
Design and Testing of Voltage Source 
Inverter and Motor Control System for 
Electric Vehicle

Lars Helge Opsahl

Master of Energy and Environmental Engineering

Supervisor: Lars Einar Norum, ELKRAFT

Department of Electric Power Engineering

Submission date: July 2015

Norwegian University of Science and Technology



 



I  

Problem Description 

The objective of this Master’s thesis is to design and develop the voltage source inverter and 

motor control system for an electric racing car. The vehicle is meant to represent the team 

Revolve NTNU in the international racing competition Formula Student, and take part in the 

competitions at Silverstone in the UK and at Red Bull ring in Austria during the summer of 

2015. 

The design will be based on a 2-level voltage source inverter structure with insulated-gate 

bipolar transistors (IGBTs), including in-house designed control circuit board, program code, 

water-cooled heatsink, and carbon fiber casing. To enhance performance, the system will be 

optimized for the required operating conditions, while constructed as lightweight and compact 

as possible. 

Relevant technologies and trends from literature and manufacturers will be explored. To find 

the best solutions, different alternatives will be investigated and discussed. In this process, 

simulation and modelling tools will be used to evaluate and test concepts. The optimum design 

will be considered a compromise between performances, low weight, robustness and security. 

Considering that the driver’s safety is of high importance, extensive testing and verification of 

the design is required. 

The thesis work will be the documentation of the design, manufacturing and testing of the 

inverter and motor control system. It will give information about how the system is operated, 

explain the design choices, and discuss alternative approaches.  
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Abstract 

With fast rotating permanent-magnet motors and compact battery storage units, the high 

performance motorsport community has, in recent years, started to utilize the quick response 

and high torque of electrical drivetrain solutions. By recovering energy, braking into a corner, 

for then to utilize the same energy, boosting out again, the electrical machine gives increased 

performance even for the fastest racing cars. The purpose of the work presented in this Master’s 

thesis is to develop and produce the power electronics and motor control system needed to 

control such an electric machine, where the final product is used to drive a fully electric 

prototype racing car. 

The thesis presents the conceptual work, design choices, prototyping, testing and development 

of a 2-level voltage source inverter and motor control system. The voltage source is a battery 

accumulator energy storage unit, while the machine is a three-phase permanent-magnet motor. 

The voltage source inverter is based on insulated-gate bipolar transistors (IGBTs), controlled 

by a motor control system called field oriented control. On command from the driver’s throttle, 

the motor control system generates the required stator currents, giving the wanted output torque, 

supplied from the voltage source of the battery accumulator. 

The inverter is the connecting interface between the power source, and the rotating machinery. 

With the amount of energy and power needed to drive a racing car, safe and reliable operation 

is important. To ensure the safety of the driver and operating personnel, the system and its 

safety features have been through extensive testing in a laboratory setup and on the race tracks.  

In the system development process, simulation and modelling tools have been applied to 

investigate different solutions and technologies. These tools have also been used to design the 

electric circuits, program code and mechanical design needed for the system. The final product 

is installed in a racing car and shows great performance.  
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Sammendrag 

Utviklingen av små, raske permanent-magnet-motorer og kompakte batteriløsninger, har ført 

til økt interesse for elektriske drivsystemløsninger i racing-miljøet. Ved å regenerere energi 

under nedbremsingen inn mot en sving, for så å benytte den samme energien, til å aksellerere 

ut av svingen igjen, gir økt ytelsen for selv de sprekeste racerbilene. Hensikten med arbeidet 

som presenteres i denne masteroppgaven, er å utvikle kraftelektronikken og 

motorkontrollsystemet for å styre en slik elektrisk maskin. Det endelige motorkontrollsystemet 

vil bli benyttet til å drive en elektrisk prototype-racerbil. 

I masteroppgaven presenteres konseptarbeid, designvalg, prototyping, testing og utvikling av 

en frekvensomformer og motorkontrollsystem. Spenningskilden til frekvensomformeren er en 

batteriakkumulator, mens maskinen er en tre-fase permanent-magnet-motor. Omformeren er 

basert på IGBT-transistorer, kontrollert av et feltorientert kontrollsystem. Når bilføreren trykker 

ned pådrags-pedalen, vil motorkontrollsystemet genererer de nødvendige statorstrømmene fra 

batteriakkumulatoren som gir det ønskede momentetpådraget.  

Omformeren står koblet mellom spenningskilden og den roterende maskinen. Med nok energi 

og effekt til å drive en racerbil, er sikker og pålitelig drift høyt prioritert. For å ivareta 

sikkerheten til bilføreren og driftspersonell, er systemet og sikkerhetsfunksjonene vært 

gjennom omfattende testing på laboratoriet og på bane. 

