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Benjamin Iñiguez at Universitat de Rovira i Virgili for his hospitality and
dialogues.
The funding jointly provided by UniK and EU is gratefully acknowledged.
Last I wish to thank my family and my beloved girlfriend, Tinna
Gudmundsdottir, for all her patience and encouragement.

v



vi



Summary

This work comprises a new technique for 2D compact modeling of
short-channel, nanoscale, double-gate MOSFETs. In low-doped devices
working in the subthreshold regime, the potential distribution is
dominated by the capacitive coupling between the body contacts. This
2D potential is determined by an analytical solution of the Laplace
equation for the body using the technique of conformal mapping. Near
threshold, where the spatial inversion charge becomes important, a
self-consistent solution is applied. In sufficiently strong inversion, the
electronic charge will dominate the potential profile in central parts of
the channel. For this case, an analytical solution of the 1D Poisson’s
equation is used. Based on the modeled barrier topography, the drain
current is calculated for the drift-diffusion transport mechanism. The
results compare favorably with numerical simulations.
A parametrized model for drain current, with all parameters extracted
from the modeling framework, is presented as an example of a compact
model suitable for inclusion in circuit simulators.
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Notation and symbols

F(k, φ) Elliptic integral of first kind
K(k) Complete elliptic integral of first kind
k Elliptic modulus
k1 Complementary elliptic modulus
tox Oxide (insulator) thickness
t
′
ox Effective thickness of oxide (insulator) for silicon permittivity

εox Relative dielectric permittivity of oxide
εSi Relative dielectric permittivity of silicon
tSi Silicon (body) thickness
H Effective transformed device height
L Gate length
W Device width
NS Substrate doping
NC Effective density of states in conduction band
NV Effective density of states in valence band
ni Intrinsic electron density
φb Fermi-intrinsic band bending
Vbi Built-in potential, band bending
VFB Flat band voltage
kB Boltzmanns constant
T Temperature
q Electron charge
Vth Thermal voltage
h Plancks constant
� Reduced Plancks constant
Eg Silicon band gap
Xs Electron affinity silicon
ϕm Gate contact work function
Φs Silicon work function
EF Fermi level
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Ei Intrinsic fermi level
VF Quasi-fermi potential
VT Threshold voltage
μeff Effective electron mobility
IDD Drift diffusion current
Vgs Gate to source potential
Vds Drain to source potential
φm Gate contact/center body potential difference
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Chapter 1

Background/introduction

1.1 Background

Over the last 40 years, semiconductor device technology has been developing with
an amazing speed. With an exponential growth in integrated circuit performance,
the scaling of MOSFETa dimensions has been the primary driver. From the
vantage point of today, in the 65 nm process era, we look 5 years into the future
and find that the double-gate MOSFET (DG-MOSFET) is widely expected to
take over for the long-lasting industrial favorite, the single-gate MOSFET. As
scaling is expected to reach the 25 nm era in a few years1, the DG-MOSFET
becomes necessary in terms of its superior properties in this scaling region.
The studies of this kind of device are mainly performed on numerical device
simulators, with a few exceptions of laboratory experimental devices2, creating
a good foundation for further research into analytical compact models which are
needed for circuit design. Current drive, potential distributions and short-channel
effects are all important properties on which we base the comparisons with our
proposal for a new compact analytical modeling framework.

Scaling of single-gate MOSFETs into the sub-100nm range, has been possible
by for example using a high doping and steep doping gradients, which is
detrimental for the charge carrier mobility. In a double-gate transistor, it is
possible to achieve a high level of gate control by using a fully-depleted device
body with low doping. This poses a new challenge in device modeling because
of the two-dimensionality of the field pattern, which requires a new modeling
strategy for short channel devices. This is in contrast to the continual patchwork
on the classical single-gate MOSFET models, which are basically one-dimensional
by nature.

aMetal-Oxide-Semiconductor Field Effect Transistor
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1.1.1 MOSFET/CMOS historical overview

Another difference is the single-gate all-important threshold voltage param-
eter which marks the onset of the device for most models. In the context of
the double-gate MOSFET, the earlier definition loses most of its foundation and
meaning due to a different set of physical mechanisms controlling the on and off
switching of the transistor.3 4 5

A new model paradigm based on the specific central physical mechanisms in
this kind of device is therefore desirable and creates a foundation for the work
presented in this thesis.

1.1.1 MOSFET/CMOS historical overview

Figure 1.1: Circuit illustration of CMOS configuration to the left, with N- and P-channel
(circle) discrete devices. To the right, a NAND logic circuit is shown utilizing the same
components.

In 1963, Fairchild Semiconductor invented CMOSb circuits6. Five years later,
RCA created CMOS-based integrated circuits illustrated in Figure 1.1. The
new invention had a long switching time, but had less standby power than the
BJTc based TTLd circuits at that time. CMOS technology was used in battery-
critical applications, such as watches, where less power was more important

bShort for complementary MOSFETs, consisting of one N- and one P-channel MOSFETs in
series.

cBipolar Junction Transistor
dTransistor transistor logic

2



Chapter 1. Background/introduction

than speed. Early generations of CMOS logic were based on aluminum gates,
which could operate and interface with the old TTL logic. The advancements in
device processing permitted a continual down-scaling of the device feature size,
which allowed reduction of the power supply voltages and better performance.
These advances became more important than backward compatibility with
TTL. A switch to poly-silicon gates, which had better resistance to annealing,
introduced the concept of self-aligned gates, resulting in lower overlap and stray
capacitances. Later, the focus on increased speed, smaller dimensions and less
power consumption has resulted in a thriving development where integration
density and power dissipation are the main challenges.

1.1.2 Importance of CMOS

CMOS based technology is, and has been, the main contributor to steadily
decreasing switching time in digital circuits and high speed performance of analog
electronics. Important aspects, such as established production technology, low
power dissipation, and integratability have made the popular technology the
greatest driver of new computation intensive hardware and software. Compared
to the single transistor gate logic which consisted of an NMOS transistor only with
a resistor pull-up and the BJT-based TTL, the CMOS established a completely
new paradigm for circuit power consumption and speed. After this transition,
CMOS technology has had no major challengers from other technologies. This
state of affairs is expected to continue for at least one more decade with the new
advances in MOSFET technologies, including double-gate, gate-all-around, and
FinFET as the most promising configurations.

1.1.3 Technology-development scaling Moore’s law

In 1965, Gordon Moore, the co-founder of Intel, one of today’s greatest
manufacturers of integrated circuits, made the statement that: ”The complexity
for minimum component costs has increased at a rate of roughly a factor of
two per year ... Certainly over the short term this rate can be expected to
continue, if not to increase. Over the longer term, the rate of increase is a bit
more uncertain, although there is no reason to believe it will not remain nearly
constant for at least 10 years. That means by 1975, the number of components
per integrated circuit for minimum cost will be 65,000. I believe that such a large
circuit can be built on a single wafer.” This soon turned into an addiction for
the semiconductor industry and the famous statement was adopted as Moore’s
law. The doubling of performance every second year has created a market driven
demand of expectations that the future will give the same increase in performance.

3



1.1.4 Integrated circuit design - tools

1.1.4 Integrated circuit design - tools

With the demand for evermore complex circuits, the design of such circuits
requires efficient simulation tools. Designing new integrated circuits involves
the use of several electronic design automation (EDA) tools for high-level digital
design, mask level synthesis, and simulation and modeling of discrete devices. In
this work, we are primarily interested in device modeling as it relates to circuit
simulation and the device simulation for model verification.

1.1.5 Device simulation (TCAD) - applications

Numerical device simulation mostly involves iteration over Poisson’s equation
in combination with a transport model for a given set of boundary conditions.
A common way to solve this problem is to discretize the 2D surface or 3D
volume with a grid and iterate over this with a PDEe solver. Convergence
and accuracy of the solutions depends strongly on the grid distribution and
size. In addition, convergence time depends strongly on the solver type, models
for carrier statistics, and current continuity. Typically, numerical solvers are
not applicable for simulating integrated circuits due to the high computational
overhead. In the present work, we have used the device simulator Atlas from
Silvaco. Central in this tool is a range of models for physical phenomena behavior
such as charge carrier transport models, classical and quantum carrier statistics,
material properties, etc. These can be combined in the simulation of specific
transistor configurations.

1.1.6 Circuit simulation - SPICE

Tools for simulating the behavior of simple circuits, began emerging in parallell
with the development of integrated circuits. The tool CANCER (Computer
Analysis of Non-Linear Circuits Excluding Radiation) was developed by Ronald
Rohrer of U.C. Berkeley along with some of his students in the late 1960’s7. In
the seventies CANCER was re-written and called SPICE (Simulation Program
with Integrated Circuits Emphasis), released as version 1 to the public domain
in May of 1972. The program has gone through several important evolution
steps later on. Central elements in circuit simulators are the device models.
Different research groups have steadily provided models and modeling approaches
to SPICE, adding a wide range of functionality to the simulator engine. The
MOSFET model BSIM by the Berkeley group has been highly successful and was
an industry standard for many years. In 2005, for the first time since the seventies,
the Compact Model Council, which works for a standardization of compact

ePartial Differential Equation

4



Chapter 1. Background/introduction

models and model interfaces, has decided to make the PSP8 model developed by
Philips semiconductors and Pennsylvania State University the industry standard,
succeeding the Berkeley groups BSIM3 and BSIM4. f

SPICE simulators come with a selection of models for different semiconduc-
tors. Choosing the most effective and exact model for the circuit simulation is
a difficult task and often leaves the circuit designer with a dilemma, whether
to choose a time-consuming precise model or a more simplified and quick
model for simulation and parameter extraction. Precise models are often
characterized by many parameters that have to be identified empirically by
analyzing measurements or TCAD simulations. This may be a quite difficult task
considering that some models use several hundred parameters. These parameters
cannot always be associated directly with physical mechanisms. However, for a
specified technology, this task only has to be performed once by the transistor
manufacturer. The numerical tools sometimes come with additional parameter
extractors which aid the designer in the process.

1.1.7 Device modeling - compact/analytical models

In the present context, a physics based device model is understood to be a
description of device behavior in terms of analytical, algebraic expressions. This
is contrary to device simulations, which are numerical derivations behavior based
on complex equations, such as partial differential equations.

Furthermore, device models may be characterized as being compact if they
are described in terms of analytical, explicit expressions. Compact models can
also cover models which involves preprocessing of model expressions by iterative
routines that result in parameter lookup-tables for fast retrieval for use in
simplified parameterized models. Compact models have the characteristic of
being computational efficient in the context of circuit simulations.

fWeb site: http://www-device.eecs.berkeley.edu/bsim/
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1.2 Objectives of thesis

1.2 Objectives of thesis

The objective of the present work is to establish a detailed, physically based
framework for precise modeling of short-channel double-gate MOSFETs. This
framework may serve as an excellent starting point for the development of
more compact modeling expressions suitable for use in circuit simulators. One
possibility is to use a set of generic, semi-empirical expressions for the I-V
characteristics with parameters that can be extracted to any desired accuracy
from the framework. Typically, such a model may be based on explicit sub-
threshold and strong-inversion limits that are readily available from the modeling
framework, and on the bias dependences of Id near threshold expressed in terms
of extractable parameters.

The modeling framework will be based on a two-dimensional analysis, taking
into account short-channel effects with a set of clearly defined simplifications,
and be largely based on analytical expressions for central parts of the model
calculations.

1.3 Challenges/Scope

Some of the main challenges for developing a nanoscale short-channel DG
MOSFET model are the modeling of:

• 2D electrostatics

• Self-consistency

• Charge transport

• Quantum-mechanical effects

• Gate tunneling

• Noise

In the present work, we are considering (as an example) a double-gate
MOSFET with a gate length of 25nm and a silicon film thickness of 12nm.g

This means that source/drain contact will have a significant influence on the
conducting channel. This 2D capacitive effect is dominant in subthreshold due
to the small concentration of mobile and fixed charges. Near threshold the
electrostatic influence from the inversion charge become significant and has to
be taken into consideration in a self-consistent manner. In strong inversion the

gThe complete description of the device properties is provided in Section 4.1
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Chapter 1. Background/introduction

electrons dominate the device electrostatics, although the capacitive effects will
still be important.

In nanoscale MOSFETs, with channel lengths less than about 50 nm, the
relaxation times of the carriers indicate that the drain current will have the
character of both drift-diffusion and ballistic/quasi-ballistic transport. In this
work, to make the transport modeling manageable, we have used the drift-
diffusion transport model to validate the electrostatic modeling techniques and
simplifications which have been applied to the modeling process. Ballistic and
quasi-ballistic transport are briefly discussed in the review of models in Chapter
2.

When device dimensions are larger than 10nm, classical theory is still
applicable.9 For smaller dimensions, quantum confinement has to be considered.
In this work, the modeling is based on classical theory, but some examples of
quantum-mechanical confinement in one direction are also shown.

The modeling of gate tunneling is considered to be beyond the scope of
this work. We have considered high-κ dielectric with a permittivity of 7 and
a thickness of 1.6 nm, in which case the tunneling current is relatively small.10

Noise modeling is also beyond the scope of the present work.

1.4 Outline of thesis

In this thesis, we present a new technique for 2D modeling of short-channel,
nanoscale DG MOSFETs. In low-doped devices working in the subthreshold
regime, the potential distribution is dominated by the capacitive coupling
between the body contacts. This 2D potential is determined by an analytical
solution of the Laplace equation for the body using the technique of conformal
mapping. Near and above threshold, the influence of the electronic charge on
the electrostatics is taken into account in a precise, self-consistent manner by
combining suitable model expressions with Poisson’s equation. For finite drain
voltages, the self-consistency also extends to a calculation of the quasi-Fermi
potential and the drain current using the drift-diffusion transport mechanism. In
strong inversion, where the electronic charge dominates the device electrostatics,
the device behavior approaches that of a long-channel device.

Throughout the thesis, intermediate results such as electrostatics and drain
current modeling are verified against the numerical simulator Atlas developed by
Silvaco.

In chapter 2, we review existing models for DG MOSFET devices related to
the type considered in this work. The theory introduced in this chapter represents
much of the foundation for the modeling work in the subsequent chapters.
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1.4 Outline of thesis

In Chapter 3, the method of conformal mapping is introduced. The solution
of the 2D Laplace equation is more easily derived in a complex transformed
plane into which the device body is mapped, yielding analytical results. This
solution is then mapped back to the normal plane using a mapping function for
the coordinates between the two planes.

