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Abstract

This doctoral thesis is a collection of six papers preceeded by an introduc-
tion. All the papers are related to design issues and performance analysis
for opportunistic scheduling algorithms in cellular networks.

Opportunistic scheduling algorithms can provide higher throughput
and increased quality-of-service (QoS) in wireless networks by giving pri-
ority to the users with favorable channel conditions. Such algorithms are
already implemented in equipment based on wireless LAN standards, the
HDR standard, the HSDPA standard, and the Mobile WiMAX standard,
but are often not a part of the standard itself. The implemented algorithms
are often based on intuition rather than theoretical investigations, and con-
sequently, it is a need for a better understanding of the theoretical limits
for how well such algorithms can perform and how such algorithms can be
implemented in the most efficient way.

The design issues handled in this thesis are related to feedback algo-
rithms and scheduling algorithms for increased throughput guarantees.
Channel quality estimation and feedback is the basis for opportunistic
scheduling, and two novel feedback algorithms are proposed to reduce the
overhead from channel quality feedback. The results show that the feed-
back can be reduced to only obtaining feedback from the user that the sys-
tem wants to schedule. An adaptive scheduling algorithm for obtaining in-
creased throughput guarantees is also developed. Results from simulations
show that this algorithm can double the throughput guarantees in modern
cellular networks compared to other well-known scheduling algorithms.

The performance of opportunistic scheduling algorithms is analyzed
through analytical expressions and simulations of feedback delay, fairness
and throughput guarantees. It is shown how delayed feedback can lead
to reduced throughput or increased bit error rate in a system with oppor-
tunistic scheduling. Closed-form expressions are also found for two types
of fairness, and throughput guarantees of different well-known scheduling
algorithms.
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Introduction

A range of different wireless standards has been developed during the last
decades [1–3]. The characteristics of these standards depend on the objec-
tives of the wireless network design. In for example sensor networks, the
main design objectives can be low power consumption and small mobile
devices, while the main design objectives for cellular networks can be high
throughput and fulfillment of the quality-of-service (QoS) requirements of
the mobile users.

To be able to increase the throughput and to provide QoS to the users
in a wireless network, radio resource management (RRM) should be imple-
mented [4–6]. RRM can be defined as the real-time process of exploiting, al-
locating, and controlling the radio resources according to the varying num-
ber of users and applications in the network, and opportunistic scheduling
is a vital part of an RRM system. Opportunistic scheduling denotes the
process of selecting which of the mobile users that are going to transmit or
receive information on the wireless channel to increase the throughput and
the QoS [7, 8], and this thesis handles design and performance evaluation
issues related to opportunistic scheduling algorithms in cellular wireless
networks.

Fig. 1.1 shows an example of a cellular network using opportunistic
scheduling. The exchange of user data is indicated with solid arrows in the
figure, while the exchange of signaling information is marked with dotted
arrows. In this figure, the term transceiver denotes both the transmitter and
the receiver. The scheduler, located in the base station, decides which users
who are going to transmit or receive. However, to take these scheduling
decisions, the scheduler needs to know the channel quality of the users.
This channel quality is often both estimated at the base station and locally
at the mobile users. The channel quality estimates found by the mobile
users need to be fed back to the base station so that the scheduler can decide
which users to schedule. After the scheduling decision is taken, each of the
mobile users are often notified before transmission can start.

Opportunistic scheduling algorithms are already implemented in
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INTRODUCTION

FIGURE 1.1: System model for opportunistic scheduling

equipment based on many modern wireless standards, but are often not
a part of the standards themselves [3]. The implemented algorithms are
often based on intuition and this thesis will therefore focus on theoretical
investigations of design issues and performance issues related to oppor-
tunistic scheduling algorithms. Such theoretical investigations are vital to
be able to develop more efficient scheduling algorithms.

This introduction will give a background to the six papers included
in this thesis and a general overview of different scheduling issues. The
introduction commences with a discussion of radio resources and RRM
techniques, continues with a description of performance issues and de-
sign issues related to opportunistic scheduling algorithms, and ends with
a description of the included papers, the main contributions of the the-
sis, and suggestions for future research. Section 1 discusses the fixed ra-
dio resources that are available in wireless networks, while Section 2 gives
an overview of RRM and describes the role of opportunistic scheduling
in an RRM system. Next, different performance measures for opportunis-
tic scheduling algorithms are handled in Section 3, and four well-known
opportunistic scheduling algorithms are listed in Section 4. Section 5 dis-
cusses design issues related to the physical and the Medium Access Control
(MAC) layers, while Section 6 gives an overview of cross-layer design is-
sues. Then, a description of the included papers is given in Section 7, and
finally, Section 8 and Section 9 list respectively the main contributions of
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FIXED RADIO RESOURCES IN WIRELESS NETWORKS

the thesis and some suggestions for future research.
It should be noted that the focus of the papers in the thesis is oppor-

tunistic scheduling issues for cellular and/or centralized networks. How-
ever, to have a more complete introduction, different scheduling issues for
wireless ad hoc networks are also mentioned.

1 Fixed Radio Resources in Wireless Networks

One of the main challenges in wireless networks is to use the available ra-
dio resources in the most efficient way according to the needs of the mo-
bile users. The amount of radio resources available in a network does of-
ten change with time, however, some fixed characteristics will always con-
strain the amount of radio resources. Three important fixed characteristics
are the system architecture, the frequency spectrum available, and the access
techniques implemented in the system.

1.1 System Architecture

Wireless networks have either a cellular architecture or an ad hoc architec-
ture [2]. The cellular architecture is based on stationary base stations serv-
ing the mobile customers, and we often say that this architecture is cen-
tralized since most of the network activity is managed by the network in-
frastructure, i.e., base stations, base station controllers, and switches. The
ad hoc architecture is based on mobile users communicating directly with
each other or by relaying via other mobile users in the network. This type
of architecture is often referred to as distributed since each mobile user gov-
erns its own behavior. The location of the base stations, the number and
type of antennas per base station or mobile terminal, the complexity of the
equipment, and the available transmission power can be regarded as im-
portant components of an architecture. System architecture design is there-
fore a complex task with multiple challenges, e.g. for cellular networks it is
critical to build the network based on extensive radio planning in order to
adjust the network design according to the terrain.

1.2 Frequency Spectrum

In general, the total throughput of a wireless network will increase with
the amount of frequency spectrum that is available. In most countries the
radio spectrum is publicly regulated to limit the interference between dif-
ferent systems. This means that each network operator governs his own
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INTRODUCTION

share of the frequency spectrum and can deploy wireless networks that op-
erate on these frequencies. There are also unlicensed parts of the frequency
spectrum that can be used freely.

1.3 Access Techniques

Access techniques are implemented so that multiple users can share the
same physical channel, and they are designed to exploit the architec-
ture and the available frequency spectrum in the most efficient way,
i.e., to increase the spectral efficiency. Spectral efficiency is defined to
be the throughput per frequency spectrum available, usually measured
in bits per second per Hertz. The access techniques are often based
on time-division multiplexing (TDM), frequency-division multiplexing
(FDM), code-division multiplexing (CDM), and space-division multiplex-
ing (SDM) for providing wireless multiple access along the dimensions
time, frequency, code, or space [1, 2].

Commonly used access techniques are ALOHA-based techniques (e.g.
CSMA/CA), time-division multiple access (TDMA), frequency-division
multiple access (FDMA), code-division multiple access (CDMA), or space-
division multiple access (SDMA) [1, 2]. In this thesis, only TDM-based
transmission will be considered, i.e., the thesis only considers systems
where the data to or from different users are transmitted in time-slots,
where each time-slot contains many modulation symbols. Amongst the
TDM-based access techniques we also find time-division duplexing (TDD),
where the time-slots are used to separate both transmission to different
users and uplink and downlink transmission. It should be noted that
TDM-based communication does not exclude FDM or CDM. For exam-
ple, in the cellular standard HSPA, CDM is used in combination with
frequency-division duplexing (FDD), while Mobile WiMAX uses orthogo-
nal frequency-division multiplexing (OFDM) in combination with TDD [3].
Multiple-antenna techniques like diversity combining [9] and multiple-
input, multiple-output (MIMO) can further enhance the efficiency of the
access techniques.

2 Radio Resource Management

Architecture, frequency spectrum, and access techniques are all more or
less fixed characteristics of a wireless network. However, due to the tem-
porally and spatially varying channel quality of each of the mobile users
in the network, the efficiency of the network will also vary with time. In
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FIGURE 1.2: Block diagram of radio resource management system.

addition, a wireless network in full use will also have a constantly chang-
ing number of mobile users, each having changing number of applications
needing to transmit or receive data over the network. RRM is related to
these constantly changing characteristics of the wireless network, and as
already mentioned, RRM can be defined as the real-time process of exploit-
ing, allocating, and controlling the radio resources according to the varying
number of users and applications [4–6].

In most wireless networks, the RRM system solves three main chal-
lenges, namely, (i) adapting the transmission schemes to the varying nature
of the wireless links, (ii) scheduling radio resources to the mobile users ac-
cording to the instantaneous channel quality and QoS requirements of the
users’ applications, and (iii) controlling admission of new users and appli-
cations into the network and the handoff process between cells according
to the available radio resources.

Fig. 1.2 shows a block diagram that illustrates the three parts of an RRM
system, and the arrows in the figure show the flow of information in the
system. In addition to the internal flow of information in the RRM sys-
tem, each of these three parts do also exchange information with the mo-
bile users in the network. The process of adapting coding, modulation, and
power to the channel conditions is often called adaptive transmission or link
adaptation. This process will normally be distributed in the network, i.e., the
unit that transmits data, adapts the coding, modulation, and power to the
channel conditions. Opportunistic scheduling algorithms and admission con-
trol algorithms are often centralized in the network infrastructure, at the base
stations or at the base station controllers. This means that these two parts
of an RRM system need to collect both channel state information (CSI) from
the mobile users and information about the QoS requirements of the users.
In the following three paragraphs, the three parts of the RRM system will
be described in further detail.

7



INTRODUCTION

2.1 Adaptive Transmission

A wide range of adaptive transmission techniques have been developed
during the last years and most modern wireless systems and standards
have implemented such techniques [10–16]. Most types of wireless net-
works apply digital modulation where the amplitude, frequency, and/or
phase of a carrier frequency are varied according to the modulation symbols be-
ing transmitted [17]. Adaptive transmission can for example be conducted
by adapting the modulation constellation to the channel quality of a mobile
user. In addition, adaptive transmission can be performed by varying the
coding and/or the transmission power according to the channel quality or
by dynamically allocating the mobile users to the carrier frequencies with
the best channel quality.

In a centralized system, the transmission from the base station to the
mobile users is denoted as downlink transmission and the transmission from
the mobile users to the base station as uplink transmission. The process of
adapting the transmission schemes to the downlink channel quality of the
users, requires updated CSI estimates available at the base station. In addi-
tion, a user can use CSI estimates for the uplink to adapt his transmission. If
it is assumed that the channel can vary significantly from time-slot to time-
slot, CSI estimates are needed in each time-slot to conduct the adaptive
transmission. CSI estimates can for example be derived from deterministi-
cally known pilot symbols transmitted in-between the data symbols [18, 19].
In this thesis it is assumed that such quality measurements are based on
estimating the carrier-to-noise ratio (CNR), i.e., the signal strength of the
received signal relative to the noise from other sources, defined as [2]:

γ =
Pr

N0W + PI
, (1.1)

where Pr [dBm] denotes the received signal power, N0 [dBm/Hz] is the
noise power spectral density, W [Hz] is the received signal bandwidth, and
PI [dBm] expresses the sum of the received power associated with the in-
tercell and intracell interference. Throughout the thesis it is assumed that
the CNR estimation can be executed perfectly.

If the network uses TDM-based transmission with different carrier fre-
quencies on uplink and downlink, CSI estimates have to be sent from the
base station to the mobile users and from the mobile users to the base sta-
tion. The base station uses the received CSI estimates to adapt the transmis-
sion on the downlink, while the mobile users use the received CSI estimates
to adapt the transmission on the uplink. However, if the network uses TDD
as access technique, the reciprocity between a user’s uplink and downlink
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channel can be exploited [20]. This means that the channel quality of a user
is the same for uplink and downlink. For such networks, the downlink can
be estimated by sending pilot symbols on the uplink, and vice versa [3, 21].

2.2 Opportunistic Scheduling

Scheduling in wireless networks denotes the process of selecting which of
the mobile users that are going to transmit or receive information on the
wireless channel to increase the throughput and/or the QoS [7, 8]. QoS can
for example be specified in terms of power consumption, buffer overflow
or delay. In time-slotted systems, one user is not necessarily scheduled in
each time-slot since CDM, FDM, or beamforming (BF) techniques make it
possible to transmit to more users at a time. It is often said that scheduling
decisions are taken by the scheduler. In real-life networks, this scheduler
is an algorithm, often implemented centrally at the base station in cellular
networks [7]. In many modern wireless standards, the scheduling is oppor-
tunistic; this means that the mobile users that experience favorable chan-
nel conditions, as measured by some suitable metric, are given priority to
transmit or receive data. By giving priority to the users that have the best
channel conditions, the system spectral efficiency and/or the QoS will in-
crease. This in a consequence of the multiuser diversity (MUD) that exists
between the users [22]. However, the channel conditions will often change
slowly, and the time between a user is scheduled can therefore be signifi-
cant, i.e., some users can be starved. To avoid such starvation it is necessary
to take not only the channel conditions, but also the QoS demands of the
users into account when designing scheduling algorithms.

In addition to MUD, other types of diversity can also be exploited by
wireless networks to obtain better system spectral efficiency. Diversity in
wireless networks can arise because of differently varying channel quality
for different network technologies, different base stations, different mobile
users, different frequencies, different codes, or different antennas. These
kinds of diversity can be simultaneously exploited by allocating users to
the base stations and/or networks with the best signal quality, schedul-
ing the frequencies and time-slots to the users where they experience fa-
vorable signal quality, and combining the signals from different antennas
to increase the spectral efficiency. How scheduling algorithms can be de-
signed to exploit different types of diversity will be handled in Section 5.

Most of the information needed to perform opportunistic scheduling is
already available from the adaptation of coding, modulation, and power.
As discussed in the previous section, the CSI of the mobile users’ downlink
and uplink is available at the base-station. If it is assumed that all the users’
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CSI is available for each time-slot, the base station can use this information
to perform scheduling on a per time-slot basis.

After the scheduling decision is taken, this decision needs to be avail-
able to execute both the downlink and uplink transmission. The downlink
transmission is executed by the base station while each mobile user exe-
cutes the uplink transmission. Consequently, the base station needs to dis-
tribute this decision to the scheduled users for each time-slot in the uplink.

2.3 Admission Control and Handoff

The main goal of a scheduling algorithm is usually to obtain high through-
put and to fulfill the QoS demands of the users’ applications transmitting
or receiving data in the network. However, this is an impossible task if
there are too many running applications compared to the available radio
resources in the network. Consequently, the number of applications in the
network needs to be restricted so that the QoS of the users already in the
system is not degraded in an unacceptable manner. Restricting the admis-
sion of new users into the network and restricting the execution of new
applications is the mission of the admission control algorithm of an RRM
system [23]. Admission control needs to be closely connected to the perfor-
mance of the scheduling algorithm. If the scheduling algorithm performs
well over a relatively long time horizon, the network might have spare ca-
pacity and the admission control algorithm can allow new users or appli-
cations into the system. However, if the scheduling algorithm has difficul-
ties fulfilling the QoS requirements of the applications already running in
the system, no new applications should be admitted. If a few applications
are degrading the QoS of many other applications, the troublesome appli-
cations should perhaps be denied access to the network. Such denial of
service procedures are often called call dropping [23].

Handoff is the process of transferring the servicing of a mobile user
from one base station to a neighboring base station [23]. The handoff pro-
cess is guided by the channel qualities that can be obtained between a
mobile user and the surrounding base stations. If a mobile user experi-
ences low quality on his channel, it might be that another base station in
the area can provide better channel quality. Therefore, ideally the mobile
users should measure the signal strength of the carrier frequencies of all
the surrounding base stations in order to evaluate if a handoff could in-
crease the quality of the wireless transmission. The handoff decision can
either be taken by the individual users or centrally in the network infras-
tructure. However, the advantage of a centralized handoff control is that
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the handoff process can be more tightly integrated with the other pars of
the RRM-system.

A handoff can be hard or soft [23]. A hard handoff algorithm only al-
lows the mobile users to communicate with one base station at a time, while
soft handoff algorithms allow the mobile users to communicate with sev-
eral base stations simultaneously. The advantage of the soft handoff pro-
cess is that it is easier to guarantee QoS when the users can communicate
with several base stations. Such systems are often referred to as having load
sharing between the base stations [6]. However, in load sharing systems
one user might degrade the performance of several cells at the same time.
Consequently, a proper handoff algorithm should consider both the QoS of
the user involved in the handoff process and the QoS of the other users that
are communicating with the base stations involved in the handoff.

3 Performance Evaluation of Opportunistic
Scheduling Algorithms

In the following some possible performance metrics and related issues in-
fluencing the design of wireless scheduling algorithms are listed.

3.1 Maximum Average System Spectral Efficiency (MASSE)

A fundamental aspect of all scheduling algorithms is the Maximum Av-
erage System Spectral Efficiency (MASSE) that can be obtained for a sys-
tem, i.e., the maximally theoretically attainable throughput per bandwidth
[bits/s/Hz], averaged over all the users in the system. The expression
for the MASSE for constant-power, optimal rate adaptation, when additive
white Gaussian noise (AWGN) is assumed, is defined as [24]:

MASSE =
N

∑
i=1

pi

∫ ∞

0
log2(1 + γ)pγ∗i (γ) dγ, (1.2)

where N is the number of users in the system, pi is the probability of user i
being selected in any time-slot (access probability), and pγ∗i (γ) is the prob-
ability density function (PDF) of the CNR for the scheduling policy under
study when user i is selected. The average CNR of user i is denoted as
γi. In this thesis, the MASSE achievable for a cell will be analyzed, how-
ever, the MASSE can also be analyzed for the wireless network as a whole.
The theoretically attainable throughput of a cell can be seen as the MASSE
multiplied by the frequency spectrum available.

11



INTRODUCTION

It is important to note that the definition of MASSE above assumes that
only one user is scheduled at a time. This assumption is also valid for all
the scheduling algorithms described in the papers of this thesis. However,
such scheduling algorithms are not optimal from an information theoretic
perspective. According to information theory, the union of achievable rates
under all multiuser strategies can be characterized by the capacity region.
This capacity region can be obtained for the downlink by using superpo-
sition coding with successive interference cancellation (SCSIC) [25]. This tech-
nique is based on the base station sending information to all the mobile
users in every time-slot and the coding of the signals to the different re-
ceivers are coded according to the channel quality of each of the receivers.
The coding is such that a user which has a better channel quality than some
other users can decode the signals intended for these users and subtract
them from his own signal. This means that the user with the best channel
can subtract the signals intended for all the other users in the system, while
the user with the worst channel cannot subtract any interference from his
signal. SCSIC can also be used to obtain the capacity region for uplink
transmission and can be implemented in CDMA networks to increase the
throughput significantly [26].

3.2 Fairness

Fairness in wireless networks is a measure of how equally the radio re-
sources are allocated among the mobile users. The resources in question
can be e.g. time-slots, frequencies, code-sequences, or throughput. A com-
monly used fairness measure is Jain’s Fairness Index (JFI) [27]:

F(K) =
(EK[X])2

EK[X2]
=

(EK[X])2

(EK[X])2 + var(X)
, (1.3)

where X is a random variable describing the amount of resource allocated
to a user, EK[·] is the expectation calculated over the distribution of the re-
source allocation within a time-window of K [time-slots], and var(X) is the
corresponding variance. This fairness index is bounded between zero and
unity and has been used in many recent papers [28–30]. Fairness should
always be evaluated for a window in time, and the scheduling algorithms
that obtain high fairness over a relatively short time-window are denoted
as short-term fair, while the algorithms that obtain high fairness over an infi-
nite time-window are denoted as asymptotically fair. It should also be noted
that the fairness measured according to the JFI should be compared to the
MASSE performance of a network since a trade-off between MASSE and
fairness can often be observed for different scheduling algorithms.
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3.3 Power Consumption

Wireless networks that focus on low power consumption, e.g. sensor net-
works, will often seek to schedule the users that use the lowest energy per
bit for their transmission [31].

3.4 Delay

Real-time, interactive applications like voice over IP (VoIP) or videoconfer-
encing have strict requirements on what delays that can be permitted for
the data received [32]. If packets are outdated, these cannot be used and
will therefore be discarded by the system. Giving the right priorities to
packets that have the longest delays can therefore help improving the QoS
of applications with stringent delay requirements.

3.5 Buffer Overflow

Real-life systems have limited capacity in the buffers that contain data that
are to be transmitted over the wireless network. If the traffic is bursty,
i.e., the packet flow into the buffers varies significantly with time, and the
buffers are not substantially over-dimensioned, there will be a probabil-
ity for buffer overflow [33]. This probability can be reduced by implement-
ing scheduling algorithms that take the delay of the packets in the buffers
into account [34]. However, flow control in the system will also reduce the
problem of buffer overflow, and the interaction between flow control and
scheduling has been investigated in [35].

3.6 Throughput Guarantees

For real-time applications, the most important requirements are that the av-
erage throughput is high enough and that the packet delay is below certain
delay constraints. Problems such as low battery energy and buffer over-
flow are often caused by the behavior of the mobile users themselves, and
their applications. For example, the battery can become flat because users
do not charge their mobile terminal and buffer overflow can arise if the
mobile users run too many applications at the same time. Consequently,
the operator of a cellular network may only be interested in guaranteeing a
certain number of transmitted bits within a time-window. Throughput guar-
antees, i.e., the number of transmitted bits that can be promised to a user
over a given time-window, can be used to quantify such guarantees.

Throughput guarantees can be seen as a performance criterion that rep-
resents a combination of throughput and delay. There are two types of
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throughput guarantees that can be offered to the mobile users, namely hard
or deterministic throughput guarantees, and soft or stochastic throughput guar-
antees [36]. The hard throughput guarantees promise a certain through-
put over a time-window with unit probability. However, for wireless net-
works with a varying number of users, applications, and channel condi-
tions, such throughput guarantees can be difficult to fulfill with absolute
certainty. Consequently, soft throughput guarantees are more realistic, and
thus better suited for wireless networks. The soft throughput guarantees
promise a certain throughput within a time-window with a probability that
is high, but less than unity.

4 Four Well-Known Opportunistic Scheduling
Algorithms

In this section, four basic and well-known opportunistic algorithms for
scheduling users in a time-slotted network will be presented. Evaluating
the theoretical performance of such simple scheduling algorithms can lead
to valuable insights that can be used for developing more advanced algo-
rithms. The four algorithms are designed for networks where only one
mobile user is scheduled in each time-slot. Some of these scheduling al-
gorithms provide some measure of fairness in the radio resource alloca-
tion between the different users. However, these scheduling algorithms as-
sume that the users always have data to send and do not consider the QoS
requirements of the different applications in the network and can there-
fore not provide exact QoS guarantees. Issues related to how opportunistic
scheduling algorithms can be implemented in more complex wireless net-
works and issues related to how QoS guarantees can be promised to the
different applications will be handled in Section 5 and Section 6.

A general scheduling algorithm for scheduling a single user in each
time-slot can be formulated as follows:

i∗(tk) = argmax
1≤i≤N xi(tk), (1.4)

where i∗ denotes the index of the selected user, i denotes any user index,
and xi(tk) denotes the value of the chosen scheduling metric at the begin-
ning of time-slot k. The scheduling metric is the metric that is used to de-
cide which user is going to be scheduled, and for opportunistic scheduling
algorithms xi(tk) is typically a function of γi(tk), the CNR of user i in time-
slot k.
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4.1 Max Carrier-to-Noise Scheduling (MCS)

The simplest opportunistic scheduling algorithm is the one that schedules
the user with the highest CNR in each time-slot [37]:

i∗(tk) = argmax
1≤i≤N γi(tk). (1.5)

This is the most opportunistic of all scheduling algorithms for time-slotted
networks, since it maximizes the MASSE. This means that the MCS policy
maximally exploits the MUD in a time-slotted cell where only one user is
scheduled at a time.

4.2 Normalized Carrier-to-Noise Scheduling (NCS)

To increase the fairness of the system, it can be advantageous to schedule
the user that has the highest normalized CNR in each time-slot [38]:

i∗(tk) = argmax
1≤i≤N

γi(tk)
γi

, (1.6)

where γi is the average CNR of user i.

4.3 Proportional Fair Scheduling (PFS)

The most widely adopted opportunistic scheduling algorithm is the Pro-
portional Fair Scheduling (PFS) algorithm. This algorithm is patented by
Qualcomm Incorporated [39] and is also described in [22] and [40]. This
algorithm has the following form:

i∗(tk) = argmax
1≤i≤N

(
ri(tk)
Ti(tk)

)
, (1.7)

where ri(tk) is the rate of user i in time-slot k, and

Ti(tk+1) =


(

1− 1
tc

)
Ti(tk) + 1

tc
ri(tk) if i = i∗(tk)(

1− 1
tc

)
Ti(tk), if i $= i∗(tk),

(1.8)

where tc [seconds] is a time-window over which Ti is calculated.

4.4 Opportunistic Round Robin Scheduling (ORR)

The original Opportunistic Round Robin (ORR) algorithm was presented
in [41]. This original algorithm was stated as a general optimization prob-
lem where the throughput over a time-window of N time-slots should be
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maximized, subject to the constraint that the N users should get exactly
one time-slot each within the time-window. A more practical version of
this algorithm was presented in [42], where the users are scheduled in suc-
cessive rounds of N competitions. For the first time-slot in a round, the
user with the highest CNR is chosen. This user is then taken out of the re-
maining competitions of the round, and for the next time-slot the user with
the highest CNR of the remaining users is scheduled. This procedure is
repeated until the last round, where the remaining user is scheduled. The
scheduling process then starts over again with a new round of N competi-
tions.

For a scenario where the users’ average CNRs are spread far apart, the
ORR algorithm will be non-opportunistic, i.e., the user with the highest
average CNR will always be scheduled in the first time-slot of a round, the
user with the second-highest average CNR will be scheduled in the second
round, and so on. In this case the ORR algorithm can be combined with the
NCS algorithm to yield a higher system spectral efficiency, with the user
with the highest ratio γi(tk)/γi scheduled in each competition [43]. This
algorithm is denoted as the Normalized ORR (N-ORR) algorithm.

5 Physical and MAC Layer Design Issues for
Opportunistic Scheduling Algorithms

This section discusses several issues related to the design of scheduling
algorithms for wireless systems related to the physical and MAC layers,
while the next section discusses how the scheduling algorithms can be de-
signed to fulfill the QoS requirements of the applications.

5.1 Multi-Network and Multi-Cell Scheduling Issues

The previous sections have described scheduling algorithms that schedule
the mobile users in a cell. However, the same types of algorithms can be
used in a distributed manner where the mobile users may schedule the
different networks or the different base stations that are accessible.

Multi-Network Scheduling Issues

A mobile user that has the possibility to connect to different networks
based on different technologies may experience e.g. better coverage, higher
throughput, better QoS, and lower costs. With an increasing number of
new wireless technologies being deployed, the market for handsets that is
enabled for different wireless standards is therefore likely to grow [44, 45].
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The main problem related to such terminals enabled for heterogeneous
wireless networks is often how the resources of the different networks
should be scheduled to the users. How such multi-network scheduling
algorithms can be implemented in a future wireless network architecture is
described in [46].

Downlink Multi-Cell Scheduling Issues

Full frequency reuse, i.e., using the same carrier frequencies for all cells
in the network, has a potential to increase the total spectral efficiency of
a cellular network [47, 48]. However, since inter-cell interference limits
the gain from full frequency reuse, the transmit power of the base stations
should be controlled. It has been shown that binary transmit power, i.e.,
the base stations are transmitting at full power or not transmitting at all,
can increase the spectral efficiency of CDM-based networks [49]. Based on
this binary power allocation, there have recently been suggested some dis-
tributed policies for jointly allocating power to cells and scheduling mobile
users within the cells [47, 48]. In addition, Kiani et. al have shown that as
the number of users per cell increases, the MASSE is maximized if all cells
are simultaneously transmitting and MCS is used to schedule the users [48].

Uplink Multi-Cell Scheduling Issues

Fast Cell Selection (FCS) has been proposed for both HSPA and HDR, and
is based on selecting the base station that will give the best uplink channel
quality for a mobile user [50, 51]. The suggested FCS algorithms mostly
select the base station that can provide the best channel quality to a mobile
user, and thus can be implemented in a distributed fashion at the mobiles,
or centrally in the network. However, Lau has shown that for centralized
FCS, this base station scheduling strategy is not optimal when opportunis-
tic scheduling algorithms are used to schedule the users within a cell [52].
In [52], Lau has also suggested a near-optimal centralized uplink multi-cell,
multi-user scheduling algorithm.

5.2 Design Issues Related to Different Access Techniques

In the previous sections, only scheduling algorithms for scheduling single
users in each time-slot were handled. However, in modern wireless net-
works it is often possible to schedule more users in each time-slot. This
section will discuss some techniques that enable a scheduling algorithm to
schedule groups of users in each time-slot.
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Scheduling for CDM-Based Systems

For CDM networks, several users can transmit or receive data in each time-
slot using codes which are different from user to user [53–56]. Most cur-
rent CDM-based standards use orthogonal codes, however as already men-
tioned in Section 3.1, the throughput can be increased significantly by using
SCSIC [26]. Consequently, these users will interfere with each other, and
power control is therefore important to reduce this interference in a CDM
network. In addition to exploiting MUD by scheduling the users with the
best channel conditions, it is also common to use FCS in the uplink of CDM
networks.

