
On the Design and Analysis  
of Shannon-Kotel’nikov 
Mappings for Joint  
Source-Channel Coding

Thesis for the degree doctor philosophiae

Trondheim, May 2007

Faculty of Information Technology, 
Mathematics and Electrical Engineering 
Department of Electronics and Telecommunications

Fredrik Hekland

I n n o v a t i o n  a n d  C r e a t i v i t y



NTNU
Norwegian University of Science and Technology

Thesis for the degree doctor philosophiae

Faculty of Information Technology, Mathematics and Electrical Engineering 
Department of Electronics and Telecommunications

© Fredrik Hekland 

ISBN 978-82-471-2260-0 (printed version)
ISBN 978-82-471-2274-7 (electronic version)
ISSN 1503-8181 

Doctoral theses at NTNU, 2007:103

Printed by NTNU-trykk



Abstract

In this dissertation, we explore the possibility of transmitting discrete-time,
continuous amplitude sources over discrete-time, continuous-amplitude chan-
nels by using non-linear direct source-channel mappings. This is a joint
source-channel coding technique where there is no real distinction between
the source coding part and the channel coding part. In contrast to tradi-
tional digital communication systems, these techniques are only suited for
transmitting sources which tolerate a certain amount of distortion, e.g. im-
ages and sound. The reason for this restriction is that the channel noise
is part of the total distortion, thus making error-free transmission impossi-
ble. However, the analog nature of the scheme provides both high spectral
efficiency and robustness when the mappings are properly designed.

As there are no known non-linear maps which actually achieves opti-
mality, we investigate the mechanisms which degrade the performance of
source-channel coding systems, hoping to obtain some pointers on how to
design systems with as little performance loss as possible. We identify several
loss factors causing performance degradations; among them we mention mis-
matched channel symbol distribution and mismatched error-sequence distri-
bution. Given an additive white Gaussian noise channel with an average
power constraint, and a mean-squared error distortion measure, it is shown
that both the loss from having non-Gaussian distributed channel symbols,
and the loss from having non-Gaussian reconstruction error/noise, equals
the relative entropy of the actual distribution and the capacity-achieving
Gaussian.

A class of joint source-channel coding schemes which we have called
Shannon-Kotel’nikov mappings is shown to provide both robustness to un-
known channel conditions, and high spectral efficiency in the sense that the
mappings operate close to the theoretical performance bounds. A mapping
consist of a non-linear curve, or function, which maps a source point di-
rectly into the channel space. By having different dimensions of the source
and channel spaces, both bandwidth reduction (compression) and band-
width expansion (error control) can be achieved. The optimization of a
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Abstract

2:1 bandwidth-reducing system is shown, for both Gaussian and Laplacian
sources over additive white Gaussian noise channels. These are shown to
perform quite well relative to digital systems. Furthermore, a 4:1 bandwidth-
reducing system consisting of a cascade of two 2:1 mappings is tried out as a
way to avoid the complexity increase associated with higher dimensions, but
this shows worse performance than known channel-optimized vector quan-
tizers.

A problem with the analog nature of the Shannon-Kotel’nikov mappings
is that they do not automatically interface with existing digital communica-
tion systems. Whether one wants to store the received mappings, or transmit
them further through a digital transport network, a digitization step is nec-
essary in order to obtain a bit-representation. We propose some very simple
transcoding schemes which digitize the received channel symbols directly,
instead of first decoding to native representation and re-encoding with a
digital source coder. This proves to be simple, yet effective for interfacing
the Shannon-Kotel’nikov mappings with a digital system. Moreover, the
transcoding technique which produces multi-level channel symbols proves
to be able to suppress most of the channel noise, enabling serial multi-hop
communication without accumulation of channel noise.

iv



Preface

This dissertation is submitted in partial fulfillment of the requirements for
the degree of Philosophiae Doctor (PhD) at the Department of Electronics
and Telecommunications, Norwegian University of Science and Technology
(NTNU). My advisors have been Professor Tor A. Ramstand and Professor
Geir E. Øien, both of whom are with the Department of Electronics and
Telecommunications, NTNU.

The work, comprising research, compulsory courses as well as teaching
assistant duties, was carried out from July 2002 to March 2007 with the
Signal Processing group at NTNU.

The work included in this thesis was funded by The Research Counsil of
Norway (NFR) through the IKT-2010 project called “Bandwidth-Efficient
and Adaptive Transmission Schemes for Wireless Multimedia Communica-
tions” (BEATS). The assistantship was funded by the Department of of
Electronics and Telecommunications, NTNU.

v





Acknowledgements

“The path to our destination is not always a straight one. We go
down the wrong road, we get lost, we turn back. Maybe it doesn’t
matter which road we embark on. Maybe what matters is that we
embark.”

- Barbara Hall, Northern Exposure, Rosebud, 1993

During the spring of 2002, when I was about to finish my Master’s thesis,
I was more than ready to leave the university and get a “real” job in the
industry. Pursuing a PhD was something I didn’t really consider until Prof.
Geir Øien informed me of the availability of several PhD grants. I applied,
even thought I did’t really think I would even be offered any. So, when I was
notified that if I made up my mind over the weekend, the position would be
mine, I seriously wondered what I should do. No matter who I talked to,
they said I should take it; “This is perfect for you”. So I accepted. Now that
I’m sitting here several years later finalizing the report on my research, I can
surely say that I’m happy that I grabbed this opportunity and embarked
on the long road to obtain the doctoral degree. All the things I’ve learned,
both on the personal and professional level. All the nice and intelligent
people I’ve met. From them I had the chance to learn all kinds of things.
The freedom to pursue the ideas and interest I had, without having a boss
breathing down my neck. All of this made the long journey worthwhile. The
hours of despair, with no sight of the end of the tunnel, is now forgotten.

I am deeply grateful to my main advisor; Professor Tor Ramstad. He has
been a source of inspiration, and his insight and vision has made it possible
for me to come this far. His cheerful character and generosity is unique.
Although his source of ideas is running faster than my sink of research could
ever consume, I managed to catch some of his ideas and make them come to
life. The other significant person is my co-supervisor Professor Geir Øien,
another smart and generous person I’m happy to have had as my advisor.
I’m grateful for the fact that he offered me this opportunity, and that he all

vii



Acknowledgements

along had a firm belief that I would make it. His encouragement and backing
is priceless, and he was always available to help me whenever I needed it.

Another significant contributer to this dissertation is PhD student Pål
Anders Floor. His arrival gave me an important discussion partner for de-
tails in my research, and we had many high-flying discussions (in a higher
dimension?) which were really of great help. He also helped me with math-
ematical details, and provided valuable insight into the mystics of Shannon
mappings through his own research.

Throughout all theses years, my office mate Greg Håkonsen was a great
companion, and his green fingers made our office a rather nice place to be.
Together we did reality checks on our ideas, and provided help whenever
the other was stuck. I’m still irritated that I didn’t manage to turn him
into a coffee drinker, though. Luckily, other people in the group shared my
interest in black fluids, the most prominent being Ole Morten Strand with
whom I had several visits to the café for interesting discussions.

The signal processing group at NTNU is a unique collection of remark-
able people, and I have cherished every moment with the people in this
group. There are many people I should thank for making these years so
memorable, and by naming a few of them I will certainly run the risk of in-
sulting those I forgot. Therefore, I simply want to express my gratitude to all
the people who crossed my path during these years at the signal processing
group. The social events like food meetings, wine meetings and Christmas
parties will be deeply missed.

I must not forget to extend a thought to the people close to me, outside
the professional sphere. In particular, my family, which has always had a
strong belief that I would make it through, backing me up both morally and
economically whenever needed. Furthermore, a big thanks to my friends
with whom I can just be myself and have fun without worrying about pro-
fessional matters. All work and no play...

Last, but not least, the decision to take on this PhD made my path cross
the path of the wonderful Anna Kim, who is now my partner. Apart from
being a great supporter, constantly encouraging me, she also happens to be
a Dr.Ing within the same area. Hence, she’s also been an excellent discussion
partner, providing insight and advise along the way. Moreover, having been
through this process herself, she has been very understanding and tolerant
in the last months toward the delivery. Her love has been a great source of
energy for me during the most difficult times. :-*

Oslo, April 2007
Fredrik Hekland

viii



Contents

Abstract iii

Preface v

Acknowledgements vii

Contents ix

1 Introduction 1
1.1 Performance Bounds for Sources and Channels . . . . . . 3

1.1.1 Coding of Analog Sources . . . . . . . . . . . . . . . 4
1.1.2 Communication over Noisy Channels . . . . . . . . 6
1.1.3 The Separation Theorem . . . . . . . . . . . . . . . 8

1.2 Joint Source-Channel Coding . . . . . . . . . . . . . . . . . 9
1.2.1 Coding or Direct Source-Channel Mapping . . . . . 12
1.2.2 Shannon-Kotel’nikov Mappings . . . . . . . . . . . . 15
1.2.3 Optimal Performance Theoretically Attainable (OPTA) 18
1.2.4 Scope of the dissertation . . . . . . . . . . . . . . . 19

1.3 Outline of This Thesis . . . . . . . . . . . . . . . . . . . . . 21

2 Quantifying Losses in Source-Channel Coding Systems 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Loss Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Loss from Mismatched Channel Symbol Distributions 26
2.2.2 Loss From Incorrectly Decoded Channel Symbols . 28
2.2.3 Loss From Information Rate Less Than the Opera-

tional Channel Capacity . . . . . . . . . . . . . . . . 29
2.2.4 Loss from Correlated Channels . . . . . . . . . . . . 30
2.2.5 Loss from Source Coder Imperfections . . . . . . . . 31
2.2.6 Loss From Mismatched Source Distribution . . . . . 34
2.2.7 Loss Due to Suboptimal Receiver Structures . . . . 35

ix



Contents

2.3 What insight have been gained? . . . . . . . . . . . . . . . 35
2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 1:1 Uncoded Laplacian Source over an additive white
Gaussian noise (AWGN) Channel . . . . . . . . . . 37

2.4.2 1:2 hybrid scalar quantizer, linear coder (HSQLC),
Gaussian Source and AWGN Channel . . . . . . . . 38

2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 47

3 Shannon-Kotel’nikov Mappings 49
3.1 Preliminaries for Shannon-Kotel’nikov Mappings . . . . . . 52

3.1.1 Dimension Change as a Mean to Achieve Bandwidth
Change . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Mappings providing 2:1 Dimension Reduction . . . . . . . . 55
3.2.1 Gaussian Source, AWGN Channel . . . . . . . . . . 57
3.2.2 Laplacian Source, AWGN Channel . . . . . . . . . . 67

3.3 Achieving 4:1 Dimension Reduction by Cascading 2:1 Map-
pings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.1 Outer 2:1 Mapping . . . . . . . . . . . . . . . . . . . 77
3.3.2 Inner 2:1 Mapping . . . . . . . . . . . . . . . . . . . 77
3.3.3 Comparing the warping approach to the deformed in-

ner mapping . . . . . . . . . . . . . . . . . . . . . . 78

4 Quantization of the Shannon-Kotel’nikov Mappings 83
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Heterogeneous Communication Systems and the Need for

Digital Representations . . . . . . . . . . . . . . . . . . . . 85
4.2.1 Alternatives for Digitizing the Mappings . . . . . . . 86

4.3 Quantizing the 2:1 Archimedes’ Spiral . . . . . . . . . . . . 87
4.3.1 Quantization after reception . . . . . . . . . . . . . . 89
4.3.2 Quantization prior to transmission . . . . . . . . . . 96

4.4 Shannon Mappings in Multi-hop Scenarios . . . . . . . . . 102
4.4.1 Amplify-and-forward . . . . . . . . . . . . . . . . . . 103
4.4.2 Decode-and-forward . . . . . . . . . . . . . . . . . . 104
4.4.3 The 2:1 Mapping in an K-hop Scenario . . . . . . . 104

5 Conclusions 109
5.1 Contributions of This Thesis . . . . . . . . . . . . . . . . . . 111
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A Calculation of the Channel Symbol Distribution 115
A.1 2:1 Channel Symbol Distribution . . . . . . . . . . . . . . . 115

x



Bibliography 117

xi





List of Acronyms

1-D one-dimensional

2-D two-dimensional

3G third generation wireless communication system

4B3T 4 binary, 3 ternary line code

ACM adaptive, coded modulation

AWGN additive white Gaussian noise

BCH Bose-Chaudhuri-Hocquenghem

BER bit-error rate

BPAM block pulse amplitude modulation

BPSK binary phase-shift keying

CD-ROM compact disc read-only memory

cdf cumulative density function

CLD cross-layer design

COVQ channel-optimized vector quantizer

CSI channel-state information

CSNR channel signal-to-noise ratio

dB decibel

DSL digital subscriber line

EFR enhanced full-rate

xiii



Contents

ECVQ entropy-constrained vector quantizer

FEC forward error correction

FM frequency modulation

FPM frequency-position modulation

FTTH fiber to the home

GPS global positioning system

GSM global system for mobile communication

HDA hybrid digital-analog

HDTV high definition television

HSQLC hybrid scalar quantizer, linear coder

IA index assignment

i.i.d. independent, identically distributed

ISDN integrated services digital network

ISM industrial, scientific, medical

JPEG joint photographic experts group

JSC joint source-channel

JSCC joint source-channel coding

LDPC low-density parity check

MAP maximum a-posteriori probability

MBM mixed-base modulation

MD multiple description

MIMO multiple-input, multiple-output

ML maximum likelihood

MMSE minimum mean-squared error

MOR-VQ modulation-organized vector quantizer

xiv



MPEG moving picture experts group

MR multi-resolution

mse mean-squared error

OFDM orthogonal frequency-division multiplex

OPTA optimal performance, theoretically attainable

OSI Open Systems Interconnection

PAM pulse-amplitude modulation

PCCOVQ power-constrained channel-optimized vector quantizer

PCM pulse code modulation

pdf probability density function

PER packet error rate

PM phase modulation

pmf probability mass function

PPM pulse-position modulation

PSK phase-shift keying

QAM quadrature-amplitude modulation

R-D rate-distortion

RCPC rate-compatible punctured convolutional

SINR signal to interference-plus-noise ratio

S-K Shannon-Kotel’nikov

SNR signal-to-noise ratio

SOCC source-optimized channel coding

SPIHT set-partitioning in hierarchical trees

SQ scalar quantization

STBC space-time block-coding

xv



Contents

TCM trellis-coded modulation

UEP unequal error protection

UMTS universal mobile telecommunication system

VoD video-on-demand

VQ vector quantization

xvi



Nomenclature

a(k) Quantized signal (channel 1 in the HSQLC)

α Scaling factor for transmitted channel symbol

b(k) Quantization error (channel 2 in the HSQLC)

B Source bandwidth

β Scaling factor for received channel symbol

C Channel capacity

C ′ Operational capacity

C∗ Channel capacity

ci PAM Representation level of transmitter-side transcoded map-
ping

◦ Composition of two functions

D Distortion

DQ Distortion due to transcoding

Ds Distortion of unquantized spiral mapping

Dc Distortion due to channel noise

δ Quantizer step in transcoder

∆i Spiral arm distance of the inner mapping in a cascade of two
2:1 mappings.

∆o Spiral arm distance of the outer mapping in a cascade of two
2:1 mappings.

xvii



Contents

∆ Spiral arm distance in 2:1 mapping

∆opt Optimal ∆ given γ

∆pre
opt Optimized spiral arm distance for transmitter-side transcoding

D(R) Distortion-Rate function

dth Distortion from incorrect decision

Dpost
tot Total distortion, receiver-side transcoding.

Dpre
tot Total distortion, transmitter-side transcoding

E Expectancy operator

ε2th Average distortion from threshold effect

η Constant used in the approximation of the curve length oper-
ator

fX(x) Probability density function

γ Channel signal-to-noise ratio (CSNR)

H(X) Entropy

h(X) Differential entropy
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Chapter 1

Introduction

“Give me six hours to chop down a tree and I will spend the first
four sharpening the axe.”

- Abraham Lincoln

Telecommunication is becoming increasingly important in modern societies,
as it enables transportation of large amount of information in a very short
time without being hampered by large distances. It is hard to imagine
a world without telecommunications, since it would imply no television,
radio, telephones, mobile phones, global positioning system (GPS), or In-
ternet, to name a few important services. Although it is not within the
scope of this dissertation to discuss the different benefits of telecommuni-
cations, being aware of them and knowing which areas that gain the most
from increased research activity is indeed an advantage. Perhaps the most
important development for long range communication was the introduction
of the optical fiber. The evolution of fiber optics has revolutionized the
telecommunication industry and helped boost the information age by pro-
viding “unlimited” capacities1 on the backbone networks. Even fiber to
the home (FTTH) is becoming more widespread as installation cost per
provider is below $1000 [Wieland, 2006], enabling bandwidth hungry appli-
cations like video-on-demand (VoD) and high definition television (HDTV).
The significantly increased bandwidth for Internet access has the potential

1Of course, the capacity is not infinite, but relative to wireless communication which
is considered in this dissertation, the 2 Tbit/s over 9240 km achieved by [Yamada et al.,
2002] can be considered to be infinite.
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1. Introduction

to change the broadcasting industry from the model we know today with
fixed schedules and centralized control, to a model where the users can
compose their own schedule, both in terms of content and time. Even user-
produced content is gaining popularity, with services like YouTube.com and
MySpace.com.

Wireless communication with its benefits such as mobility, flexibility, ease
of deployment and reduced cabling, is becoming more and more popular.
For users who do not have strict requirements on security and availabil-
ity, wireless provides a tremendous convenience. There are, however, some
important factors that impose restrictions on how much information can
be sent per channel use (what we call channel capacity) for such systems.
The most significant ones are the related issues of limited available spectrum
and the fact that a wireless channel is a shared medium. Moreover, com-
pared to wire-channels, wireless channels suffer from the fact that they are
to different extents temporally, spatially and frequency-wise stochastically
varying in quality. These factors limit the channel capacity of each user,
as they are no longer free to use whatever amount of bandwidth or trans-
mit power they wish. After all, most of the wireless spectrum is controlled
through licenses in order to control the interference issues arising from users
sharing the same frequencies. Only a few frequency bands are unlicensed
(like the 2.4 GHz ISM band), but then the transmit power is limited. To
further worsen the situation, available bandwidth and propagation charac-
teristics are dependent on the carrier frequency. The lower the frequency,
the longer the signals travel, thus increasing the interference for others us-
ing the same frequency. The usable spectrum for wireless communication
spans from 300 kHz up to about 100 GHz [Proakis, 2001], with the lower
end of the spectrum being the most crowded, and the less crowded higher
end having a shorter transmission range (due to increased attenuation and
line-of-sight requirements). When given the available transmit spectrum
and power limitation, what limits the channel capacity is thermal noise in
the receiver, interference from transmitters operating at the same frequency,
and the properties of the channel.

In order to achieve high multi-cell spectral efficiency in cellular systems, ag-
gressive frequency-reuse is necessary [Catreux et al., 2001; Gjendemsjø et al.,
2006a; Kiani et al., 2006]. This necessarily reduces the signal to interference-
plus-noise ratio (SINR) which again translates to lower throughput per user.
In case the available bandwidth per user is fixed and the SINR is low, the
most realistic way to increase the user throughput is to employ multiple an-
tenna techniques like multiple-input, multiple-output (MIMO) techniques
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[Paulraj et al., 2004] where the spectral efficiency can increase linearly with
the number of antennas2 without increasing the transmit power. MIMO has
a limitation in the sense that it is dependent of rich multi-path diversity, po-
tentially leaving little to no gain for certain applications, e.g. broadcasting
in open landscape or short-range line-of-sight communication. Exploiting
MIMO in line-of-sight scenarios is still possible, though [Bøhagen et al.,
2005].

To enable high-bandwidth applications like HDTV over wireless and at the
same time supporting a high number of users, spectrally efficient and robust
solutions are essential. Moreover, low system complexity is desirable in order
to obtain lower production costs and reduce battery consumption for mobile
devices.

The purpose of this dissertation is to explore transmission techniques for
analog sources which have the potential to be both spectrally efficient and
robust, while maintaining a reasonably low complexity. The primary dif-
ference from traditional digital techniques is that instead of making the
channel transparent, channel noise is a part of the total distortion of the
reconstructed source at the receiver side. This is achieved by mapping a
source point directly into the channel space using a mathematical function
or curve. This makes both the encoder and decoder relatively simple, and
also the channel symbols can be made memoryless.

1.1 Performance Bounds for Sources and Channels

In physical systems, noise will always limit the capacity of a given channel,
thus dictating how much information that can be transmitted on the chan-
nel per use. When trying to build a communication system, it is desirable
to have a performance criterion which serves as an upper achievable bound,
in order to know how good the system actually can be. The goal is to make
it perform optimally according to the chosen criterion. Ideally, the criterion
should reflect the receiver’s notion of quality, but usually more mathemati-
cally tractable criteria are used. The concept of optimal performance is thus
often relative to the chosen criterion, but not necessarily to the receiver’s
opinion.

2This is only true for the single-cell scenario which is not interference-limited. For
interference-limited operation the MIMO gains are, however, still significant over single-
antenna system [Catreux et al., 2001].
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Figure 1.1: A source-channel coding system.

Figure 1.1 shows a commonly seen communication chain. We have a source
coder which is responsible for compressing the source signal as much as
necessary, and a channel encoder which is responsible for adapting the source
data to the channel. These are the two basic operations in a source-channel
coding system, and the theory providing the theoretical performance bounds
of operation is described next.

1.1.1 Coding of Analog Sources

Analog sources, like images and sound, can be said to contain infinite amount
of information; if we wish to describe them exactly without any loss we need
infinite precision, which however is impossible in practical systems.

Since the amount of data from analog sources might grow very large, it
is often of interest to make the approximate description of the source as
coarse as possible in order to reduce the data rate, while introducing min-
imum distortion. This is what is called lossy source coding with a fidelity
criterion [Shannon, 1959]. In essence, a source coder first tries to remove
all redundancy by a decorrelating operation. Then further rate reductions
can be achieved by removing imperceptible data, called irrelevance. This
is normally done using a quantizer [Jayant and Noll, 1984]. Finally, if even
lower rates are required quantizers can produce even coarser representations
at the expense of introducing perceptible distortion. If the probabilities of
the quantization indices are non-uniform, entropy coding can be employed
to reduce the rate even further [Cover and Thomas, 1991]. Entropy coding,
contrary to quantization, is a lossless operation and will not introduce any
distortion.
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Performance Bounds for Sources and Channels

The theory supporting lossy source coding is called rate-distortion (R-D)
theory and was pioneered by [Shannon, 1959]. Rate-distortion theory has
been less influential on source coding compared to information theory’s im-
pact on the channel coding community. This is partially due to the fact
that simple systems using scalar quantization (SQ) with entropy coding or
transform coders with scalar quantizers perform so well. At high rates, the
scalar quantizer with entropy coding is only 0.255 bits, or 1.53 dB, away
from the rate-distortion bound [Jayant and Noll, 1984] for any (memory-
less) source, leaving very little gain for more complex systems [Lookabaugh
and Gray, 1989]. On the other hand, vector quantization (VQ) can reach
the rate-distortion bound if allowing infinite complexity and delay in the
source coder, but still, the potential gain is only 1.53 decibel (dB) compared
to the SQ.

For memoryless continuous sources, only the R-D function of the Gaussian
source with a mean-squared error (mse) distortion measure exist in analytic
form [Berger, 1971]:

R(D) =

{
1
2 log2

(
σ2

s
D

)
, D < σ2

s ,

0, otherwise,
(1.1)

where σ2
s is the source variance, D is the distortion and with base-2 logarithm

the rate is bits. For source coders, the inverse of (1.1) can be more useful;
this is called the distortion-rate function:

D(R) = σ2
s2

−2R, R ≥ 0. (1.2)

The rate-distortion function for some other continuous-amplitude, symmet-
rically distributed sources can also be approximated for scalar quantization,
by using (1.1), with a proportionality factor depending on the distribution
[Berger and Gibson, 1998].