In Chapter 4, the specification for the considered device technology is
presented, followed by a discussion of the electrostatic modeling, covering all
plausible ranges of DC-voltages.

Applying the superposition principle to Poisson’s equation, the contribution
to the 2D electrostatics from the capacitive coupling can always be separated out
and determined from Laplace’s equation. In order to make this part manageable,
we assume that each of the contacts, source, drain, and the gates, is equipotential.
This is achieved by using metal gates and source/drain Schottky contacts. The
source and drain contacts are chosen to have the same work function as that of
n+ silicon. The gate metals are chosen to have a near midgap work function,
which is needed to obtain a suitable threshold voltage of 0.25 V.

In the sub-threshold regime, the device electrostatics is dominated by
capacitive coupling between the electrodes resulting in an explicit, analytical
expression for the potential distribution.

Close to threshold, the mobile charge carriers become significant and influence
the device electrostatics to a such degree that the electrostatic potential must be
evaluated self-consistently based on Poisson’s equation. Moreover, the quasi-
Fermi potential arising from the channel current will also be taken into account.

In strong inversion, where the electronic charge dominates the device
electrostatics, the device behavior approaches that of long-channel devices. Long-
channel models of the double-gate device exists, and are used in this operating
regime.

In Chapter 5, the drain current modeling is shown using the drift-diffusion
transport mechanism. In this modeling, we show that the barrier minimum and
its proximity are all-important in the drain current calculations.

Finally, an example of a parametrized, compact current-voltage model is
presented, where the parameters are extracted from the full modeling framework.

Chapter 6 contains conclusions and Chapter 7 discusses possible future work.
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Chapter 2

Review of DG MOSFET
models

This chapter gives an introduction to the evolution of DG MOSFET modeling,
with a review9 on advantages and weaknesses. In particular, modeling which is
central to the later improved models, will be discussed rigorously. For all DG

Figure 2.1: Schematic symmetrical DG MOSFET structure and its electrical and
geometrical parameters considered in this work.

MOSFETs which are dominated by 2D electrical fields, the electrostatic potential
φ can be found by Poisson’s equation:

∇2φ(x, y) =
q

εSi
(NS + n) (2.1)

9



2.1 Long-channel modeling

Considering an n-channel device, the x-axis is the lateral direction along the
gate, q the electron charge, εSi the permittivity of silicon, NS and n are the
acceptor doping and mobile charge density respectively. The classical Boltzmann
3D density of mobile charge carriers is found as:

n =
n2

i

NS
exp((φ − VF )/Vth) (2.2)

where ni is the intrinsic carrier density for undoped silicon, VF and Vth the
quasi-Fermi and thermal voltage respectively. To find the quantum confinement
effects related to ultra-thin device bodies, the following expression for quantum-
mechanical inversion carrier concentration per unit area is valid for a 1D
confinement:11

ns =
mn

π�2
kBT

l∑
j=1

ln
[
1 + exp

(
EF − Ej

kBT

)]
(2.3)

where mn is the density of states effective mass, and Ej is the lowest energy of
sub-band j measured relative to the conduction band.

For compact modeling of drain current, there are two main strategies. Firstly,
drift-diffusion12, where carriers experience a considerable amount of collisions
in the conducting channel. Secondly, ballistic13 current in very short devices,
which is dominated by a mechanism where the carriers have enough energy to
cross the barrier before being subjected to significant scattering. Between these
two distinct models, we have quasi-ballistic14 behavior which is described as
ballistic transport with a statistical ballistic carrier scattering quotient included
as a model parameter.

2.1 Long-channel modeling

Long-channel modeling is the procedure where the 2D field contribution can be
regarded as an inferior mechanism to the main channel control mechanism by
the gate. This means that when the electrical fields associated with the body
charge carriers terminate mainly on the gate electrodes, we postulate that the
device exhibits a long-channel behavior. This implies that it is sufficient to solve
the Poisson equation in one dimension transversal to the channel to capture the
main body effects. Nonetheless, charges close to the source and drain contacts will
terminate their fields completely or partially on these contacts (charge sharing).

10



Chapter 2. Review of DG MOSFET modeling

2.1.1 Modeling of undoped devices

For DG devices which exhibit long-channel behavior, it is possible to take
advantage of this and tackle the relatively small short-channel effects by suitable
approximations. This is done in several models, which all are mostly concerned
with the solution of Poisson’s equation in 1D (transversal direction).

Taur-model for undoped body

A long-channel double-gate device with an undoped silicon body can be described
by an implicit analytical solution of the 1D Poisson’s equation15. Integrating
once, we obtain

dφ

dy
=
√

2qVthni

εSi
(exp(φ/Vth) − exp(φ0/Vth)) (2.4)

where φ0 is the potential on the symmetry plane midway through the silicon
body y = tox + tSi/2. Integration of 2.4 gives

φ − φ0

2Vth
= − ln

[
cos
(√

qni

2εSiVth
exp(φ0/Vth)(y − (tSi + 2tox)/2)

)]
(2.5)

The oxide/silicon surface potential φs = φ(y = tox) is found by invoking
continuity in the displacement fields at this interface, i.e.

εox
Vgs − VFB − φs

tox
= εSi

dφ

dy

∣∣∣∣
y=tox

(2.6)

The result is an implicit dependence of φ0 on the gate-source potential Vgs.
The current modeling, is found by combining (2.5) and (2.6) with the drift-

diffusion equation, resulting in16

IDD =
16V 2

thεSiμeff

LtSi
[gr(βs) − gr(βd)] (2.7)

where β is an integration variable, and

gr(β) = β tan(β) − β2/2 + ρβ2 tan(β2) (2.8)

,
fr = ln(βs/d) − ln(cos(βs/d)) + 2ρβs/d tan(βs/d) (2.9)

have to satisfy the boundary conditions at source (βs) and drain (βd) in the
following two implicit expressions

fr(βs) =
1

2Vth

[
VGS − V0

]
(2.10)
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2.1.2 Methods for including effects of doping

and

fr(βd) =
1

2Vth

[
VGS − V0 − VDS

]
(2.11)

where V0 ≡ VFB +2Vth ln
[

2
tSi

√
2εSiVth

qni

]
and Vt = V0 + δ is the threshold voltage.

Here, δ = 2Vth ln [(Vgs − V0)/4rVth] and r = εSitox/εoxtSi.
For long channels (L = 1μm) and a thin silicon film (tSi ≤ 25nm), the

modeling gives results in total agreement with numerical simulations.

2.1.2 Methods for including effects of doping

For n-channel devices, a light acceptor doping will shift the body quasi-Fermi
potential towards the valence band by φb = Vth ln NS

ni
, creating a larger potential

difference between contacts and body (Vbi). Assuming that the light doping
represents relatively few carriers in a thin device, the electrostatic effect from the
dopants can be regarded as negligible in strong inversion. Hence, it is possible to
use the solution from Taur (2.7) or Ortiz-Conde17 by including the potential shift
for the body.18 In sub-threshold, the dopant electrostatic effect will eventually
dominate over the mobile carriers. Approximations have to be made to solve
Poisson’s equation in this case.

Francis modeling of weak and moderate inversion

A 1D modeling procedure which includes body doping has been proposed by
Francis et al.19. In sub-threshold when the mobile charge density is much less
than the body doping concentration, it is found that φS−φ0 is constant. Poisson’s
equation can be reduced to its depletion form, taking only into account the fixed
charges with

φS − φ0,appr =
qNSt2Si

8εSi
(2.12)

Applying Gauss’ law at the surface, the charge can be integrated along the
channel and express the current.

For moderate inversion, an accurate modeling of the surface potential from a
Taylor expansion of Poisson’s equation, gives

d2φ(y)
dy2

=
q

εSi

(
NS +

n2
i

NS
exp [(φS − (tSi/2 + y)ES)/Vth]

)
(2.13)

and a double integration of this gives the implicit integral equation

φS = C2(φS , Es) + V 2
th

q

εSi

ns

E2
s

(2.14)
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Chapter 2. Review of DG MOSFET modeling

where

C2 =Vgs − VFB + Vth
q

εSi

ns

Es
(2.15)

×
(

εSi

Cox

[
exp(−EstSi

2Vth
) − 1

]
− Vth

1
Es

)
− qNS

Cox

tSi

2

is an integration constant, Es and φs are the surface field and potential, ns is the
surface electron concentration, Cox is the gate oxide capacitance, and NS is the
body acceptor dopant.

(2.14) and (2.15) can be solved iteratively, and through Gauss’ law, to give a
direct relation between the gate voltage and the surface potential. The current
can be modeled as follows

IDD = 2
Vds

L

∫ 0

−tSi/2

qμn(x)dx (2.16)

where the mobility μ is considered constant. The model is valid for small drain-
source voltages, and does not include short-channel effects such as DIBL. A
threshold voltage model is also derived from a transconductance analysis, which
gives the maximum transconductance change IDD vs Vgs, independent of series
resistances.

Baccaranis modeling of weak to moderate inversion

Modeling of doped devices can be thought of by having two back-to-back SGDs
with two inversion channels close to the gates. This implicitly assumes that the
current flowing through the device center at y = tSi/2 is negligible compared to
the inversion carrier current found at the body/insulator interfaces. Based on
the gradual channel approximation20

IDD = 2
μ

L

Co

1 + αnVds

∫ Vds

0

[
V

′
G − φc(V )

]
dV (2.17)

where Co is the gate capacitance, αn = μ/vsatL, where vsat is the saturation
velocity, and V

′
G = Vgs− (ϕm − Xs + qNS/2Cg) the effective gate voltage. φc(V )

is the center potential found implicitly by

2Cg

(
V

′
G − φc

)
= −Qc (φc, φFn) (2.18)

where Qc = −qNC exp[(φc − φFn)/Vth], assuming Boltzmann statistics, though
an expression for Fermi statistics and quantum mechanical effects may be used.
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2.1.2 Methods for including effects of doping

This equation holds for drain voltages not exceeding the drain saturation voltage
VDSS = 1

αn

(√
1 + 2αn(Vgs − VT ) − 1

)
. The threshold voltage can be found as

VT = ϕm − Xs + qNS/2Cg + Vth log
(

2CgVth

qNC

)
(2.19)

For gate voltages leading to strong inversion, the center potential φc is pinned to
the threshold voltage, resulting in the following expression for drain current

IDD = 2
μ

L

Co

1 + αnVDS

[
(VGS − VT )VDS − 1

2
V 2

DS

]
(2.20)

and for drain voltages above saturation Vds >= VDSS ,

IDD = 2
μ

L

Co

1 + αnVDSS

[
(VGS − VT )VDSS − 1

2
V 2

DSS

]
(2.21)

which both are close to the standard SGD form except for some effects related
to the partial depletion body effects. In sub-threshold, the current takes on the
same form as the standard MOSFET equations,

IDD = 2
Coμ

L
V 2

th exp [(VGS − VT )/Vth] [1 − exp(−Vds/Vth)] (2.22)

NanoMOS

A group at Purdue University21 has developed a complete simulator founded
on the assumption on a double-gate ultra-thin body and can be regarded as a
long-channel modeling, despite that short gate channels below 100nm may be
simulated. Assuming further on that the transistor is scaled to a such degree
that the carrier mean free path distance becomes comparable to the effective gate
length, a ballistic or at least quasi-ballistic transport behavior can be expected.
The fact that the ultra-thin body can be no more than tSi < 5nm of thickness in
this modeling, implies that the transversal quantum phenomena is an important
factor to be accounted for. Thus, both a real and a quasi-2D Schrödinger solver
have been implemented to provide a benchmark, and give better simulation time
performance, respectively. For a fully ballistic transistor, a full 2D Schrödinger
solution can be calculated. Since this is not compatible with expressions for
compact models, approaches which remedy the complexity are commonly applied.
A quasi-2D approach, which is easier to solve, decouples the transport and the
always quantified transverse direction. By using this technique, quantization of
the transport channel is voluntary and a classical or quantization method can be
chosen for the current calculation. For ultra-short devices which approaches the
ballistic limit (no scattering), the channel quantization is necessary, but for longer
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Chapter 2. Review of DG MOSFET modeling

semi-ballistic configurations, a slow varying classical potential method should be
chosen due to computational effort. The boundary conditions of the solvers are
based on a non-equilibrium Green’s function formulation.

The quasi-2D model calculates the transversal quantum confinement, and the
longitudinal confinement before the results is fed into a Poisson solver and checked
for convergence. Because of this, the simulator enters an iteration scheme, which
is hardly compact. Despite of this, the simulator has properties which renders
it very interesting for further compact modeling. Among these are the transport
model.

For short device gate lengths, the mechanisms involved in charge transport
become different. The charge transport gradually changes from a drift-diffusion
type to a ballistic current which is determined by quantum calculations. If carriers
experience only a few scattering events along the channel, the carrier injection at
the source will, rather than the channel, be the limiting factor. It has been shown
that for sub-30nm devices it is experienced a high degree of ballistic transport
with little or no scattering of charge carriers.22

Looking at weak inversion and depletion in SG devices, Ferrier23 has
developed analytical expressions based on Airy-based quantization. It differs
from standard Airy quantization by taking into account the insulator tunneling
effect. In addition, the model considers a multi-band transport, which is more
applicable to thicker devices than the ultra-thin assumption which assumes single-
band transport.

In the Natori formalism13 24, a ballistic current is calculated from two electron
emitters which both generates a flux of charge. These are located at the source
(F+) and drain (F−) with opposite directions of the current.

IB = q(F+ − F−) (2.23)

The carriers from these emitters are filtered through the quantum states at the
barrier maximum, it is only the electrons with the high enough energy which
are filtered through the available barrier quantum states which are transported
across the barrier. The flux is given by

F± =
(2kBT )3/2

π2�2

[∑
i

√
mcLF1/2

(
EFs

− EL
i − qV ±

kBT

)
+

∑
i

√
mcT F1/2

(
EFs

− ET
i − qV ±

kBT

)]
(2.24)
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2.1.2 Methods for including effects of doping

where

F1/2(u) =
∫ ∞

0

√
y

1 + exp(y − u)
du (2.25)

is the Fermi-Dirac integral of order 1/2, which corresponds to a 1D transverse
quantum mechanical quantization to the channel. EFs

is the Fermi level at the
source, Ei are the quantum levels at the barrier maximum, and V + = 0 and V − =
Vds are the source and drain potentials respectively. The conduction masses are
mcL and mcT for the primed (L)ongitudinal and unprimed (T)ransverse ladder
respectively. These are given as the conduction longitudinal mass mcL = mt

and the combined conduction transverse mass mcT = (
√

ml +
√

mt)2 from the
quantization masses ml (longitudinal) and mt (transverse).

