of proof
by contra positive. The denied object in this context is the consequence of an
implication. If for instance (p = 0) → (q = 1), then (q = 0) → (p = 1) by
modus tollens. Often the implications derived by employing modus tollens lead
to indirect implications. One example is shown in Figure 6.4. A method for
systematically finding all indirect implications is presented in section 6.4.

a

f=0b=0

c

d=0

e=0

f=1b=1

d

e

(b=0) => (f=0)

(f=1) => (b=1)

Implication found by a series of 
direct implications:

Indirect implication found by 
modus tollens:

modus tollens

Figure 6.4: An indirect implication.

6.1.2 Specified and unspecified signals

A signal can either be specified or unspecified. Assuming that the three value
alphabet B={0,1,X} is used, a signal will be specified if it is assigned either 0 or
1, and unassigned if it is assigned the value X.

6.1.3 Consistent and inconsistent signal assignments

The signal assignments in a circuit can either be consistent or inconsistent. Con-
sistent signal assignments does not produce any signal assignment conflicts. A
given set of signal assignments are consistent if there are no conflicts. An in-
consistent set of signal assignments produces conflicts. In order to create a non-
robust test for a path delay fault, the off-inputs must be set to non-controlling
values under v2. Thus, in order to create a non-robust test for the path in Fig-
ure 6.5, the signals a and b must both be 1. In this case the two signals a and
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b are connected by an inverter, and the current set of signal assignments is thus
inconsistent.

a=1 b=1

Conflict

Figure 6.5: Conflicting signal assignments.

6.1.4 Justified, Unjustified and Justification

Justified, unjustified and justification are three frequently used terms in the
ATPG field of research. Justified and unjustified are adjectives used in order
to describe the state of the signal assignments of inputs and outputs of a gate.

Assuming the three value logic B={0,1,X}, in order for a gate to qualify as
either justified or unjustified, at least one input or output of the gate must be
specified. Thus, gates that are assigned the value X on all terminals are neither
justified nor unjustified.

A gate is justified if it is impossible to assign values to remaining unspeci-
fied inputs and outputs of the gate so that a conflict is produced at that gate. A
gate is unjustified if it is possible to find values to unspecified inputs and out-
puts of the gate so that a conflict is produced at that gate. Some examples of
justified and unjustified gates are shown in Figure 6.6.

X
X

0

1
X X

X
1 X

Unjustified gates:
1
1 1

0
X 0

X
0 0

Justified gates:

Figure 6.6: Examples of justified and unjustified gates.

A justification is a set of additional signal assignments that makes unjusti-
fied gates justified. An example is shown in Figure 6.7.
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a=1
b=X c=X

Justifications:
J1 = {b=1, c=1}
J2 = {b=0, c=0} 

Figure 6.7: Justifications of an unjustified gate.

6.1.5 Complete path and Partial path

A complete path in a combinational circuit is a path that starts at an input,
runs through the circuit, and ends at an output. A partial path on the other
hand starts at an input, but is terminated at an internal gate. The partial path
highlighted in Figure 6.8 is an example. The ATPG algorithm to be described
in section 6.2 maintains a list of such partial paths, and repeatedly extends the
most promising, in terms of potential length, until the longest testable complete
path is found.

C G H J

K

L

M

Q

R

D

B F I

A

E

N

P

O

Figure 6.8: A DAG representing a circuit with one partial path highlighted.

6.1.6 VertexDelay, PERTDelay and Esperance.

The ATPG is able to extract the K longest, in terms of delay, non-robust testable
paths in combinational circuits. There are several ways of modelling the delay
through gates and nets. For the ATPG a simple transport delay model is as-
sumed. Associated with each gate is a VertexDelay. All transitions arriving at
the input of each gate is delayed by time equal to the gate’s VertexDelay before
it is propagated to the output of the gate. In the experiments all gates in all
circuits have been assigned a VertexDelay of 1, but individual VertexDelay can
be set for each gate if desirable.

PERT delay is a term that stems from the theory of PERT (Program Evalu-
ation and Review Technique) digraphs [Eve79]. In a PERT digraph every edge
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represents a process, and for every vertex the processes represented by the out-
going edges of the vertex can be started when all processes represented by the
incoming edges of the vertex are finished. One of the interesting problems such
PERT digraphs can solve is to find the shortest running time of the program it
models. This is determined by the delay of the critical path in the PERT di-
graph. The delay of the critical path can be found by processing the vertices
in reverse topological order, starting at the termination vertex. For each vertex
the maximum (PERT) delay from each vertex to the termination vertex is com-
puted, until the start vertex is reached. The Maximum PERT delay for the start
vertex would then be the delay of the critical path. The same method can also
be used in order to compute delay of the shortest path in the program. A gate
netlist can also be modelled as a PERT digraph, where the stable value of the
output of each gate can be determined first when the inputs of the gates have
settled at stable values.

Figure 6.9 shows the partial path from Figure 6.8. The delay of the partial
path, see Equation refPartialPathEq, is simply the sum of the VertexDelay for
each vertex in the partial path. The maximum PERT delay for the last vertex, J,
in the partial path is computed according to Equation 6.2.

C G H J

K

L

M

Q

R

MaxEsperance[CGHJ]

MaxPERT[J]PartialPathDelay[CGHJ]

Figure 6.9: Computation of maximum esperance for a partial path.

PartialPathDelay[CGHJ] =
VertexDelay[C] + VertexDelay[G]+
VertexDelay[H] + VertexDelay[J]

(6.1)

MaxPERT [J] = max


VertexDelay[K] + MaxPERT [K]
VertexDelay[L] + MaxPERT [L]
VertexDelay[M] + MaxPERT [M]

 (6.2)

Associated with each partial path is also a value called esperance [BVMCDM90].
The maximum esperance, see Equation 6.3, is the sum of the length of the par-
tial path and the maximum PERT delay from the last vertex of the partial path.
The maximum esperance thus represents an upper bound of the delay of the
partial path when it grows into a complete path.
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MaxEsperance[CGHJ] = PartialPathDelay[CGHJ] + MaxPERT [J] (6.3)

6.2 ATPG Algorithm

The ATPG algorithm presented in this section is based on the algorithm by Qiu
and Walker [WW03]. A flow chart [WW03] describing the algorithm is shown
in Figure 6.10. The algorithm is capable of finding both the K-longest paths
through a particular gate in the circuit as well as the overall K-longest paths in
the circuit. In order to find the K-longest paths through a particular gate in the
circuit, it is necessary to go through a preprocessing step as shown at the top
of Figure 6.10. During the preprocessing step a simple structural reachability
analysis is carried out in order to constrain the search to only those paths that
passes through that particular gate.

The ATPG algorithm is based on repeatedly extending the most promising
partial path, i.e. the partial path with the largest esperance, with one gate at
a time until a complete path is found. The partial paths are stored in a path
store, and sorted according to their maximum esperance. Initially the path store
is populated with two partial paths for each input, one partial path for a rising
transition applied to the input and one for a falling transition applied to the
input.

The algorithm in Figure 6.10 continues with popping the path with the
largest maximum esperance and extends the partial path with one more gate.
This particular process is illustrated in Figure 6.11. The example used is based
on the same partial path as shown in Figure 6.8 and Figure 6.9. Figure 6.11
shows a part of the path store at some point. Our partial path C −G − H − J is
stored in slot 1. Since a unit delay is used, the delay of the partial path is 4, and
the maximum esperance is 8. This means that the longest structural path that
can be constructed starting with the vertices C − G − H − J will have a length
of 8. The PathStore also contains a list of possible fan-outs from the last gate
of the partial path. This list may be shorter than the number of fan-outs from
that gate in the actual netlist due to search space pruning techniques such as
the reachability analysis done initially. Together with each possible fan-out is
the FanOutDelay. The FanOutDelay is equal to the sum of the gates MaxPERT
and VertexDelay. The fan-out with the highest FanOutDelay thus represents the
gate the partial path should be extended with in order to achieve the highest
possible esperance for the new partial path. In the example in Figure 6.11 the
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Preprocessing Start

Initialize the path store 
with primary inputs

Pop the partial path 
with the largest max 

esperance

Extend the partial path 
with one more gate

Apply constraints and 
perform direct 
implications

Conflict?

Delete the (partial) path

Y

N

Insert in the (sorted) 
path store

Update the maximum 
esperance

Apply false path 
elimination techniques

Complete path?

Pass justification?

K paths found?End Y

Y

N

Y

N

N

Figure 6.10: Path generation algorithm.

partial path is extended with gate K, since that fan-out has the largest FanOut-
Delay. In order for the algorithm to be complete, it is necessary to also store the
two other optional ways to extend the partial path. This is achieved by copying
the original partial path to another location in the PathStore and removing the
most promising fan-out option.

The next process carried out by the algorithm in Figure 6.10 is to check
whether or not it is possible to successfully apply signal value constraints to the
newly extended partial path without any conflicts. These constraints are non-
controlling values to all off-inputs under v2 as well as the correct transition to
all on-inputs. If a conflict occurs the newly generated partial path is deleted, if
not the partial path is checked in order to find out if it is a complete path or not.
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Figure 6.11: Extending the most promising partial path in the partial path store.

If the partial path is complete, some false path elimination techniques is
applied. These search space pruning techniques are applied in order to obtain
a better estimate of the maximum esperance. When this is done the maximum
esperance is updated for the extended partial path and inserted into the path
store. The processing of the partial path is now finished and a new partial path
can be investigated.

If the partial path turns out to be a complete path it is a very good chance
that the path is testable since it no conflicts have been detected through direct
implications. But in order to ascertains that the path is testable and hopefully
find a test-vector for the path, it is necessary to pass a full justification process.
This is done by a version of the FAN algorithm described in Section 6.3.

6.2.1 Forward trimming

After the algorithm is done checking if the partial path is a complete path, some
false path elimination techniques are employed. One of these techniques is
called forward trimming. The purpose of forward trimming is to use the infor-
mation gained from applying signal propagation constraints in order to com-
pute a tighter upper bound of the delay of the partial path. In other words find
a more accurate value for the path’s esperance. This can in many cases prevent
the ATPG from pursuing partial paths in directions that must produce a conflicts
at a later stage. In order to explain the problem the example in Figure 6.12 is
used.

The figure shows the last gate in a partial path (highlighted). No signal
conflicts is present and the algorithm is now ready to extend the partial path.
Two options are possible: the upper or the lower fan-out. According to the al-
gorithm, it will choose to extend the partial path to the fan-out gate with the
largest maximum PERT delay. Of the two possibilities, the lower fan-out ob-
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Figure 6.12: Forward trimming.

viously has the largest maximum PERT delay if only structural information is
considered. However, extending the path towards the bottom fan-out gate is not
an good idea, since the current set of signal value assignments will block the
propagation of all transitions at the NAND gate. Thus, the algorithm should
choose to extend the path to the upper fan-out. The lower fan-out should be
dropped for this partial path.

Forward trimming is a method that recomputes the maximum PERT delay
for each fan-out gate of the current partial path. The method is the same as the
one explained in Equation 6.2, but the maximum PERT is set to 0 for gates that
blocks transition propagation. Signal propagation is blocked by gates that have
the same specified signal value, i.e. 0 or 1, for both vectors v1 and v2. The
increased cost of recomputing the maximum PERT for each fan-out of each
partial path, is compensated by a the reduced probability of extending partial
paths in unfruitful directions.

6.3 FAN algorithm

In the final stage of the path-delay ATPG algorithm, the program is presented
with a set of path-delay faults that most likely are testable. However, some
untestable path-delay faults might have slipped through the pruning process.
In addition a two pattern test must be generated for all path-delay faults. This
section presents an adapted version of the FAN algorithm that was used in order
to perform justification and find a suitable test vector. The FAN algorithm is
given in pseudo-code in Algorithm 2 and Algorithm 3.
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Algorithm 2 (FAN algorithm)
FANAlg(){
  /*OUTPUT: Status information indicating wherer           */
  /*                 the fault is testable, untestable or aborted  */
DTree; // The decision three                   
CObj, SObj, HObj;    // Set off current, stem and head objectives         

  FObj;                         // Variable holding the final objective            
NoConflict;               // Boolean that is true when no conflicts occurs.