Turning to Figure 1.1 again, we look at the details of a source-channel coding
system. Here, source coding is performed in the first three blocks, whereas
channel coding is done in the last two blocks. First, the source is decom-
posed to produce statistically independent components, then quantizers are
applied to remove all irrelevance and to introduce controlled distortion if
lower rates are needed. Then, because of non-uniform probabilities of the
quantizer outputs, entropy coding is applied to approach the entropy of the
quantizer output (works by assigning short codewords to quantizer cells with
high probability, and long codewords to less probable cells). When design-
ing a source code without any knowledge of the channel, seriously reduced
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performance might be experienced, especially in the case of entropy coding.
Entropy codes which have variable length codewords are highly sensitive to
bit-errors and will render further decoding impossible unless powerful chan-
nel codes are used, and resynchronization markers are inserted regularly into
the data stream to enable recovery from bit-errors the channel decoder was
unable to correct. To avoid this situation, one can abandon the entropy
coding step and rather use fixed-length code words at the expense of higher
rates R. The advantage of fixed-length codes for noisy channels is that they
are decoded symbol-by-symbol. Hence, bit errors only affect one codeword
and subsequent symbols can be decoded as normal. However, unless the
quantizer is designed also taking the channel noise into account, subopti-
mal performance will be the result. Some work has been done on channel
optimized quantization using fixed-length codes, see for instance [Kurten-
bach and Wintz, 1969; Jayant and Noll, 1984; Farvardin and Vaishampayan,
1987], and even [Max, 1960] for the original Lloyd-Max quantizer design al-
gorithm. Even though source codes can be made robust with respect to
channel noise, the effectiveness of lossless entropy coding and the existence
of powerful channel codes have made the noiseless source coder with a pow-
erful channel code the most common approach in source-channel coding.

1.1.2 Communication over Noisy Channels

In a communication system we are always given a channel with a certain
bandwidth, effectively limiting the channel symbol rate, and a cost con-
straint providing a certain number of information bits per channel symbol.
The resulting capacity, which we define as the number of information bits
per second, can be exactly calculated for certain channels. For linear, point-
to-point channels with the cost given as an average power constraint and
AWGN, the channel capacity is given as [Shannon, 1948],

C = W log2

(
1 +

P

N

)
bits/s, (1.3)

where W is the bandwidth of the channel, P is the average transmitted
power and N is the average noise power over the bandwidth W . This is
the maximum rate of information which can be transmitted over a channel
of bandwidth W and channel signal-to-noise ratio (CSNR) given as P/N .
In order to achieve this, the bitstream must be formatted appropriately
for the channel. This is usually done with a channel coder and modulator
(Figure 1.1).
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The channel coder is responsible for encoding the output of the source coder
in such a way that the channel noise has the least impact on the source. In
traditional bit-based systems this would be an error-correcting code which
corrects erroneously detected channel symbols. Such codes work by adding
structured redundancy to the source coder output, creating codewords with
as large minimum distance as possible. The larger the distance between
each valid codeword, the more erroneous bits can be corrected. Some-
times it is beneficial to include modulation in the channel coder, for in-
stance when using Gray coding for higher-order modulation like quadrature-
amplitude modulation (QAM) [Forney and Ungerboeck, 1998]. Other times
the coding and modulation are jointly designed as in the case of trellis-
coded modulation (TCM) where only constellation points that are close in
the modulation space are protected by channel codes, thereby reducing the
amount of redundancy [Ungerboeck, 1982].

Shannon proved the channel capacity theorem leading to (1.3) by applying
a random coding argument, using long “random-like” codewords. This is
exactly what turbo codes [Berrou et al., 1993] and Gallager codes3 [Chung
et al., 2001] mimic, and along with iterative decoding using soft-information
they perform extremely well for low CSNR, using binary phase-shift keying
(BPSK). The main “drawback” is that in order to achieve high information
rates these codes require large channel bandwidths. Furthermore, the long
codewords and the iterative decoding increases the coding delay which can
be a problem for real-time communication. For higher CSNR values, there is
no traditional coding scheme which performs arbitrarily close to the channel
capacity. The most common approach is to use TCM, which comes as close
as 4.5 dB from the capacity [Ungerboeck, 1982]. [Eleftheriou and Olcer,
2002] presents results for digital subscriber line (DSL) system, with AWGN
which are about 3.5 dB in CSNR away from the capacity (with a target bit-
error rate (BER) of 10−5). Some attempts have been made using adaptive,
coded modulation (ACM) for Rayleigh-fading channels, but still there is a
gap to the theoretical bound (for Rayleigh fading channels) given in [Gold-
smith and Varaiya, 1997]. For instance [Vishwanath and Goldsmith, 2003]
come within 3 dB in CSNR from the Rayleigh fading bound, and [Myhre
et al., 2002] are within 5 dB from the bound in (1.3).

3Also known as low-density parity check (LDPC) codes
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1.1.3 The Separation Theorem

One of the most influential results of Shannon’s original paper [Shannon,
1948] is the separation theorem. Given a source of rate R and a channel
with capacity C, the theorem states that as long as R ≤ C, the source
can be transmitted over the channel with an arbitrarily small probability of
error. This elegant result enables separate treatment of source and chan-
nel coding, and greatly simplifies system design since each module can be
changed without affecting the other4. We refer to this concept as a tandem
coder system. In essence, the source coder reduces the amount of informa-
tion in the source to less than or equal to the channel capacity, and passes
the bits (what we called information bits) to the channel coder. The channel
coder tries to create a transparent channel for the information bits by using
smart coding techniques. If no transmission errors occurs, the information
bits are exactly recovered at the receiver, and the only distortion in the sys-
tem is due to the information reduction (lossy compression) in the source
coder.

In most communication systems today, the source coding and the channel
coding are indeed separated. For applications where the assumptions of the
separation theorem are valid, this works fine. These transmission scenarios
include point-to-point communication where both coders are optimal and of
infinite complexity and delay. (Of course, no practical system can have in-
finite complexity and are therefore strictly suboptimal). However, there are
numerous examples where the assumptions leading to the separation theo-
rem does not hold and thus a jointly designed source-channel coding system
might be better. For instance, the separation theorem does not hold for
channels which are not point-to-point, like network channels, broadcast and
multiple access channels [Cover and Thomas, 1991; Gastpar et al., 2003].
In all these cases, jointly designed source and channel coding might outper-
form the separately optimized coders. Also, since one of the assumptions
of the separation theorem is infinite delay and complexity in the coders,
and given that infinite complexity is impossible, the resulting source and
channel coders are suboptimal. In that case, each coder could be improved
by letting the other coder have knowledge about the imperfections. As the
restrictions on delay and complexity increase, the benefits of a system with
jointly designed source and channel coders might also increase.

4However, there is a flip-side which is the fact that it has effectively created two
separate camps of researchers; one which only works with source coding and one which
only looks at channel coding.
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Another question is whether or not it is best to introduce all the distortion in
the source coder and suppress all channel noise, like the separation approach
does. For sources which accept distortion, like sound and images, there is no
particular reason for creating a transparent channel. Only when the system
uses entropy coders which are highly sensitive to bit errors, will transparent
channels be necessary. The possibility of letting the channel noise be a part
of the total distortion will be one of the main topics in this dissertation.

1.2 Joint Source-Channel Coding

Whenever the separation theorem is not valid, there might exist systems
with jointly optimized source and channel coders which perform better than
separately optimized systems. This is what we call joint source-channel
coding (JSCC), or combined source-channel coding. This can be done in
many different ways, with the degree of co-optimization varying from a sim-
ple rate-allocator added to a tandem coder, to a fully combined coder when
there is no distinction between the reduction of redundancy in the source
coder and the adding of error protection in the channel coder. When trans-
mitting analog sources, one could in the latter case envision a system where
the source is put directly onto the channel, omitting explicit channel coding.
This is what is considered in this dissertation. The increased robustness of
these systems means that they provide good performance for a larger range
of channel conditions than tandem coders. Hence, wireless channels with
their inherent property of time-varying CSNR will benefit from such robust
joint source-channel coding (JSCC) systems. Moreover, these systems can
be made memoryless, enabling communication with very low delay. Obvi-
ously, these benefits does not come for free. The disadvantages with a JSCC
system are the loss of modularity, where the whole system usually has to
be re-optimized if either the source or the channel statistics changes, and
possibly difficult optimization of the system.

A brief review of some JSCC techniques is found in [Zahir Azami et al.,
1996]. This paper covers schemes like unequal error protection (UEP),
index assignment (IA) for quantizers, channel-optimized vector quantizer
(COVQ), modulation-organized vector quantizer (MOR-VQ), multi-resolution
modulation, and rate-distortion source-channel coding. Other overview ar-
ticles for JSCC over wireless channels are [van Dyck and Miller, 1999; Ha-
genauer and Stockhammer, 1999]. Some of the mentioned techniques plus
some newer developments will now be discussed briefly.

9
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Some of the earliest examples of practical joint source-channel coding are
channel optimized quantizers, or quantization for noisy channels. [Kurten-
bach and Wintz, 1969] optimized both uniform and non-uniform scalar quan-
tizers for phase-shift keying (PSK) transmission over AWGN channels using
an extension of Max’s algorithm [Max, 1960]. However, some problems with
realizability, optimal codeword assignment, and optimal number of quantizer
levels were noted in [Farvardin and Vaishampayan, 1987]. They instead pro-
posed an iterative method for designing the quantizer, where the encoder is
determined for a fixed decoder, then the best decoder is found given that
encoder, then one iterates until a local minimum for the distortion is found.
The design of vector quantizers for noisy channels is more difficult than in
the scalar case, and some of the first examples can be found in [Vaisham-
payan, 1989; Farvardin, 1990] and it is noted in [Farvardin and Vaisham-
payan, 1991] that encoding complexity of COVQs for bad channels is lower
than a VQ with the same codebook size, due to a reduced number of encod-
ing regions. [Fuldseth and Ramstad, 1997; Fuldseth, 1997] extends the work
of Vaishampayan by adding a power-constraint, improving the initial condi-
tions of the signal set and optimizing the minimum distance between signal
points. MOR-VQ presented in [Skinnemoen, 1994] co-optimizes the vector
quantizer and modulation using Kohonen’s self-organizing maps. This ap-
proach ensures that transitions to neighboring modulation points, caused by
channel noise, will only result in transitions to neighboring quantizer cells.
This implies that small channel noise values will never induce large decoding
errors.

Instead of designing the source coder with respect to the channel conditions
as in the previous paragraph, it is also possible to turn the game around
and do source-optimized channel coding (SOCC). [Heinen and Vary, 2005]
proposes such an system, where instead of trying to minimize the BER, the
total signal-to-noise ratio (SNR) is maximized. The benefits of using SOCC
is that the source coder remains unchanged by the channel statistics.This
means that one can benefit from the vast amount of good source coders
designed for the error-free case, and just design the channel code given
information about both the source statistics and the channel conditions. In
a sense, this provides a form of implicit UEP which ensures that important
bits are better protected than less important ones. UEP is perhaps the most
widely employed JSCC method, with numerous practical examples like for
instance the speech codecs in GSM [Paul et al., 2001] and 3G/UMTS, where
it is recognized that different source bits have different significance and thus
are protected to different degrees. In essence, UEP is a useful form of JSCC
whenever source bits have different significance for the reconstructed source
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at the receiver.

Perhaps the most obvious way of implementing joint source-channel coding
in order to maximize the spectral efficiency is to implement a joint rate allo-
cation for the source and channel coders. This technique has been called by
several names, but here we will refer to it as rate-distortion source-channel
coding [Bystrom and Modestino, 1998; Ruf and Modestino, 1999; Nosra-
tinia et al., 2003]. The benefit is the possibility to use traditional, effective
source coders, and protect the source bits according to the channel con-
ditions. For this, rate-compatible punctured convolutional (RCPC) codes
[Hagenauer, 1988] are commonly used to provide a variable degree of error
protection given a certain channel state. They can provide UEP by pro-
tecting different bits from the source to different degrees. For such systems,
transmitter-side knowledge about the channel is essential in order to prevent
either over-protection of source bits (which would lead to increased quan-
tization distortion), or under-protection (which would lead to source coder
breakdown or at best unfavorable distortion). This inherently limits its
usefulness in broadcast scenarios and hard-to-predict fast fading channels.

Whenever the source coder output has residual redundancy, the channel
decoder can utilize such redundancy for error protection [Hagenauer, 1995],
effectively providing joint source-channel decoding. The residual redundancy
can be a result of imperfections in the source coder [Sayood and Borken-
hagen, 1991], or intentionally introduced with for instance real BCH codes
prior to quantization [Gabay et al., 2000] or by using oversampled filterbanks
[Motwani and Guillemot, 2004; Labeau et al., 2005]. The benefits of the
residual redundancy approach is that only the receiver has to be modified,
whereas for the intentionally introduced redundancy, the entire communica-
tion chain might have to be redesigned. When there is residual redundancy,
turbo-decoding principles are applicable in the decoding processing. Exam-
ples are turbo compression [Ruscitto and Biglieri, 1998], LDPC codes for
combined compression/error protection [Poulliat et al., 2005] and Wyner-
Ziv based techniques for JSCC [Girod et al., 2005; Xu et al., 2005]. The
latter paper uses Fountain codes [Byers et al., 1998] which is an interesting
technique for erasure protection.

Some research has been done on JSCC for MIMO systems, showing gains
for fading channels. In [Song and Liu, 2002; Sun and Xiong, 2006], a set-
partitioning in hierarchical trees (SPIHT) coder [Said and Pearlman, 1996]
is used in combination with space-time block-coding (STBC) for trans-
mit diversity [Alamouti, 1998] on orthogonal frequency-division multiplex
(OFDM) systems [Zou and Wu, 1995], requiring no feedback to the trans-
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mitter.

1.2.1 Coding or Direct Source-Channel Mapping

As we mentioned in Section 1.1.3, an important question is: It is necessary
to create a transparent channel when the source we are trying to transmit
permits distortion in the reconstruction at the receiver? After all, a tra-
ditional tandem source-channel coding system introduces distortion in the
source coder in order to ensure that the rate is below the channel capacity, so
it should be possible to let the channel noise contaminate the source instead
of a quantizer. One might even question the use of bit representations when
transporting information over waveform channels. A nice treatment of these
questions can be found in [Gastpar et al., 2003]. Although the text is lim-
ited to discrete sources, it provides valuable insight into the source-channel
coding problem.

One might argue that both source and channel coding are fields which are
well developed, and abandoning the ideas and results from these areas would
be a step in the wrong direction. Source coding for the error-free case shows
impressive results, both for image coding, cf. instance JPEG 2000 [Taubman
and Marcellin, 2002] and video coding, cf. MPEG-4/H.264. As for channel
coding, coding for low-CSNR point-to-point channels is a very mature field
where bandwidth and complexity are traded in for good performance. If
anything, one could wish to make well-performing codes which are shorter
(lower delay) and requiring less complex decoders (one might however argue
that the latter is less of an issue these days thanks to ever-increasing pro-
cessing power.) In the high-CSNR region, however, approaching the theoret-
ical bounds is harder and requires careful consideration of both coding and
modulation. Still, assuming that perfect channel-state information (CSI) is
available, one can come fairly close to the bounds using for instance turbo
trellis-coded modulation [Robertson and Wörz, 1998; Vishwanath and Gold-
smith, 2003]. Again, it might be a problem that these systems have high
delays and complexities. Hence, simpler systems with low delay might in
some cases be desirable, especially for battery operated devices, since com-
plex processing is also power-consuming.

Some attempts have been made to improve the performance in the low-
CSNR (bandwidth-limited) regime and in the high-CSNR regime by creating
analog error-correcting codes. For instance, in [Chen and Wornell, 1998], a
chaotic dynamical system is used to provide error-protection of a continuous-

12



Joint Source-Channel Coding

valued source. This system does not, however, provide good performance for
higher CSNR, diverging from the theoretical optimum with 10 dB/decade
for a bandwidth expansion factor two, and even more for higher bandwidth
expansion factors. A similar approach using linear dynamical systems was
investigated in [Vaishampayan and Costa, 2003], again with a relative large
gap to the optimum (more than 20 dB in simulations). However, it should be
noted that the authors prove the existence of codes which operate arbitrarily
close to the theoretical bound.

Other problems with traditional channel codes are robustness and adaptiv-
ity. Designers of traditional channel codes strive to create codes with steep
BER curves, meaning that above a certain CSNR the BER drops sharply
toward zero. Obviously such codes are extremely robust provided that the
actual CSNR on the channel is at least as high as the design CSNR for the
code. However, below the design CSNR they quickly break down. More-
over, if the actual CSNR increases much above the design CSNR the source
is over-protected, wasting bits on unnecessary error-protection. This means
that traditional channel codes lacks both graceful degradation and graceful
improvement properties. For time-varying channel conditions and imperfect
CSI, this is an important issue. To improve the situation, systems are made
adaptive with respect to the channel, usually requiring CSI at the trans-
mitter [Goldsmith and Chua, 1998]. A feedback channel is then required,
where the receiver can send the actual CSNR value back to the transmit-
ter. Several proposals exist for slowly time-varying, frequency-flat fading
channels [Goldsmith and Chua, 1998; Gjendemsjø et al., 2006b] where the
channel state is assumed constant for a certain block length so that results
from AWGN channels are applicable and a certain BER (or packet error
rate (PER)) is guaranteed. In such a case, the practical range of CSNR
values is divided into several regions, where each region is allocated a spe-
cific channel code and modulation constellation, effectively equipping the
system with a set of codes, each providing good performance for their own
CSNR region. As the channel state varies, the system switches between the
different codes in the set to ensure as high a spectral efficiency as possible
while providing the desired BER. If the channel state varies faster, meaning
the channel quality changes quicker than the system can change the channel
code, the BER cannot be guaranteed, potentially causing full breakdown in
the source decoder if the source coder has not been made robust towards
such error events. One intriguing concept for more adaptive source-channel
coding systems is that of multi-resolution (MR) modulation, also known
as hierarchical modulation. This concept is based on superposition coding
proposed by [Cover, 1972]. MR modulation was introduced in [Ramchan-
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Figure 1.2: A general hybrid digital-analog (HDA) system.

dran et al., 1993; Kozintsev and Ramchandran, 1998; Zheng and Liu, 1999;
Hossain et al., 2006] and reduces the need for exact CSI at the transmitter,
making it suitable for broadcasting where the receivers have different CSNR
(with high probability). The receiver simply decodes as many resolution
layers as his CSNR allows, and when the source coder is multi-resolution
based, the reconstruction quality improves as the number of decoded reso-
lution layers increases.

To evade issues like the lack of graceful degradation/improvement in tra-
ditional channel codes, and the sensitivity of entropy coders explained in
Section 1.1.1, it might be of interest to examine some alternatives to the
approaches mentioned so far, and see if the mentioned issues could be
avoided while not losing too much performance in the optimal point. One
elegant approach to provide graceful improvement is that of hybrid digital-
analog (HDA) systems, where a standard digital source-channel coder is
connected in parallel with a linear analog coder which transmits the quan-
tization error (Figure 1.2). Some examples exist in the literature, where
a good starting point is [Mittal and Phamdo, 2002]. Here, different varia-
tions of the concept are presented, and achievable performance is analyzed.
Perhaps the simplest variation of this concept is the scalar quantizer with a
linear coder in [Coward and Ramstad, 2000]. This performs remarkably well
compared to linear block pulse amplitude modulation (BPAM) [Lee and Pe-
tersen, 1976], where the latter is simply a repetition code. Other references
include [Skoglund et al., 2002, 2006] where both bandwidth expansion or
reduction is possible.
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y = (T ◦ q)s + z

T ◦ q

Channel spaceT−1Source space

s x = (T ◦ q)s

ŝ

Figure 1.3: A general mapping between the source and channel spaces.
The function q performs a projection from the source space of dimension
M to a subspace of the source space. This makes it possible to have an
invertible function T which performs the mapping from the sub dimen-
sion to the channel space of dimension N . The inverse of T brings the
channel signal back into the source space and provides an estimate of the
transmitted source signal.

1.2.2 Shannon-Kotel’nikov Mappings

Another interesting concept which has been little explored after the “digital
revolution” is that of direct source-channel mappings. The core of this idea
is a geometrical viewpoint to communication where both the source and
the channel signals are regarded as points lying in vector spaces, possibly
of different dimensions, and the source space is mapped directly onto the
channel using a mathematical function. This is illustrated in Figure 1.3,
where a source point s is projected directly onto the channel space using a
given function or a curve. The channel symbol x is sent, and the received
y = x+ z is decoded to give an estimate ŝ of the original source signal.

This concept was proposed explicitly by [Shannon, 1949] and more implicitly
in [Kotel’nikov, 1959]5. [Berger and Tufts, 1967] demonstrated that for a
certain special case, when the source and channel bandwidths are equal and
the source is an independent, identically distributed (i.i.d.) Gaussian source
and the channel is AWGN, the source-channel mapping is actually a linear
multiplication factor. Actually, no other system performs better than this
simple system. However, as soon as the source and channel bandwidths are
not equal, linear systems are suboptimal. Instead of discarding the excess
source bandwidth which does not fit on the channel (or repeating parts of
the source bandwidths if it is smaller than the channel bandwidth) which

5This is an English translation of Kotel’nikov’s dissertation in Russian from 1947.
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is done for the linear system, using a non-linear function can significantly
improve the performance if chosen carefully. In [Shannon, 1949], two exam-
ples were given; one was the so-called Shannon-Cantor coding for bandwidth
reduction. This works by taking two numbers 0 ≤ a, b ≤ 1 and representing
these in decimal notation

a = 0.a1a2a3 · · ·
b = 0.b1b2b3 · · · ,

and the resulting channel representation is found by interweaving the digits
of a and b

c = 0.a1b1a2b2a3b3 . · · ·

At the receiver site, the inverse operation is performed. The fidelity of the
decoded a and b increases for increasing CSNR as more and more digits of
c can be recovered correctly.

The other example can be seen in Figure 1.4, where the curve winding
in the plane constitutes the non-linear mapping between the source and
channel spaces. For bandwidth expansion, the one-dimensional source S lies
along the curve and is mapped onto the two-dimensional channel using the
associated tuple X1 and X2. This approach increases the noise immunity
more compared to simply transmitting S twice and average. Bandwidth
compression can be obtained by interchanging the source and channel in
Figure 1.4. Then the source tuple (X1, X2) is projected down to the closest
point on the channel space S. This produces lower distortion than simply
discarding either X1 or X2 (provided that the mapping function is suited
for the given source and channel statistics). This geometric approach to
communication which we have termed Shannon-Kotel’nikov (S-K) mappings,
can exploit the advantages of analog transmission, potentially providing
both high spectral efficiency and robustness to channel impairments with
very low delay. These properties make them interesting for different wireless
communication scenarios. To give some examples we can mention real-
time communication systems like voice and video telephony, sensor networks
with requirements for low-complexity, feedback channels with low-delay in
digital communication systems, and closed-loop control with strict delay
constraints.
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1.2.3 Optimal Performance Theoretically Attainable (OPTA)

The S-K mappings described in the previous subsection are a form of direct
source-to-channel mappings, without any intermediate digital representa-
tion. Thus, some form of performance measure not depending on bit repre-
sentations is needed. Since we are uniquely focused on analog sources which
tolerate some distortion, to measure a system’s performance we look at the
decoded SNR for a given CSNR. This is equivalent to evaluating the opera-
tional distortion-rate performance with the source rate equal to the channel
capacity. The operational performance would then be compared to what we
call the optimal performance, theoretically attainable (OPTA), which is sim-
ply the distortion-rate function for the source, evaluated at the rate equal to
the channel capacity. Equivalently, we can equate the rate-distortion func-
tion and the channel capacity, and express the SNR as a function of the
CSNR [Berger and Tufts, 1967].

We limit our discussion of OPTA to the case of memoryless Gaussian sources
and AWGN channels. This enables us to express OPTA in analytic form.
This will also serve as a lower bound for other memoryless sources and
channels. However, both the rate-distortion function and the channel ca-
pacity for non-Gaussian sources or channel noise can be estimated using the
Arimoto-Blahut algorithm [Arimoto, 1972; Blahut, 1972].