Gjennom utviklingsprosessen av systemet, har simulerings- og modellerings-verktøy blitt 

benyttet til å sammenligne og utforske forskjellige teknologier og løsninger. Disse verktøyene 

har også vært viktige i designprosessen av de elektriske kretsene, programkoden og det 

mekaniske designet i systemet. Sluttproduktet er nå installert i racerbil og viser gode 

kjøreegenskaper.  
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Preface 

The goal of this Master’s thesis has been to develop and produce the voltage source inverter 

and motor control system for a Formula Student electric racing car. The car is designed and 

built by a team of NTNU students and is meant to be raced in the annual Formula Student 

competitions. My responsibility in the team has been the design, manufacturing, testing and 

development of the power electronic system needed for driving the electrical vehicle. Because 

Formula Student is a racing competition, the system has been optimized for high performance 

at certain operating conditions, while also being constructed as lightweight as possible. 

Writing my Master’s thesis on a development project like this, brings in several crossing 

engineering fields, creative teamwork, and the possibility to bring a theoretical design into 

practice over a short period of time. The voltage source inverter is a complex system and critical 

for the operation of the vehicle. It is the connecting interface between a power source of 288 

lithium-ion battery cells, and a high torque, fast rotating machine. The amount of energy and 

power, brings in the need for well-designed safety features to ensure the safety of the drivers 

and the operating personnel. This has implied extensive testing and design verification, in a 

laboratory environment, the manufacturing workshop and at the race circuit. 

The thesis is meant to give insight into the conceptual work, design choices, prototyping and 

processes of testing and developing the complete motor control system. The underlying theory 

is explained, while the models, simulations, program code, mechanical and electrical designs 

presented. The results can be used as guidance for the next students interested in similar 

challenges. 
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PMC   : Power management controller 
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SAE   : Society of Automotive Engineers 

Si   : Silicon 

SiC   : Silicon carbide 

SMD   : Surface mount device 

SoC   : System-on-chip 

SPI   : Serial peripheral interface 

SSI   :  Synchro-serial interface 

SV   : Space vector 

TPS   : Torque position sensor 
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1. Introduction 

1.1. Background 

The electrical machine has for a long time been considered superior to the internal combustion 

engine in many applications due to its robust design, high efficiency and advantageous torque-

weight characteristics. The electrical machine is the clear choice for most industrial applications 

with high torque requirements and possibility for grid connection. Lately, this has also been 

picked up in the high performance motorsport community.  

In 2009, the use of electric drive systems were introduced in Formula 1 as kinetic energy 

recovery systems (KERS) were legalized. Because of this, teams started to develop drivetrains 

using electric machines and batteries to recover braking energy. In 2014, this system was 

redefined and reintroduced as the energy recovery system (ERS), allowing each vehicle to 

regenerate up to 4 MJ of energy per lap and return up to 120 kW to the drivetrain. In the last 

couple of years, this has driven Formula 1 teams to develop hybrid drivetrains supplied by high-

speed permanent-magnet (PM) machines, lightweight lithium-ion battery accumulators and 

highly efficient motor control systems. With 2014 as the year where the first Formula E 

Championship was held, hybrid-electric and fully electric drivetrain solutions have come to 

stay in high performance motorsport. 

This trend has also been picked up in the Formula Student community, where fully electric 

powered vehicles have had great success over the last couple of years. On short and fast tracks, 

as in Formula Student, the high torque and fast response of an electric vehicle (EV) has clear 

advantages to the internal combustion (IC) engines.  

1.1.1. Formula Student 

Formula Student is a series of annual competitions where engineering students from all over 

the world meet to compete with one-seat racing cars. The competitions started out as SAE 

(Society of Automotive Engineers) Mini Indy at the University of Houston in 1979, but has 

today expanded to include a number of spinoff events all over the world. For the season of 

2015, Revolve NTNU will participate in the Formula Student events at Silverstone in the UK 

and at Red Bull ring in Austria. Both these events use the original rule set from SAE 

International [2] with individual supplementary regulations and rules.  
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Fully electric vehicles (EVs) were introduced for the first time in Formula Student in 2010 and 

has since that been competing in a separate class to the internal combustion (IC) vehicles. In 

Formula Student UK on the other hand, both EVs and IC vehicles compete in the same class. 

Over the past couple of years this has resulted in EV teams winning the event. 

 

Figure 1.1: The competing teams from Formula Student UK at Silverstone, 2014. 

The events are divided into eight different challenges, where a total of 1000 points can be 

obtained for each of the teams. The team with the overall highest score wins the event. As is 

shown in table 1.1, the total score is distributed between static and dynamic events. The static 

events are presentation, engineering design and cost analysis. The goal with these events are to 

differentiate teams on the basis of planning, conceptual work, design, cost and general good 

engineering practice.  

