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“Keep your heart with all diligence,
For out of it spring the issues of life.”

(Proverbs 4, 23)



Abstract

Signal compression is an important problem encountered in many applications.
Various technigues have been proposed over the years for addressing the prob-
lem. The focus of this dissertation is on signal representation and compression
by the use of optimization theory, more specific shortest path methods.

Several new signal compression algorithms are presented. They are based
on the coding of line segments which are used to approximate, and thereby
represent, the signal. These segments are fit in a way that is optimal given
some constraints on the solution. By formulating the compression problem
as a graph theory problem, shortest path methods can be applied in order to
yield optimal compression with respect to the given constraints.

The approaches focused on in this dissertation mainly have their origin in ECG
compression and is often referred to as time domain compression methods.
Coding by time domain methods is based on the idea of extracting a subset
of significant signal samples to represent the signal. The key to a successful
algorithm is a good rule for determining the most significant samples. Between
any two succeeding samples in the extracted sample set, different functions are
applied in reconstruction of the signal. These functions are fitted in a way that
guarantees minimal reconstruction error under the given constraints. Two
main categories of compression schemes are developed:

1. Interpolating methods, in which it is insisted on equality between the
original and reconstructed signal at the points of extraction.

2. Non-interpolating methods, where the interpolation restriction is re-
leased.

Both first and second order polynomials are used in reconstruction of the
signal. There is also developed an approach were multiple error measures are
applied within one compression algorithm.
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The approach of extracting the most significant samples are further developed
by measuring the samples in terms of the number of bits needed to encode
such samples. This way we develop an approach which is optimal in the rate-
distortion sense.

Although the approaches developed are applicable to any type of signal, the
focus of this dissertation is on the compression of electrocardiogram (ECG)
signals and image contours. ECG signal compression has traditionally been
tackled by heuristic approaches. However, it is demonstrated in this disserta-
tion that optimization algorithms outperform these heuristic approaches by a
wide margin with respect to reconstruction error in terms of sum of squared
errors. We also develop an approach for compression of image contours, which
is an important problem in for instance the MPEG-4 standard.

Using a varied signal test set, extensive coding experiments are presented.
Results from our coding methods are compared to traditional time domain
ECG compression methods, as well as, to more recently developed frequency
domain methods. Evaluation is based on the percentage root mean square
difference (PRD) performance measure, the maximum error, execution time
and visual inspection of the reconstructed signals. The results demonstrate
that the optimization methods have superior performance compared to both
traditional ECG compression methods and frequency domain methods, like
the ECG optimized filter bank presented in Section 2.3.1.
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Chapter 1

Introduction

The term signal often refers to a continuous time and amplitude signal. We are
concerned with digital signals, which means the signal is obtained by sampling
and quantization of a continuous signal. We shall use the word signal when
speaking about digital signals throughout this dissertation. Thus a signal will
be a sequence whose value at any time is a discrete! value. It can also refer
to an image, or part of an image, where the amplitude is a function of two
spatial coordinates instead of one spatial coordinate and one time variable. In
cases where we refer to a sequence of numbers, or vectors (as is often the case
with images), the word data is often used as a synonym for signal.

A pet child gets many names and this is also the case with the term com-
pression in the literature. It is referred to as source coding, data compres-
sion, bandwidth compression, and signal compression. These terms may have
slightly different meaning, depending on the context. In this context we will
use the term signal compression and by that we understand a process intended
to provide efficient representation of the signal while preserving the essential
information contained in it [32].

When talking about a compression technique or a compression algorithm we
are actually referring to two algorithms: The compression algorithm taking
as input the signal ) and generating the compressed output Ve, and the
reconstruction algorithm operating on the compressed representation Ye to
generate the reconstruction ). This is shown schematically in Figure 1.1. We
follow the convention of referring to both the compression and reconstruction
part of the system together as the compression algorithm.

!Taking on a finite or countable infinite number of values.
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Figure 1.1: Compression and reconstruction.

Compression algorithms can be classified as either lossless, which involve no
loss of information, or lossy where the signal generally cannot be recovered
or reconstructed exactly. The algorithms we focus on can belong to either of
the two categories, depending on the adjustment of some input parameters.
However, to obtain a significant degree of compression, our algorithms will
belong to the latter category for most applications, and are often referred to
as near-lossless compression algorithms. This means that a small amount of
distortion can be tolerated. Exactly what is a “small amount” of distortion
depends on the particular application and will be discussed in more detail in
later chapters.

Many signal processing applications benefit from compression technology, such
as image-, video- and audio processing. The current set of compression algo-
rithms? have proved successful for a wide range of well specified tasks. How-
ever, because signal compression comprises such a wide variety of techniques
and applications, many promising avenues for further development are awvail-
able. The methods we focus on are based on optimization theory. Webster’s
Dictionary [73] {5 Feb. 2000) defines the word optimization as “an act, pro-
cess or methodology of making something (as a design, system or decision) as
fully perfect, functional, or effective as possible; specifically: the mathematical
procedures involved in this”. Applied to our case this means that we define the
compression problem in strict mathematical terms. Given some constraints,
we aim to find the best possible solution to the problem. This is accomplished
by formulating the problem in terms of graph theory. The problem of finding

2The word algorithm originates from the name of an early ninth century Arab mathe-
matician, Al-Khwarizmi. He wrote a treatise entitled The Compendious Book on Celculation
by al-jobr and al-mugebele in which he develops a system for the solutions of various linear
and quadratic equations via ruiles or an “algorithm”. The name was changed to algoritni in
Latin and from this we get the word algorithm.
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the shortest path (path of minimum length) from source node s to terminal
node f in the graph is called a shortest path problem. By formulating the
problem this way, shortest path algorithms may be applied in solving it. The
solution will thus be based on a firm mathematical foundation and will be the
best solution possible under the given constraints.

Coding is the conversion of signal representation from one form to another
for some purpose. We use the term coding when referring to the process of
converting information from a higher level of representation to the lowest level,
i.e., representing it in terms of bits. We generally compress the signal in two
steps; First, we approzimate the signal by extracting information from it. The
extracted information is a representation of the original signal. We then apply
a coding strategy to convert the signal to a bit representation. The encoder
is the device executing this conversion. Generally we have two distinct coding
processes in a digital communication system: Source coding, where we attempt
to remove redundancy in the signal and represent it in a way as compact as
possible, and channel coding, where the compressed bit stream is translated
into a signal suitable for either storage or transmission. When talking about
coding or encoders in this dissertation, we are referring to the part of the
system associated with the source coding. Generally the term coding of the
signal refers to the whole process, both approximation and encoding and the
term coder includes the whole compression system, both the approximation
and encoding part.

This dissertation is focused around the terms signal representation and com-
pression and shortest path methods. This introductory chapter is organized
in the following way: In Section 1.1 the different application areas of compres-
sion algorithms based on optimization theory are discussed. This is meant as
a motivation for the work and is accompanied by the scope and major contri-
butions of this work in Section 1.2. In Section 1.3 we present an outline of the
dissertation.

1.1  Applications of compression schemes based on
optimization theory

The compression techniques developed in this dissertation are in general appli-
cable to any kind of digital signal. However, the methods might be computa-
tionally expensive, and for this reason they are best suited for one-dimensional
signals. We will in the following bring some examples of application areas for
the compression techniques we have developed.
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1.1.1 Compression of electrocardiograms

An ElectroCardioGram (ECG) is a graphic display of the electrical activity of a
heart. It provides essential information to the cardiologist and is used for both
monitoring and diagnostic purposes. A typical ECG monitoring device gen-
erates large amounts of digital data. The sampling rate typically varies from
125 to 500 Hz and each signal sample may have 8, 12 or 16 bit resolution. This
will lead to an accumulation of ECG signal ranging from 60 to 480 Kbits per
minute. In addition, there may be several streams of data obtained from dif-
ferent sengors placed on the patient’s body. These ECG signals may be stored
in a small portable device for later analysis, transmitted to the hospital for
on-line diagnosis or stored for long time usage in a case record. There is clearly
a need for compression for both storage and transmission of these signals and
for this reason many ECG compression techniques have been developed during
the last 30 years [25, 6, 22, 61, 44, 90, 92, 96, 72, 77, 7, 52, 42, 11, 91, 56, 19, 37].

1.1.2 Compression of image contours

Applications like digital libraries or content-based storage and retrieval have to
allow access to data based on object descriptions, like for instance the shape
of an object. The importance of shape coding within object-oriented video
coding, such as the the MPEG-4 standard [12], further motivates the work of
describing object shapes in an effective way.

Object-based treatment of video sequences, necessitated by the emerging
content-driven applications, requires efficient representation of object bound-
aries. The ultimate goal is to allocate an available bit budget optimally among
the video scene components (shape, texture, motion) and within each compo-
nent. In this dissertation we are concerned with the shape part, ie., given a
contour of an object in an image (or a video stream), how can we represent
this in the most effective way?

There has been, and still is, significant research activity in this area, see for
example [28, 15, 53, 26, 63, 41, 50, 86, 85].

1.1.3 Compression of images

Traditionally, image compression is performed by subdividing the image into
blocks, each of which is processed by means of a transform in order to obtain
a more efficient representation of data.
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An alternative viewpoint is to consider the data as samples of a one-dimensional
waveform. The waveform can be compressed by approximating it by a piece-
wise function, with the break points of the function composing the compressed
representation. These functions can be fitted in an optimal way, under the
given constraints by the use of optimization theory.

Image compression schemes based on this idea are reported in [16, 79, 84].

1.2 Contributions of this work

The focus of this dissertation is on development of new approaches to signal
representation and compression. A common approach to signal compression
is to apply a transform such as the Discrete Cosine Transform (DCT) or the
wavelet transform to obtain more efficient representation of data.

We propose a new way of looking at the compression problem. Formulating the
problem in terms of graph theory, shortest path methods are applied to solve
the problem. Briefly summarized, the major contributions of this dissertation
are as follows:

¢ Development of a general theoretical framework for signal compression
from an optimization point of view. Proposal of a compression method
based on this - the Cardinality Constrained Shortest Path method (CCSP).

¢ Development of a compression scheme based on the coding of linear line
segments which are used to approximate the signal. The segments are
fit in an optimal way under the given constraints. Implementation of a
coder based on this approach.

¢ Further development of the compression algorithm, extending it to an
approach where polynomials of second order are applied to approximate
the signal. Implementation of a coder based on piecewise second order
polynomial interpolation.

¢ Proposal of a new version of the compression scheme where we do not
insist on exact equality between the original and the reconstructed signal
at any specific points, i.e., a non-interpolating approach. Implementa-
tion of two coders, one based on linear approximation and cne based on
second order polynomial non-interpolating approximations.

e Comparison of piecewise approximations of a signal by the use of poly-
nomials of different order. Investigation of which polynomials result in
the overall best performance.
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o Compression of image contours by the fitting of linear line segments in
an optimal way given some constraints.

¢ Theoretical framework for optimal signal compression in a rate-distortion
sense. Development of two coders based on this approach.

Many of the contributions listed here, as well as related material, have been
published in [64, 66, 65, 67, 69, 71, 70, 68, 4].

1.3 Dissertation outline

This dissertation is divided into 3 parts; the introductory part, the cardinality
constrained shortest path methodology part, and the rate-distortion optimal
compression part.

1.3.1 Introduction

Chapter 1: Introduction to the compression problem. Definition of some
central terms and a brief overview of applications.

Chapter 2: Background to ECG compression methods, with an introduction
to the different approaches previously used. Discussion of the performance
measures used in BCG signal compression.

1.3.2 Cardinality constrained shortest path methodology

Chapter 3: Development of a general framework for signal compression from
and optimization point of view. Definition of the problem in rigorous math-
ematical terms, formulation of the problem by the use of graph theory and
presentation of a solution algorithm to the problem - the Cardinality Con-
strained Shortest Path method.

Chapter 4: Proposal of several new compression algorithms. They are based
on an approach insisting on equality between the original and the reconstructed
signal at some extraction points used to represent the signal. Between these
points of extraction two different functions are applied in reconstruction of the
signal resulting in two different versions of the algorithm; first order polynomi-
als and second order polynomials. Furthermore, development of an approach
based on the incorporation of two error measures into one compression scheme,
offering control of both the maximum error and the sum of squared errors.
Chapter 5: Development of two new coders in which the interpolation re-
striction is released. Comparison to the coders developed in Chapter 4.
Chapter 6: Proposal of a coder for image contours based on the coding of
line pieces which are used to approximate the signal.



1.3 Dissertation outline

1.3.3 Rate-distortion optimal compression

Chapter 7: Development of a new approach to signal compression, based on
finding the minimum distortion solution given an upper bound on the number
of bits available. The inverted problem is also solved, i.e., finding the minimum
rate solution given an upper bound on the distortion.

Conclusions of the work are given in Chapter 8.
In addition there are two appendices:
Appendix A: Overview of the ECG test signals.

Appendix B: A detailed mathematical description of the computation of arc
lengths in the CCSP algorithm in the polynomial interpolating reconstruction
case of Section 4.3.
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Chapter 2

Signal compression methods

Numerous compression algorithms have been developed over the years. It
would be an enormous task to describe all of them, and doing so is not the
aim of this dissertation. Although the compression schemes we develop are
applicable to any kind of signal, we have chosen to focus our attention mainly
on ElectroCardioGram (IZCG) signals and apply our compression algorithms
to these signals. To get an overview of the area of ECG compression, and an
understanding of which aspects are important to ECG compression, we will
give an introduction to ECG compression in this chapter.

An ECG is a graphic tracing of the variations in electrical potential caused by
the excitation of the heart muscle and detected at the body surface [83]. These
signals may be transmitted to a hospital in order to get an early diagnosis,
stored for long time usage in a case record or stored in small hand-held or
implantable devices to be analyzed later on. As we do not have unlimited
transmission or storage capacity this calls for efficient compression methods in
order to keep such signals in manageable sizes. The compression must be done
in a way that guarantees accurate reconstruction of the signal. Many signal
compression techniques for ECG waveforms have been proposed. Roughly,
they can be classified into two categories:

& Direct signal compression methods which analyze the signal in the time
domain.

e Other ECG compression methods.

An important issue in ECG signal compression is which error measure to
apply. Since ECG signals are biomedical signals, it is of crucial importance
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that the diagnostic information contained in the original signal is not changed
or removed by the compression algorithm. The different performance mea-
sures normally used in ECG compression are discussed in Section 2.1. A brief
overview of the two main categories of ECG compression algorithms is given in
this chapter. Direct signal compression methods are presented in Section 2.2
along with an introduction to one of the specific methods that belongs to this
category, the FAN algorithm {25]. Results from the FAN algorithm are used
throughout this dissertation in comparison with experimental results from the
new techniques presented, and it is therefore appropriate to describe the mode
of operation for the FAN algorithm as is done in Section 2.2.1. Section 2.3 is
devoted to other ECG compression methods.

2.1 Measures of performance

The performance of a compression algorithm can be measured in a number of
different ways like the distortion between the original and the reconstructed
signal, the amount of compression, the complexity of the algorithm, the exe-
cution time on a given machine and the visual similarity between the original
and the reconstructed signal. We will measure the performance of our com-
pression algorithms in a manner as complete as possible and will cover all of
these areas.

2.1.1 Distortion measures

Since ECG signals generally are compressed with lossy compression algo-
rithms, we have to have a way of quantifying the difference between the original
and the reconstructed signal, often called distortion. Traditionally, two dif-
ferent distortion measures have been applied in ECG compression algorithms:
The mezimum error and the sum of squared errors. The maximum error is
given by

D= max fy(n) - d(n)) (2.1)

and the sum of squared errors by

D = Z — #(n))? (2.2)

n=0

where y(n) and §(n) are the original and the reconstructed signal, respectively,
and N is the signal length. Using the sum of squared error, we assure that
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Figure 2.1: Normal Sinus Rhythm {NSR) [18].

the overall error will be as small as possible, however, we do not guarantee
anything about the error at each time index, n, of the signal, as is the case for
the maximum error. Which error measure is the most relevant one is an open
question, and will be dependent on the specific application.

Recently, there has been some activity in finding a distortion measure which
is more suitable for ECG signals, such as the Weighted Diagnostic Distortion
Measure (WDD) [97]. This error measure is correlated with diagnostic infor-
mation in the signal and is based on comparing the PQRST complex features
of the original ECG signal and the reconstructed one, such as P wave duration,
T wave amplitude, QRS shape, QT duration, ST elevation, etc., see Figure 2.1,
This distortion measure limits the application of the compression algorithm
to Normal Sinus Rhythm !, which is a considerable limitation. As no general
framework for distortion measures in ECG compression has been established
yet, we have chosen to concentrate on the two traditional distortion measures
reported in Equations (2.1) and (2.2).

In order to be able to do an inter-method comparison of the performance of the
different coders, we need a quantitative measure for the entire reconstructed
signal indicating the performance of the coders. We have applied two separate
error measures, one based on the maximum error as given in Equation (2.1) and
one based on the sum of squared errors, namely the commonly used Percentage

"Normal heart rhythm originating in the sinoatrial node [83].
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Root-mean-square Difference (PRD) [93] defined as
N — H(n)12
PRD = \/ Eﬂg}[y(n) y(f‘)] x 100%, (2.3)
2 n=11¥(n) ~ 7

where 7 is the mean value of the original signal. The smaller the PRD, the
closer the reconstructed signal is to the original.

We would like to make a comment on the different performance measures in
relation to different compression methods. It would be reasonable to evalu-
ate all compression schemes in terms of the same distortion measure they are
minimizing, that is, if the object is to minimize the sum of squared errors,
the PRD should be used as an evaluation criterion. On the other hand, if we
atterapt to minimize the maximum error, the evaluation criterion in Equation
(2.1) should be applied. However, in order to do an inter-method compari-
son, it is necessary to evaluate the results from different algorithms in terms
of the same distortion measure. In the sections containing experimental re-
sults, we have chosen to evaluate all results in terms of both the PRD and
the maximum error independent of which error criterion that is minimized.
We accompany these with a visual inspection of the reconstructed signal in
addition to reporting the computational complexity and the execution time
of the algorithm. This will give a complete picture of the performance of the
different methods.

2.1.2 Compression ratio

Compression by time domain methods are generally accomplished by keeping
a set of significant signal samples. A logical way of measuring how well such
compression methods compress a given signal, is to compare the number of
retained samples in the compressed signal to the number of original signal
samples. This is named the sample reduction ratio, defined as the number of
samples in the original signal per retained signal sample.

In order to be able to compare results from different coding schemes in a fully
justified way, encoding of the extracted signal samples will have to take place.
This way, evaluation is in terms of bit rate, defined as the average number of
bits used to represent one signal sample in the original signal.

2.1.3 Computational complexity

One of the most important behavioral aspects of a computation is the com-
plexity of the computation, i.e., the amount of computation resources used.
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The time it takes for a computer program to execute depends on how much
data it has to input and how many operations it does with the data. We will
express time requirements of algorithms in terms of the number of basic steps
required for the execution of the algorithm. In this context basic steps may
be arithmetic operations, comparisons, branching instructions and so on, and
we assume that all these operations require unit time. To estimaie how the
time it takes to run a program varies with the size of the input, we consider
all inputs of a given size N together, and we define the complexity of the
algorithm for that input size to be the worst-case behavior of the algorithm
for any of these inputs.

Essentially we are interested in an estimate of the rate of increase in the time
it takes to run a program as its input gets bigger, i.e., the rate of growth of the
complexity of the algorithm. For example, some programs take about twice
as long to run if you give them twice as much data. Other programs that are
less efficient may take about 4 times as long to run if they are given twice as
much data. To express the rate of increase in execution time related to an
input, we apply the following definition [74]:

Definition 1 Let f(n) and g{n) be functions from the positive integers to the
positive reals.

a) We write f(n) = O(g(n)) if there exists o constant ¢ > 0 such that, for
large enough n, f(n) < cg(n).

b) We write f(n) = Q(g(n)) if there exists a constant ¢ > 0 such that, for
large enough n, f(n) > cg(n).

c) We write f(n) = ©(g(n)) if there exist constants ¢,c’ > 0 such that, for
large enough n, cg(n} < f(n) < dg(n).

The definition of O(g(n)) states that, up to a constant factor, the function
g{n) gives an upper bound on how the algorithm is performing for large n,
saying in effect that as n gets larger, the growth in execution time will be no
worse than that shown by g(n).

2.1.4 Execution time

By execution time, we mean the wall clock time an algorithm takes to run,
measured on a specific system using specific hardware and software configura-
tions. This is often referred to as a benchmark. Benchmarks are dependent on
the specific machine, compiler, input values and programining environment.
Nevertheless, they tell us something about the fulfillment of real time require-
ments, i.e., the ability of the algorithm to analyze the signal as it comes in.
This is an important aspect of a compression algorithm.
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2.1.5 Visual similarity

The purpose of an ECG compression algorithm is to achieve a maximum degree
of compression while distorting the signal as little as possible. The quality
required from the reconstructed signal is dependent on the specific application.
For this reason, it is hard to give a general guideline as to what the maximum
distortion that can be tolerated is, in order to obtain a reconstructed signal
with the diagnostic information contained. This will have to be decided by
visual inspection of the signal.

However, there are a some artifacts which are generally undesirable in the
reconstructed ECG signal: Areas of the signal corresponding to the same
electrical activities in the heart, should not be distorted in different ways
between different periods of the signal. For example, the P-wave mwust not
contain one artifact due to compression at one spot of the signal and a different
at a another spot. This will apply to ECG signals of periodic character,
such as Normal Sinus Rhythm (NSR). For other rhythms than NSR, with less
periodical characteristics, an important issue is that areas of the signal where
the rhythm suddenly changes should not be distorted. These areas are of vital
diagnostic importance as they can be very useful in deciding what mechanism
that lead to a change of rhythm, and it is desirable to be able to reconstruct
these segments with high fidelity.

2.2 Direct signal compression methods

Direct signal compression methods are also known as time domain techniques
dedicated to compression of ECG signal. The mode of operation is to extract
a subset of significant samples from the original sample set?. Which signal
samples are significant, depends on the underlying criterion for the sample
selection process. To get a high performance time-domain compression al-
gorithm, much effort should be put in designing intelligent sample selection
criteria. The original signal is reconstructed by an inverse process, most of-
ten by drawing straight lines between the extracted samples. This category
includes the FAN [25], CORTES [6], AZTEC [22] and Turning Point [61] algo-
rithms. The Cardinality Consirained Shortest Path technique [37], presented
in Chapter 3 also fits into this category, as well as, the rate distortion optimized
method, presented in Chapter 7.

*This does not apply to the AZTEC coder which decomposes the ECG signal into seg-
ments identified as either plateaus or slopes.
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Figure 2.2: Iustration of the FAN algorithm.

2.2.1 The FAN algorithm

A frequently cited heuristic is the FAN algorithm [25]. The basic idea of this
algorithm is to identify signal segments where a straight line serves as a close
approximation, and to discard all but the terminal points along this line. When
significant deviations from this line are detected, the corresponding samples
are included in the extracted signal samples.

The FAN algorithm accomplishes the above idea by initially accepting the very
first sample point as shown in Figure 2.2. Next it computes a range within
which succeeding samples must be found if they are to be fit by a straight line.
This is done by drawing two lines (Uy, L1} between the initial point and the
next sample point plus a specified threshold (=¢) as shown in Figure 2.2. Ifthe
third sample point falls within the area bounded by the two lines, new slopes
(Ua, Ly) are drawn between the initial point and the third sample point plus
the same specified threshold. These new lines (U/s, Ly) are then compared to
the previously stored lines (U, L1) and the most restrictive lines are retained
(U1, L2). The process is repeated, comparing future sample values to the most
restrictive lines. Whenever a sample falls outside the area bounded by the
most restrictive lines, its predecessor is accepted as a significant sample, and
the procedure above is repeated from this point on.
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The FAN method offers control of the absolute error by guaranteeing that the
error between the reconstructed and original signal is less than or equal to
the threshold, €. However, the compression ratio is beyond management.
The FAN method was originally reported and tested on ECG signals by
Gardenhire (30, 29]. It has been exhaustively used and tested on ECG sig-
nals {23, 17, 75].

2.2.2 Other direct signal compression methods

Numerous variations of different time domain coders have been suggested.
There are different strategies in how to make the eliminate-or-keep decision
on signal samples, and other clever ideas to compress signals. These in-
clude the original AZTEC {Amplitude Zone Time Epoch Coding) [22], the
CORTES (Coordinate Reduction Time Encoding System) {6], the TP (Tuin-
ing Point) [61] and the SAPA (Scan-Along Polygonal Approximation) [44]
algorithms. There have also been some attempts of improvement to time
domain algorithms such as SLOPE [90] and AZTDIS {92].

The FAN algorithm is a computationally efficient heuristic approach reported
to yield high compression ratios, as well as, producing reconstructed signals of
high fidelity [46, 39]. In this dissertation, results from the FAN algorithm are
used as a “best case” representative for the whole class of traditional direct
signal compression methods to be compared to experimental results from our
own developed approaches.

2.3 Other ECG compression methods

Many different compression schemes have been applied to ECG signals. One
main category is transform compression methods. These methods mainly uti-
lize the spectral and energy distributions of the signal. Generally this means
processing the input signal by means of some transform, and properly encoding
the transformed output. Signal reconstruction is achieved by an inverse trans-
formation process. This category includes traditional transform coding tech-
niques applied to ECG signals such as the Karhunen-Loéve Transform [96, 72],
Fourier Transform {77}, Cosine Transform 7] and Walsh Transform [52], as well
as, subband-techniques [42, 11, 91].