We assume that we are given a source of bandwidth B and a channel of band-
width W . If we perform sampling of the source at the Nyquist frequency
(2B samples per second), we will have a rate of 2BR nats per second. Fur-
thermore, if we transmit with the Nyquist rate on the channel (2W symbols
per second), we have a capacity of 2WC nats per second. To find OPTA,
we equate source rate given in (1.1) and channel capacity given in (1.3):

2B
1
2

log2

(
σ2

s

σ2
q

)
= 2W

1
2

log2

(
1 +

σ2
x

σ2
n

)
, (1.4)

where σ2
s is the source variance, σ2

q is the distortion, σ2
x is the transmit

power, and σ2
n is the channel noise power. Solving this for the SNR, we

obtain
σ2

s

σ2
q

=
(

1 +
σ2

x

σ2
n

)W/B

. (1.5)

The bandwidth ratio W/B can only be obtained by combining (or distribut-
ing) M source samples into (or over) N channel samples, depending on
whether B > W or B < W . Assuming that N and M are sufficiently large,
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this would give us N/M ≈W/B and we thus have

σ2
s

σ2
q

=
(

1 +
σ2

x

σ2
n

)N/M

. (1.6)

We say that we have an M :N bandwidth reduction system if M > N , and
an M :N bandwidth expansion system if M < N .

In Figure 1.6 the resulting curves for (1.6) with different bandwidth ratios are
seen. Comparing this to the linear solution, BPAM [Lee and Petersen, 1976]
in Figure 1.7 where the SNR only increases with 3 dB per channel doubling
for expansion, and drops a little less per channel halving, the (non-linear)
S-K mappings can improve decoded source fidelity considerably relative to
linear solutions. This is true for both bandwidth expansion and reduction
except for very low CSNR where the gain is less pronounced.

1.2.4 Scope of the dissertation

Both source coding and communications are vast fields with numerous vari-
ations, and a dissertation can only cover a small range of the possible topics.
Here, we have chosen to study S-K mappings used for lossy source-channel
communication. The motivation behind this is the factors already men-
tioned: high spectral efficiency and robustness against channel impairments,
while providing low delay. We constrain ourselves to the simplest case of
linear Gaussian point-to-point channels and continuous-valued memoryless
sources. This provides some analytical tractability while at the same time
representing some relevant scenarios, such as transmitting decorrelated sub-
band coefficients from for instance an image, over a point-to-point wireless
channel with little or no fading. The channel has an average power con-
straint and the distortion measure for the channel is the MSE. The reason
for choosing such a simple channel model is primarily to ease the analysis in
order to gain more insight into the potentials and limitations of the concept
of mappings. Besides, the AWGN channel model can be used to approxi-
mate slowly flat-fading channels and multi-carrier sub-channels. Hence, this
model has relevance even for some wireless scenarios. As for the choice of us-
ing a memoryless source instead of more general Gauss-Markov sources, we
can assume that it is decorrelated by a decomposition operation or similar
prior to applying the mapping.

The main purpose of this dissertation is thus to investigate the potential
of some specific S-K mappings; in particular, how close to the theoretical
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Figure 1.6: OPTA for i.i.d. Gaussian source and AWGN channel, with
bandwidth reduction factor indicated on the curves.
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bounds they can get, and how robust toward incorrect (or unknown) CSI
and incorrect source distribution they are. Moreover, since the received
signal is continuous in amplitude, an important question is whether they
can interface with digital transport networks without too much loss.

1.3 Outline of This Thesis

The main content of the dissertation is contained in three chapters. Even
though they can be read independently, reading them in the presented order
is recommended since terminology and notation defined in earlier chapters
may be omitted in the later chapters.

Ch. 2 - Quantifying the Losses in Source-Channel Coding Systems
A discussion about the different loss factors in source-channel communica-
tion is given. This is not restricted to the mapping approach and some of
the results therein are applicable to more standard source-channel coding
system. This chapter is based on [Hekland et al., 2007] and partially on
[Hekland et al., 2005].

Ch. 3 - Shannon-Kotel’nikov Mappings
The concept of S-K mappings for joint source-channel coding is introduced
through some examples. The source distribution’s influence on the mapping
geometry is illustrated and some approaches to deal with different source
distributions are proposed. This work is based on [Hekland et al., 2005,
Submitted] with the addition of some as of yet unpublished material.

Ch. 4 - Quantization of the Shannon-Kotel’nikov Mappings
Since the S-K mappings are usually continuous-amplitude one has to transcode
or digitize the received mappings before further transmission on fully digital
transport networks or storage channels. Some simple, yet effective transcod-
ing methods are proposed and the need for jointly optimized mapping and
transcoding is discussed. This chapter is based on [Hekland and Ramstad,
2005, 2006a,b] and some unpublished material.
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Chapter 2

Quantifying Losses in
Source-Channel Coding Systems

“We know that communication must be hampered, and its form
largely determined, by the unconscious but inevitable influence of
a transmitting mechanism, whether that be of a merely mechan-
ical or of a physiological character.”

- Oliver J. Lodge

2.1 Introduction

As stated in the previous chapter, the aim of source-channel coding is to
reconstruct a signal at the receiver with as little distortion as possible, given
a cost constraint, or the other way around; minimize the cost given a dis-
tortion constraint. As there exist theoretical bounds on how well a source
can be reconstructed when communicated over a noisy channel, there also
exist an optimal point of operation when given the system constraints (e.g.
source rate, transmit power). Obviously, we want our systems to operate at
the theoretical optimum, but this is rarely the case in practice. The purpose
of this chapter is the following: Using information theoretical concepts, we
want to describe the factors which lead to sub-optimal performance, espe-
cially in the case of direct source-channel mappings. Ideally, this should lead
to concrete suggestions on how to improve a specific system. Unfortunately,
what is often the case with information theory is that what should be done
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2. Quantifying Losses in Source-Channel Coding Systems

can be inferred from the calculations, but exactly how to do it in practice is
left for the engineers.

Figure 1.7 shows that the linear solution for direct source-channel map-
ping presented in [Lee and Petersen, 1976] performs relatively far away from
OPTA (Figure 1.6) whenever the source and channel bandwidths are differ-
ent. In order to approach OPTA in these situations, non-linear systems are
necessary.

In an effort to improve the performance for the case of unequal source
and channel bandwidths, we have proposed some schemes for joint source-
channel coding which we have termed S-K mappings [Ramstad, 2002; Hekland
et al., 2005; Floor and Ramstad, 2006b]. This concept will be discussed more
in detail in the next chapter. These use non-linear maps to project source
samples directly into the channel space, and can achieve either bandwidth
reduction (compression) or bandwidth expansion (error control) with very
low delay. However, none of them achieve actual optimality (in the OPTA
sense). What is apparent from past work, however, is that systems which
do compression come much closer to the theoretical bounds than when per-
forming expansion. Intrigued by this, we try to identify more in detail which
loss factors come into play when designing a source-channel coding system,
in order to obtain some hints on what to do to reduce the system’s gap
to the theoretical bound. The loss factors, which together constitutes the
gap, will be described in terms of information theoretic expressions as far
as possible. Thus, they are not specific to S-K mappings or other direct
source-channel mappings. Indeed, traditional schemes with separable quan-
tizers and channel coders can also be analyzed, although our main emphasis
in the example will be on JSCC systems.

A good discussion about lossy source-channel coding system can be found in
[Gastpar et al., 2003]. This paper covers the information theoretical aspects
of optimal source-channel coding, and, through Theorem 6 therein, provides
a criterion which can be used to check whether or not a system performs
optimally. However, no clues are given on how to determine the actual loss
whenever a system is not optimal. As most systems (especially those with
delay or complexity constraints) do not achieve optimality, it is interesting to
quantify these loss factors. This would enable us to know how much we can
hope to improve a system, which parts of the system are responsible for the
biggest losses, and thus where it pays off the most to make improvements.

This chapter is organized as follows. First we identify the different loss fac-
tors; mismatched channel symbol distribution, under-utilization of the chan-

24



Loss Factors
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Figure 2.1: A generic communication system with an AWGN channel.

nel, inter-channel correlation, mismatched source distribution, source cod-
ing redundancy, suboptimal receiver structures, and decoding errors. Then
we exemplify some of these with a 1:2 bandwidth-expanding JSCC system,
demonstrating that simulation results match the analytical predictions of
the total loss.

2.2 Loss Factors

Based to some extent on intuition, we will initially make some conjectures
about what causes suboptimal performance in joint source-channel coding
systems under a mse distortion measure. The reason for using the mse distor-
tion measure is its widespread use, and mathematical tractability. Whether
the mse is a suitable distortion measure for a given application is a different
matter, and is outside the scope of this dissertation. However, one should
keep in mind that the mse is not the best distortion measure to use for all
applications, as it does not necessarily reflect the receivers’ perception of
quality.

The conceptual communication chain we assume is seen in Figure 2.1 where
Sis the source symbol, X, is the transmitted channel symbol, Zis the channel
noise, Y is the received channel symbol, and Ŝ is the reconstructed source
symbol. The encoder and decoder might be any joint source-channel coding
system, or in fact even a traditional separate source and channel coding
system. Moreover, the losses are stated in bits, but this does not limit us
to looking at bit-based systems. In short, we want to determine the loss
due to the inequalities in the proof of [Gastpar et al., 2003, Lemma 2], for
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2. Quantifying Losses in Source-Channel Coding Systems

convenience repeated here:

R(D) = min
fŝ|s:E[d(S,Ŝ)≤D]

I(S; Ŝ)
a)

≤ I(S; Ŝ)

b)

≤ I(X;Y )
c)

≤ max
fx:E[σ2

x]≤P
I(X;Y ) = C(P ), (2.1)

where E denotes the expectation operator with respect to the source distri-
bution, d(·, ·) is the distortion measure, I(·; ·) denotes mutual information. A
system performs optimally whenever the distortion-rate function is attained
with the rate equal to the channel capacity, i.e. when all the relations in (2.1)
are equality signs1. Equality in a) is achieved for the rate-distortion bound
achieving error distribution (given the distortion measure), equality in b) is
achieved for an information lossless encoder-decoder pair (when going from
the source space to the channel space, and back), and finally equality in c) is
achieved for the capacity-achieving channel symbol distribution (given the
capacity-cost function).

It is worth noting that for an optimal pair R(D) = C(P ), one cannot lower
D (or P ) without changing R(D) (or C(P )) accordingly. This means that if
the source rate is higher than the channel capacity, the information content
must be reduced (i.e. D must be increased such that the equality is satisfied)
before transmission (D will be increased by the channel noise in the case of
analog transmission).

2.2.1 Loss from Mismatched Channel Symbol Distributions

We now show how much we lose by using non-Gaussian distributed channel
symbols on an AWGN channel, causing an inequality in c) of (2.1). This
result was shown for a single channel case in [Hekland et al., 2005], but is
shown here for the parallel channel case.

We know from information theory that Gaussian distributed channel sym-
bols maximize the mutual information between a transmitted and received
sequence over any memoryless channel with an average power constraint
[Cover and Thomas, 1991]. For the specific example of a N -dimensional
AWGN channel with an average power constraint, the channel capacity is

1This is a simplification of the discussion in the original paper, and the interested
reader is urged to read the original for a more rigorous presentation.
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defined as [Cover and Thomas, 1991]

C = max
f(x1,...,xN ):

∑
σ2

xi
≤P

I(X1, . . . , XN ;Y1, . . . , YN ). (2.2)

Whenever we have a marginal channel symbol distribution f(xi) � N of the
same power as in (2.2), the achievable transmission rate will be less than
the capacity of this specific channel, i.e.

C ′ = I(X1, . . . , XN ;Y1, . . . , YN )
∣∣
f(xi)�N

= C −
N∑

i=1

ρ(f(xi)),

where ρ(f) denotes the associated capacity loss for the distribution f . Ex-
panding the mutual information in (2.2), and assuming that the signal and
noise are uncorrelated, one can show that [Cover and Thomas, 1991]

I(X1, . . . , XN ;Y1, . . . , YN ) ≤
N∑

i=1

{h(Yi)− h(Zi)} , (2.3)

where Zi is the channel noise in channel i and h(·) denotes the differential
entropy. Assuming that the covariance matrix of (X1, . . . , XN ) is diagonal
so that there is no correlation between the channels, the only loss we would
experience is when the Xi’s are not Gaussian distributed. To determine this
loss, we expand the first term on the right hand side of (2.3). Since we
always integrate over the same variable y, we write fi instead of fYi(y) to
increase the readability, although this in some sense is abuse of notation.
Expanding the differential entropy, we obtain

h(Yi) = −
∫
fi log fi = −

∫
fi log

(
fi
f∗i
f∗i

)
= −

∫
fi log f∗i −

∫
fi log

(
fi

f∗i

)
(a)
= −

∫
f∗i log f∗i −

∫
fi log

(
fi

f∗i

)
(2.4)

= h∗(Y )− I(fi‖f∗i ), (2.5)

where I(·‖·) is the relative entropy (also known as I-divergence, Kullback-
Leibler distance or cross-entropy) between two distributions2, and (a) is valid

2We are using the less common form I(·‖·) instead of D(·‖·) in order to avoid confusion
with the distortion D used later.
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when f∗i is the Gaussian distribution and fi is any continuous distribution
with zero mean and same variance as f∗i . To see why this is true, consider

−
∫
f ln f∗ = −

∫
f ln

(
1√

2πσG

e
−y2

2σ2
G

)

=
1

2σ2
G

∫
y2f + ln

(√
2πσG

)∫
f

=
1

2σ2
G

∫
y2f∗ + ln

(√
2πσG

)∫
f∗

= −
∫
f∗ ln f∗, (2.6)

which is valid for any well-behaved distribution f with zero mean. Inserting
(2.5) and (2.3) into the definition of the channel capacity in (2.2) we obtain
the maximum achievable transmission rate for output distributions fi as

C ′ =
N∑

i=1

h∗(Yi)− h(Zi)− I(fi‖f∗i )

=
N∑

i=1

{Ci − I(fi‖f∗i )}, (2.7)

which is the sum of the channel capacity of each channel minus the rela-
tive entropy between the mismatched distribution of each channel and the
Gaussian. I.e., ρ(fi) = I(fi‖f∗i ).

2.2.2 Loss From Incorrectly Decoded Channel Symbols

Whenever the channel impairments induce incorrect decisions in the decoder,
we have an information loss responsible for an increasing inequality in rela-
tion b) of (2.1). What this loss translates to, depends strongly on the actual
system. For a communication system using entropy coding, bit errors can
cause catastrophic breakdown ruining the entire transmission. For strong
channel codes with steep BER curves, the error rate increases rapidly below
a certain CSNR threshold. In both cases, this effect is often referred to as
the threshold effect, since the performance above a certain CSNR threshold
is good, but rapidly deteriorates below the threshold. Direct modulation of a
scalar quantizer, however, only causes increased distortion when incorrectly
decoding to neighboring intervals. This might provide increased robustness

28



Loss Factors

ala fixed-length source codes. The idea of direct modulation will be explored
more in detail in the next chapter.

Bandwidth-expanding systems cannot be designed to avoid the threshold
effect, since it is impossible to perform a mapping from a higher to a lower
dimensional space in a continuous manner [Shannon, 1949]. This means
that small channel noise values might induce large source distortion. For
bandwidth-reduction, on the other hand, the threshold effect is avoided as
the decoder can perform a continuous mapping from the channel space to
the higher dimensional source space.

2.2.3 Loss From Information Rate Less Than the Operational
Channel Capacity

Obviously, we cannot attain the theoretical optimum if the actual informa-
tion rate of the symbols transmitted over the channel is strictly below the
channel capacity, i.e. if relation b) in (2.1) is a strict inequality. This is for
instance the case for channel codes with insufficient puncturing using more
parity bits than necessary to achieve a certain BER [Hagenauer, 1988]. An-
other case leading to a loss is when there is a strict inequality in relation
c) in (2.1), caused by using a too small modulation constellation for the
current channel condition3. Both these loss factors corresponds to [Gastpar
et al., 2003, Eq.(8)], where I(X;Y )−I(S; Ŝ) is the loss induced by too many
parity bits, leaving too few bits for the source encoder (relation b) in (2.1)).
C − I(X;Y ) would be the resulting loss for using a too small modulation
constellation (relation c) in (2.1)).

When communicating a continuous source over an AWGN channel, the
Gaussian channel noise contaminating the source ensures that the first in-
equality sign in (2.1) is satisfied with equality. Furthermore, by plugging the
source directly onto the channel and using the optimal (linear) Wiener filter
as the receiver, the second inequality sign is satisfied with equality too. This
means that we have R = C ′, where C ′ is defined in (2.7). The only loss will
be caused by the non-Gaussian channel symbol distribution as described in
Section 2.2.1.

For a bandwidth expanding system (which is prone to the threshold effect),
operating at a rate equal to the channel capacity might not be possible

3In the previous section, relation c) was caused by an incorrect distribution fx. Here,
the loss is caused by not producing an input sequence X with enough information, by
using a too small modulation constellation.
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without inducing too much distortion. Hence, some channels must be under-
utilized in order to reduce the probability of the threshold effect.

2.2.4 Loss from Correlated Channels

In a system with parallel communication channels, the information trans-
mitted over the different channels should be mutually uncorrelated in order
to maximize the total achievable capacity. This is especially an issue in
bandwidth-expanding systems, where a source must be “stretched out” to
fill the entire channel bandwidth without simply repeating parts of it.

For independent noise Z, a reasonable assumption in many communication
systems, we have the following inequality for the mutual information:

I(X1, X2, . . . , XN ;Y1, Y2, . . . , YN )

= h(Y1, Y2, . . . , YN )−
∑

i

h(Zi)

≤
∑

i

{h(Yi)− h(Zi)} , (2.8)

where equality is only achieved by independent Y ’s. Expanding the differ-
ential entropy of the Y ’s we have [Cover and Thomas, 1991]

h(Y1, Y2, . . . , YN ) =
N∑

i=1

h(Yi)|Y1, Y2, . . . , Yi−1), (2.9)

and consequently we have

h(Y1, Y2, . . . , YN ) ≤
∑

h(Yi), (2.10)

since conditioning reduces entropy. The resulting rate loss would be the
difference ∑

h(Yi)−
∑

h(Yj)|Y1, Y2, . . . , Yj−1).

For examples of systems suffering from correlated channels, one could think
of spatial correlation in MIMO systems, or OFDM systems with sub-channel
gains correlated in frequency. However, we will not discuss MIMO or OFDM
here, and we refer the reader to [Goldsmith et al., 2003; Zou and Wu, 1995].

We will also classify the case of encoder-induced correlation into this sec-
tion. By this we mean inter-channel correlation introduced by the encoder,
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as opposed to e.g. the spatial correlation leading to reduced rank MIMO
channels. The worst-case example would be BPAM [Lee and Petersen, 1976]
for bandwidth expansion, where replicas of the source is transmitted in par-
allel (“repetition code”). Provided that the total power is doubled when
the number of channels is doubled, the SNR is only increased by 3 dB per
doubling of channels. The slopes of the SNR vs. CSNR curve in Figure 1.7
remain constant for all expansion factors, instead of increasing for higher ex-
pansion factors which is the case for OPTA. This is due to the fact that the
channels carry fully correlated information, thus the available bandwidth is
poorly utilized and the only gain comes from the increased channel power.

Figure 2.2 shows a specific 1:2 bandwidth expanding system (to be described
more in detail in Section 2.4.2). The line segments in the plane constitute
the source space, and the plane constitutes the channel space. BPAM with
the same expansion factor would be a represented by a diagonal line in
the plane. This means that the encoder introduces full correlation between
the two channels and the channel space (the plane) is poorly utilized. The
system shown in the figure has much less correlation and fills the channel
space better.

2.2.5 Loss from Source Coder Imperfections

In order for a communication system to perform optimally, it also has to
operate at the R-D bound (relation a) in (2.1)), and the source coder rate
must thus be equal to the channel capacity [Gastpar et al., 2003]. The
loss experienced from a non-optimal source coder is given as the excess rate
required to achieve the same distortion as the R-D function evaluated at the
channel capacity.

When performing source coding, the rate must be reduced to the desired
level in a controlled manner. To do so, any redundancy should first be
removed from the source by applying for instance a frequency decomposition.
Then any non-perceptible information (irrelevance) can be removed using for
instance quantizers (or more generally, lossy source coding). For further rate
reductions, perceptible distortion will be introduced. After quantization,
the resulting indices often have a non-uniform probability distribution and
entropy coding can be used to provide shorter average codeword length.
Omitting the entropy coding will give a rate increase, with the amount of
increase depending on the probability density function (pdf) [Jayant and
Noll, 1984] of the indices, and on the remaining source redundancy not
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Figure 2.2: HSQLC Quantizer for two different channel states. The
source space is aligned along the lines in the plane, and the resulting
channel symbols are given along the axes. a(k) is the output of a scalar
quantizer, and b(k) is the corresponding quantization error.

removed in the decomposition.

Entropy coding alone, however, cannot achieve the R-D bound. For instance,
a scalar quantizer can at best be 0.255 bits away from the R-D bound [Jayant
and Noll, 1984], regardless of the source pdf. This is due to the fact that
the quantization noise cannot be shaped properly (to be a Gaussian) when
we have only one dimension in the quantizer. vector quantization (VQ)
can, on the other hand, reach the R-D bound if given infinite dimensions.
This is referred to as the space-filling advantage in [Lookabaugh and Gray,
1989]. We will thus refer to the gap relative to an ideal VQ as the space-
filling loss, and it applies to any source coder failing to produce Gaussian
reconstruction-error noise.

Usually, the space filling loss is described in terms of high-resolution theory
[Lookabaugh and Gray, 1989]. However, we present an alternative way of
looking at the space filling loss by examining the reconstruction (or quan-
tization) noise which appears in the derivation of the R-D function for a
Gaussian source. Given the squared error distortion measure, Gaussian-
distributed quantization noise is needed in order to reach the rate-distortion
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bound [Cover and Thomas, 1991], regardless of the input source distribution.
This is because for an allowed distortion D, a Gaussian-distributed recon-
struction error will minimize the mutual information between the original
and reconstructed sequences. We now determine the loss of a non-Gaussian
reconstruction noise. The R-D function is defined as [Cover and Thomas,
1991]

R(D) = min
g(ŝM |sM ):E[d(SM ,ŜM)]≤D

I(SM ; ŜM ), (2.11)

where d(·, ·) is the chosen distortion metric, i.e. the mse in our case.

Assuming that the coder produces reconstruction noise which is not Gaus-
sian distributed, we have an operational R-D function, R′(D), which is
higher than the R-D bound R(D) given in (2.11):

R′(D) = I(SM ; ŜM )
∣∣
g(ŝM |sM )�N = R(D) + τ(g), (2.12)

where τ(g) is the penalty term due to the non-Gaussian reconstruction noise
distributions. Looking at the mutual information, we can expand it as fol-
lows:

I(SM ; ŜM ) =
M∑
i=1

h(Si)−
M∑
i=1

h(Si|Si−1, ŜM )

≥
M∑
i=1

h(Si)−
M∑
i=1

h(Si|Ŝi) (2.13)

=
M∑
i=1

h(Si)−
M∑
i=1

h(Si − Ŝi|Ŝi)

≥
M∑
i=1

h(Si)−
M∑
i=1

h(Si − Ŝi), (2.14)

where (2.13) and (2.14) are due to the fact that conditioning reduces entropy.
Using the definition of the differential entropy we can furthermore expand
the last addend of (2.14) as follows (again slightly abusing notation):

h(Si − Ŝi) = −
∫
gi log gi = −

∫
gi log

(
gi
g∗i
g∗i

)
= −

∫
gi log g∗i −

∫
gi log

(
gi

g∗i

)
= −

∫
g∗i log g∗i −

∫
gi log

(
gi

g∗i

)
(2.15)

= h∗(Si − Ŝi)− I(gi‖g∗i ), (2.16)
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where (2.15) is valid when g∗i is the Gaussian distribution and gi is any
continuous distribution with zero mean4 and the same variance as g∗i , due
to the same arguments as in (2.6). Inserting (2.16) into (2.14) we obtain

I(SM ; ŜM ) ≥
M∑
i=1

{
h(Si)− h∗(Si − Ŝi) + I(gi‖g∗i )

}
, (2.17)

where the two first addends on the right hand side correspond to R(D)
in (2.12) and the last term corresponds to the penalty τ(g) in (2.12). This
gives us the operational R-D function

R′(D) =
M∑
i=1

{R(Di) + I(gi‖g∗i )} , (2.18)

i.e. the loss factor in (2.12) is τ(g) =
∑M

i=1 I(gi‖g∗i ). This result is similar
to the discrepancy shown in Section 2.2.1, in the sense that the penalty for
having a non-optimal distribution is the “distance” between the actual and
the optimal distribution5. To the authors’ knowledge, this result has not
been previously reported in the literature.