-Clear all objective containers and the decision three; 
-Mark gates in the cone defined by the current path; 

  // Continue the search until a test for the fault is found, 
  // the fault is found to be untestable or the search is aborted.  
while(1){

    // Determine the next objective by multiple backtrace if there are any.
    // Justify the free lines when all other lines have been justified.

-Reinitialize multiple backtrace
if(!MultipleBacktrace()){

- Justify free lines;
      return TEST_FOUND;     
    }
    // Add the a new node to the decision three
    // Assign the value specified in the final objective to the specified 
    // gate and perform direct implications. Check for conflicts.

GName, GValue =  FObj.GateName, FObj.GateValue
DTree->AddNewNode(GName, GValue)
NoConflict = DoDirectImplications(S, GName, GValue)     

    // Backtrack until a assignment that doesnt cause conflicts is found
while(!NoConflict) {

      // Abort if the maximum backtrack limit has been reached
      if(Dtree->BacktrackCnt > MAX_BACKTRACK){        

return TEST_ABORTED;
      // The path is untestable if all decisions have been tried
      } else if(!DTree->UntriedLeft()){

return UNTESTABLE;      
      // Find an untried assignment in the decision three
      } else{

GName, GValue = DTree->FindUntriedAssignment();
-Undo signal assignments that stems from old decisions.
NoConflict = DoDirectImplications(S, GName, GValue)          

} } } }
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Algorithm 3 (Multiple backtrace)
MultipleBacktrace(){
  // OUTPUT: Returns true if a objective is found, false otherwise
  // Gobal variables:
CObj, SObj, HObj: // Set off current, stem and head objectives         
FObj :  // Final objective            
n0, n1; // Array of backtrace votes that counts the number of

              // requests of to set signals to 0 (n0) and 1 (n1) 

while(!CObj->IsEmpty()){
- Return the next objective (G, V) = (Gate name, Value) 

      breadth first from CObj.

    // Compute n0 and n1 for each driver of G
if (G needs controlling value on one input to be justified){

- Increment n0(n1)[easiest to control input] with n0(n1)[G] if
        the gate is an AND (OR) gate.
    }else{

foreach(driver D of G){
- Increment n1(n0)[D] with n1(n0)[G] if 

        the gate is an AND (OR) gate.      
}

    }
- Add drivers of gate G to their appropriate containers. Gates 

      that are head objectives are added to HObj, gates that are stems
      are added to SObj, and the rest are added to CObj. 
  }

while(!SObj->IsEmpty()){
- Return the next objective (G, n0[G], n1[G]) from SObj with 

      highest logical level.

    if(n0[G] > n1[G]){ V = 0; } else{ V = 1; }

if( (n0[G]!=0) && (n1[G] != 0) ){  // If both votes are nonzero there is
      FObj = (G, V);                            // a chanse for conflict, and one 
      return true;                                // should try to set the gate to a value.
    } else{

- Add G to CObj // No conflict occurred and the 
      return MultipleBacktrace();     // backtrace can continue
    }    
  }

while(!HObj->IsEmpty()){
- Pick the head objective G with the highes value of n0[G]+n1[G]

      and set the objective value V to the value that have highest 
      number of votes.

FObj = (G, V) ;
return true;

  }
}

6.4 Recursive learning

Inside modern stuck-at fault ATPGs is usually an implication engine. In our
case we employ recursive learning, developed by Kunz and Pradhan [KP94],
since it is a good compromise between ease of implementation and efficiency.
Other examples of implication engines are found in [CAR93, TGA00, GF02].
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Recursive learning was added to the ATPG in order to prune the search space
better before candidate paths were sent to the FAN algorithm. Recursive learn-
ing can also be used within the FAN algorithm in order to reduce the number of
backtracks.

Recursive learning is a method for extracting all logical dependencies be-
tween signals in a circuit and to perform precise implications for a given set of
value assignments [KP94]. Pseudocode for recursive learning is presented in
Algorithm 4 [KP94]. Before the program is started a set of initial value assign-
ments has been applied to the circuit. These initial signal assignments could
for instance be assignments to off-inputs of a path in the circuit. Assume the
set of signal assignments are stored in a an instance A of type AssignmentList.
All implications, direct and indirect, following from this initial set of signal
assignments will be extracted and added to A by calling the function MakeAl-
lImplications(A).

Algorithm 4 (Finding all implications using recursive learning.)
MakeAllImplications(A, r){
  // INPUT : A: An AssignmentList
  // Local variables:

J: // An array of Justifications. J[i] refers to justification number i. 
T: // An array of AssignmentLists for temporary storage of assignments. 

         T[i] refers to assignment list associated by Justification i.  
U: // A one-dimentional array of unjustified gates. 

Make all direct implications, exit routine if conflict detected;
Store unjustified gates in U;

if (r > RMAX){   
foreach(unjustified gate g in U){

Fill J with all justifications of gate g;

      for(i 0 to length(J)-1){
        Make the assignments in J[i] and store them in T[i];
        MakeAllImplications(T[i], r+1);
      }

      if(T[i].IsConflict() is false for all i in range 0 to length(J)-1){
        A.SetConflict(true);    

} else {
Extract all signal assignments common to all 

        consistent justifications and store them in A;
}    

}
  }
}

The function will thus start with making all direct implications. If con-
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Figure 6.13: Recursion tree.

flicts are detected the function returns to the calling function and indicates that
a conflict was detected by setting a flag in A. After all direct implications have
been discovered the unjustified gates are extracted and stored in U. Next the
algorithm will for each unjustified gate, g, perform a series of tasks. First all
justifications for the current gate is found and stored in a list J. The justifica-
tions are now tried one at a time, with the purpose of extracting all implications
resulting from each justification. This is done by the recursive call MakeAl-
lImplications(T[i]). When all justifications are tried out the set of signal as-
signments are compared. If one or more signal assignments are common to all
consistent justifications, these assignments must be necessary assignments at
the current recursion level. Such assignments are added to the list A. Further
details is found in [KP94].

An illustration of how the signal assignments are learned is presented in the
recursion tree in Figure 6.13. Starting at the root of the tree, the set of all signal
assignments A, is the union of signal assignments learned through the justifica-
tion of the unjustified gates and the initial set, A0, of signal assignments. The
learned signal assignments common to all justifications of each unjustified gate
is found by intersecting the sets of signal assignments from each justification.
This process is repeated at each recursion level as indicated in Figure 6.13.

An example [KP94] of recursive learning is shown in Figure 6.14. The ini-
tial set of signal assignments in this case is {p = 1}, and the example illustrates
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how all other signal assignments following from this initial signal assignment
are learned. Initially only one gate is unjustified, namely gate G6. Two possible
justifications exist for this gate {q = 0, r = 0} and {q = 1, r = 1}. First the jus-
tification {q = 0, r = 0} is investigated. After applying the signal assignments
in the justification and performing direct implications, four gates turn out to be
unjustified: G1, G2, G3 and G4. There are two possible justifications of G1,
but both turns out to produce inconsistent signal assignments. It is thus impos-
sible to justify G1. Since all gates must be possible to justify, the justification
{q = 0, r = 0} of G6 turned out to be a dead end.

The other possible justification of G6 is {q = 1, r = 1}. After applying the
signal assignments in the justification and performing direct implications, one
gate turns out to be unjustified: G5. There are four possible justifications of
G5, and all produce consistent signal assignments. However, when the signal
assignments are compared, it turns out that the four justifications have no sig-
nal assignments in common other than the signal assignments present before
the justification of G5. The justification of G5 thus does not provide any new
information. Nevertheless, the justification, {q = 1, r = 1}, of G6 turned out
to be consistent. Since the set of signal assignments common to all consistent
justifications of G6 is {q = 1, r = 1}, this information is learned and added to
the set of signal assignments. Since G6 was the only initially unjustified gate,
the program finishes. Thus, through recursive learning, it was found that p = 1
implies q = 1 and r = 1.

6.5 ATPG software architecture

Figure 6.15 shows an overview of the architecture of the ATPG. The ATPG is
built around the same netlist representation as PDFSim. The other components
of PDFAtpg interacts with this netlist when the PDFAtpg is running. The ATPG
contains three other main modules: The Implicator, the Path Extender, and the
PDFAtpg Control.

The Implicator is a large module capable of finding all implications (direct
and indirect) from a given set of initial assignments. In order to achieve this,
the Implicator is equipped with an Implication Queue, an Unjustified Checker,
modules for StaticLearning and Recursive Learning, and a Value Vector.

The current set of value assignments (for two pattern tests) is stored in an
array in the Value Vector. The Value Vector contains several such arrays, and
can thus easily both switch between, and undo value assignments. This is fre-
quently utilized by the Recursive Learning module, which is capable of finding
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Figure 6.14: Example of recursive learning.
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Figure 6.15: Simplified overview of PDFAtpg.

all indirect implications from a given set of initial value assignments. Some
indirect implications is also found and stored by the Static Learning module.
These are extracted once and stored in an implication graph for repeated use
later. The Implicator also contains an Implication Queue, which is the ATPG
equivalent of the event queue in a event driven simulator such as PDFSim. It
is used in order to propagate value assignments back and fourth through the
netlist. The purpose of the Unjustifier Checker is, as the name suggests, to
check if a particular gate in the netlist is justified or not. The last module in
the Implicator is the FAN module which is an implementation of the FAN algo-
rithm. This module is used in order to find a set of assignments to the inputs of
the netlist that justifies a given set of value assignments to gates.

The other main module in PDFAtpg, is the Path Extender. The purpose
of this module is to provide efficient pruning of the search space in the search
for the K-longest testable paths. In order to achieve this the Path Extender is
equipped with a Path Queue, a Path Pruner, a Forward Trimmer, a module for
storing different Delay attributes, a container for Partial Paths and a container
for Complete Paths.

The Path Queue is a max heap that keeps the partial paths sorted according
to how promising they are with respect to their max esperance. The Path Pruner
and the Forward Trimmer contains different algorithms for pruning the search
space. The pruning process relies on different delay parameters, such as esper-
ance. These delay parameters are stored in the Delay module. When the search
for the longest paths is started, the Path Store is populated with the inputs of the
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netlist. These short paths are then extended with one gate at a time. If a partial
path is extended all the way to an output, it is transferred to the Complete Store,
but only if it passes final justification by the FAN module.
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Chapter 7

Stimuli generators

A necessary component in order to implement self-test is a stimuli generator.
This chapter presents some stimuli generators for use in a built-in self-test en-
vironment for path-delay faults.

7.1 Introduction to stimuli generators

The test generators that will be presented in this chapter exploit pseudo-random
stimuli generation. Two different sources of pseudo-random stimuli will be
presented. One is an accumulator based pseudo-random generator, and the other
is based on a more complex algorithm called Mersenne twister. The advantage
of the Mersenne twister is its statistical properties in particular, with respect
to correlation between samples. However, this comes at a cost of increased
computations compared to the simpler accumulator based scheme.

These two pseudo-random generators will be used as the underlying pseudo-
random generator in five different weighting schemes. Each weighting scheme
employ a two-phase process. In the first phase weigths are generated. One
strategy is to apply uniformly distributed stimuli to the circuit under test and
relate the input signal values (0 or 1) to fault detection in various ways. This
information is then used in order to generate weights. In the second phase the
weights are used together with the two different pseudo-random generators.

The generators will be described in detail later in this chapter. We begin
with prerequisite information about hardware and software based BIST, and
single-input change patterns which are used in all presented stimuli generators.
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7.2 Built-in self-test of system on chip

Successful test of a digital integrated circuit should ensure the quality of the
circuit as well as being cost effective. The classical way of testing digital in-
tegrated circuits is by means of an external tester (also often referred to as
Automated Test Equipment (ATE). Moore’s law affects all parts of the semi-
conductor industry, including the requirements for the testers. Among these
requirements are support for larger test data volumes, higher pin counts and
higher speeds of the testers. Unfortunately, the actual increase in performance
of cost efficient testers don’t match the increased performance of state-of-the-
art systems-on-chip. According to the International Technology Roadmap for
Semiconductors [ITR05] one of the problems is the increasing speed gap be-
tween state of the art VLSI circuits and cost efficient testers. This speed gap
makes it increasingly difficult to apply test vectors at-speed to the circuit under
test. Together with the increase in test data volume the increased speed gap
gives an increase in test time and thus the cost of test.