Vector Quantization [56], Wavelet Transform [19} and other compression meth-
ods have also been applied to ECG signals {33, 54, 62].

Which methods that perform best among the direct and other ECG com-
pression methods, is an ongoing discussion. We have compared a number of



2.3 Other ECG compression methods

17

methods from both categories in {4]. In the following section we will focus
on a subband coding technique from which we compare experimental results
to results obtained with our rate-distortion optimal ECG encoding scheme in
Chapter 7.

2.3.1 Subband coding

A subband coder splits the input signal into a collection of approximately
disjoint frequency bands. If the resulting subbands have the same extent in
the frequency domain, the subband decomposition is said to be uniform. Since
the bandwidth of each subband is reduced by an amount corresponding to the
number of subbands, - say My, each subband can be sub-sampled by a factor
of M. Thus, the number of signal samples in the critically sampled subbands
are the same as in the input signal. Since the importance of the various
subbands is unequal, ~ compression is obtained by representing {quantizing)
the less important subbands with a small number of bits. Normally, the signal
energy is concentrated in the lower frequency subbands, implying that the
higher frequency subbands can be represented with a small number of bits.

The subband splitting is performed by an analysis filler bank, see Figure 2.3.
Reconstruction of the decoded signal is performed by a synthesis filter bank
operating on the signals derived from the bit efficient representation of the
analysis filter bank outputs. If, in the absence of quantization, the output of
a cascade of an analysis and synthesis filter bank is identical to the input, the
filter bank, or more correctly the filter bank pair, is said to possess the perfect
reconstruction property. Most subband coders for speech and image signals are
based on perfect or almost perfect reconstruction filter banks. More details on
the theory of filter bank construction can be found in {94, 8, 76). Figure 2.4
shows the main components in the subband coder system. The components
are:

The analysis filter bank performs the subband split.

The quantizer and encoder represent the various subbands in a bit effi-
cient manner.

The channel is the medium to which the compressed signal is transferred.
This could, for example, be a telephone link, or a hard disk.

The decoder and the inverse quantizer produce an approximation to the
subband signals based on the encoded representation.



i8

Signal compression methods

Hﬂ(z) ¥ Msub "

Taput
Hl(z) | Msub "
_HMsub“l(z) *LMS‘LLb "

Figure 2.3: Parallel analysis filter bank. Sub-sampling by a factor of M,y is
denoted by | M.

* The synthesis filter bank reconstructs the decoded signal.

A complete system to be used for ECG collection, compression and storage
would in addition have a data collection module, user interface as well as other
utility modules.

Bit efficient representation of the subbands

After the signal has been split into subbands it is in a form well suited for
quantization and coding. In the system described here a uniform quantizer is
used together with run-length and Huffman coding. Figure 2.5 illustrates the
quantization and thresholding operation performed on each sample. As the
figure shows, the input samples are represented by an amplitude selected from
a discrete set of levels, each separated by Ag. If the sample amplitude has
absolute value below a selected threshold tg it is set equal to zero.

As will be evident shortly, it is convenient $o reorganize the subband samples
in the following way: The subband samples are put into vectors such that
each element is taken from a separate subband. The sequence is such that
the first entries in the vector are taken from the low frequency bands, whereas
the latter entries are taken from the higher bands. We illustrate this with an
example: Suppose we have a four subband split with 3 signal samples in each
of the subbands. We can picture this as follows:
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where abc are the 3 samples of subband 0, def are the 3 samples of subband 1
and so on. After reorganization, — or scanning, we get 3 vectors with elements
given by:

adgj behk cfil

This results in a number of vectors equal to the total number of subband
samples divided by the number of bands.

Given that most of the energy in the signal is in the lower subbands, it is
reasonable to assume, — under most circumstances, that after quantization
and thresholding a substantial number of higher band subband samples will
be set to zero. Since these zeros tend to occur in clusters, — as a direct
consequence of the way in which the data are organized in vectors, run-length
coding of these zeros makes sense.

The run-length coding is done by representing the above mentioned vectors in
the form (Run, Level), where Run is the number of zeros before each non-zero
sample, and Level is the amplitude of the quantized subband sample following
a number of zeros given by Run. The event that the last samples of the vector
are all zeros is represented with the special code EOB (end of block). We
illustrate by an example:

before run length coding 01003200...0
after run length coding (1,1) (2,3) (0,2) EOB

After the signal has been run-length coded it is finally encoded with a Huffman
coder {21},

ECG-optimized filter banks

In this subsection an attempt is made to exploit current knowledge of subband
coding of images to design good filter banks for use with ECG signals. In [5] a
flexible filter bank design method was presented. Using gradient search tech-
niques, almost any kind of mathematical optimization criteria can be utilized.

When designing a filter bank for image compression at low bit rates, the
following criteria are important [76]:

e Perfect, or near-perfect reconstruction in the absence of gquantization
noise.
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High coding gain.

Zero DC-leakage.

Shert filter length to minimize ringing noise.

Absence of blocking effects.

Nonunitarity. The analysis filters may differ from the corresponding
synthesis filters.

The majority of the given criteria are similarly important when compressing
ECG signals. However, there are differences: When evaluating 2-dimensional
grey-tone (or color) images, the human visual system responds differently than
when evaluating 1-dimensional curves. For images, blocking effects in smooth
image areas, and ringing noise, can be annoying. Ringing noise is characterized
by over- and undershoots in the reconstructed signal close to abrupt transi-
tions. Blocking effects result from the upsampling procedure in the synthesis
filker bank.

Evaluation of reconstructed images and ECG signals is also different: In image
compression the purpose often is that the decompressed images should “look
good”, i.e., it does not matter if there are minor degradations as long as they
look natural. This is not always the case for ECG signals: It is important that
no artifacts arise during compression.

A common optimization criterion for transform and subband coding is the
so-called coding gain, defined by [47]

o ol
— M
SBC ( ﬁi(}l UZ&L) sub

where 0%, and 0%~ are the variances of the reconstruction error associated
with basgic PCM and subband coding, respectively, and M,,; is the total num-
ber of subband channels. The symbols o2 and o2, denote the input variance
and the variance of subband channel no. k, respectively.

1t is well known that images, as a rule, are of lowpass character. A common
signal model is the autoregressive (AR) model of order one, with correlation
factor p = 0.95 [45]. The associated power spectral density has lowpass shape.
Using this model, the coding gain of Equation (2.4) can be maximized by
adapting the subband filter coefficients [5}.
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Decorrelation of a heartbeat signal

The subband variances can be found statistically as®:

o3, (n) = Elug(n)?]
L-1L-1

= SN w0 Bly(n — 5)y(n — i),

§=0 i=0
(2.5)

where uy, is subband signal in channel no. k, hg(-) is the analysis filter in the
same channel, and L is the filter length. Due to the nonstationary nature of
ECG signals, the variance will to a great extent depend on the time index n.

In the following we concentrate on the second order statistics of one normal
heartbeat signal. A filter bank which performs good signal decorrelation in
these regions will perform well. Figure 2.1 shows the basic shape of a heartbeat
signal, where the QRS complex and also the P and T waves are indicated.

Substituting the expectation operator with time-averaging over K consecutive
samples,

1 K—1
Blup(n)’] = 7 > us(n)’ (2:6)
n=0

Equation (2.5) can be re-written as

L—-1L—-1

&2 () =D h(ihe(D)Ryy (i — ), (2.7)

§=0 i=0
where Ry, (+) is the biased autocorrelation function (acf) estimate:

i K—|k|—1

Ry(k) =2 3 wmy(n+b). (28)

n=0

An acf estimate was obtained in [35] using ensemble averaging over 18 heart-
beats taken from different patients. The resulting function is shown in Fig-
ure 2.6.

3We tacitly assume all signals to have zero mean value. Any DC-component in the lowpass
subband can be subtracted prior to coding.
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Figure 2.6: Estimated autocorrelation function for normal heartbeat.
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Figure 2.7. Lowpass unit pulse responses for the ECG-optimized nonunitary
filter bank.

In [42], it was concluded that 16 channels was suitable for compression of ECG
signals, although the exact number of channels did not significantly alter the
coding results. We consider filter banks with 16 channels only in this section.

Using gradient-search techniques, a parallel (see Figure 2.3), uniform, nonuni-
tary, 16-channel FIR filter bank was optimized using the criteria listed earlier.
The coding gain was maximized assuming the signal acf of Figure 2.6, and the
filter lengths were limited to 32 taps. The optimized filter bank is nonunitary.
It is therefore interesting to highlight the differences between cotresponding
analysis and synthesis responses. The lowpass analysis and synthesis unit
pulse responses of the optimized filter bank are shown in Figure 2.7.

There is a dramatic difference between the analysis and synthesis lowpass re-
sponses of the optimized filter bank: The analysis response is bimodal, and
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while it tapers off to zero at both ends, the decay is not as smooth as that of
the synthesis response. The smoothuness of the synthesis response is related to
the blocking free reconstruction properties of this filter bank, and is in accor-
dance with Malvar’s approach {55]. An additional advantage of the smooth,
monotonously decaying synthesis lowpass response, is that it does not produce
ringing artifacts in the reconstructed signal. A signal edge reconstructed with
this response, will be “smeared out”, but without any over- or undershoots.

2.4 Summary

This chapter identifies two different main categories of ECG compression meth-
ods: Direct signal compression methods and other ECG cormpression methods.
Performance evaluation of compression algorithms is discussed. The maximum
error, the sum of squared error, the sample reduction ratio, the bit rate, the
computational complexity and the execution time are defined the way they
will be used throughout this dissertation. Some quality requirements specific
to compression of ECG signal are stated. The FAN method, a heuristic ECG
compression scheme much used in literature, is explained as an example of a
direct signal compression method. Furthermore, a subband technique, more
precisely an ECG-optimized filter bank [1, 2, 4, 3], which will be used for
comparison to our new techniques in later chapters, is introduced.



Chapter 3

Cardinality constrained
shortest path method

In this chapter we introduce the Cardinality Constrained Shortest Path (CCSP)
method, a time domain signal compression scheme based on a rigorous math-
emaftical model of the compression problem. By formulating the compression
problem as a graph theory problem, optimization theory may be applied in
order to achieve the best compression possible under the given constraints.

In Section 3.2 the problem is defined in strict mathematical terms. In Sec-
tion 3.3 it is shown how the problem can be modeled using graph theory,
making it suitable for solving with a shortest path algorithm as is shown in
Section 3.4. Section 3.5 is devoted to the computational complexity of the
algorithm.

3.1 Motivation

Compression of ECG signals has traditionally been tackled by heuristic ap-
proaches, such as the ones described in Section 2.2. Coding by these time
domain methods is based on the idea of extracting a subset of significant sig-
nal samples to represent the signal. The key to a successful algorithm is a
good rule for determining the most significant samples. Decoding is based
on interpolation in this set. Despite the incorporation of intelligent sample
selection rules, all heuristics suffer from lack of ability to extract signal sam-
ples in a manner that guarantees the smallest reconstruction error possible.
However, by a rigorous mathematical model of the compression problem, and

25
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by a corresponding solution algorithm, the minimum set of samples may be
achieved.

One such method, based on a rigorous mathematical model of the entire sam-
ple selection process, is the COSP algorithm [37, 65, 66, 68, 69]. By modeling
the signal samples as nodes in a directed graph, optimization theory is applied
in order to achieve a maximum degree of compression, under the given con-
straints. Any pair of nodes are connected with an arc, the direction of which
is given from the sample order. Including a particular arc in the solution cor-
responds to letting the end nodes of the arc constitute consecutive samples in
the extracted subset of signal samples. The length of each arc in the digraph
can be defined in a variety of ways, as will be shown in later chapters. As for
now, let us denote the length of the arc between nodes ¢ and j by d;;. The
problem is then to find a shortest path through the graph from the first to
the last node, given an upper bound on the number of nodes that are allowed
to be included in the path. Furthermore, the length of the path is given as a
sum of arc lengths, d;;,i=1,... ,N ~ 1,5 =14 1,... , N along the path.

The problem described above is a special case of the resource-constrained short-
est path problem [9, 14}. The resource in question is the number of vertices on
the path. Unlike the general version of the problem, our model contains only
one resource constraint {10, 34, 49, 78]. Omitting the resource constraint, we
simply face the frequently studied shortest path problem [24].

In our case the particular choice of resource is the the number of nodes included
in the path. For this reason, we term our problem the cardinality constrained
shortest path problem (CCSP).

In an optimization approach, we define an objective function representing our
ultimate goal. Other criteria present are represented as constraints. Qur
objective function will mainly be to minimize distortion of the reconstructed
signal. Different constraints will be incorporated in our problem, such as an
upper bound on the number of samples which may be part of the significant
sample set, or an upper bound on the maximum error.

3.2 Optimization model

Denote the samples taken from an ECG signal at constant interval by (1), y(2),
.« y(N}. Let M denote the bound on the number of extracted samples. We
seek an appropriate compression set C = {n1,ne,...,npr} € {1,2,..., N} and
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Figure 3.1: Example of short segment of original and reconstructed signal.

the corresponding sample values y(ni),... ,y(na) to represent the original
signal. Assume n; =1 and ny = N. The approximation is then given by
. y{n) itn e C,
= . 3.1
g(n) { Freme(n) ifn g Cne{l,2,..,N} and ng <n < ngy1. (8.1)

Here fy, n,.,(n) denotes a presumed reconstruction of y(n) based on y(ng),
y(ngy1} and all the intermediate samples, used to extract parameters to de-
scribe the line piece connecting ny and ng+1. The support of fo, ., (n) is
dependent on the particular definition of the function under consideration.
The support given in Equation (3.1) is valid in the interpolating approxima-
tion case, where we insist on exact equality between the reconstructed and the
original signal samples at the points of extraction. In the non-interpolating
approximation case, where we relax the interpolation constraint, the support
is slightly different, and will be given as n € [ng,ng+1) if N1 < N and
n € [ng,ngpa} if ngp = N By letting fo, m,,.,(n) be defined on the do-
main [ng,ngy1) as long as ngyy < N, we represent the signal by functions,
Sy mippa (1), which are not connected in the time indices. This means that if
one segment ends in the index j, the next segment starts in j + 1. Thisis a
natural way of representing a non-interpolating approximation when working
on digitized signals. Figure 3.1 shows a short segment of an original and a re-
constructed ECG signal. In this case fr, n,,,(n) is a second order polynomial
and an interpolating approximation approach is applied.
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Jrgnipa () may represent any kind of function. In its simplest form it is a
straight line, but it may also be a polynomial of higher degree like the one in
Figure 3.1. Which f, », ., (n) gives the best approximation is a tradeoff be-
tween the quality of the approximation and the number of parameters needed
to describe each polynomial uniquely. Clearly, we will be able to get a closer
approximation to the original signal by applying a higher degree polynomial,
but the improvement in performance may be lost in the cost of representing
the polynomials. Investigation of which polynomials results in the overall best
performance of the coder is one of the topics of this dissertation.

Defining the problem this way, we get a piecewise approximation to the orig-
inal signal. Between two sample amplitudes corresponding to two succeeding
elements of C', different functions are used in reconstruction of the signal. The
choice of C will thus have a vital importance for the quality of our approxi-
mation of the signal.

3.3 Graph formulation

Define the directed graph G = (V, A) whose vertez set V = {1,2,..., N} and
arc set A contains node pairs (4,7) where {,j € V and i < j. If ny,ny € V,
the set (n1,ng, ..., nar) is said to be a path from ny to ny in Gifng,...,npy € V
are distinct vertices and ny < ny < -+ < ny. Let B, denote & path from node
1 ap to node n. The length of each arc (4,7) in A is given as the contribution
to the total reconstruction error resulting from the elimination of samples
between nodes 7 and j. This can be expressed as

-1

dij = Z(@(n) —y(n))* ifj<N, (3.2)
7

dij =D (§(n) —y(n)? ifj=N. (3.3)

Equations (3.2) and (3.3) cover both the interpolating and the non-interpo-
lating case. In the non-interpolating case, the expressions in Equations (3.2)
and (3.3) follow as a natural consequence of the definition of the support of
frimis (7). In the interpolating case, §i(n) = y(n) for n = N by the very
nature of the problem, and hence the distortion will be zero at this point.

The arc in a linear interpolation case is illustrated in Figure 3.2. Here

e(n) = §(n) — y(n) and the length of the arc connecting nodes ¢ and j are

thus given by d;; = 3.7 _. €*(n). Each arc (¢, ) in A represents the possibility
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Samples from
an ECG signal

Figure 3.2: Arc length in the graph.
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Sz R\
Z - gy

Figure 3.3: Path length in the graph.

of letting ¢ and j be consecutive members of C. The length of P, will thus be
the sum of the length of all arcs included in the path up to node n. The length
of a given path P is given by D = ||P|| = }_; nyep dij- This is illustrated for a
linear interpolation case in Figure 3.3, where the path length from node ¢ = n;
t0 § = Nit3, dngngys €QUALS dognyyy + Gngping s T Ay yanips

Hence we are faced with the following problem : Minimize the length of Py
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In order to describe a solution scheme, we propose the folIowmg precise prob-
lem formulation. Define P as the shortest path to J visiting exactly m
vertices, and let { {4, m) denote the length of P . We actually search for a 1 «
m* < M and the corresponding Py .- for which HN,m*) = MY <o pr (N, m).
In our search, we compute all such paths Py m in the order given by Increasing
values of m. The C:OSP problem is hence solved when these quantities become
available.

Consider the path P; .. 1. and denote the second last vertex in Pim+1 by i
Obviously, ; « Jand i > m. Hence L} mi1 contains g sub-path through m
vertices to 7. But this sub-path has to be FB; o, because otherwise we could find
a shorter path through m vertices to i Augmenting this with vertex J yields
a path shorter than y o _— (through m +1 vertices) ending at j, contradicting
the fact that Py miq is the shortest of all such paths.

Hence we have that {7, m+ 1) = (,m) +d;; for some § = mym+1,... 51,
Furthermore, it is clear that must be the vertex mMinimizing the right hand
side in this equation, Supplying the obvious condition that 1{(7,2) = dij, we
arrive at the recursive equations

17,2) = dy, (3.5)
I(j,m+1) -:min{l(z',m)—{—dijfz':m,...,j~1}. (3.6)

When j =2 . nandm =2, Ar_q are inserted in (3.5)-(3.6), N, M)
Is uniquely determined,
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problems {14, 80, 82]. The formulation above resembles the one given in 182],
but in (3.6} we exploit the fact that (4,7) € A only if j > ¢. Furthermore, we
disregard (i, m) for all ¢ < m since all paths terminating at ¢ have at most ¢

vertices.

From the above formulation, the algorithm in Figure 3.4 suggests itself (p(j, m)

signifies the predecessor of j in Pjn).

The compression set can thus be

recorded by letting nys = N and np_q = p(ng, m) (m=m*,m* - 1,...,2).
This produces the interpolation points (ni,y(n1)),(n2,y(n2));. .., (Pme,
y(nm=)).

Algorithm CCSP
for j=2,...,N

begin
1(3,2) = duj
p(5,2)=1
end
m* =2

form=2,..., M -1
begin
for j=m+1,... ,N
begin
p(fm+1)=m
I(j,m+1) =l(m,m) + dn;
fori=m<+1m+2,...,j—1

begin
if 1{(i,m) + di; < l(j,m + 1)
begin
(j,m+ 1) = 1(i,m) + dy;
p(m+1) =i
end
end
if I(N,m+ 1) <l{N,m*)
begin

m*=m4+1

end
end
end

// Length of two-vertex path
// from 1 toj

// Assume the two-vertex path
// to N is optimal

// Find m 4 l-vertex paths

// Find the path to j

/] Assume Pj i ={1,2,... ,m, 5}
// The length of this path

/[ Pjm+1 may equal Pyg U {f}

// Shorter!

// Update the shortest length
// Record the last step

/[ Shortest path to N so far

// Optimal number of vertices
// in path to N

Figure 3.4: Algorithm for the CCSP problem.
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3.5 Computational complexity

From the algorithm in Figure 3.4 it is seen that when all arc lengths are
available, the computation of the shortest path involves O(M N?) arithmetic
operations. The computational complexity of the total algorithm will thus be
dependent on how fast we can compute all the arc lengths. Computation of the
arc lengths will, in turn, depend upon which model is applied in description
of the arcs and which error measure we apply.

As the CCSP algorithmn has a computational complexity of Q(MN?), it is of
crucial importance that computation of all the arc lengths can be done without
increasing the complexity any further. As N grows, there is a big difference
between O{N?) and O{N?). When computing the arc lengths for the different
piecewise approximations for the CCSP algorithm in the succeeding chapters,
we will focus on doing this in a computational effective manner in order to
keep the computational complexity as low as possible.

3.6 Summary

In this chapter, the ECG signal compression problem is defined in strict math-
ematical terms. It is shown how the problem may be mapped into a graph
formulation. A solution algorithm based upon a shortest path algorithm, the
Cardinality Constrained Shortest Path method, is introduced and the com-
plexity of this approach is discussed. A crucial point in the CCSP algorithm
is the computation of the arc lengths and this will be one of our main concerns
in the succeeding chapters.



Chapter 4

Piecewise polynomial
interpolating compression

With an interpolating approximation we insist on equality between the original
and the reconstructed signal at the points of extraction. An example of this
is illustrated in Figure 3.1. Between the extracted sample points, we apply
different functions, as described in Section 3.2. Hence we arrive at a continuous
function which interpolates {(n,y(n))in € C}.

In this chapter we will investigate how different functions and error measures
can be incorporated into the CCSP algorithm described in Chapter 3 applying
an interpolating approximation. In section 4.1 we apply a first order polyno-
mial approximation. In section 4.2 we incorporate two error measures, the
maximum error and the sum of squared errors, into the CCSP algorithm.
Section 4.3 is devoted to the development of an approach based on piecewise
second order polynomial interpolation. We investigate the performance of
these compression schemes applied to ECG signals.

A crucial point in the development of the different compression schemes 1s
the investigation of the computational complexity of the algorithm. As more
complex polynomials for the arcs are applied, we have to be able to do the com-
putation of all the arc lengths in a way that ensures the lowest computational
cornplexity possible.

4.1 First order polynomial compression

With first order polynomial interpolation, we apply straight lines between
the extracted samples as shown in Figure 4.1. Remember that given the

33
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: : : H : — - Originat signat
: : : : : - Reconstrucled signal
Lo e O LR s + A % Bxtracted signal sampies

Figure 4.1: Example of short segment of original and reconstructed signal with
linear interpolation applied.

signal samples, y(1),y(2),...,y(N), we seek an appropriate compression set
C = {ni,n2,...ny} € {1,2,..,N} and the corresponding sample values.
Assume ny = 1 and nap = N and let i and j be consecutive members of (7.
The approximation is then given by

. Juln) o if neC,
§(n) = i) + = ) if i<n<j¥ndCnel,2,. .. N

(4.1)
This way we get a piecewise approximation to the original signal based on
linear interpolation.

We are searching for a path, Py, from vertex 1 to vertex N through the graph,
G = (V, A) as defined in Section 3.3. The length of each arc in the graph is
given by

j~1
dij= Y (§(n) —y(n))* (4.2)
n=i+1
What we are seeking is to minimize the length of Py, ie., D = Py =

Z(m—)e Py @ij; under the constraints that Py contains no more than M vertices.
When all the arc lengths are available this is solved with the shortest path
method described in Chapter 3.4.
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4.1.1 Computing the arc lengths

In order to keep the computational complexity low, we have to compute all
the arc lengths in a careful manner. The graph G consists of M%il—} arcs.
This means that we have O{N?) number of arcs for which we need to compute
the length. From Equation (4.2) it is seen that the expression for d;; is a
sum of j —¢ — 1 terms, a number of order N. This means that straightforward
computation of all these arc lengths will result in an algorithm with complexity
O(N?®). Fortunately, this can be avoided by careful computation of the arc
lengths.

The arc lengths are given by Equation (4.2). By substituting §(n) in Equation
(4.2) by the expression given in Equation (4.1), we get

31 . . 2
~ yld) —yE) )
dis = (ﬂ‘f‘g“_—"( - 1) — y{n)
! n:zirlwl (y ;= " z Y )
i—1 . . -1 . . .
_ JZ y(n)? ~ oY) - y(i) JZ ny(n) + 2 (e(y(J): y(i)
n=i+1 J ¢ n=i+1 J
-1 . a2 J-1 . .
. (y(7) — v(s)) y(d) ~y(@) ¢
IR0 Q) AN~ AU 716) K 10) A
) S i (o - O

By expressing the terms including sums of powers of n on closed forms (see
Appendix B) we get

j—1 j-1 i-1
dij= Y y(n)+ay Y nyn)+8; . y(n)+nyg, (4.4)
==t 1 =il n=i+l
where
oy =)
() j _ ?: ?