Static Events:   

 Presentation 75 

 Engineering Design 150 

 Cost Analysis 100 

Dynamic Events:   

 Acceleration 75 

 Skid-Pad 50 

 Autocross 150 

 Efficiency 100 

 Endurance 300 

Total Score:  1000 

Table 1.1: Formula Student competition evaluation. 
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The engineering design score is evaluated by well-known judges from the motorsport 

community, and therefore seen as one of the most important events from an engineer’s 

perspective. 

 

Figure 1.2: Endurance course map at Silverstone. 

The dynamic events are acceleration, skid-pad, autocross, efficiency and endurance. In the 

acceleration event the goal is to drive 75 m as fast as possible. The objective of the skid-pad is 

to evaluate the vehicle’s cornering ability. This is done by driving as fast as possible on a small 

and circular track. In autocross the maneuverability and handling are of the greatest importance. 

This event is held at a tight track with sharp turns, where the driver can drive as fast as possible 

without thinking about energy consumption.  
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The endurance event evaluates the overall performance and tests durability and reliability of 

the vehicle. It is a single heat of about 22 km (12 rounds on the course shown in figure 1.2) with 

driver change at 11 km. This is one of the most important events because it gives the most 

points, but also because it is the hardest test for the car and the driver. Score for efficiency is 

given in the same event, based on readings from an energy meter. The energy meter is supplied 

by the organizers. It calculates and logs the energy consumption and power usage from the 

battery accumulator, based on voltage and current measurements. 

1.1.2. Revolve NTNU 

Revolve NTNU is the racing team representing the Norwegian University of Science and 

Technology in Formula Student. It is an independent student organization who works on the 

project of building a new racing car from scratch every year. The 2015 team consists of about 

50 students from more than ten different engineering disciplines, who all work on design, 

production and testing of different parts of the vehicle. 

 

Figure 1.3: Revolve team 2015 at Silverstone race circuit. 

Revolve was founded in 2010 and entered the Formula Student competitions for the first time 

in 2012 with the IC car KA Borealis R (second row, to the left in figure 1.4). The team was 
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given the “best newcomer award” and finished at a 17th place overall in the UK. The following 

season, the team made it to a 16th place in the same competition with the IC car KA Aquilo R 

(second row, in the middle in figure 1.4). For the 2014 season, the team decided to make 

Revolve’s first fully electric vehicle, which resulted in the car KOG Arctos R (second row, to 

the right in figure 1.4). With this car the team managed to finish at an 8th place in the UK. For 

the 2015 season, the team has once again decided to go for EV design. The goals are to reduce 

the weight and to develop more of the electronic systems in-house. The car, Vilje (first row in 

figure 1.4), is the newest car, representing Revolve NTNU in the 2015 season. 

 

Figure 1.4: Revolve NTNU’s cars after the unveiling of Vilje, April 2015. 

In the 2015 season, Revolve NTNU will bring Vilje to Silverstone in the UK in July and to Red 

Bull ring in Austria in August, to compete in the Formula Student competitions. The goal is to 

deliver a strong performance and to challenge the more well-established teams in the 

competitions. 



6  

1.2. Motivation 

A fully electric drivetrain has clear advantages to IC engines in Formula Student. This is 

because the high torque and fast response from an EV fits well with the tracks in the 

competitions. The tracks are short, with tight and fast turns, where the maximum possible speed 

is in the range of 110 km/h. The most significant downsides are the need for a heavy battery 

accumulator, and the weight and complexity of the motor control system. By using lithium-ion 

battery cells, most battery accumulators in the competition end up weighing 45 – 80 kg. The 

high weight is unavoidable to obtain the needed energy storage to finish the endurance event. 

To get the best torque-weight ratio, most teams choose to go for three-phase permanent-magnet 

(PM) synchronous motors. To drive a motor like this from a battery accumulator, a voltage 

source inverter (VSI) with appropriate motor control system is needed. The VSI is the unit that 

converts the direct current (DC) from the battery accumulator to three-phase alternating currents 

(AC) for the motor. The motor controller is the part of the VSI that determines the amplitude 

and frequency of the current waveforms, according to the torque request from the driver. This 

is a system with high complexity, and a system few teams choose to design in-house. At the 

same time, it is normally also one of the systems with highest potential for weight reduction in 

the drivetrain of a Formula Student EV. In most commercial VSI systems, the weight is in the 

order of magnitude of the motor weight, or even higher. With a custom made carbon fiber casing 

and in-house designed heatsink, the weight is estimated to become as low as a quarter of the 

motor weight, and at least half the weight of the off-the-shelf VSI from last season. 