One increasingly important tool in order to reduce the cost of test and
achieve at-speed testing of large integrated circuits is built-in self-test (BIST)
[RT98, Str02]. There are many ways of implementing built-in self-test, but it
usually encompasses the following elements:

• Method for generating test vectors (Test vector generator/ Stimuli gener-
ator).

• Circuit to be tested (Circuit under test, CUT).

• Method for transporting test vectors to the CUT and the captured re-
sponse from the CUT.

• Method for compacting the test response (Test response compactor/signature
analyzer).

• Method for controlling the test (BIST controller).

7.2.1 Hardware implementation of BIST

One traditional implementation [BH82] of BIST is the STUMPS (self-testing
using MISR and parallel shift register sequence generator) architecture. In this
architecture a linear feedback shift register (LFSR) is used as the test vector
generator. The test vectors are fed to the CUT through multiple scan chains,
and the response is compacted by a multiple-input signature register (MISR)
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[Dav84]. Each scan chain is fed from one flip-flop in the LFSR. Additional
hardware have to be added to the mission logic in a circuit in order to implement
STUMPS. The next section presents a software based approach which does not
need additional test hardware. Other examples of hardware implementations of
BIST can be found in textbooks such as [BA02, Str02].

7.2.2 Software implementation of BIST

In 1978 Thatte and Abraham presented a methodology, which was the first at-
tempt of software-based self-test (SBST), for functional level testing of micro-
processors [TA78, BA84]. Since then SBST has been refined in order to support
structural fault models and utilize on-chip memories, and is now widely in use
for testing processors and large systems-on-chip designs. The usual test flow
within systems with software-based self-test today starts by uploading a test
program to the on-chip instruction cache. Additional data, such as seeds and
deterministic test vectors, may be uploaded to the data cache. When all nec-
essary data is uploaded the test program is started. The purpose of the test
program is to generate stimuli, apply the stimuli to the circuit under test, and
compact the test response.

Rajski and Tyszer [RT93a, RT93c, RT93b, GRT96, RRT97, RT98] found
an approach to software-based self-test that focused on the possibility to reuse
the mission logic for test purposes which they called arithmetic built-in self-
test (ABIST). ABIST is applicable to systems with on-chip microprocessor and
cache. Prior to a test a test program is uploaded to the on-chip program cache.
When the test is started the instructions are fetched from the cache. Test pro-
grams may use the arithmetic logic unit (ALU) [DW98] in the microprocessor
to act both as a test vector generator, and a signature analyzer.

The stimuli generators presented are intended for use in software based
BIST. Examples of assembly test programs based on the generators presented
here are presented in Section 7.8.

7.3 SIC: Single input change patterns

It is possible to toggle a single bit (Single Input Change-SIC) or multiple bits
(Multiple Input Change-MIC) when a two-pattern test vector is applied to the
circuit under test. Random SIC test sequences were found in [VDG+00, VGL+01]
to be more effective than random MIC test sequences when both robust and non-
robust faults were considered. The focus will therefore be on SIC generators in
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this thesis.
The generators produce SIC vectors by first establishing a basis pattern.

Each bit is then toggled twice in order to generate both rising and falling tran-
sitions. This is illustrated in Figure 7.1, where the vectors are encoded using
Smith’s alphabet [Smi85].

010
011
011
010

010
000

000
010

010
110
110
010

BASIS 
PATTERN

010

S0 S1 P1

S0 S1 P0

S0 P1 S0

S0 P0 S0

P1 S1 S0

P0 S1 S0

Figure 7.1: An n-bit basis pattern is used in 2n SIC test vectors.

The generators presented in this chapter do all generate SIC patterns, but
they differ in the way the basis patterns are generated. Since one n-bit (n is the
number of primary inputs to the CUT) basis pattern is re-used in 2n test vectors
it is important to create high quality basis patterns, i.e. patterns that detects
several new faults.

7.4 Pseudo exhaustive patterns

One way to achieve 100% fault coverage is by employing an exhaustive test.
Unfortunately, applying 2n test vectors, in the case of stuck-at faults, is only
feasible for circuits with few inputs n. However, sometimes, it is possible to
partition the circuit so that each sub circuit can be tested exhaustively. Four
common ways of segmenting the CUT is described in [BA02, RT98]:

• Verification testing or cone segmentation [Mcc84]: The CUT is parti-
tioned into fanin cones. The fanin cones are generated by backtracing
from each primary output through the circuit to the inputs that influences
the output. A cone thus consist of an output and all gates and inputs driv-
ing it. This is illustrated in Figure 7.2. If the number of inputs influencing
each output is small enough, the cones may be tested exhaustively.
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• Hardware partitioning or physical segmentation [MB81]: Extra logic is
added to the circuit in order to partition it into smaller sub circuits that
is directly controllable and observable. Each sub circuit is tested exhaus-
tively.

• Sensitized path segmentation [CKMZ83, Che88, Mcc84, UJ86]: The cir-
cuit is divided into partitions. For each partition, sensitizing paths are
set up from the primary inputs to the input of the partition and from the
output of the partition to the primary outputs. Each partition is tested
separately, while the remaining partitions are stimulated so that neces-
sary propagating conditions are met.

• Partial hardware partitioning [UJM88]: Combines sensitized path seg-
mentation to control inputs to the partition under test and hardware par-
titioning for observing signals in the partition under test.

Figure 7.2: Cone segmentation

Pseudo exhaustive test generators may be realized in many ways. Any gen-
erator that is guaranteed to generate all 2k test vectors for a sub circuit with k
inputs will suffice. A maximal length LFSR or an binary counter are examples.
Two other interesting pseudo-exhaustive generators based on accumulators was
presented Rajski and Tyszer in [RT98] as a part of the ABIST methodology.
These two generators will be presented next.
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7.4.1 ACC-FIXED: Optimal accumulator based generators for sin-
gle size subspaces

Arithmetic Built-In Self-Test (ABIST) [RT98] is a term coined by Janus Rajski
and Jerzy Tyszer. They pointed out that existing components in todays complex
integrated circuits often contain ALUs and memory that can be reused for test-
ing purposes. One efficient way to generate stimuli (measured in the number
of clock cycles needed to generate a new vector) is to accumulate a constant as
shown in Equation 7.1.

Ai+1 = Ai +C mod 2n, A0 = I (7.1)

There are 22n ways of choosing pairs of C and I, and it is, to some extent,
possible to chose C and I so that the resulting generator exhibits some interest-
ing properties.

By carefully selecting the parameters C and I it is possible to cover ex-
haustively every subinterval of size r within the first 2r test vectors [RT98]. A
pseudo-exhaustive generator like this can be used to test modules with physi-
cally adjacent input lines (e. g. adders). The number of inputs driving each
partition (often a fanin cone) may be the same for some regular structures, but
in general their sizes differ. The value of r should then be set equal to number
of inputs to the partition with the largest number of inputs.

7.4.2 ACC-RANGE: The best accumulator based generators for
subspaces within a range of sizes

The number of inputs to the partitions often varies, and in such cases a genera-
tor made for subspaces with fixed size might be suboptimal. It is not possible
to synthesize values for C and I for Equation 7.1 in such cases. A full search
through all possible generators is the only option way to find generators based
on Equation7.1 that exhaustively covers a range of subinterval sizes in the short-
est number of test vectors. An efficient method for pruning the search space is
presented in [RT98].

7.5 Pseudo random patterns

Pseudo random pattern generators are generators that generate sequences that
have the same properties as true random sequences even though the sequence
is generated by a deterministic algorithm. The number of test vectors needed
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in order to detect all faults are usually much smaller than the number of test
vectors generated during an exhaustive or pseudo-exhaustive test. However, the
test sequence might still be long due to random pattern resistant faults. Pseudo
random tests are therefore usually topped by some deterministic tests.

7.5.1 LFSR: Linear feedback shift register

The most popular pseudo random generator is the linear feedback shift register
(LFSR). LFSRs are very efficient (require little logic) in hardware and are also
easy to emulate in software. One example of software emulation of LFSRs is
described in [RT98].

7.5.2 TWISTER: Mersenne twister pseudo random generator

Mersenne Twister [MN98] is a pseudo-random generator which has a period
of 219937 − 1. The generator is fairly complex and is not suitable for use in
built-in self-test. However, there are many pitfalls when designing pseudo-
random generators, and the Mersenne twister may thus be used as a verification
tool in the design phase. If, for instance, an LFSR based generator in a BIST
environment performs much poorer than the Mersenne twister, it may be caused
by some structural or linear dependencies.

7.5.3 MAC: Multiply and accumulate based generator

In order to reduce the test application time of large sequential circuits with
scan, the scan chain is usually broken down into several scan chains. These
scan chains must then be fed by the test generator. LFSRs may, due to struc-
tural and linear dependencies, fail to produce some test patterns. Instead one
can use a generator based on multiply and accumulate (MAC) operations. The
congruent random number generator algorithm by Knuth cannot be used in its
original form [RT98]. It is a poor source for random sequences on designated
bit positions, even though the entire numbers are quite random [RT98]. Rajski
and Tyszer instead suggests the method in Equation 7.2 where Al

i and Ah
i are

the contents of the n least significant and n most significant bits of A, respectly,
after i iterations. M is an n-bit constant. It is assumed that Ah

i−1 is shifted right
by n bits prior to a next addition. A table of initial values that will provide the
longest sequences is given in [RT98].

Ai = MAl
i−1 + Ah

i−1 mod 2n (7.2)
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7.6 WEIGHT: Weighted pattern generators

Even simple circuits may contain random pattern resistant faults. Figure 7.3,
for example, shows the only robust test for the falling path-delay fault starting
at the on-input of the AND gate, and ending at the output of the AND gate. If
a pseudo-random generator were applied to this circuit it would hit the desired
second pattern of the two-pattern test with a probability of 2−n. One method
to increase the probability of detecting such faults is to employ a weighted pat-
tern generator. In a weighted pattern generator the outputs are biased so that
patterns needed for random resistant faults are more likely to occur.

Methods for generating weights based on structural analysis of the CUT
and deterministic test sets can be found in [Ber93, KPSW94, MAND90, PR91,
WLEF89, Wun87, Wun88, Wun90]. Other approaches is found in [IC02, PN88,
Maj96, Sav99, PR93, KPSW96, KTM96, NK97, KT99, LPRWT05, KLK01].

...

1
1
1
1
1
1

1

Figure 7.3: Random pattern resistant path-delay fault

7.6.1 DETERM: Weights based on deterministic test set for stuck-
at faults

There are several ways of creating weights for a weighted pattern generator.
One common method used in conjunction with the single stuck-at fault model,
is to create weights based on a deterministic test set for stuck-at faults. Even
though the test generators presented here will be evaluated for their efficiency
to detect path-delay faults, it is interesting to find out whether or not a weight
set based on a deterministic test set for stuck-at faults would yield a good result.
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The weights was generated as follows. First a deterministic test set for each
of the benchmark circuits was created by TetraMax, an ATPG from Synopsys.
Each deterministic test set consists of a number of test vectors as shown in
Figure 7.4.

0 1 X 0

1 X X 0

0 0 0 1

1 0 0 0

V1

V2

V2

V3

CUT

Figure 7.4: A deterministic test set.

The weights were determined by first counting the number of test vectors
n1i with the symbols ’1’ and ’X’ present at input i, as well as the number of
test vectors n0i with the symbols ’0’ and ’X’ present at input i. Values for n0
and n1 is shown in Figure 7.5 for the test set in Figure 7.4. The probability
for observing ’1’ at the input of the circuit under test at input i can thus be
computed as shown in Equation 7.3.

p1 = n1/(n1 + n0) (7.3)

2 3 4 3n0
2 2 2 1n1

2/4 2/5 2/6 1/4p1

Figure 7.5: Computation of weights based on a deterministic test set for stuck-at
faults.

7.6.2 PDF-DETERM: Weights based on deterministic test set for
path-delay faults

The ATPG described in Chapter 6 can be used in order to extract the K-longest
testable paths in a circuit. Section 8.2.1 describes an experiment (EX1) where
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the 20000 longest non-robust testable paths were extracted together with a valid
test vector.