Scheduling for OFDM-Based Systems

As opposed to CDM systems that use orthogonal codes, OFDM systems are
orthogonal with respect to frequency. For OFDM systems it is also possible
for more users to transmit or receive within a time-slot. In OFDM, each
carrier frequency is split into some hundreds of sub-carriers, and each sub-
carrier in each time-slot can be allocated to different users [57]. Scheduling
sub-carriers in this way means that the MUD can be further exploited and
that it is easier to fulfill QoS guarantees within a time-window.

Multi-Antenna Scheduling Issues

Systems with multiple antennas at both the transmitter and receiver, are
often referred to as MIMO systems [58], and it was shown in [59, 60] that the
Shannon capacity of a single MIMO link grows linearly with min(Nt, Nr),
where Nt is the number of antennas at the transmitter and Nr is the number
of antennas at the receiver. If only one user is scheduled in each time-slot,
gains from spatial diversity and/or spatial multiplexing can be obtained [61].
The spatial diversity is exploited if the same signal is transmitted on all
antennas and can be used to increase the reliability of reception, while the
spatial multiplexing gain is achieved by transmitting different signals on
each antenna to increase the throughput for a fixed reliability level [61]. It
has been shown that it is a trade-off between the spatial diversity gain and
the spatial multiplexing gain of a MIMO-system [61]. The spatial diversity
in a MIMO system can be exploited by using e.g. Space-Time Block Coding
(STBC) where the signals from the different transmit antennas are jointly
encoded to obtain better error protection [62]. However, as shown in [63,
64], the gain from a scenario where STBC is used and the user with the
best channel conditions is scheduled in each time-slot (MCS), is similar to
the MUD gain when MCS is used in a single-input, single-output (SISO)
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system, i.e., a system with single antennas both at the base station and at
the mobile terminals.

As mentioned in Section 3.1, it is known that the capacity for multiuser
systems can only be achieved if signals are transmitted to or from all users
at the same time and SCSIC is implemented [25]. Consequently, to jointly
exploit the gain from MUD and multiple antennas in MIMO systems, sev-
eral users have to be scheduled in each time-slot [65]. The Shannon capacity
of such a system can be obtained by using dirty paper coding (DPC) [66, 67],
and it is shown that the multiplicative capacity gain over a MIMO system
where only the user with the best channel is scheduled in each time-slot,
is approximately min(Nt, N), where N is the number of mobile users [68].
DPC is a complex technique which is difficult to implement in practical sys-
tems. However, it has been shown that systems using BF where a group of
users with the best semi-orthogonal channels are scheduled in each time-
slot, can come close to the DPC spectral efficiency [65, 69–71].

Scheduling with Embedded Modulation

In [72] Hossain et. al suggest a modulation method for transmitting differ-
ent information on the downlink to two users being able to detect different-
sized quadrature amplitude modulation constellations. Let us for example
assume that a combination of 4-QAM and 64-QAM is used. A 4-QAM con-
stellation consists of one symbol in each quadrant of the coordinate sys-
tem showing the in-phase and quadrature components of the constellation,
while a 64-QAM constellation consists of sixteen symbols in each quadrant
of this coordinate system. Let us also assume that a user with a low in-
stantaneous CNR can only detect 4-QAM constellations while a user with
a good channel quality can detect all the symbols of the 64-QAM constella-
tion. For this scenario, one fourth of the 64-QAM constellation embedded
in the 4-QAM constellation can be transmitted, i.e., if a symbol is going to
be transmitted in one of the quadrants of the 4-QAM constellation, one of
the sixteen 64-QAM symbols in this quadrant can be transmitted instead.
Transmitting the symbols in this way, the user with the bad channel quality
can receive two bits in each M-QAM constellation (four different symbols),
while the user with the good channel quality can simultaneously receive
four bits in each constellation (sixteen different symbols).

Based on the work in [72] the same authors evaluate the higher-layer
performance of MCS where the two users with the best channel quality
are scheduled in each time-slot using embedded modulation [73]. This al-
gorithm is evaluated according to the buffer distribution, the buffer occu-
pancy, the delay distribution and the packet loss probability (PLP), and the
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numerical results show that the two-user MCS algorithm performs better
than the traditional MCS algorithm, where only one user is scheduled in
each time-slot, at the expense of an increase in the average transmit power.

5.3 Scheduling Issues Related to the Physical Characteristics of
the Wireless Channel

Scheduling with Induced Channel Fluctuations

Rapid channel fluctuations is important for the scheduler to exploit MUD
on a short time-scale in order to increase the throughput and to fulfill the
QoS requirements in the system. Such rapid channel fluctuations are nat-
urally induced if the speed of the mobile users increases [74]. However,
channel fluctuations can also be induced for a more static scenario. In [22],
Viswanath and Tse suggest to transmit the downlink signals on more an-
tennas and vary the phase and amplitude of the different antennas with
time. This technique is called opportunistic beamforming and nulling.

Scheduling with Channel Prediction

In real-life wireless networks, the CNR of the users is correlated from time-
slot to time-slot. Therefore, if the CNR for each user can be predicted for a
time-window ahead in time the scheduler has more information available
and it can take better scheduling decisions. In [75] a predictive PFS algo-
rithm is proposed, and the results show that the users are scheduled closer
to the peaks of their actual CNR, leading to both an increase in MASSE and
fairness.

5.4 Energy Efficient Scheduling

Berry and Gallager have shown that there exists a delay-energy trade-off for
wireless transmission [76]. This means that to reduce the transmission de-
lay in a system, the transmission power has to be increased, and vice versa.
The Lazy scheduling algorithm exploits this trade-off by reducing the en-
ergy per bit transmitted and by lowering the transmission rate so that it
takes longer time to transmit each bit [77, 78]. However, this algorithm will
in many cases lead to a too long delay for many applications. It can there-
fore be useful to redesign this algorithm such that the energy usage per bit
is instead minimized subject to a delay constraint [77, 78].

In [79] the inverse-log scheduling (ILS) algorithm for energy efficient
scheduling in TDMA-based sensor networks is introduced. The ILS algo-
rithm allocates transmission time according to the number of bits in the
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buffers and channel quality and has a much lower complexity than the op-
timal scheduling algorithm. Both the centralized and distributed versions
of this algorithm obtain a near-optimal energy efficiency with delay con-
straints in large-scale networks.

5.5 Overhead in Scheduling

According to Wikipedia [80], overhead in computer science is “any com-
bination of excess or indirect computation time, memory, bandwidth, or
other resources that are required to be utilized or expanded to enable a
particular goal”. For wireless communications, two significant sources of
overhead are protocol overhead and signaling overhead. Protocol overhead
arises because headers and/or trailers are added to the frames or packets
at the different layers of the protocols stack, which reduces the resources
available for transmitting information [81]. Signaling overhead or feedback
overhead arises because information about e. g. channel state or buffer state
of different mobile users needs to be distributed in the network [82]. For
example, a transmitter can receive CSI estimates from a receiver in order to
adapt the transmission coding and modulation to the instantaneous chan-
nel state.

Adapting the scheduling decision according to the channel conditions
also requires that channel quality estimates are available at the scheduler.
In order to make the most precise scheduling decisions, such estimated
should obviously be as exact and up to date as possible. However, if the
scheduler requests feedback more often than necessary or with a higher
precision than necessary, the system will suffer from increased overhead
and hence decreased system spectral efficiency. How often feedback should
be collected by the scheduler depends on how fast the channel changes,
which can be measured in terms of the coherence time of the wireless chan-
nel, i.e., the time period over which the channel quality can be considered
as being constant [83]. The effect of the feedback precision has been inves-
tigated in [84, 85]. It is shown that heavy quantization of the CSI estimate
being fed back will not lead to a significant reduction of the MUD gain.
This means that the CSI does only need to be represented by a few bits.
It has also been shown that feedback compression algorithms that exploit
channel correlation in time and frequency also can significantly reduce the
overhead from feedback [86, 87].

Another approach that has been pursued in order to reduce the feed-
back overhead is to reduce the feedback load, i.e., the number of users giv-
ing feedback. Most algorithms trying to reduce the feedback load, defined
as the number of users feeding back their CSI estimate for each time-slot,
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are based on CNR thresholds. One such algorithm is the Selective Multiuser
Diversity (SMUD) algorithm proposed by Gesbert and Alouini [88]. This
algorithm uses one CNR threshold value and the users that have a instan-
taneous CNR above this threshold, feed back their CSI estimate to the base
station. If no users are above the threshold, a random user is selected to
transmit his feedback. Qin and Berry have proposed the Splitting algorithm,
which is designed for slotted ALOHA networks and is based on binary
search [89]. Another threshold-based feedback reduction algorithm is de-
scribed in [90]. For this algorithm the mobile users are probed randomly
until one user is found above a threshold.

For MIMO systems, the transmitter might need to know the whole
channel matrix and intuitively the CSI should therefore contain more in-
formation than for SISO systems. However, also for MIMO systems it is
shown that the CSI being fed back can be heavy quantized and that only
a few bits feedback can provide performance close to that with full knowl-
edge at the transmitter [91].

Since there often are hundreds of sub-carriers in OFDM systems, and
since each sub-carrier can in principle be scheduled to any user, the amount
of feedback information can be significant for such systems. The correlation
between the channel quality of adjacent sub-carriers can be exploited to
reduce the amount of feedback. By allocating blocks of sub-carriers to each
of the users, the scheduler only needs to obtain CSI for each block [92]. The
length of the blocks will depend on the frequency selectivity of the wireless
channel.

5.6 Scheduling for Ad Hoc Networks

Opportunistic scheduling for ad hoc networks is based on many princi-
ples from the cellular scheduling algorithms [31, 93–99]. However, for an
ad hoc network, a transmitter schedules different receivers or a receiver
schedules different transmitters. For IEEE 802.11-based networks, the com-
munication process can be administered by RTS (request-to-send) and CTS
(clear-to-send) packets. The RTS packets are sent from transmitters to po-
tential receivers and when the potential receivers receive RTS packets, they
reply with CTS packets. Opportunistic scheduling algorithms are based
on channel estimates, hence, the CTS packets need to contain CSI for a sce-
nario where the transmitter performs the scheduling process, while the RTS
packets need to contain CSI when the receivers perform the scheduling pro-
cess.

Ad hoc scheduling algorithms can also be based on a multi-hop sce-
nario where the transmitter uses one or more other mobile users as relays
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for the data that are sent to the receiver [7, 98, 100].
Since the mobile terminal typically has limited battery capacity, energy

efficient scheduling is important for ad hoc networks. In addition, power
control is also important for ad hoc transmission since a transmitter be-
ing close to the receiver can drown the signal from transmitters further
away [99]. This is known as the near-far problem.

User cooperation diversity or just cooperation diversity has recently been
proposed as a new form of spatial diversity [101, 102]. This type of diver-
sity can be exploited in an ad hoc network where several single-antenna
relays cooperate to constitute a virtual antenna array. In [103], the authors
propose a scheduling algorithm that can exploit both the MUD and the co-
operation diversity of an ad hoc network.

6 Cross-Layer Design Issues for Opportunistic
Scheduling Algorithms

Research within the field of scheduling packets of wire-line networks has ma-
tured through extensive research during the last two decades. Much of this
research has focused on scheduling algorithms similar to the Weighted Fair
Queuing (WFQ) algorithm [104], a packet-based version of Generalized
Processor Sharing (GPS) [105]. This is because GPS can guarantee to the
different applications (sessions) that the network resources are allocated
fairly and independently of the behavior of the other applications [106].
Most of the publications on packet scheduling assume that the throughput
of the channel is constant.

For wireless networks, the research has mainly concentrated on how to
schedule radio resources, e.g. time-slots, frequencies, power, and/or codes,
to different mobile users. Most of these scheduling algorithms do not take
the users’ QoS requirements into account and mainly focuses on how to
exploit the time-varying nature of the wireless channels.

Traditionally, the research on packet scheduling has concentrated
mostly on QoS and fairness for different QoS classes or different applica-
tions, while opportunistic scheduling algorithms have focused on exploit-
ing the time-varying nature of the wireless channels and to provide fairness
to the different mobile users. This segregation between packet scheduling
and radio resource scheduling is not efficient since none of the two types of
scheduling algorithms focus both on (i) providing QoS for the applications
and (ii) exploiting the time-varying characteristics of the wireless channel.
It is therefore necessary to merge the scheduling of packets and the schedul-
ing of radio resources to design cross-layer scheduling algorithms [107].
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To be able to improve the QoS experienced by the mobile users, cross-
layer scheduling algorithms need to take both the time-varying characteris-
tics of the wireless channels and the QoS demands of the applications into
account. In addition, it is often necessary to consider the characteristics
of the packet load of (i) the buffers at the mobile users containing packets
waiting to be transmitted over the uplink and (ii) the buffers at the base sta-
tion containing packets waiting to be transmitted on the downlink to each
of the users [108]. In this section, cross-layer scheduling algorithms that are
designed to improve the QoS in the network will be described. Both non-
queue-aware and queue-aware scheduling algorithms are considered. While
non-queue-aware algorithms do not consider how the queues of the buffers
can affect the QoS, the queue-aware algorithms consider effects like queu-
ing delay, buffer overflow, and probability of empty buffers.

6.1 Non-Queue-Aware, Cross-Layer Scheduling

Physical and MAC related design issues can be analyzed by assuming that
all the users are back-logged, i.e., that all the users in the system have non-
empty buffers that always contain packets to send or receive. However,
when analyzing the QoS performance of scheduling algorithms this as-
sumption is not always correct since the number of packets in the buffers
can vary significantly, and there is a relatively high probability that the
buffers are empty [108, 109]. However, since the scheduling algorithms
in modern cellular networks operate on time-scales that are significantly
shorter than the time-scale over which the population of back-logged users
change, it can nevertheless be assumed that the scheduling algorithms op-
erate on a constant user population [109].

In [110] Andrews et al. assumed a constant user population and pro-
pose scheduling algorithms that aim at offering throughput guarantees by
giving different priorities to the users depending on how far they are from
fulfilling their throughput guarantees. One of the problems with this al-
gorithm is however that it takes action only when a throughput guarantee
already has been violated.

As an alternative, Borst and Whiting proposed a scheduling algorithm
that tries to fulfill the throughput guarantees before they are violated [111].
This algorithm is also based on assuming a constant user population and
is based on a mathematical proof showing that the algorithm provides the
highest theoretically attainable throughput guarantees to the mobile users
in a cell. This optimal algorithm can be stated as follows:

i∗(tk) = argmax
1≤i≤N

(
ri(tk)

αi

)
, (1.9)
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where αi is a constant. However, in [111] it was not shown how the op-
timal αis can be found. An additional drawback of the scheduling policy
in (1.9) as proposed in [111], is however that the αis are found based on
the assumption that the throughput guarantees are to be fulfilled for a long
time-window containing many time-slots.

6.2 Queue-Aware, Channel-Aware, Cross-Layer Scheduling

For time-slotted networks, the packets in the buffers are aggregated into
time-slots. Consequently, empty buffers and partially filled time-slots
will affect the system performance. In the recent years some publica-
tions have considered how to integrate the packet scheduling and the ra-
dio resource scheduling into queue-aware, channel-aware scheduling algo-
rithms [34, 107, 109, 112–116]. For example, one such publication handles
how to implement Weighted Fair Queuing (WFQ) when the largest share
of the radio resources is given to the users with the instantaneously best
channel conditions in a CDM-based network [56]. However, maybe the
most well-known queue-aware, channel-aware scheduling algorithm is the
Modified Largest Weighted Delay First (M-LWDF) algorithm [34, 117]:

i∗(tk) = argmax
1≤i≤N

(
φiWi(tk)

ri(tk)
ri

)
, (1.10)

where Wi(tk) [seconds] is the head-of-the-line (HOL) packet delay in user
i’s buffer, φi is a constant denoting the priority given to user i, and ri
[bits/second] is the average rate for user i. This algorithm can be used both
for uplink and downlink scheduling since Wi can denote the delay of the
HOL packets in either the users’ output buffers on the uplink or the buffers
at the base station containing packets for downlink transmission to each of
the mobile users. The advantage of this algorithm is that it takes both the
channel quality and the delay of the packets into account when performing
scheduling. In addition, this algorithm is proven to be throughput optimal.
This means that the algorithm manages to keep the queues stable if this is at
all feasible to do with any other algorithm, where a stable queue is defined
as having a finite expected queue length. The M-LWDF algorithm can also
be reformulated to guarantee a certain throughput to the users if it is used
in conjunction with a token bucket control [34].

Another well-known queue-aware, channel-aware scheduling algo-
rithm is the exponential rule developed by Shakkottai and Stolyar [113]. This
scheduling algorithm is also proved to be throughput optimal and can also
be used to provide QoS guarantees in a cellular network [118, 119].
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Wu and Negi introduced the concept of effective capacity link model
which is a model that unites the dynamics of the wireless channel and
the dynamics of the packet queuing [108]. Although it is hard to develop
closed-form expressions for the effective capacity for CNR distributions
like Rayleigh and Rice, this model can be used as a tool to develop schedul-
ing algorithms with QoS guarantees [120].

In [107], a general queue-aware, channel-aware scheduling algorithm
providing QoS guarantees is developed. It is also thoroughly described
how the adaptive coding and modulation and the scheduling algorithm is
going to be implemented at the MAC layer of a IEEE 802.16-based network.

7 Contributions of the Included Papers

This thesis consists of six papers. In this section a brief summary of these
papers is presented.

Paper A

Vegard Hassel, Mohamed-Slim Alouini, Geir. E. Øien, and David Ges-
bert, “Rate-Optimal Multiuser Scheduling with Reduced Feedback Load
and Analysis of Delay Effects,” published in EURASIP Journal on Wireless
Communications and Networking, Special Issue on Radio Resource Management
in 3G+ Systems, 2006.
http://www.hindawi.com/GetArticle.aspx?doi=10.1155/WCN/2006/36424

This paper is partially based on the conference paper in [121]. In Paper
A, we assume that the MCS algorithm is used, and develop a new feed-
back algorithm for cellular networks as well as investigating the effects of
delayed CSI feedback. As for the SMUD algorithm [88], the base station re-
quests CSI feedback from the mobile users that have a CNR above a thresh-
old value. However, as opposed to the SMUD algorithm which schedules
a random user if no feedback is received, our algorithm requests feedback
from all the users if no users’ CNRs are above the CNR threshold. The ad-
vantage of this algorithm is that we can analytically find the CNR threshold
value that minimizes the feedback load for a given number of users N. Our
numerical results show that these optimal threshold values decrease the
feedback load significantly for a large number of users in a cell.

The feedback collection process described above introduces increased
delays in the system. Two types of delay are evaluated, namely, scheduling
delay and outdated CSI estimates. Scheduling delay arises when the base
station bases its scheduling decision on delayed CSI estimates while the
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adaptive modulation and coding are based on updated CSI estimates. Since
the scheduling decision is based on old CSI estimates, it is likely that the
user with the best channel conditions is not always scheduled. This will
reduce the MASSE and for large delays the system will not experience any
MUD gain. When the base station uses the same delayed CSI estimates
both to (i) take the scheduling decision and (ii) adapt the modulation and
coding to the channel quality, the MASSE will not be affected. However,
it is likely that the bit error rate (BER) will be affected since the CNR of
the scheduled user may have dropped since the CSI was estimated and the
modulation constellation used thus cannot be transmitted at the target BER.
Our numerical results related to the delay analysis show that the system is
able to perform without MASSE or BER degradation when the delays are
below certain critical values that will depend on the Doppler frequency
shift.

Paper B

Vegard Hassel, David Gesbert, Mohamed-Slim Alouini, and Geir E. Øien,
“A Threshold-Based Channel State Feedback Algorithm for Modern Cellu-
lar Systems,” accepted for publication in IEEE Transactions on Wireless Com-
munications.

This paper is partially based on the conference paper in [122]. In Paper
B, we analyze a feedback algorithm that is a generalization of the feedback
algorithm proposed in Paper A. This algorithm uses L feedback thresholds
and as opposed to the feedback algorithm in Paper A, the generalized feed-
back algorithm can be adapted to any scheduling algorithm. For many
scheduling algorithms, e.g. PFS, the L feedback thresholds that minimize
the feedback load have to be found numerically. However, for the MCS
and NCS algorithms we find closed-form expressions for the feedback load
and for the threshold values for a given number of thresholds L and given
number of mobile users N. Our numerical results show that by employing
just a few threshold values, there is a high probability of obtaining feed-
back from just the user that the scheduling algorithm wants to schedule.
We also propose a two-step procedure that makes it possible to obtain both
the optimal threshold values and the optimal number of thresholds.

Paper C

Vegard Hassel, Hend Koubaa, and Geir E. Øien, “Feedback Proto-
cols for Increased Multiuser Diversity Gain in Cellular ALOHA-Based
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Networks–A Comparative Study,” Technical Report, NTNU, published at
http://www.diva-portal.org/ntnu/, January 2007.

This report is partially based on the conference papers in [123]
and [124]. In Paper C, we investigate the performance of the feedback
algorithm in Paper B for a time-slotted IEEE 802.11-based network using
the MCS algorithm. We propose three novel protocols for implementing
the feedback algorithm and we develop closed-form expressions for the
guard time, i.e., the time used to collect feedback for each time-slot, and the
MASSE for each of these protocols. Our numerical results show that we
can obtain significant MASSE gains compared to a feedback protocol that
collects feedback from all the mobile users, when there are many users in
the cell. However, the performance of the most efficient feedback protocols
have a similar performance as the Splitting algorithm proposed in [89] and
thus do not improve significantly on previous work by other researchers.

Paper D

Vegard Hassel, Marius Røed Hanssen, and Geir E. Øien, “Spectral Effi-
ciency and Fairness for Opportunistic Scheduling Algorithms,” submitted
to IEEE Transactions on Wireless Communications, May 2006.

This paper is partially based on the conference paper in [125]. In Paper
D, we develop a closed-form expression for the MASSE of the N-ORR algo-
rithm. We also define the time-slot fairness and throughput fairness based
on JFI [27], where JFI equal to zero denotes full unfairness and JFI equal
to unity corresponds to full fairness. These two types of fairness are calcu-
lated for a time-window of K time-slots. We evaluate asymptotic fairness
when K goes to infinity and we show that all scheduling algorithms that
have the same probability of scheduling all users in a time-slot, will have
full time-slot fairness as K goes to infinity. The corresponding asymptotic
throughput fairness will only converge to unity when the channels of the
users are non-fading, i.e., the users have constant CNRs, and the CNRs are
the same for all the users.

We also develop closed-form expressions for the time-slot fairness and
the throughput fairness as a function of K for the Round Robin (RR), MCS,
NCS, and N-ORR algorithms. Our numerical results show that the N-ORR
algorithm is best suited for obtaining throughput fairness for short time-
windows K while the NCS algorithm is best suited for obtaining through-
put fairness for long values of K.
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Paper E

Vegard Hassel, Geir E. Øien, and David Gesbert, “Throughput Guarantees
for Opportunistic Scheduling: A Comparative Study,” accepted for publi-
cation in IEEE Transactions on Wireless Communications.

This paper is partially based on the conference papers in [126] and [127].
In Paper E, we develop a general formula for the approximate throughput
guarantee violation probability (TGVP) of any scheduling algorithm. The
TGVP quantifies the probability that a certain throughput guarantee is vio-
lated in a cellular network. We also derive closed-form expressions for the
approximate TGVP for RR, MCS, NCS, and N-ORR. Such analytical expres-
sions make it possible to calculate the QoS for the mobile users in a time-
efficient way for a set of instantaneous system parameters, and the TGVP
expressions can therefore be used directly in a RRM system for networks
carrying real-time traffic and where the users move around at high speed.
Monte Carlo simulations for two real-life wireless standards showed that
our TGVP approximations are tight.

Paper F

Vegard Hassel, Sébastien de la Kethulle de Ryhove, and Geir E. Øien,
“Scheduling Algorithms for Increased Throughput Guarantees in Wireless
Networks,”, submitted to Workshop on Resource Allocation in Wireless Net-
works (RAWNET’07), Limassol, Cyprus, April 2007.

In Paper F, we base our work on the scheduling algorithm proposed
by Borst and Whiting that obtains optimal throughput guarantees for long
time-windows [111]. We find analytical expressions for how to obtain the
parameters of this algorithm and we improve the performance of the algo-
rithm by adapting the priorities of the users to the amount of bits that has
already been allocated in a time-window. Our numerical results show that
our adaptive algorithm has the theoretical potential of at least doubling
the throughput guarantees that can be given in wireless networks based on
real-life cellular standards.

8 Main Contributions of the Thesis

The main contributions of the thesis can now be summarized to be:
• The effects of CSI feedback delay on MASSE and BER are analyzed

and it is shown that the performance of the MCS algorithm is not
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degraded significantly if the normalized delay is kept below certain
critical values.

• A general feedback algorithm with multiple feedback thresholds is
developed. This algorithm can be adapted to the scheduling metric
of any scheduling algorithm, and it is shown that for this algorithm it
is a high probability that CSI feedback is only received from the user
that the system wants to schedule.

• The performance of the general feedback algorithm is shown to be
similar to the performance of the Splitting algorithm in practical cel-
lular, time-slotted IEEE 802.11 networks.

• Closed-form expressions for the time-slot fairness and throughput
fairness of the RR, MCS, NCS, and ORR algorithms are developed.

• A general expression for the approximate TGVP for any scheduling
algorithm is derived and the corresponding closed-form expressions
for the approximate TGVP of the RR, MCS, NCS, and ORR algo-
rithms are developed.

• Expressions for obtaining the optimal parameters for the scheduling
algorithm proposed in [111] are developed. An adaptive version of
the optimal algorithm is developed and this adaptive algorithm has
the theoretical potential of at least doubling the throughput guaran-
tees that can be given in modern cellular networks.

9 Suggestions for Future Research

In this section we list some topics that can be interesting to investigate in
the future:

• The Splitting algorithm in [89] can be generalized to have feedback
threshold values adapted to any scheduling algorithm as done in Pa-
per B.

• The analysis in Paper F does only evaluate the performance of the
scheduling algorithms when only one user can be scheduled in each
time-slot. For CDM or OFDM based networks [3], the throughput
guarantee performance can be further improved by scheduling more
than one user in each time-slot.

• Only a few practical scheduling algorithms for networks using beam-
forming have been developed [128–131]. We therefore think that such
algorithms can be further developed. One concrete idea is to develop
a scheduling algorithm for beamforming networks using the ideas
from Paper F.
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• Probably, the highest theoretically attainable throughput guarantees
that can be obtained by a scheduling algorithm in a MIMO system
will be based on DPC [66, 67]. By extending the results of Paper F, it
should be possible to obtain this optimal scheduling algorithm.

• The assumption that the user population can be regarded as con-
stant over the time-window over which the throughput guarantees
are calculated is sometimes not completely correct. By using analyt-
ical methods based on queuing theory like the ones in [74, 109], the
performance of the algorithm in Paper F can be investigated in fur-
ther detail.

• Admission control algorithms are often based on the call dropping
probability (CDP) of the system [23]. For networks carrying real-time
applications, the CDP is closely linked to the TGVP and to the mo-
tion pattern of the users. Developing analytical expressions for the
CDP can be helpful when implementing practical admission control
algorithms.

• As far as we know, the performance of systems using joint power
adaptation, rate adaptation and opportunistic scheduling has only
been analyzed for continuous rates [132]. We therefore suggest to
investigate the effects of discrete rates in the system. Some initial
work has already been conducted for joint power and rate adaptation
with discrete rates [133].

• The true performance of opportunistic scheduling in real-life net-
works can probably be more deeply analyzed by using network sim-
ulators like ns2 and OpNet. It would be especially interesting to
investigate the relationship between packet scheduling and oppor-
tunistic scheduling of time-slots.

• The field of Network calculus [134, 135] is mostly developed for quan-
tifying QoS guarantees in wire-line networks. Only a few publica-
tions have handled network calculus for wireless networks [136, 137],
and we think developing this powerful tool further for wireless net-
works can lead to new insights.
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Abstract

In this paper, we propose a feedback algorithm for wireless networks that al-
ways collects feedback from the user with the best channel conditions and has
a significant reduction in feedback load compared to full feedback. The algo-
rithm is based on a carrier-to-noise threshold, and closed-form expressions for
the feedback load as well as the threshold value that minimizes the feedback load
have been found. We analyze two delay scenarios. The first scenario is where
the scheduling decision is based on outdated channel estimates, and the second
scenario is where both the scheduling decision and the adaptive modulation are
based on outdated channel estimates.
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INTRODUCTION

1 Introduction

In a wireless network, the signals transmitted between the base station and
the mobile users most often have different channel fluctuation character-
istics. This diversity that exists between users is called multiuser diver-
sity (MUD) and can be exploited to enhance the capacity of wireless net-
works [1]. One way of exploiting MUD is by opportunistic scheduling of
users, giving priority to users having good channel conditions [2, 3]. Ignor-
ing the feedback loss, the scheduling algorithm that maximizes the aver-
age system spectral efficiency among all time division multiplexing (TDM)
based algorithms, is the one where the user with the highest carrier-to-noise
ratio (CNR) is served in every time-slot [2]. Here, we refer to this algorithm
as Max CNR Scheduling (MCS).

To be able to take advantage of the MUD, a base station needs feed-
back from the mobile users. Ideally, the base station only wants feedback
from the user with the best channel conditions, but unfortunately each user
does not know the CNR of the other users. Therefore, in current systems
like Qualcomm’s High Data Rate (HDR) system, the base station collects
feedback from all the users [4].