As mentioned, the VSI is a complex system, and in-house design increases the risks of failure. 

A well-functioning VSI is crucial to the performance of the vehicle and to the safety of the 

driver. By designing a VSI that is compatible with the VSI from last season, this risk can be 

reduced, making the project possible to carry out. It is also considered important for the team 

to increase the knowledge level about power electronics and motor control. Together with the 

possibility for weight reduction, this is the main motivation for choosing an in-house design. 

Increased internal competence on power electronics and motor control theory is crucial for 

further developments in the electric drivetrain. This is seen as an important step to prepare the 

team for a possible transition to four wheel drive (4WD) with more sophisticated motor control 

systems. In-house design also makes it possible to custom fit the VSI to the car, instead of 

custom fitting the car to the VSI, like most teams do. This way the cables and cooling circuits 

can be made shorter for even higher weight reductions. 
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1.3. The Electrical Drivetrain 

The Formula Student competitions allow the participating teams to choose between internal 

combustion and fully electric drivetrains, as long as the system is rule compliant and within a 

set of limitations. For internal combustion (IC) vehicles the engine must be a four-stroke piston 

engine with a limit on displacement per cycle of 610 cc. For electric vehicles (EV) the limitation 

is set to a maximum voltage of 600 V and a maximum power of 80 kW from the battery 

accumulator. Hybrid drivetrain solutions are prohibited in Formula Student. 

For the 2015 season, the choice between IC and EV was based on experience from previous 

years of competition, and on the knowledge and expertise from the team members. Last season 

was Revolve’s first season with EV design. Compared to the IC vehicle from the year before, 

this resulted in a considerable increase in the torque-weight ratio, with a weight reduction of 

more than 60 kg, and at the same time higher output torque. The low weight was a result of 

using a new construction technique for the chassis and due to the transition to a fully electric 

drivetrain. The new chassis was a carbon fiber monocoque. A monocoque is a chassis where 

the skin provides the main structural support of the vehicle and is considerably lighter than a 

steel frame structure. Except for the battery accumulator, a fully electric drivetrain is a 

lightweight and compact system. The main drawbacks of an EV are the heavy battery 

accumulator, a complex motor control system, together with the need for additional safety 

systems. Experience from previous Formula Student events and results from the last couple of 

years, still clearly indicated that a well-designed EV normally beats an IC vehicle. Revolve 

decided to go for EV design for the 2015 season because the team believed this would give the 

best performance, and because the expertise of the team members was seen suitable for the task. 

To drive an EV, one or more electric motors are needed. In the last couple of years, a trend 

among the more well-established teams has been to use four wheel drive (4WD) systems, with 

wheel hub mounted permanent-magnet (PM) motors. These are normally custom designed, fast 

rotating motors, supplying output torque through planetary gear boxes with high gear ratios. 

The reasons for choosing 4WD systems are to maximize the total traction of the vehicle and to 

better utilize regenerative braking. Because the braking balance should be shifted towards the 

front wheels for best performance, 4WD is clearly advantageous to rear wheel drive systems in 

this matter. A 4WD solution adds weight to the vehicle due to the extra motors, power 

electronics and cooling circuitry. It also adds complexity to the control systems due to the need 

for multiple voltage source inverters (VSIs) to control the separate motors. On the other hand, 
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individual control of four motors makes it possible to implement torque vectoring. A good 

torque vectoring algorithm distributes the torque between the four wheels in a way that gives 

optimal traction and regenerative braking capability. This also eliminates the need for a 

mechanical differential, which reduces weight and increases controllability of the vehicle. 

The reason why Revolve NTNU did not choose 4WD for the 2015 season, was because it was 

considered a large technological step and the risks associated with that, too high. The team also 

had trouble finding suitable off-the-shelf alternatives for motors. By increasing the competence 

on power electronics and motor control theory through in-house-designed VSI this season, the 

team will be better equipped for such a transition next year. The team will then also get more 

time to find suitable motor alternatives or plan in-house designed solutions. 

1.3.1. Permanent-Magnet Synchronous Motor 

The electric machine with the highest torque-weight ratio and most suitable for the Revolve 

design is the permanent-magnet (PM) synchronous motor. The closest alternatives are the DC 

motor or the asynchronous (induction) motor. The DC motor is the easiest to control, but also 

the alternative with the lowest torque-weight ratio and lowest robustness. Some of the first-year 

EV teams in the competitions use this alternative because of the simple motor control. The DC 

voltage applied to such a motor can be directly controlled by pulse-width modulation (PWM) 

of a semiconductor transistor, like a metal-oxide-semiconductor field-effect transistor 

(MOSFET) or an insulated-gate bipolar transistor (IGBT). The asynchronous motor is like the 

PM motor, more difficult to control due to the need for modulating and controlling three phase-

shifted alternating current waveforms. For the asynchronous motor, the rotor is short-circuited 

and no permanent-magnets used to generate magnetic rotor flux. This makes the motor robust, 

but introduces a slip factor between the rotational speeds of the rotor and stator magnetic field. 