The weights were then computed based on the deterministic test set for
path-delay faults in the same way as described in Section 7.6.1.

7.6.3 COUNTING: Weights based on counting of detected faults

Weighs can also be generated based on fault coverage measurements. Fig-
ure 7.6 shows a circuit with two inputs and one output. The circuit is attached
to a pseudo-random generator that creates uniformly distributed basis patterns.
Two counters (S 0Ctr, S 1Ctr) are associated with each input. The purpose of
S 0Ctr (S 1Ctr) is to store the number of faults detected when the input has the
value S 0 (S 1). When the desired number of basis patterns has been applied the
weighting factors can be computed for every input according to the formula in
Equation 7.4.

S0Ctr

S1Ctr

S0Ctr

S1Ctr

9

S0

S1

Basis 
Pattern

9

Detected new faults for 
the current base 
pattern. 

Total number of detected 
faults for particular input 
values.

0

0

9

+

Figure 7.6: Computation of weights based on counting of detected faults.

p1 = S 1Ctr/(S 1Ctr + S 0Ctr) (7.4)

Circuits will typically have some paths that are very easy to detect and other
paths that are more difficult to detect. The easiest to detect faults are usually
detected in the first few vectors anyway, thus it is a good idea to try to tune the
weights on to the faults that are a bit more difficult to detect. When weights
were generated using this method, the first 100 basis vectors were skipped and
did not contribute to the computation of the weights. 10M SIC patterns were
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applied to each CUT during computation of the weights, the same number of
SIC patterns as will be used in the experiments.

7.6.4 FAULT-SUBSET: One weight for each subset of faults

Each path-delay faults starts at an input-node and ends at an output-node. This
can be used to efficiently divide the set of all path-delay faults into smaller
disjoint subsets containing only faults that ends at a particular output, starts at
a particular input or both. This is illustrated in Figure 7.7 for a circuit with four
inputs and eight outputs.

O1 O2

O3

O4

O5O6

O7

O8O3, 
I1

O3, I2

O3, I3

O3, I4

I1 I2

I3I4

Set of all Path 
Delay Faults

Figure 7.7: Set of all Path Delay Faults divided into disjoint sets with the same
input, output or both.

Instead of trying to detect all faults in the fault set using one fixed weight
set, it may be more efficient to restart the generator with weights that target one
subset of the fault set at a time. The method presented in Section 7.6.3 can
easily be adapted in order to achieve this as shown in Figure 7.8.

The figure shows a circuit with two inputs and four outputs. The circuit is
attached to a pseudo-random generator that creates uniformly distributed base
patterns. Associated with each input there are two arrays of counters, one array
of counters (S 0Ctr, S 1Ctr) for each of the two possible input values (S 0, S 1).
The purpose of S 0Ctr[i] (S 1Ctr[i]) is to store the number of faults detected that
ends at output i when the input has the value S 0 (S 1). When the desired number
of base patterns have been applied, the weighting factors can be computed for
every input and subset i according to the formula in Equation 7.5.

p1[i] = S 1Ctr[i]/(S 1Ctr[i] + S 0Ctr[i]) (7.5)
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Figure 7.8: Fault set partitioning and computation of weights based on counting
of detected faults.

This section has described a method for generating weights optimized for
different subsets of the total set of path-delay faults. When these weights are
used to bias a pseudo-random generator a strategy for restarting the generator
with new weights must be deviced. Two such strategies are presented next in
Section 7.6.5 and Section 7.6.6.

7.6.5 REL-SEEDOPT: Weight sequence optimization based on rel-
ative fault detection

The procedure in Figure 7.8 produces one weight set for each output in the
circuit under test. Associated with each weight set is a fault count di that can
be used in order to schedule the restarting of the generator. Assume that the
available test budget is T test vectors. Each weight set can be given a fair share
of this test budget by assigning ti (Equation 7.6) test vectors to weight set i.

ti =
di∑
di
∗ T (7.6)

Although the weight sets are optimized with respect to their associated out-
put, a generator will also detect some faults from other subsets of the fault set
than the subset targeted by the current weight set. In order to climb faster to
high fault coverage, the method in Section 7.6.6 was deviced.
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7.6.6 SIM-SEEDOPT: Optimizations of weight sequence based on
simulation

Figure 7.9 illustrates the number of detected faults as a function of the num-
ber of applied vectors for an imagined circuit. The double line represent the
test budget T . The other vertical lines indicate places where restarting of the
generator with a new weight set may take place.

# Detected 
Faults

# Applied 
vectors

T

Figure 7.9: Weight sequence optimization based on simulation.

The algorithm assigns one weight set to each of the (in this example) four
intervals defined by the vertical lines in Figure 7.9. Thus, the fault coverage
increases quicker after each restart.

In order to achieve this, a greedy approach is used. All weight sets are
loaded into the generator, and the weight set that yields the highest coverage af-
ter the first (in this example) third of an interval, is used as the weight through-
out that interval. This procedure is repeated for all intervals.

7.7 Test pattern generators

This chapter has described a set of methods and techniques that have been used
as tools in designing the test pattern generators. Each technique is identified by
the tag present in the caption over the section describing the technique. This
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section presents the different test pattern generators formed by using these tech-
niques.

Table 7.1 and Table 7.2 give an overview of the different stimuli generators.
The first column of each table contains the ID of each generator. The second
column contains a number of tags or properties associated with the stimuli gen-
erator, and the last column gives a short description of the generator.

7.8 Assembly test programs

The purpose of this section is to show how the pseudocode of the test generator
algorithms can be translated into efficient assembly programs.

7.8.1 Test application scheme

When the actual test-programs are created it is also necessary to take into ac-
count the test application scheme. During simulation it is assumed that the first
pattern in the two-pattern test is held until it has propagated through the circuit
under test. The second vector creates a transition and the signature compactor
must sample the response one clock cycle later in order to capture any path de-
lay faults. The test programs shown here only contain the test generator. They
can easily be extended in order to include a response compactor as well. It is
assumed that the combinational CUT is connected to the processor through the
register R0, and that R0 has the same width as the number of inputs to the CUT.

7.8.2 Instruction set

The test programs presented in this paper is implemented using the instruction
set presented in Table 7.3. It is assumed that every instruction executes within
one clock cycle.

7.8.3 Weighting factors

Some of the test generators presented generate weighted pseudo-random test
patterns. Such weighting factors can easily be implemented using standard
AND/OR operations as shown in Figure 7.10.

If an AND operation is to take place for some bits but not all, it is possible
to exploit that a ∗ (b + 1) = a . If an OR operation is to take place for some bits
but not all, it is possible to exploit that a + (b ∗ 0) = a . The probabilities in
Figure 7.10 can thus be created by: p = [a∗(m1+b)+(m2∗b)]∗(m3+c)+(m4∗c)
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Table 7.1: Overview of test pattern generators using ABIST as the underlying
random generator

ID Tags Description

GA1 SIC, ACC-FIXED Pseudo-exhaustive accumulator based test generator.
Optimal for subspaces with size r=8. C and I picked
randomly from a determined set.

GA2 SIC, ACC-FIXED,
WEIGHT, DE-
TERM

Weighted random generator based on three different
accumulator based generators (r=16. C and I picked
randomly). Weights are based on a deterministic test
set for stuck-at faults.

GA3 SIC, ACC-
FIXED, WEIGHT,
COUNTING

Same as GA2 but the weights are computed using a
different method. The weights for each input pin is
based on the observed coverage for each value as-
signment taken from the set V = {0, 1} while the rest
of the inputs are assigned N pseudo-random vectors.

GA4 SIC, ACC-FIXED,
WEIGHT, FAULT-
SUBSET, REL-
SEEDOPT

Same as GA2 but the weights are computed using
a different method. The generator is reseeded nPO
times (nPO is the number of primary outputs) with
different weights. Each weight is computed in the
same way as for GA3, but only the paths ending
at the particular output is considered when the fault
coverage is detected.

GA5 SIC, ACC-FIXED,
WEIGHT, FAULT-
SUBSET, SIM-
SEEDOPT

Same as GA4, but the sequence in which the seeds
are applied is optimized.

GA6 SIC, ACC-FIXED,
WEIGHT, PDF-
DETERM

Weighted random generator based on three different
accumulator based generators (r=16. C and I picked
randomly). Weights are based on a deterministic test
set for path-delay faults.

GAU SIC, ACC-FIXED,
WEIGHT

Same as GA2/GA3/GA6, but with all weights set to
0.5.
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Table 7.2: Overview of test pattern generators using Mersenne twister as the
underlying random generator

ID Tags Description

GT1 SIC, TWISTER Same as GA1, but using Mersenne twister as the un-
derlying random generator.

GT2 SIC, TWISTER,
WEIGHT, DE-
TERM

Same as GA2, but using Mersenne twister as the un-
derlying random generator.

GT3 SIC, TWISTER,
WEIGHT,
COUNTING

Same as GA3, but using Mersenne twister as the un-
derlying random generator.

GT4 SIC, TWISTER,
WEIGHT, FAULT-
SUBSET, REL-
SEEDOPT

Same as GA4, but using Mersenne twister as the un-
derlying random generator.

GT5 SIC, TWISTER,
WEIGHT, FAULT-
SUBSET, SIM-
SEEDOPT

Same as GA5, but using Mersenne twister as the un-
derlying random generator.

GT6 SIC, TWISTER,
WEIGHT, PDF-
DETERM

Same as GA6, but using Mersenne twister as the un-
derlying random generator.

GTU SIC, TWISTER,
WEIGHT

Same as GT2/GT3/GT6, but with all weights set to
0.5.

with careful selection of the four mask bits m1, m2, m3 and m4 as shown in
Table 7.4.

7.8.4 Implementation of GA1 in assembly code

Figure 7.11 shows an assembly implementation of GA1. It consists of three
parts. The program starts at the address with the label INIT where the test
program generator is initialized. Rising and falling transitions are then created
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Table 7.3: Instruction set

Instruction Description

LOAD Rd, k
LOADI Rd, k

Set the content of register Rd to [data stored in mem-
ory address k — immediate].

MOV Rd, Rr Move content of Rr to Rd.

ADD Rd, Rr
ADDI Rd, k

Add the content of [reg. Rr — immediate] to Rd.
Store the result in Rd.

ADDC Rd, Rr
ADDCI Rd, k

Add the content of [reg. Rr — immediate] with carry
to Rd. Store the result in Rd.

AND Rd, Rr
ANDI Rd, k

Bitwise AND operation of [reg. Rr — immediate]
and Rd. Result is stored in Rd.

OR Rd, Rr
ORI Rd, k

Bitwise OR operation of [reg. Rr — immediate] and
Rd. Result is stored in Rd.

XOR Rd, Rr Bitwise XOR operation of Rr and Rd. Result is
stored in Rd.

NOT Rd Invert the bits in Rd.

ROL Rd Rotate left the content of Rd.

BRNE k Set program counter to k if the equal flag is not set.

CPI Rd, k Compare register with immediate.
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Figure 7.10: Synthesis of weighting factors using AND/OR operations
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Table 7.4: Masks for generating the weights in Figure 7.10

Function m1 m2 m3 m4

abc 0 0 0 0

ab 0 0 1 0

(a + b)c 1 1 0 0

a 1 0 1 0

ab + c 0 0 1 1

a + b 1 1 1 0

a + b + c 1 1 1 1

for each bit as shown from the address with label SIC. When all 2n transitions
have been created, a new basis vector is created until a total of N basis vectors
have been created. The N basis vectors corresponds to 2n ∗ N two pattern tests.

const  N = 0x5 # No. of basis vectors
const  C = 0xB # Constant to be added
const  I = 0x9 # Initial vector

INIT : LOAD R4, N    # Move N to R4
       LOAD R0, I    # Move I to R0
       LOAD R6, 0x1  # Move 1 to R6
SIC  : XOR  R0, R6   # Create transition
       NOOP
       XOR  R0, R6
       ROL  R6        
       CPI  R6, 0x1
       BRNE SIC     # Toggle all bits
BASIS: ADD  R0, C   # Create new Basis

SUBI R4, 0x1   
       BRNE SIC
FINISH: NOOP        # End of test

Figure 7.11: Assembly code implementation of GA1.