B = 2 (i—ww——(y(?__?(i)) ~ y(i)) ;
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(W(d) ~ y(£))* (G — i — 1)(25% — j + 24 + i + 242)

WG 6
+2?J(JJ)_ - ?(z) (y(i) N z(y(Jj)_—;f(Z))) (d “*“J)(JQ" i—1)
. . . 2
+i=i=1) (v - tabd) =y

Each of the coefficients w;;, 8;; and n;; depends only on i, §, y(f) and y(5), and
computing all of them can be accomplished by O(N?) operations. By defining
Ay =01 nPy(n),p=0,1and A} =37 42(n) we see that Bpyeo s Aoy
and Af,... A% are computed in O(N?) time. We then compute

dij = agi(AG 5oy — Ay) + Bis(AL i — ALY+ A2, ~ A2y, (4.5)

1 < j < N, involving O(N?) operations. Hence, all the arc lengths d;; are
available in O(N?) time.

4.1.2 Coding scheme

Reconstruction of a signal coded by a linear interpolation time domain method
requires two parameters for each retained sample of the signal; the amplitude
and the position. Recall that the amplitudes of the signal samples extracted
by the time domain coder are denoted y(nt), k& = 1,... , M where ny, is the
sample index, corresponding to position.

We apply a simple predictive encoding scheme and encode the first order
difference of both parameters (first order DPCM)}, that is, each segment of the
signal is represented by the two parameters dypy = Q(y(ng)) — Qy(nk-1))
and dnzy = ng — np—1,k = 2,3,... , M, where Q denotes quantization. In
addition, we need to encode the absolute amplitude of the first point, y(n;).

We thus have a pair of (§,(),ds(z)) to be encoded for each segment of the
signal. Together these constitute a natural source word to be encoded. As the
probabilities of occurrence varies for the different symbols at different bit rates,
1t is natural to employ a Variable Length Coder (VLC) scheme in encoding of
the extracted signal samples. This encoder maps its input source signal into
codewords of variable lengths. Compression is achieved by assigning short
codewords to input symbols of high probability and longer codewords to the
input symbols of low probability. We thus get a lossless compression of the
symbols.

We have at least two possibilities when choosing between coding strategies:
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1. Encoding of the symbols d,z) and d,) by two separate encoders.

2. Encoding of the concatenated symbols (dy(xy,d,(k)) by one single en-
coder.

Alternative 2 implies a high number of possible source symbols. If we assume
that the test signals in Section 4.1.3 results in a dy(;) with a dynamic range of
512 and that no run is longer than 256, we arrive at 512-256 = 131072 possible
different source symbols for alternative 2, as opposed to 512 + 256 = 768
different possibilities for alternative 1. Experiments show that in the case of
alternative 2, only a small fraction of the possible source symbols are actually
used, but nevertheless, this alternative will result in a much higher number of
source symbols than alternative 1. This indicates that if we are to transmit the
VLC tables!, alternative 1 will result in the most efficient encoding scheme.
However, by having an indexed set of VLC tables in both encoder and decoder
we can get around this problem. By choosing alternative 2 we can utilize the
correlation that exists between dyz) and d,y. This correlation originates
from the fact that in high frequency regions of the signal, we will extract
more points. We thus have many d,), each of which has a low numerical
value, accompanied by &,y with a high dynamic range due to the abrupt
changes in the waveform. In low frequency regions of the signal it is the other
way around: We can represent the signal with fewer points, and will thus
have fewer &,y with a higher dynamic range than in the high frequency case,
accompanied by &,y with a lower dynamic range due to small variations in
amplitude. However, experiments show that there is only a marginal gain
obtained by applying alternative 2 as opposed to alternative 1 in this context.
For these reasons we choose to use alternative 1 and encode ) and dpz) by
two separate coders. Note however, that alternative 2 is viable in our subband
coders, see Section 2.3.1, and in some of our coders where we apply other
arc models, see Section 4.3.3. The structure of the encoding system in this
case where we apply linear interpolation is as illustrated in Figure 4.2. The
two VLC’s are the variable length coders, Q is the guantizer and MUX is
the multiplexer used to combine the two bit streams into one for storage or
transmission.

The original signal samples are represented with a resolution of 12 bits per
sample. With the dynamic range of the ECG test signals used in this disserta-
tjon, this corresponds to a quantization of the amplitudes, y(n),n=1,... , N
using a uniform quantizer. Let us denote the step size of the original quan-
tizer by Ag. The extracted signal samples, y(ng), k = 1,... , M, will thus be

1Tables indicating the mapping of source symbols into codewords.
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(2
Extraction VLC 1

y(n) c;j‘ysa(.jngg;s MUX channel

algorithm y(ng) Q

3

—1 VLC 2 >

Figure 4.2: Structure of encoding system in the linear interpolating case.

represented in the same way. By applying a quantizer with a different step
size than Ag to these extracted signal samples we may be able to lower the
rate-distortion curves. This is shown for test signal mit100.1000 in Figure 4.3
where we report results from the complete coding scheme, i.e., both approxi-
mation of the original signal and encoding of the extracted signal samples, for
quantizers of different step size. We see that by increasing the quantization
step from size Ag to 2Ag and from 2A¢ and 3Ag, the overall rate-distortion
performance is improved, for the area of bit rates below 1.8 bits per sample.
However, when the quantizer step size is increased beyond 3Ag, we reduce the
performance in some areas while we gain in others. The reason for this is that
at low bit rates, we have few extracted samples and thus we introduce a smaller
error by quantizing these samples than we do for high bit rates where there
are more extracted samples. Which quantization step gives the overall best
performance is dependent on the target bit rate, the signal to be compressed
and the original sampling rate. We have chosen to use a uniform quantizer
with a step size of 3A¢ in the experimental results from the different versions
of the CCSP algorithm and the FAN algorithm, except in the experimental
results in Section 4.2.3 where we apply a uniform quantizer with a step size of
Ag. The results from the complete coding system are presented and discussed
in Section 4.1.3.

4.1.3 Numerical experiments and discussion

For guantitative evaluation of the performance of the coders, the commonly
used Percentage Root-mean-square Difference distortion measure, given by
Equation (2.3) is applied in addition to the maximum error, given by Equation
{2.1). We evaluate these error measures as a function of bit rate.

The two error performance measures are useful for testing the relative perfor-
mance of the various ECG coding techniques. However, as each compression
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Figure 4.3: PRD versus bit rate for test signal mit100.1000 with uniform
quantizers with different step sizes.

method has its own distortion characteristics, the quantitative evaluation mea-
sures should be supplemented by visual inspection of the reconstructed signal.
We will also report some benchmarks, i.e., the execution time of the different
algorithms on a given machine. This is to evaluate the real time performance
of the coders.

Several recordings taken from the MIT/BIH Arrythmia CD-ROM database,
second edition [60], were used in the coding experiments. The first 10 seconds
of the test signals we use are plotted in Appendix A.

The test signals are coded using two different compression algorithms: The
CCSP algorithm based on linear interpolation presented in this chapter, and
the FAN algorithm, a traditional time domain algorithm presented in Sec-
tion 2.2.1. In comparison with other time domain coders, the FAN algorithm
has been reported to give high compression ratios, in addition to producing
reconstructed signals with high fidelity [46], and it can thus be viewed as a
reference case for the whole class of traditional heuristic time domain ECG
compression schemes.

The complexity of the CCSP algorithm based on linear interpolation is O(M.N?2)
where N is the number of original signal samples and M is the upper bound on
the number of extracted samples. To keep the execution time down, the input
signal is processed in blocks of 500 samples when extracting samples by the
CCSP algorithm. The total record of extracted signal samples and their cor-
responding positions are then encoded by a VLC as described in Section 4.1.2.
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Figure 4.4: PRD versus bit rate for test signal mit100.10000 evaluated for
different block sizes.

The choice of block size is based upon a tradeoff between optimality of solution
and execution time. Naturally, the shorter the blocks, the faster the algorithm.
However, short blocks will lead to loss of optimality due to the fact that the
end points of each block are always extracted as significant signal samples.
From Figure 4.4 we can see PRD versus bit rate for different block sizes for
test signal mit100_.1000. We see that as the block size increases from 100 to
200, the performance increases significantly in terms of PRD. As the block size
is further increased, the performance also increases further, but the difference
between rate-distortion curves are smaller for larger block sizes. There is little
difference between the curve obtained with a block size of 500 and the one
obtained with a block size of 1000. For this reason we have chosen to use a
block size of 500.

To achieve an even more efficient implementation of the coder, the method
described in [38] can be applied. By dividing the signal into short blocks (i.e.,
100 or 150 original signal samples) before extraction of samples, the CCSP
algorithm satisfies real time requirements as is shown in Table 4.1 on page 48.
As stated above, short blocks will lead to loss of optimality. Presenting an ef-
fective implementation of the CCSP algorithm, the method in [38) accounts for
this. The idea is to divide the input signal into partly overlapping segments,
and process each segment independently. 1t is shown that an optimal com-
pression algorithm can be implemented by a windowing technique, processing
100 samples at a time with only slightly reduced coding performance.

We compare the results from the FAN algorithm to the CCSP technique. The
samples extracted by the FAN algorithm are encoded in the same manner as
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the samples extracted by the CCSP algorithm based on linear interpolation,
see Figure 4.2.

Evaluation based on the PRD measure

Figure 4.5 presents obtained PRD’s for the coders for bit rates between 0.2
and 1.8 bits per sample (bps).

For all test signals, the FAN method is outperformed by the CCSP method
by a wide margin. At low bit rates (around 0.6 bps) the FAN algorithm has
from 20% to 130 % higher PRD than the CCSP algorithm based on linear
interpolating approximation. At higher rates (around 1.0 bps) the difference
is smaller, but still significant.

Generally, the test signals mit203.1100 are the hardest one to compress using
time domain algorithms. This is due to the fact that this is a more rapidly
varying signal, or in other words, it contains more high frequency components
than the other test signals. This can be seen from the power density spectrum
plots of the test signals in Figure A.2 in Appendix A.

Side information, i.e., the overhead necessary due to transmission or storage of
the VLC table, has not been taken into account in the rate-distortion curves
of Figure 4.5. The amount of side information will be approximately the same
for both the CCSP and the FAN coder as the extracted samples are encoded
in the same way. Experiments show that side information will add less than
9% to the bit rate shown in Figure 4.52. Side information constitutes a bigger
part for low bit rates, and is decreasing as the bit rate increases.

Evaluation based on the maximum error

Figure 4.7 presents obtained maximum errors for the coders. The CCSP based
on linear interpolation is outperformed by the FAN method for all test signals
and all bit rates. It is expected that FAN would perform better than the
CCSP method in terms of maximum error, as this error measure is bounded
in the FAN algorithm. But what bappens in the CCSP algorithm causing
these big maximum errors? The answer is illustrated in Figure 4.6, showing
a short segment of test signal mit203.0100, both original and reconstructed
signal, at a bit rate of 1 bps. We see that in areas of high frequency activity,
the CCSP algorithm cannot “afford” to include all peaks in the solution as

>This is valid under the assumption that d,() and 8. are encoded by separate VLOC
coders and that a guantizer with step size of 34 ¢ is applied.
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Figure 4.5: PRD versus bit rate for the different coders and test signals. Solid
line: CCSP linear interpolation. Solid line with diamonds: FAN.
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Figure 4.6: Short segment of test signal mit203_0100, decoded at a bit rate of
1 bps. Dotted line: Original signal. Solid line: Reconstructed signal.

it is only allowed to extract a defined number of samples from each block.
Thus the peaks resulting in the lowest overall cost will be excluded from the
solution, causing the maximum error to rise. Ome such peak excluded from
the solution in a long signal sequence will cause a high maximum error. One
possible way to account for this is to allow the CCSP algorithm to extract
an unequal number of samples from each block of the signal. Classifying the
signal in high- and low-frequency blocks, we can extract more samples from
the high-frequency blocks and thus account for the high maximum error.

Another way to account for the high maximum error is by incorporating the
maximum error into the COSP algorithm as is done in Section 4.2. By restrict-
ing how big the maximum error is allowed to be, we can tune the algorithm to
a suitable trade-off between PRD, maximum error and bit rate. This approach
offers control over both the maximum error and the sum of squared errors.

Evaluation based on visual inspection

Evaluation of the performance of the different coders should be accompanied
by visual inspection of the reconstructed signals. This is to show coding arti-
facts as they appear for the different coders. We have chosen a short segment of
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Original signal. Bit rate == 12 bits/sample

FAN

CCSP, linear approximation

Figure 4.8: Short segment of reconstructed signal (taken from mit100.1000)
at 1.0 bits per sample.

the mit100_1000 signal representing regular sinus rhythm. The reconstructed
signal segment is shown at a bit rate of 1.0 bit per sample in Figure 4.8 and
0.5 bits per sample in Figure 4.9. The original signal is also included. We see
that both coders smooth out some of the details in the original signal. This is
particularly evident with the FAN coder, where the line pieces are also most
prominent in the reconstructed signal.

Both the CCSP and the FAN method smooth out the ripple noise which can
be seen in the original signal. This is undesirable noise, and will often be
removed by a filter before transmission or storage of the ECG signal.

Evaluation based on execution time

In real life, ECG compression algorithms will often be implemented on small
hand-held devices, like an ECG recorder, or on portable devices like the defib-
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Original signal. Bit rate — 12 bits/sample

-

FAN

CCSP, linear approximation

Figure 4.9: Short segment of reconstructed signal (taken from mit100.1000)
at (.5 bits per sample.

rillator®. In these cases it is important that the tompression algorithm runs
In real time, i.e., that it is able to analyze the signal as st comes in without
causing the incoming signal to accumulate.

different number of samples for the different block sizes, in order to cover ap-
proximately the same areg of the rate-distortion curves shown in Figure 4.5.

From Table 4.1 it can be seen that for the CCSP algorithm based on linear

% An electronic apparatus used to counteract atrial ar ventricular fibrillation by the appli-
cation of brief electroshock to the heart, either directly or through electrodes placed on the
chest wal].
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interpolation with a sampling frequency of 360 Hz and block sizes of 100 and
200, the real time requirements are fulfilled for all values of the number of
extracted samples, M. For larger block sizes, real time requirements are vio-
lated as M grows. In order to cope with real time requirements, the technique
presented in [38] can be implemented. In this case, the CCSP based on linear
interpolation will run in real time on an HP9000 C360.

As for the FAN algorithm, it processes one signal sample at a time as it comes
in and will thus fulfill real time requirements for all cases.

As the CCSP algorithm exploits all spare time to computations, it has an
advantage over the FAN algorithm with respect to execution time. Depending
on processor power available or optimization of the code with respect to exe-
cution time, block size can be matched to utilize the processor capacity. This
will result in a reconstructed signal with even higher fidelity. As for the FAN
algorithm this is not an issue, it will spend the time available waiting for the
next signal sample.

4.2 Multiple error measures in ECG signal com-
pression

As stated in Section 2.1.1, two different error measures have traditionally been
applied to the compression of ECG signals: The maximum error and the sum
of squared errors given in Equations (2.1) and (2.2), respectively. Which error
measure gives better result is an open problem. When considering the sum
of squared error, we assure that the overall error will be as small as possible,
however, we do not guarantee anything about the error at each point of the
signal.

Instead of choosing between the maximum error and the sum of squared error,
we have developed an approach where we incorporate both error measures into
one compression algorithm. An algorithm for solving the compression problem
in the case of sum of squared error is given in Chapter 3. It is shown that
the algorithm converges in cubic time, and in [38] it is demonstrated how the
idea can be implemented in order to comply with the constraints that apply
to execution time. Unlike heuristics like [13] and [22], which both are guided
by 2 bound on the maximum reproduction error, the exact CCSP method has
so far been unable to deal with such a bound. In the following sections we
show how this can be overcome.
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CCSP, linear interpolation
Block size | Extracted samples, M | Execution time in sec.
b 0.02
100 10 0.03
30 0.08
5 0.06
200 10 0.11
30 0.33
50 0.51
5 0.11
10 0.25
300 30 0.73
50 1.16
70 1.52
5 0.18
10 0.41
400 30 1.30
50 2.08
70 2.84
90 3.44
5 0.30
10 0.66
500 30 2.04
50 3.41
70 4.69
90 5.94

Table 4.1: Execution times for the CCSP algorithm based on linear interpo-
lation run on an HP9000 C360.

4.2.1 Problem definition

As before, let N denote the total number of samples, and let M be an upper
bound on the number of extracted samples. Let y(i) still denote the amplitude
of sample i. Define

€nsj = Y(i) + y—(J’—j’)——};y-@(n —i)—y(n) foralli<n <j. (4.6)
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With each arc (i,7) we associate the length parameters

i

dij = Y chijs (4.7)
n=t

35 == max {|enij| 14 < n < j}. (4.8)

Correspondingly, we define the path lengths

D= %" dy (4.9)
(i.4)eP
D® = max {d : (i,4) € P}, (4.10)

where P is the set (path) of pairs (arcs) of consecutive retained samples. Let
[P} denote the cardinality of P.

The set P defines the approximation uniquely, and we define the restored
signal values §#{1),... ,9{N) by letting §(n} = y(n} if sample n is retained.
Qtherwise, we let

i) = ofi) + L2 ) (a11)
where i and j are the consecutive retained samples closest to n, for which
i < n < j. Hence e, signifies the local error introduced when replacing
y(n) by its approximation §(n). It is required that the absolute value of the
difference between original and restored signal nowhere violates the upper
bound d*. That is, the mazimum error is to be bounded from above.

The problem thus amounts to extract a sample selection to be represented
by P, satisfying D® < d* and |P| < m — 1, and such that DD is minimized.
When d% is sufficiently large, this essentially becomes the problem addressed
in Section 4.1.

4.2.2 Computing the infinity norm error

In [36], it is proven that only minor changes to the cardinality constrained
shortest path problem are necessary in order to cope with bounds on the
maximum reproduction error. Actually, this can be accomplished by reducing
the graph, i.e. eliminating all arcs that would contribute to a violation of this
bound. Next the algorithm in Section 3.4 can be applied to the reduced graph.
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k!
k

Figure 4.10: The convex hull of a set of 21 points.

The main effort in reducing the graph, is to compute d7°. This is easily
accomplished provided that the conver hullt of all sample points from ¢ to 7
are available. By executing a binary search® along the boundary vertices of
the convex hull, dy can be computed for any combination of i and j. In the
case depicted in Figure 4.10 the maximum error occurs at vertex k.

The problem of reducing the graph can thus be solved by the following major
steps:

e For each pair of vertices ¢ and j,i = 1,... N — L,j=4+1,...,N
compute the convex hull containing all samples from 7 to j-

?

» Compute dg,? by binary search along the boundary vertices of the corre-
sponding convex hull.

¢ Compare dy to d>. If iy > d®, eliminate the corresponding arc from
the graph.

An important part of the problem of constraining the maximum error, is the
computation of a dynamic convex hull of a sorted set of 2D points. A general
method for this is given in [95]. Denote the convex hull of all samples from
t to j by H(i,j). From Figure 4.10 it is clear that H (4,7) can be uniquely

“The smallest convex set containing the points. Can be thought of as a rubber band
wrapped around the extreme points.

*The process of examining a middle value of a sorted array to see which half contains the
value in question and continuing to halve until the value is located.
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J+1

Figure 4.11: Insertion of a new point in an existing convex hull.

represented by its vertices. The boundary of H(4, 7) is described by one convex
and one concave function, and is thus naturally sub-divided into two parts.
When computing H(1,5), j = 2,... , N, we verify whether sample i (1 < 4 < 7)
is a vertex of the convex part, a vertex of the concave part, or an interior point.
Such boundary relations are stored in a dynamic data structure, and exploited
in the computation of H(z,j},i = 2,...,N -1, =i+ 1,...,N. In the
following discussion we focus on how to find the vertices of the convex part of
the boundary, but equivalent operations apply to the concave part.

Assume H(%,7) is found. This hull is to be updated to H(i,j + 1) by taking
one new sample, 7 + 1, into account. We find H(i,j -+ 1) by backtracking
along the boundary of H(4,j), and insert the new sample in such a way that
convexity is maintained as shown in Figure 4.11.

To analyze how H (3,7 + 1) will change compared to H(i, ), we must examine
the slope of the straight line joining sample number j 4+ 1 and one vertex in
H{(i,7). Let «y;; denote the slope of the straight line joining saruples number ¢
and j, that is

) —u)

” = (4.12)

To decide where to insert sample 7 + 1 in H(%,7), we backtrack until we find
two succeeding vertices i < i such that Y S N and insert sample

j + 1 after vertex i" as illustrated in Figure 4.11. For the concave part it is
the other way around: We backtrack the boundary vertices in H(i, 7) until we



52

Piecewise polynomial interpolating compression

find two succeeding vertices i < ¢ such that Vi 2 Yy jq ond insert sample
§ + 1 after vertex i .

Once H(i,j),7 = i+ 1,... ,N are found, the next step is to compute H{i +
L,7h3 =i+2,...,N. We know that interior points of H(%,7) may be on
the boundary of H(i + 1, 7). However, if sample k is a vertex of both H (¢,7)
and H(i+ 1,7), then all vertices &' > k of H(:,;) are vertices of H{i+1,5)
as well. In order to be computationally efficient, the algorithm has to exploit
this information. In the computation of H(i,7),5 = i+1,... , N, we therefore
keep track of all boundary relations for later to be utilized in the computation
of H(i+1,7),7 =i+2,... ,N.

A total of M%—:Q convex hulls have to be made available in order to restrict
D®. Each of these are represented by the vertices of the convex and concave
part of the houndary. When the vertices are found, we make binary search in
both vertex sets in order to find the points where the maximum error oceurs.
The binary search can be applied in this case because the line segments on the
boundary are sorted by slope. By stepping through the vertices of the convex
part, we will reach a point where the slope of the straight line connecting
two vertices gets larger than +y;;. This is the point where the maximum error
occurs. This is illustrated in Figure 4.10. We see that Yij > Yy, and that
Yij < Yex'- Thus k is the point of maximum error. By making binary search
in both vertex sets of the boundary of H(i, j), dy can be found in O(log N)
time.

Computing all _1\1%7_—_11 convex hulls along the lines outlined above, requires
O(N?) operations [36]. Hence the graph reduction is performed in O(N?log N)
time. Furthermore, the complexity of the optimization algorithm in Chapter 3
is O(M N?), where the dependency upon N? is explained by the fact that an
unreduced graph consists of -IL‘A;“—}—) arcs. If the number of arcs after re-
duction is K, the complexity of the new version of the algorithm becomes

O(N?log N + MK). Note however that in the worst case, K = O(N?).

4.2.3 Numerical experiments and discussion

To get a quantitative evaluation of the performance of the coders, the PRD
distortion measure given in Equation (2.3) is applied. We evaluate PRD as a
function of bit rate for different numerical values of the maximum error bound.
Despite the incorporation of the maximum error bound, we still evaluate the
maximum error as a function of bit rate. This is due to the fact that the actual
maximum error may differ from the maximum error bound.
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We will not present a visual recomstruction of the decoded signals in this
section. The reconstructed signals will be very similar to the ones presented
in Section 4.1.3, so we refer the reader to this section to get a visual impression
of the reconstructed signals. However, we will report some benchmarks, i.e.,
the execution time of the different algorithms on a given machine. This is to
evaluate the real time performance of the coders.

To keep the execution time down, the input signal is processed in blocks of 500
samples when extracting samples by the CCSP algorithm. The total record
of extracted signal samples are encoded in the way described in Section 4.1.2,
that is, we use a simple predictive encoding scheme and encode the first order
difference for position and amplitiude by two separate VLC’s. Thus the ex-
tracted signal samples are encoded according to Figure 4.2. Unlike the results
presented in Section 4.1.3, where we use a quantizer with a step size of 34,
we apply a quantizer with a step size of Ag to the extracted signal samples in
this section. The reason for this is that by applying a quantizer with a step size
different from the original one, i.e, Ag, to the extracted signal samples in this
case, we loose the complete control this method offers over the maximum error.
By quantizing the extracted signal samples, we introduce quantization noise
and thus we can no longer guarantee that the maximum error will be below
the predescribed bound on the maximum error. An example of this is shown
in Figure 4.12 where we show complete coding experiments of mit100.1000
with a quantizer step size of 3Ag. We see that that maximum error is not
below the predescribed error bounds of 4, 6 and 8, respectively, but has been
increased above these due to quantization noise introduced.

The test signals applied in this section are presented in Appendix A.

Evaluation based on the PRD measure

The PRD as a function of bit rate is shown in Figure 4.13. Input to the CCSP
algorithm are d*° and M, while only d is input to the FAN algorithm. We
plot several curves for the CCSP algorithm based on several maximum error
bounds and evaluate this towards the FAN algorithm. The plots of Figure 4.13
shows the same tendency as was shown in Figure 4.5: The FAN algorithm is
outperformed by the CCSP algorithm in terms of PRD for all bit rates and
all test signals applied.

From Figure 4.13 we see that if the bounds on the bit rate and d® are too
strict, there exists no solution. This reflects the fact that given a desired
compression ratio, it is not possible to get an arbitrarily small infinity norm
error because there exists no path through the graph which satisfies these
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Figure 4.12: PRD versus bit rate for test signal mit100_1000 with uniform
guantizers with step size of 34.

constraints. The rate-distortion curves of Figures 4.13 and 4.14 reflect this
fact. The leftmost point in each of the curves reports the smallest feasible
bit rate for the different d®. An example : For test signal mit100_1000 with
d® = 8, the smallest possible value for the bit rate is 0.88 bps. We thus have
to make a tradeoff between d*° and the sample reduction ratio in order to find

a solution.