2.2.6 Loss From Mismatched Source Distribution

When designing a source coder, knowing the source’s input pdf is important
to ensure optimal performance. However, exact knowledge about the source
is usually not available and it is usually estimated from data, resulting in
mismatch in the source coder. We will call the resulting loss source mismatch
loss.

Some work has been done on this for high-rate entropy-constrained vector
quantizers [Gray and Linder, 2003], where they show that the loss incurred
by designing the quantizer for a pdf f and applying a pdf g is equal to the
relative entropy between the two, i.e. I(f‖g). The restrictions on this result
is that f/g must be bounded, which in many cases is not true.

Results valid for arbitrary quantizers are not known, however, and the source
mismatch loss must be determined for each specific system.

4This is not a restricting assumption, since the mean can always be subtracted before
encoding the source.

5The relative entropy, also known as the Kullback-Leibler distance, is not a true
distance metric, but still it provides a measure of the rate difference of two distributions.
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2.2.7 Loss Due to Suboptimal Receiver Structures

The design of the receiver is crucial for the system performance, since it
is responsible for extracting the transmitted signal from the contaminat-
ing channel noise, and deal with other impairments such as fading and in-
terference. Moreover, depending on whether the source symbols are uni-
formly distributed or not, the optimal receiver would be either be a maxi-
mum likelihood (ML) or a maximum a-posteriori probability (MAP) receiver
[Barry et al., 2004]. The former is basically a minimum-distance detector for
the AWGN channel, but in some cases, even an ML detector might become
prohibitively complex, and more simpler receiver structures are employed.
Any sub-optimality in the receiver of course results in degraded performance.
Often there is a certain correlation between channels, either because of non-
optimal source coding or deliberately introduced to aid decoding. However,
if the decoder is not decoding the channels jointly, but rather independently,
performance degradations will occur [Laneman et al., 2005].

It is, however, rather difficult to quantify this degradation in general terms,
since it is very system dependent. Usually, this is a trade-off between the
complexity of the receiver and performance. This will usually be a de-
sign (or cost) question where the designer must choose where on the cost-
performance curve to put his/her system.

2.3 What insight have been gained?

Although we have not provided any practical method to construct good
source-channel coding systems, some design pointers have been given in the
preceding sections. Apart from more “obvious” factors, like using optimal
receivers and minimizing the probability of the threshold effect, we see that
having the correct distributions in both the channel symbols and the error
sequence matters. Let us see what the effects of these are for a system with
source bandwidth B and channel dimension W .

According to Section 2.2.1, the operational rate-distortion function is

R′(D) = R∗(D) + I(g‖g∗), (2.19)

where I(g‖g∗) is a rate increase due to non-Gaussian error sequence distri-
bution g, whereas the optimal distribution is Gaussian g∗.
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According to Section 2.2.5, the operational channel capacity is

C ′ = C∗ − I(f‖f∗), (2.20)

where I(f‖f∗) is a capacity decrease due to non-Gaussian channel symbol
distribution f , whereas the optimal distribution is Gaussian f∗.

If we assume sampling the source which has a bandwidth B at the Nyquist
rate, the source produces 2B samples per second, and thus 2BR bits per sec-
ond. Similar for the channel when assuming Nyquist signaling, the channel
capacity is 2WC bits per second.

Now, using the operational terms (2.19) and (2.20) in place of R and C, and
setting the source rate equal to the operational capacity, we have

2BR′ = 2WC ′

2B(R∗ + I(g‖g∗)) = 2W (C∗ − I(f‖f∗))

R∗ =
W

B

(
C∗ − I(f‖f∗)

)
− I(g‖g∗), (2.21)

where R∗ and C∗ are the R-D function for a Gaussian source (1.1) and
AWGN capacity (1.3), respectively [Cover and Thomas, 1991]. Inserting
those into (2.21), we have

1
2

log2(SNR) =
W

B

(
1
2

log2(1 + γ)− I(f‖f∗)
)
− I(g‖g∗)

SNR =2
W
B

(log2(1+γ)−2I(f‖f∗))−2I(g‖g∗)

SNRdB =10
(
W

B
{log2(1 + γ)− 2I(f‖f∗)}

− 2I(g‖g∗)
)

log10(2), (2.22)

where we introduced γ = P/N for the CSNR. The expression for OPTA is

OPTAdB = 10 log10(1 + γ)W/B =
10W
B

log10(1 + γ). (2.23)

Hence, the gap to OPTA is

SNRgap,dB =
[
20W
B

I(f‖f∗) + 20I(g‖g∗)
]

log10(2). (2.24)

This indicates that for a bandwidth reducing system (B > W ), the incor-
rect channel symbol distribution has reduced impact for decreasing W/B,
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whereas for the bandwidth expanding system, the loss is proportional to the
bandwidth ratio. As for the incorrect error sequence distribution, it appears
to be independent of the bandwidth ratio.

One thing which has not been explored is the dependency between the dif-
ferent loss factors. Obviously, some of them are dependent and must be
analyzed jointly. For instance, the threshold effect and information rate
on the channel are closely linked. This, however, is now covered in this
dissertation and is subject to future research.

2.4 Examples

We now present some examples of joint source-channel coding systems,
where the relevant loss factors described in Section 2.2 are shown to be
able to completely explain the discrepancy between the systems’ perfor-
mance and the theoretical optimum. Even though these systems do not
operate with bit representations, the losses are stated in bits and converted
to decibels with the common 6.02 dB per bit rule [Jayant and Noll, 1984].
This is valid for the case of scalar, memoryless sources with a squared-error
distortion measure.

2.4.1 1:1 Uncoded Laplacian Source over an AWGN Channel

When transmitting a Laplacian source over an AWGN channel of the same
bandwidth by using direct pulse-amplitude modulation (PAM), the channel
signal distribution would be Laplacian, whereas a Gaussian distribution is
required for optimality. According to Section 2.2.1, this loss should be equal
to the relative entropy between the actual Laplacian distribution and the
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optimal Gaussian one. We find the loss to be [Hekland et al., 2005]

D (f‖f∗) =
∫
f ln

f

f∗
= −h(f)−

∫
f ln f∗

= −h(f) +
∫
f ln

(√
2πσG

)
+
∫
f
y2

2σ2
G

= −h(f) + ln
(√

2πσG

)
+

1
2σ2

G

∫
y2f

(b)
= − ln 2λ− 1 + ln

(√
2πσG

)
+ 1/2

= ln

(√
2πσG

2λ
√

e

)
. (2.25)

In (b), h(f) is given from [Cover and Thomas, 1991], and to have equal
power (or variance, since the mean, µ = 0) in the two distributions, we set∫
y2f = σ2

L = 2λ2 = σ2
G ⇒ σG =

√
2λ. Inserting this into (2.25) we finally

obtain

D (f‖f∗) = ln
(√

π

e

)
=

1
2

ln
(π
e

)
≈ 0.072 nats = 0.104 bits. (2.26)

When applying the 6.02 dB per bit rule this loss is 0.63 dB. This is exactly
the loss found if using the Arimoto-Blahut algorithm to compute the R-D
bound for a Laplacian source (Figure 2.3). In this case none of the other
mentioned sources of loss come into play.

2.4.2 1:2 HSQLC, Gaussian Source and AWGN Channel

The hybrid scalar quantizer, linear coder [Coward and Ramstad, 2000; Cow-
ard, 2001] is a bandwidth-expanding joint source-channel coding scheme
with two channels, where the total channel bandwidth is twice that of the
source bandwidth. The bandwidth expansion is a way of performing error
control, which allows higher SNR of the reconstructed source than for equal
source and channel bandwidths. The schematic diagram of the HSQLC sys-
tem is shown in Figure 2.4, and an example of the corresponding quantizer
levels is seen in Figure 2.2. The input signal x(k) is first quantized by a
uniform scalar quantizer, and the quantized signal a(k) is allocated a cer-
tain amount of power and transmitted over the channel as a multilevel
PAM-symbol. The quantization error b(k) is allocated the rest of the power
and transmitted with direct PAM over the other channel. For high CSNR
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Figure 2.3: Laplacian source and AWGN channel of equal bandwidths.
OPTA is estimated using the Arimoto-Blahut algorithm.

(> 30 dB) and a Gaussian source the optimization described in [Coward,
2001] divides the available transmit power equally between the two channels.
We assume that the two channels have equal characteristics. The receivers
are not optimal, as the two channels are decoded independently. However,
simulations confirm that the difference in performance between the optimal
and simplified receivers is negligible at high CSNR [Coward and Ramstad,
2000; Coward, 2001]. Theoretically, as previously mentioned, the best we
can achieve is OPTA which is found by equating the rate-distortion function
with the channel capacity (Section 1.2.3). For a bandwidth expansion factor
of two, for a Gaussian source and an AWGN channel, we have

2Bs ·
1
2

log2(SNR) = 2Bc ·
1
2

log2(1 + CSNR)

SNR = (1 + CSNR)
Bc
Bs = (1 + CSNR)2. (2.27)

In dB, this becomes

SNRdB = 20 log10 (1 + CSNR) ≈ 2 · 10 log10 CSNR = 2CSNRdB. (2.28)

The HSQLC system’s performance is, however, far away from this bound. At
around 30 dB CSNR when the two channels are allocated the same amount
of power by the optimization algorithm, the system performance is a little
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Figure 2.5: Quantizer levels of the simplified HSQLC system.

less than 8 dB away from OPTA. To make the calculation of the performance
loss factors tractable, we will consider a simplified system where the distance
to OPTA is 8.5 dB at 30 dB CSNR. The quantizer levels of this system is
seen in Figure 2.5. We will now scrutinize this simplified system in order
to try to identify the main causes of this big loss. We restrict ourselves to
the high CSNR region, since as mentioned in this region the optimization
algorithm distributes the power equally on the two channels (hence we have
the same CSNR on the two channels, i.e. we assume equal noise power on
the two channels). Moreover, in this region, the quantizer has sufficiently
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high rate allowing us to assume that the quantizer output and quantization
error are uncorrelated (given that the usual required conditions for this
approximation to be valid are fulfilled). Also, in the high CSNR case, the
effect of the non-ideal receivers is more or less negligible.

As previously mentioned, to facilitate the analysis we abandon the optimized
quantizer characteristics (Figure 2.2), and instead stack the quantizer lev-
els directly above each other (Figure 2.5). This degrades the performance
slightly since incorrectly decoded symbols â will induce higher distortion,
and furthermore the error-signal distribution will be uniform instead of
something closer to a Gaussian. For CSNR above 30 dB, the original system
has little shift, but still the difference between the original and the simplified
system is approximately 0.5 dB. Below 30 dB the original system increases
the shift of the quantizer levels as can be seen in Figure 2.2. Analysis is
harder in this case, as we would have to calculate both the relative entropy
between discrete and continuous variables. Also we would have to calculate
the conditional entropy of a discrete variable, given a continuous variable.
Moreover, stacking the quantization levels directly above each other further
reduces correlation between the channel representations, reducing the need
for joint decoding.

Loss from mismatched channel symbol distributions: Since the signal on
channel 2, x2(k), is transmitted as direct PAM, it will have the same distri-
bution as the quantization error b(k). The scalar quantizer is of high rate
(at high CSNR) and thus the quantization error is approximately following a
uniform distribution (Figure 2.7). According to Section 2.2.1 we should thus
experience a loss equal to the relative entropy between the actual uniform
distribution and the optimal Gaussian channel symbol distribution of the
same variance. Denoting the uniform distribution as f and the Gaussian as
f∗ we have

I(f‖f∗) =
∫
f ln

f

f∗
= −h(f)−

∫
f ln f∗

= −h(f) + ln
(√

2πσG

)
+
∫
f
y2

2σ2
G

= − ln(max(x2)−min(x2)) + ln
(√

2πσG

)
+ 1/2

(c)
= − ln

√
12σ2

U + ln
(√

2πσ2
G

)
+ ln

√
e

=
1
2

ln
(

2πeσ2
G

12σ2
U

)
=

1
2

ln
(πe

6

)
, (2.29)
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Figure 2.6: At 30 dB CSNR, the pmf of the channel symbols on channel
1 is clearly following a Gaussian distribution, and there is no loss due to
mismatched channel symbol distribution.

where we use the fact that σ2
U ≡ σ2

G (comparing distortion at the same power
level), and in (c) we use the fact that the variance of the uniform distribu-
tion on channel 2 is given as σ2

U = 1/12(max(x2) − min(x2))2 [Zwillinger,
2003]. In bits, this loss is 0.5 log2(πe/6) = 0.255. This value is confirmed
by estimating the relative entropy of the simulated quantization error and
a Gaussian distribution of the same variance, using the method described
in [Wang et al., 2005]. In decibel, this loss is 1.53 dB which is equal to the
potential shaping gain of 1.53 dB in modulation [Forney and Ungerboeck,
1998]. The quantized signal a(k), transmitted over channel 1 with direct
PAM will have a discrete distribution approximating the continuous Gaus-
sian distribution (Figure 2.6, and there will be almost no loss due to incorrect
channel symbol distribution as long as the number of levels is sufficiently
high.

For lower CSNR values, the situation changes since the quantizer levels
of the HSQLC should not be stacked directly on top of each other, but
rather with a horizontal displacement as seen in Figure 2.2. If we try this,
we notice that the displacement means that the distortion occurring from
incorrectly decoded y1 is reduced and the pdf on channel 2 becomes more
Gaussian. However, the power on channel 2 will increase without increasing
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Figure 2.7: At 30 dB CSNR, the channel symbol distribution on chan-
nel 2 is uniformly distributed, and causes a capacity loss of 0.255 bits.

the decoded SNR6, and channel 1 will be correlated with channel 2 thus
reducing the information content on channel 1. These two benefits and two
drawbacks will balance each other for a certain quantizer level shift given a
CSNR, thus providing an optimal shift given the CSNR. We also not that
the reduced rate on the quantizer has made the distribution on channel 1
non-Gaussian (Figure 2.8).

Loss from threshold effect: Channel 1 has multi-level symbols with no ex-
plicit error protection. Channel noise will therefore cause transitions to
neighboring symbol levels, and we will have a loss as discussed in Sec-
tion 2.2.2. This implies that in order to obtain an acceptable symbol error
rate, each channel symbol must carry strictly less information than the chan-
nel capacity allows. However, since we in the HSQLC use direct modulation
of the quantized values without entropy coding or bit-representation, and
the channel symbols are memoryless, a symbol error will not cause complete
breakdown in the coder. Only one source sample is affected, allowing for a
higher symbol error rate compared to digital systems.

Calculation of the mse caused by the threshold effect in channel 1 is done

6This is becaue the increased power has not been used to “stretch” the channel signal
curve to minimize the effect of channel noise. See [Floor and Ramstad, 2006a].
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Figure 2.8: The pmf on channel 1 corresponding to the HSQLC charac-
teristics for 20 dB CSNR shown in Figure 2.2. The distribution is no longer
following a Gaussian, and will experience a certain capacity loss. This is,
however, difficult estimate since the distribution is discrete whereas the
optimal Gaussian is continuous.
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Figure 2.9: Channel 2 has a more Gaussian distribution compared to
Figure 2.7, but the increased power usage due to the quantizer level shifts
reduces the channel noise suppression. Moreover, channel 1 will now be
more correlated with channel 2 reducing the amount of new information
transmitted.
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as follows. The length of each source segment in Figure 2.5 is

dth =
smax − smin

L
, (2.30)

where L is the number of levels. Since the simplified system has the source
segments stacked on top of each other, the distortion caused by a jump
to neighboring levels is simply ‖j · dth‖2, where j is the number of jumps
caused by the channel noise. The total mse from the threshold effect is the
distortion from all jumps to neighboring levels, multiplied by the probability
of transitions, integrated over the entire source S:

ε2th =
L∑

i=1

L∑
j=1

∫ si+dth

si

((i− j)dth)2Q
(
|i− j|dmin

2σn

)
fS(s)ds, (2.31)

where Q(·) is the Q-function which returns the tail area under the standard-
ized normal distribution, dmin is the distance between quantizer levels on
the channel (x1(k)), s1 = smin, sL = smax and si = si−1 + dth (assuming
that the overload distortion is negligible).

Translating the mse in (2.31) into its associated SNR loss in an exact manner
is not trivial. We can try to approximate the value, but it is admittedly
quite clumsy and should be found by some other mean. Starting with the
expression for the total SNR

SNR = 10 log10

(
σ2

s

ε2ch.2 + ε2th

)
, (2.32)

we can approximate the SNR loss by taking the difference of the SNR from
only channel 2 and the total SNR

∆SNRth = 10 log10

(
σ2

s

ε2ch.2

)
− SNR. (2.33)

This is not exact, however, since log (a+ b) 6= log a + log b, but when the
mse from the threshold effect is small it gives a reasonably accurate result.

Loss from rate lower than C : Since the channel symbols are memoryless and
no entropy coding is involved, the HSQLC system can allow a certain amount
of symbol errors. Still, the threshold effect calculated as above restricts the
rate to a number strictly lower than the channel capacity. At 30 dB CSNR
the number of PAM-levels is 28 (for the simplified system). Using [Jayant
and Noll, 1984, Eq. 4.108] for a Gaussian distribution with the optimal step
size, we find the resulting entropy to be 3.89 information bits. This is 1.09
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bits below the channel capacity. The symbols on channel 2, carrying the
quantization error, are continuous-amplitude and has a rate equal to the
channel capacity. The only loss in this channel is from the incorrect channel
symbol distribution as explained above.

Loss from channel symbol correlation: Since the quantizer has relatively
high rate and the input distribution is Gaussian, we can treat the quan-
tization error and the input as uncorrelated random variables. Since the
quantizer output is a deterministic function of the input, we can also treat
the quantization error and the output as uncorrelated random variables.
This means that the correlation between the two channels is close to zero,
and thus there is no loss as explained in Section 2.2.4. This, however, is a
simplification which does not hold for low CSNR, where the rate on channel
1 drops. Furthermore, looking at Figure 2.2, we see the quantizer levels
of the original HSQLC system [Coward and Ramstad, 2000] are shifted to
the right relative their neighbors below. The dashed and solid lines in the
plane represents the source at two different channel states, and a source
point along these lines determines the resulting channel symbols x1 (Ch.1)
and x2 (Ch.2) which are used for transmission. Neighboring points along
the line segments are neighbors in the one-dimensional source space, and
the dotted lines indicates the neighbors of the different line segments. Now,
we can see that the optimization algorithm is shifting each line segment
toward the right in order to reduce the impact of incorrectly decoded â.
We also see that the shift is bigger for lower CSNR. The shift introduces
correlation between channel 1 and 2. This means that the information con-
tent H(x1|x2) < H(x1) on channel one is reduced, leading to a loss. The
dependence between the two channels should ideally be exploited in the re-
ceiver, as discussed in Section 2.2.7, in order to reduce the probability for
the threshold effect. The optimal receiver, however, is significantly more
complex to derive, and provides at best no more than 0.5 dB improvement
[Coward, 2001].

Table 2.1 sums up all the redundancy factors of the simplified HSQLC-
system and shows the estimated loss in decibels, calculated from the 6.02 dB
per bit rule. The total estimated loss of 8.56 dB is very close to the loss we see
from simulations, with simulation results varying a bit due to the threshold
effect contribution. When the probability of the threshold effect is estimated
correctly in (2.31), the calculated and simulated loss agree within 0.02 dB if
we reduce the rate on channel 1 to eliminate the threshold effect, theory and
simulation agree fully. At lower CSNR values, it is harder to calculate the
loss explicitly since the power is no longer divided equally between the two
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Loss (30 dB CSNR) Sec. bits dB
Mismatched pmf (Ch.1) 2.2.1 ∼0 ∼0
RCh.1 < C 2.2.3 1.09 6.56
Mismatched pdf (Ch.2) 2.2.1 0.255 1.53
RCh.2 < C 2.2.3 ∼0 ∼0
Inter-channel correlation 2.2.4 ∼0 ∼0
Source Coder Redundancy 2.2.5 ∼0 ∼0
Suboptimal receiver 2.2.7 ∼0 ∼0
Threshold effect (Ch.1) 2.2.2 - 0.47
Sum 1.345 8.56
Simulation 8.58

Table 2.1: Loss account for the simplified HSQLC, Gaussian source
and AWGN channel.

channels, and since the quantizer rate is reduced, inter-channel correlation
is introduced.

As the reduced rate on the channel 1 is responsible for 81% of the loss for
the HSQLC, it would make sense to try to include a more efficient cod-
ing on that channel, like for instance a bandwidth-efficient LDPC-coded
modulation [Eleftheriou and Olcer, 2002]7. Using this on channel 1, we
could get as close as 3.88 dB to the Shannon limit with a BER of 10−7.
This translates to a capacity loss of 0.643 bits per symbol. Assuming no
incorrectly decoded symbols, the calculated distance to OPTA would be
0.643 · 6.02 + 1.53 = 5.39 dB. For a capacity-achieving code, the distance to
OPTA would be only 1.53 dB.

To further improve the performance, a higher dimensional vector quantizer
in place of the scalar quantizer must be employed, since that is the only way
to produce a more Gaussian distributed quantization noise.

2.5 Concluding Remarks

In this chapter, we have tried to identify factors in (lossy) joint source-
channel coding systems leading to sub-optimal performance. We only con-
sidered systems with a squared-error distortion measure and an average
power constraint on the channel.

7This would, however, further reduce the system’s robustness compared to direct mod-
ulation.
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The loss factors identified are the following; Non-Gaussian channel sym-
bol distribution (Sec.2.2.1), decoding errors (Section 2.2.2), operational rate
lower than the channel capacity (Section 2.2.3), correlation between chan-
nels (Section 2.2.4), source coder redundancy (Section 2.2.5), mismatched
source distributions (Section 2.2.6), and suboptimal receiver structures (Sec-
tion 2.2.7). The list of loss factors is not exhaustive, but should cover the
most important loss factors of source-channel coding systems. By means of
two examples some of the identified factors were shown to be able to explain
the loss experienced and to provide important hints on where to start when
trying to improve a given system’s performance.
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Chapter 3

Shannon-Kotel’nikov Mappings

“The reasonable man adapts himself to the world; the unreason-
able one persists in trying to adapt the world to himself. There-
fore all progress depends on the unreasonable man.”

- George Bernard Shaw (1856 - 1950), Man and Superman
(1903) “Maxims for Revolutionists”

This chapter introduces the concept of S-K mappings, which is a class of
lossy joint source-channel coding schemes based on the geometrical interpre-
tations of communication due to [Shannon, 1949; Kotel’nikov, 1959]1. The
idea of this approach is to exploit the analog nature of waveform channels in
order to provide both high spectral efficiency and robustness against channel
fluctuations, while at the same time ensuring low delay and complexity.

The concept of S-K mappings assumes that both the source and the channel
are represented by amplitude-continuous2 and time-discrete symbols. That
is, the source is sampled, but not quantized, and the channel has distinctive
symbols with continuous or multi-level amplitudes. The discrete-time na-
ture implies that both the source and the channel will require a particular
bandwidth, given by the sampling rate. The source is then projected, or
mapped, directly onto the channel using a mathematical function, or a com-
position of several functions. This takes a point from the source space and

1Note that the book from 1959 is an English translation of Kotel’nikov’s doctoral
thesis from 1947.

2The channel representation can also be multi-level symbols like the example in Section
2.4.2. The point is that there are no bit-representations involved.
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places it in the channel space, hopefully in a close to optimal manner. The
decoder should bring the point from the channel space (the channel symbol)
back into the source space, introducing as little distortion as possible into
the reconstruction at the receiver side. Figure 1.3 illustrates the conceptual
process of the S-K mappings, where the composition T ◦ q constitutes the
encoder, and T−1 the decoder. If the source bandwidth is larger than the
channel bandwidth, the function q is responsible for reducing the informa-
tion content of the source so that it can be “fitted” onto the channel. In
this case, q will not be injective, and the encoding function is not invert-
ible (not lossless). On the other hand, of the channel bandwidth is larger
than the source bandwidth, the function q is not needed and will simply be
the identity operator. The bĳective function T performs the mapping from
the source to the channel space, and is obviously invertible. Since both the
source and the channel symbols have continuous amplitude, channel noise
will introduce distortion in the reconstructed source symbol at the receiver.
A good choice of encoder-decoder pair is required to minimize the effect of
the channel noise.