One way to reduce the number of users giving feedback is by using
a CNR threshold. For the selective multiuser diversity (SMUD) algorithm, it
is shown that the feedback load is reduced significantly by using such a
threshold [5]. For this algorithm only the users that have a CNR above
a CNR threshold should send feedback to the scheduler. If the scheduler
does not receive feedback, a random user is chosen. Because the best user is
not chosen for every time-slot, the SMUD algorithm however introduces a
reduction in system spectral efficiency. In addition it can be hard to set the
threshold value for this algorithm. Applying a high threshold value will
lead to low feedback load, but will additionally reduce the MUD gain and
hence the system spectral efficiency. Using a low threshold value will have
the opposite effect: the feedback load reduction is reduced, but the spectral
efficiency will be higher.

The feedback algorithm proposed here is inspired by the SMUD algo-
rithm, in the sense that this new algorithm also employs a feedback thresh-
old. However, if none of the users succeed to exceed the CNR threshold, the
scheduler requests full feedback, and selects the user with the highest CNR.
Consequently, the MUD gain [1] is maximized, and still the feedback load
is significantly reduced compared to the MCS algorithm. Another advan-
tage with this novel algorithm is that for a specific set of system parameters
it is possible to find a threshold value that minimizes the feedback load.

For the new feedback algorithm we choose to investigate two impor-

55



A. RATE-OPTIMAL MULTIUSER SCHEDULING WITH REDUCED FEEDBACK LOAD AND
ANALYSIS OF DELAY EFFECTS

tant issues, namely, (i) how the algorithm can be optimized, and (ii) the
consequences of delay in the system. The first issue is important because
it gives theoretical limits for how well the algorithm will perform. The
second issue is important because duration of the feedback collection pro-
cess will often be significant and this will lead to a reduced performance
of the opportunistic scheduling since the feedback information will be out-
dated. The consequences of delay are analyzed by looking separately at
two different effects: (a) the system spectral efficiency degradation arising
because the scheduler does not have access to instantaneous information
about CNRs of the users, and, (b) the bit-error-rate (BER) degradation aris-
ing when both the scheduler and the mobile users do not have access to
instantaneous channel measurements.

Contributions. We develop closed-form expressions for the feedback
load of the new feedback algorithm. The expression for the threshold value
which minimizes the feedback load is also derived. In addition we obtain
new closed-form expressions for the system spectral efficiency degradation
due to the scheduling delay. Finally, closed-form expressions for the effects of
outdated channel estimates are obtained. Parts of the results have previously
been presented in [6].

Organization. The rest of this paper is organized as follows. In Sec-
tion 2, we present the system model. The feedback load is analyzed in
Section 3, while Section 4 and Section 5 analyze the system spectral effi-
ciency and BER, respectively. In Section 6 the effects of delay are discussed.
Finally, Section 7 lists our conclusions.

2 System Model

We consider a single cell in a wireless network where the base station ex-
changes information with a constant number N of mobile users which have
identically and independently distributed (i.i.d.) CNRs with an average of
γ. The system considered is TDM based, i.e., the information in transmit-
ted in time-slots with a fixed length. We assume flat fading channels with
a coherence time of one time-slot, which means that the channel quality
remains roughly the same over the whole time-slot duration and that this
channel quality is uncorrelated from one time-slot to the next. The system
uses adaptive coding and modulation, i.e., the coding scheme, the modu-
lation constellation and the transmission power used depends on the CNR
of the selected user [7]. This has two advantages. On one hand, the spec-
tral efficiency for each user is increased. On the other hand, because the
rate of the users are varied according to their channel conditions, it makes
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it possible to exploit MUD.
We will assume that the users always have data to send and that these

user data are robust with respect to delay, i.e., no real-time traffic is trans-
mitted. Consequently, the base station only has to take the channel quality
of the users into account when it is performing scheduling.

The proposed feedback algorithm is applicable in at least two different
types of cellular systems. The first system model is a time-division duplex
(TDD) scenario where the same carrier frequency is used for both uplink
and downlink. We can therefore assume a reciprocal channel for each user,
i.e., the CNR is the same for the uplink and the downlink for a given point
in time. The system uses the first half of the time-slot for downlink and
the last half for uplink transmission. The users measure their channel for
each downlink transmission and this measurement is fed back to the base
station so that it can decide which user is going to be assigned the next time-
slot. The second system model is a system where different carriers are used
for uplink and downlink. For the base station to be able to schedule the
user with the best downlink channel quality, the users must measure their
channel for each downlink transmission and feed back their CNR measure-
ment. For both system models the users are notified about the scheduling
decision in a short broadcast message from the base station between each
time-slot.

3 Analysis of the Feedback Load

The first step of the new feedback algorithm is to ask for feedback from the
users that are above a CNR threshold value γth. The number of users n
being above the threshold value γth is random and follow a binomial distri-
bution given by:

Pr(n) =
(

N
n

)
(1− Pγ(γth))nPN−n

γ (γth), n = 1, 2, · · ·, N, (A.1)

where Pγ(γ) is the cumulative distribution function (CDF) of the CNR for
a single user. The second step of the feedback algorithm is to collect full
feedback. Full feedback is only needed if all users’ CNRs fail to exceed the
threshold value. The probability of this event is given by inserting γ = γth
into

Pγ∗(γ) = PN
γ (γ), (A.2)

where γ∗ denotes the CNR of the user with the best channel quality.
We now define the normalized feedback load (NFL) to be the ratio between

the average number of users transmitting feedback, and the total number
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of users. The NFL can be expressed as a the average of the ratio n
N , where

n is the number of users giving feedback:

F̄ =
N
N

PN
γ (γth) +

N

∑
n=1

n
N

(
N
n

)
(1− Pγ(γth))nPN−n

γ (γth)

= PN
γ (γth) + (1− Pγ(γth))

N

∑
n=1

(
N − 1
n− 1

)
(1− Pγ(γth))n−1PN−n

γ (γth)

= PN
γ (γth) + (1− Pγ(γth))

N−1

∑
k=0

(
N − 1

k

)
(1− Pγ(γth))kPN−1−k

γ (γth)

= 1− Pγ(γth) + PN
γ (γth), N = 2, 3, 4, · · ·, (A.3)

where the last equality is obtained by using binomial expansion [8, Eq.
(1.111)]. For N = 1 full feedback is needed, and F̄ = 1. In that case the
feedback is not useful for multiuser scheduling, but for being able to adapt
the base station’s modulation according to the channel quality in the recip-
rocal TDD system model described in the previous section.

A plot of the feedback load as a function of γth is shown in Fig. A.1
for γ= 15 dB. It can be observed that the new algorithm reduces the feed-
back significantly compared to a system with full feedback. It can also be
observed that one threshold value will minimize the feedback load in the
system for a given number of users.

The expression for the threshold value that minimizes the average feed-
back load can be found by differentiating (A.3) with respect to γth and set-
ting the result equal to zero:

γ∗th = P−1
γ

((
1
N

) 1
N−1

)
, N = 2, 3, 4, · · ·, (A.4)

where P−1
γ (·) is the inverse CDF of the CNR. In particular, for a Rayleigh

fading channel, with CDF Pγ(γ) = 1 − e−γ/γ, the optimum threshold can
be found in a simple closed-form as:

γ∗th = −γ ln

(
1−

(
1
N

) 1
N−1

)
, N = 2, 3, 4, · · ·. (A.5)

4 System Spectral Efficiencies for Different Power
and Rate Adaptation Techniques

To be able to analyze the system spectral efficiency we choose to investigate
the maximum average system spectral efficiency (MASSE) theoretically attain-
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able. The MASSE [Bit/Sec/Hz] is defined as the maximum average sum of
spectral efficiency for a carrier with bandwidth W [Hz].

4.1 Constant Power and Optimal Rate Adaptation

Since the best user is always selected, the MASSE of the new algorithm is
the same as for the MCS algorithm. To find the MASSE for such a scenario,
the probability density function (PDF) of the highest CNR among all the
users has to be found. This PDF can be obtained by differentiating (A.2)
with respect to γ. Inserting the CDF and PDF for Rayleigh fading channels
(pγ(γ) = (1/γ)e−γ/γ), and using binomial expansion [8, Eq. (1.111)], we
obtain:

pγ∗(γ) =
N
γ

N−1

∑
n=0

(
N − 1

n

)
(−1)ne−(1+n)γ/γ. (A.6)
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FIGURE A.1: Normalized feedback load as a function of γth with γ = 15
dB.

59



A. RATE-OPTIMAL MULTIUSER SCHEDULING WITH REDUCED FEEDBACK LOAD AND
ANALYSIS OF DELAY EFFECTS

Inserting (A.6) into the expression for the spectral efficiency for optimal
rate adaptation found in [9], the following expression for the MASSE can
be obtained [10, Eq. (44)]:

< C >ora

W
=

∫ ∞

0
log2(1 + γ)pγ∗(γ)dγ

=
N

ln 2

N−1

∑
n=0

(
N − 1

n

)
(−1)n e

1+n
γ

1 + n
E1

(
1 + n

γ

)
, (A.7)

where ora denotes optimal rate adaptation and E1(·) is the first order exponen-
tial integral function [8].

4.2 Optimal Power and Rate Adaptation

It has been shown that the MASSE for optimal power and rate adaptation
can be obtained as [10, Eq. (27)]:

< C >opra

W
=

∫ ∞

0
log2

(
γ

γ0

)
pγ∗(γ)dγ

=
N

ln 2

N−1

∑
n=0

(
N − 1

n

)
(−1)n

1 + n
E1

(
(1 + n)γ0

γ

)
, (A.8)

where opra denotes optimal power and rate adaptation and γ0 is the optimal
cut-off CNR level below which data transmission is suspended. This cut-
off value must satisfy [9]:∫ ∞

γ0

(
1

γ0
− 1

γ

)
pγ∗(γ) dγ = 1. (A.9)

Inserting (A.6) into (A.9), it can subsequently be shown that the following
cut-off value can be obtained for Rayleigh fading channels [10, Eq. (24)]:

N−1

∑
n=0

(
N − 1

n

)
(−1)n

(
e−(1+n)γ0/γ

(1 + n)γ0/γ
−E1

(
(1 + n)γ0

γ

))
=

γ

N
. (A.10)

5 M-QAM Bit-Error-Rates

The BER of coherent M-ary quadrature amplitude modulation (M-QAM)
with two-dimensional Gray coding over an additive white Gaussian noise
(AWGN) channel can be approximated by [11]:

BER(M, γ) ≈ 0.2 exp
(
− 3γ

2(M − 1)

)
. (A.11)
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The constant-power adaptive continuous rate (ACR) M-QAM scheme can
always adapt the rate to the instantaneous CNR. From [12] we know that
the constellation size for continuous-rate M-QAM can be approximated by
M ≈

(
1 + 3 γ

2 K0

)
, where K0 = − ln(5 BER0) and BER0 is the target BER.

Consequently, it can be easily shown that the theoretical constant-power
ACR M-QAM scheme always operates at the target BER.

For physical systems only integer constellation sizes are practical, so
now we restrict the constellation size Mk to 2k where k is a positive integer.
This adaptation policy is called adaptive discrete rate (ADR) M-QAM, and
the CNR range is divided into K + 1 fading regions with constellation size
Mk assigned to the kth fading region. Because of the discrete assignment
of constellation sizes in ADR M-QAM, this scheme has to operate at a BER
lower than the target. The average BER for ADR M-QAM using constant
power can be calculated as [12]:

< BER >adr=
∑K

k=1 k BERk

∑K
k=1 k pk

, (A.12)

where
BERk =

∫ γk+1

γk

BER(Mk, γ)pγ∗(γ)dγ, (A.13)

and
pk =

(
1− e−γk+1/γ

)N −
(

1− e−γk/γ
)N

(A.14)

is the probability that the scheduled user is in the fading region k for CNRs
between γk and γk+1.

Inserting (A.11) and (A.6) into (A.13) we obtain the following expres-
sion for the average BER within a fading region:

BERk =
0.2N

γ

N−1

∑
n=0

(
N − 1

n

)
(−1)n e−γkak,n − e−γk+1ak,n

ak,n
, (A.15)

where ak,n is given by

ak,n =
1 + n

γ
+

3
2(Mk − 1)

. (A.16)

When power adaptation is applied, the BER approximation in (A.11)
can be written as [11]:

BERpa(M, γ) ≈ 0.2 exp
(
− 3γ

2(M − 1)
Sk(γ)

Sav

)
, (A.17)
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where Sk(γ) is the power used in fading region k and Sav is the average
transmit power. Inserting the continuous power adaptation policy given
by [11, Eq. (29)] into (A.17) shows that the ADR M-QAM scheme using
optimal power adaptation always operates at the target BER. Correspond-
ingly, it can be shown that the continuous-power, continuous-rate M-QAM
scheme always operates at the target BER.

6 Consequences of Delay

In the previous sections, it has been assumed that there is no delay from the
instant where the channel estimates are obtained and fed back to the sched-
uler, to the time when the optimal user is transmitting. For real-life systems,
we have to take delay into consideration. We analyze, in what follows, two
delay scenarios. In the first scenario, a scheduling delay arises because the
scheduler receives channel estimates, takes a scheduling decision, and no-
tifies the selected user. This user then transmits, but at a possibly different
rate. The second scenario deals with outdated channel estimates, which leads
to both a scheduling delay as well as suboptimal modulation constellations
with increased BERs.

Outdated channel estimates have been treated to some extent in previ-
ous publications [12, 13]. However, the concept of scheduling delay has in
most cases been analyzed for wire-line networks only [14, 15]. Although
some previous work have been done on scheduling delay in wireless net-
works [16], scheduling delay has to the best of our knowledge not been
looked into for cellular networks.

6.1 Impact of Scheduling Delay

In this subsection we will assume that the scheduling decision is based on a
perfect estimate of the channel at time t, whereas the data are sent over the
channel at time t + τ. We will assume that the link adaptation done at time
t + τ is based on yet another channel estimate taken at t + τ. To investigate
the influence of this type of scheduling delay, we need to develop a PDF for
the CNR at time t + τ, conditioned on channel knowledge at time t. Let α
and ατ be the channel gains at time t and t + τ, respectively. Assuming that
the average power gain remains constant over the time delay τ for a slowly-
varying Rayleigh channel, (i.e. Ω = E[α2] = E[α2

τ ]), and using the same
approach as in [12] it can be shown that the conditional PDF pατ |α(ατ |α) is
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given by:

pατ |α(ατ |α) =
2ατ

(1− ρ) Ω
I0

(
2√ρ αατ

(1− ρ) Ω

)
e−

(α2
τ+ρα2)

(1−ρ) Ω . (A.18)

where ρ is the correlation factor between α and ατ and I0(·) is the zeroth-
order modified Bessel function of the first kind [8]. Assuming Jakes Doppler
spectrum, the correlation coefficient can be expressed as ρ = J2

0 (2π fDτ),
where J0(·) is the zeroth-order Bessel function of the first kind and fD [Hz]
is the maximum Doppler frequency shift [12]. Recognizing that (A.18) is
similar to [17, Eq. (A-4)] gives the following PDF at time t + τ for the new
feedback algorithm, expressed in terms of γτ and γ [17, Eq. (5)]:

pγ∗τ (γτ) =
N−1

∑
n=0

(
N

n + 1

)
(−1)n

exp
(
− γτ

γ(1−ρ n
n+1 )

)
γ(1− ρ n

n+1 )
. (A.19)

Note that for τ = 0 (ρ = 1) this expression reduces to (A.6), as expected.
When τ approaches infinity (ρ = 0) (A.19) reduces to the Rayleigh PDF for
one user. This is logical since for large τs, the scheduler will have com-
pletely outdated and as such useless feedback information, and will end
up selecting users independent of their CNRs.

Inserting (A.19) into the capacity expression for optimal rate adapta-
tion in [9, Eq. (2)], then using binomial expansion, integration by parts,
L’Hôpital’s rule, and [8, Eq. (3.352.2)], it can be shown that we get the fol-
lowing expression for the MASSE:

< C >ora

W
=

∫ ∞

0
log2(1 + γτ)pγ∗τ (γτ)dγτ

=
1

ln 2

N−1

∑
n=0

(
N

n + 1

)
(−1)ne

1
γ(1−ρ n

n+1 ) E1

(
1

γ
(
1− ρ n

n+1
))

.

(A.20)

Using a similar derivation as for the expression above it can further-
more be shown that we get the following expression for the MASSE using
both optimal power and rate adaptation:

< C >opra

W
=

∫ ∞

0
log2

(
γτ

γ0

)
pγ∗τ (γτ)dγτ

=
1

ln 2

N−1

∑
n=0

(
N

n + 1

)
(−1)nE1

(
γ0

γ
(
1− ρ n

n+1
))

, (A.21)
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with the following power constraint:

N−1

∑
n=0

(
N

n + 1

)
(−1)n

 e
− 1

γ(1−ρ n
n+1 )

γ0
−

E1

(
1

γ(1−ρ n
n+1 )

)
γ(1− ρ n

n+1 )

=1. (A.22)

Again, for zero time delay (ρ = 1), (A.20) reduces to (A.7), (A.21) reduces
to (A.8), and (A.22) reduces to (A.10), as expected.

Fig. A.2 shows how scheduling delay affects the MASSE for 1, 2, 5, and
10 users. We see that both optimal power and rate adaptation and opti-
mal rate adaptation are equally robust with regard to the scheduling delay.
Independent of the number of users, we see that the system will be able
to operate satisfactory if the normalized delay is below the critical value
of 2 · 10−2. For normalized time delays above this value, we see that the
MASSE converges towards the MASSE for one user, as one may expect.
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6.2 Impact of Outdated Channel Estimates

We will now assume that the transmitter does not have a perfect outdated
channel estimate available at time t + τ, but only at time t. Consequently,
both the selection of a user and the decision of the constellation size have
to be done at time t. This means that the channel estimates are outdated by
the same amount of time as the scheduling delay. The constellation size is
thus not dependent on γτ, and the time delay in this case does not affect
the MASSE. However, now the BER will suffer from degradation because
of the delay. It is shown in [12] that the average BER, conditioned on γ, is

BER(γ) =
0.2γ

γ + γ(1− ρ)K0
· e−

ρK0γ
γ+γ(1−ρ)K0 . (A.23)

The average BER can be found by using the following equation:

< BER >acr=
∫ ∞

0
BER(γ)pγ∗(γ) dγ. (A.24)

For discrete rate adaptation with constant power, the BER can be expressed
by (A.12), replacing BERk with BER′

k, where:

BER′
k =

∫ γk+1

γk

∫ ∞

0
BER(Mk, γτ)pγτ |γ(γτ |γ)dγτ pγ∗(γ)dγ. (A.25)

Inserting (A.6), (A.11) and (A.18) expressed in terms of γτ and γ into (A.25),
we obtain the following expression for the average BER within a fading
region:

BER′
k =

0.2N
γ

N−1

∑
n=0

(
N − 1

n

)
(−1)n e−γkck,n − e−γk+1ck,n

dk,n
, (A.26)

where ck,n is given by

ck,n =
1 + n

γ
+

3ρ

3γ(1− ρ) + 2(Mk − 1)
, (A.27)

and dk,n by

dk,n =
1 + n

γ
+

3(1 + n− ρn)
2(Mk − 1)

. (A.28)

Note that for zero delay (ρ = 1) ck,n = dk,n = ak,n, and (A.26) reduces to
(A.15), as expected.
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Because we are interested in the average BER only for the CNRs
for which we have transmission, the average BER for continuous-power,
continuous-rate M-QAM is

< BER >acr,pa=

∫ ∞
γK

BER(γ)pγ∗(γ) dγ∫ ∞
γK

pγ∗(γ) dγ
. (A.29)

Correspondingly, the average BER for the continuous-power, discrete-rate
M-QAM case is given by:

< BER >adr,pa=

∫ ∞
γ∗0 M1

BER(γ)pγ∗(γ) dγ∫ ∞
γ∗0 M1

pγ∗(γ) dγ
. (A.30)
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Fig. A.3 shows how outdated channel estimates affect the average BER
for 1 and 10 users. We see that the average system BER is satisfactory as
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long as the normalized time delay again is below the critical value 10−2 for
the adaptation schemes using continuous power and/or continuous rate.
The constant-power, discrete-rate adaptation policy is more robust with re-
gard to time delay.

7 Conclusion

We have analyzed a scheduling algorithm that has optimal spectral effi-
ciency, and reduced feedback compared with full feedback load. We obtain
a closed-form expression for the CNR threshold that minimizes the feed-
back load for this algorithm. Both the impact of scheduling delay and out-
dated channel estimates are analytically and numerically described. For
both delay scenarios plots show that the system will be able to operate sat-
isfactorily with regard to BER when the normalized time delays are below
certain critical values.
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Abstract

In this paper we propose a channel state feedback algorithm that uses multiple
feedback thresholds to reduce the number of users transmitting feedback to a min-
imum. The users are polled with lower and lower threshold values and only the
users that are above a threshold value transmit feedback to the base station. We
show how this feedback algorithm can be used for any scheduling algorithm and
show how closed-form expressions for the optimal threshold values can be ob-
tained for two well-known scheduling algorithms. Finally, we propose a two-step
optimization procedure for optimizing the feedback algorithm for real-life cellular
standards.
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1 Introduction

In modern wireless networks, adaptive coding and modulation are imple-
mented so that the mobile users and base stations can adapt their trans-
mission rate to the quality of the wireless channel [1]. This adaptation does
not only increase the spectral efficiency of the wireless links between the
base station and the mobile users, but can also be exploited further by the
base station through opportunistic scheduling [2]. Opportunistic schedul-
ing increases the system spectral efficiency by giving priority to mobile
users when they have good channel quality. Opportunistic scheduling
algorithms in cellular networks are often executed by the base station.
This means that the base station needs to know the instantaneous chan-
nel quality of the users in the system and schedule the users based on
this knowledge. In modern wireless standards like Mobile WiMAX, HSPA,
and 1xEVDO, opportunistic scheduling algorithms can be implemented to
schedule users for every time-slot in the down-link [3–5]. Therefore, when
the channels are rapidly varying, most of the opportunistic scheduling al-
gorithms are based on having available channel quality estimates for all
the mobile users in every time-slot. If all the mobile users are going to feed
back their channel quality estimates to the base station for each time-slot,
a significant share of the battery energy will be used on transmission of
overhead information instead of useful data traffic. In addition, for many
wireless systems, collecting carrier-to-noise ratio (CNR) estimates from all
the users will lead to a significant delay before the transmission of useful
data can start.

Three main directions have previously been pursued to reduce the
degradation due to feedback, namely, (i) feedback quantization, (ii) feed-
back compression, and (iii) feedback load reduction. Publications investi-
gating the first approach have shown that heavy quantization of the chan-
nel state information (CSI) being fed back, will not lead to a significant
reduction of the system gain [6, 7]. Correspondingly, the quantization of
the beamforming vector being fed back, has been investigated for multi-
antenna systems [8]. The second approach exploits the channel correlation
in time and frequency to design compression algorithms that reduce the
feedback overhead significantly [9, 10]. Most algorithms trying to reduce
the feedback load, i.e., the number of users feeding back channel state in-
formation, are based on CNR thresholds [11, 12]. One threshold-based al-
gorithm that uses a single CNR threshold value was proposed by Gesbert
and Alouini [12]. The mobile users that have a CNR above this threshold
value transmit feedback to the scheduler. The algorithm in [12] does not
always obtain feedback from the user with the highest CNR since it will
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always be a possibility that all users are below the threshold value and a
random user has to be chosen.

The goal of this paper is to conduct a theoretical investigation of a novel
feedback algorithm that is a generalization of the algorithm in [12]. This
generalization is based on two main ideas, namely, (i) adapting the feed-
back threshold value to the scheduling metric of the scheduling algorithm,
i.e. the metric that is used to decide which user is going to be scheduled in
a time-slot, and (ii) using multiple feedback thresholds to collect feedback
from the preferred user, i.e. the user that the scheduling algorithm prefers to
schedule. For any scheduling algorithm, our proposed algorithm leads to
a significant reduction of the number of users transmitting feedback. This
will reduce the power consumption of the mobile users, and also reduce
the time to collect feedback for many cellular systems.

Previous publications related to feedback load reduction are all based
on the assumption that the base station always tries to collect feedback
from the user with the highest CNR. This is because it is assumed that the
scheduling algorithm used by the system is Max CNR Scheduling (MCS),
where the user with the highest CNR is scheduled in every time-slot. Since
the MCS algorithm can be unfair in many cases, other scheduling algo-
rithms are often preferred, and we thus propose to adapt the feedback
threshold values to account for any scheduling metric.

By employing multiple feedback thresholds, the base station can con-
duct the feedback collection process by polling the users sequentially from
the highest threshold value down to the lowest threshold value until feed-
back from one or more users is received. Our numerical results show that
by employing just a few number of thresholds, our algorithm will lead to a
high probability for receiving feedback from only one user.

Contributions. We propose the novel channel state feedback algorithm
as described above. In Section 3, we assume that the time to collect feed-
back is negligible compared to the time used to transmit user data. We find
an analytical expression for the feedback load when the number of thresh-
old values L is predetermined and when a general scheduling metric is
assumed. Based on this general expression, we obtain specific expressions
for the feedback load for the MCS and the NCS algorithms, and use these
expressions to find the feedback threshold values minimizing the feedback
load for each of these two algorithms. In Section 4, we argue that the time
used to collect feedback is in fact non-negligible in many real-life systems.
For such systems, we propose a two-step method for optimizing both the
threshold values and the number of thresholds L.
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2 System Model

We consider a time-division multiplexed (TDM) based wireless system
with a single base station scheduling N users. The transmission rate and
the scheduling decision is based on CNR estimates being fed back from one
or more users for each time-slot. If we assume that we have reciprocity
between up-link and down-link, which can be assumed in e.g. Mobile
WiMAX, these CNR estimates can be used to schedule users in both the
down-link and up-link. If this is not the case, the system model is only
valid for down-link scheduling. We assume that the channels of all users
are independent, flat-fading channels with average CNR γi, where the in-
dex i denotes the ith user. In order to have a roughly constant CNR level,
γi(t), within each time-slot, it is assumed that the duration of a time-slot is
shorter than the coherence time of the channels.

The feedback threshold values vary with the scheduling metric xi(t)
used by the scheduling algorithm. Examples of scheduling metrics of dif-
ferent scheduling algorithms will be given in the beginning of Section 3.
The base station searches for users in the whole range of their schedul-
ing metric and we denote the feedback thresholds for user i by xth,i,L >
xth,i,L−1 > · · ·> xth,i,0. Assuming that the xi-ranges are from zero to infinity,
we set xth,i,L = ∞ and xth,i,0 = 0, and let the base station start polling each
of the users with xth,i,L−1 for user i. Since xth,i,L is never used to search for
the users, we say that we have L threshold values. Note that since the feed-
back thresholds are covering the whole xi-range of the users, it is ensured
that feedback will be received from at least one user. In practice, it is often
a need for calculating the threshold values on-line. Since a threshold value
can be expressed as a function of the CNR of a user, the optimization of the
threshold values does not have to be performed by the users since the base
station can always poll each of the users with CNR values that correspond
to the threshold values xth,i,l , l = 0, ..., L.

The goal of this paper is to conduct a general theoretical analysis of the
proposed feedback algorithm. However, to conduct an analysis of the true
performance of the algorithm in different real-life networks, the system
model needs further specification. For wireless systems based on WLAN
standards, HSPA, Mobile WiMAX or 1xEVDO, a performance analysis of
our algorithm has to be conducted by considering system specific param-
eters and protocols (See e.g. [13]). For HSPA, which uses code-division
multiplexing (CDM) in both the up-link and the down-link, more users can
transmit or receive data simultaneously. This means that CNR estimates
can be fed back by several users simultaneously. Also for such systems our
proposed feedback algorithm can be implemented to reduce the number of
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users transmitting feedback. The main gain for the system will be a lower
power consumption for the users; in addition we also get less interference
on the feedback channel, and hence also a lower bit-error-rate for the CNR
estimates being fed back. For CDM-based systems, opportunistic schedul-
ing algorithms often have to pick a subset of the users to transmit or receive
within a time-slot. Our proposed feedback algorithm can also be used to
obtain feedback from such a subset of preferred users.

3 Optimizing the Algorithm for a Fixed Number of
Feedback Thresholds

In this section we assume that the time to collect feedback is negligible
compared to the time used to transmit user data. This means that we fo-
cus on how the number of users transmitting feedback can be minimized
for a given value of L. By denoting the scheduling metric as xi(t) for user
i in time-slot t, we have xi(t) = γi(t) for the MCS algorithm, where γi(t)
denotes the instantaneous CNR of user i in time-slot t. For the Normal-
ized CNR Scheduling algorithm (NCS) the corresponding scheduling met-
ric is xi(t) = γi(t)/γi, where γi is the average CNR of user i [14]. For this
scheduling algorithm the threshold values have to be optimized for search-
ing for the preferred users in the γi(t)/γi-range of the users. Likewise, the
feedback algorithm can be designed for the Proportional Fair Scheduling
(PFS) algorithm by optimizing the feedback thresholds to search for the
preferred user in the ri(t)/Ti-range of the users, where ri(t) denotes the
instantaneous rate of user i and Ti denotes a weighted sum of the rate allo-
cated to this user [15].

3.1 Feedback Thresholds for a General Scheduling Metric

To evaluate the performance of our feedback algorithm for a general
scheduling metric xi(t), we have to find an expression for the normalized
feedback load (NFL), which expresses the average share of users that give
feedback for each time-slot. It can be shown that the NFL can be obtained
as:

F̄gen =
1
N

L−1

∑
l=0

∑
Ψ

|Ψ| ∏
i∈Ψ

(Pxi(xth,i,l+1)− Pxi(xth,i,l)) ∏
j/∈Ψ

Pxj(xth,j,l), (B.1)

where Ψ (= ∅ denotes any subset of users, including the set of all users,
while Pxi(·) denotes the cumulative distribution function (CDF) of the
scheduling metric of user i. For many scheduling algorithms it can be hard
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to find closed-form expressions for the distributions Pxi(·) for i = 1, ..., N.
For such scheduling algorithms these distributions have to be estimated
on-line. Such estimations can be performed at the base station, based on
the CNR estimates being fed back, by using for example order statistic filter
banks [16]. To obtain the optimal feedback thresholds, the feedback thres-
holds that minimize (B.1) have to be obtained. For the PFS algorithm and
many other algorithms, the distributions Pxi(·) are not known and a numer-
ical optimization procedure has to be employed. However, for the MCS and
the NCS algorithms, the distributions Pxi(·) are known and we can obtain
closed-form expressions for the optimal feedback threshold values.