The output of register R0 is assumed connected directly to the CUT, and
the sequence generated by the test program is shown in Figure 7.12. Each
instruction in the test program in Figure 7.11 corresponds to one line in the
listing in Figure 7.12. The vertical wave in the figure illustrates the falling and
rising transition on the LSB in the input vector.
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--INIT--
XXXX
XXXX
1001
1001
--SIC --
1000
1000
1001
1001
1001
1001

--SIC --
1011
1011
1001
1001
1001
1001
--SIC –-
0001
0001
1001
1001 
...

Figure 7.12: Output of GA1 with parameters N = 4, C = 1011, I = 1001.
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Chapter 8

Experiments

This chapter describes the experiments carried out in order to evaluate the stim-
uli generators presented in the previous chapter. Only non-robust faults (includ-
ing robust faults) are considered in the experiments.

8.1 Benchmark circuit properties

The circuits in the iscas’85 benchmark suite have been used in the experiments
presented in this chapter. In order to be able to interpret the results, some infor-
mation about each benchmark is provided in this section. The information was
extracted from the netlists by sending queries to the path-delay fault simulator
described in Chapter 5.

The number of inputs, outputs, gates, logical levels and physical paths for
each circuit is shown in Table 8.1. Among the things that can be observed
is the huge number of physical paths in benchmark c6288 (a 16x16 bit array
multiplier).

The paths in the benchmarks are of different length. An overview of the
number of paths of different length is illustrated by the histograms shown in
Figure 8.1 and Figure 8.2. A histogram is not shown for the small circuit c17,
but it has five paths with length three and six paths with length four.

The circuits c432 and c499 are ommitted from most of the experiments be-
cause they contain XOR-gates, which is not currently supported by the ATPG.
Another circuit that is ommitted from most experiments is c6288. The large
number of paths in this circuit cause problems for the both the simulator and
the ATPG. The rest of the benchmarks are used in all experiments.
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Figure 8.1: The number of physical paths of different lengths.
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Table 8.1: Benchmark properties
Circuit Inputs Outputs Gates Levels Paths
c17 5 2 13 4 11
c432 36 7 203 18 83926
c499 41 32 275 12 9440
c880 60 26 469 25 8642
c1355 41 32 619 25 4173216
c1908 33 25 938 41 729057
c2670 233 140 1566 33 679960
c3540 50 22 1741 48 28676671
c5315 178 123 2608 50 1341305
c6288 32 32 2480 125 98943441738294937238
c7552 207 108 3827 44 726494
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Figure 8.2: The number of physical paths of different lengths.
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8.2 Statistical properties of the test generators

This section presents some statistical properties of the sequences generated by
the different test generators described in Chapter 7. This information can be
used as an aid in the interpretation of the results from the experiments presented
in this chapter.

8.2.1 EX1: Find the K-longest testable paths in each circuit.

The objective of this experiment was to find the longest non-robust testable
paths of each benchmark circuit. This was achieved by using the ATPG tool
described in Chapter 6. If unlimited time and memory had been available, the
tool would be able to list all testable faults in the benchmark circuit. Unfortu-
nately some of the benchmarks contains a huge number of testable path-delay
faults, and this would cause the size of the data structure inside the ATPG tool
to blow up. In order to keep the whole path store inside computer memory, the
size of the path store was set to a maximum of 1M. The ATPG was asked to
find the 20K longest non-robust testable pathts in each of the benchmarks. The
number of non-robust testable paths found for the different circuits are listed
in Table 8.2 together with an upper bound[CC93] of all non-robust path delay
faults. Since all circuits except c880 contain more than 20K testable paths, the
ATPG had no problem finding 20K testable paths. It is also reassuring to ob-
serve that the number of testable paths found in c880 indeed matched the upper
bound in [CC93].

Table 8.2: The number of testable paths found.
Circuit U. Bound Paths found
c880 16652 16652
c1355 1110076 20000
c1908 355197 20000
c2670 1306884 20000
c3540 12330969 20000
c5315 353300 20000
c7552 282752 20000
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8.2.2 EX2: Determine how many paths of different length are de-
tected by unweighted pseudo-random stimuli.

In this experiment test vectors were applied to the benchmarks, and the number
of detected path-delay faults and their length were logged. The test vectors used
in this experiment were generated by an unweighted pseudo-random generator
(GT1). The purpose of the experiment was to obtain some information about
the number of paths of different lengths typically detected by a standard pseudo-
random generator. The results are presented in Figure 8.3 and Figure 8.4.

When these plots are compared with the total number of paths in the circuits
of different lengths (Figure 8.1 and Figure 8.2), it is easy to observe that the
longer paths are not as easily detected as shorter paths. To make it even more
obvious the centre of gravity, i.e. the average path length, was computed for
each circuit in Figure 8.3 and Figure 8.4. Table 8.3 lists the average path length
of the detected path-delay faults after 100K, 200K, 1M, 2M and 4M applied
test vectors. The last column in the table lists the expected length of a randomly
selected path-delay fault out of all possible path-delay faults in the circuit.

According to Table 8.3 the expected length of the detected faults increases
when more test vectors have been applied to the circuit under test. The ta-
ble also shows that the average length of a randomly selected physical path is
higher than the average length of the paths detected within 4M test vectors.
It is possible to conclude from this that the shorter paths are easier to detect
with unweighted pseudo-random stimuli than the longer paths. This is also in
accordance with what one would expect, since longer paths have more signal-
assignment requirements in order to successfully sensitize the path-delay fault
than shorter paths have.

8.2.3 EX3: Comparison of GA1, GA2, GA3, GA4, GA5

In this experiment the performance of GA1, GA2, GA3, GA4 and GA5 was
evaluated. The experiment was carried out by using the fault simulator de-
scribed in Chapter 5. 10M test patterns were simulated for each circuit and
generator. Each simulation run was repeated 10 times with different seeds in
order to cover statistical variations. Table 8.4 presents the average number of
detected faults over 10 trials after 10M applied test vectors.

The best result, i.e. the highest number of detected faults, is shown in bold
in Table 8.4 for each circuit. The stimuli generator with the poorest perfor-
mance is the unweighted pseudo-random generator GA1. This generator de-
tected the fewest number of non-robust path delay faults in all tests. Generator
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Figure 8.3: Detected paths and their length using GT1.
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Table 8.3: Average path length of detected faults.
Circuit 100K 200K 1M 2M 4M PathCount
c432 10.8 - 12.5 12.7 12.8 15.2
c499 8.8 - 9.0 9.0 9.0 10.3
c880 14.1 - 15.8 16.0 16.3 17.9
c1355 17.6 - 18.4 18.5 18.6 21.8
c1908 19.4 - 22.5 23.3 24.0 29.7
c2670 12.7 - 14.9 15.5 15.8 25.6
c3540 22.5 - 24.0 24.5 24.9 34.4
c5315 14.6 - 18.5 19.6 20.6 35.4
c6288 48.3 50.8 - - - 91.6
c7552 17.8 - 20.1 20.5 20.8 29.2
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Figure 8.4: Detected paths and their length using GT1.
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Table 8.4: Detected faults after 10M applied test vectors
Circuit GA1 GA2 GA3 GA4 GA5
c880 8714 16194 16550 16470 16473
c1355 1050139 1085021 1110297 1110264 1110258
c1908 269846 283665 349613 349579 349568
c2670 51739 85948 107711 102734 104141
c3540 588541 996001 1062718 1050384 1050579
c5315 173526 309498 339396 339122 339157
c7552 146754 185983 185687 185264 185383
Sum 2289259 2962310 3171972 3153817 3155559

GA2, which is a weighted pseudo-random generator with weights based on a
deterministic test set for stuck-at faults, is somewhat better than GA1. The three
best generators are GA3, GA4 and GA5. The performance of GA3, GA4 and
GA5 does not differ by much, but the results point in favour of GA3, which
detects most path-delay faults for all but one benchmark. GA3 is a weighted
pseudo-random generator with weights based on the counting scheme described
in Chapter 7.

Figures 8.5- 8.7 show the number of detected faults after 10M applied test
vectors for the circuits in the iscas’85 benchmark suite.
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Figure 8.5: Detected faults for c880 and c1355 after 10M applied vectors.
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Figure 8.6: Detected faults for c1908 and c2670 after 10M applied vectors.
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Figure 8.7: Detected faults for c3540, c5314 and c7552 after 10M applied vec-
tors.

8.2.4 EX4: Comparison of GT1, GT2, GT3, GT4 and GT5

In this experiment the performance of GT1, GT2, GT3, GT4 and GT5 was eval-
uated. The experiment was carried out by using the fault simulator described in
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Chapter 5. 10M single-input-change test patterns were applied for each circuit
and generator. Each simulation run was repeated 10 times with different seeds
in order to cover statistical variations. Table 8.5 presents the average number of
detected faults over 10 trials after 10M applied test vectors.

Table 8.5: Detected faults after 10M applied test vectors
Circuit GT1 GT2 GT3 GT4 GT5
c880 14303 16159 16571 16496 16498
c1355 1109963 1068481 1110297 1110270 1110289
c1908 317450 263360 349119 345722 347978
c2670 88467 87096 108235 105236 105873
c3540 1012172 1010114 1065546 1060025 1060532
c5315 309562 313712 340124 339622 339921
c7552 185595 186215 185783 185717 185894
Sum 3037512 2945137 3175675 3163088 3166985

The best result, i.e. the highest number of detected faults, is shown in bold
in Table 8.5 for each circuit. The stimuli generator with the poorest performance
is the weighted pseudo-random generator GT2. This generator detected the
fewest number of non-robust path delay faults in most of the tests. Generator
GT1, which is the unweighted pseudo-random generator, is somewhat better
than GT2. The three best generators are GT3, GT4 and GT5. The performance
of GT3, GT4 and GT5 does not differ by much, but the results point in favour of
GT3, which detects most path-delay faults for all but one benchmark. GT3 is a
weighted pseudo-random generator with weights based on the counting scheme
described in Chapter 7.

Figures 8.8- 8.10 show the number of detected faults after 10M applied test
vectors for the circuits in the iscas’85 benchmark suite.

8.2.5 EX5: Weighted pseudo-random patterns targeting the K-longest
testable path-delay faults

The purpose of this experiment was to find out if proper weighting of pseudo-
random stimuli, based on K=20000 deterministic test patterns for path-delay
faults, would yield more efficient path delay tests than using uniformly dis-
tributed patterns. The experiments was conducted as follows:

First the K=20000 longest testable path-delay faults were extracted for each
circuit as described in EX1. For each detected path, the path number was stored
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Figure 8.8: Detected faults for c880 and c1355 after 10M applied vectors.
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Figure 8.9: Detected faults for c1908 and c2670 after 10M applied vectors.

in a file together with the correspondning path length and test vector. Weights
for GA6 and GT6 were then extracted based on each test set as described in
described in 7.6.2.

Prior to each simulation run a fault list with the 20000 longest testable path-
delay faults was uploaded to the simulator. 10M single-input-change test pat-
terns were then applied to each circuit for each generator. Each simulation run
was repeated 10 times with different seeds in order to cover statistical varia-
tions.

Six different generators were used: GAU, GA3, GA6, GTU, GT3 and GT6.
The three generators GAU, GA3 and GA6 are using the exact same underly-
ing accumulator based pseudo-random generator. GA3 and GA6 are weighted
pseudo-random generators and will be compared against GAU, which has all
weights set to 0.5. The three generators GTU, GT3 and GT6 are using the exact
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Figure 8.10: Detected faults for c3540, c5314 and c7552 after 10M applied
vectors.

same underlying mersenne twister pseudo-random generator. GT3 and GT6 are
weighted pseudo-random generators and will be compared against GTU, which
has all weights set to 0.5.

Three measures were recorded:

• Fault coverage in relation to the size, K, of the fault list. (K=20000 for
all circuits except c880 which has only 16652 non-robust testable paths).

• Test time speedup, defined as the ratio Rimp = NT P(uni f orm)/NT P(methodx).
(NT P represents the number of test patterns. The name of the stimuli
generator is used as argument).

• Standard deviation in fault coverage, C, after 10M applied SIC test pat-
terns computed over the N=10 different runs according to Equation 8.1.