In order to put the S-K mapping schemes in perspective, a quick comparison
with the “standard” approach to communication of analog sources (sound,
images, video etc.) is in order. In digital communications, the (analog)
source is first approximated to a discrete and countable set, usually by sam-
pling and quantization. This reduces the information content of the source
to some value R, called the rate. The source set is mapped, using a bĳective
mapping, onto a discrete and countable set of channel symbols. As long as
R is below the channel capacity C, the channel can be made to be virtually
error free (transparent) by utilizing forward error correction (FEC). After
the invention of Turbo codes [Berrou et al., 1993] and re-invention of LDPC
codes [Chung et al., 2001], this approach comes very close to the optimum
for low channel CSNRs using BPSK.

The principal difference between the fully digital approach and the S-K
mappings is how the issue of channel noise is addressed. In the former, the
channel is made transparent and the distortion at the decoder side comes
solely from the necessary information reduction performed in the source
coder. However, as both the source and the channel are analog and the
source tolerates a certain level of distortion, there is no particular require-
ment for the channel to actually be transparent. So instead of reducing
the information content to a rate below the channel capacity, and achieving
error-free transmission, S-K mappings explicitly allow channel noise to con-
taminate the source, with the possible benefit of higher spectral efficiency,
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higher robustness and lower end-to-end delay. This concept has its roots
in non-linear analog communication, and thus display many similarities to
that and to robust source coding like channel-optimized vector quantization.
Thus, a quick review of these related schemes is also in order.

An article which explores the theoretical limitations of analog communica-
tion [Goblick, 1965] shows that for low-CSNR channels, the potential gain
from bandwidth expansion is vanishing, and in that respect the benefits of
analog communication over digital systems using turbo codes and BPSK
would be lower delay and complexity. With respect to non-linear analog
modulation techniques, several methods exist; pulse-position modulation
(PPM), frequency-position modulation (FPM), frequency modulation (FM)
and phase modulation (PM). These systems all have performances rela-
tively far away from the theoretical optimum for small bandwidth expan-
sion factors [Wozencraft and Jacobs, 1965; Timor, 1970]. However, as the
channel bandwidth goes to infinity, these systems do approach optimum
modulation schemes, in the sense that no other systems have a faster de-
caying mean-squared error. Systems which build on Kotel’nikov’s geometric
interpretation using nonlinear continuous curves (signal curves) for com-
munication [Kotel’nikov, 1959] have shown improved performance for the
bandwidth expansion case, with bandwidth expansion factors less than or
equal to 5 [McRae, 1971; Thomas et al., 1975]. These schemes, which are
called mixed-base modulation (MBM), achieve expansion by performing a
mapping through the signal curve, from the source space (dimension 1) to
the channel space (dimension N). The bandwidth expansion factor is equal
to the dimension increase, and the performance improves compared to the
PPM-like systems for small bandwidth expansion factors. A common ex-
pression for MBM, PPM, FPM and FM is twisted modulation [Wozencraft
and Jacobs, 1965].

More recent examples, usually termed hybrid digital-analog (HDA) joint
source-channel codes, can be found in [Skoglund et al., 2002; Mittal and
Phamdo, 2002; Skoglund et al., 2006]. These systems strongly resemble the
earlier mentioned systems, but as they incorporate channel codes in the digi-
tal parts, the breakdown below the design CSNR is more abrupt, whereas the
analog part ensures graceful improvement if the CSNR is higher. Recently,
we have presented some “purely analog” bandwidth-expansion schemes re-
sembling the MBM systems which uses parametric curves or surfaces to
perform the dimension change. These perform on par with or even better
than the HDA schemes [Floor and Ramstad, 2006a,b,c; Cai and Modes-
tino, 2006]. The 1:2 bandwidth expansion mapping introduced in Chapter 2
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[Coward and Ramstad, 2000] is commonly referred to as a HDA system, as
it has the same structure as the previously mentioned HDA systems. How-
ever, as the system has no bit representation, but rather employs a direct
modulation of the quantized source, this system can be classified as a S-K
mapping.

For bandwidth reduction, there are several more examples, and they gener-
ally come closer to the theoretical bounds than the existing schemes for the
expansion case. Most common are COVQ, where the codebook indices are
mapped directly onto the channel [Vaishampayan, 1989; Skinnemoen, 1994;
Fuldseth and Ramstad, 1997]. Instead of using discrete vector quantizers,
parametric curves or surfaces can be used as “continuous codebooks”. The
functions should be matched carefully to the source and channel [Chung,
2000; Hekland et al., 2005], but general design methods for constructing
these functions are at present still not known to exist. Performance is com-
parable to the COVQ systems with the added benefit of simpler encoding
and decoding.

3.1 Preliminaries for Shannon-Kotel’nikov Mappings

Before presenting specific examples of S-K mappings, necessary assumptions,
notation and performance measures are introduced. Unless noted otherwise,
these hold for the following chapters too.

For simplicity, only memoryless i.i.d. sources are considered. Correlation
is assumed removed through preceding operations such as filterbanks or
transforms.

For measuring the distortion between the source and the reconstruction
at the receiver, only the mean-squared error distortion measure is used.
This is chosen for mathematical simplicity and because it provides a closed-
form expression for the rate-distortion function for the Gaussian source.
Furthermore, its wide utilization as an objective distortion measure makes
it easier to compare to other systems.

A practical system is always constrained in terms of available resources. The
design space, i.e. bandwidth, power, complexity etc. has in practice always
some kinds of imposed constraints. The main limitations in this discussion
is:

• Bandwidth of both the source and the channel is assumed to be lim-
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ited, and in general the source and channel bandwidths are different.
However, we only consider relative differences between the source and
channel bandwidths.

• The channel has an average power constraint as this is simpler math-
ematically, although practical systems usually have peak power limi-
tations, and even an amplitude limitation.

Obviously, in a practical system the bandwidth cannot be exactly restricted
to a specific value since filters have a smooth roll-off instead of an ideal
brick-wall characteristics. However, this fact is disregarded and ideal filters
are assumed to simplify analysis, but obviously has to be taken into account
when designing a practical system. With regards to the channel power
constraint, it should also be noted that it is possible to use different kinds
or several simultaneous constraints like average power and peak amplitude
limitations when optimizing the mappings.

3.1.1 Dimension Change as a Mean to Achieve Bandwidth
Change

Since we assume time-discrete operation, any time-continuous source must
be sampled before transmission. Throughout the entire thesis, the sources
are assumed to be strictly bandwidth-limited3. According to the Shannon-
Whittaker-Kotel’nikov sampling theorem [Zayed, 1993], a source with a
bandwidth W can be sampled and accurately reconstructed using a sam-
pling frequency of 2W . Hence, the source outputs 2W samples per second.
For a channel with bandwidth W and using Nyquist signaling rate, one
can transmit 2W symbols per second. This implies that one can transmit
a source of bandwidth W over a Nyquist channel of bandwidth W while
achieving the same performance as direct analog transmission. As was dis-
cussed in Section 1.2.3, we achieve either bandwidth reduction by combining
M source samples into N channel samples, or bandwidth expansion by dis-
tributing M samples over N channel samples. This is can be expressed
as

ψ : RM → RN , (3.1)
where the dimension change will provide the needed bandwidth change,

given that the numbers M and N are sufficiently large for the approximation
M/N ≈W/B to hold with good accuracy.

3The bandwidth limitation can be natural or imposed through a preceding low-pass
filtering operation, but in either case only the bandwidth-limited source is considered.
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Using a non-linear operator ψ has benefits both for compression and ex-
pansion. For a linear mapping, and where the source bandwidth is larger
than the channel bandwidth, there are two options for achieving compres-
sion and thereby fitting the source on channel. Either the source can be
low-pass filtered and resampled to such a rate that it fits on the channel, or
it can simply discard the excess samples, transmitting only the most impor-
tant samples. Both approaches increase the distortion, however in different
ways. A non-linear mapping on the other hand, would retain the full band-
width of the source and not discard any samples, but rather represent each
sample with less precision. To achieve a 2:1 compression, the linear map-
ping would discard every second sample (or resample to half the bandwidth),
whereas the non-linear mapping would combine two and two samples and
represent them as one single channel sample. This can potentially increase
the resulting SNR at the receiver side, especially for high CSNR. As for
bandwidth expansion, a linear system can only achieve expansion through
sending several copies of the same source signal and average at the receiver.
This translate to only 3 dB increase in SNR per doubling of channels, pro-
vided that the power doubles too. The reason for this small gain is the poor
utilization of the channel space. When using this kind of repetition code,
fully correlated information is transmitted on the channels, thereby “wast-
ing” bandwidth which could be used to send new information. By using a
non-linear mapping, the different channel representations can be made to
carry unique information, thereby improving the channel utilization. Ac-
cording to what we found in Section 2.2.4, the difference between the linear
(BPAM) and the optimal nonlinear mapping can be assessed through eval-
uating the expressions of the channel capacity

C = max
f(x1,x2,...,xN ):

∑
E[X2

i ]≤P
I(X1, X2, . . . , Xn;Y1, Y2, . . . , YN ), (3.2)

where Xi are the transmitted symbols, Yi are the received symbols.

With the noise Zi independent of the signal Xi, the mutual information in
(3.2) can be written as

I(X1,X2, . . . , Xk;Y1, Y2, . . . , YN )

= h(Y1, Y2, . . . , YN )−
∑

i

h(Zi). (3.3)

For the linear system with fully correlated channel symbols, i.e. the joint

54



Mappings providing 2:1 Dimension Reduction

differential entropy is h(Y1, Y2, . . . , YN ) = h(Y1), (3.3) becomes

I(X1,X2, . . . , XN ;Y1, Y2, . . . , YN )

= h(Y1)−
∑

i

h(Zi)
a)
=

1
2

log
(

1 +
∑

i Pi

Zi

)
, (3.4)

where it in a) is assumed capacity achieving distributions and that all the
available power, P , is put into one channel (equivalent to transmitting the
same information on all the channels and averaging out the noise). For the
nonlinear systems with independent channel symbols, (3.3) becomes

I(X1,X2, . . . , XN ;Y1, Y2, . . . , YN )

=
∑

i

h(Yi)− h(Zi)
a)
=
∑

i

1
2

log
(

1 +
Pi

Zi

)
, (3.5)

where Pi = E
[
X2

i

]
and

∑
Pi = P . Comparing these expressions, assuming

Pi/σ
2
n,i � 1 and equal Pi/σ

2
n,i on all the channels, the capacity in the linear

solution grows logarithmically with the number of channels N , whereas in
the nonlinear solution it grows linearly with N .

3.2 Mappings providing 2:1 Dimension Reduction

With a 2:1 dimension reducing mapping, we can transmit a source of band-
width 2W over a channel with bandwidth W , with the theoretical lower
bound SNR = (1 + CSNR)1/2 (Section 1.2.3). The lower bound describes
the case of transmitting a Gaussian source over an AWGN channel. Other
sources like Laplacian sources are “easier” to describe (lower rate) and this
increases the SNR for a given CSNR. Likewise, Gaussian noise minimizes
the capacity of (3.2), and all other noise distributions increase the capacity,
thus increasing the SNR as well. The mapping process works by applying
the function q() to the source. This function performs a projection from
the source space, which is two-dimensional, to a subspace. This effectively
creates an approximated version of the source where the information content
is sufficiently reduced so that it fits on the channel. The subspace in which
the approximated source resides can be mapped with an invertible function
T () onto the one-dimensional channel.

The key to good performance is to find the q and T which minimize the
distortion at the receiver side. The geometry of q, i.e. the geometry of the
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y
ŝ1

ŝ2s2
α

z ∼ N (0, σ2
n)

β
χ̂

T ◦ q(·) T−1

s1
xχ

Figure 3.1: A generic 2 : 1 dimension (bandwidth) reducing Shannon
mapping. The q(·) operator projects the 2-D source tuple onto a point
on a 1-D curve in R2. This operation is not invertible when the curve
has finite length. The T (·) operator is an invertible one-to-one mapping
between the curve and the channel space. The scaling factor ensures that
the power-constraint is fulfilled.

subspace, determines the approximation noise (equivalent to quantization
noise) introduced when reducing the information content. The function T
is responsible for taking the approximated source into the channel space
and back in an optimal manner. Ideally, the channel symbol distribution
should be Gaussian, as discussed in Section 2.2.1, but at the same time,
the impact of the channel noise should be minimized. Moreover, the total
noise contribution, from both the approximation step and the channel noise,
should ideally be Gaussian distributed with a power no greater than what
is needed to equate the rate-distortion function with the channel capacity.

Determining what q and T should be, given the source and channel statistics,
is not trivial. The two functions together both determine the channel symbol
distribution and the resulting noise distribution, thus decoupling the design
of them will most likely lead to suboptimal results. For now, the only ways
to determine q and T are to either make intelligent guesswork, or to look
at the results of a power-constrained channel-optimized vector quantizer
(PCCOVQ) [Fuldseth, 1997] which is closely related to S-K mappings. The
major difference from the S-K mappings is that instead of using a function
or curve to describe the subspace in the approximation step q, an ordered
vector quantizer is used. By increasing the number of codebook entries
in the PCCOVQ, a continuous function can be approximated. Figure 3.2
shows the resulting codebook from the PCCOVQ for a Gaussian source and
an AWGN channel for different channel qualities. Using a codebook size of
1024, the codebook vectors become so closely spaced that they approximate
a continuous function. For sources and channels resulting in such regular
codebooks as this, we can hope to find similar looking functions which can
be used to describe the subspace q in our mappings.
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Figure 3.2: 2:1 PCCOVQ codebook for a Gaussian source and an
AWGN channel, created using the algorithm described in [Fuldseth, 1997].
Interestingly, for low CSNRs the PCCOVQ produces a linear system,
whereas for higher CSNR the result is a non-linear system. For inter-
mediate CSNRs the codebook shows a very regular structure resembling
a double intertwined Archimedes’ spiral, wheres for very high CSNRs the
codebook shows a more irregular behavior (which is shown to be sub-
optimal).

3.2.1 Gaussian Source, AWGN Channel

We now assume that we are given an i.i.d. Gaussian source S with zero mean,
and form tuples of two consecutive samples. This can be represented as a
source vector s = (s1, s2). We want to perform a bandwidth reduction by
transmitting a combination of the two source samples as one channel sample.
To achieve this we perform a mapping operation from the two-dimensional
source space onto a subspace which must consist of line segments. This is
represented by the q(·) in Figure 3.1, where any point in R2 is mapped to
the closest point in the subspace defined by q. In our case, the subspace is
given as the double Archimedes’ spiral, defined by the radii

r+(θ) =
∆
π
θ and r−(θ) =

∆
π

(θ + π), (3.6)
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for the solid and dashed spiral arms in Figure 3.4 respectively. Here, ∆ is
the distance to neighboring spiral arms in Figure 3.4 and θ ∈ R is the angle
from the origin to a point on the spiral. The curve length of the spiral arm
is given as

`(θ) =
1
2
∆
(
θ
√

1 + θ2 + sinh−1 θ
)
. (3.7)

The Archimedes’ spiral belongs to a family of Archimedean spirals given
as r+(θ) = ∆

π θ
1/k, where the difference from (3.6) is the term k which

determines whether the distance between the spiral arms increases for higher
θ (k < 1), is uniform (k = 1), or the spiral arm distance decreases for higher
θ (k > 1). The family of Archimedean spirals can also be given in parametric
form as

u±(θ) = ±∆
π
θ1/k

(
cos θ~i+ sin θ~j

)
, (3.8)

where u+ and u− determine the solid and dashed spiral arms in Figure 3.4
respectively.

The choice of the double Archimedes’ spiral as the subspace in q is based on
the observations of the codebook of the PCCOVQ in Figure 3.2. Figure 3.3
shows the PCCOVQ and the double intertwined Archimedes’ spiral super-
imposed, indicating that it is a sensible choice as a subspace for q. It was
discovered that results on such a system were already presented in [Chung,
2000], but since most of the derivations of the results were omitted there,
and no publications on the results exist, a more complete description of the
optimization process is presented in the following.

First, a source vector is approximated, or projected, onto the closest point
on the spiral. In Figure 3.4 this can be seen as the star point being approx-
imated by the circle point on the spiral. The approximated source vector is
still two-dimensional, but is restricted to the Archimedes’ spirals. Then we
perform a mapping using the invertible operator T (·) in Figure 3.4 from the
two-dimensional subspace to a one-dimensional channel representation. In
this case, we use the square of the angle,

T+(θ) = +ηθ2 and T−(θ) = −ηθ2 (3.9)

for the solid and dashed spiral arms respectively in Figure 3.4. The pa-
rameter η = a∆ with a = 0.16 makes this T -operator an approximation of
the length along the spiral given in (3.7). This is then scaled to satisfy the
power constraint and sent as an analog symbol over the channel.
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Figure 3.3: Comparing the structure of codebooks at 20dB CSNR.

The optimal ∆ depends on the channel noise and the transmit power con-
straint, and is the parameter to be determined. In the receiver, the square-
root of the received symbol is taken. This leads to signal dependency of the
channel noise. However, simulations suggest that in the high-CSNR region
this effect is minimal, so we disregard this factor in the following.

When optimizing the spiral mapping, the goal is to find the ∆ that minimizes
the total distortion, given an average power-constraint P . That is,

∆opt = argmin
∆:E[x2]≤P

[D(∆)] , (3.10)

where D(∆) is the resulting distortion after reception when using ∆ as the
spiral arm distance, and E

[
x2
]

is the average channel symbol power. The
power-constraint will limit the range of θ, so we have θ ∈ S ⊂ R.

We define the resulting distortion per source symbol after decoding at the
receiver side as

Ds
def
=

E
[
‖s− ŝ‖2

]
2

,

where s and ŝ are the original and decoded source vectors respectively. The
denominator accounts for the fact that the distortion is distributed on two
source symbols. As in the thesis by Chung [Chung, 2000] we decompose the
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Figure 3.4: Indicates the error components from the mapping process.
The total error ‖s−ŝ‖ can be decomposed into two orthogonal components:
A radial component from the approximation q(·) in Figure 3.1, and an
angular component, ‖ŝ‖ (∠s− ∠ŝ), from the channel noise which moves
the mapped point along the spiral.

error into a radial component resulting from the approximation operation
q(·) in Figure 3.1 and an angular component from channel noise Z:

Ds = Dr +Dθ =
1
2
E
[
(‖s‖ − ‖ŝ‖)2

]
+

1
2
E
[
‖ŝ‖2 (∠s− ∠ŝ)2

]
. (3.12)

This decomposition is possible under the assumption of high CSNR when
the spiral is sufficiently dense at the origin, so that the average error is ap-
proximately equal in the two source samples after projecting the combined
source point onto the spiral. The radial distortion will increase with increas-
ing ∆, which is obvious since the distance to the closest spiral arm increases.
The angular distortion will, however, increase with decreasing ∆. This is
because the source will have to be down-scaled as a result of the power con-
straint. The corresponding up-scaling at the receiver end will then amplify
both signal and noise. Hence, there is an optimal value of ∆ which produces
the minimum total distortion.
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Balancing the Distortion Contributions

Since we allow noise from both the approximation step and the channel to
affect the source signals, we want to determine the optimal balance between
these two noise contributions. That is, we want to determine the optimal ∆
which minimizes the total distortion. Then we will show that this implies
Dr = Dθ.

We need an expression for the total distortion, containing both distortion
components, and then we must minimize this under the given power con-
straint. This expression is

Ds(∆, σn) = Dr(∆) +Dθ(∆, σn). (3.13)

The power constraint in (3.10) implies that we have to scale the channel
input signal with a factor α in order to satisfy the average power constraint
E
[
(αχ)2

]
= α2E

[
χ2
]

= α2σ2
χ, where α =

√
P/σ2

χ. The received channel
signal must be up-scaled accordingly to obtain the original source power.
Even though the inverse of the scaling parameter on the transmitter side
is sub-optimal compared to a Wiener-type scaling factor (i.e. an minimum
mean-squared error (MMSE) receiver), we use β = α−1 for simplicity. The
scaling on the receiver side implies that the channel noise will also be scaled
as:

Var [βY ] = β2Var [Y ] = β2σ2
n =

σ2
χ

P
σ2

n. (3.14)

For the two distortion terms in (3.13), we introduce some approximations
valid in the high CSNR (i.e. dense spiral) case. First, looking at Figure 3.4,
we realize that the approximation step which projects the source point (star)
to the approximated point (circle) moves the point (approximately) in the
radial direction. Since the spiral arms are uniformly spaced, and densely
packed for high CSNRs, the approximation operation can be interpreted
as a standard uniform scalar quantizer (except near the origin). Therefore
we can introduce the well-known expression for the quantization error in
a scalar quantizer, σ2

q = ∆2/12. With regard to the problems around the
origin, it seems reasonable to assume that with a sufficiently dense spiral
the approximation should still be valid except for a disc with a small radius.
The anomaly around the origin will be insignificant for dense spirals, but will
result in modeling errors as the CSNR is reduced since the spirals become
less dense. For the distortion in the angular direction, the scaled noise

61



3. Shannon-Kotel’nikov Mappings

variance in (3.14) is used. Inserting into (3.13) we obtain

Ds(∆, σn) =
1
2

(
∆2

12

)
+

1
2
(
β2σ2

n

)
=

1
2

(
∆2

12

)
+

1
2

(
σ2

χ

P
σ2

n

)
(3.15)

where σ2
χ is a function of ∆. To determine σ2

χ, we assume that in the high-
CSNR region the spiral is sufficiently dense to disregard the approximation
step for this particular purpose. This means we can calculate the density
on a circle around the origin. This is done by evaluating Y = g(s1, s1) =
±ηθ2 = ±η(s21+s22), from the expression of the radius (3.6). See Appendix A
for details on how to determine fχ(χ) and the corresponding σ2

χ. For a 2-D
Gaussian circular symmetric source, using the T -operator in (3.9) gives a
Laplace distribution with variance

σ2
χ = 2λ2 = 2

(
2η
π2

∆2
σ2

s

)2

, (3.16)

where σ2
s is the variance of the source, and η equals a∆ as in (3.9). Setting

a = 0.16 will provide an approximation of the curve length, and this will be
used in the remainder of this thesis. Inserting into (3.15) we have

Ds(∆, σn) =
∆2

24
+

8(0.16π2σ2
sσn)2

∆2 · 2P
. (3.17)

We thus see, as stated above, that the radial distortion will decrease with
smaller ∆ whereas the angular distortion will increase with smaller ∆.
Therefore we will have a distinct ∆ which provides the minimal distortion
for the given noise variance and power constraint. To find this minimum
we differentiate Ds with respect to ∆ and equate the resulting expression to
zero.

dDs

d∆
=

∆
12
− 8(0.16π2σ2

sσn)2

∆3P
= 0. (3.18)

Solving this expression for ∆ we obtain

∆opt = 2πσs
4

√
6 · 0.162σ2

n

P
= 2πσs

4

√
6 · 0.162

γ
, (3.19)

where we defined the CSNR as γ = P/σ2
n.

Using the distortion expression in (3.17), and inserting (3.19) into (3.17),
we find that with minimal total distortion, both distortion contributions are

Dr = Dθ =
∆2

opt

24
= π2σ2

s

√
0.162

6 · γ
. (3.20)
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Figure 3.5: A comparison between the distortion model (3.15) and sim-
ulations. The radial distortion denotes the distortion due to the approx-
imation operation, whereas the angular distortion denotes the distortion
due to channel noise. The model shows good correspondence above 35 dB
CSNR.