Restricting the sample selection by introducing d*° implies only a marginal
increase in PRD as compared to excluding the maximum error bound. This
can be seen from Figure 4.13, indicating that the CCSP algorithm based on
linear interpolation still is superior to conventional time-domain heuristics in
the sense that it exhibits much less PRD, especially for low bit rates.

Evaluation based on the maximum error

Figure 4.14 shows obtained maximum errors as a function of bit rate for the
different coders and test signals. For each signal we report experiments based
on different maximum error bounds. We see that we are able to lower the
maximum error for the CCSP algorithm by introducing d°. However, the
FAN algorithm still generally performs better in terms of maximum error
than the CCSP algorithm with an exception of a few areas for test signal
mit100.1000.

The reason why we cannot lower the maximum error further for the CCSP
algorithm, is that we have to pay attention to the problem of cases without
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Figure 4.13: PRD versus bit rate for the different coders and test signals.
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solution. The plots in Figure 4.14 show the range of bit rates for which we
obtain lower maximum errors than in the case without the maximum error
incoporated for the different test signals. The leftmost points in the plots
reflect the smallest possible bit rate for the different values of d°. We see
that as the bit rate increases for one particular d*°, the problem essentially
becomes the one solved in Section 4.1.

The CCSP algorithm codes the signal block by block, considering a block size
of 500 samples at a time. From each block it is only allowed to extract an upper
number of M samples. This has severe impact on the maximum error. If one
block contains much high frequency information, the CCSP algorithm will not
be able to find a solution for this block with a tight bound on the maximum
error. For the FAN algorithm this is not an issue as it does not processes the
signal using a block-based approch, but rather considers one sample at a time.
One way to lower the maximum error even further and avoid the problem of
non-existing solutions when coding with the CCSP algorithm is by allowing a
variable number of samples to be extracted from each block of the signal as
discussed in Section 4.1.3.

Evaluation based on execution time

Another important aspect by restricting the infinity norm error, is the total
execution time. As pointed out in the previous section, the complexity of
the algorithm becomes O(N%log N + MK) when a bound on the maximum
error is introduced, as opposed to O(MN?) in the original version. In cases
where K « M@, this may be of major importance. For the first block
(the first 500 samples) of test signal mit100_1000 we found that K attains
values 8210, 11285, 21648 and 29189 when d* is put equal to 5.05, 6.00, 13.10
and 16.90, respectively, whereas the unreduced graph has 124750 arcs. This
implies considerable reduction factors (ranging from 8 to 30).

Table 4.2 shows execution times for the CCSP algorithm for different block
sizes and different number of extracted samples. The experiments are run on
the same machine with, and the same test signals as in Section 4.1.3. The first
entry in the table for each combination of block size and number of extrcted
samples, reflects the minimal feasible integer d*° for which a solution exists.

By comparing the numbers in Table 4.2 to the ones in Table 4.1 it can be
seen that incorporating the maximum error bound into the CCSP algorithm
lowers the execution time drastically for large block sizes and large number
of extracted samples. For a block size of 500 with 70 samples extracted, the
execution time is reduced by a factor of 5.



4.2 Multiple error measures in ECG signal compression

57

mit202_0800

o8 1 iz 14 16 s s o8 1 124 16 18
Bit rate {bits/sample) Bit rate {bits/sample)

mi$203_0100 mit203_1100

° d*° = 30

o d% o= 40

* d® =45

d® = oo
FAN

60

g =20

;

TTTRE A 16 18 2 T2 e e 18 2 22
Bit rate (bits/sample) Bit rate (bits/sample)

mit207_-1800 mit214_0300

o g 00 °g® =10

d> =30 P : g =18
d>® =00 d® = o
FAN FAN

o 1 i3 i% 16 38 04 05 08 112 14 16 is
Bit rate (bits/sample) Bit rate (bits/sample)

Figure 4.14: Maximum error, D%, versus bit rate for the different coders and
test signals.
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From Table 4.2 it can be seen that for the CCSP algorithm based on linear
interpolation with the maximum error bound incorporated with a sampling
frequency of 360 Hz, the real time requirements are fulfilled for all block sizes
and all values of the number of extracted samples, M. Even as the maximum
error bound, 4%, increases, the execution times will still be lower than the
ones reported in Table 4.1, as even a high d* will elimiate the need of taking
arcs with a much to high maximum error into consideration when searching
for a shortest path through the graph. For instance, with a block size of 500,
with M = 50 and d%° = 100, the execution time equals 2.41 sec. as opposed
to 3.41 sec. in the linear interpolating case.

4.3 Second order polynomial compression

Reconstruction of a signal compressed by any of the time-domain algorithms
mentioned so far is done by linear interpolation between the elements of the
extracted subset of signal samples. This is a simple, but computationally
effective way of reconstructing the signal. However, an ECG signal is not linear
in its nature, but rather more curvaceous. It would therefore be interesting
to investigate if it is possible to get a better approximation to the original
signal, under the same compression ratio, by using a polynomial of higher
degree in reconstruction of the signal. In this section we demonstrate how the
CCSP algorithm can be further developed in order to reconstruct the signal
by second order polynomials.

Applying linear interpolation in the reconstruction phase, the COSP algorithm
1s proven to converge in cubic time. In [38] it is demonstrated how to cope
with real time constraints of the algorithm. We now show that the CCSP al-
gorithm can be applied to the case where polynomial approximation is used in
reconstruction of the signal without increasing the computational complexity
of the algorithm.

4.3.1 Optimization model

We still apply the definition of M y N and C given in Section 3.2. Assume
n1 = 1 and nar = N. The approximation is then given by

oo — | Y1) if nec,
y(n) - {fnk,,ﬂk+1 (n) Ny < n < nk+1Vn (?é O,TL e {1’2’ ,N} (4.13)
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CCSP, linear interpolation with bound on maximum error
Block size | Extracted | Maximum error Execution {ime
samples, M bound in sec.

5 5 0.04

8 0.07

100 10 4 0.04
8 0.07

30 3 0.04

8 011

10 18 0.21

25 0.24

200 30 5 0.14
8 0.20

50 3 0.11

6 0.19

10 18 0.36

25 (.39

300 30 5 0.24
8 0.35

50 4 0.23

8 041

10 18 0.52

25 0.62

400 30 6 0.40
10 0.56

30 4 0.33

8 0.61

30 13 0.83

18 1.01

500 50 6 0.68
10 0.91

70 5 (.65

8 0.94

Table 4.2: Execution times for the CCSP algorithm based on linear interpo-
lation with bound on maximum error incoporated run on an HP9000 C360.

Here fr,n..,(n) denotes a presumed reconstruction of y(n) based on y(nz),
y(ngs1) and all the intermediate samples and will be given a precise defini-
tion in the next section. In this way we get a piecewise approximation to
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the original signal. Between two sample amplitudes corresponding to two suc-
ceeding elements of C, different functions are used in reconstruction of the
signal. The choice of C will thus have a vital importance for the quality of
our approximation of the signal.

Again, we are searching for a shortest path from vertex 1 up to vertex N
through the directed graph G = (V,A}. As before, the length of each arc
(i,4) in A is given as the contribution to the total reconstruction error by
eliminating all vertices between ¢ and j. This can be expressed as

j—1

dij = > (§(n) ~y(n)). (4.14)

n==i41

The length of Py will thus be the sum of the length of all arcs included in the
path up to vertex N. Bach arc (4,7) in 4 represents the possibility of letting ¢
and j be consecutive members of C. Including an arc (¢, j) in C has the effect
of increasing the total path length by d;;.

Hence we are faced with the following problem : Minimize the length of Py,
ie, D = {|Pnll = X (i j)epy %ij) under the constraint that Py contains no
more than M vertices. With the reconstruction method applied here, this is
a modified version of the problem presented in Section 4.1.

4.3.2 Solution method

We now go on to show that the algorithm presented in Section 3.4 can be
modified such that it handles second order reconstruction polynomials and
still preserves its computational complexity of O{M N?).

To be able to extract samples from the original signal in an optimal way, we
need to know the contribution to reconstruction error introduced by inchiding
any two samples as consecutive members of C. The aim now is therefore to fit
a function f;; to the data set {{n,y(n)) : n = i,..,j} in such a way that the
reconstruction error is minimized. We wish to use a second order polynomial
in this context, that is we let fi;(n) = agi; + a1yn + agyn®,n € [i,j]. If we
interpolate between two end points ¢ and j, we have for each arc (4, 7) :

i1

2
dij = Z (a{]ij + agn + azijn?’ - y(n)) , (4.15)
n=i+1

agij + arijt + agigic = y(i), (4.16)
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a0y + 0145 + a2igi” = y(j). (4.17)

The optimal parameters ag;,a15; and ag; are found by minimizing (4.15)
under the constraints given in (4.16) and (4.17). By inserting these optimal
parameters into (4.15), the minimal d;; is found for each arc.

The graph G consists of Lﬂé_—ll arcs. The expression for d;; is a sum of j —i-1
terms. Straightforward computation of all ag;’s, a145's, a2;;'s and all di;’s will
thus result in an algorithm with a complexity of O(N #). Fortunately, this can
be avoided by careful computation of the arc lengths.

The arc lengths are given by (4.15). Assume that we express (4.15) in terms of
ag:; by the use of (4.16) and (4.17). By putting the derivative of this expression
with respect to ag; equal to zero we arrive at an expression of the following
form :

1 ,
aij = I il + argn A+ aggn?)y(n) + , (4.18)
24
where
i—1
Mij = Z Bois -+ Brijn + Baggn® + Bain’®, (4.19)
n=i+1
i1
Mg = > Yoij +Yiiin+ Yaign® + Yaign® + yaign’. (4.20)
n=i+1

Al ay4's, Bij’s and 7;;’s are expressions in 4, j, y(é) and y(j) (see Appendix B)
and hence all these coefficients are computed in @(N?) time. The sums of
powers of n are evaluated by closed form formulas, and hence all 7145 and 79;;
are computed in O(N?) time. By defining Ap; = 37 nPy(n), p = 0,1,2, we

see that Ay, ..., Apy are computed in O(N?) time. Next, we compute
2
(Bt — D) + g
iy = 2 p=0 Yij(Dp,j pi) i (4.21)
N2ij

1 < j < N, involving O{N?) operations.
When the optimal parameters are computed in the way described above, they
are inserted into (4.15) in order to find the minimum arc lengths. This will
lead to an expression of the form
i1
dij = Z (aﬁij + 2agija145m + (2&02'3'&2;.;;,' + a%ij) n2+
n=i+4+1
2a1;5a2:m° + agn? — 2y(n) (aoij + avnt

agz-jnz) + yg(n)) .
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By applying the same technique as in computation of ag;;, all arc lengths are
available in O(N?) time. The detailed mathematical computations can be
found in Appendix B.

When all arc lengths are available, the actual sample extraction takes place.
This is accomplished by the dynamic programming algorithm described in
Section 3.4.

4.3.3 Coding scheme

In order to be able to reconstruct a signal coded by a second order polynomial
interpolating approach, we need three parameters for each retained sample.
We represent each second order polynomial between vertices n; and ng.p; by
the sample amplitude y(ng), the distance, nyy: — ng and the approximate

sample value § ( ﬁ%l—’”ii) ‘This data set determines the piecewise polynomial
reconstruction uniquely.

As in the linear interpolating CCSP algorithm described in Section 4.1, we
use a quantizer with a step size of 34y to the extracted signal samples. Sub-
sequently, we apply a simple predictive encoding scheme and encode the first
order difference of both parameters (first order DPCM), that is, each segment
of the signal is represented by the three parameters dy) = Q1 (y(nz)) —

Q1 (y(ng-1)), Sy = @2 (y (ﬂ%‘ﬁﬂ)) — Q2 (y (M)) and dnpy =
g~ g1,k = 2,3,... , M, where @ and @Q» denotes guantization. In ad-
dition, we need to encode the absolute amplitude of the first sample point,
y(n1).

We thus have triples of (8,(1), 64(n,)» On(x)) to be encoded for each segment of
the signal. Here we have the choice of several different coding strategies. As
Oy(k) and dgp) are in the same numerical range, while Saqry 1s in a different
numerical range, we consider two different coding strategies:

1. Two separate encoders, one for the amplitudes, by(ry and d4(), and one
for the distance, dn ().

2. One encoder for the concatenated symbol (5y{k)15n{k)) and one for the
symbol ).

By investigating the joint probability distribution of dy¢xy and &, ;) we find that
it has sharp peaks representing frequently used combinations of {8yk)> Oniry)
as can be seen in Figure 4.15. This indicates that there is a profit in coding
the symbols according to alternative 2. This coding strategy will lead to a
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Figure 4.15: Symbol probability distribution of dy(4) and &z at a bit rate of
1 bps.
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Figure 4.16: Structure of encoding system.

higher number of source symbols than alternaftive 1, as discussed in Section
4.1.2. However, experiments show that in the case of alternative 2 only a small
fraction of the possible number of source symbols are actually used. In order
to utilize the dependency between dy(x) and d,(;) we choose to use alternative 2
and encode the concatenated symbol (6y(k},6n(k)) by one single encoder and
the symbol 854y by a separate encoder in this context. The structure of
the coder is shown in Figure 4.16 where (1 and @2 denote quantizers, VLC
denotes variable length coder and MUX is the multiplexer assembling the two
bit streams into one for storage or transmission .
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4.3.4 Numerical experiments and discussion

As before, we evaluate the coders in terms of PRD (given in Equation (2.3)),
maximum error (given in Equation (2.1)), visual impression and execution
times.

The test signals applied are the ones whose 10 first seconds are plotted in
Appendix A. As we would like to compare the performance from the dif
ferent coders, the test signals are coded using three different coders: The
CCSP coder based on polynomial interpolation presented in this section, the
CCSP coder based on linear interpolation presented in Section 4.1 and the
FAN method presented in Section 2.2.1. For the COSP algorithm based on
polynomial interpolation, the extracted signal samples are encoded according
to the procedure described in Section 4.3.3. The CCSP method and the FAN
algorithm encodes the extracted signal samples as described in Section 4.1.2.

The input signal is divided into blocks of 500 samples before processing by the
CCSP algorithm in order to keep the execution time down.

Evaluation based on the PRD measure

Figure 4.17 presents PRD versus bit rate for the six test signals for bit rates
between 0.2 and 1.8 bps. From the plots we can see that both the CCSP algo~
rithm based on linear interpolation and the CCSP algorithm based on second
order polynomials generally perform much better than the FAN algorithm in
terms of PRD, especially at low bit rates.

The CCSP method based on polynomial interpolation performs better than
the CCSP method based on linear interpolation for low bit rates, i.e., below
approximately 0.8 bps, while for higher bit rates the CCSP method based on
linear interpolation performs better or similar. One possible explanation for
this crossing of the rate-distortion curves is that given the number of retained
samples, the CCSP algorithm based on polynomial interpolation extract sam-
ples in an optimal way with respect to reconstruction error. However, as the
approximation has to be encoded, some quantization noise is introduced, and
the solution may thus be slightly suboptimal. This is due to the the fact that
the CCSP polynomial interpolation algorithm interpolates each arc between
two end points (samples), but the third point used to represent fu, ... . is ap-
proximated on basis of the optimal polynomial coefficients. This approximated
signal sample has to be quantized and this may cause the actual distortion
to differ from the optimal distortion with some amount. This problem is not
an issue in the linear interpolation case as the representation points corre-
sponds to samples which are quantized in advance. In the case of test signal
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mit100.1000 at a bit rate of 1 bps, the deviation from the optimal distortion
amounts to 0.78 % of the optimal distortion. For the same test signal at a bit
rate of 0.5 bps, the deviation amounts to 0.14 %. The deviation grows larger
for higher bit rates, as more samples are retained and thus we get a higher
contribution to the total quantization error.

Evaluation based on the maximum error

Figure 4.18 presents obtained maximum errors for the different coders as a
function of bit rate. We see that the FAN algorithm performs best for all
test signals. The CCSP method based on polynomial interpolation performs
better than the CCSP method based on linear interpolation for test signals
mit100_1000 for bit rates below 1 bps, for test signal mit202_0800 for bit rates
between 1.17 bps 1.3 bps, mit203.0100 for bit rates above 1.7 bps and for an
area of test signal mit214_0300 for bit rates between 0.85 bps and 1.2 bps.

Incorporation of the maximum error into the CCSP algorithm as was done in
Section 4.2 can also be done in the polynomial interpolation case. This will
lower the maximum error and most likely reduce the execution time of the
algorithm.

Evaluation based on visual inspection

We accompany the performance evaluation of the coders with a visual inspec-
tion of the reconstructed signal. This is to show coding artifacts as they appear
for the different coders. We have chosen a short segment of the mit100.1000
signal representing regular sinus rhythm. The reconstructed signal segment is
shown at a bit rate of 1.0 bit per sample in Figure 4.19 and 0.5 bits per sample
in Figure 4.20. The original signal is also included. From the Figures it can
be seen that both the FAN and the CCSP compression algorithms smooth
out some of the details in the original signal, especially for low bit rates (see
Figure 4.20). The FAN algorithm produces a reconstructed signal in which
less details are obtained than what is the case for the the CCSP methods.
The CCSP coder based on polynomial interpolating approximation produces
a reconstructed signal which is less rough than the other methods.

Evaluation based on execution time

An important aspect of a compression algorithm is the ability to run in real
time. In order to shed some light upon the real time performance of the CCSP
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Original signal. Bit rate = 12 bits/sample

FAN

i

CCSP, linear approximation

.

CCSP, polynomial approximation

:

Figure 4.19: Short segment of reconstructed signal (taken from mit100_1000)
at 1.0 bits per sample.

compression algorithm presented in this section, we present some benchmarks
for the algorithm here, i.e., some execution times for the algorithm for different
compression ratios run on a specific machine.

The complexity of the algorithm for polynomial interpolation is of O(MN?)
as in the linear case, but the execution time is a bit longer in the polynomial
interpolation case. This is due to the computations necessary to find the
optimal polynomial coefficients. In order to cope with real time constraints,
the technigues presented in [38] may be applied.

Table 4.3 shows execution times for the CCOSP algorithm based on polyno-
mial interpolation for different block sizes and different number of extracted
samples. The experiments are run on the same machine, and with the same
test signals as in the previous sections. We have extracted different number of
samples for the different block sizes, in order to cover approximately the same
area of the rate-distortion curves shown in Figure 4.17.
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Original signal. Bit rate == 12 bits/sample

FAN

CCSP, linear approximation

CCSP, polynomial approximation

Figure 4.20: Short segment of reconstructed signal (taken from mit100.1000)
at 0.5 bits per sample.

From Table 4.3 it can be seen that for the CCSP algorithm based on poly-
pomial interpolation with a sampling frequency of 360 Hz, the real time re-
quirements are fulfilled for a block size of 100. For a block size of 200, the real
time requirements are fulfilled for a number of extracted samples, M, below
15. For larger block sizes, real time requirements are violated. Keep in mind
that the implementation of the coder used in all experiments throughout this
dissertation has not been optimized with respect to efficiency. The execution
times reported here are generated using straightforward C++ implementation
of the coder.

Having investigated the use of second order polynomials in reconstruction of
the signal, a natural question is: What about higher order polynomials? Will
polynomials of higher order than two result in a closer approximation to the
original signal at even lower bit rates than the techniques described so far?

These questions were investigated in the work done in {43]. The linear inter-
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CCSP with polynomial interpolation
Block size | Extracted samples, M | Execution time in sec.

5 0.10

100 10 0.12

30 0.16

5 0.41

200 10 0.47

30 0.72

50 0.92

5 0.92

i0 1.07

300 3G 1.59

50 2.08

70 2.47

5 1.65

10 1.88

400 30 2.82

50 3.77

70 4.62

90 5.32

5 2.59

10 2.96

500 30 4.63

50 6.03

70 7.43

| 90 8.72

Table 4.3: Execution times for the CCSP algorithm based on polynomial
interpolation run on an HP9000 C360.

polating algorithm presented in Section 4.1 was further developed to include
reconstruction of the signal based on polynomials of arbitrary order. Experi-
mental results from this work all showed the same tendency: Polynomials of a
higher order than 2 results in little or no gain in terms of PRD. As the order
of the polynomial is increased beyond 3, the performance is lowered in terms
of PRD.

Due to the limited success in terms of rate-distortion performance of this
approach, the idea of increasing the order of polynomials beyond two has
not been investigated further. However, this approach has given us valuable
insight into the problem. More details can be found in [43].
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4.4 Summary

In this chapter we have developed three new coders based on graph theoretic
approach to the problem of compressing ECG signals. We consider a digraph
where each vertex represents a sample point in the original ECG signal and
each arc signifies inclusion of the samples corresponding to its connecting
vertices as consecutive retained samples. We then seek a selection of arc and
vertices in the digraph which is to constitute a path from the first to the last
vertex in the graph, corresponding to a path from the first to the last sample
point.

Between the extracted vertices of the digraph, we apply two different arc
models:

¢ Linear interpolating approach, i.e., applying straight lines between the
elements of the extracted sample set.

e Second order polynomial interpolation, i.e., applying second order poly-
nomials between the elements of the extracted sample set. This is done
without increase in the computational complexity of the algorithm.

We also develop a method for incorporating two error measures into the CCSP
algorithm, the maximum error and sum of squared errors. The goal is to min-
imize the total error while respecting bounds on the maximum error and the
size of the compressed signal. We outline the idea behind efficient computation
of the maximum error, and show how to incorporate a bound on this error in
an existing algorithm for minimizing the total error. Unlike previously known
methods, the suggested algorithm enables us to control both the maximum
error and the sample reduction ratio.

Three algorithms are implemented based on the theoretic basis of this chap-
ter: A linear interpolating CCSP algorithm, a CCSP algorithm where both
the maximum error and sum of squared errors is incorporated and a CCSP
algorithm based on second order polynomial interpolation.

The complexity of the algorithms implemented is no worse than cubic in the
number of samples, and numerical experiments show that the algorithms can
be run in real time with minor modifications.

Compared to traditional time-domain algorithms, our approaches contribute
o0 a drastic reduction in the total error of the decoded signal, depeading on
the compression rate. From this we learn that frequently applied time domain
methods suffer from significant deviations from the theoretical optimum. In
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terms of maximum error, the traditional method performs well. However, vi-
sual inspection of the reconstructed signal indicates that the traditional meth-
ods is outperformed by our new, optimal methods.

When comparing different arc models applied in reconstruction of the signal,
we see that we obtain less total error by increasing the order of the polynomials
from one to two. Visual inspection of the signal confirms this. By increasing
the order of the polynomial further, we gain marginally from the order of two
to three in terms of total error, but by increasing the order of the polynomial
further, we lose in terms of total error. However, the increased execution time
occurring as a consequence of increasing the order of the polynomial from two
to three, indicates that there is little profit in this.



Chapter 5

Piecewise polynomial
non-interpolating compression

So far, we have looked at signal compression by the use of interpolating ap-
proximation between the elements of the extracted subset of signal samples.
However, by applying interpolation between the extracted signal samples we
insist on exact equality between the reconstructed and the original signal sam-
ples at the points of extraction while allowing the approximation to deviate
from the original signal at all other points. This imposes restrictions on the
algorithm. Removing this restriction will give us a higher degree of freedom in
extraction of signal samples, and thus hopefully a better representation of the
original signal. In this chapter we therefore demonstrate how the optimization
algorithm presented in Chapter 3 can be developed into an approach where
we apply piecewise non-interpolating approximation.

We look into two different arc descriptions in the non-interpolating case. Sec-
tion 5.1 is concerned with linear non-interpolating approach, where we use
straight lines in reconstruction of the signals, whereas Section 5.2 is devoted
to polynomial non-interpolating approach. In this case we apply second order
polynomials in reconstruction of the signal.

We still have to keep in mind that the computational complexity of the algo-
rithm is a crucial point and develop the new approaches in a way that ensures
a computational complexity that will be as low as possible.

73



74

Piecewise polynomial non-interpolating compression

Figure 5.1: Example of a short sequence of original and reconstructed signal
with a piecewise linear non-interpolating approach.

5.1 First order non-interpolating polynomial com-
pression

Applying linear interpolation in the reconstruction phase, the algorithm in
Section 4.1 is proven to converge in cubic time. In this section it is shown how
the idea presented there can be further developed in order to handle piecewise
linear non-interpolating approximation in reconstruction of the signal. This is
obtained without increasing the computational complexity of the algorithm.

An example of an original and a reconstructed signal with the piecewise linear
non-interpolating approach is shown in Figure 5.1. We see that the idea is
that if one segment ends in sample j, the next segment starts in sample 7 + 1.

5.1.1 Problem definition

We apply the definitions of signal samples, A and N given in Section 3.2.
Let the approximated signal be denoted by (k). In general (k) # ylk).
As before, we seek an appropriate compression sef, C == {n1,...,np} and the
corresponding approximated sample values §j(n1),... ,(nas) to represent the
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original signal. Assume n; = 1 and ny = N, and let ¢ and j be consecutive
members of C. The approximation is then given by

s e B —gE) L YnElid) i <N,
In this way we get a piecewise linear non-interpolating approximation to the
original signal starting in n; = 1 and ending in np = N.