By using a Fermi-Dirac integral of order 1/2, we assume that the quantum
effects on carriers are negligible in the transport and transistor width direction.

We can obtain the inversion sheet charge density by using the two-dimensional
density of states function along with the Fermi distribution function.

|Q| =
qkBT

2π�2

∑
valleys

∑
nx

√
mxmy×

ln
[
1 + exp

(
EFs

− Eij − qV ±

kBT

)]
(2.26)

Compact and exact expressions for general 1D quantum wells are not possible
to find. Such problems can be solved by Schrödinger/Poisson solvers. These
numerical solvers use iterative routines, which are too computationally intensive
for compact modeling. However, there are ways to compute quantum effects
which gives very good agreement between the exact solution and the so-called
quasi-approaches.

For example, sub-band engineering can be used to create a device in the
electric quantum limit, where only one state is occupied.

IB =WI0[F1/2(u) − F1/2(u − vd)],

I0 =
√

2q(kBT )3/2

π2�2
Mv

√
mi, (2.27)

u = ln[
√

(1 + evd)2 + 4evd(eρ − 1) − (1 + evd)] − ln2,

vd =
qVds

kBT
(2.28)

ρ =
2π�

2Ceff (Vgs − VT )
qkBTmtMv
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Chapter 2. Review of DG MOSFET modeling

where Qeff = Ceff (Vgs − VT ) is the effective electron concentration at the
maximum channel barrier.

As an ideal ballistic transport hardly will take place in any physical device,
a formalism for quasi-ballistic transport which includes scattering has been
developed by Lundstrom.14

Quasi ballistic transport includes correction terms for the expression in (2.23)
resulting in

IB = q(F+ − (rF+ + (1 − r)F−)) (2.29)

where r is defined as the reflection coefficient. Different conditions apply for a
low and high lateral field. For high fields, a critical distance lkT defines where the
potential drops kBT/q from the source. If the backscattering of a carrier happens
inside this critical distance, the carrier will not be able to pass the barrier because
of insufficient energy in the channel direction. It is, in addition, likely that the
carrier will not go back into the source, but will be reflected by the channel
potential and undergo a drift transport toward the drain contact.14 From this it
follows that the high-field coefficient is

rHF =
lkT

lkT + λ
(2.30)

where λ is the mean free path and lkT is the distance over which the channel
potential drops by Vth. The high field coefficient has been developed from the
low field scattering coefficient which can be obtained from the Mc Kelvey’s flux
method25,26.

rLF =
Leff

Leff + λ
, λ =

2μkBT

vtq
, vt =

√
2kBT

πm
(2.31)

where Leff is the effective channel length, λ the low field mean free path, μ the
low field mobility and vt the injection velocity. In addition a unified expression
between the two regimes have been presented in25.

2.2 Short-channel models

In so-called short-channel devices, the length/height aspect ratio is so small that
the 2D effects contribute so much to the device behavior that they become non-
negligible when modeling. This manifests itself through various short-channel
effects (SCEs), such, for example drain-induced barrier lowering (DIBL).27 To
deal with this in a precise manner, a 2D device model is needed, where both
the capacitive coupling between the electrodes (source, drain and gates) and
the electrostatic effects of the space charge are self-consistently included. For
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nanoscale devices (less than 50nm in length), we also have to be concerned
with ballistic and quasi-ballistic current modes involving non-stationary charge
transport mechanisms.

2.2.1 Approximate models, quasi-2D

Parameterizing 2D effects does not come for free. Usually this approach generates
a lot of empirically adjustable parameters that have to be determined in order to
perform satisfying simulations. To avoid excessive use of parametrization, short
channel effects have to be treated in more physical way. This has resulted in an
effort to further development of the 2D analysis.

One of the main developments paths relies on the superposition principle28,
utilized in a range of modeling strategies.29 30 The method suggests that it is
possible for undoped/lightly doped to separate Poisson’s equation into a 2D
capacitive part represented by Laplace equation

∇2φ(x, y) = 0 (2.32)

and a 1D Poisson part which arises from mobile charges in the body. The total
potential may then be expressed as

φ(x, y) = φ1(y) + φ2(x, y) (2.33)

where φ1 and φ2 is the 1D and 2D parts respectively. The 1D part can be thought
of as the long-channel solution, while the 2D part will represent all short-channel
effects. Separation allows a more flexible way of solving Poisson’s equation.

2.2.2 Quasi-2D approaches for an undoped/lightly doped
body

In an undoped body, the potential will in principle follow the effective gate
potential Vgs − VFB. Adding short-channel effects, these will be the only which
disturbs the electrostatic potential in the body. In lightly doped bodies, it is
common to make the following assumptions about the effects related to the
dopants. The electrostatic fields emerging from these can be neglected, and will
only affect the built-in potentials.

Adding the assumption of subthreshold conditions, Liang and Taur’s modeling
procedure completely disregards dopants and free carriers31 10. The 2D
electrostatics is modeled with an infinite series of sinh and sin functions. For
an aspect ratio (length/height) larger than 2, the modeling yields good results
retaining only a couple of terms of the series.

Expanding the area of interest into a regime where free carrier fields cannot
be neglected, self-consistency between 1D and 2D solutions become important.
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Chapter 2. Review of DG MOSFET modeling

The mutual interdependence can be found either with empirical trial functions
or through iteration procedures.

Chen and Meindl’s approach

Chen et al has proposed that a threshold based short-channel model can be found
by solving Poisson’s equation with only the mobile charge term5

∂2φ

∂x2
+

∂2φ

∂y2
=

q

εSi
n (2.34)

where φ is the electrostatic potential referenced to the source Fermi potential and
n = ni exp [(φ − φF )/Vth] is the mobile charge term adjusted for the quasi-Fermi
level φF . Since the quasi-Fermi level is assumed to incur most of the voltage
drop near drain, the electrostatic potential is not influenced by the change. Then
n = ni exp [φ/Vth], leaving the solution independent on Vds, and thus incapable of
finding the DIBL effect. To compensate for this approximation, a superposition
different from (2.33) which solves the 1D equation in the transversal direction is
applied. The 1D part is solved in the lateral direction

∂2φ

∂x2
=

q

εSi
ni exp [φ0/Vth] (2.35)

subject to the boundary conditions φ0(−L/2) = φ0(L/2) = Vbi. The 2D
remainder

∂2φ1

∂x2
+

∂2φ1

∂y2
=

q

εSi
ni exp(φ0/Vth) [exp(φ1/Vth) − 1] (2.36)

with φ1 = 0 at source and drain and continuous derivative with respect to
permittivity at body/insulator interface. Arguing that the most significant
change in the x-direction has been captured by φ0(x), the 2D equation is solved
with a Taylor expansion of the separation of variables truncated to the first term.

The threshold voltage is then found to be

VT = VFB + ηVth
cosh(θ)

cosh(θ/2)
ln(QT /nitSi) − φ0m

[
cosh(θ)

cosh(θ/2)
η − 1

]
(2.37)

where θ and η are some geometrical constants from the 1D solution, related to
the Debye length. QT is the inverse carrier density found by the long-channel
approximation

VT,long = VFB + Vth ln(QT /nitSi) (2.38)

and identified with numerical I-V simulations or measured data. A transport
mechanism for this model has not been suggested by the authors.
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2.2.3 Quasi-2D approaches for a strongly doped body

Including the effects of dopants invalidates a lot of the previously discussed
modeling procedures. Depending on how high the body doping is, a single-
gate behavior can be expected for high doping densities, and a combination of
single-gate and volume inversion can be expected for lower doping concentrations.

Munteanu’s approach

Empirical functions for modeling the electrostatic potential can be used as a
solution to (2.1). Having found a suitable candidate with a few adjustable
parameters to account for some intricate modeling details, may leave a compact,
non-iterative expression. The advanced mathematical development of a series
expansion can thus be avoided.

A simplified superposition of (2.1) can be found in Munteanu et al11,
where the electrostatic potential is divided into separate transversal and lateral
solutions, giving

φ(x, y) = φS(x) × A(x, y) (2.39)

where φS is the surface potential on the body/insulator interface, and A(x, y) =
B(x,y)

B(x,y=0) is an envelope function, modulating the surface potential. In short-
channel undoped devices, it is common to assume some kind of parabolicity in
sub-threshold.30 32 33 34 However, for a relatively highly doped body, in the order
of 1017cm−3 or above, the volume inversion changes to two conducting channels
even for sub-threshold conditions. The envelope function is developed from
(2.5)15 and17 including the quasi-Fermi potential VF (x) along the conducting
surface channel.

Utilizing the quasi-Fermi potential as proposed in35 for bulk MOSFETs
(and originally for sub-threshold conditions), which postulates a diffusion drain
current, and expanding with a gate dependency in the last term, we get a trial
function for the quasi-fermi potential

VF (x) =2Vth
m

n
(2.40)

× ln
[
(exp [−Vdsn/Vthm] − 1) (x/L)c/(Vgs−VFB) + 1

]−1

× (atSi)Vds/3c

where m and n are structural parameters, and a, b, c are empirical adjustable

20



Chapter 2. Review of DG MOSFET modeling

parameters. The surface potential differential equation is found with

d2φS

dx2
− 2Cox

εSitSi
φS =

1
εSitSi

[qNStSi − 2Cox(Vgs − VFB − φF ) + qi] (2.41)

where qi is the inversion charge evaluated either in a quantum-mechanical or the
classical integral as a function of φS(x), creating an implicit expression for the
approximate solution of (2.41):

φS(x) = C1 exp(m1x) + C2 exp(−m1x) − R(x)
m2

1

(2.42)

To fill the boundary conditions, C1, C2,m1 are derived from geometrical and
electrical properties, and R(x) in addition consists of the inversion charge density.

Drain current is calculated with a classical drift-diffusion12 approach with
constant mobility

IDD = μVth [1 − exp(−Vds/Vth)] /
∫ L

0

dy∫ tSi

0
qni exp(φ(x, y)/Vth)

(2.43)

which can be evaluated numerically and gives good results compared to both
numerical and experimental data down to an aspect ratio (length/height) of 3.

UFDG

A modeling procedure dealing with short-channel effects have been developed
at University of Florida, Gainsville.36 The modeling accounts for carrier-
energy quantization in the body, quasi-ballistic or ballistic carrier transport,
capacitances, and parasitics.

∇2φ(x, y) =
q

εSi
(NS) (2.44)

The modeling is divided into two distinct areas, weak inversion and lower,
and strong inversion. For weak inversion, the electrostatics is modeled with a
superposition (2.33), solving for the transversal direction in 1D, neglecting the
free carriers, assuming that the uniform body doping NS is dominant in the
electrostatics, by a second-order polynomial.34

Finding an average channel length for the diffusion-dominated current is based
on the encroachments of the depletion regions associated with the source and
drain contacts, giving

Le = L − Ls − Ld + 2LD (2.45)
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2.2.4 Hydrodynamic/energy balance model

where LD is the Debye length defined by NS and

Ls
∼= 2[φb − φs(min)]∣∣∣∂φ(x,y)

∂y

∣∣∣
x=−L/2

(2.46)

and

Ld
∼= 2[φb − φs(min)] + Vds∣∣∣∂φ(x,y)

∂y

∣∣∣
x=L/2

(2.47)

The modeling of inversion carrier density is based on summation of sub-bands for
an infinite square well at the virtual cathode near source, resulting in a compact
quasi-Poisson and Scrödinger solver. Current is found by utilizing the ballistic or
quasi-ballistic behavior, described in the NanoMOS section above.

Fourier expansions and Green’s function

A popular approach to find the solution of the Laplace equation (2.32) has been to
apply Fourier analysis on the 2D rectangular body. Even for doped bodies, where
the mobile charge is considered negligible compared to the dopants, Poisson’s
equation

∇2φ(x, y) = K (2.48)

where K = qNS/εSi is constant for a uniform doping, can be reduced to the
Laplace equation by use of a proper trial function37. Oh et al29 proposed to use a
Fourier expansion of modes, each with a characteristic length, for the Laplace part
of the superposition (2.33). By truncating the series first found by Woo38, to the
lowest-order mode a more physical model can be obtained. Instead of assuming
the transversal parabolic potential profile, a half-period cosine function is used,
enforcing a continuous displacement field across the body/insulator interface.

Recently a Green’s function approach has been used to solve Laplace parts
of the Poisson’s equation in a long-channel single-gate device, resulting in good
agreement for the electrostatics in sub-threshold conditions39.

2.2.4 Hydrodynamic/energy balance model

Current calculation with the drift-diffusion model neglects non-stationary
transport effects such as velocity overshoot, carrier temperature associated
diffusion, and the dependence on impact ionization rates. Derived from the
Boltzmann transport equation, the energy balance model is built to capture these
mechanisms and decomposes to the hydrodynamic model when the equations are
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Chapter 2. Review of DG MOSFET modeling

made independent on carrier mobility variations. One energy balance model40,
which is implemented in Silvaco Atlas, is used for verification of ballistic transport
models.

2.2.5 Conformal mapping - outline

Compact models which deals with the two-dimensional nature of double-gate
devices have been investigated intensively. Conformal mapping was introduced
as a technique to cope analytically with the 2D effects of scaled device and the
first example on inclusion of this technique was shown in41 where conformal
mapping was used to map the fields of a semi-infinite slab of silicon onto a
complex plane with analytical solutions. Taking into account the electrostatic
fields from dopants into the boundary conditions for the 2D solution, gave rise
to a very powerful method where most of the parameters dealing with short-
channel effects in long-channel models could be eliminated due to the physical
modeling. This modeling was later refined by Østhaug et al42, by simplifying the
integrals associated with the conformal mapping procedure. The modeling was
also verified against published experimental results from sub-100nm single-gate
devices with good agreement.