3.2 Feedback Thresholds for the MCS Algorithm

If we assume that the users have the same distribution of their CNRs with
an average of γ, the NFL for the MCS algorithm can be expressed as:

F̄MCS =
1
N

L−1

∑
l=0

N

∑
n=1

n
(

N
n

)
(Pγ(γth,l+1)− Pγ(γth,l))

n · PN−n
γ (γth,l), (B.2)

where Pγ(γ) is the CDF of the CNR for a single user and γth,l denotes the
lth threshold value. This expression was found by calculating the expected
number of users that give feedback for each threshold value, and summing
all these feedback loads. The expression is normalized by dividing by the
number of users. Using the binomial expansion formula [17], (B.2) can be
written as:

F̄MCS =
L−1

∑
l=0

(
Pγ(γth,l+1)− Pγ(γth,l)

) · PN−1
γ (γth,l+1). (B.3)

A plot of the NFL for the optimal threshold values is shown in Fig. B.1
as a function of L for different number of users with Rayleigh channels
with γ = 15 dB. We see that the NFL converges to 1/N as L grows large.
This is logical since the more thresholds there are in the system, the more
likely is it that only one user will have a CNR value between two adjacent
thresholds. To investigate how the feedback load scales with the number
of users, we have also plotted the absolute feedback load (AFL) in Fig. B.2.
The AFL expresses the average number of users transmitting feedback and
we can observe that the decrease in AFL as a function of the number of
thresholds is higher for a high number of users.

To optimize the thresholds, we take the gradient of (B.3) with respect
to the threshold values and set it equal to zero, which gives the following
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FIGURE B.1: Minimum normalized feedback load for the MCS algo-
rithm as a function of L for different number of users with Rayleigh fad-
ing channels with γ = 15 dB.

expression for the optimal threshold values:

γ∗th,l = P−1
γ

(
Sl · Pγ(γ∗th,l+1)

)
, l = 1, 2, 3, · · ·, L−1, (B.4)

where P−1
γ (·) is the inverse CDF of the CNR for a single user, and the con-

stants Sl are given by:

Sl =

 N
1

1−N , l = 1

[N − (N − 1)Sl−1]
1

1−N , l = 2, 3, · · ·, L−1,
(B.5)

with N ≥ 2. The set of equations in (B.4) has a recursive nature. One way to
calculate these threshold values is to start by calculating γth,L−1. This value
can easily be found since γth,L is defined to be infinity. Knowing γth,L−1,
(B.4) can be used to calculate all threshold values down to γth,1. It is also
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FIGURE B.2: Minimum absolute feedback load for the MCS algorithm
as a function of L for different number of users with Rayleigh channels
with γ = 15 dB.

possible to express the threshold values as the sum of the average CNR and
a constant (in dB). By writing (B.4) in the form:

Pγ(γ∗th,l) = Sl · Pγ(γ∗th,l+1), l = 1, 2, 3, · · ·, L−1, (B.6)

and exploiting the fact that Pγ(γth,L) = 1, we can write (B.4) as:

γ∗th,l = P−1
γ

(
L−1

∏
i=l

Si

)
, l = 1, 2, 3, · · ·, L−1. (B.7)

For the Rayleigh, Nakagami, and Rice distributions, the inverse CDF P−1
γ (·)

equals γ multiplied by a constant which is only dependent on the number
of users [18]. Consequently, the threshold values in dB will be a sum of γ
and a constant.
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FIGURE B.3: Three sets of feedback threshold values for the MCS algo-
rithm for L = 5 and 10 users with Rayleigh fading channels with γ = 5
dB, γ = 15 dB, and γ = 25 dB, respectively. The PDF of the CNR of the
user with the highest CNR is also shown for γ = 5 dB, γ = 15 dB, and
γ = 25 dB, respectively.

Fig. B.3 shows three sets of threshold values for three cases where we
have ten users having Rayleigh distributed channels with γ = 5 dB, γ =
15 dB, and γ = 25 dB, respectively. The threshold values are identical
for all users and are shown as small rings. Each set of threshold values
contains five CNR values (L = 5). By comparing the threshold values of
the three different sets, we see that the threshold values in dB are a sum of
γ and a constant. The probability density functions (PDF) of the best user
among ten users is also shown for each of the three γ-values. These plots
show that the probability of finding the best user below γth,1 is quite small.
Consequently, the probability of full feedback is low.
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3.3 Feedback Thresholds for the NCS Algorithm

The PDFs of the scheduling metric xi(t) = χi(t) = γi(t)/γi can be obtained
by doing a transformation of the PDF of the CNR of user i, γi [17, (2.1.8)]. If
the Rayleigh, Nakagami or Rice distributions listed in [18] are used in this
transformation, it can be shown that the resulting PDFs are independent of
i. Therefore, if we assume that the users’ CNRs have the same distributions
with different averages, it can be shown that the PDF of χi(t) is the same
for all users. Since this PDF and the corresponding CDF are independent
of i, they can be denoted pχ(χ) and Pχ(χ), respectively. Using these distri-
butions for χ, we can obtain an expression for the NFL in similar way as in
the previous section:

F̄NCS =
L−1

∑
l=0

(
Pχ(χth,l+1)− Pχ(χth,l)

) · PN−1
χ (χth,l+1), (B.8)

where χth,l denotes the lth threshold value. Taking the gradient of (B.8)
with respect to the threshold values, we obtain a similar expression for the
threshold values as we did for the MCS feedback threshold values:

χ∗th,l = P−1
χ

(
Sl · Pχ(χ∗th,l+1)

)
, l = 1, 2, 3, · · ·, L−1, (B.9)

where P−1
χ (·) is the inverse CDF of χ(t), and the constants Sl are given by

(B.5).
The plots of the NFL and AFL for the optimal threshold values in (B.8)

as a function of L for different number of users with Rayleigh distributed
channels, is identical to Figs. B.1 and B.2, respectively. It can be shown that
the identical feedback load for the MCS and NCS algorithms arises as a
consequence of the similarities between the CDFs of the scheduling metrics
when the users have the same average CNR for the MCS algorithm. Since
the feedback thresholds are adapted to the scheduling metric of the NCS
algorithm, the feedback load is independent of the average CNRs of the
users.

Fig. B.4 shows five feedback threshold values of the NCS algorithm for
ten users with Rayleigh fading channels with different average CNRs. The
corresponding PDF of χ for the preferred user is also shown. It should
be noted that the threshold values are identical for all users. However,
if the threshold values are converted to the corresponding CNR values,
γth,i,l = γiχth,l , they will differ from user to user.
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FIGURE B.4: One set of feedback threshold values for the NCS algorithm
for L = 5 and 10 users with Rayleigh fading channels with different aver-
age CNRs. The PDF of the normalized CNR of the user with the highest
normalized CNR is also shown.

4 A Two-Step Procedure for Optimizing the
Threshold Values and the Number of Thresholds

In the previous section, it was assumed that the time it takes for the sched-
uler to conduct the polling process, take a scheduling decision, and dis-
tribute this decision is negligible. In practical systems this process will have
to be conducted within a guard time at the beginning of the time-slots. To
have the highest possible utilization of the system, we thus want that (a)
feedback is received from the preferred user (or subset of users), (b) the
power consumption of the users is minimized and (c) the guard time is
reduced. As previously explained, both (a) and (b) are achieved by using
our feedback algorithm. The guard time can be split into two components,
namely, (i) the time used to poll the users with lower and lower feedback
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thresholds, and (ii) the time used to receive feedback from one or more
users. Both the number of users, the value of L, and the threshold val-
ues will affect these two time contributions. Setting all the thresholds to
zero will minimize (i). However, this will maximize the feedback load and
hence also (a). Consequently, the threshold values have to be set to non-
zero values and thus (i) is strongly dependent on the number of users and
the value of L.

Based on the discussion above, we see that it is often favorable both for
the power consumption and the guard time length that the threshold val-
ues are set to minimize the feedback load. However, the guard time will
also be affected by the value of L. We therefore propose a two-step opti-
mization procedure to obtain the threshold values and the value of L. In
the first step, the threshold values are set to those who minimize the feed-
back load. In the second step, the value of L that minimizes the guard time
is found numerically, based on the threshold values from step one. In [13],
we performed the two-step optimization procedure described above, for
an IEEE 802.11 system, and we refer to [13] for numerical results on this
procedure.

5 Conclusions

We have proposed a new channel state feedback algorithm for modern cel-
lular networks. Compared to previously published works, our algorithm is
based on two novel concepts, namely, (i) adapting the feedback threshold
value to the scheduling algorithm implemented in the system, and (ii) em-
ploying multiple feedback thresholds to reduce the number of users trans-
mitting feedback to a minimum. Our feedback algorithm leads to a signif-
icant decrease in the power consumption of the mobile users and also in
the time used to collect feedback for many systems. The proposed feed-
back algorithm can be implemented for any scheduling metric, but in most
cases the optimal threshold values have to be found numerically. However,
for the MCS and the NCS algorithms we obtained elegant closed-form ex-
pressions for the optimal threshold values. Finally, we proposed a two-step
optimization procedure for obtaining the threshold values and the number
of thresholds in real-life wireless networks.
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Abstract

Multiuser diversity (MUD) underlies much of the recent work on scheduling
design in wireless networks. This form of diversity can for example be exploited
by opportunistically scheduling the mobile user with the best channel quality [1].
In cellular networks exploiting MUD, the base station collects channel state infor-
mation (CSI) from the mobile users. The process of obtaining CSI will be per-
formed within a guard time, and the length of this guard time will depend on
the feedback protocol implemented. In this context, it has already been shown
that by applying multiple carrier-to-noise ratio thresholds, the number of mobile
users giving feedback can be significantly decreased [2]. However, it has not been
evaluated how the algorithm in [2] can be implemented in protocols for real-life
networks. In this paper we analyze feedback protocols for reducing the guard
time and resolving the feedback contention problem in a cellular, slotted ALOHA-
based network. We propose three new feedback protocols based on the algorithm
in [2] and we develop closed-form expressions for the guard time duration and
the system spectral efficiency of these protocols. We also compare the three new
protocols with the Splitting algorithm proposed by Qin and Berry [3] and a new
and modified version of this algorithm. Plots show that the spectral efficiency in
an IEEE 802.11 network can increase significantly for a high number of users when
the Modified Splitting algorithm is used.
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INTRODUCTION

1 Introduction

In a wireless network, the signals transmitted from a base station to dif-
ferent mobile users often have different channel fluctuation characteristics.
This diversity that exists between the mobile users is called multiuser di-
versity (MUD) and can be exploited to increase the throughput of wireless
networks [1]. One way of exploiting MUD is by means of opportunistic
scheduling of users, giving priority to users having favorable channel condi-
tions [4, 5]. The Max Carrier-to-noise Scheduling (MCS) algorithm, where
the user with the best channel quality is scheduled in each time-slot, max-
imizes the MUD in a time-slotted network. To be able to take advantage
of the MUD, the base station needs feedback from the mobile users about
their respective channel conditions. If the MCS algorithm is used, the base
station only needs feedback from the user with the best channel conditions,
but unfortunately each user does not know the carrier-to-noise ratio (CNR)
of the other users. Therefore, in current cellular standards like Qualcomm’s
High Data Rate (HDR) system, the base station collects feedback from all
the users [6]. In a time-slotted cellular network that exploits MUD, the base
station can use the first part of the time-slot to collect feedback from the
users and to decide which user to schedule [3]. We call this first part of the
time-slot the guard time. Collecting feedback from all the users in a system
can lead to a significant guard time and hence it is important to investigate
alternative protocols for obtaining feedback.

One way of reducing the guard time is by implementing feedback al-
gorithms that utilize CNR thresholds to reduce the number of users giv-
ing feedback and still be able to exploit MUD. At least two different types
of such threshold-based feedback algorithms have already been proposed.
The first type was initially proposed by Gesbert and Alouini and is based
on a single CNR threshold value [7]. The users that have a CNR above
this value give feedback to the scheduler. This algorithm does not always
find the user with the highest CNR because there will always be a possibil-
ity that all users are below the threshold value, and in this case a random
user is chosen. A generalized version of this algorithm has also been pro-
posed [2]. By using several threshold values, the scheduler can request
feedback in a successive fashion starting out with the highest of the thresh-
old values. If the lowest threshold value is zero, the user with the highest
CNR will always be found.

The second type of threshold-based feedback algorithm was proposed
by Qin and Berry and is based on the ideas from binary search [3]. The
proposed Splitting algorithm finds the user with the best channel quality by
using an iterative procedure to update two CNR threshold values when the
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users are using a common ALOHA channel.
Contributions. For the Splitting algorithm, the guard time has al-

ready been analyzed for a slotted ALOHA channel. However, the multiple
threshold algorithm in [2] has not yet been analyzed for a slotted ALOHA
channel and it is therefore hard to decide which of the two threshold-based
algorithms that perform best. In this paper we propose three new cellular
ALOHA protocols for the algorithm in [2] and compare the performance
of these algorithms with the Splitting algorithm as well as with a new and
modified version of the Splitting algorithm 1.

Organization of the paper. The remainder of this paper is organized
as follows. We outline the system model and the problem formulation in
Section 2, and present the five feedback protocols under study in Section 3.
In Section 4 and Section 5 we develop analytical expressions for the guard
time and the system spectral efficiency, respectively. Section 6 discusses
how the protocols should be optimized and presents plots comparing the
guard time and the system spectral efficiency of the resulting five feedback
protocols in an IEEE 802.11 network. Finally, our conclusions are listed in
Section 7.

2 System Model and Problem Formulation

2.1 General System Model

We consider the downlink of a single-carrier cellular network where the
base station wants to transmit data to N mobile users which have identi-
cally and independently distributed (i.i.d.) CNRs with an average of γ. The
channel is ALOHA-based, i.e., all the users can access the network at the
same time. When more users transmit packets simultaneously, this will re-
sult in a collision and the information in the packets will be destroyed. The
system uses time-slotted transmission and for each time-slot with duration
TTS, the base station schedules a user which will receive data. We assume
slowly varying fading channels with a coherence time that is longer than
one time-slot. This means that the same transmission rate is used for the
whole time-slot. The system uses adaptive coding and modulation, i.e., the
coding scheme and the modulation constellation used depend on the CNR
of the selected user [10]. This has two advantages. On one hand, the spec-
tral efficiency for each user is increased. On the other hand, because the
rate of the users are varied according to their channel conditions, it makes
it possible to exploit MUD.

1This paper is partially based on the work in [8] and [9]
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To be able to select the user which will receive data, the base station
needs to receive channel state information (CSI) estimates from one or
more users. Such CSI estimates can be obtained from pilot symbols that
are transmitted in-between the data symbols. For the three feedback pro-
tocols that are based on [2], we use L feedback thresholds denoted by
γth,L > γth,L−1 > · · · > γth,0 to search for the users in a sequential manner.
For convenience we define γth,L = ∞ and γth,0 = 0, so that we can search
for mobile users within the whole CNR range. Initially, we search for users
that have a CNR above γth,L−1. If no users are found, the feedback thresh-
old is lowered to γth,L−2, and we search for users that have a CNR above
this threshold. The algorithm lowers the threshold value sequentially un-
til one or more users are found. We denote the CNR interval where the
first user is found as the successful interval and process of checking for users
within one interval is referred to as a trial.

2.2 Further Specifications for an IEEE 802.11-Based Network

We want to investigate the gain from using multiple feedback thresholds
in a cellular IEEE 802.11 network [11]. In such networks, the access mech-
anism is ALOHA-based, and one of the main problems that can arise in
such networks is collisions between packets. To avoid collisions, a hand-
shaking mechanism is often used between the transmitter and the receiver
before starting any data transmission. The transmitter sends a Request To
Send (RTS) packet to the receiver asking if he can transmit. The receiver
replies with a Clear to Send (CTS) packet if he is ready for data reception. If
we want to deploy the proposed feedback protocols in an IEEE 802.11 net-
work, we can use packets similar to RTS and CTS to conduct the feedback
collection process. Consequently, we define four different packets based on
the general frame format defined in the IEEE 802.11 standard [11]:

• Query (QRY) packet
• Feedback (FB) packet
• Reservation (RES) packet
• Acknowledgment (ACK) packet

The QRY packet is used by the base station to initiate the feedback col-
lection process. This packet contains the addresses of all the users that have
data to receive and the number of thresholds L applied. As shown in [2],
each of the users can calculate the feedback threshold values from the num-
ber of users N, the number of thresholds L, and the average CNR γ of the
users. When all the users have calculated the threshold values, the feed-
back collection process can start. We denote the duration of this packet,
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including the packet processing time and the propagation delay, as TQRY
[seconds].

The FB packet is transmitted by the mobile users and contains the CSI
estimate of a user’s channel. This packet is also used for all the five proto-
cols handled in this paper. Including packet processing time and propaga-
tion delay, this packet has the duration TFB [seconds].

The RES packet is transmitted by a mobile user to inform the base sta-
tion that he is not in the successful interval (Ranked Single-User Feedback
protocol) or that he has a CNR between the two current threshold values
(Splitting algorithm). Although the RES packet does not contain any infor-
mation (See Section 6.1), it makes the base station able to detect if one or
more users are between two threshold values. The total time to transmit
and process this packet is denoted TRES [seconds].

The ACK packet is transmitted by the base station to inform all the
mobile users in the system about the status of a recent FB or RES packet
transmission. If no packets were transmitted, this packet contains 0, while
for a successful packet transmission the ACK contains 1. However, when
two packets have collided, this packet contains e, denoting an erroneous
transmission. It should be noted that not all FB and RES packets need no
be followed by an ACK packet. The aggregated transmission and packet
processing time of this packet is denoted TACK [seconds].

In IEEE 802.11-based networks, all these packets are transmitted at the
base rate of the system and we assume that the bit error probability of these
packets are zero.

2.3 Problem Formulation

The main goal of this paper is to propose and analyze three protocols based
on the feedback algorithm proposed in [2] and compare these protocols
with the Splitting algorithm, both in its original and modified version, for
an IEEE 802.11-based network. We want to evaluate the different feed-
back protocols according to their Maximum Average System Spectral Effi-
ciency (MASSE) performance. The MASSE [bits/sec/Hz] is defined as the
maximum average spectral efficiency that is possible within a cell, aver-
aged over all the N mobile users. To be able to investigate the MASSE, the
guard time, i.e., the duration of the feedback collection process, has to be
quantified. This guard time analysis will be conducted in Section 4.
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3 Proposed Feedback Protocols

In this section we will give an overview of the five different feedback proto-
cols handled in this paper. The first three protocols are new and are based
on the algorithm proposed in [2]. The fourth protocol is the Splitting algo-
rithm introduced in [3] and the fifth protocol is a new and modified version
of this algorithm.

3.1 Ranked Full Feedback

For this protocol, all the users that are above the current threshold value
are allowed to transmit their CSI estimate simultaneously. For the first trial
the users that have a CNR above γth,L−1 are allowed to transmit feedback.
If there are none, the threshold is successively lowered to γth,L−2, γth,L−3, · ·
·, γth,0. Consequently, the threshold is successively lowered until feedback
is successfully transmitted or a collision occurs. Each trial is assigned the
duration TFB + TACK, so that an FB packet followed by an ACK packet
can be transmitted. Thanks to the ACK, all the users in the system will be
informed if other users transmitted feedback.

If a feedback transmission happens without a collision (ACK=1), the
guard time is over. However, if a collision occurs (ACK=e), the contention
problem is solved by letting all the users transmit their feedback sequen-
tially depending on their rank in the system. The rank is simply an ordering
pre-assigned by the base station. All the users will transmit their feedback
to the base station during a time N · TFB; hence the user with the highest
CNR is guaranteed to be found, which will maximize the MUD gain in the
cell.

3.2 Ranked Single-User Feedback

As for the Ranked Full Feedback protocol, the Ranked Single-User Feed-
back protocol also lowers the threshold values in the same successive fash-
ion, giving all the users the opportunity to transmit their feedback simul-
taneously for each trial. The duration TFB + TACK is assigned to each trial
and the guard time is over if a successful FB packet transmission occurs.
However, instead of letting all users transmit their feedback if a collision
occurs, only the user with the highest rank within the successful interval
transmits his feedback. When a collision occurs, the user with the highest
rank is first given the opportunity to transmit his FB packet. If this user is
within the successful interval, the FB packet is transmitted, a 1-ACK packet
is broadcasted, and the guard time is over. However, if a user is not within

97



C. FEEDBACK PROTOCOLS FOR INCREASED MULTIUSER DIVERSITY GAIN IN CELLULAR
ALOHA-BASED NETWORKS – A COMPARATIVE STUDY

the successful interval, he transmits a RES packet and the base station will
broadcast an ACK=0 to inform the other users that this user’s transmission
is finished. Now, the user with the second highest rank will be given the op-
portunity to transmit an FB packet. This process continues until one of the
users have transmitted an FB packet and the base station has broadcasted
a 1-ACK. For this protocol, the base station will not receive CSI feedback
from all the users in the cell and, hence the user with the highest CNR is not
always scheduled. Consequently, a certain MUD degradation will be expe-
rienced. However, the guard time will decrease, which will contribute to an
increase in the overall MASSE. This protocol can also lead to an unfairness
problem: If the rank of the users is fixed, the users with the highest rank
will on average be selected more often than the users with lower rank. To
have a more fair protocol, the rank of the users can be changed from time
to time.

3.3 Exponential Backoff

For this protocol, as for the two protocols above, all the users are given the
opportunity to transmit their FB packets simultaneously for each trial until
a successful feedback transmission or a collision occurs. Each trial has the
duration TFB + TACK. For this protocol, the contention problem is solved
by using a tailored version of the Exponential Backoff scheme [12]. If only
one user is above a threshold, he will successfully feed back his CSI and
the guard period will be over. However, if a collision takes place, the feed-
back transmission probability is lowered for the users within the success-
ful interval and these users are again given the possibility to transmit their
feedback within a time TFB. After this time period the base station broad-
casts an ACK packet to inform the users about the status of the feedback
collection process. If more collisions are experienced (ACK=e), the trans-
mission probability for the users within the successful interval is lowered
one more time. The transmission probability is not changed if no users are
transmitting feedback (ACK=0). This process will continue until one user
has conducted a successful feedback transmission (ACK=1).

It can be shown that for n users contending, 1/n will be the transmis-
sion probability that maximizes the probability for a successful transmis-
sion. In [2] it has also been shown that the most probable number of users
participating in a collision is two. Consequently, for the Exponential Back-
off protocol the transmission probability is halved for each feedback colli-
sion. This protocol gives an increase in the fairness since a random user
within the successful interval transmits feedback. However, the user with
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the highest CNR is not always feeding back his CSI and the MUD gain is
not maximized.

3.4 Splitting Algorithm

The Splitting algorithm was proposed by Qin and Berry in [3] and uses
principles from binary search to look for the user with the highest CNR.
This protocol uses two threshold values and the users that have a CNR
in the interval between these thresholds should transmit a RES packet si-
multaneously. The goal is that only the user with the best channel qual-
ity should be captured between the two thresholds. Initially, the highest
threshold equals infinity and lowest threshold equals the value that max-
imizes the probability of having one user in the interval between the two
thresholds. If more users have a CNR in the interval between the two thres-
holds, the base station broadcasts an e-ACK and the interval is split in two
by increasing the lowest threshold value. However, if no users transmit
a RES packet within the interval, a 0-ACK is broadcasted and the highest
threshold value is set to the lowest threshold value and the lowest thresh-
old value is lowered. If only one user transmits his RES packet, the base
station knows that this is the user with the highest CNR and a 1-ACK is
broadcasted. Finally, this user can transmit his CSI estimate by using an
FB packet and the guard time is over. In [3] it is proven that maximally
2.5 iterations are needed on average to find the user with the best channel
quality.

3.5 Modified Splitting Algorithm

As will be clear from Section 6.1, the RES packet is only slightly shorter
than the FB packet in an IEEE 802.11-based network. We therefore propose
a modification to the Splitting algorithm where an FB packet is used for
the iteration process instead of a RES packet. For this protocol the itera-
tion process will be slightly longer than for the original Splitting algorithm,
however; the total guard time for an IEEE 802.11-based network will be
shorter since it is not necessary to transmit an FB packet after the iteration
process.

4 Guard Time Analysis

The goal of this section is to develop analytical expressions for the guard
time for the Ranked Full Feedback protocol, the Ranked Single-User Feed-
back protocol, and the Exponential Backoff protocol. These guard time ex-
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pressions will be needed in the expressions for the MASSE (See Section 5).
To make the analysis simpler, we assume that the duration of the QRY
packet is zero. Since the QRY broadcast time is the same for all the feedback
protocols described above, this assumption will not affect the difference in
guard time between the different protocols. Even if feedback is requested
from all the users, a similar QRY packet needs to be broadcasted to inform
the users about the order of their feedback transmission, since the users
that have data to receive can change from time-slot to time-slot.

For the three proposed feedback protocols based on [2], the number of
intervals checked before the successful interval is reached, is identical. The
number of threshold values checked before the successful interval is found
(number of trials), denoted M, will influence the guard time significantly.
M can be modeled as a discrete random variable, and the probability that
M has the value l can be expressed as follows:

Pr(M = l) = PN
γ (γth,L−l)− PN

γ (γth,L−l−1), l = 0, 1, · · ·, L− 1, (C.1)

where Pγ(·) is the cumulative distribution function (CDF) of the CNR for
one user. This equation expresses the probability of one or more users being
in interval l while the rest of the users have lower CNR levels. The expected
number of trials before the successful interval can now be expressed as:

E[M] =
L−1

∑
l=0

l [PN
γ (γth,L−l)− PN

γ (γth,L−l−1)], (C.2)

where E[·] denotes the expectation operator.

4.1 Guard Time for Ranked Full Feedback

The time duration after the successful interval is found can be expressed
as the sum of TG,coll,l and TG,nocoll,l , where the former is the guard time
contribution in the case a collision takes place in the successful interval l
and the latter is the guard time contribution in the case only one user is
found in the successful interval l. The expected values of these guard time
contributions can be expressed as:

E[TG,coll,l ] = [(N + 1)TFB + TACK] ·
N

∑
n=2

p(l, n), (C.3)

and
E[TG,nocoll,l ] = (TFB + TACK) · p(l, 1), (C.4)
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where p(l, n) denotes the joint probability mass function (PMF) associ-
ated with the event of having n users in the successful interval l, i.e.,
< γth,l , γth,l+1] [2]:

p(l, n) =
(

N
n

)
(Pγ(γth,l+1)− Pγ(γth,l))

n(Pγ(γth,l))
N−n. (C.5)

Now, the total expected guard time for the Ranked Full Feedback pro-
tocol can be expressed as:

E[TG] = (TFB + TACK) · E[M] +
L−1

∑
l=0

E[TG,coll,l ] +
L−1

∑
l=0

E[TG,nocoll,l ], (C.6)

for L > 1. For L = 1, all users will be within the successful interval. There-
fore, collisions can be avoided, and the guard time equals the guard time
for the Full Feedback protocol, TG = N · TFB.

4.2 Guard Time for Ranked Single-User Feedback

As for the Ranked Full Feedback protocol, the time duration after the suc-
cessful interval l is found can be expressed as the sum of the time contribu-
tions TG,coll,l and TG,nocoll,l . The expected time contribution from the case
where no collision takes place, TG,nocoll,l , is the same as for the Ranked Full
Feedback protocol given in (C.4). The expression for the time contribution
in the case of a collision yields:

E[TG,coll,l ] = 2(TFB + TACK)
N

∑
n=2

p(l, n)

+ (TRES + TACK)
N

∑
n=2

N−n

∑
k=0

k
(

N − k − 1
n− 1

)
× (Pγ(γth,l+1)− Pγ(γth,l))

nPγ(γth,l)
N−n, (C.7)

where the first factor appears because one FB-collision arises when the suc-
cessful interval is found and one FB packet is transmitted because the user
with the highest rank within the successful interval feeds back his CSI,
while the second factor is derived in Appendix 1. The total expression for
the expected guard time is the same as in (C.6). As for the Ranked Full
Feedback protocol, the guard time expression is only valid for L > 1. For
L = 1, only the user with the highest rank feeds back his CSI, which gives
TG = TFB. This CSI estimate is used to adapt the coding and modulation.
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4.3 Guard Time for Exponential Backoff

The Exponential Backoff scheme can be described by the Markov chain
shown in Fig. C.1. Considering any successful interval l, we define the state
I = i as the number of collisions that have occurred. When the first colli-
sion occurs, the protocol goes to state i = 1 where the transmission prob-
ability is qi. For each new collision, the state is incremented, and the time
contribution from switching to a new state is TFB+TACK. As mentioned
in Section 3.3, the value of q is one half, so the transmission probability is
halved for each state. The probability for successful feedback transmission
in state I = i is Psucc = nqi(1− qi)n−1, where n denotes the number of con-
tending users. Correspondingly, the probability that none of the users are
transmitting feedback in state I = i is equal to Pstay = (1 − qi)n. Because
the sum of all transition probabilities from one state equals unity, the prob-
ability for going to the next state is Pnext = 1 − (1 − qi)n − nqi(1 − qi)n−1.
The joint probability of entering state I = i, and having n contending users
in the successful interval l, can be written as a sum of the probabilities of
the mutually exclusive events in the previous state that lead to the next:

π(i, l, n) = π(i − 1, l, n) · Pnext
∞

∑
k=0

(Pstay)k

= π(i − 1, l, n)
1− (1− qi−1)n − nqi−1(1− qi−1)n−1

1− (1− qi−1)n , (C.8)

for i ≥ 1. For n ≥ 2 and i = 1, π(i, l, n) equals the probability that there are
multiple users in the successful interval, consequently π(1, l, n) = p(l, n).
For n = 1, there are no collisions (i = 0) and we have π(0, l, n) = p(l, n).