Thus, the total distortion is minimized when the approximation and channel
noise are equal, and it is given as

Ds =
∆2

opt

12
(3.21)

The SNR is defined as

SNR =
σ2

s

Ds
=

σ2
s

∆2
opt/12

=
√

6
2 · 0.16 · π · π

√
γ

≈
√

6
π

√
γ, (3.22)

and comparing this to OPTA for the 2 : 1 case:

SNR =
√

1 + γ, (3.23)

we see that the asymptotic gap from OPTA is
√

6/π ≈ 1.1 dB, which agrees
with the findings of [Chung, 2000].
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Figure 3.6: SNR vs. CSNR for 2-D i.i.d. Gaussian source and AWGN
channel. Comparison of the optimized spiral mapping and the theoretical
bound for 2-D ECVQ. The green dashed curve illustrates the robustness
of the system for incorrect CSI at the transmitter.
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Figure 3.7: SNR vs. CSNR for 2-D i.i.d. Gaussian source and AWGN
channel. Comparison of simulations and the analytic model in (3.17).
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A comparison between this optimized spiral mapping, OPTA for 2:1 band-
width reduction, and the ideal entropy-coded vector quantizer with perfect
channel coder can be seen in Figure 3.6. It is observed that the proposed
system outperforms the vector quantizer in the high-CSNR region where the
assumptions hold, whereas below 20-25 dB CSNR, the assumptions in Sec-
tion 3.2.1 are no longer valid, causing higher distortion. It is stressed that in
contrast to the ideal entropy coded vector quantizer with a capacity achiev-
ing code for the channel, the proposed system is memoryless and does not
attain the theoretical channel capacity. Furthermore, it is very robust in the
sense that incorrect CSI in the receiver will not cause a break-down in the
decoder. The systems shows both graceful degradation and improvement
for all CSNR, as can be seen in the blue dashed curves in Figure 3.7.

Since the optimal ∆ in (3.19) depends on the source variance σ2
s , incorrect

estimates of σ2
s will result in degradations. However, unless the source sam-

ple set is very small so that estimating the source variance is hard to do
accurately, this will be a small issue since the curve in Figure 3.8 is rela-
tively flat around the assumed σ2

s . More than 50% estimation error of the
variance will still provide a performance within 2 dB from OPTA. Since we
chose the geometry on the basis of the PCCOVQ, it is reasonable to compare
the performance of the two to see how they perform relative to each other.
If we assume perfect CSI and known σ2

s at the transmitter side, the spiral
used for simulations is found using (3.19), whereas the codebooks for the
PCCOVQ are trained using the algorithm in [Fuldseth, 1997] with a training
set consisting of 4 · 106 vectors. The codebooks are trained for each integer
CSNR value to make the comparison fair in terms of optimality. Keep in
mind that this would require massive storage requirements, so in practice a
few codebooks for different CSNRs would be used relying on the robustness
of the PCCOVQ for CSNR values in between. This would effectively reduce
the performance of the PCCOVQ slightly in a practical system, whereas the
spiral mapping, given the CSI, can obtain the exact parameter by simply
evaluating (3.19); thus no storage is required in this case.
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Figure 3.8: The sensitivity of the Archimedes’ spiral with respect to
mismatched source variance. The spiral arm distance ∆ is calculated
assuming σ2

s = 1 whereas the true variance is given along the x-axis,
resulting in degraded performance.
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Figure 3.9: Comparing the performance of the Archimedes’ spiral with
the PCCOVQ with different codebook size, given a Gaussian source and
an AWGN channel. The PCCOVQ is not optimal for higher CSNR where
the codebooks start to become irregular (lower right plot in Figure 3.2),
whereas the PCCOVQ outperforms the spiral mapping below 35 dB where
the model no longer is accurate.
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3.2.2 Laplacian Source, AWGN Channel

Another common distribution in source coding is the Laplace distribution
[Weisstein]. Both the signal to be residually coded in speech and audio,
and the high-frequency coefficients which are coded in transform coding
of images are well modeled by this distribution [Robinson, 1994; Lam and
Goodman, 2000; Taubman and Marcellin, 2002], thus it would be of inter-
est to find a good mapping for this source distribution. Obviously, as the
Laplacian is “peakier” around the center and the tails are longer compared
to the Gaussian, a different geometry than the Archimedes’ spiral in Sec-
tion 3.2.1 is necessary. Again, not knowing how to determine the optimal
shape given the source and channel statistics, looking at the codebook of the
PCCOVQ optimized for a Laplacian distributed source and AWGN channel
might provide some clues. Figure 3.11 shows the PCCOVQ optimized for
25 dB CSNR, and the resulting codebook is more diamond shaped, similar
to the Laplace distribution seen in Figure 3.10. Another option is to warp
the Laplace distributed source into a more Gaussian distributed source, then
apply the results in Section 3.2.1 with the proper parameters, and unwarp
after decoding. These two approaches will be explored and compared in the

Figure 3.10: Two-dimensional i.i.d. Laplacian source.
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Figure 3.11: The PCCOVQ codebook trained for a Laplacian dis-
tributed source and AWGN channel using the algorithm proposed in [Fuld-
seth, 1997].

following sections.

Deforming the spiral mapping

Looking at the shape of the codebook in Figure 3.11 does not bring any
immediate association with known space-filling curves. However, since the
codebook’s shape is similar to the Archimedes’ spiral in the sense that it
is doubly intertwined, unwinding from the center and out, one possibility
is to try to deform the Archimedes’ spiral to better match the PCCOVQ
codebook. This was suggested in [Floor, 2003] for a 4:1 bandwidth reducing
system consisting of two cascaded 2:1 mappings where the input to the inner
mapping is Laplacian distributed.

Here, we use the same deformation approach to evaluate the performance
of a 2:1 mapping for transmitting a Laplacian distributed source over an
AWGN channel. The deformation can be done by representing the para-
metric representation of the spiral in its Fourier series expansion. Then, by
changing the parameters, the shape of the spiral will change. With some
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trial and error, it is possible to find a somewhat resembling shape, but as
there are three parameters determining the shape, it is very difficult to try
to optimize the parameters, given the source and channel distribution. In
parametric form, the two spiral arms are given as [Floor, 2003]

u1 =
∆
π
θ1/k

[
cos
(
θ − 3π

16

)
+m sin (3θ)

]
~i

+ θ1/k

[
sin
(
θ − 3π

16

)
+m cos (3θ)

]
~j. (3.24)

u2 =
∆
π
θ1/k

[
cos
(
θ − 3π

16
− π

)
+m sin (3θ − π)

]
~i

+ θ1/k

[
sin
(
θ − 3π

16
− π

)
+m cos (3θ − π)

]
~j, (3.25)

where m ∈ [0, 0.3) determines the deformity (shape) of the spiral; m = 0
being no deformity, giving a circular mapping (Figure 3.12d) and m = 0.3
being most deformed, giving a diamond shaped mapping (Figure 3.12a).
The parameter k determines how the spiral arms unwind; k = 1 provides a
uniform distance between the spiral arms, k > 1 decreases the spiral arm
distance as the spiral winds outwards (Figure 3.12d), and k < 1 increases
the distance, making it less dense as it winds outwards (Figure 3.12a-c).
Whereas Figure 3.12a most resembles the Laplace distribution in Figure 3.10
and Figure 3.12b most resembles the PCCOVQ codebook in Figure 3.11,
what provides the best result is in fact the geometry in Figure 3.12c. In
this case, using the PCCOVQ codebook was not successful, and a geometry
which is more circular works the best. What seems more important is to
have the spiral arm distance grow as radius (or angle) increases. This is
intuitive, as the Laplacian is a more peaky distribution than the Gaussian.

In any case, hoping to optimize the geometry for the Laplacian case may
seem futile as the three parameters ∆, k, and m are strongly coupled and
the distortion statistics change considerably when adjusting the parameters.
This makes it very difficult to find an analytic expression for the distortion,
and for now we have to rely on the iterative approach where the range of
one parameter is swept while keeping the others fixed, and do this for each
parameter in turn.

Warping the input distribution to fit the Gaussian spiral

Instead of trying to create a mapping with a geometry matching the Lapla-
cian source distribution, we might try to warp the source in such a way that
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Figure 3.12: Shows the effect of the parameters in (3.24). a) ∆ = 0.2,
k = 0.8, m = 0.25, b) ∆ = 0.15, k = 0.8, m = 0.1, c) ∆ = 0.1, k = 0.68,
m = 0.03, d) ∆ = 0.1, k = 1.5, m = 0.

the distribution becomes more Gaussian-like. That would enable us to use
the Archimedes’ spiral and the optimization results from Section 3.2.1. If
this warping-approach could be applied without too much negative impact
in terms of amplified channel noise, several problems would be avoided:

1. The problem of actually finding the optimal geometry of the mapping
for the Laplacian case. As explained in the previous section, there
are three parameters, more or less inter-dependent, which have to be
determined.

2. By using the Archimedes’ spiral with its regular structure, the encoder
would be simpler.

3. With fewer parameters needed to describe the geometry, there is less
side information to transmit. (Although this is less important.)

The warping can be achieved as a simple transformation of a random variable
S ∈ R. If the input distribution is given as S, the desired warped distribution
is S̃ ∈ R, then we need to determine the monotonic function w which gives
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Figure 3.13: 2:1 Shannon mapping for Laplacian distributed source.
The input is warped from Laplacian to Gaussian by applying the function
w(s).

us S̃ = w(S). This is slightly different from the standard problem of finding
the resulting distribution from a transformation of a random variable, but
the starting point is the same. Defining our sample spaces S and S̃ as
follows,

S = {s : fS(s) > 0} (3.26)
S̃ = {s̃ : s̃ = w(s) for some s ∈ S} , (3.27)

where fS(s) is continuous on S and w−1(s̃) has a continuous derivative on
S̃ then we have [Casella and Berger, 2002, Theorem 2.1.5]

fS̃(s̃) = fS(w−1(s̃))
∣∣∣∣dw−1(s̃)

s̃

∣∣∣∣ , s̃ ∈ S̃. (3.28)

Substituting s̃ = w(s) and w−1(s̃) = s into (3.28) and rearranging, we obtain
the following differential equation:

fS̃ (w(s))
∣∣∣∣dw(s)
ds

∣∣∣∣− fS(s) = 0. (3.29)

Now, we want the S̃ to be Gaussian distributed with zero mean:

fS̃(s̃) =
1√
2πσ

e−
s̃2

2σ , (3.30)

and S to be Laplacian distributed with zero mean:

fS(s) =
1
2λ
e−

|s|
λ . (3.31)

Substituting (3.30) and (3.31) into (3.29) we obtain

1√
2πσ

e−
w2(s)

2σ2

∣∣∣∣dw(s)
ds

∣∣∣∣− 1
2λ
e−

|s|
λ = 0 (3.32)
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Solving this analytically with respect to w(s) is impossible as the Gaussian
does not have an closed-form cumulative density function (cdf), so we have
to utilize some numerical method like the Runge-Kutta method [Edwards
and Penney, 1996]. Since the Laplacian tails are significantly longer than the
Gaussian, we have to make σ2

S̃
smaller than σ2

S to avoid clipping the large
values. The variance of a Laplace distribution is σ2 = 2λ2, so we relate
the variances of the the input σ2

S with the output σ2
S̃

as σ2
S = 8σ2

S̃
. This

was found through trials to produce good results. The numerical solution
to (3.32) is shown in Figure 3.14 as the blue solid line. Since one can obtain a
Laplace distribution by summing two squared Gaussians (Appendix A) and
the the solution in the figure shows square-root behavior, it seems reasonable
to try to perform a curve-fit of a square-root function onto the numerical
solution. The simplest good fit which was found was

w(±s) = ±
√

(±s)1.022 + 0.379∓ 0.616. (3.33)

To check how well this warping function work, we try it on a Laplacian
distributed variable. Figure 3.15 shows the resulting histograms along with
a true Gaussian with the same variance as as the warped variable in b). The
warping function does not produce a true Gaussian, and using the algorithm
described in [Wang et al., 2005] estimates the relative entropy between Fig-
ure 3.15b and Figure 3.15d to be 0.0195 bits. One problem with the warping
function, though, is the tendency to create either peaks or gaps around zero
if the initial distribution is not a true Laplacian. Another more serious prob-
lem is illustrated in Figure 3.15c, where we see that the inverse w−1(s̃+ z)
amplifies noise, whether noise comes from the approximation process or the
channel. If we try to reduce the loss described in Section 2.2.1, by forc-
ing the Laplacian distributed channel symbols in Section 3.2.1 into a more
Gaussian distribution using the warping function w(s), we see no gain, but
rather a drop in performance due to the amplified channel noise. However,
using the warping function to reduce the input distribution mismatch de-
scribed in Section 2.2.6 when the input is Laplacian distributed, the gain
from having a correct input distribution outweighs the noise amplification,
and we see a 1 dB SNR gain compared to just using the Archimedes’ spiral
without modifications.

Simulation

To determine which of the two methods presented in Section 3.2.2 are better
for handling the Laplacian source, all we can do is to run simulations since
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Figure 3.14: The output from the Runge-Kutta solver to the warping
function (3.32), with the according curve-fit solution in (3.33).
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Figure 3.15: Histograms showing the results of the warping function
(3.33). a) Original Laplacian distributed variable (blue) with the desired
Gaussian (green dashed), b) warped variable (blue) with the optimal Gaus-
sian of the same variance (green dashed), c) The de-warped noise distri-
bution (blue) with the original added Gaussian noise (green dashed).
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we have no theoretical model of neither one of them. Whereas the warping
approach benefits from the optimizations in Section 3.2.1 while suffering
from noise amplification in the unwarping. The deformation approach suffers
from the fact that the parameters cannot be optimized at the time of writing,
and they have been determined by fixing two parameters and varying one,
then vary another while keeping two parameters fixed. Then, go back to
the first and do the same iterations again until the result does not improve
any longer. Still, we see from the simulation results in Figure 3.16 that
the deformation approach has 0.2 dB advantage over the warping approach,
since the warping function in (3.33) results in signal dependent channel
noise. Still these two systems are only 1.4 and 1.6 dB away from OPTA
for a Laplacian source and an AWGN channel, despite not being properly
optimized.

Since we used the codebooks from the PCCOVQ to determine the geometry
of the subspace in the approximation function q, we compare the perfor-
mance of the Shannon mapping using the deformed Archimedes’ spiral, with
the results of the PCCOVQ. The codebooks of the PCCOVQ were trained
using 4 · 106 training vectors drawn from an i.i.d. Laplacian source, and
an AWGN channel. Codebook sizes ranging from 8 to 1024 were trained
for each (integer) CSNR value. Again, like in the Gaussian case, this re-
quires a significant amount of storage and in practice codebooks for only
a few number of channel states would be used. This would slightly reduce
the performance for the PCCOVQ. The Shannon mapping using the simple
warping approach needs no storage, and its parameters are determined using
the results from Section 3.2.1. The deformed mapping, however, must be
determined for different CSNR values. However, no storage is needed here
either, since the parameters can be determined using a polynomial curve fit
on the parameter data.

Looking at Figure 3.17, the deformed Archimedes’ spiral performs quite re-
spectably, beating the PCCOVQ for CSNR values above 30 dB. Considering
that fact that our system is not properly optimized, there might be room for
improvements too. Similar to the Gaussian case, the training algorithm of
the PCCOVQ produces codebooks with increasingly irregular structure as
the CSNR increases, indicating that there is room for improvement in the
PCCOVQ’s training algorithm as well.
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Figure 3.16: SNR vs. CSNR for the 2:1 bandwidth reduction mappings
for an i.i.d. Laplacian source and an AWGN channel. The two techniques
described in Section 3.2.2 are compared, showing a slight advantage to the
deformed mapping.
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Figure 3.17: SNR vs. CSNR for the deformed spiral mapping, com-
pared to PCCOVQ optimized for an i.i.d. Laplacian source and an AWGN
channel.
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3.3 Achieving 4:1 Dimension Reduction by Cascading
2:1 Mappings

As the number of dimensions in the mapping increase, it becomes harder
and harder to determine the optimal geometry of the mapping and optimize
the associated parameters. Moreover, unless the geometry shows consider-
able structure or symmetry, the encoder/decoder pairs might become pro-
hibitively complex, just like in case of high-dimensional vector quantization.
Some work has been done on bandwidth compression for M :1 systems with
M � 2 [Floor, 2003; Floor and Ramstad, 2006c], but still no method to
determine the geometry and parameters is known to exist.

In order to circumvent those issues, one could try to reduce the complexity by
decomposing the problem into smaller sub-problems just like tree-structured
VQ, multi-stage VQ, shape-gain VQ etc. [Gersho and Gray, 1992]. For the
bandwidth-reducing Shannon mappings, the most obvious approach is to use
a tree-structure where several mappings are cascaded. First, the M source
samples are combined with a given set of mappings. Then the output of
these mapping are again combined with another (or possibly the same) set
of mappings. This can be iterated further until there is only one sample
from the output, ultimately providing a dimension reduction M :1.

Just like with tree-structured VQ, the performance is expected to be inferior
to the full-search solution (if such exists). However, the reduced complexity
can potentially outweigh a small performance loss.

Since the 2:1 mapping for the Gaussian source and AWGN channel is rela-
tively close to OPTA, it seems reasonable to try to cascade two layers of 2:1
mappings, thereby achieving 4:1 compression, as was tried in [Floor, 2003].
There, the parameters of the two cascaded mappings were determined with
a full search. In order to make this approach more practical, we will try to
determine the parameters in a more automated fashion, using the results
from Section 3.2.

In Section 3.2.1 it was mentioned that the output from the mapping is
Laplacian distributed, meaning that the input to the second layer is Lapla-
cian instead of Gaussian. This implies that the solutions from Section 3.2.2
could be used for the inner mapping. However, already suffering from the
lack of rigorous optimization in the 2:1 case we cannot hope to see optimal
results. At best, this is a feasibility study to see whether the results of the
2:1 case are transferable to the 4:1 case.
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Figure 3.18: The 4:1 dimension reducing mapping for a Gaussian
source and AWGN channel. with intermediate warping to “Gaussianize”
the input to the inner mapping as was done in Section 3.2.2. Alternatively,
one can omit the warping and rather change Ti ◦ qi to match Laplace dis-
tribution as was done in Section 3.2.2.

3.3.1 Outer 2:1 Mapping

The input to the outer mapping is Gaussian distributed, and the regular
Archimedes’ spiral described in Section 3.2.1 can be employed with some
modifications. Looking at Figure 3.18, we see that the noise input on the
outer mapping is the total noise output from the inner mapping. According
to (3.21) this was shown to be ∆2

i /12, where ∆i denotes the spiral arm
distance of the inner mapping. Using (3.19), replacing σ2

n with ∆2
i /12, and

setting P = 1 we find the spiral arm distance of the outer mapping to be

∆o = 2πσs
4

√
6 · 0.162∆2

i /12
1

= 2πσs
4

√
0.162∆2

i

2
. (3.34)

Similar to (3.21), the noise per source sample on the output of the outer
mapping will be ∆2

o/12 which agrees with simulations.

3.3.2 Inner 2:1 Mapping

From Section 3.2.1, we know that the output of the regular Archimedes’
spiral with the curve length approximation is Laplacian distributed. This
means that if we use the approach from Section 3.2.1 in the outer mapping,
the input to the inner mapping will be Laplacian. Thus, some modifications
might be needed for the inner mapping. Either the input distribution can be
warped into something more Gaussian by applying some non-linear function,
or the mapping can be changed to better fit the Laplace distribution. We
now explore these two approaches to see whether one holds an advantage
over the other, as was the case for the 2:1 mapping in Section 3.2.2.
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Deforming the spiral mapping

Instead of warping the input to the inner mapping, it is possible to change
the inner mapping into something more suitable for the Laplace distribu-
tion. This was proposed in [Floor, 2003] and the curve which was used was
the same as in (3.24). Unfortunately, a method to determine the optimal
parameters was not given in the thesis. Rather, the parameters k and m
were determined though trial-and-error, ∆o and ∆i were set to one, and
the optimal channel noise power was then determined though simulation.
However, since we in Section 3.2.2 found that there is a fixed relationship
between ∆i and σ2

n, we can fit a polynomial onto the curve ∆i(σ2
n) under an

mse criterion. Then, simply evaluate the polynomial at any CSNR (in dB)
to determine the correct ∆i. The fourth-order polynomial we used has the
coefficients

p = (6.6564 · 10−7,−6.8211 · 10−5,

2.6931 · 10−3,−4.6654 · 10−2, 3.0003 · 10−1)t, (3.35)

where t denotes transposition, and we find the parameter of the inner spiral
using the polynomial

∆i = p(γdB) · σ2
n. (3.36)

Warping the input distribution to fit the Gaussian spiral

Since the mapping parameter T in the outer mapping in Figure 3.18 to a
great extent determines the resulting input distribution of the inner map-
ping, we can try to change T in such a way that the output becomes more
Gaussian. This is equivalent to applying a warping operation between the
outer and inner mappings, forcing the Laplace distribution into something
more Gaussian. This was shown in Section 3.2.2, and we use the same warp-
ing function given in (3.33). The parameter is determined using (3.19), but
as opposed to the 2:1 case, the resulting noise from the inner mapping is
divided over four channel samples, yielding a distortion per source sample
equal to ∆2

i /24.

3.3.3 Comparing the warping approach to the deformed inner
mapping

Neither of the two approaches to used to deal with the Laplacian distributed
intermediate signal in the 4:1 mapping (Section 3.3.2), are rigorously opti-
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Figure 3.19: SNR vs. CSNR of a 4:1 mapping consisting of a cascade
of two 2:1 mappings for a Gaussian source and an AWGN channel, where
the two approaches described in Section 3.3.2 are compared.

mized. Still, it is interesting to compare their performance in order to have
an indication of whether the more difficult optimization and increased en-
coder complexity of the deformed mapping is worth the effort. For the 2:1
Laplacian case in Section 3.2.2 there was clearly a benefit using the deformed
mapping, despite the fact that its parameters were determined through an
iterative search procedure not covering all parameter combinations (thus a
global optimum is not guaranteed). For the 4:1 case, however, the channel
noise, which is amplified in the warping process, is distributed over four
source samples instead of two. This means that the benefit of the deformed
mapping is less clear. Figure 3.19 shows a comparison of the warping ap-
proach and the deforming approach, and we see that they perform relatively
close except at high CSNR. Compared to the 2:1 Laplacian case in Sec-
tion 3.2.2, the difference is now significantly less.

Figure 3.20 shows that the robustness we saw in the 2:1 case for Gaussian
sources is still intact. The reduced slope of the OPTA curve for the 4:1
leads to a more gracefully degrading performance, but also a less gracefully
improving performance, when comparing to the 2:1 case. To illustrate the
difficulties related to the increased dimensionality, we compare the perfor-
mance of the cascaded-mapping approach to both the PCCOVQ and systems
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Figure 3.20: SNR vs. CSNR for a 4:1 mapping by cascading two 2:1
mappings and intermediate warping of Laplace⇒Gaussian distribution to
fit the inner spiral. The dashed-dotted curves show that robustness is
maintained.
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Figure 3.21: The 4:1 Shannon mapping consisting of two cascaded
2:1 mappings compared to the PCCOVQ. The PCCOVQ clearly outper-
forms the Shannon mappings. The lack of optimization of the deformed
spiral can be seen at lower CSNR values, where even a system using
only Archimedes’ spirals with no warping outperforms the deformation
approach.
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using a different T -operator4. Figure 3.21 shows that the PCCOVQ clearly
outperforms the proposed methods in this section by a large margin. By
changing to a different T -operator, which was found to be better for the
2:1 Gaussian case in [Floor, 2003], performance can be improved for lower
CSNR. In that case, however, the optimization is no longer valid as the
distribution after the mapping process changes depending on the CSNR.
Further improvements are expected if the systems are re-optimized with the
new T -operator given as T (θ) = 0.14θ2 +0.55θ [Floor, 2003]. Even a system
using only regular Archimedes’ spirals and the polynomial T -operator pro-
vides better performance below 40 dB CSNR, so there is clearly room for
improvements. However, compared to the PCCOVQ, the proposed method
shows a 1-1.5 dB loss in performance. Although not shown in the plots here,
the direct 4:1 bandwidth-reducing mapping presented in [Floor and Ram-
stad, 2006c] is 1.4-2 dB in SNR away from OPTA, hence outperforming the
cascaded mapping (at lower CSNR). As indicated in Figure 3.21, more care-
ful choice of T -operator is expected to improve the cascaded mapping even
further, making it competitive with a real 4:1 bandwidth reducing mapping.

4This 2nd degree polynomial curve fit on the spiral arm length (as opposed to the
quadratic term used earlier)
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Chapter 4

Quantization of the
Shannon-Kotel’nikov Mappings

“When solving problems, dig at the roots instead of just hacking
at the leaves.”