Apgain, we are searching for a shortest path, Py, from node 1 to node N
through the graph G = (V, A) defined in Section 3.3. The length of each arc
(4,7} in A is given as the contribution to the total reconstruction error by
eliminating all nodes between i and j — 1 if § < N and between ¢ and j if
j = N. This length can be expressed as

_ [ S —ym)? i <N,
dij = { S _(G(n) —y(n))? if j=N. (5.2)

Notice that we let the piecewise reconstructed signal be given by a left-
continuous function. That is, we compute each arc (¢,7) for all legal com-
binations of ¢ and j, but we let its length d;; be based on 4,2 +1,... ,7 -1
as long as § < N. This way the functional value of the right index, j, is
discarded.

Defining the problem this way, we arrive at the same problem as in Section 3.2:
Minimize the length of Py under the constraint that Py contains no more than
M vertices. When all arc lengths are available this problem is solved with the
shortest path algorithms described in Section 3.4.

5.1.2 Solution method

The parameters describing each straight line segment of the approximation to
the original signal is found by minimizing the expression for d;; with respect
to these parameters. We do this by rewriting Equation (5.1) as

N L Yneli,f) if <N,
g(n) = agij + auj(n — 1) Vi & h ;]) i ";___ N (5.3)

We still have to pay attention to the computational complexity in the compu-
tation of the arc lengths, as straightforward computation of all the arc lengths
will result in an algorithm with a complexity of O(N 3). We apply a proce-
dure similar to the one described in Section 4.3.2. We express dy; in terms of
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agi; and a1;; and then put the derivative of di; with respect to these parame-
ters equal to zero. After inserting closed form expressions for the expressions
involving finite sums of powers of n, we arrive at an expression of the form

dij = (5.4)
-1
(4 = Dady; + (G — )i — i ~ Daogarij + 2(iars; — agiy) > yln) +
g
1 i-1 -1
gU =00 —1-1)(27 =2 - Dafy; — 2a1;; » ny(n)+ D y(n)?,
n=t n=t
where

22+ - 1) 30" y(n) ~ 697 ny(n)
agij = R vara ) (5.5)
-0 —-i+1)

1237 ny(n) = 6(i + 5 — 1) X3! y(n)
G-0G—i-DG—i11)
Equations (5.4), (5.5} and (5.6} are valid for the case where J < N. When
J = N, we have to substitute 7 + 1 for j. We will thus get similar expressions

to Equations (5.4}, (5.5) and (5.6) for the case where j = N,

We have to compute d;;, and thus agi; and ayy, for every legal combination
of ¢ and j. By applying a similar procedure to the one used in Section 4.1.1
all the arc lengths dj; are available in O(N?) time.

a1 = (5.6)

5.1.3 Encoding scheme

In general we need three parameters for each segment of the signal in order to
describe the piecewise linear non-interpolating approximation uniquely. The
exact optimization algorithm described in Section 5.1.1, represents each linear
segment of the signal between nodes n; and 7g4+1 by the approximated sample
values §(ng) and §{ngy1 —1) in addition to dn(x) = Mgr1 —ng. This is shown in
Figure 5.2. Before encoding, we change the representation of the line segments
slightly. The approximated sample values representing the end of one line
segment and the start of the next one is replaced by its mean, i.e.,

#(rrt1 — 1) + §{nppa)
2 H
and the distance between the mean and the approximated sample values, i.e.,

Imia(np41) = (5.7)

Hmia(k + 1) = Q (#(nr41 = 1) = Gmsa(ni+1)) = Q Gmia(npp1) — §(npsr)) |
(5.8
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Figure 5.2: Example of a short sequence of original and reconstructed signal.

where Q denotes quantization. We use a uniform quantizer with a step size
of 3Ag, in the numerical experiments in the next section. This manipulation
of the parameters will lower their dynamic range as compared to encoding all
the approximated sample values directly.

We thus have three parameters to be encoded for each segment of the sig-
nal: &,(x), fmia(na) and 8fmia(k). We apply separate VLC’s for each of these
parameters.

5.1.4 Numerical experiments and discussion

For evaluation of the performance of the coders we apply the PRD error mea-
sure given in Equation (2.3), the maximum error given in Equation (2.1), visual
inspection of the reconstructed signal as well as reporting some benchmarks
of the algorithm.
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We apply the same test signals as before, see Appendix A, and compare results
from the linear non-interpolating CCSP algorithm described in this section to
the linear interpolating CCSP algorithm descibed in Section 4.1 as well as
the FAN algorithm descibed in Section 2.2.1. Both the linear interpolation
CCSP algorithm and the FAN algorithm approximate the signal by linear line
segments represented by two parameters per segment of the signal. These
parameters are encoded according to the description in Section 4.1.2.

Evaluation based on the PRI measure

Figure 5.3 presents obtained PRD’s for the coders for bit rates between 0.2
and 1.8 bits per sample (bps). The FAN method is outperformed by both the
CCSP methods by a wide margin for nearly all test signals. An exception is
seen for test signal mit203_1100 fot bit rates above 1 bps and for test signal
mit207_1800 for bit rates below 0.35 bps, where the FAN method actually
outperforms the CCSP method based on linear non-interpolating approch.

The CCSP method based on linear interpolation gives lower PRD’s than the
non-interpolating approach for all test signals and all bit rates. The reason
why the interpolating approach performs best is that it represents each arc of
the signal with two parameters as opposed to three in the non-interpolating
case. Thus the increased quality of the reconstructed signal which we hoped
would be the result of the extra degree of freedom obtained by releasing the
interpolation restriction is lost in the rate-distortion tradeoff.

Evaluation based on the maximum error

Figure 5.4 presents obtained maximum errors for the coders. We see that the
FAN algorithm performs best for all test signals. Generally the CCSP algo-
rithm based on linear interpolation gives lower maxium error than does the
non-interpolating approach. An exception is seen for test signals mit203.1100
for bit rates below 1.35 bps and for test signal mit214_0300 for bit rates be-
tween 0.9 bps and 1.2 bps. As before, we can also incorporate a maximum error
bound into the non-interpolating approch as is done in Section 4.2 and thus
lower the maximum error for the COSP algorithm based on non-interpolating
approach.

Evaluation based on visual inspection

Figures 5.5 and 5.6 show a short segment of a reconstructed signal taken from
mit100.1000, at bit rates of 1.0 bps and 0.5 bps, respectively. The original
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Figure 5.3: PRD versus bit rate for the different coders and test signals. Solid
line: CCSP linear interpolation. Solid line with stars: CCSP non-interpolating
approach. Solid line with diamonds: FAN.
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Figure 5.4: Maximum error, D%, versus bit rate for the different coders and
test signals. Solid line: CCSP linear interpolation. Solid line with stars: CCSP
non-interpolating approach. Solid line with diamonds: FAN.
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Original signal. Bit rate = 12 bits/sample
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CCSP, linear non-interpolating approximation

Figure 5.5: Short segment of reconstructed signal (taken from mit100_1000}
at 1.0 bits per sample.

signal is also included. It is hard to say which method performs best for some-
one who is not an expert in the area of interpreting ECG signals. However,
we can see from the plots in Figures 5.5 and 5.6 that it seems like the CSSP
non-interpolating approach has a bit more jagged look than the CCSP inter-
polating approach. The FAN method seems to produce a reconstructed signal
where less details are retained.

Evaluation based on execution time

To get an impression of the real time performance of the CCSP algorithm based
on a non-interpolating linear approximation, we present some benchmarks for
the algorithm here, i.e., some execution times for the algorithm for different
compression ratios run on a specific machine.
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Original signal. Bit rate = 12 bits/sample
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Figure 5.6: Short segment of reconstructed signal (taken from mit100.1000)
at 0.5 bits per sample.

The complexity of the algorithm for linear non-interpolating interpolation is
O(MN?). This is the same complexity as for the linear interpolating case
and the polynomial interpolating case. However, execution time may vary a
bit between the different approaches, due to different number of computations
necessary ingside the loops of the algorithms.

Table 5.1 shows execution times for the CCSP algorithm based on linear non-
interpolating approach for different block sizes and different number of ex-
tracted samples. The experiments are run on an HP9000 C360 work station
with a 367 MHz processor and the test signal is extracted from the beginning
of mit100.1000. The execution times are based on the average of 10 runs.
We have extracted different number of samples for the different block sizes,
in order to cover approximately the same area of the rate-distortion curves
shown in Figure 5.3.

From Table 5.1 it can be seen that for the CCSP algorithm based on linear
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non-interpolating approach with a sampling frequency of 360 Hz, the real time
requirements are fulfilled for a block size of 100. For a block size of 200, the real
time requirements are fulfilled for all values of M except M = 70. For larger
block sizes, real time requirements are fulfilled for small values of the number
of extracted samples, M. As M grows, real time requirements are violated.
In order to cope with real time requirements, the technique presented in {38]
can be implemented.

Comparing Table 5.1 to Table 4.1 we see that, although the algorithms are
identical with respect to complexity, the non-interpolating approximation is
generally a bit slower than the interpolating one. This is due to the fact that
in the non-interpolating case, there are more computations to be performed,
as each arc of the signal is represented with three parameters as opposed to
two in the interpolating case.

5.2 Second order non-interpolating polynomial com-
pression

In Section 5.1 we apply straight lines in reconstruction of the signal. We saw
that the results were not as good as we hoped for. However, as we saw in
Chapter 4.3, second order polynomials generally resulted in a more efficient
compression scheme in terms of PRD, than applying straight lines. To re-
sume the thread of Chapter 4, it would therefore be interesting to investigate
if it is possible to get a better approximation to the original signal, at the
same bit rate, by using a polynomial of higher degree in reconstruction of
the signal. This is similar to the idea implemented in Section 4.3, but in the
present case we remove the interpolation restriction. This will give us another
degree of freedom, and thus hopefully a better representation of the original
signal. In this section we demonstrate how the algorithm in Section 4.3 can
be further developed in order to apply to non-inierpolating approximation by
the use of second order polynomials. This is obtained without increasing the
computational complexity of the algorithm.

5.2.1 Problem definition

We keep the notation for original sample values, compression set and number
of original and extracted samples as defined in Section 3.2, and define the
polynomial approximation

Yn € [nk,nk_,_l) i N1 < N,

Vn & [nk,nk+1] if Npy1 = N. (59)

Q(n) = fnk,ﬂk+1 (n)
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CCSP, linear non-interpolating approach
Block size | Extracted samples, M | Execution time in sec.
5 .02
100 10 0.04
30 0.10
5 0.08
200 10 0.16
30 0.50
50 0.76
5 0.18
10 0.38
300 30 1.15
50 1.81
70 2.39
5 0.32
10 0.65
400 30 2.08
50 3.38
70 4.49
80 5.53
5 0.51
10 1.01
500 30 3.23
50 5.34
70 7.31
a0 9.18

Table 5.1: Execution times for the CCSP algorithm based on linear non-
interpolating approach run on an HPS000 C360.

Here fo n,.,(n) denotes a presumed reconstruction of y(n) based on §(ny),
§{nr+1) and all intermediate samples. We wish to use a second order polyno-
mial in this context, that is we let

2 Vn€li,j) if j <N,

Vn € [i,f] if j= N. (5.10)

fiy(n) = Qoij + @1551 + agin

The parameters of f;; are computed for all possible indices { and 7, j > ¢ and
this will give us a piecewise non-interpolating approximation to the original
signal.

In the same way as the linear non-interpolating approach, we let fi;(n) be
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defined on the domain n € [¢, ) as long as j < N. That is, we represent the
signal by second order line pieces, f;;, which are not connected in the time
indices. This means that if one segment ends in the index j, the next segment
starts in j + 1. This is a natural way of representing a non-interpolating
approximation when working on digitized signals.

Working on the directed graph G = (V, A), we have to compute the length of
all the arcs in G. These lengths can be expressed as

i1
di; = Z(fij(’“') —y(n))* ifj<N,

J
di = 3 (fyln) —y(n))? 5 =N

By calculating the distortion, d;;, between any two points ¢ and j, j > ¢, up to
but not including j, as long as we have not reached the last sample point, N,
we ensure that the distortion is additive. This means that the distortion for
the total reconstructed signal is made up of a sum of the segment distortions,
which is an important property of the distortion measure in our application.

We are searching for the shortest path from vertex 1 to vertex N through the
graph. When all arc lengths are available, we are therefore faced with the
same problem we have solved before: Minimize the length of Py under the
constraint that Py contains no more than M vertices. This problem is solved
by the dynamic programming algorithm thoroughly described in Section 3.4.

The parameters ag;, ¢14; and ag;; describing each line segment of the ap-
proximation to the original signal are found by minimizing the expression for
d;; with respect to these parameters, in the same way as in the linear non-
interpolating case (only we have one more parameter in this case). We still
have to keep in mind that straightforward computation of all the arc lengths
will result in an algorithm with a complexity of O(N?). Fortunately, this can
be avoided by careful computation of the arc lengths similar to the procedure
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shown in Appendix B. We then arrive at expressions of the following form:

dij =

(7 —14) (a{%ij +{J —i = 1agijau; + g(%m'jazz‘j +afi )G i — 1)(2 — 2 - 1)

1 . R . 2 a‘%z‘j . . . . .9 . ..
+§mgwdim00_z—n-+§§U—zwnmg—m—ﬂxw — 35 — 643
j=1 §-1
+352 -+ 3 — 1) ) -+ 2(a1ijz' el amj — azijiz) Z y(n) -+ 2(2&23'3'2' - alij) Z n'g(n)
n=i n=t
i—-1 j-1
~2a9;5 any(n) + Zy(n)z, (5.11)
n= n=i
where
3 . ch
i = : — 3/ =8 +6ij+i—3i+2
R e R V) LA AR AR AP WO
j—1 i-1
~265 +4i—3) ) ny(n)+10Y nzy(n)) , (5.12)
n=i n=i
6 1
G = — e — e (6% — 14157
TGN i+ G i -9 (J—z—l( e
P OO o 2
+215° 4+ 16:°5 + 18ij — 215 + 44° — 94 ~z—§-6)2y(n)+.—~—,———
— j—t—1
F—1 i1
(1652 ~ 307 — 2ij — 146> -+ 11) > ny(n) — 30 > nzy(n)) . (5.13)
n=t nE=g

. 30 ((j2—3j+4z'j
N =001+ D0 —i- DG —i+2)(F-i-2)

i-1 i-1 i-1
+ - 3i4+2) Y y(n)~6(j+i~1)> ny(n)+6 > n2y(n)) (5.14)
n=t n=t =i
Equations (5.11), (5.12), (5.13) and (5.14) are valid for the case where j < N.

When j = N, we have to substitute j + 1 for j. We will thus get similar
expressions to Fquations (5.11) - (5.14) for the case where j = N,

5.2.2 Encoding scheme

In general we need four parameters for each segment of the signal, three to
define f;; and one to define its domain, in order to describe the piecewise
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Figure 5.7: Example of a short sequence of original and reconstructed signal.

non-interpolating approximation with second order polynomials uniquely. We
have several possible ways of representing these segments. We could encode the

parameters Qon, ny.1s Qlng,npp s B2ngnp,, and the distance, §,n) = npy1 — ng,
directly. However, this will lead to a need for four separate VLC’s as each
of these parameters have different domains. In addition the sensitivity with
respect to quantization errors is poor in this representation form.

In the optimization algorithm described in Section 5.2.1, we represent each

segment of the signal between vertices ny, and ng41 by the approximated sam-
ple values g(ny), §{ng+1 — 1) and y(w) in addition to the distance,

Jn(k) = npyi — N, as illustrated in Figure 5.7. It is clear that these three in-

terpolation points uniquely define aon; ny o 1s Ging g, 304 Gony ny,, - This way
we avoid the problem with the sensitivity regarding quantization error and we
can apply one VLC for the three interpolation points.

We apply a simple predictive encoding scheme and encode the first order
difference of the amplitudes. We thus have four parameters to be encoded for

each segment of the signal:

n(k) = Mhtl = N,

by = @ (3 (M) ) - 01 o),



88

Piecewise polynomial non-interpolating compression

0oty = Q2 (§ (npy1 — 1)) — Q2 (g} (W)) ,
Sgatk) = Qs (F (nis1)) ~ Q3 (9 (s — 1)),

with Qg, &k = 1,2,3 denoting quantization. The choice of quantizer will be
dependent on the scaling and sampling rate of the signal. In the experiments
presented in Section 5.2.3 we use a uniform quantizer with quantization steps of
size 3A¢. In addition we need the absolute value of the first sample point. We
apply separate VL.C’s for the runs and the quantized differential amplitudes,
Le., we use two different VLC’s in this context and encode &,y by one encoder
and 85, (k) Ogy (k)s 939 (k) DY a different encoder.

5.2.3 Numerical experiments and discussion

We use the same evaluation criteria as before: The PRD distortion measure
given in Equation (2.3), the maximum error given in Equation (2.1), visual
inspection of the reconstructed signal and overview of execution times on a
given machine.

For a description of the test signals, see Appendix A.

We compare the results from the FAN algorithm described in Section 2.2.1
and three different versions of the CCSP algorithm to the non-interpolating
polynomial CCSP algorithm described on the preceding pages. The three
versions of the CCSP algorithm included are the CCSP algorithm based on
linear interpolation described in Section 4.1, the CCSP algorithm based on
polynomial interpolation described in Section 4.3 and the CCSP algorithm
based on non-interpolating linear approximation described in Section 5.1.

The FAN algorithm and the CCSP algorithm based on a linear interpolating
approach approximate the signal by linear line segments represented by one
extracted sample value and one position index per segment of the signal. These
parameters are encoded by two separate VLC’s as described in Section 4.1.2.
The polynomial interpolating CCSP method and the linear non-interpolating
CCSP method both approximate the signal by line segments, each of which is
represented with three parameters. These parameters are encoded as described
in Section 4.3.3 and Section 5.1.3, respectively.

We then have five different coders, representing the compressed signal in dif-
ferent ways. The FAN algorithm and the linear interpolating CCSP method
use two parameters for each segment of the signal, the polynomial interpolat-
ing and linear non-interpolating CCSP algorithms, represent each segment of
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the signal with three parameters, and the polynomial non-interpolating opti-
mization algorithm described on the preceding pages uses four parameters to
represent each segment of the signal. It is clear that the more parameters we
have, the higher the bit rate will be. However, the performance is a trade-
off between rate and distortion, and the methods using more parameters in
representing the signal may also be able to get a closer approximation to the
original signal and thereby result in a higher overall performance.

Evaluation based on the PRD measure

Figure 5.8 presents obtained PRD’s for the coders for bit rates between 0.2
and 1.8 bits per sample (bps). The FAN method is outperformed by all the
CCSP methods by a wide margin for nearly all test signals, except an area of
test signal mit203_1100 for bit rates above 1 bps and an area of test signals
mit207.1800 for bit rates below 0.35 bps where the FAN method performs
better than the CCSP method based on linear non-interpolating approach.
At low bit rates (around 0.6 bps) the FAN algorithm has from 50 % to 155 %
higher PRD than the CCSP algorithm based on piecewise polynomial non-
interpolating approximations. At higher rates (around 1.0 bps) the difference
is smaller, but still significant.

Between the different versions of the CCSP algorithm, it seems like the CCSP
method based on polynomial interpolation performs best for low bit rates
{below 0.8 bps) while the CCSP method based on linear interpolation has
best performance for higher bit rates, in terms of PRD.

Evaluation based on the maximum error

Figure 5.9 presents obtained maximum errors for the different coders. We
see that the FAN method performs best for all test signals and all bit rates.
Incorporating the bound on maximum error as was done in Section 4.2, we
can limit the maximum error.

Which of the CCSP methods that exhibits least maximum error is dependent
on the particular signal and target bit rate. However, it seems as the CCSP
method based on linear non-interpolating approach suffers from large maxi-
mum error for many test signals. The non-interpolating approaches may suffer
from larger maximum errors than the interpolating ones due to end-of-block
effects. If the signal has abrupt changes at the end of a block, this will be
reflected in large maximum errors. This can be accounted for by taking signal
characteristics into consideration before splitting the signal into blocks.
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Figure 5.8: Coding performance for the different coders and test signals. Solid
line with crosses: CCSP, non-interpolating, second order polynomials. Solid
line with stars: CCSP, non-interpolating, linear. Solid line with circles: CCSP,
interpolating, polynomial. Solid line: CCSP, interpolating, linear. Solid line
with diamonds: FAN.
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Evaluation based on visual inspection

Figures 5.10 and 5.11 show a short segment of test signal mi{100.1000 recon-
structed at bit rates of 1 bps and 0.5 bps, respectively. The original signal
is also included. We see that the methods based on polynomial approxima-
tion, both the interpolating and non-interpolating approach, result in a re-
constructed signal with less obvious straight lines. In the non-interpolating
linear interpolating approach, the segmentation of the signal is obvious in the
reconstructed signal, especially at low bit rates (see Figure 5.11).

Which compression method performs best in terms of producing the recon-
structed signal with the highest fidelity based on visual inspection is hard to
judge for an unexperienced eye. It will also be dependent on the application
at hand.

Evaluation based on execution time

Table 5.2 shows execution times for the CCSP algorithm based on polynomial
non-interpolating approach for different block sizes and different number of
extracted samples. The experiments are run on the same machine with the
same test signal as in previous sections. From this table we conclude that
the CCSP algorithm based on polynomial non-interpolating approach with a
sampling frequency of 360 Hz, the real time requiremenis are not fulfilled.
However, by optimizing the code and implementing the method described in
Section 4.2 and/or the technique described in [38] this can be accounted for.

5.3 Summary

In this chapter we hawve shown how the optimal graph-theoretic approach pre-
sented in Chapter 3 can be further developed in order to release the interpo-
lation restriction and apply a piecewise non-interpolating approach. This is
done without increase in the computational complexity of the algorithm.

We develop two new coding strategies in this chapters

e An approach based on piecewise linear non-interpolating approximation
of the signal.

e An approach based on piecewise second order non-interpolating approx-
imation of the signal.
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Figure 5.10: Short segment of reconstructed signal (taken from mit100.1000)
at 1.0 bits per sample.
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Figure 5.11: Short segment of reconstructed signal {faken from mit100.1000)
at 0.5 bits per sample.
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CCSP, polynomial non-interpolating approach
Block size | Extracted samples, M | Execution time in sec.
5 0.30
100 10 0.31
30 0.38
5 1.20
200 10 1.29
30 1.62
50 1.90
5 2.73
10 2.92
300 30 3.72
50 4.42
70 4.98
5 4.92
10 5.24
400 30 6.66
50 8.00
70 9.21
90 10.29
5 7.76
10 8.35
500 30 10.60
50 12.80
70 14.73
90 16.61

Table 5.2: Execution times for the CCSP algorithm based on polynomial non-
interpolating approach run on an HP9000 C360.

Coding experiments show that the optimal time domain coders have signif-
icantly higher performance in terms of PRD than the traditional FAN al-
gorithm. This is verified by visual inspection of the reconstructed signal.
In terms of maximum error, the FAN method performs well. However, by
incorporating the maximum error into the CCSP algorithm as was done in
Section 4.2, the maximum error can be bounded.

Between the different CCSP methods developed in this dissertation, there are
no obvious winner in terms of performance. The CCSP method based on
polynomial interpolation generally performs best in terms of PRD for low bit
rates. For higher bit rates, above approximately 1 bps, the CCSP method
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based on linear interpolation seems to perform betier or at least similar to
the polynomial interpolating approach. The linear non-interpolating CCSP
approach cannot compete with the other CCSF methods in terms of PRD,
maximum errors, execution times or by visual inspection of the reconstructed
signal. The extra parameter necessary within this approach as compared to
the interpolating one is too expensive when it comes to encoding, and we thus
loose in the overall performance. The polynomial non-interpolating approach
yields better performance than the linear non-interpolating one, and achieves
in some cases, results similar to those of the interpolating approaches. How-
ever, considering the extra execution time for this algorithm as compared to
the interpolating ones, the interpolating approaches still exhibit the highest
overall performance. When it comes to execution times, the CCSP algorithm
with the maximum error incorporated is superior to the other CCSP methods.
Real time requirements are fulfilled for all block sizes for the sampling rate in
our system for this version of the CCSP algorithm.

The FAN method is outperformed by the CCSP methods in terms of PRD,
but it is superior in terms of maximum error. This is probably due to the fact
that CCSP processes the signal on a block based approach, and is only allowed
to extract an upper number of M samples per block. This limits the flexibility
of the algorithm. By allowing a variable number of samples to be extracted
from each bloc as discussed in Section 4.1.3 this problem can be accounted
for. Incorporating a bound on the maximum error into the algorithm as was
done in Section 4.2 is another way of coping with this problem.



Chapter 6

Compression of image
contours

In this chapter we develop our compression scheme further, to include the com-
pression of image contours. This is an important problem in for instance the
MPEG-4 standard [12]. The MPEG-4 standard has been developed through
several stages and was conformance tested in November 1999. The discus-
sion around the different approaches to shape coding in connection with this
standard, indicates that this is a fruitful research area.

Section 6.1 gives a short introduction to the area of 2-D shape coding. In
Section 6.2 we define the problem we aim to solve in a precise mathematical
manner. Section 6.3 is devoted to the solution method and finally in Section 6.5
we report some numerical experiments.

6.1 Background

A digital image is an image which has been discretized both in spatial coor-
dinates and brightness. Such an image can be considered a matrix whose row
and column indices identify a point in the image and the corresponding matrix
element value identifies the gray level at that point. The elements of such a
matrix are called image elements, picture elements, pizels or pels.