FIGURE C.1: Markov chain illustrating the exponential backoff scheme.
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By nesting the recursive relationship in (C.8) down to i = 2 and using
the relations π(1, l, n) = p(l, n) and π(0, l, n) = p(l, n), we obtain:

π(i, l, n) = p(l, n)
i−1

∏
m=1

1− (1− qm)n − nqm(1− qm)n−1

1− (1− qm)n , (C.9)

for i ≥ 0 and n ≥ 1. Note that the value i = 0 can only arise when n = 1,
and that the product in this expression reduces to unity when i = 0 or i = 1.
Now we can insert (C.5) into (C.9) and find all the transition probabilities
π(i, l, n) for any number of contending users n in any successful interval l.

To find the number of TFB+TACK used due to no feedback transmission,
we calculate the probability of staying k transmission attempts in state I =
j:

Pr(K1 = k) = (1− Pstay) · (Pstay)k = (1− (1− qj)n) · ((1− qj)n)k. (C.10)

This is a geometric distribution, and consequently, the expected number of
TFB+TACK used in state I = j, K1, can be shown to be [13, (1.113)]:

E[K1|j, n] =
(1− qj)n

1− (1− qj)n . (C.11)

Summing this expression over all the states before and including state I = i,
for a successful feedback transmission in state I = i, and using the law of
total expectation, the expected number of TFB+TACK before experiencing a
successful feedback transmission, K2, can be found as:

E[K2] =
L−1

∑
l=0

N

∑
n=2

∞

∑
i=1

i

∑
j=1

E[K1|j, n] · π(i, l, n) · Psucc
∞

∑
k=0

(Pstay)k

=
L−1

∑
l=0

N

∑
n=2

∞

∑
i=1

i

∑
j=1

(1− qj)n

1− (1− qj)n · π(i, l, n) · nqi(1− qi)n−1

1− (1− qi)n .(C.12)

Denoting the number of collisions by K3, the expected number of col-
lisions before successful feedback transmission can be found in a similar
way:

E[K3] =
L−1

∑
l=0

N

∑
n=2

∞

∑
i=1

i · π(i, l, n) · nqi(1− qi)n−1

1− (1− qi)n . (C.13)

The expected guard time can now be found as:

E[TG] = (TFB + TACK)(1 + E[M] + E[K2] + E[K3]), (C.14)
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where the single TFB+TACK denotes the time it takes for the user to trans-
mit his FB packet successfully. As for the two ranked protocols, the first
collision will be avoided when L = 1 (all users are within the successful
interval). Therefore, one TFB+TACK has to be deducted from the expression
of the expected guard time in (C.14) for L = 1.

4.4 Guard Time for the Splitting Algorithm

To calculate the expected guard time for the Splitting algorithm and
the Modified Splitting algorithm for different number of users, we have
used [3, Eq. (13)] in combination with [3, Eq. (6)].

5 Analysis of the Maximum Average System Spectral
Efficiency

In this section we derive expressions for the MASSE for all the feedback
protocols, taking the degradation due to the guard time into account in
each case. The expressions are first presented in a general form which holds
for any channel fading distribution, and then closed-form expressions are
presented for i.i.d. Rayleigh fading channels.

5.1 Spectral Efficiency When the User With Highest CNR is
Selected

The MASSE of the Full Feedback protocol can be expressed as follows:

MASSEFF =
TTS − N · TFB

TTS

∫ ∞

0
log2(1 + γ)pγ∗(γ)dγ

=
TTS − N · TFB

TTS

N
ln 2

N−1

∑
n=0

(
N − 1

n

)
(−1)n

1 + n
e(1+n)/γ E1

(
1 + n

γ

)
,

(C.15)

where pγ∗(γ) = N · PN−1
γ (γ) · pγ(γ) is the probability density function

(PDF) of the CNR of the user with the highest CNR, pγ(γ) being the PDF of
the CNR of a single user. TTS is the total time assigned for a transmission,
with the guard time included.

Both the Ranked Full Feedback protocol and the Splitting algorithm will
lead to a selection of the user with the highest CNR. When the user with
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the highest CNR is always chosen to receive or transmit, the following ex-
pression for the MASSE is employed [4]:

MASSEbest =
L−1

∑
l=0

TTS − El [TG]
TTS

∫ γth,l+1

γth,l

log2(1 + γ)pγ∗(γ)dγ, (C.16)

where El [TG] is the expected guard time given that interval l is the success-
ful interval. The relation between El [TG] and E[TG] found in the previous
section can be expressed as follows:

E[TG] =
L−1

∑
l=0

El [TG]pN(l), (C.17)

where pN(l) is the PMF of l being the successful interval with N users in
the system:

pN(l) = PN
γ (γth,l+1)− PN

γ (γth,l). (C.18)

The corresponding expression for El [TG] for the Ranked Full Feedback pro-
tocol is given by:

El [TG] = (L− l − 1) · (TFB + TACK) +
TG,coll,l + TG,nocoll,l

pN(l)
, (C.19)

where the expressions for TG,coll,l and TG,nocoll,l are given by (C.3) and
(C.4), respectively. For L = 1 all the users will be in the successful inter-
val and consequently we will have full feedback load, El [TG] = N · TFB.

By using the derivation shown in Appendix 2, we obtain the MASSE
for a Rayleigh fading channel given in (C.20), where E1(x) =

∫ ∞
1 e−xt/t dt

is the first order exponential integral function.

5.2 Spectral Efficiency When One Random User Within the
Successful Interval is Selected

The Ranked Single-User Feedback protocol and the Exponential Backoff
protocol will both choose a random user within the successful interval. Ob-
serving that picking a random user within the successful interval is similar
to having quantized feedback, we can utilize the results from previous pub-
lications to develop an expression for the system spectral efficiency. Modi-
fying [14, Eq. (17)] it can be shown that the spectral efficiency can be written
as:

MASSEsingle =
L−1

∑
l=0

TTS − El [TG]
TTS

pN(l)
p1(l)

∫ γth,l+1

γth,l

log2(1 + γ)pγ(γ)dγ,

(C.21)
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MASSEbest =
L−1

∑
l=0

TTS − El [TG]
TTS

N
ln 2

N−1

∑
n=0

(
N − 1

n

)
(−1)n

1 + n

×
[

ln(1 + γth,l) · e−
(1+n)γth,l

γ − ln(1 + γth,l+1) · e−
(1+n)γth,l+1

γ

]
+

L−1

∑
l=0

TTS − El [TG]
TTS

N
ln 2

N−1

∑
n=0

(
N − 1

n

)
(−1)n

1 + n

× e
(1+n)

γ

(
E1

(
(1 + n)(γth,l + 1)

γ

)
− E1

(
(1 + n)(γth,l+1 + 1)

γ

))
(C.20)

MASSEsingle =
1

ln 2

L−1

∑
l=0

TTS − El [TG]
TTS

pN(l)
p1(l)

×
[

ln(1 + γth,l) · e−
γth,l

γ − ln(1 + γth,l+1) · e−
γth,l+1

γ

]
+

1
ln 2

L−1

∑
l=0

TTS − El [TG]
TTS

pN(l)
p1(l)

×
[

e
1
γ

(
E1

(
(γth,l + 1)

γ

)
− E1

(
(γth,l+1 + 1)

γ

))]
(C.22)

where El [TG] is the guard time contribution from a trial with threshold γth,l
and p1(l) is the probability that a random user is in the successful interval
l. By using a similar derivation as in Appendix 2, we obtain the MASSE for
a Rayleigh fading channel given in (C.22).

The two random single user feedback protocols have different values
of El [TG] which make their MASSE different. For the Ranked Single-User
Feedback protocol, El [TG] in (C.22) is the same as in (C.19), where the ex-
pressions for TG,coll,l and TG,nocoll,l are given by (C.7) and (C.4), respec-
tively.

The expected guard time for the Exponential Backoff protocol, given
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success in interval l, can be found by modifying (C.14) as follows:

El [TG] = (TFB + TACK) · (L− l)

+ (TFB + TACK) ·
N

∑
n=2

∞

∑
i=1

i

∑
j=1

(1− qj)n

1− (1− qj)n · π(i, l, n)
pN(l)

· Psucc
1− (1− qi)n

+ (TFB + TACK) ·
N

∑
n=2

∞

∑
i=1

i · π(i, l, n)
pN(l)

· Psucc
1− (1− qi)n . (C.23)

When L = 1 all the users are within the successful interval, and the user
with the highest rank among the N users will be chosen for the Ranked
Single-User Feedback protocol. In this case (C.22) reduces to:

MASSERR =
TTS − TFB

TTS

1
ln 2

e1/γE1

(
1
γ

)
, (C.24)

where the subscript RR denotes Round Robin. The ratio TTS−TFB
TTS

arises be-
cause the selected user feeds back his CSI estimate so that adaptive mod-
ulation and coding can be employed. For L = 1 the Exponential Backoff
protocol avoids the first collision and resolves the contention problem as
usual.

6 Performance Evaluation of the Proposed Feedback
Protocols: Discussion and Numerical Results

The main emphasis of this section is to evaluate the performance of the
five described feedback protocols together with the the Full Feedback pro-
tocol and the Round Robin protocol based on the analysis in Section 4 and
Section 5. The performance of the protocols will be evaluated by plotting
the guard time and the MASSE for different number of thresholds (L) and
users (N). Before presenting the numerical results we describe the IEEE
802.11 parameter values chosen for our numerical analysis.

6.1 IEEE 802.11 Parameter Values

To implement our protocols in an IEEE 802.11 network, we describe the
following four packet types based on the general frame format defined in
the standard [11].

Query (QRY) packet:
• 2 bytes FC (frame control)
• N times 6 bytes RA (receiver address)
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• 1 byte Number of thresholds, L
• 4 bytes FCS (frame check sequence)
Feedback (FB) packet:
• 2 bytes FC
• 6 bytes TA (transmitter address)
• 1 byte CNR estimate
• 4 bytes FCS
Reservation (RES) packet:
• 2 bytes FC
• 4 bytes FCS
Acknowledgment (ACK) packet:
• 2 bytes FC
• 1 byte (0,1,e) ACK
• 4 bytes FCS
The FC field identifies the function and the fields of the packet, while

the FCS field makes it possible for the receiver to separate packets from
noise. In addition to these MAC-layer protocol fields, we also have to take
the physical layer protocol fields into account. In IEEE 802.11 the physical
layer protocol is called Physical Layer Convergence Protocol (PLCP) [15].
The packet headers of this protocol consists of a preamble and a header. If
we assume that Direct Sequence Spread Spectrum (DSSS) is implemented
at the physical layer the PLCP preamble consists of 18 bytes and the PLCP
header consists of 5 bytes [15]. It should be observed that this implemen-
tation of DSSS does only combat interference and does not facilitate that
multiple users can access the channel simultaneously.

To be able to calculate the duration of the packets listed above we
have assumed that they are transmitted at the base rate 2 Mbps and that
the propagation delay and packet processing time has the duration of a
Short Interframe Space (SIFS). If we assume that a SIFS equals 10 µs (IEEE
802.11b) then TFB equals 154 µs, TRES equals 128 µs, and TACK equals 130
µs. For the Full Feedback protocol and the Round Robin protocol, no ACK
packets are necessary, so the feedback from each user has the duration TFB.
As already mentioned in Section 4, we have also assumed that TQRY has
zero duration for all the algorithms.

6.2 Numerical Results for the Guard Time

In Figs. C.2 and C.3 we show plots of how the guard time varies with the
number of thresholds for 4 and 12 users, respectively. For 4 users we see
that the Ranked Single-User Feedback protocol gives the shortest guard
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time, while the Modified Splitting algorithm gives the shortest guard time
for 12 users. It should also be noted that the Full Feedback protocol gives
a relatively short guard time for 4 users. However, since the guard time is
proportional to the number of users for Full Feedback protocol, this proto-
col will perform the worst for a high number of users.
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FIGURE C.2: Guard time for Rayleigh fading with γ = 15 dB and 4
users.

6.3 Numerical Results for the MASSE

Figs. C.4 and C.5 show how the MASSE varies with the number of thres-
holds for short time-slots (TTS=5 ms), for 4 and 12 users, respectively. The
corresponding plots for long time-slots (TTS=50 ms) are shown in Figs. C.6
and C.7.

For comparison purposes we have included graphs of the MASSE for
No Guard Time and Round Robin. The former case corresponds to a theoret-
ical system with no guard time and full MUD exploitation. The latter case
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FIGURE C.3: Guard time for Rayleigh fading with γ = 15 dB and 12
users.

corresponds to a system where adaptive coding and modulation are used,
while opportunistic scheduling is not implemented. For this latter system,
the users are scheduled in a Round Robin fashion. Feedback is still needed
from the selected user in order to perform adaptive coding and modula-
tion.

Although the Ranked Single-User Feedback protocol had the shortest
guard time for 4 users, the Full Feedback protocol ensures that the MUD
gain is maximized, and therefore the Full Feedback protocol yields the best
MASSE performance for 4 users. For a higher number of users, the Modi-
fied Splitting algorithm shows the best MASSE performance since this pro-
tocol ensures full MUD exploitation and has a relatively short guard time.

For long time-slots, we see that the gain from the feedback reducing
protocols diminishes. However, for many users the Modified Splitting pro-
tocol still gives a small gain over the other feedback protocols.
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7 Conclusions

In this paper we studied feedback protocols for possible use in slotted cel-
lular ALOHA-based networks exploiting MUD. We considered downlink
transmission where the base station transmits data to the mobile users.
To be able to exploit MUD, the base station wants to schedule the user
with the best channel quality for each time-slot. Therefore, the base sta-
tion needs to collect feedback from the mobile users. In conventional net-
works that exploit MUD, feedback is collected from all users, which can be
a time-consuming process. Consequently, we analyzed feedback protocols
aimed at reducing the number of users transmitting feedback, and hence
the guard time used to collect feedback.

We proposed three new feedback protocols for ALOHA-based cellu-
lar networks, namely, (i) Ranked Full Feedback, (ii) Ranked Single-User
Feedback, and (iii) Exponential Backoff. Closed-form expressions were also

111



C. FEEDBACK PROTOCOLS FOR INCREASED MULTIUSER DIVERSITY GAIN IN CELLULAR
ALOHA-BASED NETWORKS – A COMPARATIVE STUDY

2 4 6 8 10 12 14 16 18 20
3

3.5

4

4.5

5

5.5

6

6.5

7
MASSE for 12 Users and Short Time−Slot Duration

Number of Thresholds, L

M
A

S
S

E
 [

B
its

/S
e

c/
H

z]

Full FB

Ranked Full FB

Ranked Single−User FB

Exponential Backoff

No Guard Time

Splitting Algorithm

Modified Splitting Algorithm

Round Robin

FIGURE C.5: MASSE for Rayleigh fading with γ = 15 dB and 12 users.
TTS =5 ms.

found for the guard time duration and the MASSE for these three protocols.
We also investigated the guard time and MASSE performance in an IEEE
802.11-based cellular network for the three new protocols and compared
their performance with the Splitting algorithm proposed in [3] and a new
and modified version of this algorithm. Our plots showed that the five dif-
ferent feedback protocols all give a feedback reduction for a system with
many mobile users, and that the Modified Splitting algorithm showed the
best MASSE performance. However, for a low (4) number of users the Full
Feedback algorithm surprisingly showed the best MASSE performance.
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Abstract

In this paper we analyze spectral efficiency and fairness for four differ-
ent scheduling algorithms operating in a wireless cellular network where the
users’ channels have different average carrier-to-noise ratios (CNRs). The four
scheduling algorithms investigated are: Round Robin Scheduling, Maximum
CNR Scheduling, Normalized CNR Scheduling, and Opportunistic Round Robin
Scheduling [1, 2]. We develop closed-form expressions for the system spectral
efficiency and for two types of fairness measures for all four algorithms. The dif-
ferences in spectral efficiency and fairness of the four scheduling algorithms are
highlighted by analyzing plots of our closed-form expressions and by analytically
investigating the asymptotic fairness behavior.
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INTRODUCTION

1 Introduction

For efficient utilization of the scarce radio spectrum available for wire-
less communication, opportunistic multiuser scheduling has recently attracted
much attention. Opportunistic scheduling increases the system spectral ef-
ficiency by selecting users with favorable channel conditions to transmit or
receive data [3, 4]. The scheduling algorithm that maximizes the system
spectral efficiency among all time division multiplexing (TDM) based al-
gorithms is the one where the user with the highest carrier-to-noise ratio
(CNR) is served at all times [3]. We thus say that this algorithm maximizes
the multiuser diversity (MUD) gain [4]. Here, we refer to this algorithm as
Max CNR scheduling (MCS). However, always selecting the very best user
can lead to starvation of the users having the lowest average CNRs. It is
therefore necessary to develop scheduling algorithms that take both the
channel conditions and the quality-of-service (QoS) demands of the users
into account. As a first approach to fulfilling QoS, we can analyze the fair-
ness of different scheduling algorithms [5].

The Opportunistic Round Robin (ORR) scheduling policy [1, 2] obtains
higher fairness by combining the Round Robin (RR) scheduling policy and
the MCS policy. This algorithm will lead to a fairness in the resource allo-
cation that is close to that of the RR policy, and will at the same time be able
to exploit some of the MUD in the system. To have a more fair resource al-
location for the scenario where the users have different average CNRs, we
can choose to exploit the relative MUD that exists between the users. The
relative MUD is defined as the MUD which is due to instantaneous channel
fluctuations which are independent of the average channel statistics. One
algorithm that takes advantage of the relative MUD is the Normalized CNR
Scheduling (NCS) algorithm [6].

Contributions. In this paper we develop a new closed-form system
spectral efficiency expression for a version of the ORR algorithm. In
addition, we define new expressions for time-slot fairness and throughput
fairness, and look at the asymptotic behavior of these expressions for a
general scheduling algorithm. We also develop closed-form expressions
for these two fairness measures for the RR, MCS, NCS, and ORR algo-
rithms when the users’ channels are independently and non-identically
distributed (i.n.d.) with different average CNRs from user to user. Our
analytical expressions make it possible to analyze the mathematical rela-
tionships between different system parameters and to obtain numerical re-
sults without having to do simulations. Our work also provides an ana-
lytical framework for obtaining similar closed-form expressions for other
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scheduling algorithms1.
Organization. The rest of this paper is organized as follows. In Sec-

tion 2 we present the system model and in Section 3 we give a short de-
scription of the four scheduling algorithms in question. Closed-form ex-
pressions for system spectral efficiency and fairness are presented in Sec-
tion 4 and Section 5, respectively. In Section 6, we present our numerical
results. Section 7 lists our conclusions.

2 System Model

We consider a single base station that serves the up-links and down-links
of N users using TDM. Before performing scheduling, the base station is
assumed to receive perfect information about the users’ CNRs. For each
time-slot the scheduling decision is sent from the base station to the rele-
vant user. It is assumed that the channels of the users are i.n.d. slowly-
varying, flat Rayleigh fading channels with average received CNRs γi,
where i ∈ {1, ..., N} is the user index. The time-slot duration is assumed
to be less than one coherence time, i.e., the channels can be regarded more
or less as constant during one time-slot. We also assume that the CNR val-
ues from time-slot to time-slot are uncorrelated. This means that one user
will seldom experience two adjacent time-slots with the same CNR val-
ues, and consequently, the opportunistic distribution of time-slots between
the users appear to be more fair compared to the corresponding resource
allocation in a real-life wireless network. Consequently, the fairness expres-
sions found in this paper gives optimistic bounds on the fairness that can
be expected for more realistic channel models. However, we expect the rel-
ative ranking of the four algorithms’ properties with respect to fairness to
be maintained also when we deviate from our simplified channel model.

When the users’ channels are independently and identically distributed
(i.i.d.) with an average CNR of γ, the expressions for spectral efficiency and
fairness can be obtained by simply replacing γi with γ in the closed-form
expressions obtained for i.n.d. channels.

3 Description of the Four Scheduling Algorithms

3.1 The Round Robin (RR) Algorithm

To have a reference algorithm, we start by investigating RR, where the users
are assigned time-slots in a sequential fashion. This is a non-opportunistic

1Parts of this paper are based on work in [7].
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scheduling policy, implemented e.g. in GSM. Since the base station do not
need any feedback information from the users to conduct the scheduling
this is the most simple algorithm to implement.

3.2 The Max CNR Scheduling (MCS) Algorithm

Another interesting scheduling algorithm is the MCS algorithm where the
user with the best channel conditions is selected in any time-slot. This is
the most opportunistic of the time-slotted scheduling algorithms.

3.3 The Normalized CNR Scheduling (NCS) Algorithm

Using the MCS algorithm when the users’ channels are i.n.d. will in many
cases not take advantage of the relative MUD that exists between the users.
However, by scheduling the users that have the highest ratio χi(t) = γi(t)

γi
,

the relative MUD will be exploited. This ratio expresses the instantaneous
CNR level of user i divided by his average CNR. When always schedul-
ing the users with the highest χi(t), and with many users in the cell, the
users will be selected when they are close to their CNR peak values. This
scheduling algorithm has a similar performance as the Proportional Fair
Scheduling (PFS) algorithm when the time-window tc in the PFS algorithm
is long [4].

3.4 The Opportunistic Round Robin (ORR) Algorithm

For the ORR algorithm, the time-slots are allocated in successive rounds of
N competitions, where N is the number of users [1, 2]. All the N users will
be assigned one time-slot within a round. However, as opposed to RR, the
time-slots are assigned opportunistically. For the first competition within a
round, the best user out of all the N users are chosen. However, for the next
competition this user is not participating and the best out of the remaining
N − 1 users is selected. For each new competition the winner from the
last competition is taken out. Consequently, only one user participates in
the last competition of a round. The advantage of this algorithm is that
it opportunistically takes advantage of the channel conditions of the users
and at the same time ensures that the allocated time-slots are evenly dis-
tributed among the users after every complete round. For i.n.d. channels,
the ORR algorithm will not give the same degree of opportunistic assign-
ment of time-slots. When the users’ average CNRs are spread far apart, the
ORR algorithm will approach the same spectral efficiency as for ordinary
RR scheduling. However, by instead scheduling the user with the highest
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normalized CNR χi(t) = γi(t)
γi

in each competition, the relative MUD will be
exploited. This algorithm has already been proposed in [8] and we denote
the algorithm as Normalized ORR (N-ORR).

4 Spectral Efficiency Analysis

When designing optimal scheduling algorithms, the maximum average sys-
tem spectral efficiency (MASSE) theoretically attainable is a natural and im-
portant performance measure. The MASSE [bits/s/Hz] is defined as the
maximum average sum of spectral efficiencies within a cell, shared be-
tween all users’ up-links and down-links. The expression for the MASSE
for constant-power, optimal rate adaptation is given as [9]:

MASSE =
N

∑
i=1

pi

∫ ∞

0
log2(1 + γ)pγ∗i (γ) dγ, (D.1)

where pi is the probability of user i being selected in any time-slot (access
probability), and pγ∗i (γ) is the probability density function (PDF) of the
CNR for the scheduling policy under study when the user with average
CNR γi is selected. In this section we will investigate the MASSE of the
four scheduling algorithms described in the previous section.

4.1 MASSE for the RR Algorithm

The MASSE of the RR scheduling algorithm simply equals the spectral ef-
ficiency averaged over all the users [10, Eq. (34)]:

MASSE =
1

N ln 2

N

∑
i=1

e1/γi E1

(
1
γi

)
, (D.2)

where E1(x) =
∫ ∞

1 e−xt/t dt is the exponential integral function.

4.2 MASSE for the MCS Algorithm

The MASSE of the MCS algorithm can be expressed as [6, Eq. (14)]:

MASSE =
1

ln 2

N

∑
i=1

1
γi

∑
τ∈TN

i

sign(τ)
e
(

1
γi

+|τ|
)

1
γi

+ |τ| E1

(
1
γi

+ |τ|
)

, (D.3)

where TN
i denotes a set containing the terms arising from a certain type of

expansion of the product ∏N
j=1
j (=i

(1− e−γ/γj) [11, Sec. III-D-2].
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4.3 MASSE for the NCS Algorithm

The MASSE of the NCS algorithm can be expressed as [6, Eq. (28)]:

MASSE =
1

ln 2

N

∑
i=1

N−1

∑
j=0

(
N − 1

j

)
(−1)j

1 + j
e

1+j
γi E1

(
1 + j

γi

)
. (D.4)

4.4 MASSE for the N-ORR Algorithm

When combining the ORR and NCS algorithms in the way described in Sec-
tion 3.4, the users will get selected in a competition if they have the highest
normalized CNR. It can easily be shown that the normalized CNR is inde-
pendently and identically distributed with unity average value for all the
users; thus, the relative multiuser gain is conserved for this algorithm, and
each user will experience a multiuser gain as if all the users were i.i.d. with
the same average CNR as this user. Consequently, user i experiences the fol-
lowing individual cumulative distribution function (CDF) if he is scheduled
when n (≤ N) users are competing:

Pγ∗i (γ) = Pn
γi

(γ), (D.5)

where Pγi(γ) is the CDF of the CNR for a single user with average CNR γi.
Since the a priori probability that a user is selected in an arbitrary compe-
tition is 1

N , the total CDF Pγ∗(γ) of the N-ORR algorithm can be expressed
as the average over all users, and all competitions within a round of com-
petitions. Differentiating Pγ∗(γ) with respect to γ, we obtain the following
PDF for the N-ORR algorithm:

pγ∗(γ) =
1

N2

N

∑
n=1

n
N

∑
i=1

Pn−1
γi

(γ)pγi(γ), (D.6)

where pγi(γ) is the PDF of the CNR for a single user with average CNR γi.
Inserting this expression into (D.1) and using a similar derivation as for [10,
Eq. (44)] we obtain the following expression for the MASSE:

MASSE =
1

N2 ln 2

N

∑
n=1

n
N

∑
i=1

n−1

∑
j=0

(
n− 1

j

)
(−1)j e

1+j
γi

1 + j
E1

(
1 + j

γi

)
. (D.7)

5 Fairness Analysis

Several measures of fairness have been introduced in the preceding litera-
ture. In [12], Jain’s Fairness Index (JFI), which has been used in several recent
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papers ([13], [14]), was introduced. JFI measures the fairness experienced
by a user on the average. The properties of the JFI make it well suited as a
measure for fairness. The index has all the following desired properties of
a fairness measure [12]:

• population size independent, i.e., JFI is applicable to any number of
users.

• scale independent, i.e., JFI is only dependent on the resource allocation
relative to the expected resource allocation to an arbitrary user given
a scheduling algorithm and a number of system parameters.

• bounded, i.e., JFI is bounded between zero and one, where zero means
total unfairness and one means total fairness. It should be noted that
total unfairness will only occur when we have an infinite number of
users and one user gets all the resources.

• continuous, i.e., continuous changes in the resource allocation influ-
ence JFI continuously.

We choose to use the following version of JFI [12, Eq. (2)]:

F(K) =
(EK[X])2

EK[X2]
, (D.8)

where X is a random variable describing the amount of resource allocated
to a user, and EK[·] is the expectation calculated over the distribution of
the resource allocation within a time-window of K time-slots. Since we are
interested in investigating the variation in the resource allocation between
the users, EK[·] is an average over all users in the system. As opposed to
the traditional definition of JFI which is based on calculating the fairness
resulting from an actual allocation, the definition in (D.8) makes it possible
to calculate the fairness of a scheduling algorithm based on the statistics
of the algorithm and the wireless channel, and thus to judge the fairness
effects of various algorithms before the performance of the algorithms is
evaluated through simulations or practical experiments.

5.1 Definitions and Asymptotic Analysis of Time-Slot Fairness
and Throughput Fairness

5.1.1 Time-Slot Fairness

Scheduling algorithms for TDM-based wireless cells allocate time-slots to
the different users. Choosing X in (D.8) to be the number of time-slots
allocated to the users, we can define the time-slot fairness as:

FTS(K) =
(EK[M])2

EK[M2]
, (D.9)
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where M is a random variable that describes the number of time-slots al-
located to an arbitrary user within a window of K time-slots. This random
variable is discrete and can take on the values k = 1, ..., K. For any schedul-
ing algorithm, the expected number of time-slots allocated to an arbitrary
user within a time-window of K time-slots is EK[M] = K/N. It should also
be noted that M will converge to Kpi, when K grows to infinity. Conse-
quently, we can express the second moment of M as K grows to infinity as:

lim
K→∞

E[M2] =
1
N

N

∑
i=1

(Kpi)
2 =

1
N

(
K
N

)2 N

∑
i=1

(Npi)
2 . (D.10)

We can now express the asymptotic time-slot fairness when K goes to in-
finity as:

lim
K→∞

FTS(K) =
( K

N
)2

1
N

( K
N

)2
∑N

i=1(Npi)2
=

1
1
N ∑N

i=1(Npi)2
. (D.11)

We see that the time-slot fairness will converge to unity only for the
scheduling algorithms that have pi = 1

N , for all i = 1, ..., N. This means
that the time-slot fairness for all the scheduling algorithms investigated in
this paper will converge to unity, as K grows large, except for the MCS
algorithm when the users’ channels are i.n.d..