σ =
Σ(Ci −C)
√

N − 1
(8.1)
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During simulation the fault coverage, FC, was sampled from time to time
until 10M test pattern had been applied. Table 8.6 shows the fault coverage after
10M applied test vectors. The numbers in the second coloumn represent fault
coverage achieved with the best generator of GA3 and GA6. The numbers in
the third coloumn represent the fault coverage achieved with the best generator
of GT3 and GT6.

We observe from Table 8.6 that the GT methods are slightly better than the
GA methods. Furthermore, 5 out of 7 circuits attain 97.6% fault coverage, or
more. Two circuits exhibit inferior fault coverage, and need more test patterns
or other methods of path delay fault detection.

Table 8.6: Fault coverage, FC, of best method after 10M applied test vectors
Circuit FC(GAx) FC(GTx)
c880 99.3% (GA3) 99.5% (GT3)
c1355 100% (GA3) 100% (GT3)
c1908 97.6% (GA3) 98.2% (GT3)
c2670 67.9% (GA6) 71.0% (GT6)
c3540 86.9% (GA6) 88.2% (GT6)
c5315 96.7% (GA6) 98.7% (GT6)
c7552 99.8% (GA3) 99.7% (GT6)
Average 92.6% 93.6%

The standard deviation of the sample fault coverage after 10M applied test
patterns over the 10 trials is given in Table 8.7. The variation is modest. If all
possible test patterns were applied to the circuits, all faults in the fault set would
eventually be detected, and the standard deviation would be zero. This is the
situation for circuit c1355. The two circuits with lowest fault coverage (c2570
and c3540) did not reach saturation even after 10M test patterns, and for these
circuits the standard deviation is higher than for the other circuits.

In order to measure the speedup of a weighted generator over that of a
uniformly distributed pseudo-random generator, one can compare the number
of test vectors needed in order to achieve the same fault coverage. The tar-
get coverage in our case was set to the fault coverage achieved with the un-
weighted generator after 10M applied stimuli. The improvement factor of the
best weighted generator over uniformly distributed stimuli is listed in Table 8.8.

We observe time speedups from nothing to a factor 15! It is not possible to
device an a priori metric to predict speedup. But given some substantial savings
in test time, and thus savings of test cost, it can be recommended to try GA3
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Table 8.7: Standard deviation of relative fault coverage
Circuit Rimp(GAx) Rimp(GTx)
c880 0.11% (GA3) 0.12% (GT3)
c1355 0.00% (GA3) 0.00% (GT3)
c1908 0.11% (GA3) 0.15% (GT3)
c2670 1.50% (GA6) 1.48% (GT6)
c3540 0.60% (GA6) 0.43% (GT6)
c5315 0.22% (GA6) 0.09% (GT6)
c7552 0.12% (GA3) 0.05% (GT6)

Table 8.8: Time speedup of best method over uniformly distributed stimuli
Circuit Rimp(GAx) Rimp(GTx)
c880 11.9 15.1
c1355 1.5 2.7
c1908 8.0 10.8
c2670 10.7 14.3
c3540 7.1 9.1
c5315 4.7 7.0
c7552 1.0 1.0

and GA6 for a newly designed circuit, and use this method if beneficial.

8.2.6 EX6: Distributed simulation utilizing idle CPU time on 100
machines at the same time.

This thesis has described 14 different stimuli generators which have been ap-
plied to 7 different circuits through various experiments. Each experiment have
usually been repeated several times (usually 10) in order to cover some statisti-
cal variations. This adds up to a total of 9800 different simulation jobs for each
experiment. These simulations take quite some time. As an example, consider
the experiment (only one trial) of applying 10M SIC patterns to all circuits with
the generator GT1. The running times are listed in Table 8.9.

Since these simulations take quite some time, 27 hours for 9800 jobs to be
precise, it was tempting to find a way to speed up the simulations. Fortunately,
since all these simulation jobs can run independent of each other, the jobs can
be distributed to several computers. The simulator and the ATPG described in
this thesis have the option of operating in distributed mode and download jobs



8.2 Statistical properties of the test generators 121

Table 8.9: Running time for simulating 10M test patterns on an Intel
E6600@3GHz

Circuit Sim. time
c880 34 s
c1355 108 s
c1908 138 s
c2670 39 s
c3540 211 s
c5315 82 s
c7552 105 s
Sum 12 m

from a central server. During the summer of 2005, experiments were conducted
where as many as 100 computers participated in simultaneous simulation, re-
ducing the simulation time with a factor equal to the number of computers.
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Chapter 9

Conclusion

This thesis has presented the implementation of a simulator and an ATPG for
path delay faults. In Chapter 8 these tools were used in order to evaluate the
performance of the test vector generators presented in Chapter 7. In this Chapter
we will look closer at what we have learned from these experiments, and present
some thoughts on future research.

9.1 Discussion

This thesis has described 14 pseudo-random generators. Ten of these are weighted
generators, and the rest generate uniformly distributed pseudo-random stimuli.
Each experiment described in goes through one or more phases:

• In the first phase, the ATPG is used in order to find the K-longest testable
paths. The corresponding path numbers are then saved to a file together
with the corresponding test vector for repeated use later on. The paths
can then be used as the target fault list during simulation. Experiments
that consider all possible faults skip this phase.

• In the second phase, weights are generated for the weighted pseudo-
random generators. These weights are stored for repeated use later on.
This phase is skipped for experiments where the generator is unweighted.

• In the third phase, the actual fault simulation takes place. In all experi-
ments 10M single-input-change test patterns were applied and repeated
ten times for each generator and circuit in order to cover some statistical
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variations. Only non-robust faults (including robust faults) were consid-
ered.

Two groups of pseudo-random generators have been evaluated. The first
group, GA, consists of accumulator based pseudo-random generators, and in-
cludes the following generators: GA1, GA2, GA3, GA4, GA5, GA6 and GAU.
Of these GA1 and GAU are unweighted generators, the rest are weighted. The
second group, GT, consists of mersenne-twister based pseudo-random gener-
ators, and includes the following generators: GT1, GT2, GT3, GT4, GT5,
GT6 and GTU. Of these are GT1 and GTU unweighted generators, the rest
are weighted.

The result has shown that the GT group of pseudo-random patterns gives
marginally better results than the GA group. Since GA generators are much less
computationally intensive, GA generators are reccommended over GT genera-
tors in practical applications. Experiments have also been conducted in order to
evaluate the benefit of weighted stimuli compared to unweighted stimuli. The
results show that test time can be reduced with a factor of up to 15 for the
circuits in the ISCAS’85 benchmark suite.

The results from the experiments will now be discussed in detail in the
following order: EX3, EX4, EX1, EX2, EX5, and EX6.

In experiment EX3 the performance of the five generators GA1, GA2, GA3,
GA4 and GA5 in the GA group were evaluated. The performance of GA3,
GA4 and GA5 did not differ by much, but the results pointed in favour of GA3,
which detects most path-delay faults for all but one benchmark. GA3, GT4
and GT5 are all weighted pseudo-random generators with weights based on
the counting schemes described in Chapter 7. The difference is that GT4 and
GT5 partition the set of all path-delay faults into disjunct subsets, one for each
output, and creates one weight set corresponding to each subset of faults. It is
not easy to understand why one generator is better than the other. One way to
go about in order to at least get a better understanding of the problem is to look
at the topology of the circuit under test. We have not performed such topology
analysis, but it is relatively easy to devise examples of circuit topologies that
would favor one generator over the other.

One such example is shown in Figure 9.1. The circuit to the left consists of
two small cones with one AND gate with many inputs in each cone. Each cone
has separate inputs. If weights were generated for this circuit using GA3, the
result would be a weight set that will make it more likely to generate ’1’ than ’0’
on all inputs of all cones, since that will increase the probability of generating
a good basis vector for the path-delay faults in the circuit. GA4 (and GA5), on
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the other hand, will end up with two weight sets, one for each output cone. The
weight set targeting the subset of faults associated with each cone will result in
weights with a higher probability of setting the input of that cone to ’1’ than
to ’0’, the other inputs would get uniform weights. In such situations it would
be preferred to use GA3 since weights in GT4 (and GT5) would only target
one cone at a time when it is possible to target both at the same time without
penalty.

The circuit to the right in Figure 9.1 shows a situation where it would be
meaningful to employ GT4 (or GT5). In this circuit the cones are driven by the
same inputs. One of the cones is an AND gate with many inputs and the other
is a OR gate with the same inputs. In order to achieve good coverage of the
path delay faults in this circuit it is necessary with some patterns that have high
probability of ’1’, and equally many patterns that that have high probability for
all inputs to be set to ’0’. This can be achieved using generators such as GT4
(and GT5), but not GT3.

Figure 9.1: Two circuits with two output cones driven by different or the same
inputs.

In experiment EX4, the performance of the five generators GT1, GT2, GT3,
GT4 and GT5 in the GT group was evaluated. The performance of GT3, GT4
and GT5 did not differ by much, but the results pointed in favour of GT3, which
detects most path-delay faults for all but one benchmark. The results for these
generators were slightly better that for the corresponding accumulator based
test vector generators from EX3, but is not recommended for use due to the
high computational complexity. The reason why the Mersenne twister has been
included in the experiment, is because we needed a pseudo-random source with



126 Conclusion

known good properties, in order to verify that the accumulator based generators
had adequate performance as pseudo-random sources. Using the GT generators
as benchmarks, we can conclude from EX3 and EX4 that the unweighted ac-
cumulator based generator GA1 has much poorer performance than GT1. This
indicates that a single accumulator is a relative poor source for pseudo-random
stimuli. But by putting three accumulators inside each of the generators GA2,
GA3, GA4, GA5, GA6, GAU, and use these to generate weights as explained
in Section 7.8.3, the performance becomes comparable to the Mersenne twister.

In experiment EX1, the K(20000) longest non-robust testable paths for each
circuit were extracted and saved to file. These paths formed the fault lists that
were used as target in EX5. The deterministic test set returned from the ATPG
was also used in order to generate weights for GA6 and GT6. The results
from this experiments showed that all circuits except c880 contained more than
20000 non-robust testable paths. c880 has only 16652 such paths. Allthough
the ATPG only returned non-robust tests of these paths, some of the tested paths
might also be robust testable. Thus, in these experiments the set of non-robust
faults has been considered a superset of the set of robust faults. Both views
regarding the set of robust and non-robust faults as disjoint sets, and non-robust
faults a superset of the set of robust faults, are common in the literature.

In experiment EX2, it was determined how many paths of different length
are detected by unweighted pseudo-random stimuli. From Table 8.3 one can see
that the expected length of the detected faults increases when more test vectors
have been applied to the circuit under test. This is a well-known fact [LR87] and
has been confirmed through this experiment. The experiment was conducted
running the simulator in a mode where it considered only a subset of the set of
non-robust paths of which higher quality non-robust tests can be found. Thus,
the total number of detected faults will be somwhat lower compared to other
experiments in this chapter, when considering non-robust tests of any quality.
(A higher quality non-robust test has lower probability of being invalidated by
exessive delays on other paths than the target path).

The reason why the ATPG was constructed, was that we wanted to be able
to find the fault-coverage of the K-longest testable path delay faults. This lead
to experiment EX5, which combines the forces of the ATPG and the simulator.
The purpose of the experiment was to find out if proper weighting of pseudo-
random stimuli, based on K=20000 deterministic test patterns for path-delay
faults, would yield more efficient path delay tests than using uniformly dis-
tributed patterns. According to the results listed in Table 8.8, the answer must
be yes. It shows that it is possible to achieve a reduction in test time of up to
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a factor of 12 for the GA class of generators and up to 15 for the GT class of
generators, for circuits in the iscas’85 benchmark suite.

Weighted pseudo-random stimuli yield higher coverage than unweighted
pseudo-random stimuli for all circuits. Except for circuit c7552, where all meth-
ods perform equally well. The reason why all generators perform equally well
for circuit c7552 is that all weights were very close to 0.5 for all inputs, thus
the weighted generators ”degenerate” to ordinary unweighted pseudo-random
stimuli.