An enormous amount of data is produced when a 2-D light intensity function
is sampled and quantized to create a digital image. It is impractical to deal
with these amounts of data for storage, processing and communication re-
quirements. Image compression is therefore a huge research area, and interest

97
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in this area dates back more than 30 years. It has developed from bandwidth
compression by the means of analog methods in the early years to todays
efficient digital compression standards.

There are many ways to approach the problem of image compression. We
may view the image as a “black box” without considering what objects the
image contains in particular or without discriminating between different re-
gions of the image. Many image compression algorithms are based on this
point of view like the JPEG standard [48]. However, with new applications
like digital libraries and content-based storage and retrieval, new approaches
to image compression have evolved. Second generation image coding tech-
niques segment an image into regions and describe each region by texture and
shape [53]. Hence, the problem of representing the shape of an object in an
efficient way arises. This is the problem we are concerned with in this chapter.

A significant part of the literature on shape coding deals with coding of binary
shapes, i.e., images where all pixels are classified as belonging to one of the
two categories object or background. There are two classes of 2-D binary shape
coders [50}:

1. Bitmap-based coders where all pixels are encoded whether they belong
to an object or not.

2. Contour-based coders which encode the outline of an object.

We will focus on category 2 and develop an approach for compression of a given
contour, assuming that the contour is given to us. We will not be concerned
with the extraction of a contour from a given image.

There has been significant research activity in the area of compressing digital
planar curves, as documented for example in [40], [57], and [86]. The methods
described in these papers are either based upon some heuristics or they suffer
from restrictions making them suboptimal in some sense. As opposed to this,
we present a method that guarantees the smallest reconstruction error possible
when applying linear interpolation, given the number of retained curve points.

Many algorithms for data compression are based on the idea of extracting a
subset of points from the original data and linearly interpolating among them
in reconstruction of the curve. Which data points to be extracted depend
on the underlying criterion for the point selection process. To get a high
performance compression algorithm, much effort should be put into designing
intelligent point selection strategies.

In this context the points of the original curve are modeled as nodes in a
directed graph (digraph). Any pair of nodes are connected with an arc, the
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direction of which is given from the point order. We label the starting point
of our algorithm 1, and succeeding points are numbered in increasing order.
In the case of a closed contour, the first point is identical to the last one. We
will associate a subset of selected points with a path in the graph. Including
a particular arc in the path corresponds to letting the end nodes of the arc
constitute consecutive points in the extracted subset of points. We thus assume
that the contours to be compressed are given as an ordered set of discrete
points.

The length of each arc in the digraph can be defined in a variety of ways. Here
the length of the arc connecting two points (z;, ;) and (x5, ;) is defined as the
contribution to the reconstruction error from eliminating all points recorded
between (w3, y;:) and (z;,y;), and approximating them with linear interpola-
tion. Defining the problem in this way, minimization of the reconstruction
error can be recognized as solving the cardinality constrained shortest path
problem defined on the graph.

Applying linear interpolation in the reconstruction phase, the algorithm in
Section 4.1 is proven to converge in cubic time. In [38] it is demonstrated how
to implement the algorithm in a computationally efficient way. We will now
show that the idea presented in Section 4.1, can be applied to the problem of
compressing planar curves without increasing the computational complexity
of the original algorithm.

6.2 Optimization model

Denote the points constituting a planar curve by (z1,y1), (Z2,92), .. . , (N, UN).

Let each point be denoted by py = (zg, 4k}, £ = 1,2,... ,N. Let M denote

the bound on the number of extracted points and S denote the point set §

= {p1, P2, --- ; Pn}. We seek an appropriate compression set C' = {m, no,
. ,anm} and the corresponding points K = {Pn;, Pnyy --- Py} & S

As is illustrated in Figure 6.1, the approximation is given by

v (®reya) if ned,
(xmyn) B { (mnk + Ammynk + Ayn) it n ¢ C. (6.1}

The quantities Az, and Ay, are the z-component and y-component, respec-
tively, of the Euclidean distance between (zn,,yn, ) and (&n, %) In this way
we get a piecewise linear approximation to the original curve.

Define the directed graph G = (V, A} whose vertez set V = {1,2,..,N} and
arc set A = {(,7),1,j € V,i < j}. The set {ni,ng,... ,nuy) is said to be a
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Figure 6.1: Linear interpolation of a point on a contour based on two other
points.

path from ny to ny in G if ny,... ,np € V are distinct vertices and nq <
ng <+ < np. Bach arc (4, 7) € A represents the possibility of letting p; and
p; be consecutive members of K. Hence we actually explore G for a suitable
path from ny to ny. The set of vertices iraversed by this path will constitute
C. The length of each arc (i,j) € A is given as the contribution to the
total reconstruction error by eliminating all curve points between p; and Py,
approximating them with linear interpolation, and evaluating the Euclidean
distance between the original and reconstructed curve points. This can be
expressed as

i—1
dij = Y lIpn — palf®. (6.2)
SRS

Denoting the path from vertex 1 up to vertex n by Py, the length of this path
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will be given as the sum of the length of all arcs included in the path up to
vertex n.

Hence we are faced with the following problem : Minimize the length of Py
under the constraint that Py contains no more than M wvertices. With the
problem at hand here, this is a modified version of the problem presented in
Section 4.1.

6.3 Solution method

We now go on to show that the algorithm in Chapter 3 can be modified such
that it handles planar curves and still preserves its computational complexity
of O(MN?). As before, M is the bound on the number of extracted curve
points and N is the number of original curve points.

To be able to extract points from S in an optimal way, we need to know
the contribution to the reconstruction error introduced by including any two
points as consecutive members of K. The aim now is therefore to compute
the reconstruction error introduced by letting any two points be consecutive
members of K. We consider the point set § an ordered set and only allow two

points p; and p; to be consecutive members of K if ¢ < j.
N(N--1)
3

The graph G consists of arcs. From Equation (6.2) it is seen that the
expression for di; is a sum of j — ¢ — 1 terms. Straightforward computation
of all these arc lengths will thus result in an algorithm with a complexity of
O(N?). Fortunately, this can be avoided by careful computation of the arc
lengths. The arc lengths are given by

-1
dig = > |pn—pal? (6-3)

n=i+1

-1
. s 2
= Z [{&n; n) — (T yn |
n=i+1
g1
= Z ((C&n - a’n)2 + (fn — yn)2)
n=i-+1
i1
= 3 (&% — 2wnin + 25+ 5 — 2aln +95).
n=i+1
In general, indices ny and ng. can be denoted as ¢ and j, respectively. The
expressions for &, and ¢, are then given by

&n =z + Adn, (6.4)
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and
Un = ¥Yi + Ayn, (6.5)

which can easily be seen from Figure 6.1. By looking at Figure 6.1 we can ob-
tain expressions for Az, and Ay, by the use of some elementary trigonometry.
‘We observe that

Az, = lcosj3, {6.6)
Ay, = lsin 8. (6.7)

The expressions for cos 5 and sin3 can be deduced directly by looking at
Figure 6.1

B = it B , 6.8
T Vs m P (- wP 9
sin 8 = Y Y% (6.9)

Vs =@+ —w)®
We then need an expression for . From the cosine theorem we know that

e = a? + 0% — 2abcosq,

and thus
a® + b2 — ¢

TZ | 6.10
cos o 5 ( )

By looking at Figure 6.1 we observe that

o+ b2 —c?
I=5 = )

CoS & 5 , (6.11}
@ = (z; —2:)* + (5 — 9%, (6.12)
b = (20— 2:)? + (g — 1) (6.13)
¢ = (25— 20)” + (35— ). (6.14)

Inserting Equations (6.10), (6.12), (6.13) and (6.14) into Equation {6.11) we
arrive at

p o (@20 4 (s — y)? o (@0 — )" + (o — )" — (25— 20)® = (U~ 90)”
2/ () — @) + (yj — v)?
(6.15)

By inserting Equations (6.8), {6.9) and (6.15) into Equations (6.6) and (6.7)
we find the expressions for Az, and Ay, we are searching for. We can then
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insert these expressions for Az, and Ay, into Equations (6.4) and (6.5) and
obtain the following expressions for &, and #n:

By =
- af — sy + (@5 — 2)en + y7 — Yiys + (Y5 — Yelyn (2 — ), (6.16)
(e —2:) + (y5 — wi)?
Qn ==
vt @? — wimy + (w5 — )2 + 7 — yiys + (Y5 — Vidn (55 — ). (6.17)

(zj — 2} + (y; — wi)?

We have thus arrived at expressions for &, and ¢, as functions of ;, x5, ¥, ¥4,
z, and y,. By substituting the expressions for &, and §, into the expression
for di; in Bquation (6.3), we arrive at an expression of the form

~1 j-1
zg = Clz;r Z 33 + C23J Z Ty -+ <3ZJ Z Tnlin
n=t+1 7= z+1 n=t41
i-1
+ Casj Z Yn + Coi5 Z yn + Kijs
n==i+1 n==i-+1

where

Cuig = (y; — )" + (=5 — 2)*(yy —2.%‘)2
((z5 — )2 + (95 — v2)?)
yi(z; — 2:)3y; — wi) + (2? — iz — y? + way;) (25 — @) (y; — vi)
(5 — )2 + (y; - v:)?)
_ zi(y; — v)*
(5 — )2 + (5 — 92"
_olE — @il (y; — vi) + (=5 — 2)(y; — ws)®

¥

Coij = 2

o (@ o2+ 0PV
o mi(xj T )(yj‘ - yz) + (yz — Wiy 33 -+ 37155_7) (mj - mz) (?JJ i)
C47.g =2
({zj — )% + (w5 — wi) )
y’t(ﬂ:j - mz)4
((353 - Tz)z ( — %) 2)2)
C__W(-j““x’t) +($J_55z) (y; — )2
8 »

(25~ 2:)% -+ (y; — y)2)°
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(zi(ys — wa)* + (25 — )w? ~ vy (s — 21))°
(25 — @) + (35 — w:)?)°
1 (yi(zs — )? + (yj - wa)a? — wizyly; — yz'))g‘
(x5 — @:)? + (y; — w:)?)?

fy = (j—i—1)

(i

Each of the coefficients (;;, k = 1,... ,5, and K5 depend only on 4, x;, y;
and yj, and computing all of them can be accomplished by O(N?) operations.
Computing the sums 37} 41 %2, J:;H Tn, E}Tz_:é-u Tn¥Yn, Ef;;iﬂ Yn and
Efl;i 51 y2 for all legal combinations of i and J is performed in a recursive
manner, applying the same procedure as described in Section 4.1.1, and are
thus accomplished in O(N?) time. Hence the arc lengths d;; are available in

O(N?) time.

When all arc lengths are available, the actual extraction of contour points
takes place. This is accomplished by the dynamic programining algorithm
thoroughly described in Section 3.4. The computational complexity of the
total CCSP compression algorithm for image contours is Q(MN?2).

6.4 Coding scheme

Recall that the curve poinfs extracted by the CCSP algorithm are Pr, k£ =
L,...,M. Since the extracted curve points are along a natural boundary,
consecutive extracted points will be closely spaced. This indicates that there
1s a profit in encoding the points by a predictive scheme. In this context we use
a simple predictive scheme in which the differences between the consecutively
extracted points are encoded. We denote these differences by dzy, = Ty — Ty,
and 8yr = Yn, .y — Un,- In the case of a closed contour, the last extracted point
is discarded as this is equal to the first extracted point. When encoding the
difference between the extracted curve points, we need to encode the first
absolute point position as well.

We have several choices when encoding dxz; and Sy, k = L., M—-1 We
may either use a VLC approach, or we could apply a fixed-length codeword
scheme. In Section 6.5 we present results from both the VLC and fixed-length
codeword encoding scheme. The results from these two schemes will constitute
performance limits for the total compression system. The structure of the total
encoding system is ilustrated in Figure 6.2.
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Figure 6.2: Structure of encoding system.

6.4.1 VLC encoding scheme

In encoding the dzy and Sy, k=1,... ;M — 1, by a VLC, we have to choose
a strategy by which to generate the VLC table. We may apply a fixed VL.C
table, in which case the table is generated once and for all in advance. We also
have the choice of applying an adaptive VLC scheme, where the VLC tables
are designed to match the contour at hand perfectly. In this case we have to
consider side information due to the VLC tables which will also have to be
transmitted.

In our experiments in Section 6.5 we have chosen to consider the VLC tables
to be known by both encoder and decoder. Consequently we quote calculated
entropies. This will constitute a best-case performance for the coder.

6.4.2 Fixed-length codeword scheme

In the fixed-length codeword case, we are not concerned with the probabilities
of occurrence of the different source symbols. Instead we use a fixed number
of bits in encoding each of the dzy and dyg, £k =1,... , M ~ 1.

6.5 Numerical experiments and discussion

For quantitative evaluation of the performance of the coder described in Sec-
tion 6.4, the Mean Square Error is applied:

N
1 .
MSE = ’N’ Z iipn - pn[lza (6-18)
n==1

where p,, and P, denotes the original and reconstructed curve points, respec-
tively, and N is the total number of original curve points. As the MSE hardly
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qualifies as an authorative yardstick, it is supplemented by visual inspection
of the reconstructed boundaries.

The performance of the coding scheme is measured in bits per boundary point
{bpp). This is calculated by dividing the total number of bits needed to encode
the boundary approximation by the number of original boundary points.

Several contours were used in the coding experiments. Here we present two
test contours. The first is the contour of Australia and is shown in Figure 6.4,
This contour consists of 1708 points originally. The second is an extracted
area of a frame of the Miss America sequence and js shown in Figure 6.6. This
is the same contour used in [86]. ¥t consists of 90 points originally.

6.5.1 Evaluation based on the MSE

The rate-distortion curve for the two test contours are shown in Figure 6.3.
The solid line indicates the results by VLC encoding the extracted curve
points. Side information has not been taken into consideration here, and
this curve will thus serve as a best-case limit for the performance of the total
encoding scheme. The dotted line is the result from applying a fixed-length
codeword scheme to the extracted points. This constitutes a worst-case per-
formance limit for the coder.

6.5.2 Evaluation based on visual inspection

Visual inspection of the reconstructed curves is important in evaluating the
performance of the coders. Figure 6.4 shows the original test contour 1. In
Figure 6.5 the reconstructed contour at a bit rate of 0.5 bpp is shown. The
encoding technique applied here is fixed-length codeword scheme. Each of the
parameters dzy and dyy, is encoded using 7 bits, which means 14 bits per point.

Figure 6.6 shows test contour 2. The original contour is denoted as stars,
and the solid line indicates the reconstructed contour at a bit rate of 1.5 hpp.
Each of the parameters dz;, and fy;, is encoded using 5 bits in this case, which
means 10 bits per point.

In the case of a closed contour we have to choose a starting point for our
algorithm. Different starting points may lead to different results. However,
experiments show that for the test contours we have applied, different starting
points will only lead to marginal differences in terms of bit rates. For this
reason we have chosen not to emphasize the problem associated with selecting
a starting point.
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Figure 6.3: MSE as a function of bit rate for two test contours.

The complexity of the algorithm presented in this chapter is O (MN?). When
it comes to execution time, it will be approximately the same as for the CCSP
algorithm based on the linear interpolating approach presented in Section 4.1.
Whether or not this satisfies real time constraints depends on the application.
If it is to be used within digital libraries the real time constraints will be less
tight than for instance in a real tirne video compression system.

In the version of the contour compression scheme presented in this chapter
we have applied linear interpolation among the extracted signal samples. It is
possible to replace this with higher order polynomials without increasing the
computational complexity of the algorithm by using the method described in
Section 4.3. Applying higher order polynomials will smooth out the obvious
straight lines visible in the reconstructed contours in Figures 6.5 and 6.6. It
is also possible to incorporate multiple error measures by using the method
described in Section 4.2.

In order to evaluated the results obtained with the compression scheme pre-
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Figure 6.4: The original test contour 1.
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Figure 6.5: Reconstructed test contour 1 at a bit rate of 0.5 bpp.

sented in this chapter, it would be interesting to do an inter-method com-
parison with other compression schemes for image contours. In [86] several
approaches are presented which approximate a boundary by a polygon and
consider the problem of finding the polygon which leads to the smallest dis-
tortion for a given number of bits. In the experimental section of [86], it is
reported that test contour 2 is compressed to a rate of 1.88 bpp at an MSE
of 0.1 and to a bit rate of 2.22 bpp at an MSE of 0.05. As compared to our
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Figure 6.6: Test contour 2, both original and reconstructed.

method, the same test contour at an MSE of 0.1 reaches a bit rate of 1.09
bpp and at an MSE of 0.05, a rate of 1.63 bpp is obtained. In other words
our method is significantly better than these approaches for the reported bit
rates.

6.6 Summary

In this chapter it is demonstrated how the optimal graph-theoretic approach
presented in Chapter 3 can be further developed in order to compress planar
curves in an optimal way with respect to a given distortion measure. This
is done without increase in the computational complexity of the algorithm.
An approach is developed in which we approximate the original contour by
applying straight lines between a number of extracted boundary points. These
extracted boundary points are fitted in an optimal way with respect to recon-
struction error. We present a solution scheme resulting in an approach with a
complexity which is no higher than cubic in the number of curve points.

Our compression algorithm is based on combinatorial optimization theory.
By the very nature of our approach the distortion is guaranteed to be the
smallest possible of all techniques using linear interpolation, given the number
of retained curve points.

Coding experiments show that the optimal time domain compression method
presented in this chapter gives very good results. It is not straightforward
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to compare different encoding techniques to each other. However, when com-
paring the results obtained by our method to the ones in [86], it is evident
that our algorithm performs significantly better in terms of achieving lower
bit rates at the same distortion.



Chapter 7

Rate distortion optimal time
domain signal compression

The ECG encoding techniques presented in Chapters 3, 4 and 5 compress ECG
signals by representing them by signal samples that, after reconstruction, will
best represent the original signal given an upper bound on their number. After
the approximated samples are found they are encoded by a Variable Length
Code (VLC) approach. This leads to the best possible representation in terms
of the number of signal samples used in the approximation, but not necessarily
in terms of bits used to encode such samples. In this chapter we modify the
problem definition, taking the bit rate into consideration in the optimization
process {70, 71]. We thus solve the problem of minimizing the distortion of
the reconstructed signal given an upper bound on the number of bits. The
resulting solution is optimal in the operational rate distortion (ORD) sense.
Given the structure of the coder, no other technigue based on linear interpo-
lation will give a lower distortion for the same bit rate. In addition, we apply
an iterative procedure to find the underlying parameter probability distribu-
tion resulting in the locally most efficient ORD curve. Similar techniques,
with and without VLC optimization, have been used for compression of image
contours [86, 88, 58, 59, 87].

As opposed to the ECG compression algorithms introduced in the previous
chapters, which are all based on minimization of the same error measure,
namely the sum of squared errors !, we introduce two different solution. algo-
rithms in this chapter: The minimum maximum (min maz) algorithm, where
we minimize the maximum error, and the minimum average (min ave} al-
gorithm, in which we minimize the average error. We could use both of the

This does not apply to the FAN algorithm which Hmits the maximum error.

1i1
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error measures given in Equations (2.1} and (2.2) with both of the solution
algorithms as we have done in previous chapters, and thus have four different
solutions. However, we have chosen to combine the maximum error measure
with the min maz algorithm and the sum of squared errors with the min ave
algorithm, and we thus present results from two different sohution schemes in
this chapter. We compare the results from the two schemes both in terms of
Percentage Root-mean-square Difference (PRD), maximum error, visnal per-
formance and execution time.

"This chapter is organized as follows: In the next section the problem is defined
mathematically. We introduce the two philosophies that we apply to the
segment distortions: The maximum error and the sum of squared errors, and
discuss bit efficient representation of the retained samples. For each of the
two error measures, we introduce efficient solution methods in Section 7.2.
We introduce a shortest path solution method and show how the Lagrangian
multiplier method can be applied to solve our constrained problem as a series
of unconstrained problems in the min ave case, and as a single unconstrained
problem in the min maex case. Finally, in Section 7.3, experimental results
are reported and discussed, before we summarize in Section 7.4.

7.1 Problem formulation

In the following we introduce the notation used throughout this chapter. We
define the distortion measures and introduce an efficient way to count bits
before we go on defining the problem in mathematical terms.

Denote the set of sample points taken from a signal at constant time intervals
by S = {(L,y(1)),... ,(V,y(N))}. Define the set of admissible points by
Y = {(n,y(n,l)),n = 1,... aN;l = =P 1p}u where y(na "‘p)a v :y(nap)
are evenly distributed signal values with y(n,0) = y(n) being the median.
Denote the cardinality of Y by Ny = N(2p +1). Let y(n,1) — y(n,0) = Ag
where Ag equals the quantization step size of the quantizer applied to the
original signal. We seek a compression set C' = {ny,... ,ny} C {1,... ,N},
the cardinality M of C, as well as integers I1,... iy € {—p,... ,p}.

The above definitions suggest that the original sample set S be replaced by
the points § = {(ng, y(ne, i),k =1,... , M} implying a sample reduction
ratio equal to N/M. Since S C Y, the set Y represents an extension over S
as the set of points used to approximate the signal (cf. the method given in
Chapter 3).

To guide the selection of C and {1,... Iy, we assume a signal reconstruction
based on straight lines interpolating S. This could easily be extended to curves
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Figure 7.1: The original signal and the admissible sample set.

of higher order [87]. The approximation to the nth sample value is thus given
by

)+ y(ar1s let1) — Y, i) (n—
Np+1 — Tk

#(n) = ylng, I ng) for ng <n < nggy

(7.1)

Hence all samoples made in the time interval [ng, ngy1] are restored by linear
interpolation between (ng,y(ng)) and {ngy1, y(ng+1)). This is illustrated in
Figure 7.1 where we approximate the samples at time indices n = {4,... ,8}
by the straight line starting in ny = 4 and ending in ng;; = 8. In this case,
y(ng, 1) belongs to Y, but not to 5, while y{n;41,0) belongs to both ¥ and
S, which means it is one of the original signal samples.

7.1.1 Distortion measure

We already defined the maximum error distortion measure and sum of squared
distortion measure in Equations (2.1) and (2.2), respectively. However, infro-
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ducing the admissible point set, Y, corresponds to increasing the problem from
one to two dimensions. We thus need to fit the distortion measures to this
problem formulation.

Consider two arbitrary admissible sample points (n,y(n, 1)), (n’,y(v/, ') € Y
where n < n'. The maximum absolute distance between original and restored
signal implied by accepting these as consecutive members of S, e.g. by letting
ng =0, ey = 0, Ip = 1, lpey = I, is given by

dpgy = max |(t) — y(t)]. (7.2)
tE[nk,nk+1]

Given the same sample points as above, the sum of squared distances between
the original and the reconstructed signal is given by
T () ~ y(0) i ! < N,
dnln"l’ = g1 7o~ 2 . ! (7.3)
temy () —y(E))°  ifn =N,

In other words, the segment distortion is given as the contribution to recon-
struction error resulting from the straight line interpolation between points

(n,y(n, 1)) and (n',y(n/,1")).

By calculating the distortion between two points (n,y(n,1)) and (n,y(n', 1)),
7’ > n, up to but not including (n’,y(n',1')), as long as we have not reached
the last sample point, we ensure that the distortion is additive. This means
that the distortion for the total reconstructed signal can be made up of a sum
of the segment distortions, which is an important property of the distortion
measure in the min ave algorithm.

The segment distortion measure established so far will serve as a quality mea-
sure for parts of the signal. Based on the segment distortions defined in Equa-
tions (7.2} and (7.3) we can now define distortion for the entire reconstructed
signal. As pointed out earlier we apply two different solution algorithms: The
min maz algorithm and the min ave algorithm. We use the min maz algo-
rithm with the maximum error and the min ave algorithm with the sum of
squared errors. This means that in the min max case, the segment distortion
between any two points (n,y(n,1)) and (n',y(n',l')), where n' > n is given
by Equation (7.2). The maximum distortion of the total reconstructed sig-
nal, D, is then the maximum of all segment distortions among the segments
included in the final solution, that is,

oo __ 00
D% = k:l{?.a,‘}’!wl dnkzkank+1lk+1'

(7.4)
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If the segment distortion between any pair of samples is defined according to
Equation (7.3), which is the metric we use in combination with the min ave
algorithm, it is clear that the total distortion of the reconstructed signal, D,
is made up of a sum of the segment distortions of the segments included in
the final solution, that is,

M-1

D= Z dnk‘zklnk-f-lslk—{-]ﬂ g, Ngy1 € C (7.5)
k=1

7.1.2 Bit rate

Using straight lines in reconstruction of the signal, two parameters must be

encoded for each retained sample of the signal; the amplitude and the position.

We apply a simple predictive encoding scheme and encode the first order

difference of both parameters (first order DPCM), that is, each segment of the

signal is represented by the two parameters yx) = y{ng, lk) — y(ra-1,%-1)

and 8,3y = ng — ng—1,k = 2,3,..., M. In addition, we need to encode the
absolute amplitude of the first point, y(n1,{1).

We thus have a pair of (8;(1), dn(r)) to be encoded for each segment of the sig-
nal. From the discussion in Section 4.1.2, we know that we have at least two al-
ternatives when choosing between coding strategies. By encoding (Jyx), Sn(x))
by one single coder, we are able to utilize the dependency that exists between
them and thus we get a more efficient compression of the signal. In this con-
text we thus choose to encode the concatenated symbol (dy(x),0n(x)) by one
single coder.