- Anthony J. D’Angelo, The College Blue Book

4.1 Introduction

The S-K mappings presented in Chapter 3 show good potential, exhibiting
both high spectral efficiency and robustness against channel variations. This
makes them suitable for wireless communication over time-varying channels,
or channels where the channel state is not exactly known at the transmitter.
In the cases where the receiver is simply decoding the received signal, with-
out the need for further transmission on digital networks or storage chan-
nels, the continuous-amplitude nature of the S-K mappings pose no problem.
However, there are scenarios which require an intermediate digital represen-
tation; for example, heterogeneous networks which contain a mix of wired
and wireless links of possibly different communication technologies. An ex-
ample is cellular mobile communication systems which have wireless links
between the mobile units and the base stations, whereas digital transport
networks connect the different base stations and the rest of the telephony
system. These transport networks are fully digital systems where the S-K
mappings are unsuitable. It should be mentioned that today’s mobile com-
munication systems are fully digital as well, thus introducing S-K mappings
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Figure 4.1: The conceptual communication chain. The wireless channel
accepts continuous-amplitude channel symbols from the JSC encoder, but
the digital nature of the succeeding network requires a transcoding or
digitization of the channel symbols Y prior to further transmission.

into existing systems is not trivial. Another example is storage channels
like hard drives and CD-ROMs, which only store binary numbers. In order
to use S-K mappings in this context, we need to digitize, or transcode, the
mappings to enable a digital representation.

In this chapter, we will thus explore the possibility of using S-K mappings in
heterogeneous communication systems where intermediate bit-representations
are necessary. We want solutions which show as little performance loss as
possible, while keeping the complexity low. The need for joint optimization
of the mapping and the transcoding will also be investigated. Obviously,
having as little coupling as possible between the different parts in the com-
munication chain is desirable since it provides increased flexibility with re-
spect to later changes of system components. This means that a change in
one part of the system does not call for a complete re-optimization of the en-
tire communication chain, and new inventions can easily be integrated into
existing system designs with little effort. Whenever there is a deliberately
introduced coupling between different parts of a communication system,
hopefully to improve system performance compared to the separate layers
of the OSI model [Wikipedia, 2007a], the result is a cross-layer design (CLD)
[Kawadia and Kumar, 2005; Srivastava and Motani, 2005]. The S-K map-
pings is an example of a CLD between the application layer and the physical
layer. If we have to include the digitization of the S-K mappings in the op-
timization process, it becomes more and more difficult to obtain optimal
solutions.

Using some of the proposed schemes in Chapter 3, we demonstrate the possi-
bility of performing simple transcoding at the interface between the wireless
and wired systems. We show that transcoding can be done separately with
little loss if the quantizer rate is close to the channel capacity (of the wireless
channel), whereas joint optimization of mapping and transcoding is needed
if the quantizer rate is lower than the channel capacity.
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4.2 Heterogeneous Communication Systems and the
Need for Digital Representations

The word heterogeneous is of Greek origin and is a compound of heter, mean-
ing different, other, another, unlike, and geno meaning race, kind; line of
descent. The word heterogeneous would in our context be used with the
meaning different kind. Thus, heterogeneous communication systems, or a
heterogeneous network, is a communication system composed of different
kinds of non-similar communication links between the sender and the re-
ceiver. An example is a person with a mobile phone calling a person with
a standard fixed-line phone. The speech signal would then travel over a
heterogeneous network consisting of a wireless link (mobile to base station),
a digital transport network (base station to the fixed-line central) and fi-
nally a circuit-switched wired network (central to fixed-line phone). Along
the way, the signal is represented in different ways; the mobile phone uses
a low-rate linear prediction-based speech codec like EFR [Jarvinen et al.,
1997] with channel codes and interleaving suited for the wireless channel,
the transport network is usually a packet-based IP network just carrying the
speech data in any form, whereas the circuit-switched connection can be for
instance ISDN using A-law companded PCM [Jayant and Noll, 1984] with
a 4 binary, 3 ternary line code (4B3T) [Barry et al., 2004].

The S-K mappings from Section 3 would most likely find themselves as a
replacement for quantizers and channel coding on the wireless link in the
example above. It is reasonable to assume that for wireless channels, the use
of continuous-amplitude channel symbols is not a problem, since we are in
principle free to determine which modulation and coding to use. However,
the situation is different when we want to communicate over digital trans-
port networks. These rely on standardized protocols adhering to the Open
Systems Interconnection (OSI) model with isolated layers, implying that all
data will be treated equally regardless of the origins. Hence, the same repre-
sentation is required for all data. Since services like file transfer and e-mail
are digital and requires error-free transmission, digital representations of
analog sources would be necessary. In other words, in a heterogeneous com-
munication systems consisting of both wireless links and transport networks,
the continuous-amplitude S-K mappings need to be digitized or transcoded
into a representation suitable for the digital transport network.

The conceptual communication chain to be examined in this chapter is
shown in Figure 4.1, where χq is a digital representation of the continuous-
amplitude channel symbol which can be sent over the digital network (as-

85



4. Quantization of the Shannon-Kotel’nikov Mappings

sumed transparent). At the receiver, the digitized output of the S-K map-
ping is decoded.

4.2.1 Alternatives for Digitizing the Mappings

There are two alternatives for creating a digital representation of a continuous-
amplitude S-K mapping: Either we can decode the mappings at the inter-
mediate wireless receiver and re-encode with a standard digital source coder
suitable for the source signal, or we can transcode the mapping directly
into a suitable digital representation and decode the mapping at the ulti-
mate destination. Since the transcoding approach potentially provides lower
complexity and delay, we primarily want to develop methods for efficiently
transcoding the mappings. To measure the efficiency of the transcoding,
we compare its performance both to an ECVQ applied to the received and
decoded Y in Figure 4.1, and to a fully digital system using an ECVQ and
adaptive, coded modulation (ACM).

Decode and Quantize

The most apparent way to obtain a digital representation is to first decode
the S-K mapping and subsequently apply either a scalar or a vector quan-
tizer to obtain a digital representation. When using vector quantizers with
variable cell sizes, it is necessary to design the quantizer codebooks by us-
ing a training data set. The resulting codebooks would have to be stored
at the decoder. Apart from the increased delay and complexity caused by
the decode and re-encode operation, the necessity for storing the codebooks
might be prohibitive if a large number of different rates are required.

Here, we employ a 2-D ECVQ [Chou et al., 1989] to quantize the decoded
symbol. To design the codebooks of the ECVQ, we use a training set of
decoded source samples from the S-K mapping. The reason for using the
ECVQ is that it enables designing the codebooks with arbitrary rates, mak-
ing the comparison to the transcoding approach easier. Although restrict-
ing the dimensionality of the ECVQ to two dimensions, something which
can only come as close as 1.36 dB away from the R-D bound [Lookabaugh
and Gray, 1989], increasing dimensionality further would be unfair to the
transcoding using a scalar quantizer (which equals a 2-D VQ in the com-
pressed state). Of course, the transcoder could also be designed using higher
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dimensional vector quantizers, thereby increasing its performance. However,
we want to keep the complexity low and tractable.

Transcode

The word transcode is used with several different meanings in the literature.
Sometimes it is used to describe the process of going from one compressed
format to another with intermediate decoding to raw data representation
[Wikipedia, 2007b]. That is what we called decode-and-quantize in the pre-
vious section. In this dissertation, transcoding is used when we go directly
from one representation to another, without any intermediate decoding to
native uncompressed format (i.e. conversion is performed in the compressed
domain). An example of this would be to transcode an MPEG video directly
to a lower resolution without decoding into native pixel representation.

Transcoding the S-K mappings to a digital representation would simply be
to take the received channel symbol, digitize it using a suitable quantizer,
entropy code if necessary, then forward the digitized mapping to the receiver.
At the receiver, “inverse” quantization would be done and the mapping de-
coded as usual. This reduces complexity compared to decode-and-quantize
since it avoids inverse-mapping at intermediate nodes. Furthermore, since
at least the bandwidth-reducing mappings are already “compressed” in the
sense that M source symbols are represented by 1 (or N) channel symbols,
simpler quantization schemes are needed to achieve the target SNR after
digitization.

In the following section we will explore the simple option of transcoding by
applying a uniform scalar quantizer directly on the received 1-D channel
symbols from the 2:1 S-K mapping for a Gaussian source and AWGN chan-
nel. The result is compared to the decode-and-quantize approach using a
2-D ECVQ applied to the decoded signal.

4.3 Quantizing the 2:1 Archimedes’ Spiral

As was mentioned in the previous section, using a scalar quantizer on the
1-D channel symbols, the transcoding is equivalent to a 2-D VQ used in the
source space (Figure 4.2).

Figure 4.3 shows the mapping corresponding to the unquantized mapping in
Figure 3.4. The channel space which lies along the spiral arms is quantized
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Figure 4.2: Comparison of a 2-D ECVQ and the quantized Archimedes’
spiral. The blue dots represent the source distribution and the red stars
represents the reconstruction points. The entropy of both system is 5.3
bits, but the quantized spiral has the advantage of an easily extensible
“codebook” to cover outliers.

with an SQ. At the receiver, the inverse operation of the mapping produces
a 2-D VQ, where the representation values are restricted to the subspace
spanned by the approximation operation q() (i.e., the spiral arms). Com-
pared to the unquantized system in Section 3.2.1, the system now has two
parameters; the spiral arm distance ∆ and the quantizer step δQ. Assuming
that both the source and noise distributions are bounded, the quantization
indices are countable and can be assigned to codewords of finite length.
Then any redundancy due to non-uniform probability of the indices could
be removed with entropy coding.

One important question is whether or not the mapping and transcoding
need to be jointly optimized, or if it is possible to use the results from
Section 3.2 for the mapping operation, and then optimize the quantizer
used as a transcoder separately? Moreover, is there a difference between
performing the transcoding at the receiver side or at the transmitter side?
The obvious benefit of a transmitter-side transcoding would be that the
transmitted channel symbols on the wireless channel will be discrete multi-
level symbols (as opposed to the continuous-amplitude representation in
Chapter 3). Although it is out of the scope of this dissertation, it is worth
mentioning that the multi-level symbols would result in simplified symbol
timing recovery due to the (possible) existence of open eye curves. To do
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Figure 4.3: Quantized S-K mapping. The plane constitutes the source
space and the spiral constitutes the channel space. The transcoding op-
eration performs quantization directly on the received channel symbols,
effectively providing a finite, countable set of representation levels along
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ŝ2
T−1χ x y χ̂

Figure 4.4: Block diagram of receiver-side transcoding.

timing recovery for the continuous-amplitude signals, some sort of pilot-
based timing recovery approached must be employed [Yang et al., 2000].

4.3.1 Quantization after reception

Let us now assume that we want to transmit a Gaussian source over an
AWGN channel, where the bandwidth of the channel is half of the source
as in Section 3.2.1. When performing quantization at the receiver side,
we are free to either separately optimize the mapping and then quantize,
or jointly optimize the mapping and the quantization given the transmit
power and quantizer rate constraints. In both cases the distortion terms
from Section 3.2.1 remain as they are, but we get an added distortion term
for the quantization noise.
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The benefits of quantizing at the receiver side, is that the receiver has access
to the unquantized signal. This provides the best possible quality for imme-
diate decoding, and transcoding can be done afterwards in case of storage or
further transmission. The quality of the transcoded signal can be decided at
the time of transcoding. Since both storage channels and transport networks
generally have much higher capacity than wireless channels, spending more
bits on the transcoding part to ensure maximum robustness on the wireless
link could be beneficial.

Separately Optimized Mapping and Quantization

First we optimize the S-K mapping for the wireless channel, regardless of the
bit rate constraint for the subsequent transcoding. The 2:1 S-K mapping is
thus optimized for maximum unquantized performance as in Section 3.2.1,
then transcoded at the receiver. Since the channel symbols x and y (Fig-
ure 4.4) are one-dimensional, we can use a scalar quantizer as the transcoder,
apply entropy coding, and transmit the digitized signal χq over the network.
At the receiver side, the inverse-mapping T−1 is applied to recover ŝ1 and ŝ2.
The distortion from the S-K mapping will be the sum of the approximation
error and channel noise, responsible for ∆2/24, each according to (3.20). If
we use the high-rate assumption for the quantizer, we can approximate the
quantization error as

DQ =
1
2
·
δ2Q
12
, (4.1)

where δ is the quantizer step (measured along the spiral arm) and the factor
half is included since the error will on average be distributed equally over
two source samples. For this approximation to hold, we must assume high
CSNR so that the spiral is sufficiently dense, and that the rate is high so
that δ is comparable to ∆. This ensures that the line segment between two
quantizer levels are approximately straight, thus producing a quantization
error variance close to (4.1).

Since there is no point in operating with a high rate when the distortion
is dominated by the approximation and channel noise, we want to keep
the rate proportional to the channel capacity. We do this by forcing the
distortion due to quantization to be independent of the CSNR. This means
that the performance curve of the quantized system should be parallel to
the unquantized system when we plot SNR as a function of CSNR, and the
quantizer will reduce its rate as the channel gets worse. To achieve this we
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set
Ds

Ds +DQ
= ω, (4.2)

where Ds is the distortion for the unquantized system, DQ is the quantiza-
tion error, and ω is a constant. From (3.21) we have

Ds =
∆2

opt

12
= π2σ2

s

√
2 · a2

3γ
, (4.3)

where a = 0.16 is the constant which makes (3.9) an approximation of the
spiral arm length. Rearranging (4.2) and inserting (4.1) and (4.3), we obtain

δ2

24
=

1− ω

ω
· π2σ2

s

√
2 · a2

3 · γ
. (4.4)

The quantizer step is thus given as

δ =

√
2(1− ω)

ω
· 2πσx

4

√
6 · a2

γ
=

√
2(1− ω)

ω
·∆opt = Ω∆opt, (4.5)

where we recognize the the ∆opt from (3.19). Hence, the quantization step
is proportional to the spiral arm distance, and as the CSNR decreases, the
∆opt increases, and thus δ also increases. Now we need to find the Ω in (4.5)
in order to determine the resulting rate. Since we know that the channel
symbols χq are Laplacian distributed (Appendix A), with the variance given
in (3.16), we can use [Jayant and Noll, 1984, eq. 4.108]

HQ(χq) = h(χ̂)− log2(δ), (4.6)

to determine the quantization step. The differential entropy should be calcu-
lated over the pdf resulting from the sum of the Laplacian channel symbols
and the Gaussian noise (convolution of the pdf’s), i.e. fχ̂(χ̂). Assuming
we have high CSNR, we can replace χ̂ with χ in the differential entropy
term of (4.6), since the sum of a Laplacian and a Gaussian where σ2

L � σ2
G

is approximately Laplacian with variance equal to σ2
L

1. Solving for δ we
obtain

δ = 20.5 log2(2e2σ2
χ)−HQ(χq), (4.7)

1This assumption is obviously not accurate for low CSNR, but as we use a Wiener
filter at the receiver in the simulations, the σ2

χ and σ2
χ̂ are close, and thus (4.6) produces

the correct rate.
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where we set the quantizer rate HQ(χq) = C − Roffset , and Roffset is a rate
“offset” in bits which determines the quantizer rate given the the channel
capacity C for an AWGN channel:

C =
1
2

log2(1 + γ), (4.8)

where γ denotes the CSNR. Inserting (3.16), (3.19) and (4.8) into (4.7), we
obtain

δ = 2
0.5 log2

(
2e22(2η π2

∆2
opt

σ2
s)2

)
2−1/2 log2(1+γ)2Roffset

=

√
2e2aπ2σ2

s

√
γ/6 · 2Roffset

√
1 + γ

a)
≈ 2Roffset e

4
√

144
· 2πσx

4

√
6 · a2

γ︸ ︷︷ ︸
∆opt

≈ 0.7847 · 2Roffset ∆opt, (4.9)

where we in a) have used the approximation γ
(1+γ)2

≈ 1
γ , valid for 1� γ.

This is done to be able to identify ∆opt for the unquantized case (3.19).

Having determined Ω in (4.5), using (4.9) enables us to easily set the quan-
tizer step to obtain a rate of HQ = C −Roffset bits while having a constant
loss independent of the CSNR. The theoretical total distortion for this ap-
proach is

Dtot =
∆2

opt

12
+
δ2

24
. (4.10)

Looking at Figure 4.5, we see that the transcoder is around 1.75 dB away
from the unquantized system, and performing on par with the 2-D ECVQ
which has higher complexity. However, as the rate is reduced below the
channel capacity, the transcoder loses significantly to the ECVQ. In this
case, optimizing the mapping and the transcoding jointly should improve
the transcoding performance at the expense of reduced unquantized perfor-
mance.

Jointly Optimized Mapping and Quantization

The results in Figure 4.5 show that if we require a bit rate which is sig-
nificantly lower than the channel capacity, the SNR of the quantized spiral
drops rapidly. The reason for this is the resulting mismatch between ∆ and
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Figure 4.5: SNR vs. CSNR for the 2:1 Archimedes’ spiral quantized
with a uniform SQ. Gaussian source, AWGN channel. No joint opti-
mization of mapping and transcoding. The quantizer rate is H(χq) =
C − Roffset. The decode-and-quantize approach clearly outperforms the
transcoding for rates lower than the channel capacity.

δ. As the rate is reduced, leading to δ � ∆, the quantization levels in
Figure 4.3 are spread out in a suboptimal manner, calling for a joint opti-
mization of the two parameters. This co-optimization means that we will
trade off some performance in the unquantized system for better quantized
performance.

First we look at the case where we quantize after reception. We need to
determine the optimal parameters ∆ and δ (Figure 4.3), given a power
constraint P on the channel and a rate constraint HQ on the quantizer.
Similar to the previous section, the channel symbols x and y (Figure 4.4)
are one-dimensional. Hence, we can use a scalar quantizer as the transcoder,
apply entropy coding, and transmit the digitized signal χq over the network.
At the receiver side, the inverse-mapping T−1 is applied to produce the
estimates ŝ1 and ŝ2.

Assuming that we operate in the high CSNR region and have high rate
on the quantizer, the spiral will be dense and the error terms from the
approximation onto the spiral and the quantization of the spiral are thus
more or less orthogonal. Since the approximation onto the spiral can be
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seen as a scalar quantizer in the radial direction (Figure 4.3), we use the
common high-rate approximation of the scalar quantization error variance
(∆2/12) for the mapping approximation. Furthermore the high-rate uniform
quantizer produces quantization noise which is uncorrelated with the input
signal, so we use the common δ2/12 approximation here too. The distortion
from the channel noise is simply this noise scaled with the constant β at the
receiver. We end up with the following expression for the total distortion:

Dpost
tot = Da +DQ +Dc =

1
2

(
∆2

12
+
δ2

12
+ βσ2

n

)
, (4.11)

where the three terms represent respectively the distortion from approx-
imation, quantization, and channel noise. We divide by two to get the
per-component distortion. We set β = 1/α =

√
σ2

χ/P in the calculations
for simplicity2.

The quantizer rate is given as

HQ
a)
= h(χq)− log2 δ =

1
2

log2(2e
2σ2

χ)− log2 δ = log2

(
4aeπ2σ2

s

∆δ

)
, (4.12)

where a) comes from [Jayant and Noll, 1984, eq. 4.108] and h(χ̂) is the
differential entropy for a Laplacian source (assuming high CSNR so that χ̂
is still Laplacian), and σ2

χ is given by (3.16). As in Section 4.3.1 we set the
quantizer rate equal to HQ(χq) = C−Roffset . The channel capacity is given
as C = 1/2 log2(1 + γ) and Roffset is a “rate offset” in bits. We solve (4.12)
for δ and insert along with (3.16) into (4.11) to obtain

Dpost
tot =

∆2

24
+

(2eaπ2σ2
s2

Roffset−C)2

3∆2
+

(2aπ2σ2
s)

2

∆2γ
, (4.13)

where we have defined γ = P/σ2
n as the CSNR. We minimize (4.13) with

respect to ∆ to find the optimal spiral arm distance:

∆opt,joint = 2πσs
4

√
(ae2Roffset )2

1 + γ
+

6a2

γ
. (4.14)

To find the quantizer step, we subsequently use (4.12) while settingHQ(χq) =
C −Roffset = 0.5 log2(1 + γ)−Roffset , and solve for δ:

δopt,joint =
1

∆opt,joint
4π2σ2

s

√
(ae2Roffset )2

1 + γ
. (4.15)
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Figure 4.6: Comparison of separately and jointly optimized receiver-
side transcoding of the 2:1 S-K mapping for a Gaussian source and an
AWGN channel. Jointly optimized mapping and transcoding outperforms
both the separately optimized transcoding and the decode-and-quantize
approach.
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Figure 4.7: Comparison of the unquantized performance (decoded χ̂ in
Figure 4.4) of a separately and jointly optimized mapping and transcod-
ing. The joint optimization sacrifices the unquantized performance for
increased transcoding performance as Roffset increases (i.e. the quantizer
rate decreases).
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Figure 4.8: Block diagram for transmitter-side transcoding.

In Figure 4.6, we see that the joint optimization has benefits for the transcoded
part. For a rate equal to the channel capacity, the joint optimization is only
1.4 dB (in SNR) away from the unquantized system from Section 3.2.1, and
dropping 2.5 dB per bit removed from the quantizer. In comparison, the
separately optimized transcoding is 1.75 dB away, and dropping faster as the
quantizer rate is reduced. On the other hand, the unquantized performance
(i.e. the decoded χ̂ in Figure 4.4) is reduced when jointly optimizing the
mapping and transcoding. This is illustrated in Figure 4.7, where a 3.3 dB
drop in SNR is seen for Roffset = 2 bits.

4.3.2 Quantization prior to transmission

Instead of quantizing at the receiver side, it is also possible to quantize
the channel symbols prior to transmission. This effectively creates multi-
level channel symbols which could have certain benefits over continuous-
amplitude signals when given a quantizer rate for the transcoding. The
detector (quantizer) at the receiver can potentially reject some of the channel
noise. For lower quantizer rates, a Wiener filter should be added at the
receiver to suppress some quantization noise [Øien and Ramstad, 2001; Kim
and Ramstad, 2002].

Jointly Optimized Mapping and Quantization

For the transmitter-side transcoding, the quantizer rate has to be known to
the transmitter. Hence, only jointly optimized mapping and quantization
makes sense unless joint optimization becomes prohibitively complex. Quan-
tizing the channel symbols and transmitting them with no error protection
might seem strange, but since they are transmitted using direct PAM there

2The simplified receiver is acceptable for high CSNR. For low CSNR values, an MMSE
receiver of the form β =

√
σ2

χP/(P + σ2
n) should be used.
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is no bit representation with bits of different significance. This approach is
robust in the sense that small-valued channel noise will only produce low
distortion levels, i.e. transition to neighboring quantization intervals. Here,
only the tails of the Gaussian noise distributions will give high distortion
contributions, provided the noise standard deviation is comparable to the
quantization interval. In comparison, with bit representations even small
channel noise values can flip the most significant bit causing large jumps in
the reconstructed source symbols.