The slip factor should be accounted for in the motor control system. The PM motor has a higher 

torque-weight ratio than the asynchronous motor, but also higher cost. The low cost and high 

robustness, is the main reason why asynchronous motors are the most used machine in industry 

and used in the drivetrains of cars like the Tesla Model S and Mercedes B-Electric. For the 

application in a Formula Student EV, the choice is simple; the additional cost of a PM motor 

can easily be justified by the higher performance. 

Last season, the PM motor Emrax 228 HV from Enstroj was used. This is an axial-flux machine 

with outer rotor. The outer rotor makes less room for the inner stator coils. This results in lower 

stator inductance or lower stator current capabilities. On the other side, it leaves more room for 
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additional pole pairs. As can be seen from equation 1.1, more pole pairs give lower mechanical 

rotational speed of the motor. For small, high-torque motors, it is normally an issue to keep the 

rotational speed down. Lower speed also makes it easier to design the gear box system. In 

equation 1.1, 𝜔𝑒  is the electrical angular speed of the permanent-magnet flux, 𝜔𝑚  the 

mechanical angular speed of the rotor, and 𝑃 the number of pole pairs.   

𝜔𝑒 =  𝑃 ∙ 𝜔𝑚         (1.1) 

As can be seen from table 1.2, the stator resistance and the stator inductances for the Emrax 228 

are quite low. This suggests that the motor is designed for higher currents, rather than easy 

controllability. As is clear from equation 1.2, lower stator inductance gives higher current 

ripples for the same switching frequency. In equation 1.2, 𝑣𝑆 is the stator coil voltage, 𝑅𝑆 the 

stator resistance, 𝑖𝑆 the stator current and 𝐿𝑆 the stator inductance 

𝑣𝑆 = 𝑅𝑆 ∙ 𝑖𝑆 + 𝐿𝑆 ∙
𝑑

𝑑𝑡
𝑖𝑆       (1.2) 

 

Figure 1.5: Emrax 228 PM motor from Enstroj. 
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The Emrax 228 was originally designed to take off and land gliding planes, by a Slovenian 

engineer with a passion for flying. The motor was meant to make his hobby easier to do, and 

not for commercial applications. After some time, the motor was discovered by Formula 

Student teams who wanted to use it for driving their EVs. Today the Emrax design has won 

awards for highest power-weight ratio and is the preferred choice for most Formula Student EV 

teams with one motor. 

Peak motor power Ppeak 100 kW 

Continuous motor power Pcont 40 kW 

Maximum rotational speed nmax 6000 rpm 

Maximum motor torque Tmax 240 Nm 

Maximum battery voltage VDC 600 V 

Pole pairs P 10 

Stator resistance RS 0.018 Ω 

Stator inductances (dq axis) Ld / Lq 175 µH / 180 µH 

Permanent-magnet flux φm 0.0542 Wb 

Weight m 12.3 kg 

Table 1.2: Emrax 228 PM motor characteristics. 

As I clear from table 1.2, the output power of the Emrax 228 is appropriate for an application 

with a maximum power limit of 80 kW. The maximum rotor speed of 6000 rpm is relatively 

easy to shift down to a more suitable wheel speed, through a gear box system. 6000 rpm is 

also considered low compared to teams with in-house designed motors, running on speeds up 

to 20000 rpm. The low rotational speed is, as explained before, due to the high number of 

pole pairs. The motor also features a well-designed cooling system, with water-cooled stator 

and air-cooled rotor, built-in rotor position sensor, and temperature measurement. The 

drawback of using a motor with outer rotor is that the motor, for safety reasons, has to be built 

into a shielding housing. This can easily be solved in a lightweight manner by designing the 

motor shielding, transmission system and mechanical differential into one unit. 
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 Based on experience from last season and from other teams, the Emrax 228 is a good choice 

for a one-motor drivetrain. The team has not been able to find any other good commercial 

alternatives. The best alternative to this would be to design and build the motor in-house. This 

alternative was disregarded due to the risks and the short time of the design period. In-house 

motor design is a more viable concept for the 2016 season.  

 

Figure 1.6: Emrax 228 Torque and power characteristics. 