The bit rate is based on a particular VLC table. This means that the output
of the DPCM system is mapped into variable length codewords, where the
length of the codewords is inversely related to the frequencies of the source
symbols represented by the codeword. The approach on how we generate the
VLC will be discussed in more detail in Section 7.2.5. As for now, let us just
assume that the VLC is given.

Let us denote the number of bits needed to encode the segment between points
(n,l} and (n',1") by Toper. The total bit rate, B, can then be expressed as

M-1

R= Trgly s teys (7.6)
k=1
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We are then faced with the following problem : Choose M, ny < ng < -+ <
npy and &y, ... {y € {~p,... ,p} which minimize the distortion of the recon-
structed signal, D or D*, under the constraint that the total bit rate, R, is
less than the maximum allowable bit rate, Ryq..That is,

min D%, subject to R < Rpeq, (7.7)
Sey
or
minD, subject t0 R < Rpgn- (7.8)
S5eY

We thus solve the problem for both distortion measures under consideration,
the one given by Equations (7.2) and (7.4) by Equation (7.7) and the one given
by Equations (7.3) and (7.5) by Equation (7.8).

7.2 Solution method

Having defined the problem in mathematical terms, we now look for a suit-
able way to solve it efficiently and optimally. The solution method will be
slightly different for the two classes of distortion measures that we consider.
However, both solutions are based on a shortest path Dynamic Programming
(DP) technique. By carefully defining the problem in terms of a graph, we will
show that both problems correspond to searching for a shortest path through
a predefined directed graph. The shortest path algorithm presented in this
chapter is not identical to the cardinality constrained shortest path algorithm
presented in Section 3.4 as we have now removed the cardinality restriction and
replaced it by bit rate restriction. In this section we first show the mapping
of our problem into a graph with the necessary notation. We then proceed to
introduce the shortest path solution method before we discuss the differences
in the solution methods for the min maxz case (Equations (7.2) and (7.4)) and
the min ave case (Equations (7.3) and (7.5)).

7.2.1 Graph formulation

In order to be able to apply a shortest path solution scheme to our problem, we
define the problem in terms of graph theory. We build a graph, G, from the ad-
missible sample set as shown in Figure 7.2. The graph is directed and is defined
as G = (V, A) where the vertex set V = {(n,l),n=1,... ,N,I = —p,... ,p}
and the arc set A contains vertex pairs ((n,[), (n', 1)}, where (n, 1), (n',I) € V,
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® Admissible sample set =
vertices in the graph.

Transition costs = edge
weights, warnep.

(i,~1) of Wi, 1,042, 1

Figure 7.2: The mapping from the admissible sample set into a graph.

n < n' and L,I' € {~p,...,p} as described in Section 7.1. Note that there
are no arcs in the graph between vertices with the same index n. This is due
to the fact that we can not extract two samples for the same time mdex. If
(ny,01), (na,lar) € V, the set (ny,l),... , (nar, lar) is said to be a path from
(n1,11) to (nag,lae) in G if (ng, ), ..., (nar, lar) € V are distinet vertices and
ny < ng < -+ < ny. Let P denote a path from vertex (ny,l1) up to vertex
(nar,lar). The cost of each arc ((n,1),(n',1')) € A is denoted wyp and has
different definitions in the min maz and the min ave cases. It is made up of a
combination of distortion and bit rate and will be explained in more details in
Sections 7.2.3 and 7.2.4 for the min maz and min qve methods, respectively.
The length of P is thus the sum of the costs of segments included in the path
up to vertex (nag,lpr). Defining the problem this way, we are looking for the
shortest path from vertex (ni,l1) to vertex (N,ip).

7.2.2 Shortest path algorithm

We apply a shortest path algorithm to the graph defined in Section 7.2.1 to
solve the problems stated in (7.7) and (7.8). The algorithm is a modified ver-
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sion of Dijkstra’s shortest path algorithm [20], where the modification consists
of taking into account the fact that we are working with a directed acyclic
graph. This occurs as a natural consequence of the data we are working with.

We now introduce the shortest path algorithm that we use to search for the
shortest path through our graph. To simplify notation, we assume for now
that the admissible sample set, ¥, equals the original sample set, 5. This
means that [ = 0 for every point, so this index is dropped.

Denote by C*(i) the cost of the shortest path up to vertex i. Let q(i) be the
back pointer used to remember the optimal path. At each vertex we keep
track of the length of the shortest path up to this vertex and the back pointer
to the previous vertex on this path. We then consider vertex i + 1. Clearly,
C*{i + 1) could equal C*(i) + w; 341, where w; ;o1 equals the cost of the path
from i to i+1. But C*(i+1) could also equal C*(j)+w; 441, § =14,i—1,... ,0.
In other words we are looking for the combination of the cost of one of the
optimal paths which we have already computed and a new cost introduced
by including vertex i 4 1 which leads to the smallest overall cost. Let us set
C*(0) = w_1,, the cost of encoding the absolute value of the amplitude of the
very first sample point. We then arrive at the following recursive equations:

C*(0) = w0, (7.9)
C*(j) = min{C™*(7) twg, 1= - 1,7 -2,...,0}. (7.10)

Equations(7.9)-(7.10) constitute a dynamic programming solution to the short-
est path problem. From the above formulation we present the resulting algo-
rithm in Figure 7.3. The optimal path can be found by backtracking the
pointers ¢{i),¢ = Ny — 1,... ,0. The formal proof of the correciness of this
shortest path algorithm can be found in [20].

From the algorithm in Figure 7.3 we see that there are two nested loops,
resulting in a time complexity of O(N%). However , it may not be necessary
to go through all of these computations. By using a window which restricts
how far apart two consecutive indices of C' are allowed to be, we can reduce
the time complexity to O(Ny - wy,) where wy;, is the window size. We will
demonstrate the impact of the window size on the operational optimality of
the solution in Section 7.3

The difference between the shortest path algorithm of Figure 7.3 and the
CCSP algorithm given in Section 3.4 is that the CCSP algorithm incorporates
the cardinality constraint into the CCSP algorithm and the problem is thus
solved by running the CCSP algorithm once, finding solutions for increasing
nurbers of M, recording the optimal solution as we go along, until the upper
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C*(0) = w_10; /{ The cost of including the very first point
fori=1,...,Ny ~1
C*{(i) = o0 // Start by labeling all vertices unprocessed
end
fori=0,...,Ny -2 // Possible starting points for an edge
forj=4i+1,... ,Ny -1 // Possible ending points for an edge

calculate segment distortion d;j;
calculate segment rate r;;;
calculate segment cost wy; as a function of di; and ry;;

H(C*(2) + wy; < C*(H)); // Is path shorter than the shortest so far?
C*(j) = C* (&) + wiy; // Update shortest length
q(f) =1 // Back pointer to previous vertex
// on shortest path
end
end

end

Figure 7.3: Shortest path algorithm.

bound on M is reached. In the shortest path algorithm of Figure 7.3 the rate
constraint is incorporated into the arc weight, w;;, and the optimal solution is
found by iteratively invoking the shortest path algorithm, in each run varying
w;; in an intelligent way, until the optimal solution is found. The difference
between the algorithm of Figure 7.3 and the CCSP algorithm of Figure 3.4 is
reflected in the complexity of the algorithm. While the CCSP algorithm has
a complexity of @(MN?), the complexity of the shortest path algorithm of
Figure 7.3 is of O(NE).

7.2.3 Distortion measure based on the maximum operator

In this section we introduce a solution method for the distortion measure
based on the maximum absolute distance as stated in Equations (7.2) and
(7.4). In order to solve this problem efficiently, we start out by solving the
dual problem, that is [85, 88},

min R, subject to D* <D, (7.11)
SeY
where DS, . is the maximum distortion permitted. We then solve the problem
stated in Equation (7.7) by iteratively solving the dual problem presented
here.
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To solve problem (7.11) the following definition of the cost function between
any pair of vertices (n,[) and (n/,!'), where n’ > n, is used

I cO o0
o = 4 0 W nby > Dimagy (7.12)
Trin'l's lf dﬁn" Ir S ng?am .

We apply this definition of the cost function of the arcs to the shortest path
algorithm of Figure 7.3. By assigning a length of infinity to any segment having
a distortion larger than D = the shortest path algorithm will never select
these segments to be included in a path. The length of every path through the
graph equals the rate of the approximation. Therefore the shortest of all paths
from the first to the last vertex in the graph corresponds to the minimum rate

solution and hence is a solution to problem (7.11).

Having solved the problem in Equation (7.11), we now present a method to
solve the problem of Equation (7.7). The optimal solution denoted by an
asterisk, i.e., R*(DZ,.), equals the minimum achievable bit rate for the max-

imum allowable distortion, D3 . A key issue here is the fact that R*{D3
is a non-increasing function of D, .. This means that D1, < D2 implies

R*(DI®,) > R*(D2%,). This can be proven as follows [85]:

Proof (by contradiction): Let compression set S; and rate R*(DLS,) be
solutions to minimum rate optimization problem 1. Let compression set Sy
and rate R*(D2%,) be solutions to minimum rate optimization problem 2.
Assume D2, < D2 and R*(DL%,) < R*(D%,). Then Sy is an admissible
compression set for optimization problem 2, since D19, < D2 . Since by
assumption R*(D1% ) < R*(D2%), §; is a better solution than Sy, which is
a contradiction since the selection algorithm employed to find Sy is optimal
(see the algorithm of Figure 7.3). Hence D1, < D22 implies R*(DL2,) >
R*(DZ2,).

The R*(DZ,.) curve thus has a monotonously non-increasing piecewise linear
form as illustrated in Figure 7.4. Utilizing this fact, we can use bisection {31]
to find the optimal D} such that R*(D}%.} = Rpqe. An iterative approach
is used, invoking the shortest path algorithm several times using bisection to

find a D} which results in R* (D% ) = Rpaa-

mal ma

The problem at hand is a discrete optimization problem and the function
R*(D,) is not a continuous function. For this reason there might not exist
a DF% such that R*(DX2.) = Ry, a5 shown in Figure 7.4. The proposed
algorithm will still find an optimal solution of the form R*{( D% ) < Rpeqy but
only after an infinite number of iterations. Therefore, if an optimal solution
is pot found after a given number of iterations, the algorithm is terminated.
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mar
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Figure 7.4: The characteristics of the R*(D2 .} function.

mar

7.2.4 Distortion measure based on the summation operator

In this section we introduce a solution method for the distortion measure based
on the sum of squared distances as stated in Equations (7.3) and (7.5). Again,
we will use the shortest path algorithm in Figure 7.3 to solve the problem. A
key issue in this algorithm is the definition of the cost function wpy.

In order to be able to solve the problem given in Equation (7.8) efficiently
and optimally we use the Lagrangian multiplier approach [27]. This approach
is extremely useful for solving constrained resource allocation problems. We
will use it to relax the constraint, so that the relaxed problem can be solved
using the shortest path algorithm. The basic idea behind the approach is to
include the constraint into the objective function with a Lagrangian multiplier
A. This results in a Lagrangian cost function of the following form

JC = D%+ \.RC, (7.13)

where A is the Lagrange multiplier and the superscript C denotes that the
expression is a function of the compression set C under consideration. The
minimization of the expression given in Equation (7.13) is well suited to be
performed with the shortest path algorithm.

It has been shown in {27, 89] that if there is a A\* such that
C* = arg m&n JS, (7.14)
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and which leads to R = Rpaz, then C* is also an optimal solution to (7.8).
As A sweeps from zero to infinity, the solution to (7.14) traces the convex hull
of the operational rate distortion function, which is a non-increasing function.
Therefore, by solving the unconstrained problem (7.14) repeatedly for different
A’s we can find the optimal solution to the constrained problem (7.8).

Having introduced the Lagrangian multiplier approach, the edge weight be-
tween any two graph vertices (n,!) and (»',I'), n' > n, L,I' € {—p,...,p}, is
given by

Wt = Attt + A oot (7.15)

Applying the shortest path algorithm with this definition of an edge weight,
leads to the minimization of

Zﬁ{—ﬁ_ll wnklk,nk+1lk+1: ng € 01 lk < [‘P:P]: (716)

and, hence, to an optimal solution to the unconstrained problem (7.14). By
solving this unconstrained problem repeatedly for different A’s we can find the
optimal solution to the constrained problem (7.8).

The time complexity of the Lagrangian approach proposed here will be directly
proportional to the number of iterations needed to achieve the target bit rate.
The shortest path algorithm is invoked several times with different X’s until
A* is found. By applying intelligent search criteria for A*, such as the Besier
curve fitting [87], execution time can be kept low.

7.2.5 VLC optimization

Our claim of optimality is clearly dependent on the chosen code structure, the
width of the admissible sample point band, the size of our window restricting
how far apart two consecutive points of C may be, and, to a great extent, on
the VLC tables. If we base the algorithm on a fixed VL.C table generated off
line, this will clearly make the performance of the coder signal dependent as
it is hard to find one VLC table to match the characteristics of different ECG
waveforms. In this case, operational optimality of the solution could only be
claimed in the following sense:

C* = arg Hgn{DC +A-RYVCL}. (7.17)

We could choose to base our scheme on having a set of indexed VLC tables in
both the encoder and the decoder and switching between these as the signal
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changes. This way we will avoid side information dye to transmitting the VL
table between encoder and decoder.

% ; C . pC
C —a,rgcr;rjlrzenF{D + AR}, (7.18)

where f is a member of the family of context-conditioned parameter probabil-
ity mass functions F. As g result the signal approximation and the parameter
probability model are found Jointly and the VLC locally optimized.

To start out the iterative brocess, depicted in Figure 7.5, the proposed ORD
optimal coder processes the ECG signal with an injtial fixed rate-distortion
tradeoff, A, and an initial probability mass function for (dy() Sn(i) |V LCips).
Having coded the input sequence at iteration ¢, based on the probability mass
function f(), we use the frequency of the output symbols to compute £
and then use f*1() as basis for the VLC table in iteration ¢+ 1. The iterative
process of Figure 7.5 stops when the cost improvement is less than e. At this
point an outer loop checks if the total bit rate R, is close enough to the target
bit rate, B,,,.. If it is, the symbols are encoded by a variable length coder.
If not, another guess for A is made, and the Process is repeated. Since the
sequence of selected points at iteration # is available to the coder at iteration
t+ 1, with the VLC's derived from that Sequence, the coder can, at the very
least, select the same path and thus, incur g lower or equal Lagrangian cost.
The lower or equal cost is 2 consequence of the VLC tables optimized for
that particular path. Therefore, the cost ¢ in Figure 7.5 is a non-increasing
function of iteration ¢ and, hence, the iterative process converges to a local
minimum.

7.3 Numerical experiments and discussion

measure, given in Equation (2.3) and the maximum error given in Equation
(2.1). We evaluate these ag a function of bit rate. We supplement these
eIror measures by visual inspection of the reconstructed signal in addition to
reporting some execution times.

The recordings used in the coding experiments in this section are described in
Appendix A.
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@ l l Compiute a new A [

Original ECG signal
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dist?ibuﬁign waveform encoder C=D+XR

Compute a freq.
distribution

Bit stream | Variable
Length Coder

Figure 7.5: The structure of the encoder.

We process the input signal in blocks of 500 time indices at a time and use
an admissible control point set with p = 3, corresponding to introducing three
points on each side of the original samples. To keep execution time down, we
introduce an analysis window restricting how far apart two successive samples
of C are allowed to be. This will lead to a minimal sacrifice in optimality as
is shown in Figure 7.6. From the figure we see that the window size has most
severe impact on low bit rates. This is natural as low bit rates correspond to
extraction of few points. The average distance between two consecutive points
increases as the bit rate decreases. In our experiments we have set the window
size to 50.

We compare the results in terms of PRD versus bit rate, from the compression
schemes presented in this chapter to the results from the CCSP algorithm
based on polynomial interpolating approximation presented in Section 4.3,
as well as the 32-tap ECG optimized filter bank described in Section 2.3.1.
The reason for choosing the CCSP method based on polynomial interpolating
approach for comparison in terms of PRD is that this method shows good
results, especially for low bit rates, cf. the discussion in Section 5.2.3. When
it comes to the maximum error we compare the results from the approaches
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Figure 7.6: Evaluation of different window sizes.

developed in this chapter to the FAN algorithm presented in Section 2.2.1 as
well as the ECG optimized filter bank. As we have seen in the experimental
sections in Chapters 4 and 5, the FAN method gives good results in terms
maximum error, and it is therefore interesting to compare our results to this
compression scheme in this case.

We refer to the method introduced in this chapter as joint operational rate
distortion and VLC optimal approach (ORD-VLC optimal approach) and dis-
tinguish between the two different distortion measures implemented by using
the notation min max ORD-VLC optimal approach for the method introduced
in Section 7.2.3 and min ave ORD-VLC optimal approach for the approach
introduced in Section 7.2.4.

7.3.1 Ewvaluation based on the PRD measure

Figure 7.7 presents operational rate-distortion plots for the various coders for
bit rates between 0.2 and 1.4 bits per sample (bps).

For the test signals mit100.1000 and mit207_1800, the min ave ORD-VLC
method outperforms all other methods by a significant margin, especially for
low bit rates (below 0.8 bps). For the other test signals, the min ave ORD-
VLC has the best performance among the coders except for a small region
for the mit202_0800 test signal (above 1 bps) and some areas of PRD’s above
10 for some of the other signals, where the filter bank method has a slightly
better performance.
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7.8 Numerical experiments and discussion

The filter bank method performs similarly to the min maxz ORD-VLC method
for test signal mit100.1000, mit202_0800 and mit214_0300. For the two test
signals mit203_.0100 and mit203_1100 the filter bank outperforms the min max
ORD-VLC method, while for test signal mit207.1800 it is the other way
around.

The difference in performance of the coders for the various test signals is
related to the nature of the signals. Test signal mit207_1800 has approximately
half the dynamic range of mit203_0100. Higher dynamic range of the original
signal leads to a possibly higher number of different symbols representing the
signal and this will affect the ORD-VLC methods and the CCSP method since
they are based on extraction of points in the plane. The filter bank method
will not be affected in the same way as its performance is related to extraction
of frequencies rather than points in the plane.

7.3.2 Evaluation based on the maximum error

Figure 7.8 shows obtained maximum errors versus bit rates for the different
coders and test signals. We see that the min maz ORD-VLC optimal approach
has superior performance in terms of maximum error for all test signals and
all bit rates. This indicates that even though the FAN algorithm shows better
results than the CCSP algorithms developed in Chapters 4 and 5 and the
ECG-optimized filter bank presented in Section 2.3.1 in terms of maximum
error, there is still much more to be gained.

The min ave ORD-VLC approach is based upon minimization of the same dis-
tortion measure as the ECG-optimized filter bank, namely the sum of squared
errors. From Figure 7.8 we see that the min ave ORD-VLC approach per-
forms better than the filter bank for test signals mit202_0800, mit207_1800,
and for most bit rates for test signals mit100.1000. For the other test signals
the filter bank has similar or better performance to the min ave ORD-VLC
approach.

The reason for the apparently casual variation in performance between the
min ave QRD-VLC approach and the filter bank, is probably that they both
suffer from the same artifact: They do not attempt to minimize the maximum
error, and hence, if there is a large deviation between the original and re-
constructed signal somewhere in a long signal sequence, this will have crucial
impact on the maximum error.
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Figure 7.8: Coding performance for the different coders. Solid line with stars:
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min max ORD-VLC optimal approach with p = 3. Dotted line: ECG opti-
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7.3.3 Evaluation based on visual inspection

The reconstructed signal is shown at a bit rate of 1.0 bits per sample in
Figure 7.9 and at 0.5 bits per sample in Figure 7.10. The original signal is
also included. From the plots we can conclude that the FAN algorithm does
not include as much details as the other methods in the reconstructed signal.
This is especially prominent at low bit rates.

The ECG-optimized filter bank includes more of the ripple noise seen in the
original signal in the reconstructed signal than the other methods. This is
undesirable noise, and will often be removed by a filter before transmission
or storage of the ECG signal. The ORD-VLC optimal approaches, the CCSP
method based on polynomial interpolation and the FAN algorithm smoothes
out this ripple noise.

Working with biomedical signals, we could argue that some parts of the signal
are more important than others. That is, some parts of the signal may contain
more critical diagnostic information than others. Ideally we would like to
compress the signal losslessly, but in many applications this is not an option.
Given a fixed bit budget, it would therefore make sense to spend more bits on
some parts of the signal and thus reconstruct some parts of the signal with
higher fidelity while allowing other parts to have a larger distortion. The
approaches proposed in this chapter are very flexible in this respect. We could
easily adjust the bit budget spent on different parts of the signal simply by
adjusting the width of the admissible sample point band [51}.

7.3.4 Evaluation based on execution time

To get an impression of the execution time of the ORD-VLC optimal ap-
proaches presented in this chapter, we report some benchmarks in the fol-
lowing, i.e., some execution times for the algorithm for different compression
ratios run on a specific machine. We only report execution times for the
min eve ORD-VLC method, the min maz ORD-VLC approach will have
similar performance in terms of execution time.

The complexity of the min ave ORD-VLC algorithm is of O{Nyw.y,) where
Ny is the number of points in the admissible point set ¥, and wy;, is the
window size.

Table 7.1 on page 134 shows execution times for the min ave ORD-VLC ap-
proach for different. block sizes and different number of points in the admissible
sample point band. The experiments are run on an HP9000 C360 work station
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Figure 7.9: Short segment of reconstructed signal (taken from mit100.1000)
at 1.0 bits per sample.
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Figure 7.10: Short segment of reconstructed signal (taken from mit100-1000)
at 0.5 bits per sample.
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with a 367 MHz processor, and the test signal is extracted from the beginning
of mit100_1000. The execution times are based on the average of 10 runs.

From Table 7.1 it can be seen that for the min ave ORD-VLC approach with
a sampling frequency of 360 Hz, real time requirements are fulfilled for one
run of the algorithm, for all block sizes as long as the size of the admissible
sample point set is kept low, i.e., p = 0,1. For larger values of p, real time
requirements are violated. Keep in mind that in the version of the min ave
algorithm implemented in this chapter, we iterate on the VL.C tables in order
to find the underlying parameter probability distribution best matching the
source symbols. If we apply a fixed VL.C table generated off line, the execution
time of the algorithm will be shorter than the ones reported in Table 7.1.

In order to obtain the optimal solution we have to invoke the min ave ORD-
VLC algorithm repeatedly for different values of A to find the optimal solution.
The algorithm has to be invoked at least three times, maybe more. Wee see
that even though the algorithm is invoked three times, the real time require-
ments are still fulfilled for p = 0, i.e., when the admissible sample point set
equals the original signal. The execution time may be lowered by restricting
the size of the window wy,, further, by limiting the width of the admissible
sample point band, p, placed around the original signal and by applying an
intelligent search criterion for the \ resulting in the optimal solution [85].

7.3.5 OQutput symbol distributions

Treating tuplets (Jy(k),ﬁn(k)) as one concatenated symbol was motivated by
the hypothesis that the optimal VL.C’s for the two components are dependent,
i.e., that knowledge of a particular Syr) affects the distribution of On(r) at con-
vergence, and vice-versa. To test this hypothesis we observe, in Figures 7.11
and 7.12, probability distributions at convergence of signal mit100_1000 en-
coded at 0.38 and 1.15 bps, respectively. Clearly, the two locally optimal
distributions are far from being uniform and exhibit significant dependency
between the horizontal and the vertical displacement components. In partic-
ular, it is evident from the figures that symbols having both dy(r) and On(t)
components large are assigned probabilities close to zero or very long code
words, while symbols with only one of the components large are assigned rel-
atively high probabilities, or shorter code words.

7.4 Summary

In this chapter we have developed an operationally optimal rate distortion
algorithm for ECG signal compression. By the very nature of our approach,
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Figure 7.11: Symbol probability distributions at convergence of signal
mit100.1000 encoded at 0.38 bps.
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Figure 7.12: Symbol probability distributions at convergemce of signal
mit100_1000 encoded at 1.15 bps.
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min ave ORD-VLC optimal approach
Block size | Adm. band, p | Execution time in sec.
0 0.08
0.22
0.32
0.42
0.15
0.45
0.70
0.97
0.22
0.68
1.09
1.52
0.29
0.91
1.46
2.07
0.36
0.15
1.84
2.62

100

200

300

400

500

GO b P O Q0 B = O B = O B e D b

Table 7.1: Execution times for the min ave ORD-VLC optimal approach
CCSP run on an HP9G00 C360.

no other technique based on linear interpolation will result in a smaller recon-
struction error for the same bit rate, given the structure of the coder. The
approach is not dependent on a particular VLC, it computes the probability
distribution of the parameters resulting in the locally most efficient ORD curve
as part of the compression scheme.

We apply two philosophies for the distortion measure in our approach, the
sum of squared errors and the maximum absolute distance. Based on these
two distortion measures we present two solution schemes, both based on a
shortest path algorithm.