Based on the good results, we have applied a conformal mapping procedure
to a double-gate device, see Refs43,44,18,45,46,47 where a device with aspect
ratio (length/height) of 2 was considered. Here, significant 2D effects can be
expected and a short-channel modeling procedure is necessary. The procedure
has even been shown to work well in a quasi-3D analysis of gate-all-around (GAA)
devices48,49,50.
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Chapter 3

Conformal mapping

Conformal mapping is a collection of transformations z = x + jy = f(w =
u + jv) which mathematically preserves angles and directions of curves through
a point z0 except at points where f

′
(z) is zero. Conformal mapping is

important in engineering mathematics, because boundary value problems in two-
dimensional potential distributions may be solved in a simpler region than the
original. For harmonic functions, which satisfy Laplace’s equation ∇2h = 0, the
transformation f is also harmonic, and may be solved in the mapped space. A
mapping that allows a complex multi-angeled area in the x, y ∈ Z-plane to be
transformed into the upper half of the u, v ∈ W complex plane, is the Schwarz-
Christoffel transformation. In this transformation, f maps the real axis of W to
the edges of the polygon in Z. If we postulate that the area in Z is solid and thus
simply connecteda, the transformation is bijective, which means that f maps the
two open sets into one another, in a one-to-one transformation.

This transformation allows us to find a solution of the electrostatic problem
in the W -plane, and then map it back to the Z-plane. In Weber,51(pp.303) the
electrostatic solution to the Laplace equation is further shown to be invariant to
conformal mappings of the geometry at all regular points.

3.1 Schwarz-Christoffel transformation of the
double-gate MOSFET

We are interested in finding the mapping of the device body from the Laplace
equation. For x, y, u, v ∈ �, the independent complex variable z = x + jy and

aA part of the Riemann mapping theorem
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3.1 Schwarz-Christoffel transformation of the double-gate MOSFET

the mapping function f(z) = u(x + y) + jv(x, y), complex analysis implies that
∇2u = 0 and ∇2v = 0.

Considering the double-gate MOSFET, we find that the Schwarz-Christoffel
transformation is a good candidate to map the rectangular structure onto a
complex half-plane. The double-gate device, consisting of four right-angled
corners, has the following Schwarz-Christoffel transformation with the four sides
mapped onto the real axis in W

∂z

∂w
=

kC√
(1 − w2)(1 − k2w2)

(3.1)

This is derived from the general transformation rules discussed in Appendix 1.1.
This way the entire device boundary is mapped into the real axis of the W -
plane. The corners of the body, which are identified as the inverse square root
singularities in (3.1), are located at the following positions{

u1 = 1, u2 =
1
k

, u3 = −1
k

, u4 = −1
}

(3.2)

when moving along the positive real u-axis to infinity and back from negative
infinity toward zero, illustrated in figure 3.1.

Figure 3.1: Mapping between corners and the real axis in W -space.

The integral form of (3.1) becomes

z = kC

∫ w

0

∂w′√
(1 − w′2)(1 − k2w′2)

+ C1 = kC F(k, w) + C1 (3.3)

where C1 is an integration constant which is zero if z = 0 defines the center of
gate 1 (see 3.1) and maps into w = 0. Both C and the elliptic modulus k are
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Chapter 3. Conformal mapping

constants to be determined from the device geometry. F is defined by the general
Legendre elliptic integral of the first kind:

F(k, w) =
∫ w

0

dw′√
(1 − w′2)(1 − k2w′2)

(3.4)

Calculation of this integral is well defined and can be performed with simple
iteration algorithms, look-up tables, or regular power expansions, see Appendix
(1.1).

3.1.1 Geometric constants C and k

To complete the mapping between Z and W , the constants C and k have to be
identified.

The standard elliptic integral of the first kind for F is defined for real values
of 0 ≤ w ≤ 1. Using (3.1) with C1 = 0, the first corner along the x-axis at L/2
corresponding to u1 = 1, v = 0 gives the following relationship between k and C

L = 2kC

∫ 1

0

du′√
(1 − u′2)(1 − k2u′2)

= 2kC K(k) (3.5)

Here, K(k) = F(k, 1) is the complete elliptic integral of the first kind. Each of
the 4 intervals along the boundary is defined as a quarter-period52. The quarter-
period K(k) and K(k

′
) is defined in terms of the parameter k2 and k′2 where

k′ =
√

1 − k2. Then, because F(k, 1/k) = K(k) − K(k′)

jH = kC [F(k, 1/k) − F(k, 1)] = jkC K(k′) (3.6)

where H is the height of the rectangle. From (3.5) we have

C =
L

2k K(k)
(3.7)

and combining (3.6) and (3.7) gives

L

2H
=

K(k)
K(k′)

=
K(k)

K(
√

1 − k2)
(3.8)

from which k is determined. Hence the transformation in (3.3) simplifies to

z = x + jy =
LF(k, u + jv)

2 K(k)
(3.9)
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3.1.2 Expressions along boundaries and symmetry lines

3.1.2 Expressions along boundaries and symmetry lines

Along the boundary, F(k, u) may be expressed in terms of the standard elliptic
integral of the first kind as follows45:

For 0 ≤ u < 1,

F(k, u) =
∫ u

0

dt√
(1 − t2)(1 − k2t2)

(3.10)

For 1 < u ≤ 1/k,

F(k, u) = K(k) + j

∫ u

1

dt√
(1 − t2)(1 − k2t2)

(3.11)

= K(k) + j

[
K(
√

1 − k2) − F

(√
1 − k2,

√
1 − k2u2

1 − k2

)]

For 1/k < u < ∞,

F(k, u) = K(k) + j K(
√

1 − k2) −
∫ u

1/k

dt√
(t2 − 1)(k2t2 − 1)

= F

(√
1 − k2,

√
1 − k2u2

1 − k2

)
− j K(

√
1 − k2) (3.12)

In addition, we have the symmetry property

F(k,−u) = −F(k, u) (3.13)

The mapping expressions along the boundary thus become

x =
L

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(k, u)/ K(k), 〈−1, 1〉 gate 1
1

〈
1, 1

k

〉
source

F(k, 1
ku )/ K(k),

〈
1
k ,− 1

k

〉
gate 2

−1,
〈− 1

k ,−1
〉
drain

(3.14)

y = H

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 〈−1, 1〉 gate 1
1 − F

(
k′,

√
1 − k2u2/k′) / K(k′),

〈
1, 1

k

〉
source

1,
〈

1
k ,− 1

k

〉
gate 2

1 − F
(
k′,

√
1 − k2u2/k′) / K(k′),

〈− 1
k ,−1

〉
drain

(3.15)

This mapping is illustrated in the lower part of figure 3.2.
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Chapter 3. Conformal mapping

Figure 3.2: The body of the DG MOSFET mapped into the upper half of the (u, jv)-plane.
The insets show the mapping functions for the u-axis (lower), the jv-axis (upper left) and
the circle with radius 1/

√
k. These represent the boundary, the gate-to-gate symmetry line,

and the source-to-drain symmetry line, respectively. In this plot k = 0.4278.

Similarly, holding u = 0, the transformation of the jv-axis for the interval
v ∈ [0,∞〉 to y ∈ [0, H〉 can be done with

y = H F
(√

1 − k2,
v

1 + v2

)
/ K

(√
1 − k2

)
(3.16)

From (3.16) we get the upper left plot in figure 3.2. A transformation which is
also important is that of the source-drain symmetry line. In transformed W -space
the line is a semicircle going through v = 1/

√
k. We prove this by postulating

that y = H/2 corresponds to the imaginary part of the general transformation
rule in (3.9) and that this remains constant as we move along the semi-circle
v =

√
1/k − u2. This implies that the point (L/2, H/2) ∈ Z corresponds to the

point (1/
√

k, 0) ∈ W . Solving for the source-drain symmetry line at y = H/2 we
find

x =
L

2
F

(
2
√

k

1 + k
,
√

ku

)
/ K

(
2
√

k

1 + k

)
(3.17)

shown in the upper right of figure 3.2. Here, θ = cos−1(
√

ku).
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3.1.3 Orthonormal grid in the Z-plane

3.1.3 Orthonormal grid in the Z-plane

Because of the complexity in the transformation function, it is hard to create a
grid in W -space and then transform it to Z-space and end up with an orthonormal
spacing. It is useful to create an orthonormal grid in real space in (x, y)-
coordinates and then transform it through the elliptic functions, which can
express the inverse of F. The elliptic functions are sn, cn, dn, leading to the
inverse of equation (3.9)

w = u + jv =
sn(x|k2) dn(y|k′2) + j cn(x|k2) dn(x|k2) sn(y|k′2) cn(y|k′2)

cn(y|k′2)2 + k2 sn(x|k2) sn(y|k′2)
(3.18)

where the elliptic functions in this expression are reviewed in Appendix 1.1. The
orthonormal grid in the Z-plane when transformed to the W -plane is shown in
figure 3.3.

Figure 3.3: The orthonormal grid in Z-space transformed into W -space. Note the semi-
circle at u2 + v2 = 1/k, which represents the line for y = H/2. In this plot k = 0.4278.
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Chapter 4

DG MOSFET electrostatics

In order to calculate currents and capacitances in the double-gate MOSFET, we
have to model the device electrostatics. Fields and potentials have to satisfy
Poisson’s equation (2.1) to a certain precision.

Solutions of Poisson’s equation may be separated into several regimes, where
it is possible to isolate certain dominating phenomena and disregard unnecessary
complexity in finding possible solutions. Here, these regimes are chosen to be
called:

• Sub-threshold

• Near threshold

• Strong inversion

The regime definitions clearly depend on the threshold value, and in this
report, the threshold voltage is defined to be the gate-source voltage bias where
the vertical field at the gate changes sign at the gate-to-gate symmetry axis (for
zero drain bias). There have been several attempts to define a universal threshold
voltage for this type of device. Among these are the traditional gate bias for where
the body band bending equals 2φb, a gate bias where the drain current versus
Vgs has maximum curvature, and the present definition.53

In undoped/lightly doped devices, the mobile carrier density that is required
to turn on the transistor far exceeds the channel doping concentration, and the
2φb surface potential definition no longer serves as an indicator of the turn-on
condition.

A problem with the proposed threshold voltage is that the value increases as
the drain voltage increases, thereby losing it conventional meaning as a method
to capture short-channel (DIBL) effects. However, in the modeling proposed later
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4.1 Device structure

in this thesis, the short-channel effects are captured by other modeled relations,
related to the 2D effects.

For the threshold voltage, the sign change discussed above indicates that the
electrostatics in the body is becoming dominated by charge carriers rather than
by capacitive effects described by Laplace’s equation(2.32).

4.1 Device structure

In this work, a simplified model device template has been developed based on a
more physical device template described in Appendix B.

We consider a double-gate MOSFET which has a channel length of L = 25
nm, a nitrided oxide that is tox = 1.6 nm thick, and a body of lightly doped silicon
that is tSi = 12nm high. Nitrated oxide and silicon have permittivities of εox = 7
and εSi = 11.8, respectively. The source/drain contact surfaces are defined to be
sharp boundaries where on the body side we have an acceptor concentration of
NS = 1015cm−3 and, on the contact side a Schottky metal with work function
4.17 eV, corresponding to that of n+ silicon. We choose metal contacts to obtain
an equipotential surface, no depletion region and negligible series resistance in
the contacts. The built-in voltage is found with

Vbi = Eg/2q + φb +
kBT

2q
ln

NC

NV
(4.1)

where φb = Vthln(NS/ni) is the potential difference between the Fermi level of
the intrinsic silicon and the doped p-type silicon, and Eg is the silicon band gap.
The last term is a small shift of approximately Vth/2, which emerges from the
difference in electron density states between the conduction and the valence band.
NC and NV are the effective densities of states defined as

NC = 2
(

mnkBT

2π�2

)3/2

, NV = 2
(

mpkBT

2π�2

)3/2

(4.2)

The work function difference between gate metal and the silicon body gives
rise to the flat-band voltage

VFB = (ϕm − (χ + Eg/2 + qφb)) /q (4.3)

where ϕm is the gate metal work function, and χ is the electronic affinity for
silicon.

In this thesis, we have assumed a midgap gate metal with work function
ϕm = 4.53V (which corresponds to that of molybdenum).
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Chapter 4. DG MOSFET electrostatics

4.2 Sub-threshold

For sub-threshold conditions, we assume that the body is dominated by the
solution of the 2D Laplace electrostatics. The assumption is based on the fact
that the field strength at the gates emerging from the mobile charge carriers
are much weaker than the fields related to the capacitive coupling between the
contacts and the gates. Therefore, we neglect the body charge term in Poisson’s
equation, converting it to a Laplace equation. This assumption has been verified
by numerical simulations for the device considered.

4.2.1 Extended device body

Another assumption is that the oxide thickness is relatively small (compared to
the body thickness and length). In that case, we may replace the oxide layers by
dielectrically equivalent layers of undoped silicon for the purpose of modeling the
device electrostatics. This is possible since the electrical field is perpendicular to
the gates and therefore also predominantly so in the oxide. Hence, the extended

Figure 4.1: The double-gate MOSFET extended body, illustrating the increased effective
thickness of the silicon body, including the transformed oxide thickness tox to an equivalent
silicon field displacement thickness t

′
ox.

silicon body will have an effective thickness of H = tSi + 2t
′
ox where t

′
ox =

toxεSi/εox as indicated in Figure 4.1.
The rectangular extended body may now be mapped onto the complex plane

using conformal mapping described in chapter 3, with the transformation in (3.9).
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4.2.2 Boundary conditions

We are then ready to solve Laplace’s equation in the transformed W -plane.

4.2.2 Boundary conditions

To obtain the potential distribution in W -space, we consider the contact
boundaries to be equipotential at

φgs1 = Vgs1 − VFB

φgs2 = Vgs2 − VFB (4.4)

for the two gates, and

Vbi , Vbi + Vds (4.5)

for the source and drain, respectively. These values are mapped to the boundary
in the W -plane as illustrated in Figure 3.1.

4.2.3 Oxide gaps

Considering the extended body, we find that the boundary is piecewise
equipotential except at the oxide gaps, where we have a near-linear potential
variation between the gates and the source and drain as shown by numerical
simulationsa. For simplicity, the transitions can be modeled by creating a
number of different equipotential pieces across the gaps. If we choose to use
only two pieces, we may select a point inside the gap to which we extend the
adjoining contact potentials. Alternatively, the whole gap can be set to the
middle potential between these electrodes. The potential distribution in the body
depends slightly on the approach used. However, the oxide gaps are small and
relatively insignificant compared to the size of the contacts, and good agreement
with numerical simulations is found when choosing any of these approaches.