5.1.2 Throughput Fairness

Although the time-slot fairness might be good for a given scheduler, the
users do not necessarily therefore experience the same fair allocation of
throughput. This might be because the users have different average CNRs
and will thus experience different throughput in their assigned time-slots.
Consequently, we chose to investigate the throughput fairness, which can be
defined as:

FTP(K) =
(EK[R])2

EK[R2]
=

(EK[R])2

(EK[R])2 + var(R)
, (D.12)

where X = R [bits per time-window per Hz] is a random variable describ-
ing the throughput allocated to an arbitrary user within K time-slots. It
should be noted that because of the scale independency of the JFI, this defi-
nition of the throughput fairness measures fairness relative to the expected
throughput that is allocated to an arbitrary user for a given scheduling al-
gorithm and some given system parameters. Intuitively, this is logical since
fairness always has to measure the resource allocation of one user relative
to the allocation to the other users. When the users’ channels are i.n.d.,
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the variance in the resource allocation relative to the expected allocation,
will be higher for the throughput allocation compared to the correspond-
ing variance of the time-slot allocation. The JFI will therefore show higher
time-slot fairness than throughput fairness in this case. This is also logi-
cal, since (i) users with good channel quality will observe a high degree of
unfairness in the throughput allocation since they can transmit more bits
compared to the average user and (ii) users with bad channel quality will
observe a high degree of unfairness in the throughput allocation since they
can transmit fewer bits than the average user. The users will not observe
the same degree of unfairness in the time-slot allocation. It can therefore be
advantageous to observe the throughput fairness instead of the time-slot
fairness for many systems. It should however be noted that it is impor-
tant to compare the results for throughput fairness with the corresponding
MASSE for a given scheduling algorithm and some given system param-
eters. Since the throughput fairness is measured relative to the expected
throughput in the system, we have to choose scheduling algorithms that
give both a relatively high degree of fairness and a relatively high MASSE.

By using the results from the asymptotic analysis of the time-slot al-
location, and by assuming that the throughput allocated in an arbitrary
time-slot is independent of M for large values of K, we obtain:

lim
K→∞

EK[R] =
1
N

N

∑
i=1

∫ ∞

0
Kpi log2(1 + γ)pγi∗(γ)dγ =

K
N

· MASSE. (D.13)

The second moment of the throughput allocation, as K goes to infinity, can
be expressed as:

lim
K→∞

EK[R2] =
1
N

N

∑
i=1

∫ ∞

0

(
Kpi log2(1 + γ)

)2 pγi∗(γ)dγ

= N
(

K
N

)2 N

∑
i=1

p2
i

∫ ∞

0

(
log2(1 + γ)

)2 pγi∗(γ)dγ,(D.14)

The corresponding expression for the asymptotic throughput fairness can
now be expressed as:

lim
K→∞

FTP(K) =
(MASSE)2

N ∑N
i=1 p2

i
∫ ∞

0
(
log2(1 + γ)

)2 pγi∗(γ)dγ
. (D.15)

It is not obvious from this expression what values of pi and distributions of
pγi∗(γ) will give us total throughput fairness. However, by analyzing the
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equivalent expression

limK→∞ FTP(K) = limK→∞
(EK [R])2

(EK [R])2+var(R)

= ( K
N MASSE)2

( K
N MASSE)2

+ 1
N ∑N

i=1
∫ ∞

0 (Kpi log2(1+γ)−K
N MASSE)2

pγi∗(γ)dγ
,

(D.16)

we see that the throughput fairness converges to unity only if pi = 1
N and

pγi∗(γ) equals the dirac delta function at γ = γ for all values of i, i.e., the
CNR is constant and identical for all the users. Intuitively, this is logical
since a constant and identical CNR will lead to zero variance in the rate
of the users. Since we assume non-constant (random) CNRs in this paper,
none of the investigated scheduling algorithms will lead to full throughput
fairness when K goes to infinity.

5.2 Time-Slot Fairness for Different Scheduling Algorithms

5.2.1 Time-Slot Fairness for RR

For RR, the time-slots are assigned non-opportunistically to the users in
rounds of N time-slots, where each user is assigned one time-slot in each
round. If we assume that the order of the users within each round is ran-
dom, and hence, the number of allocated time-slots is independent of i, we
obtain the following probability mass function (PMF) for M:

pM(k) =


(k+1)N−K

N , k = , K
N -

K−(k−1)N
N , k = . K

N /
0, otherwise

. (D.17)

From this PMF it can be shown that the average number of time-slots as-
signed to any user is EK[M] = K/N. Similarly, it can be shown that the
second moment of M can be expressed as

EK[M2] =
(⌊

K
N

⌋)2
(

(, K
N -+ 1)N − K

N

)
, +

(⌈
K
N

⌉)2
(

K − (. K
N / − 1)N
N

)
(D.18)

for K mod N (= 0, and EK[M2] = (K/N)2 otherwise. Inserting the expres-
sions for EK[M2] and EK[M] = K/N into (D.9), we obtain a closed-form
expression for the time-slot fairness of the RR algorithm.
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5.2.2 Time-Slot Fairness for MCS

For MCS, where the user with the highest CNR is chosen in each time-slot,
the distribution of the number of time-slots allocated to user i within K
time-slots is dependent on the probabilities of selecting user i in an arbi-
trary time-slot [6, Eq. (12)]:

pi =
∫ ∞

0
pγi(γ)

N

∏
j=1
j (=i

Pγj(γ)dγ =
1
γi

∑
τ∈TN

i

sign(τ)
1

1
γi

+ |τ| , (D.19)

where Pγj(γ) is the CDF of the CNR of a single user with average CNR γj.
To calculate the first and second moments of the time-slot distribution

between the users, we have to find the PMF of how the time-slots are dis-
tributed between the users. This PMF can be expressed by the multinomial
distribution [15]:

pM(k) =

{
K!

k1!·k2!···kN ! ∏N
i=1 pki

i , if ∑N
i=1 ki = K

0, otherwise,
(D.20)

where the vector k = [k1, ..., ki, ..., kN ] denotes the different values of M for
each of the N different users.

We can now obtain the expected number of time-slots scheduled to an
arbitrary user as:

EK[M] = ∑
k:∑N

i=1 ki=K

(
1
N

N

∑
i=1

ki

)
K!

k1! · k2! · · · kN !

N

∏
i=1

pki
i =

K
N

. (D.21)

The corresponding second moment of the number of time-slots allo-
cated to a user can be expressed as:

EK[M2] = ∑
k:∑N

i=1 ki=K

(
1
N

N

∑
i=1

k2
i

)
K!

k1! · k2! · · · kN !

N

∏
i=1

pki
i . (D.22)

Inserting the expressions for these two first moments into (D.9), we sub-
sequently obtain a closed-form expression for the time-slot fairness of the
MCS algorithm.

5.2.3 Time-Slot Fairness for NCS

It should be observed that when the relatively best user is chosen in the
i.n.d. scenario, the users will have the same probability of being sched-
uled in an arbitrary time-slot. This means that the PMF of the number of
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time-slots allocated to an arbitrary user can be expressed by the binomial
distribution [16, p. 1179]:

pM(k) =
(

K
k

)
pk

i (1− pi)K−k, (D.23)

where pi = 1
N .

We can now find the expected number of time-slots allocated to any
user as:

EK[M] =
K

∑
k=1

k pM(k) =
K
N

. (D.24)

Similarly, we can find the second moment of the time-slot allocation to be:

EK[M2] =
K

∑
k=1

k2 pM(k) =
K(N + K − 1)

N2 . (D.25)

Inserting the expressions for EK[M] and EK[M2] into (D.9), we obtain a
closed-form expression for the time-slot fairness for the NCS algorithm.

5.2.4 Time-Slot Fairness for N-ORR

For the N-ORR algorithm, we will obtain the same random time-slot allo-
cation within a round as for the random RR algorithm. Because of the same
randomness of the time-slot allocation for the RR and N-ORR algorithms,
these two algorithms will have the same time-slot fairness behavior.

5.3 Throughput Fairness for Different Scheduling Algorithms

5.3.1 Throughput Fairness for RR

The first moment of the throughput allocation for the RR algorithm can be
written as follows:

EK[R] =
1
N

N

∑
i=1

K

∑
k=0

pM(k)
∫ ∞

0
k log2(1 + γ)pγi(γ)dγ

=
K

N2 ln 2

N

∑
i=1

e1/γi E1

(
1
γi

)
. (D.26)
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Furthermore, the second moment of the throughput allocation can be
expressed as:

EK[R2] =
1
N

N

∑
i=1

K

∑
k=0

pM(k)
∫ ∞

0
(k log2(1 + γ))2 pγi(γ)dγ

=
EK[M2]
N(ln 2)2

N

∑
i=1

1
γi

Ψ
(

1
γi

)
, (D.27)

where EK[M2] is the second moment of the time-slot allocation for RR and
Ψ(µ) is given by

Ψ(µ) =
∫ ∞

0
ln2(1 + γ)e−µγdγ

= eµ

{
1
µ

[
π2

6
+ (C + ln(µ))2

]
− 23F3(1, 1, 1; 2, 2, 2;−µ)

}
,

(D.28)

with C = 0.57721566490 being Euler’s constant [17, (9.73)], and pFq(a1, · ·
·, ap; b1, · · ·, bq; ·) being the generalized hypergeometric function [18]. This ex-
pression has been found using the derivation given in Appendix 3. In-
serting the obtained expressions for the mean and the variance of the
throughput allocation into (D.12), we obtain a closed-form expression for
the throughput fairness of the RR algorithm.

5.3.2 Throughput Fairness for MCS

Before we can find the moments of the throughput allocation for MCS we
first need to find the PDF of the CNR conditioned on user i being sched-
uled, pγ∗i (γ):

Pr(γi = γ|γj <γi, ∀j (= i)=
Pr(γi = γ and γj <γi, ∀j (= i)

Pr(γj <γi, ∀j (= i)
=

pγi(γ)
pi

N

∏
j=1
j (=i

Pγj(γ).

(D.29)
The first moment of the throughput allocation for the MCS algorithm
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can now be found as follows:

EK[R] = ∑
k:∑N

i=1 ki=K

(
1
N

N

∑
i=1

∫ ∞

0
ki log2(1 + γ)pγ∗i (γ)dγ

)

× K!
k1! · k2! · · · kN !

N

∏
i=1

pki
i

=
1

N ln 2 ∑
k:∑N

i=1 ki=K

 N

∑
i=1

ki
γi pi

∑
τ∈TN

i

sign(τ)
e
(

1
γi

+|τ|
)

1
γi

+ |τ| E1

(
1
γi

+ |τ|
)

× K!
k1! · k2! · · · kN !

N

∏
i=1

pki
i . (D.30)

Similarly, we can obtain the second moment of the throughput alloca-
tion as:

EK[R2] = ∑
k:∑N

i=1 ki=K

(
1
N

N

∑
i=1

∫ ∞

0
[ki log2(1 + γ)]2 pγ∗i (γ)dγ

)

× K!
k1! · k2! · · · kN !

N

∏
i=1

pki
i

=
1

N(ln 2)2 ∑
k:∑N

i=1 ki=K

 N

∑
i=1

k2
i

γi pi
∑

τ∈TN
i

sign(τ)Ψ
(

1
γi

+ |τ|
)

× K!
k1! · k2! · · · kN !

N

∏
i=1

pki
i . (D.31)

Inserting the expressions for EK[R] and EK[R2] into (D.12), we subse-
quently obtain a closed-form expression for the throughput fairness of the
MCS algorithm.

5.3.3 Throughput Fairness for NCS

For the NCS policy, each user will experience a MUD gain as if all the other
users were i.i.d. with the same average CNR as this user. The CNR of user
i in the time-slots he is scheduled is therefore distributed according to the
following CDF [3]:

Pγ∗i (γ) = PN
γi

(γ). (D.32)

Differentiating this expression with respect to γ, we obtain the following
PDF for the NCS algorithm:

pγ∗i (γ) = NPN−1
γi

(γ)pγi(γ). (D.33)
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We can now use this PDF to find the first moment of the throughput
allocation:

EK[R] =
1
N

N

∑
i=1

K

∑
k=0

pM(k)
∫ ∞

0
k log2(1 + γ)pγ∗i (γ)dγ

=
K

N ln 2

N

∑
i=1

N−1

∑
j=0

(
N − 1

j

)
(−1)j

1 + j
e

1+j
γi E1

(
1 + j

γi

)
, (D.34)

where pi = 1
N for all the users.

Similarly, we can obtain the second moment of the throughput alloca-
tion as:

EK[R2] =
1
N

N

∑
i=1

K

∑
k=0

pM(k)
∫ ∞

0
[k log2(1 + γ)]2 pγ∗i (γ)dγ

=
K(N + K − 1)

(N ln 2)2

N

∑
i=1

1
γi

N−1

∑
j=0

(
N − 1

j

)
(−1)jΨ

(
1 + j

γi

)
.

(D.35)

As for the RR and MCS algorithms, the closed-form throughput fairness
expression for NCS can subsequently be found by inserting these two mo-
ments into (D.12).

5.3.4 Throughput Fairness for N-ORR

Since the N-ORR algorithm schedules the users with the highest ratio
χi(t) = γi(t)

γi
in each competition and since this ratio has the same distri-

bution for all users, the PMF for the number of time-slots k being allocated
to a user is independent of i and can be expressed as in (D.17). The users
that get k = , K

N - time-slots are only involved in whole rounds of compe-
titions. This means that these users will not participate in the last round
of competitions that is finished before all the users are allocated one time-
slot each. In this case, user i will experience a CDF of the CNR when he is
scheduled that equals the average CDF over one round:

Pγ∗i

(
γ|k =

⌊
K
N

⌋)
=

1
N

N

∑
n=1

Pn
γi

(γ), (D.36)

However, the CDF of the CNR for a user getting k = . K
N / out of K time-

slots, when K is not a multiple of N (i.e. mod(K, N) (= 0), can be expressed
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as the average over all the rounds, since such a user will also participate in
the last unfinished round:

Pγ∗i

(
γ|k =

⌈
K
N

⌉)
=

(k − 1) ∑N
n=1 Pn

γi
(γ)

kN
+

∑N
n=kN−K+1 Pn

γi
(γ)

k(K − (k − 1)N)
. (D.37)

Differentiating these CDFs with regard to γ, we obtain the correspond-
ing PDFs:

pγ∗i

(
γ|k =

⌊
K
N

⌋)
=

1
N

N

∑
n=1

nPn−1
γi

(γ)pγi(γ), (D.38)

and

pγ∗i

(
γ|k=

⌈
K
N

⌉)
=

(k − 1) ∑N
n=1 nPn−1

γi
(γ)pγi(γ)

kN

+
∑N

n=kN−K+1 nPn−1
γi

(γ)pγi(γ)
k(K − (k − 1)N)

. (D.39)

It should be noted that when mod(K, N) = 0, the PDF of the CNR reduces
to (D.38). We can now use these expressions to express the expected value
of the throughput allocation when mod(K, N) (= 0:

EK[R] =
1
N

N

∑
i=1

K

∑
k=0

pM(k)
∫ ∞

0
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=
1

N2

N

∑
i=1

⌊
K
N

⌋ N

∑
n=1

Ai(n) +
N

∑
n=. K

N /N−K+1

Ai(n)

 , (D.40)

where Ai(n) is given by:

Ai(n) =
n

ln 2
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(
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j

)
(−1)j e
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. (D.41)

Similarly, we can express the second moment of the throughput allocation
when mod(K, N) (= 0 as:

EK[R2] =
1
N
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(D.42)
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where Bi(n) is given by:

Bi(n) =
n

γi(ln 2)2

n−1

∑
j=0

(
n− 1

j

)
(−1)jΨ

(
1 + j

γi

)
. (D.43)

To obtain the expression above, we have inserted the Rayleigh PDF and
CDF and used the binomial expansion formula [17, Eq. (1.111)]. The result-
ing integral has been solved by using the derivation in the Appendix.

When mod(K, N) = 0, the two first moments of the throughput alloca-
tion reduces to:

EK[R] =
K

N3

N

∑
i=1

N

∑
n=1

Ai(n), (D.44)

and

EK[R2] =
K2

N4

N

∑
i=1

N

∑
n=1

Bi(n). (D.45)

Inserting the expressions for EK[R] and EK[R2] into (D.12), we finally ob-
tain a closed-form expression for the throughput fairness of the N-ORR
algorithm.

6 Numerical Results

6.1 MASSE Plots

Fig. D.1 shows a plot of the MASSE as a function of N for users with i.i.d.
Rayleigh channels with γ = 15 dB. As expected, the NCS algorithm does
achieve the same MASSE as the MCS algorithm when the users’ channels
are i.i.d.. Since the ORR algorithm is a combination of RR and MCS, we see
that the MASSE of ORR lies between the MASSE of MCS and the MASSE
of RR. Also note that the relative difference between the MASSE of MCS
and ORR is decreasing for an increasing number of users.

The plot in Fig. D.2 shows the MASSE for users with i.n.d. channels
where the users have average CNRs that have been chosen deterministi-
cally in an interval around 15 dB. The lowest value of this interval is 5 dB,
and the highest is 17.79 dB. We have looked at the case where the users
have average CNRs that are evenly spread within the interval, and the case
where half of the users have an average CNRs of 5 dB and the other half
have an average CNRs of 17.79 dB. For the clustered case, one user has an
average CNR of 15 dB if we have an odd number of users.

Since the NCS algorithm does not schedule the user with the absolute
best channel for each time-slot, NCS will always have lower MASSE than
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FIGURE D.1: MASSE for users with i.i.d. Rayleigh fading channels with
an average CNR of 15 dB.

MCS for the i.n.d. scenario. It should also be observed that the MASSE of
the RR, NCS and N-ORR scheduling algorithms will suffer the more the
users’ average CNRs deviate from the overall average CNR value. Math-
ematically, this can be understood in the following way. All these three
scheduling algorithms will have access probability pi = 1

N for all the users,
and the sum in (D.1) can therefore be moved into the integral. The expres-
sion for the MASSE now consists of N terms within the integral. For the
i.n.d. scenario, the value of γ from term to term will have a higher variance
compared to the i.i.d. scenario. Since log2(1 + γ) is a concave function, it
can now be argued that the sum of N terms inside the integral is higher
for the i.i.d. scenario compared to the i.n.d. scenario. Consequently, the
resulting MASSE for the i.n.d. scenario will always be lower than the cor-
responding MASSE for the i.i.d. scenario for algorithms having the same
access probability pi = 1

N for all the users.
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FIGURE D.2: MASSE for users with i.n.d. Rayleigh fading channels with
a total average CNR of 15 dB. The average CNR of the user(s) with the
worst channel quality is 5 db, while the average CNR of the user(s) with
the best channel quality is 17.79 dB.

6.2 Fairness Plots

Figs. D.3, D.4, and D.5 show the time-slot fairness as a function of K for four
users with Rayleigh fading channels with a total average CNR of 15 dB. For
the plot in Fig. D.3, the users’ average CNRs are i.i.d., while for the plot in
Fig. D.4 the users’ deterministic average CNRs are evenly spread between
5 dB and 17.79 dB. For the plot in Fig. D.5 the average CNRs are clustered
at 5 dB for two of the users, and at 17.79 dB for the other two users. In
all cases we see that the RR and (N-)ORR algorithms converge relatively
fast to unity time-slot fairness. It should also be observed that the time-slot
fairness of these two algorithms is perfect when the last competition of a
round is finished.

For the plot where the users’ channels are i.i.d., all the algorithms con-
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FIGURE D.3: Time-slot fairness for four users with i.i.d. Rayleigh fading
channels with an average CNR of 15 dB.

verge to unity time-slot fairness (See Sec. 5.1.1). When the users’ average
CNRs are i.n.d., the time-slot fairness of the RR, NCS, and N-ORR algo-
rithms still converge to unity. However, the time-slot fairness of the MCS
algorithm converges to 0.6220 for large values of K when the average CNRs
are evenly distributed between 5 and 17.79 dB and to 0.5083 when the users’
average CNRs are clustered at 5 dB for two users and 17.19 for the two other
users. We see that the time-slot fairness converges slower when the users’
average CNRs deviate much from the total average CNR. Therefore, we
can conclude that the scheduling algorithms will yield higher fairness the
closer the users’ average CNRs are to the total average CNR in the cell.

Plots of FTP(K) are shown in Figs. D.6, D.7, and D.8 for the average
CNR values used in Figs. D.3, D.4, and D.5, respectively. We can observe
that the curves have similar shapes as the corresponding curves in the time-
slot fairness plots. However, since the throughput fairness is affected by the
variance of the number of bits allocated in each time-slot, the throughput
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FIGURE D.4: Time-slot fairness for four users with i.n.d. Rayleigh fad-
ing channels with a total average CNR of 15 dB. The average CNR of the
users are evenly distributed from 5 dB to 17.79 dB.

fairness will always be lower than the corresponding time-slot fairness. It
is also interesting to note that since the throughput fairness is measured
relative to the expected throughput of the scheduling algorithm, the ORR
algorithm will obtain a higher throughput fairness than the RR algorithm,
since the ORR algorithm obtains a higher spectral efficiency than the RR
algorithm (See Fig. D.2).

By using similar derivations as in Section 5.2, and inserting the re-
sults into (D.15), we can obtain closed-form expression for the asymptotic
throughput fairness values as K goes to infinity. From these expressions
we have calculated the asymptotic throughput fairness for our i.i.d. sce-
nario to be 0.8855, 0.9804, 0.9804, and 0.9436, for RR, MCS, NCS, and ORR,
respectively. The asymptotic throughput fairness values for the scenario
where the users have evenly distributed average CNRs are 0.7940, 0.5862,
0.9028, and 0.8604 for RR, MCS, NCS, and N-ORR, respectively; while the
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FIGURE D.5: Time-slot fairness for four users with i.n.d. Rayleigh fad-
ing channels with a total average CNR of 15 dB. The average CNR of two
users are clustered at 5 dB, while the average CNR of the other two users
are clustered at 17.17 dB.

corresponding values for the scenario where the users’ average CNRs are
clustered are 0.7101, 0.4883, 0.8317, and 0.7843, for RR, MCS, NCS, and
N-ORR, respectively. These asymptotic values correspond well with the
throughput fairness plots shown in Figs. D.6, D.7, and D.8 for large val-
ues of K. It is interesting to note that the NCS algorithm converges to the
highest throughput fairness for large values of K. This means that for appli-
cations needing short-term fairness, the ORR algorithm will give the best
performance, while for applications needing long-term fairness, the NCS
algorithm will give the best performance.
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FIGURE D.6: Throughput fairness for four users with i.i.d. Rayleigh
fading channels with an average CNR of 15 dB.

7 Conclusion

In this paper we have conducted an analytical evaluation of different
scheduling algorithms when the users’ channels have different average
CNRs. Closed-form expressions for the system spectral efficiency, the time-
slot fairness, and the throughput fairness have been found for the RR, MCS,
NCS, ORR, and N-ORR scheduling algorithms. In addition, we have devel-
oped expressions for the asymptotic time-slot fairness when and through-
put fairness when the length of the time-window over which the fairness
is calculated goes to infinity. Our numerical results show that while the
MCS and RR algorithms either have high MASSE or high fairness, the NCS,
ORR, and N-ORR algorithms can obtain both relatively high MASSE and
high fairness at the same time.
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FIGURE D.7: Throughput fairness for four users with i.n.d. Rayleigh
fading channels with a total average CNR of 15 dB. The average CNR of
the users are evenly distributed from 5 dB to 17.79 dB.

143



D. SPECTRAL EFFICIENCY AND FAIRNESS FOR OPPORTUNISTIC SCHEDULING
ALGORITHMS

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Throughput Fairness for I.N.D. Users

Number of time−slots, K

F
T

P

Round Robin Scheduling
Max CNR Scheduling
Normalized CNR Scheduling
Normalized Opportunistic Round Robin Scheduling

FIGURE D.8: Throughput fairness for four users with i.n.d. Rayleigh
fading channels with a total average CNR of 15 dB. The average CNR of
two users are clustered at 5 dB, while the average CNR of the other two
users are clustered at 17.17 dB.
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Abstract

In this letter we develop an expression for the approximate throughput guaran-
tee violation probability (TGVP) for users in time-slotted networks for any schedul-
ing algorithm with a given mean and variance of the bit-rate in a time-slot, and
a given distribution for the number of time-slots allocated within a time-window.
Based on this general result, we evaluate closed-form expressions for the TGVPs
for four well-known scheduling algorithms. Through simulations we also show
that our TGVP approximation is tight for a realistic network with moving users
with correlated channels and realistic throughput guarantees.
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INTRODUCTION

1 Introduction

In modern cellular network standards like HSPA, 1xEVDO, and Mobile
WiMAX, the rate of a user is adapted to the channel quality [1]. By giv-
ing priority to users with high channel quality, the system capacity can
be increased significantly [2, 3]. However, fulfilling the users’ (quality-of-
service) QoS requirements in such a system can be difficult since the users
with the lowest channel quality will often be starved. Consequently, it is
necessary to implement scheduling algorithms that take both the channel
quality and the QoS demands of the users into account.

Many previous publications have concentrated on analyzing how fair
the resource allocation is in the network [4, 5]. However, it can be diffi-
cult to quantify fairness and the concept of fairness can often be difficult
to understand both for the operators and the mobile users. In commercial
networks it is more useful to look at a more precise notion of QoS, namely
throughput guarantees. The advantage of being able to quantify throughput
guarantees will make it easier for the network operator to offer a service
that is tailor-made to the applications that are going to be transmitted. In
addition, the network operators do not have to over-dimension the wireless
networks to satisfy the QoS demands of the customers.

There are two types of throughput guarantees that can be offered to
customers, namely hard or deterministic throughput guarantees, and soft or
stochastic throughput guarantees. The hard throughput guarantees promise,
with unit probability, a certain throughput to the users within a given time-
window, while soft throughput guarantees promise that each user will
have a specified throughput within a given time-window, with a proba-
bility that is high, but less than unity. For telecommunications networks in
general, and for wireless networks in particular, soft throughput guaran-
tees are more suited for specifying QoS than hard throughput guarantees.
This is because such networks often have a varying number of users and
varying loads from the applications of these users. For wireless networks,
the varying quality of the radio channel will further add uncertainty to the
size of the throughput that can be guaranteed for short time-spans. In addi-
tion, will opportunistic scheduling give priorities to the users with the best
channel conditions (subject to various constraints), and the waiting period
between each time a user is scheduled can therefore vary significantly. This
makes soft throughput guarantees suited as QoS metrics for modern wire-
less networks.

Obtaining analytical expressions for what soft throughput guarantees
that can be offered in a wireless network makes it possible to calculate the
QoS of the users in a very efficient way for a set of instantaneous system
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parameters. Such analytical expressions can therefore be used directly in
adaptive radio resource algorithms for wireless networks where the users
move around with high speed and where real-time applications constitute
the dominating traffic load.

Contributions. Quantifying the soft throughput guarantees that can be
given for a certain scheduling algorithm without conducting experimen-
tal investigations has, to the best of our knowledge, not been looked into
before. We obtain a general expression for a tight approximation of the
throughput guarantee violation probability (TGVP), for a given mean and vari-
ance of the number of bits transmitted in a time-slot, and a given distribu-
tion for the number of time-slots allocated to a user within a time-window.
We also investigate the tightness of this approximation for a realistic sce-
nario with users that have correlated channels1.

Organization. The rest of this letter is organized as follows. In Section 2
we present the system model. We develop a general expression for the
approximate TGVP in Section 3. In Section 4 we plot closed-form expres-
sions for the approximate TGVP for four different scheduling algorithms
and analyze the tightness of the approximation by comparing the analyt-
ical results with simulations for a realistic scenario. Our conclusions are
presented in Section 5.

2 System Model

We consider a single base station that serves N users using time-division
multiplexing (TDM). The analytical results will be valid for the downlink,
however also for the uplink if reciprocity can be assumed between the
downlink and uplink. In any case we assume that the total bandwidth
available for the users is W [Hz] and that the transmit power is constant
for all transmitters. Each user measures his own CNR perfectly, and before
performing scheduling, the base station is assumed to receive these mea-
surements from all the users. For each time-slot the base station takes a
scheduling decision and broadcasts this decision to the selected user be-
fore transmission starts. We assume that the channels of the users are flat
Rayleigh block-fading channels with a constant average received CNR γi
for user i. The variations in average CNR in real-life networks is often on
the time-scale of several seconds, while realistic throughput guarantees are
calculated for time-scales under 100 milliseconds. Consequently, it is real-
istic to assume that the average CNRs are constant over the time-window
for which the throughput guarantees are calculated.

1Parts of this letter are based on work in [6] and [7].
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The block or time-slot duration, TTS [seconds], is assumed to be less
than one coherence time, i.e., the channels can be regarded more or less
as constant during one time-slot. To obtain our analytical results we also
assume that the CNR values from time-slot to time-slot are uncorrelated.
This means that one user will very seldom experience two adjacent time-
slots with the same CNR values, and consequently, the opportunistic dis-
tribution of time-slots between the users appear to be more fair. This will
influence our analytical results to some extent since it is easier to fulfill the
throughput guarantees within a given time-window when such a channel
model is assumed.

Another important assumption is that the users always have data to
send or transmit. For real-time applications this is often a realistic assump-
tion because the packet flow from the applications is relatively constant in
this case.

3 How to Quantify the Throughput Guarantees

A soft throughput guarantee can be expressed as the probability of not ful-
filling a given throughput guarantee, i.e., the throughput guarantee violation
probability, TGVP. Defining the desired throughput guarantee as guaran-
teeing a throughput of B [bits] over a time-window TW [seconds] for all N
users with probability at least 1− ε, we can analytically define the problem
as attempting to constrain the TGVP to be less than or equal to ε [8]:

Pr(bi < B) ≤ ε, i = 1, 2, · · ·, N, (E.1)

i.e., the probability of the number of bits bi being transmitted to or from
user i within a time-window TW being below B, should be less than or
equal to ε.