1.3.2. Engine Control Unit and Traction Control 

The interface between the torque position sensors (TPS) on the torque pedal, and the VSI, is 

the engine control unit (ECU). The name ECU is misleading, because the unit is not really 

controlling an engine, but supplying the VSI and motor controller with torque request from the 

driver. The reason why the name “motor control unit” is not used, is due to the confusion of 

mixing it with the commonly used abbreviation for microcontrollers (MCU). As can be seen in 

figure 1.7, the ECU is placed in the front of the vehicle and connected to the VSI through a 

controller area network (CAN) bus. It is positioned in the front of the vehicle to be close to the 

torque pedal. On the torque pedal there are two TPS units who both communicate with the ECU 

on separate CAN busses. The ECU receives the separate TPS values, compares them, and 

translates the values to a torque request for the VSI. If it is a mismatch of more than ten percent 

between the TPS units, the ECU sends a torque request of zero, while giving an error message. 

If the values are within the range, the ECU performs launch control or traction control on the 

torque request from the driver. Launch control is ideally a function where the driver requests 

maximum torque for an acceleration run. The ECU will then request the perfect amount of 
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torque from the VSI. The perfect amount of torque is defined as the point of optimal wheel spin. 

Traction control has a similar functionality, but with higher time constants. In contrast to launch 

control, the higher time constants for traction control, makes it possible with feedback control. 

The inputs to the traction control algorithm are data from wheel speed sensors and from an 

inertial measurement unit (IMU). The IMU is a system containing four accelerometers, each 

giving the individual acceleration in three axes. The accelerometers are calibrated by GPS and 

capable of giving the acceleration, speed and position of the vehicle. 

The ECU also provides the power limitation for the drivetrain. From the Formula Student rules, 

the vehicle is not allowed to use more than 80 kW from the battery accumulator for more then 

a moving average of 500 ms, or for a total of 100 ms. The ECU gets information about the DC 

bus current and voltage from measurements in the battery accumulator. Based on this 

information, it calculates the power, and controls the torque request to keep the power limit 

from is being exceeded. 

1.3.3. Battery Accumulator and Safety Systems 

The battery accumulator is built up by 288 lithium cobalt oxide (LiCoO2) cells, where two cells 

are parallel connected, and a total of 144 parallel connections, connected in series. This gives a 

nominal accumulator voltage of 535 V and a capacity of about 7.5 kWh, [3]. The battery 

accumulator is the heaviest part of the vehicle and weighs about 50 kg. 

In an EV, the battery accumulator is the most critical part when it comes to safety. The lithium-

ion cells need constant supervision to make sure the individual cell voltages and temperatures 

are within the safe operating area. As can be seen in figure 1.7, the battery management system 

(BMS) is responsible for this. If the BMS detects a cell voltage or temperature outside of the 

safe operating area, it shuts down the tractive system through the accumulator isolation relays 

(AIRs). The AIRs are two DC relays, one connected in series with each of the battery poles, 

that opens on command from the BMS or if the shutdown circuit is opened. The shutdown 

circuit goes through most of the car and is opened if any of the safety systems detect an error 

or a fault. The break system plausibility device (BSPD) opens the shutdown circuit if a positive 

battery current is measured while the driver is pushing the brake pedal. The insulation 

monitoring device (IMD) opens the shutdown circuit if an insulation failure in the tractive 

system is detected. The shutdown circuit is also connected to a break over-travel switch (BOT) 

in case the brake pedal breaks down, to an inertia switch in case of crash, to a number of 



13  

shutdown buttons in the cockpit and outside monocoque, through all the tractive systems 

contacts, and to a tractive system master switch. 

 

Figure 1.7: Overview of the electrical drivetrain with safety systems. 
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The high voltage disconnector (HVD) in figure 1.7 is a contact which physically opens the 

tractive system on the positive pole. This contact is always removed when the car is transported 

or in storage. 

1.3.4. Voltage Source Inverter 

As can be seen in figure 1.7 and figure 1.8, the voltage source inverter (VSI) connects the 

battery accumulator to the three-phase PM motor. The VSI modulates the three-phase current 

waveforms driving the PM motor in the car. The amplitude and frequency of these currents are 

determined by the motor controller, based on the torque request from the ECU. As can be seen 

from equation 1.3, the vehicle can be accelerated by applying an electromagnetic torque 𝑇𝑒 that 

overcomes the load torque 𝑇𝐿  from friction and aerodynamic drag, and the viscosity 

coefficient 𝑘𝑑 from the air. 

𝑇𝑒 = 𝐽𝑒𝑞 ∙
𝑑

𝑑𝑡
𝜔𝑚 + 𝑘𝑑 ∙ 𝜔𝑚 + 𝑇𝐿      (1.3) 

Equation 1.3 is derived from Newton’s law of motion, where 𝐽𝑒𝑞 is the equivalent rotor inertia. 