For simplicity, in deriving expressions for the body potential, the contributions
from the oxide gaps are assumed to be negligible. However, in all the model
calculations, we have implemented a correction to account for the oxide gaps.
This is done by extending adjoining the electrodes to a position located on the
boundary 7/8t

′
ox from the gates. This is found to give an accuracy in the mV

range for the potential at the body center.

aThe precise potential variation can be obtained by using another, suitable conformal
mapping procedure, involving only one isolated source or drain corner and the neighboring
gate electrode.51

34



Chapter 4. DG MOSFET electrostatics

4.2.4 Body potential distribution

A solution of the Laplacian in the W -plane that describes the body potential, is
given by the following integral along the u-axis:51

φ(u, v) =
v

π

∫ +∞

−∞

φ(u′)
(u − u′)2 + v2

du′ (4.6)

where φ(u) is the boundary conditions from (4.4)-(4.5) mapped to the u-axis. It
may be solved for

u ∈ 〈−∞,∞〉 , v ∈ [0,∞〉
resulting for general asymmetric biasing in18

φ(u, v) =
1
π

{
(Vgs2 − VFB)

[
π − tan−1

(
1 − ku

kv

)
− tan−1

(
1 + ku

kv

)]

+ (Vgs1 − VFB)
[
tan−1

(
1 − u

v

)
+ tan−1

(
1 + u

v

)]
(4.7)

+ Vbi

[
tan−1

(
1 − ku

kv

)
− tan−1

(
1 − u

v

)]

+(Vbi + Vds)
[
tan−1

(
1 + ku

kv

)
− tan−1

(
1 + u

v

)]}

The various terms in (4.7) may be reorganized to reflect the effects of the potential
drops across the four oxide gaps, giving for the case of symmetric gate biasing
(Vgs1 = Vgs2)

φ(u, v) =
1
π

{
π (Vgs − VFB) + (Vbi + VFB − Vgs) tan−1

(
1 − ku

kv

)

+ (Vbi + Vds + VFB − Vgs) tan−1

(
1 + ku

kv

)
(4.8)

− (Vbi + VFB − Vgs) tan−1

(
1 − u

v

)

− (Vbi + Vds + VFB − Vgs) tan−1

(
1 + u

v

)}

It is also possible to find solutions for the symmetry-lines of the Z-plane (see
Figure 4.1), in terms of the standard form of the elliptic integral (3.10), and the
transformations (3.16)-(3.17).

Solving for u = 0 gives the potential distribution along the v-axis,
corresponding to the gate-to-gate symmetry line in the Z-plane.43

35



4.2.5 Self-consistency at contacts

φGG(v) =
v

π

∫ ∞

−∞

φ(u
′
)

u′2 + v2
du

′
=

1
π

{
2(Vgs − VFB) tan−1

(
1
v

)

+ (Vgs − VFB)
[
π − 2tan−1

(
1
kv

)]
(4.9)

−(2Vbi + Vds)
[
tan−1

(
1
kv

)
− tan−1

(
1
v

)]}

For zero drain bias, (4.9) simplifies to

φGG = Vgs − VFB +
2
π

[
tan−1

(
1
kv

)
− tan−1

(
1
v

)]
(Vbi − Vgs + VFB) (4.10)

In this case, the electrical field is zero at the device center (x = 0, y = H/2).
Taking dφGG/dv = 0, the center point is found to correspond to v = 1/

√
k in

accordance with (3.17). In chapter 3 we found that the source-to-drain center
line corresponds to a circle of radius 1/

√
k in W -space. Hence, the relationship

is v =
√

1/k − u2 for this symmetry line in the W -plane. Substituting this into
(4.8) results in the following expression for the potential distribution along the
source-to-drain symmetry line

φ (u)|v=1/
√

k =
1
π

{
π (Vgs − VFB) − (Vgs − VFB − Vbi) tan−1

(
(1 − ku) /

(
k

√
1
k
− u2

))

− (Vgs − VFB − Vbi − Vds) tan−1

(
(1 + ku) /

(
k

√
1
k
− u2

))

+ (Vgs − VFB − Vbi) tan−1

(
(1 − u) /

(√
1
k
− u2

))
(4.11)

+ (Vgs − VFB − Vbi − Vds) tan−1

(
(1 + u) /

(√
1
k
− u2

))}

4.2.5 Self-consistency at contacts

Near the source and drain contacts, the potential is relatively large, allowing a
significant amount of electrons to accumulate, depending on the bias condition.5

It is necessary, to consider this electrostatic effect even under subthreshold
conditions. In subthreshold this effect is included simply by adjusting the
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Chapter 4. DG MOSFET electrostatics

boundary conditions at source and drain. Near and above threshold, the full
body charge has to be considered.

Applying a 1D Poisson’s equation to the regions and considering a linear
approximation for the potentials, the surface field ES near the source can be
written as

ES = ES1 + ES2 ≈ qNC

εSi

∫ ∞

0

exp
(
−ES

Vth
x

)
dx + ES2 =

qNCVth

εSiES
+ ES2 (4.12)

where ES1 and ES2 are the electrical fields associated with the electrons and
the capacitive coupling, respectively, and NC is the electron concentration at the
contact interface. Note that the above linearization is permitted only when ES

is sufficiently large, i.e. near-linear within a drop of a thermal potential (Vth) of
φ(x) away from the source.

From 4.12, we obtain

ES =
ES2

2

[
1 +

√
1 + 2

(
E0

ES2

)]
(4.13)

where E0 =
√

2qNCVth/εSi is the approximate 1D electron charge contribution
to the total field at one contact. This charge gives rise to a contribution to the
interface potential, which can be obtained by integrating over the total electrical
field (4.13). To lowest order, this contribution becomes

ΔφS ≈ Vth

2

(
E0

ES

)2

(4.14)

We obtain the electrical field at the contacts by differentiating (4.11) and
applying the transformation in (3.17)

ES2 = − 2

√
1 − 4k

(k + 1)2
K
(

4k

(k + 1)2

)
/ ((k − 1)Lπ)×

{
Vds +

√
k
[
−4VC +

(√
k − 2

)
Vds + 4 (Vgs − VFB)

]}
(4.15)

where VC = Vbi − ΔφS is the new modified contact potential for the capacitive
solution.

In the case of the drain contact, we replace ES2 by ED2, ES by ED, ΔφS by
ΔφD and set the new 2D drain boundary condition to VC = Vbi + Vds − ΔφD.
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4.2.6 Model simulations

The equations derived above have been applied to the physical structure described
in Section 4.1, and some results are shown in this section.

Figure 4.2: Device potential distribution in the transformed W -plane for a rectangular grid
in Z-plane. The drain contact is biased at Vds = 0.1, and molybdenum gates at Vgs = 0V .

The body potential topography, calculated from (4.6)-(4.8) for Vds = 0.1,
is shown in Figure 4.2. The calculation is performed for a rectangular grid in
Z-space transformed to W -plane as shown in Figure 3.3. Then this potential
distribution in the W -plane is mapped back to the Z-plane resulting in Figure
4.3.

The corresponding Z-plane distribution for Vds = 0 is shown in Figure 4.4.
The potential distribution in the present device always retains a non-negligible
curvature in the x-direction, as opposed to the long-channel case. This curvature
can be expressed as follows for the device center (symmetric gate bias)

d2φ

dx2
=

8 (1 − k)√
1/k (1 + k)2 L2π

(2Vbi + Vds − 2Vgs + 2VFB)

[
K

(
4k

(1 + k)2

)]2

(4.16)

Adjusting the drain bias affects the entire potential profile. Thus, the energy
barrier over which an electron at the source has to climb decreases with increasing
Vds. This is known as the drain-induced barrier lowering (DIBL), an important
short-channel effect.
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Figure 4.3: The potential distribution in the Z-plane for drain biasing of Vds = 0.1V and
symmetrical gates at Vgs = 0V .

An illustration of the potential distribution along the two symmetry axes is
shown in Figure 4.5. The modeling is compared with numerical simulations,
revealing an excellent agreement. For the lower line, illustrating the gate-to-
gate potential, we note that the highest potential is located in the device center.
This means that for subthreshold, symmetric conditions, the main current path
will be along the source-to-drain symmetry axis. Knowing that the electron
concentration changes exponentially with the potential, the modeling of the
potential distribution in the lateral (x) direction is of crucial importance for
calculating the drain current.

Comparing Figures 4.3 and 4.4, we notice that the minimum potential position
shifts toward the source with increasing Vds. For conditions where all the
assumptions above hold, the important short-channel effects in sub-threshold
are found from the potential distribution in (4.11). We note that no adjustable
parameters are needed in the present model to accurately estimate the DIBL
effect in the DG MOSFET.

4.2.7 Modeling of DIBL

The analytical source-to-drain expression enables us to investigate the DIBL-
effect more carefully. Differentiating (4.11) with respect to u, we obtain the
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Figure 4.4: The potential distribution in the Z-plane for zero drain bias and symmetrical
gates at Vgs = 0V .

Vds-dependent position um of the potential minimum along the SD-symmetry
line from

dφ

du
=

(1 − k)(Vds − k[2u(2Vbi + Vds − 2Vgs + 2VFB) − Vds])

π
√

1
k − u2(4k2u2 − (1 + k)2)

= 0 (4.17)

resulting in

um =
(1 + k)Vds

2k(2Vbi + Vds − 2Vgs + 2VFB)
(4.18)

Evaluating (4.11) at u = um gives the minimum source-to-drain potential (the
maximum source-to-drain barrier). The corresponding x-value is found with the
mapping equation (3.17).

Figure 4.6 illustrates the barrier shift in both potential minimum and its
location along the source-drain symmetry line. Correspondingly, gate-to-gate
potential distributions at the minima are shown in Figure 4.7. The model
calculations are compared and verified against numerical simulations.

Figures 4.8 and 4.9 show the DIBL-effect in terms of location of the potential
minimum and its shift along the source-to-drain symmetry line versus Vds. For
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Figure 4.5: Potential distributions along the source-to-drain (SD) and gate-to-gate (GG)
symmetry lines for zero drain and gate bias in subthreshold conditions. The modeling is
shown with solid lines and the crosses indicates a corresponding numerical simulation of the
device.

the device specified in Section 4.1, we have calculated the potential minimum
and its location as a function of the device length 12.5nm ≤ L ≤ 50nm.

For the shortest device length, the barrier lowering is so large that the effects
of the charge carriers on the electrostatics becomes important throughout the
body. This effect is not included in the modeling in Figures 4.8 and 4.9 giving
rise to a deviation from the numerical simulations. The full effect of body charge
is discussed in Section 4.3.

For larger device lengths, the model shows good agreement with numerical
simulations.
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Figure 4.6: Drain-source barrier for Vds = {0.05, 0.25, 0.5}V , indicating DIBL-effect in
subthreshold. Solid lines indicate the modeling and crosses indicate corresponding numerical
simulations.

Figure 4.7: Gate-gate potential at the source-drain minimum for Vds = {0.05, 0.25, 0.5}V ,
and Vgs = 0V in subthreshold. The modeling is shown with solid lines and the crosses
indicates the numerical simulations.
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Figure 4.8: Shift of source-drain barrier location versus Vds for device lengths L =
{50, 25, 20, 15, 12.5}nm. The silicon and oxide thicknesses are held constant. The gates are
biased at Vgs = 0 which corresponds to subthreshold conditions. The modeling results are
shown as solid lines, while numerical simulations are indicated with crosses.
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Figure 4.9: The drain influence on the minimum potential along the source-drain symmetry
line for device lengths L = {50, 25, 20, 15, 12.5}nm. The silicon and oxide thicknesses are
held constant. The gates are biased at Vgs = 0V which corresponds to subthreshold
conditions. The modeling results are shown as solid lines, while numerical simulations are
indicated with crosses.
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4.2.8 Asymmetric gate biasing

Applying a different bias on the two gates, or equivalently, using different gate
materials at the two gates, strongly affects the potential distribution in the
body.54 When utilizing the properties of the gate material specified in Section 4.1
at gate 1 and p+ polysilicon at gate 2, we find that the barrier is shifted from the
source-to-drain symmetry line towards gate 1, establishing an inversion channel
at that silicon/oxide interface for Vgs = 0. The modeling of the sub-threshold
electrostatics is shown in Figure 4.10. A numerical simulation of the potential
distribution, shown in Figure 4.11, also indicates the inversion channel close to
gate 1.

Figure 4.10: Asymmetric operation of device with molybdenum and p+ polysilicon gate
materials at gate 1 and gate 2 respectively. Inversion carriers are shifted to the gate 1
interface. Shown for Vds = Vgs = 0V .
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Figure 4.11: Numerical simulation of asymmetric operation of device with molybdenum
and p+ polysilicon gate materials at gate 1 and gate 2 respectively. Inversion carriers are
shifted to the gate 1 interface. Shown for Vds = Vgs = 0V . The potential reference is the
source contact Fermi level.
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4.3 Near threshold

When higher gate biases are applied, the device moves into the near threshold
regime. This is the regime where the electronic and capacitive electrostatic
contributions are comparable. Increasing the gate-source bias, the body charge
will eventually dominate the body electrostatics. The subthreshold to near
threshold transition is illustrated in Figure 4.12. Here, subthreshold modeling is
compared with numerical simulations for the potential at the device center versus
Vgs for zero drain bias. We note that the subthreshold Laplace solution becomes

Figure 4.12: Center potential calculated from the Laplace subthreshold model shown with
solid lines and the numerical simulations of Poisson’s equation are indicated with crosses,
versus Vgs for Vds = 0V .

increasingly erroneous as the gate bias approaches threshold. According to the
subthreshold equation (4.10), for Vds = 0, the threshold condition (flat gate-to-
gate potential distribution) is met when Vgs = Vbi + VFB ≈ 0.36V (symmetric
gates). However, the numerical simulation indicates that threshold occurs at
Vgs ≈ 0.25, indicating the strong influence of the inversion charge. Therefore, a
self-consistent treatment that takes into account both the mobile charge and the
capacitive coupling has to be introduced for this regime. To this end, we consider
the self-consistent potential distributions along the two symmetry axis. Suitable
modeling expressions are applied, whose parameters are determined from the
boundary conditions and by enforcing consistency using Poisson’s equation.
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4.3.1 Superposition

To solve Poisson’s equation with both mobile carriers and the 2D capacitive
coupling, we propose a superposition modeling approach when

φ(x, y) = φ1(x, y) + φ2(x, y) (4.19)

where φ1(x, y) is the potential contribution related to the inversion charge, and
φ2(x, y) is the contribution related to the capacitive coupling.