Figure 4.4 shows the system we now use, where a quantizer is introduced
right after the mapping operation. At the receiver, there is a similar quan-
tizer which acts as the detector. We try to determine an expression for the
total distortion, in order to optimize the system parameters. Both the ap-
proximation and quantization noise will be as in Section 4.3.1, but the chan-
nel noise will have a slightly different effect due to the discrete multi-level
representation. Instead of approximating the channel noise as the scaled
channel noise variance in (3.14), we use

Dc =
1
2
E
[
‖x− χq‖2

]
=

1
2

L∑
j=1

L∑
i=1

‖ci − cj‖2p(j|i)Pr [i], (4.16)

which is the squared distortion caused by transition to neighboring levels,
multiplied with the probability of a transition p(j|i), multiplied by the prob-
ability Pr [i] for being in a specific interval, summed over all L intervals and
all transitions. Having Gaussian noise and high CSNR, we assume that only
transitions to neighboring intervals will occur, i.e. j = ±i+ 1. Simulations
show that for parameter values close to the optimal ∆ and δ, the probabil-
ity of multiple transitions due to channel noise is small. However, including
the transitions to all quantization levels is also possible if so desired. As
the channel symbols are discrete values, we can use the common transition
probability [Barry et al., 2004], which is basically the area under the tail of
the noise pdf:

p(j|i) = 2Q

(
dmin

2

σn

)
= 2Q


√

P
σ2

χ

δ
2

σn

 = 2Q

(√
P

σ2
n

δ

2σχ

)
, (4.17)

where dmin is minimum distance of the channel symbols, δ is the quantizer
step and Q is the complementary distribution function for a Gaussian stan-
dard random variable. Even though the spiral is curved and thus the true
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Quantized spiral
in the source space

Quantization
level

Figure 4.9: An illustration of the distortion terms from quantization
and incorrect decoding. Quantization brings the source point (×) to the
closest quantization level (shown by solid arrow). Channel noise can force
a transition to either one of the neighboring quantization levels (shown
by dashed arrows). The resulting distortion (shown by dotted arrows)
depends of the direction of the transition.

distortion in the source space is the chord between two quantization levels
(Figure 4.3), we approximate the distortion using the squared quantization
step:

‖ci − cj‖2 ≈ δ2. (4.18)

This is valid when assuming transitions to only neighboring intervals3 and
having a dense spiral (high CSNR), effectively making the line between each
quantizer level approximately a straight line. Since the quantization noise
should be subtracted rather than added for the cases where quantization and
transitions take the signal point in opposite directions (Figure 4.9), we need
to introduce a correction term to account for this. This is done by subtract-
ing δ2/12 for half the transitions in (4.17), assuming a symmetric channel
noise distribution. Inserting (4.17) and (4.18) along with the correction term
into (4.16), we obtain

Dc =
1
2

L∑
i=1

(
δ2 − δ2

24

)
2Q

(√
P

σ2
n

δ

2σχ

)
Pr [i]

=
23
24
δ2Q

(
√
γ
δ

2σχ

)
. (4.19)

Assuming the same approximation distortion as in (3.15) and the quantiza-
tion noise variance as in (4.1), and inserting (3.16) into (4.19) we obtain

Dpre
tot =

∆2

24
+
δ2

24
+

23
24
δ2Q

(
√
γ

∆δ
4a
√

2π2σ2
s

)
. (4.20)

3This is a common assumption when approximating the BER in digital systems
[Proakis, 2001].
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This should be minimized with respect to both ∆ and δ, subject to the rate
constraint

H(χq) = C −Roffset
a)
= h(χ)− log2 δ

= 0.5 log2(2e
2σ2

χ)− log2 δ = log2

(
4aeπ2σ2

s

∆δ

)
, (4.21)

where a) comes from [Jayant and Noll, 1984, eq.4.108] and h(χ) is the differ-
ential entropy for a Laplacian source (the channel symbols from the spiral is
Laplacian, see Appendix A). Solving this problem analytically is hard, if not
impossible, because of the Q-function. Instead, this is solved numerically
using a constrained non-linear optimization method (sequential quadratic
programming). The result can be seen in Figure 4.10. The first observation
we make is in the upper left hand plot, where we see that the optimized ∆pre

opt

is proportional to (3.19), with the proportionality factor depending on the
bit rate H(χq). The proportionality factor can be seen in the upper right
plot, and this is independent of the CSNR. In the two lowermost plots we
see that the spiral arm distance ∆pre

opt and quantization step δpre
opt are equal

for rates below the channel capacity, hence the approximation and quan-
tization distortion are equal. As the rate goes above the channel capacity
(Roffset < 0), the ∆pre

opt is increased and δ decreased. The model in (4.20) is
not valid for rates above the channel capacity, however, and should include
transitions to all levels. In that case, increasing the rate would mean that
the system would tend toward the unquantized model. For rates below C,
we can simply use the expression for ∆opt in (3.19) together with the upper
right plot in Figure 4.10 to determine ∆pre

opt .

Looking at Figure 4.11 we see that the models in (4.10) and (4.20) agree quite
well with the simulations for the high CSNR region, whereas for the receiver-
side quantization there is up to a 0.45 dB discrepancy for lower CSNR. This
is similar to what is seen in the unquantized system in Figure 3.5 where the
model under-estimates the distortion.

The performance of the transmitter-side transcoding is shown in Figure 4.12.
Two different quantizer rates are used; the channel capacity (of the wireless
channel), and two bits below the channel capacity. We see that for quantizer
rates equal to the channel capacity, the gains over the receiver-side transcod-
ing in Section 4.3.1 is vanishing. Moreover, access to an unquantized version
of the received channel symbol is also lost. However, as the quantizer rate
decreases, the quantizer step increases. Then the transmitter-side transcod-
ing is able to suppress more of the channel noise, and thereby outperforms
the receiver-side approach.
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Figure 4.13: Comparison of the transmitter-side transcoding with a
2-D ECVQ with three different codes for an AWGN channel: a capacity
achieving code, an LDPC code which is 3.5 dB from the Shannon bound at
a target BER of 10−5, and an ACM system designed for a Rayleigh-fading
channel which is 4 dB away from the Shannon bound at a target BER of
10−3.
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4. Quantization of the Shannon-Kotel’nikov Mappings

In Figure 4.13, we compare the results from the transmitter-side transcoding
approach to a 2-D ECVQ operating at different rates. First, the green
line with x-markers show the performance for a capacity achieving code.
Second, the green line with the diamond marker shows the performance
of an LDPC-based system designed for AWGN channels [Eleftheriou and
Olcer, 2002]. For a target BER of 10−5, the distance to the Shannon bound
is only 3.5 dB. This translates into a capacity loss of 0.58 bits/symbol.
Finally, a system designed for slow Rayleigh-fading channels using LDPC
codes [Myhre et al., 2002] are about 4 dB away from the Shannon bound for a
target BER of 10−3. This translates to a capacity loss of 0.664 bits/symbol.
We see that the proposed system outperforms both real-world examples,
whereas the unquantized system beats the capacity-achieving code at high
CSNR. Instead of using the ECVQ, employing a better source coder like
the entropy-constrained trellis-coded quantization [Fischer and Wang, 1992]
would lift the curves another 0.7 dB provided that such a high rate could
be produced. This would mean that the proposed system would now be
performing on par with the system in [Eleftheriou and Olcer, 2002], but still
outperform the system in [Myhre et al., 2002]. Compared to the complexity
of the reference systems, the performance of the relatively simple proposed
transcoder approach is quite remarkable.

4.4 Shannon Mappings in Multi-hop Scenarios

One of the current trends in the wireless communication research is the
increasing interest in multi-hop networks with mesh topologies. This decen-
tralized structure, where each node acts as both as a sender/receiver and
as a relay for other nodes in the system, is applicable in many different sce-
narios; sensor networks [Tubaishat and Madria, 2003; Chong and Kumar,
2003], 4th generation mobile systems and broadband access networks [Ghosh
et al., 2005], and deep-space communication.

We define multi-hop networks to encompass all wireless communication sys-
tems where there are one or more intermediate nodes between the sender and
receiver. Since we only want to discuss the applicability of the S-K mappings
in a multi-hop scenario, we make several simplifications which enable a quick
evaluation of the possibilities for multi-hop communication. Hopefully, the
simplified model is still able to represent a realistic scenario. In essence, we
disregard interference, outages and routing problems, and assume a route is
established from the sender to the receiver. Furthermore, we only look at
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Figure 4.14: The simple serial multi-hop channel model with K hops.

a simple chain of nodes which are connected to their immediate neighbors
only (Figure 4.14). Hence, no multi-hop diversity is exploited [Boyer et al.,
2004].

It is worth noting that a real multi-hop network would most likely have a
mesh structure, thus enabling us to exploit path diversity through for in-
stance multiple description (MD) coding [Goyal, 2001]. In that case, the
scalar quantizers in the transcoders could be replaced by MD scalar quan-
tizers to provide robustness against lost transmissions. However, since the
point here is to evaluate the possibilities of using the S-K mappings in a
multi-hop scenario, we assume the structure in Figure 4.14, where each hop
is an AWGN channel, and use the results for the 2:1 bandwidth reduction
of a Gaussian source from Section 3.2.1 and 4.3.

In digital communications, there are two main strategies for multi-hop or
relay networks. The simplest approach is to amplify the received signal,
and forward it to the next relay. This provides low delay since there is no
processing at intermediate nodes, but channel noise is accumulated for each
link. The second approach is to decode the received signal, re-encode for
the next channel and forward to the next node. This increases the delay
and complexity due to the processing at each node, but channel noise is not
propagated if decoding is error free at each node.

4.4.1 Amplify-and-forward

If we want to use a continuous-amplitude S-K mapping for communicating
over the multi-hop network, the only thing we can do at each node is to
amplify the signal and forward to the next node. Hence, channel noise would
be accumulated for each hop, degrading the performance as the number of
hops increases. This fact also suggest that the mapping should be optimized
for the total CSNR of all the hops, as opposed to coding for the worst link.
In [Boyer et al., 2004] it was shown that a serial network, the total CSNR
was calculated as the resulting resistance of a parallel network of resistors,
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4. Quantization of the Shannon-Kotel’nikov Mappings

i.e. γ =
∑K

i=1

(
γ−1

i

)−1. Whether it is realistic to have the knowledge of
all the CSNR values is another question. However, given that the mapping
shows reasonable amount of robustness, one could for instance code for the
expected value of the CSNR. With the noise aggregation in mind, the
performance of this scheme is assumed to be poor for anything but a few
hops.

4.4.2 Decode-and-forward

For bandwidth-expanding systems the decode-and-forward strategy could
be utilized with benefit if some of the channels are multi-level, as for the
HSQLC mentioned in Section 2.4.2. Performing a full decoding and re-
encoding for the next hop would not be beneficial for bandwidth-reducing
mappings, since approximation noise would be introduced at every step.
Instead we can use the transcoding results from Section 4.3.2 and optimize
the quantizer step to minimize the end-to-end distortion. Then a multi-level
channel symbol is transmitted, and the same quantizer is applied at each
node. If we know the CSNR for each hop, we can optimize the quantizer
step for the worst link to suppress the small noise while minimizing the effect
of incorrectly decoded symbols. Since the decode step here only consist of a
quantizer, the complexity increase over the amplify-and-forward scheme is
minimal. Strictly speaking, the technique we use here does not decode the
mapping, but rather transcode (quantize) the channel symbols at each node
using the same quantizer. In that sense it could be called quantize-and-
forward, but that term is used in [Khojastepour et al., 2004] to describe a
compress-and-forward scheme, so we will refer to it as decode-and-quantize
here.

4.4.3 The 2:1 Mapping in an K-hop Scenario

To assess the potential usability of the S-K mappings in an K-hop sce-
nario, we construct a simple scenario where all the hops have the same
CSNR. Then we compare the amplify-and-forward with the decode-and-
forward approach. Furthermore, we compare the resulting performance with
the single-hop solution to see how much the number of hops degrades the
performance. Since we already have an optimized system for the 2:1 S-K
mapping for a Gaussian source and an AWGN channel, we use that system
even though a bandwidth expanding system would be more realistic in a
multi-hop scenario.
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For the amplify-and-forward approach, we use (3.19) to find the spiral arm
distance ∆, where σ2

n is the variance of the total accumulated channel noise
for all hops.

For the system using transmitter-side transcoding, we could either determine
the optimal quantizer step from the hop with the lowest CSNR using the
results in Section 4.3.2, or we can try to derive a new expression for the
distortion given all the channels:

DMH =
∆2

24
+
δ2

24
+

K∑
k=1

L∑
i=1

L∑
j=1

d(i, j)Q
(
|i− j|dmin

2σn,k

)
Pr [i], (4.22)

where N is the number of jumps, K is the number of hops, L is the number
of quantizer levels, d(i, j) is the distortion metric for receiving j when i was
sent, and dmin =

√
P/σ2

χδ is the minimum distance between the PAM lev-
els. The distortion from approximation and quantization is similar to (4.20).
The distortion due to channel noise should ideally be modified to include
transitions to all quantizer levels. This, however, complicates matters as
the distortion is no longer a straight line between neighboring quantizer lev-
els, but rather the cord between two quantizer levels (Figure 4.3). Instead
of including all the quantizer levels, we rely on the observation from Sec-
tion 4.3.2 that where there were few transitions longer than to the neighbor
intervals. Although this is no longer true for an increasing number of hops
with a quantizer rate equal to the channel capacity, reducing the quantizer
rate can make it a reasonable approximation still. This is by no means
claimed to be optimal, but serves as a first step toward establishing whether
a multi-hop solution for the S-K mappings is feasible.

Along with the simplifications mentioned at start of Section 4.4, we assume
equal σ2

n on all channels and a fixed transmit power P at each node. This
should be a worst-case scenario4, since as we optimize for the worst link, any
links with better CSNR would not result in increased distortion. The simple
transcoding based on a scalar quantizer applied to the 1-D channel symbol
is expected to be applicable to other M :1 dimension-reducing mappings as
well.

4Worst-case scenario in the case of known CSI at the transmitter. Of course, for
incorrect CSI, the result can be much worse.
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Simulation

Using the results from Section 4.3.2, and assuming a quantizer rate equal to
the channel capacity (of one hop), we see in Figure 4.15 that the transmitter-
side transcoding is able to suppress channel noise effectively, thus enabling
multihop communication. The performance is the same whether we have
one or ten hops, and the assumption of transitions only to neighbor symbols
is valid as long as the rate is below the channel capacity. The amplify-and-
forward approach is seen to deteriorate as the number of hops increases.
The difference between the decode-and-forward and the amplify-and-forward
schemes is illustrated in Figure 4.16. We see that unquantized transmission
is only beneficial for point-to-point (single link) communication. As soon as
there are relays, decode-and-forward shows better performance.

This result shows that, contrary to immediate intuition, the S-K mappings
can potentially be employed in multihop scenarios, provided that we aban-
don the continuous-amplitude constraint and rather use multi-level channel
symbols. In a more elaborate mesh network, path diversity should be pos-
sible to implement using multiple description quantizers.
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Figure 4.15: SNR vs. per hop CSNR for a multihop scenario, Gaussian
source and AWGN channels. The unquantized mapping uses the results
from Section 3.2.1 where the ∆ is optimized for the total CSNR (P/[K ·
σ2

n]). The quantized mapping uses the results from Section 4.3.2 where
∆ and δ are optimized with respect to one link, and the quantizer rate is
constrained to the per-hop channel capacity.

Figure 4.16: An alternative representation of Figure 4.15. Illustrates
the difference in SNR between the decode-and-forward and amplify-and-
forward schemes. The former (i.e. transmitter-side transcoding) has an
increasing benefits as the number of hops increases.
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Chapter 5

Conclusions

In this dissertation, we have investigated a lesser explored area of lossy joint
source-channel coding suitable for waveform channels; that of direct source-
channel mappings. The basic idea is to transmit a source over a channel
by projecting a point in the source space directly onto the channel space,
using a suitable map or function. We have termed this concept Shannon-
Kotel’nikov mappings to honor their originators [Kotel’nikov, 1959; Shannon,
1949]. Both the source and channel spaces are assumed to be time-discrete
(i.e. sampled) and amplitude-continuous (i.e. not quantized), and the band-
widths may be different. This implies that we can achieve compression when
the source space (dimension M) is larger than the channel space (dimen-
sion N), and error-control (a form of error-protection) when the channel
bandwidth is larger than the source bandwidth. When designed properly,
S-K mappings provide high spectral efficiency, robustness against varying
channel conditions, and low delay. High spectral efficiency is important in
wireless communication since the available bandwidth is scarce. Robustness
is also important in wireless systems, as the channel conditions are usu-
ally time varying, and obtaining good predictions of the channel state is
hard. Thus, robustness means that we would have a system which does not
break down even if the actual channel condition is different from what was
assumed by the transmitter. Low delay is important in real-time communi-
cation systems where there is a strict requirement on the end-to-end delay
in the communication chain.

In Chapter 2, causes of sub-optimal performance in source-channel coding
systems were discussed. Although the chapter was focused on direct source-
channel mappings, the results are applicable to traditional bit-based source-
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channel coding systems as well. The loss factors which were identified were

1. Mismatched channel symbol distribution

2. Information rate lower than the operational channel capacity

3. Correlated channel representations

4. Mismatched source model distribution

5. Source coder imperfections

6. Sub-optimal receiver structures

7. Incorrectly decoded channel symbols (threshold effect)

Obviously, both bandwidth reducing and bandwidth expansion systems sys-
tems can suffer from sub-optimal receivers (6.), and improving the receiver is
usually a matter of complexity (which might, however, become prohibitively
high). For bandwidth expanding systems, trying to increase the information
rate (2.) results in an increasing probability of incorrectly decoded channel
symbols (7.), i.e. the same threshold effect which quickly degrades the per-
formance of traditional channel codes. Bandwidth reducing systems, on the
other hand, can be designed with zero probability of the threshold effect, and
thus the information rate can increased towards (or even above) the channel
capacity. As for the other loss factors, that is 1., 3., 4. and 5., their impact
on the system’s performance will depend on bandwidth relation M :N . For
N > 1, it is important to minimize the channel correlation to maximize
the channel utilization, so is having correct channel symbol marginals. For
M > 1, on the other hand, reducing the source coder imperfections (5.) and
having the right source model (4.) is important in order to improve the
performance.

Chapter 3 introduced the concept of S-K mappings, and presented some
specific examples of bandwidth reducing mappings; 2:1 for Gaussian and
Laplacian sources, and 4:1 mapping for Gaussian sources. The 2:1 mappings
were shown to be competitive with a power-constrained channel-optimized
vector quantizer, with the benefit of simple encoding/decoding and no need
for training. The 4:1 mapping is made up of cascade of two 2:1 mappings.
This greatly simplifies the optimization compared to a full 4:1 mapping,
but the performance is 1 dB worse than the PCCOVQ, indicating that the
geometry is suboptimal.
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Contributions of This Thesis

Chapter 4 looked at the issues regarding adapting the continuous-amplitude
S-K mappings to heterogeneous networks which include pure digital links.
This chapter shows that a slight modification of the continuous-amplitude
mappings enables transport of the S-K mappings over digital transport net-
works, and use in multihop scenarios. The 2:1 mapping for Gaussian sources
is used as an example, and it is shown that a simple transcoding approach
works well to digitize the mapping. Joint optimization of mapping and
transcoding is necessary when the rate of the transcoded mapping is lower
than the channel capacity of the wireless link. However, it makes more sense
to lower the transmit power and quantize at a rate equal to the channel ca-
pacity, as opposed to using more transmit power and quantizing at rate lower
than the channel capacity. Instead of reducing the rate to two bits below
the channel capacity, one can lower the CSNR by 8.5 dB and quantize with
a rate equal to the channel capacity. Then, one can optimize the mapping
and transcoding separately with very little loss, providing a simpler system
design.

When attempting to do multihop communication, the situation is differ-
ent. The continuous-amplitude mappings will accumulate channel noise
from each hop and thus the performance will degrade as the number of
hops increases. To avoid this, one can transcode (quantize) before transmis-
sion and send discrete multi-level symbols instead. When the parameters
are optimized for the channel conditions, most transitions happen to imme-
diately neighboring levels. This results in negligible distortion, even for as
many as ten hops.

5.1 Contributions of This Thesis

• It has been proved that the capacity loss due to mismatched channel
symbol distribution for the AWGN channel with an average power
constraint is equal to the relative entropy of the actual and the optimal
Gaussian distribution.

• It has been proved that the rate increase due to non-Gaussian quanti-
zation noise under an squared-error distortion measure is equal to the
relative entropy of the actual and the optimal Gaussian distribution.

• Other loss factors in source-channel coding systems has been pointed
out.
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• The sub-optimality of the HSQLC bandwidth expanding mapping has
been explained using the identified loss factors.

• The optimization process of a 2:1 bandwidth reducing mapping has
been shown in detail.

• A warping procedure has been proposed to adapt sources to mappings
originally designed for other distributions, bypassing the problem of
determining the geometry of the mappings for a given source distri-
bution. This was shown to give negligible loss for a Laplacian source
with a mapping designed for a Gaussian source.

• A 4:1 mapping consisting of a cascade of two 2:1 mappings, with an
intermediate warping, has been proposed. This was shown to perform
on par with a cascade of two 2:1 mapping, where the inner mapping
was designed for the Laplacian input signal. The proposed system is
easier to optimize and has a simpler encoder due to the more regular
geometry of the mappings.

• A simple transcoding scheme for M :1 mappings has been proposed,
enabling transport of the S-K mappings over heterogeneous networks.
This transcoding approach was shown to be competitive with far more
complex digital systems for high CSNR.

• The proposed transcoding scheme has also been demonstrated to lend
itself to multihop communication, as the multi-level channel symbols
are able to reject most of the channel noise. Furthermore, due to the
inherent robustness of the S-K mappings, the decoding does not break
down in case of erroneously detected symbols.

• Closed-loop control over wireless could benefit from the low-delay na-
ture of the Shannon-Kotel’nikov mappings . The possibility to use the
mappings in conjunction with robust control techniques would perhaps
be one of the most interesting uses of the S-K mappings presented in
this dissertation.

5.2 Future Work

Future research within the fields covered by this dissertation should include:
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Future Work

• Verification of findings in Chapter 2 on other joint source-channel cod-
ing systems, and research on how to utilize the (currently to a large
degree non-constructive) knowledge of the losses to improve on current
systems.

• The degree of dependence between the different loss factors should be
investigated.

• The topic of inter-channel correlation for direct source-channel map-
ping systems needs more research in order to be able to quantify the
losses, especially for low CSNR where this effect is more pronounced.
Capacity reduction due to antenna correlation in MIMO systems might
hold some answers.

• A method for determining the geometry of the mappings, given the
source-channel-cost tuple, is needed. As for now, all we can do to de-
termine the geometry is educated guesswork, or look at the codebooks
of channel-optimized vector quantizers.

• Path diversity in more realistic multihop communication models, like
mesh networks, could be exploited through the use of multiple-description
quantizers in place of the scalar quantizers now used in transcoding.
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Appendix A

Calculation of the Channel Symbol
Distribution

The optimization of the 2:1 mapping for the Gaussian source and channel
in Chapter 3 requires knowledge of the variance of the channel symbols
resulting from the mapping process. To determine the variance, we first
have to calculate the resulting pdf of the channel symbols. However, to
calculate the pdf exactly is difficult due to the approximation step which
shifts probability mass from the plane to the subspace spanned by the spiral
arms. Instead of calculating the pdf along the spiral arms, we calculate the
pdf along circles around the origin. This is a good approximation when the
CSNR is high, since then the spiral arms are densely packed. Hence, the
approximation operation can be disregarded and one rotation around the
spiral is close to a circle. Obviously, this approximation does not hold for
lower CSNR values as the spiral becomes looser, leading to over-estimation
of the channel symbol variance. The following calculation was done in [Floor,
2003].

A.1 2:1 Channel Symbol Distribution

We assume here that the spiral is so dense that the approximation oper-
ation can be disregarded, and show that the channel signal distribution is
Laplacian when using the curve length approximation χ = T (θ) = ηθ2 as a
mapping function, where θ is a function of s1 and s2. The domain of consid-
eration will be a disc in R2. The channel signal χ is given as the following
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function of s1 and s2:

χ = g(s1, s2) = ±η π
2

∆2
(s21 + s22). (A.1)

The distribution of χ will then be given by [Papoulis and Pillai, 2002]

FX(χ) = Pr [X ≤ χ] = Pr
[
(s1, s2) ∈ D+

X ∪D−
X

]
=
∫∫

D+
X∪D−

X

fS1,S2(s1, s2)ds1ds2, (A.2)

where fS1S2 is the joint Gaussian distribution and

D+
X =

{
(s1, s2)

∣∣s21 + s22 ≤
∆2χ

ηπ2
, χ ≥ 0

}
,

D−
X =

{
(s1, s2)

∣∣s21 + s22 ≥ −
∆2χ

ηπ2
, χ < 0

}
. (A.3)

Solving (A.2) over the domain in (A.3) gives the cdf

FX(χ) =
1
2

2− e

− χ

2η π2

∆2σ2
s , χ ≥ 0

e

χ

2η π2

∆2σ2
s , χ < 0,

(A.4)

differentiating (A.4) with respect to χ, and using absolute value, gives

fχ(χ) =
1

2
(
2η π2

∆2σ2
s

)e− |χ|

2η π2

∆2 σ2
s , (A.5)

which is a Laplacian pdf with variance

σ2
χ = 2

(
2η
π2

∆2
σ2

s

)2

. (A.6)
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