3.1 Computing Throughput Guarantee Violation Probabilities

To be able to obtain an exact TGVP we would have to find a probability
mass function (PMF) for the sum of bits that a user can transmit in the
M time-slots he is allocated. From [9] and several other publications, we
conclude that finding an exact closed-form expression for the value of the
TGVP Pr(bi < B) is a complex problem that has not yet been solved, and
may very well not be solvable in closed form. We will therefore instead
look at how we can approximate the TGVP.

We now formulate a proposition that can be used as a tool to specify
an achievable soft throughput guarantee of B bits over a time-window TW
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constituting K time-slots. For users transmitting over a time-slotted block
fading channel, with bi,j bits being transmitted to or from user i in the jth
time-slot he is scheduled, and the probability that user i gets M = k out of
K time-slots denoted as pM(k|i), the following holds:

Proposition: The probability that the throughput constraint B is violated
over K time-slots for user i can be approximated as:

Pr(bi < B) ≈ pM(0|i) +
1
2

K

∑
k=1

pM(k|i) erfc

(
−

B/k − µb̄i,k√
2σb̄i,k

)
, (E.2)

where b̄i,k = 1
k ∑k

j=1 bi,j is the average number of bits being transmitted to
or from user i when he is allocated M = k time-slots, and µb̄i,k

and σ2
b̄i,k

is

the mean and variance of b̄i,k, respectively, and erfc(x) = 2√
π

∫ ∞
x e−t2 dt is

the complementary error function.

Proof: The allocation of different number of time-slots to a user constitute mu-
tually exclusive events. The TGVP for user i over K time-slots can therefore be
expressed as follows, using the law of total probability:

Pr(bi < B) = Pr(bi < B|0) · pM(0|i)
+ Pr(bi < B|1) · pM(1|i)
...
+ Pr(bi < B|K) · pM(K|i), (E.3)

where Pr(bi < B|k) denotes the TGVP when user i is assigned M = k time-slots
and pM(k|i) denotes the probability that user i gets M = k time-slots within the
interval of K time-slots.

To be able to discuss a total throughput guarantee B within K time-slots, we
first consider the number of bits transmitted to or from user i within the jth time-
slot he is scheduled, and denote this number by bi,j. For a system using constant
transmit power and capacity-achieving codes which operate at the Shannon ca-
pacity limit we will have bi,j = TTSW log2(1 + γi,j), where γi,j is the CNR in the
jth time-slot user i is scheduled.

We can now express the probability for violating the throughput guarantee B
when k out of K time-slots are scheduled to user i as:

Pr(bi < B|k) = Pr

(
k

∑
j=1

bi,j < B

)

= Pr
(

b̄i,k <
B
k

)
≈ 1

2
erfc

(
−

B/k − µb̄i,k√
2σb̄i,k

)
, (E.4)
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where erfc
(
− x−µ√

2σ

)
= Pr (X ≤ x) is the cumulative distribution function (CDF) of

a Gaussian distributed random variable X with mean µ and variance σ2. In the
expression in (E.4) we have µb̄i,k

= µbi,j and σ2
b̄i,k

= σ2
bi,j

/k where µbi,j and σ2
bi,j

are
the mean and variance of the number of bits transmitted to or from user i in the jth
time-slot he is scheduled. The approximation above has been obtained by using
the Central Limit Theorem (CLT) [10, p. 1231].

By inserting (E.4) into (E.3), we see that the expression for the total throughput
guarantee can be expressed as in (E.2).

4 Numerical Results

In this section we plot and compare the expressions for the approximate
TGVPs for four different scheduling algorithms. We also evaluate the ac-
curateness of these expressions. However, before evaluating the plots, we
choose to comment on the system parameters used in this section.

4.1 Realistic System Parameters for Cellular Networks

For the wireless standards 1xEVDO, HSDPA, and Mobile WiMAX, the
time-slot length for the downlink is respectively 1.67, 2, and 5 ms [1]. The
European IST research project WINNER I has suggested a time-slot dura-
tion of 0.34 ms for a future wireless system [11]. According to [12], the
maximum one-way delay over a wireless HSDPA link should lie between
80 and 150 ms for voice over IP (VoIP) conversations to achieve good speech
quality. If we assume that TW = 80 ms, K equals 235, 48, 40, and 16 time-
slots for WINNER I, 1xEVDO, HSDPA, and Mobile WiMAX, respectively.

The raw throughput needed for one-way, telephone-quality speech
varies from about 5 kbit/s up to 64 kbit/s [13]. The corresponding raw
throughput needed for one-way videoconferencing varies from 64 kbit/s
up to 500 kbit/s. In addition a minimum of 4 percent protocol overhead
has to be added. From these throughput demands and the value of TW , re-
alistic values for B can be calculated for each application session for a given
set of system parameters.

4.2 Comparison of the TGVP of Different Scheduling
Algorithms

Figs. E.1 and E.2 show the TGVP-performance of different scheduling al-
gorithms for 10 users requesting B bits within a time-window TW = 80 ms
for a system with the time-slot length of Mobile WiMAX and WINNER I,
respectively. We have plotted the TGVP performance for four algorithms,
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namely Round Robin Scheduling (RR), Maximum CNR Scheduling (MCS),
Normalized CNR Scheduling (NCS) and Normalized Opportunistic Round
Robin Scheduling (ORR). By using the expressions in Table E.1 and insert-
ing pM(k|i), µb̄i,k

= E[bi,j] and σ2
b̄i,k

= (E[b2
i,j] − (E[bi,j])2)/k into (E.2), we

obtain the TGVP approximations for these four scheduling algorithms. For
the RR policy, the time-slots are allocated to the users in a sequential man-
ner, i.e. totally non-opportunistically. The most opportunistic algorithm is
the MCS policy because it always schedules the user with the highest CNR,
and hence the highest rate. The NCS policy is a more fair policy because
it schedules the users with the highest CNR relative to their own average
CNR [14]. The ORR policy was introduced in [15] and is a combination of
the RR and MCS policies. For this algorithm, the time-slots are allocated in
rounds of N competitions where the users are guaranteed to be assigned
one time-slot in each round. For the first competition the best user is cho-
sen. This user is than taken out from the rest of the competitions in the
round, and for the second time-slot the best of the remaining users are cho-
sen. For each competition a new user is taken out and for the last time-slot
in a round the channel is assigned to the remaining user. If the users av-
erage CNRs are spread far apart, the ORR algorithm will have the same
spectral efficiency as conventional RR Scheduling. To have a more efficient
ORR algorithm for this scenario, we have modified this algorithm such that
the user with the highest normalized CNR is chosen in each competition.
We refer to this algorithm as the Normalized-ORR (N-ORR) algorithm.

Figs. E.1 and E.2 are plotted for a user with γi = 5, where the all the
users’ channels are Rayleigh distributed with constant average CNRs that
have a total average of 15 dB. The user with the worst channel has an av-
erage CNR of γi = 5 dB and the user with the best channel has γi = 17.79
dB. We have chosen to plot the TGVP for the user with the worst channel
because this user will have the lowest TGVP values of all the users in the
system. The most interesting parts the figures are where the TGVP is close
to zero, since for these low TGVP values it is a high probability that the
throughput guarantee is fulfilled. We can observe that for both the Mobile
WiMAX and the WINNER I systems, the N-ORR algorithm shows the best
TGVP-performance. This algorithm can support close to hard throughput
guarantees up to about 0.5 bits/sec/Hz for Mobile WiMAX, while the cor-
responding throughput guarantee limit for the WINNER I system is over
2 bits/sec/Hz. The reason why this value more than quadruples from
K = 16 time-slots to K = 235 time-slots is that the more time-slots we
have within the time-window, the higher is the likelihood that all the users
will be assigned some time-slots with good channel conditions. Hence, it
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FIGURE E.1: Approximated Throughput Guarantee Violation Probabil-
ity for a specific user i experiencing Rayleigh fading with γi = 5 dB.
There are 9 other users in the cell. Plotted for the Mobile WiMAX time-
slot length of 5 ms and a time-window of TW = 80 ms, corresponding to
K = 16 time-slots.

will be easier to obtain a low TGVP for large values of K.
Also the RR algorithm shows a relatively good TGVP-performance for

K = 16 time-slots. This is because this algorithm can promise that all the
user get at least one time-slot within a time-window of N time-slots. The
MCS algorithm is not very useful to guarantee any throughput for the user
with the worst channel. This is because the user with the highest CNR is
chosen at all times and there is therefore a low probability that the user
with γi = 5 dB is chosen.

In this paper we have assumed that only one user is scheduled in each
time-slot. Since both Mobile WiMAX and WINNER I are based on orthog-
onal frequency-division multiplexing (OFDM) with respectively 720 and
1664 sub-carriers for user data, it is possible to schedule more user within
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FIGURE E.2: Approximated Throughput Guarantee Violation Probabil-
ity for a specific user i experiencing Rayleigh fading with γi = 5 dB.
There are 9 other users in the cell. Plotted for the WINNER I time-slot
length of 0.34 ms and a time-window of TW = 80 ms, corresponding to
K = 235 time-slots.

the same time-slot for these systems, if we assume that channel estimates of
each sub-carrier are available at the base station [1, 11]. Consequently, the
corresponding TGVP performance for OFDM-based systems will be higher
than the results shown in this paper. How much the TGVP performance
will increase for a OFDM-based system model depends on the CNR corre-
lation between the sub-carriers. Our closed-form expressions can also be
used to obtain TGVP approximations for this system model by replacing K
with K · NSC and W with WSC, where NSC is the number of sub-carriers and
WSC is the bandwidth of each sub-carrier.
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4.3 On the Accuracy of the Approximate TGVP

Figs. E.3 and E.4 show the TGVP approximations for N-ORR together with
the corresponding Monte Carlo simulated TGVPs for respectively Mobile
WiMAX and WINNER I. The approximate results are based on the assump-
tion that the time-slots are uncorrelated, while the Monte Carlo simulations
are for users that have a correlated CNR from time-slot to time-slot. We
have used Jakes’ correlation model with carrier frequency of fc = 1 GHz
and a user speed of v = 30 m/s. The channel gain is modeled as a sum of
sinusoids with correlation coefficient fDTTS = v fc

c , where fD is the Doppler
frequency shift and c is the speed of light [16].
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FIGURE E.3: Approximated TGVP vs. Monte Carlo simulated TGVP
for a user with γi = 5. There are 9 other users in the cell and N-ORR
scheduling is used. Plotted for the Mobile WiMAX time-slot length of 5
ms and a time-window of TW = 80 ms, corresponding to K = 16 time-
slots. Each value in the simulated graph is an average over 1000 Monte
Carlo simulations.
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FIGURE E.4: Approximated TGVP vs. Monte Carlo simulated TGVP
for a user with γi = 5. There are 9 other users in the cell and N-ORR
scheduling is used. Plotted for the WINNER I time-slot length of 0.34 ms
and a time window of TW = 80 ms, corresponding to K = 235 time-slots.
Each value in the simulated graph is an average over 50 Monte Carlo
simulations.

The tightness of the approximation is both influenced by K and TTS.
Since the CLT is used to obtain the formula for the approximative TGVPs,
we therefore need to calculate the TGVP for a relatively large number of
time-slots K to obtain a tight approximation. However, if we have shorter
time-slots, we will also experience a higher correlation between the time-
slots. Since we have assumed uncorrelated time-slots to obtain our TGVP
approximation, we will therefore have a less tight approximation for short
time-slots. For both Mobile WiMAX (K = 16 time-slots) and WINNER
I (K = 235 time-slots) we see that our approximate results are too opti-
mistic for TGVPs close to zero. However, we see that the TGVP approxi-
mation close to TGVP= 0 is slightly better for WINNER I and we can there-
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fore conclude that the number of time-slots K within the time-window TW
will affect the tightness of TGVP-approximation more than the fact that the
shorter time-slots are more correlated.

For long values of TW , the value of K is higher and the correlation over
the time-window is smaller. We can therefore conclude that long time-
windows will lead to more tight TGVP approximations.

5 Conclusion

In this letter we have developed a general approximation for the TGVP
which can be obtained in a time-slotted wireless network with any schedul-
ing policy with (i) a given set of system parameters, (ii) known first two mo-
ments of the bits transmitted to or from the scheduled user in a time-slot,
and (iii) a given distribution of the number of time-slots allocated to a user
within a time-window. We have evaluated closed-form expressions for the
corresponding TGVP approximations for four well-known scheduling al-
gorithms, namely Round Robin, Maximum CNR Scheduling, Normalized
CNR Scheduling and Normalized Opportunistic Round Robin. Our TGVP
approximations were also compared to Monte Carlo simulations for users
with correlated channels. From our numerical investigations, it can be con-
cluded that correlated time-slots have a small effect on the tightness of the
approximations. It can also be concluded that the TGVP approximations
are tighter for relatively long time-windows TW .
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TABLE E.1: Closed-Form Expressions for pM(k|i), E[bi,j] and E[b2
i,j].

Derivations are found in Appendix 4.

pM(k|i) =


(k+1)N−K

N , k = , K
N -

K−(k−1)N
N , k = . K

N /
0, otherwise

RR E[bi,j] = WTTS
ln 2 e1/γi E1

(
1
γi

)
E[b2

i,j] = (WTTS)2

γi(ln 2)2 Ψ
(

1
γi

)
pM(k|i) =

(K
k
)

pk
i (1− pi)K−k, pi = 1

γi
∑τ∈TN

i
sign(τ) 1

1
γi

+|τ|

MCS E[bi,j] = WTTS
piγi ln 2 ∑τ∈TN

i
sign(τ) e

(
1
γi

+|τ|
)

1
γi

+|τ| E1

(
1
γi

+ |τ|
)

E[b2
i,j] = (WTTS)2

piγi(ln 2)2 ∑τ∈TN
i

sign(τ)Ψ
(

1
γi

+ |τ|
)

pM(k|i) =
(K

k
) 1

N
k(1− 1

N )K−k

NCS E[bi,j] = NWTTS
ln 2 ∑N−1

j=0
(N−1

j
) (−1)j

1+j e
1+j
γi E1

(
1+j
γi

)
E[b2

i,j] = N(WTTS)2
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(N−1
j
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(−1)jΨ

(
1+j
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N -
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N , k = . K

N /
0, otherwise

N-ORR E[bi,j] =
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WTTS
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Abstract

For cellular wireless networks carrying real-time traffic, it is in the interest of
both network operators and customers that throughput guarantees can be offered.
In this paper, we formulate an optimization problem which aims at maximizing
the throughput that can be guaranteed to the mobile users. By building on results
obtained by Borst and Whiting and by assuming that the distributions of the users’
carrier-to-noise ratios are known, we find the solution to this problem for users
with different channel quality distributions, both for the scenario where all the
users have the same throughput guarantee, and for the scenario where all the users
have different throughput guarantees. Based on these solutions, we propose an
adaptive scheduling algorithm that performs significantly better than other well-
known scheduling algorithms.
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1 Introduction

In modern wireless networks, opportunistic multiuser scheduling has been
implemented in order to obtain a more efficient utilization of the scarcely
available radio spectrum. For wireless cellular standards such as 1xEVDO,
HSDPA and Mobile WiMAX [1], the scheduling algorithms are often not
specified in the standardization documents. The scheduling algorithms im-
plemented might therefore vary from vendor to vendor. Selecting the most
efficient scheduling algorithms will be critical for having the most efficient
utilization of a wireless network; consequently, the vendors that implement
the most suited scheduling algorithms will have a competitive advantage.

Opportunistic multiuser scheduling will give higher throughput in a
wireless cell than non-opportunistic algorithms like Round Robin because
priority is given to the users with the most favorable channel conditions [2,
3]. However, always selecting the users with the best channel quality may
lead to starvation of other users. Consequently, the quality-of-service (QoS)
demands of the users also have to be taken into account when designing
practical wireless scheduling algorithms. A common approach to obtain
higher QoS in the network is to have a fairer resource allocation among the
users [4, 5]. One widely adopted fair scheduling policy is the Proportional
Fair Scheduling (PFS) algorithm [6]. When there are many users in a cell,
this algorithm ensures both that the users are scheduled close to their own
peak carrier-to-noise ratio (CNR) and that they have the same probability
of being scheduled in a randomly picked time-slot [7].

With real-time traffic transmitted over wireless networks, the need for
more exact QoS measures is in the interests of both network operators and
customers. The customers want to know what they have bought and the
operators would rather not give away more network capacity to the cus-
tomers than they have paid for. A QoS measure that is well suited to quan-
tify QoS guarantees exactly is a throughput guarantee, i.e., how many bits a
user is guaranteed to transmit or receive within a time-window. Through-
put guarantees can in principle be either hard or deterministic, and soft or
statistical. Hard throughput guarantees promise with unit probability that
a guarantee will be fulfilled, while the corresponding soft throughput guar-
antees promise with a lower than unity – but preferably high – probabil-
ity that the specified throughput guarantee will be fulfilled. For telecom-
munications networks in general, and for wireless networks in particular,
soft throughput guarantees are more suitable for specifying QoS than hard
throughput guarantees. This is because such networks often have a vary-
ing number of users and varying loads from the applications of these users.
For wireless networks, the varying quality of the radio channel will further
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add uncertainty to the size of the throughput that can be guaranteed during
short time-spans.

In [8] Andrews et al. propose scheduling algorithms that aim at ful-
filling throughput guarantees by giving different priorities to the users de-
pending on how far they are from their maximum and minimum through-
put guarantees. One of the problems with this algorithm is that it takes
action only when a throughput guarantee has been violated. Andrews et
al. have therefore shown in [8] how time parameters of their algorithm can
be set shorter than the actual time window of interest to alleviate this issue.
In this paper we propose an alternative scheduling algorithm that tries to
fulfill the throughput guarantees before they are violated.

Borst and Whiting have elegantly proved that a certain scheduling pol-
icy provides the highest throughput guarantee for wireless networks [9].
However, they briefly argue that the rate distributions of the users are un-
known and they have therefore not shown how this optimal scheduling
policy can be found for users with differently distributed CNRs. They have
also not designed algorithms that will give the lowest short-term throughput
guarantee violation probability (TGVP), which we define as the probability of
not fulfilling a throughput guarantee within a specified time-window, av-
eraged over all the users in the system. In the next section, we argue that
for many scenarios the CNR distributions of the users can in fact be esti-
mated, and that we hence can use these distributions to develop efficient
scheduling algorithms for providing short-term throughput guarantees.

Our proposed scheduling algorithms do not only aim at fulfilling the
throughput guarantees that are promised to the mobile users in a wireless
network (see Section 5), but our analysis can also be used to estimate the
expected TGVP of all the users if a new user is admitted into the system.
Such real-time TGVP estimates can be useful when performing admission
control.

It should be noted that our analysis involves several idealistic assump-
tions (see Section 2). For example, we assume that the CNR can be es-
timated perfectly and fed back with infinite precision and no delay, that
ideal adaptive modulation and coding can be performed, that the CNR
distributions of the users can be estimated perfectly, and that the popula-
tion of backlogged users is constant over the time-window the throughput
guarantees are calculated. How realistic these assumptions are for real-life
networks is a subject for further research.

Contributions. We formulate an optimization problem aimed at find-
ing an optimal scheduling algorithm that obtains maximum throughput
guarantees in a wireless network. By building on the results in [9] and by
assuming that the distributions of the users’ CNRs are known, we show
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how the solution to this optimization problem can be obtained numerically
both when the throughput guarantees are (i) the same and (ii) different for
all the mobile users. We also propose an adaptive algorithm that improves
the performance of the optimal algorithm for short time-windows.

Organization. The rest of this paper is organized as follows. In Sec-
tion 2 we present the system model, and in Section 3 we formulate the opti-
mization problem for obtaining the highest possible throughput guarantee
over a time-window. In Section 4 we show how the solution to this prob-
lem can be found when all the users have the same throughput guaran-
tees. The corresponding solution for heterogeneous throughput guarantees
is discussed in Section 5, while we describe the novel adaptive algorithm
in Section 6. In Section 7 we discuss some practical considerations before
presenting our numerical results in Section 8. We list our conclusions in
Section 9.

2 System Model

We consider a single base station that serves N backlogged users using
time-division multiplexing (TDM). The analysis conducted in this paper is
valid both for the uplink and the downlink; in either case we assume that
the total available bandwidth for the users is W [Hz] and that the users
have constant transmit power. Each user estimates his own CNR perfectly,
and before performing downlink scheduling the base station is assumed
to receive these measurements from all the users. The base station also
performs uplink scheduling based on perfect channel estimates, and for
each time-slot, the base station takes a scheduling decision and distributes
this decision to the selected user before uplink transmission starts.

It is assumed that the communication channel between the base station
and every one of the users can be modelled by a flat, block-fading chan-
nel subject to additive white Gaussian noise (AWGN); and moreover that
the communication channels corresponding to the different users fade in-
dependently. The block duration equals one time-slot and is denoted TTS
[seconds]. We also assume that the CNR values corresponding to different
time-slots are correlated. The correlation model used in our simulations
will be described in detail in Section 7.

The average CNR of user i is denoted by γi. Without loss of gener-
ality, we assume that the user indices are assigned in a manner which is
such that user 1 has the lowest average CNR, user 2 has the second lowest
average CNR, and so on, down to user N, which has the highest average
CNR. Assuming constant average CNR values for the time-window over
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which the throughput guarantees are calculated can be realistic for a real-
life wireless network. This is because the average CNR of the users’ CNR
distributions normally changes on a time-scale of several seconds while the
throughput-guarantees are often calculated over time-windows of less than
one hundred milliseconds.

We also assume that the probability distributions of the CNRs of each
of the users are perfectly known (a known joint CNR distribution is not
required). In modern cellular standards like 1xEVDO, HSDPA and Mo-
bile WiMAX [1], much of the information needed for obtaining precise
probability distribution estimates is already available. To conduct adaptive
coding and modulation, modern cellular networks have precise, real-time
CNR estimates of the users. These channel quality estimates can therefore
be used to obtain estimates of the probability distributions of the CNRs
of each one of the users. Such probability distribution estimates can be
obtained from some hundred CNR estimates by using e.g. order statistic
filter banks [10]. To further improve the estimates of the probability dis-
tributions, we can adapt the estimation techniques to the types of terrain
the users operate in and to the speed of the users. For example, for a chan-
nel with many reflectors, with no line-of-sight (LOS) component, and with
a relatively high speed of the users, a Rayleigh channel model will give a
good estimate of the distribution of the channel gain. When we have a LOS
component, a Rice channel can be assumed.

Another important assumption is that the population of backlogged
users is constant and equal to N. According to [9] this assumption is realis-
tic since the separation of time-scales makes the population of backlogged
users nearly static, i.e., the population of backlogged users changes much
slower than the time-window over which the throughput guarantees are
calculated.

3 The Optimization Problem

The goal of this section is to formulate an optimization problem aimed
at obtaining the maximal throughput guarantee B [bits], which can be
achieved within a time-window of TW [seconds]. A similar optimiza-
tion problem has been formulated in [9]. Here, we assume that the same
throughput guarantee is promised to all the users, i.e.,

TiR̄i = B, (F.1)

for all i = 1, ..., N, where Ti [seconds] is the accumulated time allocated to
user i over the time-window and R̄i [bits/s] is the average rate for user i
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when he is transmitting or receiving. By virtue of the TDM assumption,
the sum of the Tis satisfies

N

∑
i=1

Ti = TW . (F.2)

Inserting (F.1) into (F.2), the following yields:

B =
TW

∑N
i=1

1
R̄i

. (F.3)

A slight modification of (F.1) also gives

p(i)TW R̄i = B, (F.4)

where p(i) is the access probability for user i within the duration of the
time-window TW . Setting (F.4) equal to (F.3), we obtain

p(i) =
1

R̄i ∑N
j=1

1
R̄j

, (F.5)

which links the access probability to the average rates. Assuming that Ti is
long enough and contains enough time-slots for the channel to reveal its er-
godic properties, and assuming that the Shannon capacity can be achieved,
the average rate R̄i for user i when he is transmitting or receiving, can be
written

R̄i = W
∫ ∞

0
log2(1 + γ)pγ∗(γ|i)dγ, (F.6)

where pγ∗(γ|i) is the probability density function (PDF) of the CNR of user
i when this user is scheduled.

From the equations above, our objective is to find a scheduling policy
that gives the maximum B that can be promised to all the users over the
time-window TW , meaning that (F.3) has to be maximized subject to the
constraints (F.6), for i = 1, . . . , N. We show in the next section how to
obtain this optimal scheduling policy.

4 Solution to the Optimization Problem

It was shown in [9] that the following scheduling algorithm gives the solu-
tion to the optimization problem described in the previous section:

i∗(tk) = argmax
1≤i≤N

(
ri(tk)

αi

)
, (F.7)
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where i∗(tk) is the index of the user that is going to be scheduled in time-
slot k, ri(tk) is the instantaneous rate of user i in time-slot k, and αi is a
constant. However, in [9] it is not shown how the optimal αis can be found.
If we assume that the PDFs of the users’ channel gains are known and that
we have an ideal link adaptation protocol and block-fading, we can use
this result to obtain a solution to the optimization problem in the previous
section. To obtain this solution, we define the random variable Si ! Ri

αi
,

where Ri is the random variable describing the rate of user i. Si is the
scheduling metric of the algorithm, i.e. the metric that decides which user is
going to be scheduled. For flat, block-fading channels, the maximal value
of the metric Si for user i within a time-slot (block) with CNR γ can be
expressed as

Si(γ) =
W log2(1 + γ)

αi
. (F.8)

In real-life systems we can come close to this maximum value of Si by using
efficient link adaptation and capacity-achieving codes. Assuming that the
users have Rayleigh faded channel gains, and denoting by pγi(γ) the PDF
of the CNR of user i, the PDF for the normalized rate Si = s for user i can
be written

pSi(s) =
pγi(γ)
dSi(γ)

dγ

∣∣∣∣∣∣
γ=2

s·αi
W −1

=
αi ln(2)

Wγi
2

s·αi
W e−

2
s·αi
W −1
γi , (F.9)

where γi is the average CNR of user i. The corresponding cumulative dis-
tribution function (CDF) can be expressed as

PSi(s) =
∫ s

0
pSi(x)dx = 1− e−

2
s·αi
W −1
γi . (F.10)

Note that in principle we could have used different CNR distributions (e.g.
Rayleigh, Rice, Nakagami) for the different users. However, in this paper,
we have for simplicity reasons assumed that all the users have Rayleigh
distributed channel gains.

We can now express the access probability of user i as

p(i) =
∫ ∞

0
pSi(s)

N

∏
j=1
j (=i

PSj(s) ds. (F.11)
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Furthermore, the PDF of Si when user i is scheduled can be found by using
Bayes’ rule:

pSi(s|i) =
pSi(s)
p(i)

N

∏
j=1
j (=i

PSj(s). (F.12)

We can also express the expected value of Si conditioned on user i being
scheduled, as

E[Si|i] =
E[Ri|i]

αi
=

R̄i
αi

=
∫ ∞

0
s pSi(s|i) ds. (F.13)

Combining (F.5), (F.11), and (F.13) we obtain 3N equations in 3N un-
knowns, and can thus find the values for the p(i)s, the R̄is, and the αis.
However, since it is possible to express the p(i)s and the R̄is as functions
of the αis, and since multiplying all the αis with an arbitrary constant does
not change the behavior of the algorithm, we can set e.g. α1 = 1, finding a
solution to our optimization problem boils down to solving a set of N − 1
independent equations in N − 1 unknowns. A solution can be found by
using numerical integration together with an algorithm for solving sets of
nonlinear equations. This can for example be achieved in Matlab by using
the functions quad and fsolve. It should be noted that it has not been proved
that the solution to this set of equations is unique.

TABLE F.1: Example of parameters for 10 Rayleigh-distributed users.

i γi γi p(i) R̄i αi
[dB] [bit/s]

1 5.0000 3.1623 0.180356 3.146640 2.751868
2 9.7712 9.4868 0.120250 4.719458 4.510686
3 11.9897 15.8114 0.104241 5.444237 5.354891
4 13.4510 22.1359 0.095904 5.917567 5.916338
5 14.5424 28.4605 0.090533 6.268622 6.337987
6 15.4139 34.7851 0.086660 6.548775 6.675953
7 16.1394 41.1096 0.083694 6.780829 6.958115
8 16.7609 47.4342 0.081318 6.978923 7.200381
9 17.3045 53.7587 0.079353 7.151803 7.412701
10 17.7875 60.0833 0.077691 7.304769 7.601701

In Table I we give an example of the parameters of 10 users with a total
average CNR of 15 dB (averaged over all the users). From (F.4), we can see
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that Bopt/(WTW) = p(i)R̄i/W for the optimized values of p(i) and R̄i. It is
easily seen by using the values in Table I to calculate the product p(i)R̄i for
1 ≤ i ≤ 10 that Bopt/(WTW) = 0.5675 bits/s/Hz for all the users for this
particular example.

Since this scheduling algorithm maximizes B, we would expect that
this algorithm will yield higher values of B than any of the other classical
scheduling algorithms. However, one should remember that it is implic-
itly assumed in (F.1) that the average rate of the users equals their expected
throughput. This will only be true when the time-window TW can be con-
sidered infinitely long and contains infinitely many time-slots. The solu-
tion is consequently suboptimal for short time-windows containing only a
small amount of time-slots. In Section 6 we therefore propose an adaptive
algorithm that shows good performance for short TWs with few time-slots.