4.3.2 Approximations used

In order to solve Poisson’s equation with the proposed superposition, we assume
that the lateral term d2φ/dx2 is relatively small near the device center. This
assumption is based on the characteristic parameter for electrostatic influence of
source and drain into the device body.33

λ =

√
εSi

2εox

(
1 +

εoxtSi

4εSitox

)
tSitox (4.20)

If λ < L/2, the assumption above will be reasonable in the interval −L/2+λ <
x < L/2 − λ. We notice that this condition also holds for a wider range when
sufficiently close to the gates. For the device considered here, we have λ ≈ L/4.

Near source and drain, d2φ/dy2 ≈ 0, a condition that was already exploited
in Section 4.2.5.

In order to find the transversal y-dependent potential contribution related to
the mobile carriers at the gate-to-gate symmetry line, we use a 1D application of
Gauss’ law.

4.3.3 Self-consistency

A range of self-consistent procedures are developed to take care of the inter-
dependent super-positioned solutions. From (4.12)-(4.14), we obtain the lateral
solution φ1(x, H/2) related to the charge carriers near source and drain as well
as modified boundary conditions for the capacitive coupling. Note that in the
following self-consistent analysis, the proper boundary conditions of the source
and drain are used, without the correction of (4.14).

Threshold voltage

Assuming zero drain-source bias, we know that the source-drain potential
minimum is in the middle of the device. We then consider the electron density
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and its distribution at the gate-to-gate symmetry line by classical Boltzmann
statistics

ns(y) =
n2

i

NS
exp

(
φ(y)
Vth

)
(4.21)

A special case is the threshold condition (Vgs = VT ), which we define as the
Vgs where the total potential φ(y) is approximately constant and close to VT −VFB

on the gate-to-gate symmetry axis. In this case the electrostatic effects of the
capacitive coupling and the free electrons are equal and opposite at this axis.
Some minor fluctuations in φ(y) is observed, owing to the small difference in the
potential distributions between that related to the capacitive coupling and that
of the inversion charge part, but this effect can be ignored.

Hence we can use the following condition,

φ(y) ≈ φ(H/2) = VT − VFB (4.22)

together with (4.21) in Poisson’s equation. Further, imposing the the condition
d2φ/dx2 = 0, the resulting one dimensional Poisson’s equation becomes:

d2φ1

dy2
=

qn2
i

εSiNS
exp

(
VT − VFB

Vth

)
(4.23)

Using this uniform electron concentration distribution, we can easily integrate
(4.23) to obtain

E1(y) =
q

εs
×

⎧⎪⎨
⎪⎩
∫H/2

t′ox
nsdy , y < t

′
ox∫H/2

t′ox
nsdy , t

′
ox ≤ y ≤ H/2

(4.24)

=
qn2

i

εSiNS
exp

(
Vgs − VFB

Vth

)⎧⎪⎪⎨
⎪⎪⎩

(
H/2 − t

′
ox

)
, y < t

′
ox(

H/2 − t
′
ox

)
, t

′
ox ≤ y ≤ H/2

=
qn2

i

εSiNS
exp

(
Vgs − VFB

Vth

)
×

⎧⎪⎨
⎪⎩

(tSi/2) , y < t
′
ox

(H/2 − y) , t
′
ox ≤ y ≤ H/2

and
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φ1(y) = −
∫ y

0

E1(y)dy (4.25)

=
qn2

i

εSiNS
exp(

Vgs − VFB

Vth
) ×

⎧⎪⎨
⎪⎩

ytSi/2 , y < t
′
ox

1
2

(
Hy − y2 − t

′
ox

2
)

, t
′
ox ≤ y ≤ H/2

We are now able to combine the solutions related to the inversion charge
(4.25) and the capacitive coupling (4.10) in (4.19). In Figure 3.2 we found that
the device middle x = 0, y = H/2 corresponds to u = 0, v = 1/

√
k in the

transformed space, which gives

φ(0, H/2) = φ1(0, H/2) + φ2GG

(
1/
√

k
)

= VT − VFB (4.26)

Substituting φ(0, H/2) from (4.25) and φ2GG(y) from (4.10) into (4.26) results in
the following self-consistent expression for the threshold voltage.

qn2
i

εSiNS

H2

8
exp

(
VT − VFB

Vth

)⎡⎣1 −
(

2t
′
ox

H

)2
⎤
⎦ = (4.27)

[
4
π

tan−1

(
1√
k

)
− 1
]

(Vbi − VT + VFB)

This can be rewritten in the form of the Lambert function (wew = c) as

Vbi − VT + VFB

Vth
exp

(
Vbi − VT + VFB

Vth

)
= (4.28)

qn2
i

εSiNS

H2

8Vth

1 −
(

2t
′
ox

H

)2

4
π tan−1

(
1√
k

)
− 1

exp
(

Vbi

Vth

)

The threshold voltage obtained from this expression for the device described in
Section 4.1 versus gate length is presented in Figure 4.13. We note that when
holding the silicon thicknesses constant, the modeling gives excellent agreement
with numerical simulations for gate lengths down to less than 15 nm. For shorter
gate lengths, the assumption of d2φ/dx2  d2φ/dy2 at the device center breaks
down since the penetration depths from (4.20) gives λ ≥ L/2. For the present
device with L = 25nm, we find VT ≈ 0.25.
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Figure 4.13: Threshold voltage dependence on gate length when holding silicon thickness
constant. The modeling is for zero drain voltage, and numerical simulations are shown with
crosses. This plot does not include the corrections associated with the oxide gaps discussed
in Section 4.2.3.

Gate-to-gate profile

Near threshold, we make the assumption that the center gate-to-gate potential
distribution φ(y) has a symmetric parabolic form, as verified by numerical
simulations. With a potential Vgs − VFB at the gate and φm + Vgs − VFB at
the device center, we have

φ(y) = Vgs − VFB + φm

[
1 −

(
1 − 2y

H

)2
]

(4.29)

In this case, the 1D-Poisson’s equation for the contribution of the electronic
charge to the potential has the form

d2φ1

dy2
=

qn2
i

εSiNS
exp

(
φ1(y) + φ2(y)

Vth

)
(4.30)

Integration of this expression leads to a self-consistent expression for φ1(y).
Applying the condition φ1(H/2) + φ2(H/2) = φ(H/2), we obtain the following
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implicit algebraic equation for φm versus Vgs,

φm =
[

4
π

tan−1

(
1√
k

)
− 1
]

(Vbi − Vgs + VFB)

− qn2
i H

2

8εSiNS
exp

(
Vgs − VFB + φm

Vth

)
× (4.31)

{
sgn(φm)

√
πVth

φm
erf

[√
φm

Vth

(
1 − 2t

′
ox

H

)]
+

Vth

φm

⎡
⎣exp

⎛
⎝−φm

Vth

(
1 − 2t

′
ox

H

)2
⎞
⎠− 1

⎤
⎦
⎫⎬
⎭

Here, ’erf’ is the error function and ’sgn’ returns the sign of its argument.

Figure 4.14: The parameter φm as a function of gate bias, compared with numerical
calculations marked with crosses. At φm = 0, the gate-to-gate distribution is flat.
(Corrections for oxide gaps are included.)

Figure 4.14 shows a comparison of the potential φm versus applied Vgs for zero
drain bias as calculated from (4.31), corrected for oxide gap effects. We observe
an excellent agreement between the model and the numerical simulation within
the range of Vgs considered. Note that slightly above threshold (VT ≈ 0.25 V
for the 25 nm device), the assumption of a parabolic form of φ(y) tends to break
down.
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In the above discussion, we have only considered zero drain voltage. The
effects of an applied drain voltage will be considered in the following sections.

Source-to-drain potential profile

Here we consider the potential distribution along the source-to-drain symmetry
axis, where also the effects of drain bias are included. A drain bias causes
a longitudinal variation in the quasi-Fermi potential, which affects the charge
distribution. In subthreshold, the body charge concentration is relatively small
and the potential distribution is mainly determined by the capacitive coupling
(see (4.7)). However, near and above threshold where the influence of the charges
is significant, we have to account for the drain-induced change in the charge
distribution. This, in turn affects the potential distribution. To describe these
inter-relationships, we have to consider the drain current and the quasi-Fermi
potential distribution in the channel.

In this section, the quasi-Fermi potential in the device center point is assumed
to be known, although its final value will be determined of an appropriate
transport model.

Solving a self-consistent system consisting of Poisson’s equation and a
transport model implies an iterative solution scheme. To achieve the initial
solution before calculating the current, we need to make a few qualified
assumptions.

To find the initial central gate-to-gate solution from the 1D Poisson’s equation,
we assumed that the curvature in the x-direction was small, see previous sections.
This was justified by the observation that the region between the penetration
depths of the source and drain contacts is almost flat and thus the charges in
this area have their main portion of mirror charge in the gate direction. We can
then expect a relatively flat distribution of electrons in the x-direction, resulting
in that d2φ/dx2 << d2φ/dy2.

In the previous section, we assumed a parabolic form of the total potential at
the gate-to-gate symmetry line, which lead to an analytic, implicit expression for
the center potential φm. However, here we instead make the parabolic assumption
for the potential contribution φ1(0, y), related to the charge, in order to facilitate
the generalization of our analysis.

To find a boundary condition for the center point φ1(0, H/2) in (4.19), we
assume a parabolic shape of the gate-to-gate potential contribution related to
the charge. Near threshold, this approximation has the same order of precision
as that of (4.29).

φ1(0, y) = φ1m

(
1 −

(
1 − 2

y

H

)2
)

(4.32)
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The center potential φ1 is referenced to the potential at the gate metal interface
(Vgs−VFB) of the extended body, with φ1(0, 0) = 0 and φ1(0, H/2) = φ1m, where
we can find φ1m from Poisson’s equation. From (4.32), we find that

d2φ1

dy2
= −8φ1m

H2
(4.33)

Hence, for the device center, Poisson’s equation can be written as

−8φ1m

H2
=

q

εSi

n2
i

NS
exp((φ1m + φ2(0, H/2) − VF )/Vth) − d2φ1

dx2
(4.34)

To obtain an initial approximation for φ1m, we set d2φ/dx2 equal to zero in the
initial solution.

On the other hand, to find potential distributions arising from the electron
populations near the source and drain contacts, we can use a 1D Poisson’s
equation. Integrating twice over these charges, we find solutions for φ1S(x) and
φ1D(x) close to the contacts, which are improved compared to that of (4.12). We
may also assume that the quasi-Fermi potential is constant close to the contacts.

Next, we locate the two points along source-to-drain symmetry axis where
the charge-associated field lines change direction from mainly in the y-direction
to mainly in the x-direction, x = {xS , xD}, on the source and drain side,
respectively.

To obtain the full potential distribution along the source-to-drain symmetry
line, we introduce a parametrized modeling expression φ̂1(x,H/2), where the
parameters are determined by the five locations discussed above, i.e.,

• The contacts, φ̂1(±L/2, H/2) = 0

• Change in field direction, φ̂1(x{S/D}, H/2) = {φ1S , φ1D}

• The center point, φ1(0, H/2)

The test function parameters are determined iteratively by initially guessing
values of xS and xD. This initial solution gives first estimates for the potentials
{φ1S , φ1D}. The iteration, which involves Poisson’s equation, leads to an
optimized set of values for xS , xD, φ̂1(x{S/D}, H/2), and of the test function
parameters.

The proposed modeling expression φ̂1(x, H/2) is as follows:
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φ̂1(x,H/2) = (4.35)

Pp

{(
1 − exp

[
α(x − L

2
)
])(

1 +
[
x − L

2

]
/a

)−n(3
4

+
x

L
− x2

L2

)
+

(
1 − exp

[
β(x +

L

2
)
])(

1 +
[
x +

L

2

]
/b

)−n(3
4
− x

L
− x2

L2

)}

The parameter Pp is directly given by the solution of Poisson’s equation in the
device middle. All of the parameters are obtained from the procedure indicated
above.

After a few iterations, the source-to-drain potential distribution can be fed
into the transport model expression (see chapter 5) to obtain an estimate for
the current and the quasi-Fermi potential distribution. This, in turn, can be
used to obtain a global self-consistent solution for drain current and the body
electrostatics.

Figure 4.15: The potential along the drain-source symmetry line for threshold, Vds = 0V
and Vgs = 0.25V . The proposed model expression is shown as a solid line, the dashed lines
are the two terms of the model expression in (4.35). Numerical simulations are indicated
with crosses. The boundary conditions are indicated with circles.

The modeling expression is shown for the symmetric case (Vds = 0) in Figure
4.15. A good agreement with the numerical simulation is obtained, to within a
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few millivolts.

Figure 4.16: The charge potential contributions along the drain-source symmetry line for
threshold Vgs = 0.25V , and Vds = {0.1, 0.25, 0.5}V . The modeled potentials φ1(x) are
shown as solid lines and numerical simulations are indicated with crosses. The boundary
conditions are indicated with circles.

Correspondingly, results for applied drain voltages are shown in 4.16. We
again find a good agreement with the numerical simulation, especially in the
important region close to the potential minimum near the source contact.

The gate-to-gate distribution of the inversion charge contribution to the
potential is shown in Figure 4.17 for Vds = 0V and different gate voltages.
The small deviation from the numerical simulations at the device center can
be attributed to the following:

• The assumed, parabolic gate-to-gate model potential distribution φ1(0, y).

• The approximate shape of the source-to-drain modeling expression φ1(x, H/2)
used, which affects our estimates d2φ1/dx2 and the quasi-Fermi potential
at the device center.

The total potential φ(0, y) = φ1(0, y) + φ2(0, y) along the gate-to-gate
symmetry line is shown in Figure 4.18 for the same biasing voltages as in Figure
4.17.

In Figure 4.19, the total potential distribution φ(x, H/2) along the source-to-
drain symmetry axis is shown for Vgs = 0.25V and different drain voltages. This
figure illustrates the DIBL-effect associated with the drain bias.
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Figure 4.17: The potential contribution at the gate-to-gate symmetry line resulting from the
body inversion charge for Vds = 0V . Modeling is shown in solid and numerical simulations
with crosses.

Figure 4.18: The total potential at the gate-to-gate symmetry line for Vds = 0V . Modeling
is shown in solid and numerical simulations with crosses.
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Figure 4.19: The total potential for threshold, Vgs = 0.25V and Vds = {0.1, 0.25, 0.5}V ,
on the drain-source symmetry line. Modeling is shown in solid and numerical simulations
with crosses.