 

Figure 1.8: Overview of the electrical drivetrain. 

As can be seen from equation 1.5, the electromagnetic torque is determined from the permanent-

magnet flux, the number of pole pairs and the stator current amplitude 𝐼𝑠. 

[

𝑖𝑎(𝑡)
𝑖𝑏(𝑡)
𝑖𝑐(𝑡)

] = 𝐼𝑠 ∙ [

sin (𝜔𝑒 ∙ 𝑡)

sin (𝜔𝑒 ∙ 𝑡 −
2𝜋

3
)

sin (𝜔𝑒 ∙ 𝑡 −
4𝜋

3
)

]      (1.4) 
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𝑇𝑒 =
3

2
𝑃 ∙ 𝜑𝑚 ∙ 𝐼𝑠        (1.5) 

From equation 1.5, it is clear that for a sinusoidal three-phase PM motor, three phases of 

sinusoidal current waveforms, phase-shifted by 120 electrical degrees, will produce an output 

torque. For a PM motor, this torque can be controlled by changing the amplitude and frequency 

of the stator current waveforms. 

 

Figure 1.9: Three-phase alternating current waveforms. 

Figure 1.10 shows a 2-level voltage source inverter structure. In this structure, the DC voltage 

of the battery accumulator can be converted to three-phase AC voltages, by modulating 

sinusoidal waveforms with high frequency switching of power semiconductors.  

 

Figure 1.10: 2-level voltage source inverter structure. 
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By high frequency switching of the transistors in each of the phase legs in figure 1.10, 

waveforms with modified amplitude and frequency can be modulated. The amplitude 

determines the motor power, while the frequency is proportional to the wheel speed of the car. 

If the driver requests more torque, the motor controller needs to control the switching of the 

transistors in a way that gives the amplitude and frequency according to the required torque. 

A 2-level VSI is the most normal structure to use in smaller scale systems. This is because it is 

compact, lightweight and have relatively good performance. If higher performance is wanted, 

multilevel VSIs can be an option. In a multilevel VSI, the input DC voltage is divided into 

multiple voltage levels. Each of these levels are switched on and off by transistors in a way that 

gives smoother output waveforms. This reduces the losses in the motor, but results in the VSI 

becoming bigger and heavier. For a 3-level VSI, 12 transistors are needed, instead of only 6 for 

a 2-level VSI. For the Revolve design, multiple levels was an initial design concept, but early 

disregarded due to the additional weight and size. 

Last season, an off-the-shelf VSI from Eltek was used, the Bamocar d3, [4]. This is a 2-level 

insulated-gate bipolar transistor (IGBT)-based VSI with water-cooled heatsink. It features 

different control setting possibilities, with options for torque and speed control. It is compatible 

with different rotor position sensors and controlled over CAN bus.  

 

Figure 1.11: Bamocar d3 voltage source inverter. 
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The Bamocar d3 is used by many Formula Student teams and comes recommended by the motor 

manufacturer. It is a robust and general purpose designed inverter, with an easy-to-use software 

for tuning and setting up the system functionalities. As can be seen in table 1.3, the 

characteristics of the Bamocar d3 are suitable for a Formula Student drivetrain with maximum 

output power of 80 kW. For the 2014 season, the Bamocar d3 was supplied from the 12 V 

grounded low voltage (GLV) system of the car, but can also be delivered for a 24 V supply 

system. Last season, it interfaced with a resolver for rotor position measurement from the motor, 

but can also be delivered to interface with an encoder or even run sensorless. The downsides 

with this inverter are the high weight, and the low level of flexibility when it comes to the 

input/output cables and cooling-circuit. As can be seen in figure 1.11, the phase current cables 

come out at the left side of the box, the nipples for the water-cooling comes out in the front, 

together with the power supply, CAN and other signal connections. The DC contacts cannot be 

seen in the figure, but are going in at the right side of the box. Because of this, the motor room 

and the car has to be designed to fit with the inverter inputs/outputs. By in-house design, it is 

possible to do this the other way around, designing the VSI, with its inputs and outputs, to fit 

well into the rest of the motor room assembly. Another disadvantage with using the Bamocar 

d3, is that it is designed for a general purpose. It lacks some of the required functionalities like 

discharge and precharge circuits for the internal input capacitance, and it needs to be controlled 

from an external unit. Last year the ECU did the communication and control of the Bamocar 

d3. The ideal case would be for the VSI to be more integrated into the vehicle system, and for 

the ECU to only work as the traction control unit, not the motor controller control unit. 