5 Optimization for Heterogeneous Throughput
Guarantees

When the throughput guarantees are different from user to user, we can
again use the scheduling policy corresponding to (F.7), but with a different
set of αis to obtain the optimal bit allocation. By using Bi [bits] to denote
the throughput guarantee for user i during the time-window TW and by
rewriting (F.13), we obtain

Bi
TW

= R̄i p(i) = αi

∫ ∞

0
s pSi(s)

N

∏
j=1
j (=i

PSj(s) ds. (F.14)

We can now fix the throughput guarantees Bi of up to N − 1 users and
maximize the remaining throughput guarantees by solving the set of 3N
equations resulting from (F.5), (F.11), and (F.14). To be able to solve this op-
timization problem, we can for example additionally constrain the users
with non-fixed Bis to have equal throughput guarantees. It is also im-
portant to note that setting fixed throughput guarantees that are too high
will yield an optimisation problem with no solution – meaning that such
throughput guarantees are not achievable by the system. One hence should
only set fixed throughput guarantees that are achievable by the system.
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6 Adapting Weights to Increase Short-Term
Performance

The values of αi found in the previous sections aim at providing throughput
guarantees within any time-window TW . This means that these parameters
are optimized in a manner which is such that the throughput guarantees
should be fulfilled independently of the time instants at which TW starts or
ends. In this section we instead develop an algorithm that will only aim
at fulfilling the throughput guarantees for a scenario where the placement
of the window TW is fixed. That is, for every new time-window, the algo-
rithm starts over again and tries to achieve the throughput guarantees. This
means that the throughput guarantees cannot be promised within time-
windows with a different duration or a different placement than that used
by the algorithm. The consequence of this approach is that we may have
to adjust the time-window TW to the bit-streams from different speech and
video codecs.

As already mentioned, the scheduling algorithms obtained in the pre-
vious sections are only efficient when the throughput guarantees are
promised over a long time-window TW containing many time-slots. To ful-
fill throughput guarantees for shorter time-windows with fewer time-slots,
it is useful to adapt the values of the parameters αi to the actual resource allocation
that has already been done within the finite time-window TW . This adaptation
can be optimally done during each time slot by using the approach of the
previous section with Bi/TW replaced by B′i/T′

W = (Bi − Bik)/(TW − Tk) in
(F.14), where Bik is the number of bits assigned to user i after k time-slots
within the time-window TW , and Tk = kTTS. The adaptation of the param-
eters αi should in many cases be performed in time intervals of less than
a millisecond. Since it can be difficult to conduct the optimal optimiza-
tion described above in such a short time, we propose the following simple
adaptive scheduling algorithm as an alternative:

i∗(tk) = argmax
1≤i≤N

(
ρi(tk−1)

ri(tk)
αi

)
, (F.15)

where ρi(tk) is the ratio

ρi(tk) =
max(0, Bi − Bik)

TW − Tk

TW
Bi

. (F.16)

The rationale behind this scheduling algorithm is as follows: The value of
ρi(tk) expresses the normalized share of the throughput guarantee that is to
be fulfilled in the remaining K − k time-slots of the time-window TW . If the
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rate guarantee is already fulfilled, the value of ρi(tk) is zero, which means
that the user in question is not selected in the remaining K − k time-slots.
If a user has been allocated exactly BiTk

TW
bits after k time-slots, the value

of ρi(tk) will be unity, which means that this user will be scheduled with
the same weights as for the non-adaptive policy. For the case where the
number of allocated bits after k time slots is lower than BiTk

TW
bits, the value of

ρi(tk) will be above unity, which means that the user is given higher priority
compared to the non-adaptive optimal scheduling policy. Likewise, a user
is given lower priority if he has been allocated more than BiTk

TW
bits after

k time-slots. The priority is determined by the urgency of fulfilling the
throughput guarantee within the remainder of the time-window.

7 Practical Considerations

7.1 Real-Life Values of TTS and TW

For the wireless standards 1xEVDO, HSDPA and Mobile WiMAX, the time-
slot length for the downlink is respectively 1.67, 2, and 5 ms [1]. The Euro-
pean IST research project WINNER I has suggested a time-slot duration of
0.34 ms for a future wireless system [11]. According to [12], the maximum
one-way delay over a wireless HSDPA link should lie between 80 and 150
ms for voice over IP (VoIP) conversations to achieve good speech quality. If
we assume that TW = 80 ms, TW contains 235, 48, 40, and 16 time-slots for
WINNER I, 1xEVDO, HSDPA and Mobile WiMAX, respectively.

7.2 Real-Life Values of the Bis

Different classes of traffic will need different values for Bi. For a one-way
telephony speech connection, Bi/TW can vary between 5 and 64 kbit/s [13].
The corresponding Bi/TW for a videoconferencing connection will vary
between 64 and 500 kbit/s. It should be remembered that these are raw
throughput guarantees and that protocol overhead of typically 4 percent
has to be added. For a real-life network we can assume that the Bis corre-
spond to the sum of all the throughput guarantees promised to the differ-
ent real-time sessions of a user. Hence, for each new videoconferencing or
speech connection, the network has to update the Bis and do the optimiza-
tion of the scheduling algorithm over again.
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7.3 What if the CNR Distributions of the Users Change?

The optimal algorithm is based on the assumption that the CNR distribu-
tions of the users are known. If the average CNR of one or more users
change or the CNR distribution of one or more users change, e.g., from
Rayleigh to Rice, the whole optimization problem has to be solved again to
obtain new values for the αis, which is a feasible task. It should be noted
that the adaptive factor ρi(tk) is independent of the CNR distributions.

7.4 The Effects of Correlated Time-Slots

When the CNR of a user is assumed to be correlated from time-slot to time-
slot, one user can be allocated many consecutive time-slots. It is therefore
more difficult to fulfill throughput guarantees for all the users in a system
that has strongly temporally correlated channels. The temporal correlation
of the channel is both dependent on the speed v of the users and on the
carrier frequency fc of the channel. For the simulations in the next section
we assume Jakes’ correlation model with fc = 1 GHz and a user speed of
30 m/s. The channel gain can in this case be modeled as a sum of sinusoids
correlated according to fDTTS, where fD = v fc

c is the Doppler frequency
shift and c is the speed of light [14].

8 Numerical Results

Figs. F.1, F.2, and F.3 show the theoretical TGVP performance in networks
that are respectively based on WINNER I, HSDPA, and Mobile WiMAX.
For these plots we have assumed that only one user can be scheduled in a
time-slot. We focus on the TGVP (see Section 1) because a throughput guar-
antee in most cases cannot be given with absolute certainty. The guaranteed
number of bits B within the time-window TW should however be promised
to the users with high probability. This means that the TGVP performance
of the algorithms close to TGVP= 0 is the most interesting. We have consid-
ered the case where all the users are promised identical throughput guar-
antees B/TW , where TW = 80 ms. Unfortunately, we have not included
plots displaying the TGVP for a network where the users have heteroge-
neous throughput guarantees. Analyzing the TGVP for such a scenario for
all the users in the network would require many plots and is therefore left
out due to space limitations. The results are shown for 10 users having
Rayleigh fading channels with average CNRs given in Table I, and with
the correlation between the different time-slot CNRs being described by

179



F. SCHEDULING ALGORITHMS FOR INCREASED THROUGHPUT GUARANTEES IN
WIRELESS NETWORKS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TGVP for Mobile WiMAX

Throughput Guarantee, B/(WT
W

) [bits/s/Hz]

T
G

V
P

Round Robin Scheduling
Max CNR Scheduling
Proportional Fair Scheduling
Normalized CNR Scheduling
Borst&Whiting Scheduling
Optimal Scheduling
Adaptive Optimal Scheduling

FIGURE F.1: Throughput guarantee violation probability for 10 users
in a Mobile WiMAX network. Plotted for a time-window TW = 80 ms
that contains 16 time-slots. Each value in the plot is an average over 1000
Monte Carlo simulations.

Jakes’ model (see Sec. VII D). It should be noted that this correlation will
be stronger for short time-slots than for long time-slots.

We compare the new scheduling policies to five other algorithms,
namely Round Robin Scheduling (RR), Maximum CNR Scheduling (MCS),
Normalized CNR Scheduling (NCS), Proportional Fair Scheduling (PFS)
and the adaptive scheduling algorithm proposed by Borst and Whiting
in [9]. For the RR policy, the time-slots are allocated to the users in a se-
quential manner, i.e. totally non-opportunistically. The most opportunistic
algorithm is the MCS policy because it always schedules the user with the
highest CNR, and hence the highest rate. The NCS policy is a fairer policy
because it schedules the users with the highest CNR-to-average-CNR ra-
tio. A similar policy, the PFS algorithm, schedules the user with the highest
instantaneous rate divided by a weighted sum of the rate allocated in the
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FIGURE F.2: Throughput guarantee violation probability for 10 users in
a HSDPA network. Plotted for a time-window TW = 80 ms that contains
40 time-slots. Each value in the plot is an average over 200 Monte Carlo
simulations.

previous time-slots [3]. For our simulations, we have implemented the PFS
algorithm as described in [3], with the time-constant tc = TW and with the
initial average rate for each user equal to the theoretical average rate for
this user. The adaptive Borst and Whiting algorithm is implemented as de-
scribed in [9, p. 575] with δ(k) = 0.5 ∗ 0.9k, where k denotes the kth “reset”.
The “price updates” of this algorithm are done every 10 ∗ nth time-slot,
where n denotes the nth “price update”. To investigate the performance of
the adaptive updating of the weights for this algorithm, we have used the
optimal weights as initial weights.

Figs. F.1, F.2, and F.3 show the TGVP as a function of B/(WTW) for a
time-window of respectively 16, 40, and 235 time-slots. We see that our
novel adaptive algorithm performs better than all the other algorithms for
all cases. It should also be noted that since the WINNER I system has many
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FIGURE F.3: Throughput guarantee violation probability for 10 users in
a WINNER I network. Plotted for a time-window TW = 80 ms that con-
tains 235 time-slots. Each value in the plot is an average over 50 Monte
Carlo simulations.

time-slots within the time-window of 80 ms, our adaptive algorithm ob-
tains a throughput guarantee that is very close to the optimal throughput
guarantee of 0.5675 bits/s/Hz for this system. It is also interesting to ob-
serve that the throughput guarantee that can be promised with close to
unity probability with our adaptive algorithm is more than twice as large as
for the PFS algorithm for all the three systems. Our non-adaptive optimal
algorithm only performs better than all the other well-known algorithms
for the case where the time-window contains 235 time-slots (WINNER I).
The reason for this is that the non-adaptive algorithm is designed for long
time-windows containing many time-slots.
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9 Conclusion

For wireless networks carrying real-time traffic, providing throughput
guarantees is interesting both from the customers’ and the network
providers’ point of view. In order to have the most efficient utilization of
the network, a scheduler in such a network should try to distribute the
amount of bits that can be received or transmitted by each user according
to given throughput guarantees. In this paper, we formulate an optimiza-
tion problem which aims at finding the maximum number of bits that can
be guaranteed to the users within a time-window for a given set of sys-
tem parameters. By building on the results in [9] and by assuming that the
distributions of the users’ CNRs are known, we find an optimal schedul-
ing algorithm, both for the case where the throughput guarantees are dif-
ferent from user to user and for the case where the users have the same
throughput guarantees. To further improve the short-term performance of
this algorithm, we propose an adaptive version of the optimal algorithm.
Results from our simulations show that the proposed adaptive algorithm
performs significantly better than any of the other well-known scheduling
algorithms in networks based on Mobile WiMAX, HSDPA, and WINNER
I. For systems that have many time-slots within the time-window, e.g. for
WINNER I, our adaptive algorithm approaches the limit of what is theoreti-
cally attainable. The disadvantage is however that our adaptive scheduling
algorithm can only obtain the simulated TGVP values when the placement
of the time-window TW is fixed.
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Appendix 1

Derivation of the Last Term in
(C.7)

For the Ranked Single-User Feedback protocol, we sequentially investigate
if the users are within the successful interval based on their rank. We de-
note the number of users investigated before a user within the successful
interval is found as X. The probability of finding one of the n users within
the successful interval for the first user investigated is :

Pr(X = 0) =
n
N

. (1.1)

If the search is not successful for the first user, the user with the second
highest rank will have to be investigated. Now, we have already investi-
gated one user. Consequently, the probability of finding a user within the
successful interval is now given as:

Pr(X = 1) =
(

1− n
N

) n
N − 1

=
N − n

N
n

N − 1
. (1.2)

Correspondingly, the probability of finding a successful user for the third
user is:

Pr(X = 2) =
(

1− n
N

) (
1− n

N − 1

)
n

N − 2
=

N − n
N

N − n− 1
N − 1

n
N − 2

.

(1.3)
Generalizing (1.1), (1.2) and (1.3), we obtain the expression for success for
the (k + 1)th user:

Pr(X = k) =
N − n

N
N − n− 1

N − 1
· · · N − n− k + 1

N − k + 1
n

N − k

=
n(N − n)!(N − k − 1)!

N!(N − n− k)!
. (1.4)
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1. DERIVATION OF THE LAST TERM IN (C.7)

The expected number of users investigated before success is now given as:

E[X] =
N−n

∑
k=0

k
n(N − n)!(N − k − 1)!

N!(N − n− k)!
. (1.5)

We know from Section 4 that the probability of having n users in interval l
is given by:

p(l, n) =
(

N
n

)
(Pγ(γth,l+1)− Pγ(γth,l))

n(Pγ(γth,l))
N−n. (1.6)

To obtain the time contribution from interval l, the expected number of
users that are investigated before a user within the successful interval is
found, are weighted by the probability of being in this interval:

N−n

∑
k=0

k
n(N − n)!(N − k − 1)!

N!(N − n− k)!

(
N
n

)
(Pγ(γth,l+1)− Pγ(γth,l))

n(Pγ(γth,l))
N−n

=
N−n

∑
k=0

k
(

N − k − 1
n− 1

)
(Pγ(γth,l+1)− Pγ(γth,l))

n(Pγ(γth,l))
N−n. (1.7)

Summing this expression over all values of n gives the same expression as
the last term in (C.7).
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Appendix 2

Derivation of (C.20)

The CDF of the CNR of the user with the highest CNR can be found from
order statistics [1]:

Pγ∗(γ) = PN
γ (γ), (2.1)

where Pγ(γ) is the of the CNR for a single user. To find the MASSE for
such a scenario, the PDF of the highest CNR between all the users has to
be found. This PDF can be obtained by differentiating (2.1) with respect to
γ [1, (5.85)]:

pγ∗(γ) = N · PN−1
γ (γ) · pγ(γ), (2.2)

where pγ(γ) is the PDF for a single user. Inserting the CDF and PDF for
Rayleigh fading channels (pγ(γ) = (1/γ)e−γ/γ) and using binomial ex-
pansion [2, (1.111)], we obtain:

pγ∗(γ) =
N
γ

N−1

∑
n=0

(
N − 1

n

)
(−1)ne−(1+n)γ/γ. (2.3)

Inserting (2.3) into the expression for the spectral efficiency ([Bit/Sec/Hz])
for optimal rate adaptation [3]:

MASSE =
∫ ∞

0
log2(1 + γ)pγ∗(γ) dγ, (2.4)

we get the following expression for the MASSE:

MASSEbest =
N

γ ln 2

N−1

∑
n=0

(
N − 1

n

)
(−1)n

∫ ∞

0
ln(1 + γ)e−(1+n)γ/γ dγ. (2.5)

The expression for MASSE has to be weighted by the factor (TTS −
El [TG])/TTS. This factor is dependent on l, and consequently the integral
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2. DERIVATION OF (C.20)

in the expression above has to be split into L parts before the weighting
operation can take place. This leads to the following expression:

MASSEbest =
N

ln 2

L−1

∑
l=0

TTS − El [TG]
TTS

N−1

∑
n=0

(
N − 1

n

)
(−1)n

×
∫ γth,l+1

γth,l

ln(1 + γ)e−(1+n)γ/γ dγ, (2.6)

To solve this integral we can use integration by parts:∫ γ=b

γ=a
udv = lim

γ→b
uv− lim

γ→a
uv−

∫ γ=b

γ=a
vdu, (2.7)

where both u and v are functions of γ. Setting u = ln(1 + γ) and v =
−γ
1+n e−(1+n)γ/γ, we can write the integral in (2.6) as:∫ γth,l+1

γth,l
ln(1 + γ)e−(1+n)γ/γ dγ

= γ
1+n

[
ln(1 + γth,l) · e−

(1+n)γth,l
γ − ln(1 + γth,l+1) · e−

(1+n)γth,l+1
γ

]
+ γ

1+n
∫ γth,l+1

γth,l

e−(1+n)γ/γ

γ dγ, (2.8)

using [2, (3.352.2)], to solve the integral in (2.8) and inserting the result in
(2.6), gives the expression in (C.20).
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Appendix 3

Derivation of Ψ(µ) in (D.28)

In this appendix we want to evaluate the integral Ψ(µ) =
∫ ∞

0 ln2(1 +
γ)e−µγdγ, where µ is a constant. Changing the variable from γ to x = γ + 1,
we obtain:

Ψ(µ) =
∫ ∞

0
ln2(1 + γ)e−µγdγ = eµ

∫ ∞

1
ln2(x)e−µxdx. (3.1)

The integral on the right-hand side of (3.1) can be solved by using [1,
(4.358.1)]:

e−µΨ(µ) =
∫ ∞

1
ln2(x)e−µxdx =

∂2

∂ν2 µ−ν Γ(ν, µ)|ν=1

= ln2(µ)
1
µ

Γ(1, µ)− 2 ln(µ)
1
µ

∂

∂ν
Γ(ν, µ)|ν=1 +

1
µ

∂2

∂ν2 Γ(ν, µ)|ν=1 ,

(3.2)

where Γ(ν, µ) is the incomplete gamma function. Inserting the first and second
derivatives of Γ(ν, µ) from [2] and setting ν = 1, we obtain:

e−µΨ(µ) =
1
µ

{
ln2(µ)Γ(1, µ)− 2 ln(µ)Γ(1)2µ 2F̃2(1, 1; 2, 2;−µ)

+ 2Γ(1, 0, µ) ln2(µ)− 2 ln(µ)Γ(1)ψ(1) + Γ(1, µ) ln2(µ)
+ Γ(1)(ψ2(1) + ψ′(1)− ln2(µ))
− 2µ 3F3(1, 1, 1; 2, 2, 2;−µ) + 2µ ln(µ) 2F2(1, 1; 2, 2;−µ)} ,

(3.3)

where Γ(x) is the gamma function [1, (8.310.1)], Γ(x, y, z) is the generalized in-
complete gamma function [3], ψ(x) = d

dx ln Γ(x) is the psi function [1, (8.360.1)],
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3. DERIVATION OF Ψ(µ) IN (D.28)

and pF̃q(a1, · · ·, ap; b1, · · ·, bq; ·) is the regularized generalized hypergeometric
function [4].

Inserting Γ(1) = Γ(2) = 1 [1, (8.338.1)], Γ(1, 0, µ) = Γ(1) − Γ(1, µ) [5],
ψ(1) = −C [1, (8.366.1)], ψ′(1) = π2

6 [1, (8.366.8)], and 2F̃2(1, 1; 2, 2;−µ) =
2F2(1, 1; 2, 2;−µ) [6] into (3.3) we obtain (D.28).
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Appendix 4

Derivations of Expressions in
Table E.1

In this appendix we derive the expressions in Table E.1.

1 Round Robin (RR) Scheduling

If it assumed that the order of the users within each round is arbitrary, the
number of allocated time-slots is independent of the user index i and we
obtain the following probability mass function (PMF) for M:

pM(k) =


(k+1)N−K

N , k = , K
N -

K−(k−1)N
N , k = . K

N /
0, otherwise

. (4.1)

It should be noted that after N time slots are allocated with the RR algo-
rithm all the users have been allocated one time-slot. Hence, pM(0) is zero
for K ≥ N.

The mean number of bits transmitted per time-slot in k time-slots equals
the expected number of bits transmitted in one time-slot [1, Eq. (34)]:

E[bi,j] = WTTS

∫ ∞

0
log2(1 + γ)pγi(γ)dγ =

WTTS
ln 2

e1/γi E1

(
1
γi

)
, (4.2)

where pγi(γ) is the probability density function (PDF) of the carrier-to-
noise ratio (CNR) of one user with average CNR γi and E1(x) =

∫ ∞
1 e−xtdt

is the exponential integral function.
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4. DERIVATIONS OF EXPRESSIONS IN TABLE E.1

The second moment of the number of bits bi,j transmitted to or from
user i in the jth time-slot he is scheduled, can be stated as:

E[b2
i,j] = (WTTS)2

∫ ∞

0
(log2(1 + γ))2 pγi(γ)dγ =

(WTTS)2

γi(ln 2)2 Ψ
(

1
γi

)
, (4.3)

where Ψ(µ) is given by

Ψ(µ) = eµ

{
1
µ

[
π2

6
+ (C + ln(µ))2

]
− 23F3(1, 1, 1; 2, 2, 2;−µ)

}
, (4.4)

with C = 0.57721566490 being Euler’s constant [2, (9.73)] and pFq(a1, · ·
·, ap; b1, · · ·, bq; ·) being the generalized hypergeometric function [3]. This ex-
pression has been found by using the derivation given in Appendix 3.

2 Max CNR Scheduling (MCS)

For MCS, where the user with the highest CNR is chosen in each time-
slot, the number of time-slots allocated to user i within K time-slots is dis-
tributed according to the binomial distribution [4, p. 1179]:

pM(k|i) =
(

K
k

)
pk

i (1− pi)K−k, (4.5)

where pi is the probability of selecting user i in a time-slot, and can be
expressed as [5, Eq. (12)]:

pi =
∫ ∞

0
pγi(γ)

N

∏
j=1
j (=i

Pγj(γ)dγ =
1
γi

∑
τ∈TN

i

sign(τ)
1

1
γi

+ |τ| , (4.6)

where Pγj(γ) is the CDF of the CNR of a single user with average CNR γj,
and TN

i denotes set containing the terms that arise from an expansion of
the product ∏N

j=1
j (=i

Pγj(γ) = ∏N
j=1
j (=i

(1− e−γ/γj) [6, Sec. III-D-2]. As an example

we now show this expansion for i = 1 and N = 4:

N

∏
j=1
j (=i

(1− e−γ/γj) = 1− exp
(
− γ

γ2

)
− exp

(
− γ

γ3

)
− exp

(
− γ

γ4

)

+ exp
(
− γ

γ2
− γ

γ3

)
+ exp

(
− γ

γ2
− γ

γ4

)
+ exp

(
− γ

γ3
− γ

γ4

)
− exp

(
− γ

γ2
− γ

γ3
− γ

γ4

)
. (4.7)
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MAX CNR SCHEDULING (MCS)

The absolute values of the elements in TN
i are found by taking the natu-

ral logarithm of the terms arising from this expansion and multiplying the
results with −1. For i = 1 and N = 4 the elements of T4

1 thus have the
following absolute values:{

0,
1

γ2
,

1
γ3

,
1

γ4
,
(

1
γ2

+
1

γ3

)
,
(

1
γ2

+
1

γ4

)
,
(

1
γ3

+
1

γ4

)
,
(

1
γ2

+
1

γ3
+

1
γ4

)}
.

(4.8)
The signs of the elements in T4

1 are the signs in the expanded product in
(4.7):

sign(T4
1 ) = {+1,−1,−1,−1, +1, +1, +1,−1}. (4.9)

We now find the PDF of the CNR, conditioned on user i being sched-
uled. This distribution can be found by evaluating the following probabil-
ity:

Pr(γi = γ|γj <γi, ∀j (= i) =
Pr(γi = γ and γj <γi, ∀j (= i)

Pr(γj <γi, ∀j (= i)

=

Pr(γi = γ)
N

∏
j=1
j (=i

Pr(γj < γ)

∫ ∞

0
pγi(γ)

N

∏
j=1
j (=i

Pγj(γ)dγ

=
pγi(γ)

pi

N

∏
j=1
j (=i

Pγj(γ). (4.10)

This probability equals the PDF of the CNR when user i is scheduled,
pγ∗i (γ). We can easily verify that when the users have the same average
CNRs, this PDF reduces to the conventional PDF for MCS found in [7]. We
can now use this PDF to obtain the mean value for bi,j for MCS, using a
similar derivation as for [5, Eq. (14)]:

E[bi,j] = WTTS

∫ ∞

0
log2(1 + γ)pγ∗i (γ)dγ

=
WTTS

piγi ln 2 ∑
τ∈TN

i

sign(τ)
e
(

1
γi

+|τ|
)

1
γi

+ |τ| E1

(
1
γi

+ |τ|
)

.

(4.11)
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4. DERIVATIONS OF EXPRESSIONS IN TABLE E.1

Similarly, we can obtain the second moment of the number of bits bi,j trans-
mitted to or from user i in the jth time-slot he is scheduled, by using the
derivation in Appendix 3:

E[b2
i,j] = (WTTS)2

∫ ∞

0
(log2(1 + γ))2 pγ∗i (γ)dγ

=
(WTTS)2

γi pi(ln 2)2 ∑
τ∈TN

i

sign(τ)Ψ
(

1
γi

+ |τ|
)

. (4.12)

3 Normalized CNR Scheduling (NCS)

Because all the users in our system model will have the same distribution
for their relative CNRs [5], and because the relatively best users are sched-
uled, the probability of scheduling a user in a time-slot is the same for
all the users. Consequently, the number of time-slots allocated to a user
within K time-slots is also distributed according to the binomial distribution
expressed in (4.5), with pi = 1

N [8]. Because this distribution is the same for
all the users, we may set pM(k|i) = pM(k).

For the NCS policy, each user will experience a MUD gain as if all the
other users were i.i.d. with the same average CNR as this user [9]. The CNR
of user i in the time-slots he is scheduled can therefore be expressed with
the following CDF [7]:

Pγ∗i (γ) = PN
γi

(γ). (4.13)

Differentiating this expression with respect to γ, we obtain the following
PDF for the NCS algorithm:

pγ∗i (γ) = NPN−1
γi

(γ)pγi(γ). (4.14)

We can now use this PDF to obtain the mean value for bi,k for NCS,
using a similar derivation as for [1, Eq. (44)]:

E[bi,j] = WTTS

∫ ∞

0
log2(1 + γ)pγ∗i (γ)dγ

=
NWTTS

ln 2

N−1

∑
j=0

(
N − 1

j

)
(−1)j

1 + j
e

1+j
γi E1

(
1 + j

γi

)
.

(4.15)

Similarly, we can obtain the second moment of the number of bits bi,j trans-
mitted to or from user i in the jth time-slot he is scheduled by using the
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derivation in Appendix 3:

E[b2
i,j] = (WTTS)2

∫ ∞

0
(log2(1 + γ))2 pγ∗i (γ)dγ

=
N(WTTS)2

γi(ln 2)2

N−1

∑
j=0

(
N − 1

j

)
(−1)jΨ

(
1 + j

γi

)
. (4.16)

4 Normalized Opportunistic Round Robin (N-ORR)
Scheduling

For the N-ORR we schedule the user with the highest ratio χi(t) = γi(t)
γi

in
each competition. As for the NCS algorithm, it can be shown that χi(t) is
i.i.d. with unit average for all the users [5], and thus, all the participants in a
competition have the same probability of winning. Consequently, the PMF
for the number of time-slots M being allocated to a user is independent of
i and can be expressed as in (4.1). The users that get k = , K

N - time-slots
are only involved in whole rounds of competitions. This means that these
users will not participate in the last round of competitions that is finished
before all the users are allocated one time-slot each. In this case, user i will
experience a CDF of the CNR when he is scheduled that equals the average
CDF over one round:

Pγ∗i

(
γ|k =

⌊
K
N

⌋)
=

1
N

N

∑
n=1

Pn
γi

(γ), (4.17)

However, the CDF of the CNR for a user getting k = . K
N / out of K time-

slots, when K is not a multiple of N, can be expressed as the average over
all the rounds, since such a user will also participate in the last unfinished
round:

Pγ∗i

(
γ|k =

⌈
K
N

⌉)
=

(k − 1) ∑N
n=1 Pn

γi
(γ)

kN
+

∑N
n=kN−K+1 Pn

γi
(γ)

k(K − (k − 1)N)
. (4.18)

Differentiating these CDFs with regard to γ, we obtain the correspond-
ing PDFs:

pγ∗i

(
γ|k =

⌊
K
N

⌋)
=

1
N

N

∑
n=1

nPn−1
γi

(γ)pγi(γ), (4.19)
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and

pγ∗i

(
γ|k=

⌈
K
N

⌉)
=

(k − 1) ∑N
n=1 nPn−1

γi
(γ)pγi(γ)

kN

+
∑N

n=kN−K+1 nPn−1
γi

(γ)pγi(γ)
k(K − (k − 1)N)

. (4.20)

We can now express the first moment of bi,j as:

E[bi,j] = WTTS

∫ ∞

0
log2(1 + γ)pγ∗i (γ|k)pM(k)dγ. (4.21)

For k = , K
N - we have

E[bi,j] =
WTTS

N

N

∑
n=1

Ai(n), (4.22)

while for k = . K
N / we have

E[bi,j] = WTTS

(
(k − 1) ∑N

n=1 Ai(n)
kN

+
∑N

n=kN−K+1 Ai(n)
k(K − (k − 1)N)

)
, (4.23)

where Ai(n) is given by [9, Eq. (20)]:

Ai(n) =
n

ln 2

n−1

∑
j=0

(
n− 1

j

)
(−1)j

1 + j
e

1+j
γi E1

(
1 + j

γi

)
. (4.24)

Similarly, we can express the second moment of the number of bits bi,j
transmitted to or from user i in the jth time-slot he is scheduled, as:

E[b2
i,j] = (WTTS)2

∫ ∞

0
(log2(1 + γ))2 pγ∗i (γ|k)pM(k)dγ. (4.25)

For k = , K
N - we have:

E[b2
i,j] =

WTTS
N

N

∑
n=1

Bi(n), (4.26)

while

E[b2
i,j] = WTTS

(
(k − 1) ∑N

n=1 Bi(n)
kN

+
∑N

n=kN−K+1 Bi(n)
k(K − (k − 1)N)

)
, (4.27)

for k = . K
N /, where Bi(n) is found from using the derivation in Appendix 3:

Bi(n) =
n

γi(ln 2)2

n−1

∑
j=0

(
n− 1

j

)
(−1)jΨ

(
1 + j

γi

)
. (4.28)
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