Figure 4.20 shows examples of the total source-to-drain potential distributions
and quasi-Fermi potential distributions for different combinations of Vgs and Vds.
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Figure 4.20: The potential and quasi-fermi potential at the drain-source symmetry line for
the near threshold region Vgs = {0.2, 0.25, 0.3}V and Vds = {0.1, 0.25, 0.5}V . Modeling is
shown in solid (potential) and dashed (quasi-Fermi potential), numerical simulations with
crosses.
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4.4 Strong inversion

4.4 Strong inversion

4.4.1 Long channel approximation

Well into the strong inversion regime, the accumulation of electrons close to
the gates has associated fields which are dominating the device electrostatics.
Moreover, the inversion charge concentration will be so high that it effectively
screens out the electrostatic influence from source and drain along most of the
channel. This means that the device attains more of a long-channel behavior
with increasing gate bias. Hence, well-defined channels develop along the silicon-
insulator interfaces in strong inversion, where the flat section defines an effective
channel length, which is close to the physical gate length. This is indicated in in
the simulated potential contour plot in Figure 4.21.

Figure 4.21: Potential contour plot showing strong inversion conditions for the double-gate
device. The flat region close to the gates (red) indicates that long-channel modeling can
be applied. (The source and drain contacts in purple.) Vds = 0V

A long channel model of the device electrostatics for undoped double-gate
MOSFETs was developed by Taur (see Section 2.1.1). The model consists of
analytical solutions for the potential distribution and the current transport.
This model is adopted for the strong inversion regime of the present device,
by including the effects of doping on the the body Fermi potential. Hence, (2.5)
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Chapter 4. DG MOSFET electrostatics

can simply be modified by including φb = Vth log
(

NS

ni

)
as follows

φ − φ0

2Vth
= − ln

[
cos
(√

qni

2εSiVth
exp((φ0 − φb)/Vth)(y − (tSi + 2tox)/2)

)]
(4.36)

combining this with (2.6) gives the gate-to-gate potential profiles shown in Figure
4.22 for Vds = 0V . We observe from these results that the model accuracy
improves with increasing gate bias. This is illustrated in Figure 4.23 by the
decreasing difference between the modeled and simulated potentials on the gate-
to-gate symmetry axis for the oxide/silicon interface and at the center.

Figure 4.22: Strong inversion gate-to-gate potential distributions for Vgs =
{0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6}, and with zero drain-source voltage. Modeling is shown
in solids and numerical simulations are indicated with crosses.

In the presence of drain current, the self-consistent calculations of the device
must involve the calculation of the current. See Chapter 5.
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4.4.1 Long channel approximation

Figure 4.23: Modeled (solid) and simulated (crosses) potentials versus gate voltage for the
device center and the mid-gate silicon/oxide interface. Vds = 0V
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Chapter 4. DG MOSFET electrostatics

4.5 Quantum mechanical aspects

Above we have used the classical theory for calculating the device electrostatics.
A rigorous approach would be to account for the quantization of energy levels
primarily in the gate-to-gate direction and apply Fermi statistics. As an example
of such an analysis, we consider the special case of a flat potential well where
φ(y) = Vgs − VFB. As discussed previously, this situation takes place at
threshold. We observe a flat gate-to-gate electron concentration except at the
silicon-insulator interface where quantum mechanics requires that n(y) drops to
zero. This is situation which typically occurs for body thicknesses large than 10
nm. In this case we have the well known square well solution to the Schrödinger
equation.

An ultra-thin body (UTB) will exhibit significant quantum effects due to its
small silicon body thickness. The concentration of carriers close to the steep oxide
walls will be very small, and the loss of charge-induced fields in the self-consistent
equation will not be compensated by a increased concentration further into the
device. For thicker devices this effect will be less important.

When the charge carrier concentration starts increasing to such levels that
the fields emerging from this becomes significant, the quantum effects from
confinements have to be considered.

In general, for a 1D quantum confinement, (2.3) gives the electron density per
unit area becomes the sum over all states and all sub-bands in a 2D gas of an
infinitely deep potential well.

To find the electron distribution along the gate-to-gate center line, we have to
consider the wave functions ψj of the different sub-bands. For an infinitely deep
square well, the Schrödinger equation yields

ESq,j =
(π�j)2

2mnt2Si

, j > 0 (4.37)

for the energy levels j and

ψSq,j(y) =
√

2
tSi

sin
(

πj(y − tox)
tSi

)
, tox < y < tox + tSi (4.38)

for the wave functions. From this we obtain the following probability density
functions (PDFs)

|ψSq,j(y)|2 =
2

tSi
sin2

(
πj(y − tox)

tSi

)
, tox < y < tox + tSi (4.39)

For parabolic wells, the solution of the Schrödinger equation gives harmonic

63



4.5 Quantum mechanical aspects

oscillator solutions. The two first normalized wave functions are

ψP,0(ξ) =
(α

π

)1/4

exp(−ξ2

2
) (4.40)

and

ψP,1(ξ) =
(α

π

)1/4 √
2ξ exp(−ξ2

2
) (4.41)

where ξ =
√

αy and α = mnω/�. , where

�ω = �

√
− 2

mn

d2φ

dy2
(4.42)

is twice the zero point energy level (lowest). The energy levels are given with the
equation

EP,j = �ω(j + 1/2), j ≥ 0 (4.43)

Multiplying each term in (2.3) with the corresponding probability density
functions gives the following total electron distribution over the quantized well.

Figure 4.24: Electron concentration for subthreshold conditions (Vgs = 0V ) in the
transverse direction, modeled with classical Boltzmann (dashed blue) and Fermi (solid blue)
statistics compared with corresponding numerical simulations indicated with red line/crosses.
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Chapter 4. DG MOSFET electrostatics

A comparison of the classical and quantum corrected electron density
distribution at the center gate-to-gate axis is depicted in Figure 4.24. We
note that the undulations for the modeled quantum distribution comes from
the approximated wavefunction solutions for the quantum well. The modeled
quantum distribution is composed of 10 approximate waveforms, two Hermite
functions for the parabolic energy shape at the lower energy levels, and 8 sine
functions which correspond to the higher energies of an infinite square well. The
approximation seems to hold for a reasonable error with the present device. We
note that the quantum inversion charge is calculated to 84% of the classical
concentration.

The numerical quantum simulations are done with the ”Density gradient”
method, equivalent to the ”Quantum Moments Model”55.

Figure 4.25: Electron concentration at threshold (Vgs = VT ) in the transverse direction,
modeled with classical Boltzmann (dashed blue) and Fermi (solid blue) statistics compared
with corresponding numerical simulations indicated with red line/crosses.

For the ’flat’ condition, Figure 4.25 illustrates the electron distribution across
the transversal direction. We note that the quantum effects on the inversion
charge concentration is becoming increasingly important with the quantum
inversion charge being 67% of the classical density.
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4.6 Discussion

4.6 Discussion

In this chapter we have confronted the problem of 2D modeling of the double-gate
MOSFET electrostatics. This modeling is complicated by the self-consistency
requirement between the inter-electrode capacitive coupling, the inversion charge,
and the drain current.

In sub-threshold, the device electrostatics is dominated by the inter-electrode
capacitive coupling, where an explicit, analytical expression for the potential
distribution has been obtained from the 2D Laplace equation. Because of the
superposition principle, this Laplace solution can always be separated out from
the total Poisson’s equation, to give an additive contribution to the total potential
together with that from the electronic charge.

Near threshold, where the effects of the inversion charge becomes significant,
the above mentioned self-consistency is invoked. This is done by using
suitable modeling expressions in combination with Poisson’s equation, resulting
in a description of the total electrostatics that closely agrees with numerical
simulations.

For the type of devices discussed here it is found that the classical definition of
the threshold voltage, which is based on the band bending 2φb is not appropriate.
We have therefore proposed as our new definition the gate bias where the
electrostatic effects of the capacitive coupling and the electronic charge are equal
and opposite at the gate-to-gate symmetry axis for zero drain bias.

In strong inversion, where the electronic charge dominates the device
electrostatics, the device behavior approaches that of long-channel devices.
Existing long-channel models of the double-gate device are adapted and used
in this operating regime.
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Chapter 5

DG MOSFET drain current

Different transport models may be applied to calculate drain current, as reviewed
in chapter 2.

When modeling charge transport, the channel length is an important modeling
parameter. Considering the device presented in Section 4.1, several physical
transport mechanisms characterize the charge transport. In this thesis, we assume
that the carriers will experience several scattering processes from the source to
the drain contact. Although the current will have the character of both ballistic
and drift-diffusion transport for short devices, we choose to apply the latter
mechanism here assuming a constant mobility to compensate for non-stationary
effects. The main advantages of drift-diffusion theory are its simplicity and clear
identification of the key processes governing device operation. This choice is
made in order to make the transport modeling manageable for validating the
electrostatic modeling techniques and simplifications used.

In this chapter, for current calculation, the numerical simulations are
performed based on the same assumptions as in the drain current modeling i.e.,
assuming drift-diffusion transport mechanism with a constant mobility.

However, in our modeling any transverse variation in the quasi-Fermi potential
is neglected.

The current strength in this chapter is calculated per unit width of W = 1μm
and then compared. The drain current per unit width can then be expressed as

IDD = −qμnns(x)
dVF

dx
= qμnns0(x)e(−VF (x)/Vth) dVF

dx
(5.1)

where ns(x) is the surface carrier concentration and ns0(x) is independent of the
x-variation in the quasi-Fermi potential. We find the surface carrier concentration
by integrating over the spacial electron distribution resulting from the gate-to-
gate potential profiles.
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Equation (5.1) is separable in the dependencies on x and VF , which results in
the following drain current expression

IDD = μnkbT
(1 − e−Vds/Vth)∫ L/2

−L/2
1/ns0(x)dx

(5.2)

where the term (1 − e−Vds/Vth) results from the integration over the quasi-Fermi
potential from source to drain.

The gate-to-gate potential profiles used for calculating ns0 are approximated
by parabolas identified by the source-to-drain center line potentials φ(x,H/2)
from (4.19) and the gate potential Vgs − VFB, as illustrated in the upper part of
Figure 5.1.

Figure 5.1: The potential distribution for threshold Vgs = 0.25V , and Vds = 0.1V .
The upper surface shows how the parabolic function is applied from gate to gate. The
surface below is the absolute error between the numerical simulations and the parabolic
approximation.

In the lower part, we find, as expected that the error is largest at the corners,
and very small throughout the interior. Also the use of parabolic gate-to-gate
potential profiles near source and drain is contrary to the earlier assumption of
equipotential contacts. However, from (5.2) we observe that the the current is
determined by the inverse of the electron sheet density, which has its minimum
away from the contacts. In that region we observe that the accuracy of the
potential is within the desired limits, while the errors at the boundary close to
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Chapter 5. DG MOSFET drain current

the source and drain become insignificant in the calculation of the current.

5.1 Self-consistent modeling of drain current

In the electrostatic modeling in Chapter 4, the drain current calculation was
divided into three regimes: Subthreshold, near threshold, and strong inversion.

In subthreshold, we observe a rigid source-drain capacitive barrier where the
electrostatic influence related to the inversion charge is negligible (See Figure
4.12). Therefore, the potential distribution as calculated from the capacitive
coupling is quite unaffected by the relative small amount of inversion charge and
the correspondingly small drain current flowing through the device.

While the rigid barrier approximation may be plausible for subthreshold
currents, the effects of the drain current and accordingly of the quasi-
Fermi potential variation, become increasingly important under near-threshold
conditions, see Section 4.3.3. The quasi-Fermi potential can be found by first
calculating the current from (5.2), and redo the integration from source up to a
position x in the channel. Solving for the quasi-Fermi potential we obtain

VF (x) = −qVth ln
[
1 − IDD

μnqVth

∫ x

0

dx

ns(x)

]
(5.3)

This value can then be fed back into Poisson’s equation (4.34). Iterating over
the equation set improves the accuracy of the electrostatic potential to a high
precision of VF .

In strong inversion, the long-channel model based on the gradual channel
approximation is used to find the drain current16, as discussed in Section 4.4.1.
For this regime, we use an effective threshold voltage of VT = V0 + 2φb where V0

is given with the implicit expression18

V0 = VFB + 2Vth log
(

εoxtSi (Vgs − V0)
2toxqni

)
(5.4)

In the expressions (2.7) - (2.11), constant mobililty is assumed. We note that,
current saturation is implicitly included through the pinch-off mechanism. Below
saturation, the current can be approximated as

IDD =
2μntox

εoxL

(
(Vgs − VT )Vds − V 2

ds

2

)
(5.5)

5.2 Drain current calculations

The 2D modeling presented here is valid from deep subthreshold to slightly above
threshold Vgs ≤ 0.3V . Figures 5.2 and 5.3 show a comparison of the modeled
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5.2 Drain current calculations

and simulated drain current for a full range of drain-source and gate-source bias
conditions. Throughout, we observe deviations between the two of less than ten
percent.

Figure 5.2: The subthreshold and near threshold drain current versus Vgs for Vds =
{0.1, 0.25, 0.5}V. Numerical simulations are marked with crosses.
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Chapter 5. DG MOSFET drain current

Figure 5.3: IDD-Vds plot for a range of gate voltages. Solid lines indicate modeling and
numerical simulations are marked with crosses.
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5.3 Compact drain current model

5.3 Compact drain current model

In compact modeling of the drain current, the main concern compared to
the previous sections is to find analytical expressions for the current voltage
characteristics, which are compatible with the efficiency requirements of circuit
simulators. The modeling framework discussed in the earlier chapters enables us
to extract parameters for such models. As noted in Sections 2.1.1, 4.4.1, and 5.1,
the long-channel strong inversion model is only valid well above threshold.

An example of a compact drain current model can be found by writing a
suitable interpolation function that matches the limiting behavior in subthreshold
and in strong inversion, and which matches the framework modeling results near
threshold.

The proposed interpolation function has the following form

IDD = 10 ˆ

⎡
⎢⎣ log(Isub)[

1 +
(

log(Isub)
log(Iinv)

)m]1/m

⎤
⎥⎦ (5.6)

where Isub and Iinv are the subthreshold and strong inversion asymptotes,
respectively.

Figure 5.4 shows schematically the interpolation function together with the
asymptotes. The parameter m is found by matching the interpolated curve to the
near threshold calculation, which is marked with symbols. m will be dependent
on the applied drain voltage, see Figure 5.5 (solid line).

Figures 5.6 and 5.7 show the interpolated I - V characteristics compared to
numerical simulations, using the extracted values for m.