This experiment also introduced the generators GA6 and GT6 which has the
same structure as GA3 and GT3, but the weights are instead based on the test
vectors returned from the ATPG. It is not easy to predict in advance which of
the two weighting schemes that would yield the best result so it is recommended
to try out both methods and choose the best one for the circuit at hand.

Experiments such as these require a lot of CPU time. In order to reduce
the simulation time by as much as possible, a umbrella system was devised,
where the simulator was encapsulated in a screen saver. This screensaver was
distributed on the campus to all the computers in several computer rooms, in or-
der to utilize free CPU time when the students were sleeping. If the computers
are equal it is possible to achieve a speedup equal to the number of comput-
ers. As explained in EX6, around 100 computers have been running path-delay
simulations simultaneously.

Finally, we would like to mention that the experiments that have been con-
ducted in this thesis would not have been possible without a reliable system for
keeping track of all conducted experiments and results. A computer program
was written for this purpose, and with this it is possible to browse through the
different experiments, plotting graphs and extracting important information.

9.2 Future research

Great effort has been invested in creating the simulator and the ATPG for path-
delay faults. Future research would involve using these tools in order to create
better generators. The more information known about a particular CUT, the
easier it is to find a way to create an efficient test program for that circuit. An
ultimate goal could be to devise a program that among other things utilizes the
simulator and the ATPG to extract as much relevant information about the CUT
as possible. This information can then be used to develop a good test program
or test generator for that particular circuit. Substantial research must be done in
order to get there, including identifying and learning what kind of information
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that is relevant in this context. Analysis of the topology of the circuits would
probably yield valuable information. The following will sketch one possible
first step towards this ambitious goal:

The generators presented in this thesis do all generate basis vectors. Each
input are then toggled twice, in order to create single-input-change patterns
with rising and falling transitions on the inputs of the paths. Each basis pattern
will thus provide twice as many single input change patterns as there are inputs
for each basis vector. This raises the following questions: Are all these single-
input-change patterns equally valuable? Can it be that all path-delay faults
emanating from a particular input pin is detected very early, so that all effort
invested in subsequent SIC patterns on that input is wasted? Is it better to use
time spent on SIC patterns of a particular input pin on another input pin instead?

A simple experiment that may answer these questions is to use one of the
14 generators presented in this thesis, simulate 10M SIC patterns and record the
fault coverage associated with each input pin. If some of the input pins reach
100% fault coverage early on, all subsequent SIC patterns applied to that input
are wasted, and should be applied elsewhere.

For the field of path-delay testing as such, it is necessary to develop better
tools in order to handle the exponential number of paths found in some circuits
such as benchmark c6288. In particular, we need better pruning algorithms for
the ATPG, and more efficient fault grading algorithms in the simulator.



Appendix A

Directed Acyclic Graphs

Combinational circuits can be modelled as directed acyclic graphs (DAGs). The
GFault path-delay fault simulator is built around a DAG model of the circuit
under test. In order to make it easier to follow the discussion of the GFault
path-delay fault simulator in the subsequent chapters, this chapter first provides
a short introduction to basic graph theory. A more throughout description can
be found in textbooks such as [Sed03] and [CLRS01].

None of the basic data structures and algorithms presented in this chapter is
new and invented by the author. A C++ graph library was implemented using
data structures and algorithms described in this chapter. An overview of the
features of the library is given at the end of this chapter.

A.1 Introduction

This section provides a short introduction to graphs and relevant graph termi-
nology necessary in order to follow the discussion in the subsequent sections
and chapters.

Definition 12 (Graph) A graph G = (V, E) consists of a set of vertices, V, and
edges, E, connecting pairs of vertices.

The names 0 through |V | − 1 are used for the vertices in a graph with |V |
vertices throughout this text. Graph algorithms usually have to associate infor-
mation with each vertex. This way of naming vertices makes it possible to store
and retrieve such information quickly (time complexity O(1)) through vertex
indexed arrays. Edges are labelled in a similar fashion for the same reason.
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Graphs can be divided into two main categories: directed graphs and undi-
rected graphs. In a directed graph all edges have a direction associated with
them. Figure A.1 shows an example of undirected and directed graphs. A for-
mal definition, as it appears in [Sed03], is given in Definition 13.

Definition 13 (Directed graph) A digraph (or directed graph) is a set of ver-
tices plus a set of directed edges that connect ordered pairs of vertices. We say
that an edge goes from its first vertex to its second vertex.

[I have used start vertex and stop vertex instead of start vertex and stop
vertex].

Figure A.1: Undirected and directed graphs

In the special case that a directed graph contains no cycles it is referred to
as directed acyclic graph (DAG). A formal definition, as it appears in [Sedg03],
is given in Definition 14.

Definition 14 (Directed acyclic graph) A directed acyclic graph (DAG) is a
digraph with no directed cycles.

A path in a graph is a sequence of vertices in which each successive vertex
(after the first) is adjacent to its predecessor in the path. In a simple path, the
vertices and edges are distinct. A cycle is a path that is simple except that the
first and final vertices are the same.

[Parallel edges (two edges connecting the same two vertices) make it im-
possible to uniquely identify a path by means of a sequence of vertices. Define
path in terms of edges instead.]

Definition 15 (Directed path in digraph) A directed path in a digraph is a list
of vertices in which there is a digraph edge connecting each vertex in the list
to its successor in the list. We say that a vertex t is reachable from a vertex s if
there is a directed path from s to t.
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A vertex with no incoming edges is called a source, while a vertex with no
outgoing edges is called a sink. A DAG has at least one source and one sink.

Sparse graphs are graphs where |E| = O(|V |) or put in another way: A graph
with relatively few edges is called a sparse graph.

Dense graphs are graphs where |E| = T (|V |2) or put in another way: A
graph with relatively many edges is called a dense graph.

A static graph representation is a graph representation which does not change
once the representation is built. No edges or vertices can be added or removed
from a static graph representation once it is built.

A dynamic graph representation is a graph representation which can change
after the representation is built. Edges or vertices can be added and removed
from a dynamic graph representation at any time.

A.2 Data structures for representation of graphs

There are many things to consider when selecting the underlying data structure
for representing graphs. On must take into account:

• The different properties of the graphs that the data structure is intended
used for. Whether the graph is sparse or dense, contains cycles or not, is
directed or undirected, and whether it static or dynamic will play a role
on the decision.

• Which operations and algorithms that must be supported efficiently. Typ-
ical operations include edge addition and removal, vertex addition and
removal, breadth first search, depth first search, topological sorting and
test for different properties.

• The properties of the computational platform(s) on which the graph li-
brary is intended to run. Memory and cache considerations may come
into account.

The data structures used in different graph representations are often defined
in terms of arrays, matrixes and lists.

An array is a one-dimensional container with a fixed size once the memory
for the array is allocated. Element number i can be retrieved in constant time
O(1).

A matrix is a two-dimensional container with fixed dimensions once the
memory for the matrix is allocated. Element (i, j) can be retrieved in constant
time O(1).
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A linked list is an abstract data type (ADT) that consists of a chain of nodes.
Each node has a pointer to the next node in the list. The last node contains a
NULL-pointer. A particular element in a list with n elements can be found in
time O(n).

A list is an ADT often implemented as a linked list, but it may also be
implemented using an array.

Figure A.2 shows a simple digraph with 4 vertices (labelled with numbers
in the range [0,3]) and 5 edges. This graph will be used as an example in the
next sections in order to illustrate the different graph representations.

1 3

20

Figure A.2: A simple digraph with 4 vertices and 5 edges

A.3 List of edges

The simplest way to represent a graph is to use a list of edges. The data structure
is very simple, and has modest memory requirements. Figure A.3 shows a list
of edges representing the graph in Figure A.2.

NULL
0
1

0
2

0
3

1
3

2
3

a
b

Pointer to next edge in the list
Start vertex
Stop vertex

a b

Figure A.3: List of edges representation

If the list is implemented as a single-linked list it will have the following
basic properties:
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• In order to find out if there exist an edge starting at node a and ending at
node b, the whole list must be traversed in worst case. Thus this operation
has a time complexity of O(|E|).

• In order to find the edges starting at a given node, the whole list must be
traversed in worst case. This operation has a time complexity of O(|E|).

• Deletion of a particular edge has time complexity O(|E|).

• Insertion of a new edge has time complexity O(1) if the edges are un-
sorted and new edges can be appended to the end of the list. Insertion
of a new edge has time complexity O(|E|) if the edges are sorted and the
new edge must be inserted at the correct position.

Due to the poor time complexity of important operations this graph repre-
sentation is not much used. By breaking the large linked list of edges into an
array of smaller linked lists a new representation is found called the adjacency
list. This is presented in the next section.

A.4 Adjacency matrix

The adjacency matrix representation consists of a two-dimensional |V |x|V | ma-
trix, Ad jMatrix. An edge connecting node a and b is represented by a nonzero
entry in Ad jMatrix[a][b]. An adjacency matrix representation of the graph in
Figure A.2 is shown in Figure A.4.
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Figure A.4: Adjacency matrix representation

The adjacency matrix has the following basic properties:
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• In order to find out if there exist an edge starting at node a and ending
at node b, one only have to check if Ad jMatrix[a][b] is nonzero. This
operation has a time complexity of O(1).

• In order to find the edges starting at a given node, one row in the matrix
must be traversed. This operation has a time complexity of T (|V |).

• Deletion of a particular edge has time complexity O(1).

• Insertion of a new edge has time complexity O(1). Multiple edges con-
necting two nodes is not supported without altering the data structure.

Since the size of the matrix is independent on the number of edges in the
graph, it has a lower cost pr. edge for dense graphs than for sparse graphs, and
is thus best suited for dense graphs.

A.5 Adjacency list

The adjacency list representation is probably the most used graph representa-
tion. It consists of an array, Ad jList, of |V | lists, one for each vertex in V .
The lists are often implemented as linked list in order to support easy addition
of new edges. An adjacency list representation of the graph in Figure A.2 is
shown in Figure A.5.

1 2 N30
1
2
3

N3
N3

N

Figure A.5: Adjacency list representation

If the adjacency list is implemented as an array of single-linked list it will
have the following basic properties:

• In order to find out if there exist an edge starting at node a and ending at
node b, only the list pointed to by Ad jList[a] must be traversed. If there
are at most one edge between any two vertices, this operation will have a
worst case a time complexity of O(|V |).
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• In order to find the edges starting at a given node, it is enough to lookup
the pointer to the corresponding list. This operation has a time complexity
of O(1).

• Deletion of a particular edge has time complexity O(|V |).

• Insertion of a new edge has time complexity O(1) if the edges are un-
sorted and new edges can be appended to the end of each list. Insertion
of a new edge has time complexity O(|V |) if the edges are sorted and the
new edge must be inserted at the correct position in each list.

The adjacency list representation is suitable for sparse graphs. A netlist can
be represented as a directed acyclic graph and the resulting graphs are often
sparse. Netlist has also in practice limited fan-in and fan-out which in prac-
tice will reduce the time complexity from O(|V |) to O(1) for all of the above
operations.

A.6 An Abstract Data Type (ADT) for static DAGs

Netlist do usually not change during simulation. They are static DAGs. Static
DAGs does not need to support edge and node addition/removal once the graph
is built. If this property is taken advantage of, it can lead to a data structure
that is faster and less complex than what is necessary for dynamic graphs. An
efficient data structure for static graphs can be found by using arrays instead of
linked lists as shown in Figure A.6.

1 2 3

3
N

3

AdjList

3

1
0

1

EdgeCnt

Figure A.6: Adjacency list representation using arrays instead of linked lists

In addition to the adjacency list an additional array (EdgeCnt) is necessary
in order to store the length of the arrays in the adjacency list.

If a graph contains |V | vertices, each vertex is given a unique integer label
in the range [0, |V | − 1], as shown in the graph in Figure A.2. By using vertex
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indexed arrays, it is easy to add data/parameters to the vertices. The adjacency
list representation uses this to add a list of edges to each vertex.

Sometimes it is necessary to associate information to each edge as well. If
a graph contains |E| edges, each edge can be given a unique integer label in
the range [0, |E| − 1], as shown in Figure A.7. By using edge indexed arrays,
data/parameters can be associated with each edge in the same manner as with
the vertices.
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Figure A.7: A simple digraph with four vertices and five edges

Figure A.8 shows a representation of the graph in Figure A.7. This repre-
sentation differs from the one in Figure A.6 by the three new arrays Ad jList2EdgeId,
EdgeId2S ource and EdgeId2Position. The purpose of these new arrays is to
add a mapping between the edges and their position in the adjacency list and
vice versa.