We compare the performance of the coders to both the CCSP ECG compres-
sion method based on polynomial interpolating approach presented in Sec-
tion 4.3, the FAN method presented in Section 2.2.1, as well as a state of
the art filter bank coder presented in Section 2.3.1. Coding experiments show
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that the operational rate distortion (ORD) coding techniques based on mini-
mization of the sum of squared errors has superior performance compared to
both the CCSP algorithm based on polynomial interpolation and the filter
bank approach in terms of PRD. The min mazr ORD-VLC method has su-
perior performance compared to the traditional FAN algorithm and the filter
bank method in terms of maximum error. These results are verified by visual
inspection of the reconstructed signal.
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Chapter 8

Summary and conclusions

In this dissertation we have investigated the use of optimization theory in
signal representation and compression. The focus has been on designing new
approaches to signal representation and compression based on shortest path
methods.

As opposed to traditional transform-based compression methods, we propose
a new way of looking at the compression problem. Formulating the problem in
terms of graph theory, shortest path methods are applied to solve the problem.

By the very nature of our approaches, the problem is solved in an optimal
manner with respect to the given constraints. However, as the methods may
be somewhat computationally expensive we focus on solving the problem in
a computationally effective way. This involves preprocessing the graph and
computing all arc weights in an intelligent way.

8.1 Contributions of this dissertation

1. A general theoretical framework for signal compression from an optimiza-
tion point of view - the Cardinality Constrained Shortest Path method
(CCSP) - is developed in Chapter 3. The methodology is based upon
modelling the problem in terms of graph theory, thereby making it suit-
able for solving with a shortest path algorithm. We also show that,
assuming the arc weights in the graph can be computed in a compu-
tationally effective way, the compression problem can be solved with a
complexity no higher than cubic in the number of samples.
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2. In Section 4.1 a new compression scheme based on the encoding of linear

line pieces which are used to approximate the signal is developed. The
segments are fit in an optimal way under the given constraints. The
general theoretical framework from Chapter 3 is applied in solving the
problem. We focus on effective computation of the arc weights in order
to keep the compufational complexity as low as possible.

. In ECG compression both the sum of squared errors and the maximum

error are frequently used as distortion measures. In Section 4.2 an ap-
proach based on incorporation of both these error measures into one
compression scheme is developed. Again, it is crucial that this is done
in a computationally effective way. We thus propose an effective way
of limiting the maximum error by the use of convex hull theory. The
problem is formulated in a way that is suitable for usage in combination
with the theoretical framework from Chapter 3.

. In Section 4.3 and Appendix B the compression algorithm is further de-

veloped, extending it to an approach where polynomials of second order
can be applied in approximation and compression of the signal. We still
focus our attention on effective computation of all the arc weights, and it
is shown in Appendix B how this is done in the polynomial interpolating
case.

. Releasing the interpolation restriction, we propose new versions of the

compression scheme in Sections 5.1 and 5.2. We do no longer insist
on exact equality between the original and the reconstructed signal at
any specific points, i.e., a non-interpolating approach is developed. We
develop two new coders, one based on linear approximation and one
based on second order approximations in Sections 5.1 and 5.2, respec-
tively. The algorithms developed are extensions of the CCSP algorithm
developed in Chapter 3. This is obtained without increasing the compu-
tational complexity of the algorithm. Unfortunately the results are not
as good as we hoped for, but the approach gives valuable insight into
the problem.

. In Chapter 6 an image contour compression scheme is developed. The

approach is based on the fitting of linear line segments to the original
contour in an optimal way under the given constraints. This is a modified
version of the algorithm presented on Section 4.1. Its performance is
superior when compared to similar compression schemes Hke the one
in [86].
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7. Modifying the constraint in our optimization problem applied in the pre-
vious chapters, we develop a theoretical framework for signal compres-
sion in a rate-distortion optimal sense in Chapter 7. Instead of limiting
the number of points in our solution, we rather develop an approach
limiting the number of bits needed to encode such points. We develop
two approaches, one minimizing the maximum error and one minimizing
the sum of squared errors, in Section 7.2.3 and 7.2.4, respectively.

With each of the methodologies presented in Sections 4.1, 4.2, 4.3, 5.1, 5.2,
7.2.3, 7.2.4 and Chapter 6 belongs implementation of coders based on the
respective approaches.

Most of these contributions, as well as related material, have also been pub-
lished in {64, 66, 65, 67, 69, 71, 70, 68, 4].

8.2 Conclusions from this dissertation

Several conclusions may be drawn from the experiments reported in this dis-
sertation. Below is a list of the main conclusions:

o Looking at the compression problem from a graph-theoretic point of view
is untraditional, but very fruitful. In Chapter 7 we see in the coding
experiments that the rate distortion optimal approaches developed in
this chapter generally perform much better than both traditional and
more recently developed time domain ECG compression methods as well
as a state of the art filter bank coder.

o We have investigated the use of polynomials in compression of ECG sig-
nals. From this we draw the conclusion that applying a polynomial of
order one, i.e., linear line segments, in approximating the signal gives
promising results. However, the straight lines are prominent in the re-
constructed signal. Increasing the order of the polynomial from one to
two, increases the performance of the compression scheme both in terms
of PRD and visual appearance, especially at low bit rates. Increasing
the order of the polynomials from two to three, results in marginal gain
in performance in terms of PRD. However, the increased execution time
introduced as a consequence of increasing the order of the polynomial
from two to three, indicates that this may not be worthwhile. Increas-
ing the order of the polynomial beyond three results in a decreasing
performance of the total compression scheme.
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Error Arc Interpol./

Algorithm | measure description Non-interpol. Complexity
CCSsp D Linear Interpol. O(MN?)
CCSP D,D*® Linear Interpol. O(N%logN + MK)
CCSP D Sec. order pol. Interpol. O(MN?%)
CCSP D Linear Non-interpol. O(MN?)
CCSP D Sec. order pol. | Non-interpol. O(MN?)

min ave

ORD-VLC D Linear Interpol. NuMiter O{Wyin Ny )

min mazx

ORD-VLC D> Linear Interpol. nuMiter O{Woyin Ny )

Table 8.1: Overview of the complexity for the different algorithms developed.

o We have demonstrated that it is possible to combine a constrained short-
est path algorithm of complexity O(M N?) with arc models being poly-
nomials of order one or two, both interpolating and non-interpolating
approaches, without increasing the computational complexity of the al-
gorithm. An overview of the complexity of the different approaches
developed in this dissertation is shown in Table 8.1.

8.3 Directions for future research

Approximating signals by the use of polynomials of varying
orders

In this dissertation we have compressed signals by keeping the order of the
polynomial constant for one given run. It is doubtful that this is optimal.
Some pieces of the signal may be represented most efficiently by a second
order polynomial, while others, where there is less activity, may be better
approximated using linear line segments. Coding with a varying order of the
polynomial involves one extra parameter per arc of the signal, namely the order
of the polynomial. Most likely, this parameter will have a small dynamic range
and will thus hopefully not give a big contribution to the total bit rate. It
would be fruitful to examine an approach based on this idea further.

Minimization of maximum error

A main challenge for the different versions of the CCSP algorithm developed in
Chapters 4 and 5 is the of limitation of maximum error. It would be fruitful to
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develop an approach based on the CCSP algorithm minimizing the maximum
€ITOT.

Extraction of a variable number of samples from each signal
block

As we have seen in the experimental sections in Chapters 4 and 5, the CCSP
algorithm faces a challenge in coping with the maxiraum error. This may be
partly due to the fact that it is only allowed to extract the same predefined
number of samples from each block of the signal. If the signal contains high
frequencies, the peaks resulting in the overall lowest cost may be left out. One
such peak in a long signal sequence, results in a high maximum error for the
total reconstructed signal.

One way to account for this effect could be by allowing the CCSP algorithm
to extract a variable number of samples from each block of the signal. This
could be implemented in the version of the CCSP algorithm with the maximum
error bound incorporated. We could picture a situation where we impose a
maximum error bound on the solution as was done in Section 4.2. If this results
in no valid solution for a given number of extracted signal samples, due to the
fact that there does not exist a path through the reduced graph, the number of
allowable extracted signal samples may be increased for this particular block.
For other blocks (containing lower frequencies), we allow fewer samples to be
extracted. This may canse the execution time of the algorithm to increase,
but as we saw in Section 4.2, reduced execution time is a nice side effect from
incorporating the maximum error into the CCSP algorithm.

Improvement of encoding technigues

The compression schemes developed in this dissertation are mainly based upon
approximating the signal by extraction of some significant parameters. The
encoding of these parameters is thus a vital part of the compression scheme.
We have put a considerable amount of effort into encoding the parameters
as effectively as possible. However, preliminary investigations indicate that
there is more to be gained in this part. In [43] some experiments were done
with second order DPCM in encoding of the parameters. The reported results
were good, and more effort should be put into investigating this and related
approaches for the algorithms developed in this dissertation.
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CCSP algorithm with maximum error incorporated and second
order polynomial interpolation

From the experimental sections in Chapter 4, we see that the CCSP method
with the maximum error incorporated yields good results, especially in terms
of execution time as real time performance is achieved. On the other hand the
CCSP method based on polynomial interpolation gives good results in terms of
PRD and visual performance of the reconstructed signal. It would therefore be
interesting to combine these two approaches and develop a CCSP compression
scheme based on polynomial interpolation, incorporating an upper bound on
the maximum error.

Implementation of a uniform distortion measure in compression
of image contours

In Chapter 6, containing representation and compression of image contours,
it is hard to do inter-method comparisons as there is no uniform distortion
measure developed for this purpose. The development of such a distortion
measure would be very useful in evaluating the different coders. The metric
used to evaluate distortion within MPEG-4 is

Number of pixles in error

Duppegs = Number of interior pixels’

where a pixel is said to be in error if it belongs to the interior of the original
object and the exterior of the approximating object or vice-versa, By incor-
porating this error measure into the contour compression scheme of Chapter 6
it would be easier to evaluate the performance of the algorithm toward other
algorithms applying the MPEG-4 distortion metric.

Second order polynomial approximation in compression of im-
age contours

As was seen for the CCSP approach, we achieved a better approximation in
terms of PRD and visual performance by increasing the order of the polynomial
from one to two. There is reason to believe that this also holds for image
contours. Extension of the approach developed in Chapter 6 into an approach
where second order polynomials are applied, could therefore be an inferesting
means of increasing the performance of the algorithm.
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Effective implementation of the coders

The compression methods we focus on in this dissertation are optimal ap-
proaches, under the given constraints. Instead of employing a heuristic, the
proposed methods search through possible solutions in an intelligent way in
order to find the optimal solution. Although real time requirements are sat-
isfied in many cases, this makes the approaches more time-consuming than
conventional heuristics. In order to cope with this and to make the algorithms
even faster, the technique presented in [38] should be incorporated into the
algorithms.

Application to image compression

The graph-theoretic approach presented in this dissertation may also be use-
ful in other areas, such as in compression of images. Traditionally, image
compression is performed by subdividing the image into blocks, each of which
is processed by the means of a transform in order to obtain more efficient
representation of data.

An alternative viewpoint is to consider the data as samples of a one-dimensional
waveform. This can be implemented by scanning the image in a smart way, to
transform it from a 2-D representation to a 1-D representation suitable for in-
put to our graph-theoretic methods. The approaches developed in chapters 4,
5 and 7 can then all be applied to process and compress the image.
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Appendix A

ECG compression test signals

This appendix contains short segments of the ECG signals used in the cod-
ing experiments throughout the dissertation in addition to the power density
spectra plots for these signals. This is to illustrate how the nature of the ECG
signal varies with different heart arrythmias.

All the test signals are taken from the MIT-BIH Arrythmia Database [60].
“mitxxx_yyyy” denotes record number xxx starting at time yy:yy. Each total
record time is ten minutes, corresponding to 216 000 samples. The sam-
pling frequency is 360 Hz with a resolution of 12 bits per sample. The signal
mit100.1000 is normal sinus rhythm while the others are various abnormal
rhythms.

Figure A.1 shows the first 10 seconds of the test signals applied in this disser-
tation.

Table A.1 shows the annotations used in the test signals, i.e., comments made
on the signal to describe the heart thythms.

Figure A.2 shows the power spectral density of the test signals computed using
Welch’s averaged, modified periodogram method.
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Figure A.l: Original EQQ’s (first 10 seconds) used in the experiments.
“mitxxx_yyyy” denotes record number xxx starting at time yy:yy. Each record
is ten minutes long, corresponding to 216 000 samples.
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Symbol | Meaning

Beat annotations:

. Normal beat

L Left bundle branch block beat

V Premature ventricular contraction

Rhythm annotations (appear below the level used for beat annotations):

(T | Ventricular trigeminy’

Table A.1: Annotation used on the ECG test signals.

Y The oceurrence of three pulse beats in rapid succession [83).
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Figure A.2: Power density spectra for the different test signals.



Appendix B

Computation of arc lengths in
the CCSP-algorithm in the
polynomial interpolating
reconstruction case

This appendix contains documentation of the computation of the arc lengths
in the CCSP-algorithm when second order polynomials are used in reconstruc-
tion of the signal and we apply an interpolating approach. Between any two
samples ¢ and 7, a second order polynomial is fitted in a way that minimizes re-
construction error. This appendix contains a detailed mathematical deduction
of the computation of these polynomials and the total arc lengths.

Problem definition

Denote the samples taken from an ECG signal at constant intervals by y(1),
4(2), ..., y{(N). We know that a second order polynomial between any two
points ¢ and j, can be described as

Fii(n) = agij + a1m + agign’ (B.1)

In our case, the function f;; is fitted to the data set {(n,y(n)) :n=1,... ,5}}
in such a way that reconstruction error is minimized.

The length of each arc (7, j) is given by

-1 -1
dij= Y (fis{n) —y(n)> = > (a0 + a1ijn + agyn® ~ y(n))’.
-y il
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If we interpolate between two points ¢ and j, we have for each arc (3, ]) :

j—1

2
dyj = Z (a{]z'j + ayin -+ a,zz-jnz - y(n)) , (B.Q)
n=i+1
g5 + Q1450 + agijiz = y(i), (B.3)
aoij + aiijj + azigi® = y(j)- (B.4)

The optimal parameters ag;;, a1;; and ag;; are found by minimizing Equation
(B.2) under the constraint givern in Equations (B.3) and (B.4).

Computational details

We start by expressing Equation (B.2) in terms of ag;. From Equation (B.3)
we have

ags; = Y(8) =~ a144i = anizit (B.5)
By subtracting Equation (B.4) from Equation (B.3) we get
a15(i — 7} + a2i; (% — 5%) = y{i) — y().
This leads to the following expression

y{i) — z{(j)

1L a4 9), (B.6)

Q135 =

under the agsumption that ¢ 5 7, which is true for our case.
By inserting Equation (B.5) into Equation (B.2) we arrive at

j—1

di; = ;rl (y(i) + arij(n — 4) + agij(n® — %) — y(n))2 . (B.7)
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We then insert the expression given for a;; in Equation (B.6) into Equation

(B.7)
j-1 ) — uls 2
dz'j = ngl (y(z) + (y——( 2 — ‘?(J) — a5 (Z + j)) (n—1)+ 25 (sz — 3-2) - y(n))
i1 n—i 2
= 3 (00 + 5 )~ ) = i+ ) = )+ (52 = ) = ()
n=i+1
j—1 n—i 2
= 3 (y(i) + o7 (y(i) — y(7)) + azi; ((0* = %) — (1 + 0 — 1)) - y(n))
n= z-f—l
2
S ( )+ FL6) - 06 + g (0= ) (n+) = (4 ) - y(n))
ne=il
Jj—1 2
. (y(a) + 220 0(0) ~ ) + o (0 ) 0 ) - y(n)) -
n=i+1

We would then like to find —5{—&—2‘—:? :
8(anij)
EA n—1
S 2 (w0 + 2H0) 400 + s = ) =) =) ) 2= ) = )
n=i-+1
-1
= 3 2n i) ) (y(n ~ (o) + 2 0l0) — y(3) +aasla = )(n - :r))

n=i+1
By letting B?ai;fﬁ = 0, we find the optimal ag;’s:
-1

> 20 =00 3) (40) ~ ) + 00 = 1) + axgln = )n =) = 0

n=g+1

Rearranging a bit:

2502 (2= i) = )y(i) — (n = )(n = F)y(n)
+ 8= (4) - () + azigln — i (n - )°) =0

Zj_z+1(n~z)( ES z+1(n_?' (” Ny(n)

+ﬂ%:%’m Y (=) (n - 3)+a223 S =i (-4t =0



152 Appendix B. Computation of arc lengths...

This leads to

a Z(w (n— ) Z(n~z(n fyln z)z(n—z(n 7

n=t-+1 n=i41 n=t+4+1
y(z) - y(J Z
(n—i)*(n ~ j),
n=i--1
and thus
Q245 =

Shcia (0 =) =) () = y(i) - = (312 )
Zn —i1(n = D)3 {n — 5)? '

We then have to write out the sums in Equation (B.8) in order to see which
sums of powers of n that is to be computed

(B.8)

j-1 i1
> (== = 37 (n®—2ni+?)(n? - 2nj + 2)
n=i-+1 =i+l
j=1
= Y (0" =20+ )nd + (6 + 52 4 dig)n?
ne=i1
— 2% + j2i)n + 1252) .

The denominator of ag;; can thus be written as

i1

> (305 + mign + yaign® +yaznd + yaign?) (B.9)
n==i+1.
where
T .2 .2 e . .
Yoig = 1777, Yaig = “2(""+J),
Y5 = 28 (¢ + 7), Vaij = 1.

Yoij = 42+ j2 + 4ij,

We then have to examine the numerator of a9 closer.

31

> (07 = jn—in+i5) (y(n) = y(0)) ~ Aii(n? - 2in -+ 2)(n - 7)),
n=i+1
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where

g = 20=10)

After a bit manipulation we arrive at

i1 Jj—1
S P —(Gitinti)un)+ Y (—Ayn® + (Ay(2+ §) - y(i) o’
neitl n=i+l

+ (G + ) — Agi(2 + i) n+ij (Agsi — (D)) )

The numerator of ag;; can thus be written as

Jj—1 i-1
Z (aoij + ouign + ogn®) y(n) + Z (Boij + Prign + Baiyn® + Byiin®)
n=i4+1 n=i+1
where
Qi = 1, Bois = 15 (Aisi — y(5)),
iy = ~{i+7),  Puj = G+ () — Ayi(2f + 1),
agg; = 1, Baij = Ag(2i + ) — y(d),

Ay = —-g""y(il:? i Baiz = —Aij-

To summarize, we have the following expression for the coefficients in the
second order polynomial:

Zf;tﬂ (am-j +oyn+ agnz) y(n)
S (Yoig + aagn + yaign? + y3in® + yan?)
S (Boig + Busgn + Paggn® + Bagn®)
S 1 (Yoig + Taan + Yain? + Ysm3 + yaign?) ,
a1ij = Aij — ag;(i -+ j),

agij = y(i) = aqjt ~ agijiz‘

a2ij =

We would like to substitute the terms including sums of powers of n with
closed form expressions. In oder to do so we need the following expressions in
closed form :

i-1

> nfp=0,1,2,3,4. (B.10)

=141
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This is computed in the following way:

-1
an“an an,p 0,1,2,3,4.
=i+ 1 n=1

From Rottmann's table of formulas [81] we have :

i” _ n(n + 1)

n=] 2
i”2 _n(n+1)(2n 1)
n= 6 ,
n 2
anm (n(n-i—l))
n=1 2
ann4~"~”—5+”4+”_3 s
5 2 73 30
In our case we get :
31
doal=j—i-1,
n=i+1
-1 ji—1 b
(i+7 (j—zml)
Z n—Zn—ZTL B
n=i41 =]
=, o 2 N2 G0 D@~ 1) =i+ 1)+ 1)
> m=3n- 3 -
n=i+1 n=1
_ (j——z—l(2j — 425 +i+2%)
. 5 ,
Jj—1 j—1 ire 2
_ 3 -1 Wi +1)
R GO
n=t-1

_ )i =D+ 2=+
4 3
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(e R

52 3 30
6(5 — %) —15(j4 + i) + 10(j* - ) +i—
30 '

The total expression for ag;; becomes :

Sk (g + auggn + an®Yy(n) +

agij =
v N2
where
i—1
mij = (Boig + Brign + Paign’ + Baign®)
nz=g--1
. i+ ) F—i—1
= ﬁﬂij(ﬂ“?f”“l)“*”ﬁlij( J)(jz )
i — i — 1)(24% ~ 7§+ 205 + 4 +2i%
. (4 )25 63 j )
1, DG == DG+ =+ )
3 4 )
F—1
N2 = Z ('Yﬂz'j + Y17 -+ 722'3'?%2 + 'TSz'jna + 'Y4z'jn4)
n=i-1

j— i i+ —i-1
=’Ye)z'j(3—z-—1)+7h.j( J)(32 )
(j_i_l)(2j2”‘j+2ij+i+2i2)

6
(i+j)(j—i—1)(j2+fi2_j+i)

4
6(j° — %) — 16" + i*) +10(° ) +i =
30 .

+y2:;

+¥345

+Y4i5
Besides we have

ayij = Aij — i (i + ),

agi; = Y(8) — a1ijt — aniji’.

F=1 i . 5 R 4 . 3 .
4 _ 4 s G-1° G- (-1 -1
Z”_ZI”"ZI”_ 5 T2 T3 T H
n= 1=

(B.11)

02ij, @15 and agi; have to be computed for all legal combinations of ¢ and
j. muj and 5, are expressions in ¢, §, y() and y(j) and hence all these are
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computed in O(N?) time. By defining A,; = Z;i:l nPy(n), p=0,1,2, we see
that Api,...,Apn are computed in O(N) time. Next, we compute
2
e TP AN ._1_A. + M4
anij = p=0 215 (Bp,j pi) + 735 ’ (B.12)
N2ig
1 < j < N, involving @(N?) operations.
For every legal combination of ¢ and j we have to compute d;; as well since
this is the quantity we are seeking:

j—1
2 2
di; = Z (a,m-j + apign + aypn” — y(n))
n=i+1
j-1
— 2 o 2 2 3, .2 .4
= Z (agi; + 200i0145n + (200530215 + afy5)n® + 2ans5a2i5m° + adyn’)
n=i+1

§—1
+ Z (—2a0i; — 2a145m — 2a0:;17 + y(n}) y(n).
n=it1
By using the same explicit expressions as before for the sums we get:
dij = a’%z'j(j w4 = 1)+ agggar; (0 + 5 (G —1 - 1)
+(2apij00i; + aliy) R _Gj 2] 41+ 20)

i+ )0 —i— DEE 4+ —j+1)

+01i502;5

2
2 6% — ) — 15(* +#*) +10(° — %) +i — j
+a’2ij
30
j—-1
~= " (2a0i + 2a155m + 2a25m% — y(n)) y(n). (B.13)
n=i--1

The five first terms in Equation (B.13) are expressions in agij, @1ij, 625 &
y{i) and y{j}. When ap;,p = 0,1,2 are available, all these are computed in
O(N?) time. By applying a similar procedure as in the computation of ag;;
and define AL; = 7, nPy(n), p=0,1,2, and A = 7, y3(n) we see that
A;l,. . ,A;N and A%,...,A% are computed in O(N?) time. The last term
of d;; is then computed as

2
dij = —2 Z it (AL iy — ALY+ A%~ A (B.14)
p=0

1 < j < N, involving O(N?) operations.
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Summary

For each combination of i and j, 1 = 1,... ,N -1, 7 = ¢+ 1,...,N the
following has to be computed:

Zi;}%+1(a05j + angjn + agin?Yy(n) +

Qg = , (B.15)
g
where
i1
mig = 3 (Boij + Bugn + Baign® + Baijn®)
n=i+1
. t+g)f—i—1
= 60ij(.7“3_1)+ﬁ1ij( J)(JQ )
i — 1)(25% ~ § + 20 + 1 + 24
s % )27 év 3 )
PG i DG+ -G+
w&,j( N 3;(] iti)
j-1
M2ij = Z (Yois + 1163 + y205m° + Y3a5n° + Yaggn?)
n=i+1
. i —t—1
= y0i5(j —i— 1)+ 'Yuj( j)(Jz )
j i 1)(25% — 7 + 24+ + 24
oyai {J 2 63 j )
i+ —i =1+~ +1)
+73i; i
6(j5 — %) — 1534 + 1)+ 10(52 — ) +i—j
+Yaij .
30
The other two optimal coeflicients are given as :
apij = Ay — a2 (i + 1), (B.16)
agi; = y(i) — axiji — aniji’. (B.17)

The ;;8, Bi;;5 and ;s are given by :

Qoij = Yois = 1242,

ay; = —(i+7), i = —2i§(¢ + ),
oy = 1, Yaij = ©° + 7 + 4dg,
Boij = 1j{ At — y(3)), Yas; = —2(i + 4),
Brg = (i +7)y(d) — Agi(2i +14),  my =1

Boig = Ay (2 + ) = (), 4y = 1=,

Baij = —Aqj.



158 Appendix B. Computation of arc lengths...

Finally, d;; is given by :

dij = agy;(f — i — 1) + agijars; (i + 5) (G — i~ 1)
(5 =i~ 1)(25% = § + 245 -+ + 242)

+(2a0ij02:; + aly;)

6
i+ NG —i— DG+ -+
+G:1ijf12ij( LE 3(3 j+1i)
+a2”6(j5 e §7) = 15(G* 4 4%) + 10053 - 3) + i — j
2?,_? 30
i—1

- Z (2a0i5 + 201457 + 2a2:5m” — y(n)) y(n).
n=i4-1
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