The undulations observed in the characteristics of Figure 5.7 reflect a slight
lack of precision in the extraction of m, which is also seen in Figure 5.5.
Nonetheless, we observe a very good agreement between the compact modeling
and the numerical simulations. We note in particular that this good agreement
includes the range between threshold and strong inversion not covered by the
modeling framework of Section 5.2.

For the compact model it is suitable to express the dependence of the
parameter m on Vds by a smooth function. As an example, Figure 5.5 shows
this relationship approximated by a second degree polynomial least-square fit to
the extracted values of m. The corresponding IDD - Vds characteristics are shown
in Figure 5.8.
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Chapter 5. DG MOSFET drain current

Figure 5.4: Illustration of the asymptotes which for each Vds are from subthreshold
and strong inversion calculations, and then adjusted for one threshold current calculation
indicated with the crosses.

Figure 5.5: The m-parameter versus drain bias. Dashed line indicates a second degree
polynomial least square curve fit.
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5.3 Compact drain current model

Figure 5.6: IDD - Vgs interpolated plot for Vds = {0.1, 0.25, 0.5} V, compared with
numerical simulations indicated with crosses.

Figure 5.7: IDD - Vds interpolated plot compared with numerical simulations indicated
with crosses.
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Figure 5.8: IDD - Vds interpolated plot approximating the m-parameter from a polynomial
curve fit. The modeling in solid is compared with numerical simulations indicated with
crosses.
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5.4 Discussion

In nanoscale MOSFETs, with channel lengths less than about 50 nm, the
relaxation times of the carriers indicate that the drain current will have
the character of both drift-diffusion and ballistic/quasi-ballistic transport. In
this work, to make the transport modeling manageable, we have used the
drift-diffusion transport model in order to validate the electrostatic modeling
techniques and simplifications which have been applied in the modeling process.
Furthermore, we have assumed a constant mobility, thereby neglecting velocity
saturation. Instead, the drain current is described by the pinch-off mechanism.
This tends to overestimate the drain current especially in saturation. On the
other hand, neglecting the ballistic component, would lead to an underestimation
of the current. Some work on the modeling of transport in the transition region
between drift-diffusion and ballistic has recently been reported56. These issues
clearly require further studies.

Numerical simulations performed with energy-balance and hydrodynamic
models57 show that the present modeling using drift-diffusion with constant
mobility falls between the two with a maximum deviation of 20 % to either.

Compared to this, drift-diffusion simulations assuming default velocity
saturation, underestimate the drain current by typically an order of magnitude
for the present device. Similar behavior is observed for a range of different
gate lengths. Hence, we conclude that the present modeling gives a satisfactory
representation of the drain current.

We have also presented an analytical end explicit I - V model. The parameters
of this model are fully extractable from the modeling framework. This compact
model is predictive in the sense that it also covers bias conditions for which
the modeling framework, as presented here, still does not apply. Moreover, the
model is continuous in all derivatives, which is highly advantageous in the context
of circuit simulators. Likewise, the scaling properties of the compact model
parameters can also be obtained from the modeling framework. This will be
subject of future investigations.
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Chapter 6

Conclusion

In this work, an electrostatics and drain current modeling framework for double-
gate MOSFETs has been established. The modeling covers the subthreshold and
near threshold regimes of operation. In addition, the limiting behavior in very
strong inversion is described.

The sub-threshold modeling is analytical and explicit, whereas the near-
threshold region is calculated in an iterative scheme mostly due to the self-
consistent analysis of the electrostatic effects arising from the mobile charge,
the capacitive coupling and the drain current. The strong inversion modeling is
based on a long-channel approximation, which is applicable at high gate bias.

An example of a parametrized compact model for drain current calculation has
been presented. This model covers the full range of bias conditions and is suitable
for implementation in circuit simulators, such as SPICE. The model parameters
are all extracted from the modeling framework, which provides a precise physical
basis for the computed results.

Both electrostatics and current calculations have been compared to numerical
simulations performed with the Atlas device simulator from Silvaco. The
electrostatics has been verified for potential profiles along the device symmetry
lines and the current has been verified for Id - Vgs and Id - Vds characteristics for
a wide range of applied bias voltages. They all show excellent agreement with
the results from the numerical device simulator.
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Chapter 7

Future work

A complete compact model for inclusion in circuit simulators must have
procedures for calculating currents, capacitances, and noise. Here, we have
exclusively considered electrostatics and drain current of a DG MOSFET. Thus,
there are several issues within this work that is in need of additional analysis,
including the ones discussed below.

7.1 Strong inversion modeling

Strong inversion current modeling in this thesis is based on a long channel model,
which applies to the device considered here only for high gate bias. The present
modeling therefore does not cover the gate bias range between the threshold
region and the upper part of the strong inversion regime. Work is already well
under way to bridge this gap, and preliminary results are already scheduled for
publication.47

7.2 Development of SPICE-type model

The modeling framework developed in this thesis is based on analytical
expressions. However, because of the complexity of the analysis, it has been
necessary to apply iterative schemes. To make the modeling applicable for circuit
simulation, we therefore used the modeling framework as a preprocessing routine,
where parameters are extracted from the framework for use in parametrized
compact models. These compact models are suitable for implementation in
SPICE-type circuit simulators. A high computational speed is necessary if the
model is to be implemented in a SPICE simulator. Additionally, the compact
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7.3 Capacitances

model will be continuous in the derivatives with respect to applied biasing.

7.3 Capacitances

To ensure accuracy, a capacitance model should be derived from the charge
distribution in the device body, or equivalently of the vertical electric field
distribution on the four electrodes. The bias dependence of this distribution
is contained implicitly in our analysis. It requires in principle numerical analysis
to obtain the capacitive values. Compact, analytical modeling expressions need
to be developed for use in circuit simulators.

7.4 Noise

Noise modeling is also an important part of a compact model. Cooperating groups
are working with this subject and results have been posted in publications.58

7.5 Application to other FET devices

Next generation candidates for device technology include not only double-gate
MOSFETs, but also FinFETs and Gate-All-Around (GAA) MOSFETs. The
modeling presented here is a good foundation on which modeling procedures for
these device configurations can be developed.

7.5.1 GAA MOSFET

The cylindrical GAA MOSFET is inherently a 3D device, which means that
conformal mapping procedure is inapplicable. However, the topography of the
GAA MOSFET is particularly interesting, because the inter-electrode effects
of this configuration can be shown to have a good similarity to that of the
DG MOSFET. This allows us to map the DG MOSFET results into the GAA
MOSFET with good precision. Preliminary analysis along this line is presently
being published48,50,47 and a coming doctoral thesis will discuss this device in
detail.

7.5.2 FinFET

The FinFET configuration is another next generation device type which could
have the potential to fit into the modeling framework presented here in this thesis.
The FinFET is also a 3D device, for which the 2D conformal mapping cannot be
directly applied. Work on this is already in progress.
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Appendix A

The Schwartz-Christoffel
transformation

1.1 Definition of the Schwartz-Christoffel Map-
ping

The following are collected from Abramovitz & Stegun,52 and The Matematica
help.59

A conformal mapping, also called a conformal map, conformal transformation,
angle-preserving transformation, or biholomorphic map, is a transformation
w = f(z) that preserves local angles. An analytic function is conformal at any
point where it has a nonzero derivative. Conversely, any conformal mapping of a
complex variable which has continuous partial derivatives is analytic.

Consider a polygon in the complex plane. The Riemann mapping theorem
implies that there is a bijective holomorphic mapping f from the upper half-plane

{ζ ∈ C : Im ζ > 0} (A.1)

to the interior of the polygon. The function f maps the real axis to the edges
of the polygon. If the polygon has interior angles α, β, ζ, ... then this mapping is
given by

f(ζ) =
∫ ζ K

(w − a)1−(α/π)(w − b)1−(β/π)(w − c)1−(γ/π) · · · dw (A.2)

where K is a constant, and a < b < c < ... are the values, along the real axis of
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1.2 Schwarz-Christoffel rectangle transformation

the ζ plane, of points corresponding to the vertices of the polygon in the z plane.
A transformation of this form is called a Schwarz-Christoffel mapping.

1.2 Schwarz-Christoffel rectangle transformation

Application of the Schwartz-Christoffel transformation to a rectangle-shaped
structure is done by recognizing the corner angels which all are at α = β =
φ = γ = π/2. Hence all singularities will be square roots. The corners position
is located at the transformed boundary at the points u = {-1/k, -1, 1, 1/k}.

f(ζ) =∫ ζ K

(w − 1)1/2(w − (−1))1/2(w − 1/k)1/2(w − (−1/k))1/2
dw (A.3)

which gives the following simplified integral

f(ζ) =
∫ ζ K√

w2 − 1
√

w2 − 1/k2
dw (A.4)

This integral is defined as an elliptic integral of the first kind and can be
computed in terms of power series or iteration algorithms.

1.3 Elliptic integrals and evaluation

Implementations for elliptic integrals are well documented in a range of books,
for example60 and52.

F (k, u) =φ + m
φ3

6
+ m

(−4 + 9m)φ5

120
+ m

(16 − 180m + 220m2)φ7

5040
+

m
(−64 + 3024m − 12600m2 + 11025m3)φ9

362880
+ O(z11) (A.5)

F as argument of u and φ is illustrated in figure A.1 and A.2 correspondingly.
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Figure A.1: The elliptic integral as function of u, k = [0, 1].

Figure A.2: The elliptic integral as function of φ, k = [0, 1].
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1.3.1 Elliptic functions

1.3.1 Elliptic functions

• k is the elliptic modulus

• m = k2

• α the modular angle, k = sinα

• φ the amplitude

• x where x = sinφ = snu

• u, where x = snu and sn is one of the Jacobian elliptic functions

• sn u = sinφ

• cn u = cos φ

• dn u =
√

1 − m sin2 φ

F (x; k) =
∫ x

0

1√
(1 − t2)(1 − k2t2)

dt (A.6)

x = sinφ , t = sin θ , = sin(α) , m = k2

F(x; k) = F(φ|m) = F(φ \ α) =
∫ φ

0

1√
1 − sin2 α sin2 θ

dθ (A.7)

K(k) =
∫ 1

0

1√
(1 − t2)(1 − k2t2)

dt (A.8)

K(k) =
∫ π

2

0

dθ√
1 − k2 sin2 θ

(A.9)

K(m) = K =
∫ π/2

0

dθ√
1 − m sin2 θ

,

iK
′
(m) = iK

′
= i

∫ π/2

0

dθ√
1 − m′ sin2 θ

(A.10)

K and K
′
are called the real and imaginary quarter-period respectively. They

also represent the complete elliptic integral for K(k) and K(k′ =
√

1 − k2). Per
definition K

′
(k) ≡ K(k

′
) We get that K(m) = K

′
(m

′
) = K

′
(1 − m).
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It is possible to get the Jacobi elliptic functions from a numerical procedure
which uses the boundary normed to the quarter-period and the elliptic modulus
m = k2.

In terms of elliptic functions, an inverse of the incomplete elliptic integral is
found to be the Jacobi amplitude which can be defined by59

φ = am(u, k) =
∫ u

0

dn(u
′
, k)du

′
(A.11)

φ = am(k, z) = F−1(k, z) (A.12)

sin−1 φ = Arcsn(x, k) =
∫ x

0

dt√
(1 − t2)(1 − k2t2)

(A.13)

substituting for w = sinφ

w = F(x, k) =
∫ φ

0

dθ√
(1 − k2 sin2 θ)

(A.14)

φ = sin−1 w = F−1

(
k2,

2K

L
z

)
(A.15)

and together with

w = sin(am(k, z)) = sn(k, z) (A.16)

where

z = sinφ = sn(k,w) (A.17)

The inverse of the elliptic integral can be expressed in terms of the above
elliptic functions as follows

sn(x + iy) =
sn(x|m) dn(y|m′

) + i cn(x|m) dn(x|m) sn(y|m′
) cn(y|m′

)
cn(y|m′)2 + m sn(x|m) sn(y|m′ (A.18)
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Appendix B

SINANO template

The European union research project Silicon Nano-devices (SINANO) has defined
a template for a double-gate device.

2.1 Template description

The device is based on a symmetrical doping profile for both source and drain
with the same Gaussian characteristic. Doping of the bulk case is a mirroring of
the top process.

P-type uniform substrate doping:
Body acceptor concentration: NS = 1 · 1015cm−3

N(x, y) = G(y) · L(x) (B.1)

All injections have a gaussian profile with an implant of NPEAK = 1·1020cm−3

in y = 0.
N-type source extension profile:

Standard deviation: σy = 5.64 · 10−3μm

G(y) = NPEAKe−
1
2 [(y)/(σy)]2 ; y > 0 (B.2)

L(x) = 1; x < x0 (B.3)

L(x) = NPEAKe−
1
2 [(x−x0)/0.28σy]2 ; x > x0 (B.4)
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N-type source contact profile:

Standard deviation: σy = 1.12 · 10−2μm

G(y) = NPEAKe−
1
2 [y/σy]2 ; y > 0 (B.5)

L(x) = 1; x < x1 (B.6)

L(x) = NPEAKe−
1
2 [(x−x1)/(0.35σy)]2 ; x > x1 (B.7)

−50 0 50
10

14

10
16

10
18

10
20

x [nm]

N
et

 d
op

in
g 

cm
−

3

1.2nm/decade

ITRS 2.8nm/decade

Figure B.1: Source to drain cuts of doping profile at the silicon/oxide boundary(blue) and
at the center symmetry line.

As can be seen in the doping profile in figure B.1, the lateral profile drops
very fast towoards the center. While the target profile for the 65nm node is
2.8nm/decade according to the ITRS roadmap, the source extension first drop
close to this target, but it approaches 0.7nm/decade into the body.

Compact modeling of physical mechanisms in doping profiles is difficult. To
simplify, a piecewise equipotential boundary around the device is desirable.

An ideal device has been created, based on the template device. The doping
profiles at the contacts of the template device is replaced with ideal n+ polysilicon
contacts resulting in negligible depletion regions. This creates equipotential
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Figure B.2: Source contact potential profile for template and ideal device.

surfaces along the contact boundary, which is more suitable to model. Figure
B.2 illustrates the difference between the two at the contact/body border.

Changing the contacts also changes the intrinsic device potential illustrated
in figure B.3.

89



2.1 Template description

−50 0 50
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x [nm]

φ(
x,

t S
i/2

)[
V

]

Figure B.3: Source to drain potential profile at the center symmetry line for template and
ideal device.
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