Ad jList2EdgeId is an array of arrays that maps an edge in the Ad jList to
the edges unique edge label. Ad jList[0] contains a pointer to a list of edges with
start vertex 0. This list contains three edges as indicated by EdgeCnt[0] = 3.
The last edge in this list has the stop vertex Ad jList[0][2] = 3. This edge also
has a unique edge ID which is Ad jList2EdgeId[0][2] = 2.

EdgeId2S ource is an array that maps an edge ID to the corresponding start
vertex. Edge2S ource[2] = 0 indicates that edge 2 starts at vertex 0.

EdgeId2Position is an array that maps an edge ID to the corresponding
position in the corresponding list associated with is start vertex. Together with
EdgeId2Position[2] = 2 indicates that the destination vertex for edge 2 is found
at position 2 in the array pointed to by Ad jList[EdgeId2S ource[2]].

A.7 Vertex object design

If each vertex have ten parameters associated with them, there are two common
ways to organize these parameters:
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Figure A.8: An ADT for static graphs

• Create one vertex indexed array of objects/structs. The vertex object con-
tains the ten parameters.

• Create ten vertex indexed arrays. One for each parameter.

The first solution will group the different parameters associated with a ver-
tex together in memory. This might lead to fewer cache misses if the algorithm
uses several of the parameters when visiting the vertices. On the other hand,
if the vertex object has to support many different algorithms, this may result in
a large and complex object. When new algorithms are added which uses new
parameters, the vertex object must be updated to include the new parameters.

The second solution will cause parameters associated with a vertex to be
spread in memory. This might lead to more cache misses compared to if the
parameters associated with a vertex were grouped. On the other hand, the vertex
indexed arrays can be implemented as a part of the algorithm. This makes it
easier to add new algorithms, since the addition of a new algorithm does not
interfere with existing algorithms.

Both approaches have been explored, but the latter gave code that was easier
to maintain when new features was added.
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A.8 Graph algorithms for DAGs

This section presents some algorithms that are implemented on top of the graph
representation presented in Figure A.8.
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Figure A.9: A sample digraph

A.9 Degree computation

In some applications it is necessary to know the in-degree and out-degree of
the vertices in the graph. The in-degree of a vertex in a digraph is the number
of incoming edges for that vertex. The out-degree of a vertex in a digraph is
the number of outgoing edges for that vertex. Figure A.10 shows a small graph
with in-degree and out-degree listed for each vertex.
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Figure A.10: A small graph with in- and out-degree listed for each vertex

The in-degree and out-degree can for instance be used to find the sources
and the sinks in a DAG. This particular graph has one source (vertex 0) and one
sink (vertex 3).
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A.10 Reverse of a graph

The reverse of a digraph is a graph that can be derived from the original graph
by changing the direction of all edges in the original graph. Figure A.11 shows
a digraph and its reverse. Storing a graph and its reverse provides an efficient
way to find both all outgoing edges and all incoming edges of a given vertex. If
the graph represents a gate level netlist this will provide a way to find both all
fan-ins and all fan-outs of a given gate.
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Figure A.11: A digraph and its reverse

A.11 Topological sort

The goal of topological sorting is to be able to process the vertices of a DAG
such that every vertex is processed before all the vertices to which it points.

A topological sort of a directed acyclic graph G is a partial ordering of the
vertices such that i < j for every edge (ai, b j). Here a and b is the name of
the start and stop vertices, and i and j their place/index in the linear ordering.
Figure A.12 shows a small DAG. If the following order is used: [3, 2, 1, 0], we
can see that this ordering yields a topological sort of the graph in Figure A.12.

1 3

20

(a,b)
(3,0)
(3,1)
(3,2)
(2,0)
(1,0)

(ai,bj)
(30,03)
(30,12)
(30,21)
(21,03)
(12,03)

i < j
0 < 3
0 < 2
0 < 1
1 < 3
2 < 3

Figure A.12: Topological sorting of DAG

One intuitive algorithm for topological sorting is based on repeated source
removal. An outline of the algorithm is given in Algorithm 5.
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Algorithm 5 (Algorithm for topological sort by repeated source removal)

TopoSort(G){
  /*INPUT    : G, a directed acyclic graph              */
  /*OUTPUT: order, a list of vertices in top. order */
order = [];
while(vertices left in G){

    remove a source s and all its outgoing edges;
order.append(s);

  }
return order;      

}

If the algorithm is applied to the graph in Figure A.12, the following steps
will be taken (see Figure A.13). First vertex 3 is removed (STEP0), since this is
the only source in the original graph. After vertex 3 is removed together with its
outgoing edges, only three vertices remain. Two of these (vertex 1 and vertex
2) are sources. The algorithm proceeds by removing one of them, say vertex 2,
and all of its edges (STEP1). Only two vertices remains and only one of them
is a source. The algorithm thus removes vertex 1 (STEP2) and finally vertex 0
(STEP3). This yield the topological order [3, 2, 1, 0] which is consistent with
the order in Figure A.12.

1 3

20

(a,b)
(3,0)
(3,1)
(3,2)
(2,0)
(1,0)

(ai,bj)
(30,03)
(30,12)
(30,21)
(21,03)
(12,03)

i < j
0 < 3
0 < 2
0 < 1
1 < 3
2 < 3

Figure A.13: Topological sort by repeated source removal

A topological sort is a partial ordering of the directed acyclic graph, thus
there may exist more than one correct topological sort of a given DAG. If
STEP1 and STEP2 is switched in Figure A.12 another correct topological order
[3, 1, 2, 0] will be the result.

Topological sorting is the key ingredient in many graph algorithms, for in-
stance when it comes to compute the number of paths in a graph.



A.12 Path counting 141

A.12 Path counting

The number of paths (starting at any source vertex and ending at any sink) in a
DAG can be found by on pass of the reverse topological sorted vertices in the
DAG. An algorithm for doing path counting is outlined in Algorithm 6.

Algorithm 6 (Algorithm for path counting)
PathCount(G){
  /*INPUT    : G, a directed acyclic graph                                       */
  /*OUTPUT: pathcnt, the number of paths in G                           */
cnt = [0,0,…,0]; /* Vertex indexed array for temporary results  */
foreach(vertex a in G visited in reverse topological order){

if (a is a sink){
      cnt[a] = 1;
    }

foreach(outgoing edge b from a){
cnt[a] += cnt[b];

    }
  }
pathcnt = 0;
foreach(source s in G){

pathcnt += cnt[s];
  }
return pathcnt;      

}

1
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1

1
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3 1

1
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3

3
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STEP0 STEP1
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Figure A.14: Steps taken during path counting

If the algorithm is applied to the circuit in Figure A.14, the following will
happen: The algorithm will visit each vertex at a time until all vertices are
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visited. The vertices will be visited in reverse topological order. The two first
vertices to be visited (STEP0) are recognized as sinks and their cnt variable
given the value 1. In the next step (STEP1) the cnt variable for the vertex in
the center is assigned the sum of the cnt variables for its fan-out vertices. The
algorithm proceeds in the same manner by computing the cnt value for the two
sources (STEP2 and STEP3). The cnt variable associated with a vertex is the
number of paths starting at that vertex and ending at any sink. The total number
of paths starting at any source and ending at any sink can thus be computed
as the sum of the sinks cnt variables. The number of such paths is six in this
example.

A.13 Longest path length extraction

The length of the longest path in a DAG can also be found by visiting the
vertices in reverse topological order. An algorithm for computing the length of
the longest path in a DAG is outlined in Algorithm 7. The program is identical
in structure with the program in Algorithm 6.

Algorithm 7 (Algorithm for finding length of longest path in DAG)
LongestPath(G){
  /*INPUT    : G, a directed acyclic graph                                       */
  /*OUTPUT: pathlen, the length of the longest path in G             */
len = [0,0,…,0]; /* Vertex indexed array for temporary results  */
foreach(vertex a in G visited in reverse topological order){

if (a is a sink){
      len[a] = 0;
    }

foreach(outgoing edge b from a){
len[a] = max(len[a], len[b]+1);

    }
  }
pathlen = 0;
foreach(source s in G){

pathlen = max(pathlen, len[s]);
  }
return pathlen;      

}
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A.14 Path length histogram extraction

The LongestPath algorithm from Algorithm 7. can find the length of the longest
path in a DAG. There must be at least one path with length equal to the length of
the longest path, but are there more paths with the same length? How many dif-
ferent lengths have the paths in the DAG and how many paths are there of each
length? These are questions that can be answered by the program presented in
this section.

This algorithm combines the path counting algorithm from Algorithm 6
with the algorithm for finding the length of the longest path in Algorithm 7.
The result is an algorithm that counts the number of paths in the DAG with
equal length.

Algorithm 8 (Path length histogram extraction)
PathLengthHistogram(G){
  /*INPUT    : G, a directed acyclic graph                                       */
  /*OUTPUT: hist, Vertex indexed array of dictionaries.                */
  /*                 hist[i] stores the number of paths of different          */
  /*                 lengths starting at vertex i.                                        */
hist = [{},{},…,{}]; // Initialization of dictionaries 
foreach(vertex a in G visited in reverse topological order){

if (a is a sink){
      hist[a][0] = 1;      // One path of length 0                             
    }

foreach(outgoing edge b from a){
foreach(pathlen and pathcnt in dictionary hist[b]){
if(pathlen+1 is a new key in hist[a]){

hist[a][pathlen+1] = 0;
        }
        hist[a][pathlen+1] += pathcnt;
      }
    }
  }
return hist;      

}

If the algorithm is applied to the circuit in Figure A.15, the following will
happen: The algorithm will visit each vertex at a time until all vertices are
visited. The vertices will be visited in reverse topological order. The two first
vertices to be visited (STEP0) are recognized as sinks and their hist dictionary
each initialized with one path of length zero. In the next step (STEP1) the hist
dictionary for the vertex in the center is processed. The fan-out vertices hist
dictionaries sums up to two paths of length zero. The hist dictionary for the
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Figure A.15: Steps taken during path length histogram extraction

center node will thus contain two paths of length one. The algorithm proceeds in
the same manner by computing the hist dictionaries for the two sources (STEP2
and STEP3).

A.15 Transitive closure

The transitive closure of a digraph is a digraph with the same vertices but with
an edge from s to t in the transitive closure if and only if there is a directed path
from s to t in the given digraph [Sed03]

The transitive closure is also an operation that can be computed by travers-
ing the vertices in reverse topological order. An outline of the program is given
in

Algorithm 9 (Transitive closure)
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Figure A.16: Steps taken during computation of transitive closure

TransitiveClosure(G){
  /*INPUT    : G, a directed acyclic graph                                       */
  /*OUTPUT: T, the transitive closure of G                                    */
foreach(vertex a in G visited in reverse topological order){

    T.AdjList[a] = [a];    // Initialize with edge to itself
foreach(outgoing edge b from a){

T.AdjList[a] = union(AdjList[a], T.AdjList[b]);
    }
  }
return T;      

}

A.16 Cone graph extraction

Algorithm 10 (Cone graph extraction)
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Figure A.17: A graph with extracted cones

ConeGraphExtractor(G){
  /*INPUT    : G, a directed acyclic graph                                 */
  /*OUTPUT: C, the cone graph of G */
C2G = {};    // Find vertex in G corresponding to vertex in C 
G2C = {};    // Find vertex in C corresponding to vertex in G 
foreach(vertex ga in G){

if (ga is source, sink or stem){
      Create a corresponding vertex ca in C;

Add mappings: C2G[ca]=ga, G2C[ga]=ca;
    }
}

frontier = [];  // A queue
  foreach(vertex ca in C){

ga = C2G[ca];
frontier.append(G.AdjList[ga]);
while(frontier is not empty){

gb = frontier.pop();
cb = G2C[gb];
if(gb is source, sink or stem){     
C.AddEdge(ca,cb);      

      } else {
        frontier.append()
      }
    }
  }

return C;      
}
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