 

Maximal DC voltage 700 VDC 

Continuous output current 200 Aeff 

Peak output current 400 Apeak 

Clock frequency 8 – 16 kHz 

Power supply 12 V 

Weight 8.5 kg 

Price $ 3500 

Table 1.3: Bamocar d3 specifications.  
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2. Motor and Motor Control Theory 

2.1. Park and Clark Transformation 

The three-phase stator currents shown in figure 1.9 can also be expressed as a rotating vector. 

Equation 2.1 and figure 2.1 show this vector, rotating in the abc reference frame with the 

electrical angular speed of the permanent-magnet rotor flux. 

𝑖𝑠⃗⃗ (𝑡) = 𝑖𝑎(𝑡) + 𝑖𝑏(𝑡) ∙ 𝑒𝑗
2𝜋

3 + 𝑖𝑐(𝑡) ∙ 𝑒𝑗
4𝜋

3      (2.1) 

 

Figure 2.1: Stator current vector in the abc reference frame. 

In a control system, it is difficult to work with sinusoidal values like for the stator current vector. 

The reason for this, is that the references and output values for the applied controllers then also 

have to be sinusoidal. To avoid this, it is normal to use coordinate system transformations to 

simplify the current representation. The Clark and Park transformations are commonly used in 

control systems for three-phase AC motors.  
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The idea behind the Clark transformation is to represent the three-phase currents in a two-phase 

coordinate system, with the fixed axes α and β. The stator currents will then become like 𝑖𝑠𝛼 

and 𝑖𝑠𝛽 in equation 2.2, and like equation 2.3 for the inverse case.  

[
𝑖𝑠𝛼(𝑡)
𝑖𝑠𝛽(𝑡)

] = [
1 0 0
1

√3

2

√3
0] ∙ [

𝑖𝑎(𝑡)
𝑖𝑏(𝑡)
𝑖𝑐(𝑡)

]      (2.2) 

[
𝑖𝑎(𝑡)
𝑖𝑏(𝑡)

] = [
1 0 0

−
1

√3

√3

2
0
] ∙ [

𝑖𝑠𝛼(𝑡)
𝑖𝑠𝛽(𝑡)

]      (2.3) 

In the αβ reference frame, the expression for current is still dependent on the electrical angular 

speed of the permanent-magnet flux. To remove this dependency, the vector needs to be 

projected into the dq reference frame. The dq reference frame rotates with the same angular 

speed as the permanent-magnet flux, which makes the current expression independent of the 

electrical position 𝜃𝑒. In this transformation, it is normal to align the d axis with the electrical 

angular position of the permanent-magnet flux. The stator currents 𝑖𝑠𝑑 and 𝑖𝑠𝑞 then become like 

in equation 2.4, and like in equation 2.5 for the inverse case. 

[
𝑖𝑠𝑑(𝑡)
𝑖𝑠𝑞(𝑡)

] = [
cos (𝜃𝑒) sin (𝜃𝑒)
cos (𝜃𝑒) − sin (𝜃𝑒)

] ∙ [
𝑖𝛼(𝑡)
𝛽(𝑡)

]     (2.4) 

[
𝑖𝛼(𝑡)
𝛽(𝑡)

] = [
cos (𝜃𝑒) − sin (𝜃𝑒)
cos (𝜃𝑒) sin (𝜃𝑒)

] ∙ [
𝑖𝑠𝑑(𝑡)
𝑖𝑠𝑞(𝑡)

]     (2.5) 

The relationships between the stator current vector and the current representations in the αβ and 

dq reference frames are shown in figure 2.2. Because the whole dq reference frame is rotating 

with the same angular speed as the stator current vector, the dq currents become DC values 

instead of AC waveforms.  

In the dq reference frame, the voltage equations and the torque equation become like in 

equations 2.6, 2.7 and 2.8.  

𝑣𝑠𝑑 = 𝑅𝑠 ∙ 𝑖𝑠𝑑 +
𝑑

𝑑𝑡
𝜑𝑟𝑑 − 𝜔𝑒 ∙ φrq      (2.6) 

 𝑣𝑠𝑞 = 𝑅𝑠 ∙ 𝑖𝑠𝑞 +
𝑑

𝑑𝑡
φrq + 𝜔𝑒 ∙ φrd      (2.7) 

𝑇𝑒 =
3

2
𝑃 ∙ (𝜑𝑟𝑑 ∙ 𝑖𝑠𝑞 − φrq ∙ 𝑖𝑠𝑑)      (2.8) 
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Figure 2.2: Park and Clark transformation. 

Where the permanent-magnet rotor flux 𝜑𝑚 is divided into the dq components 𝜑𝑟𝑑 and φrq. To 

optimize the electromagnetic torque, the appropriate strategy is normally to use a current 

reference in the d axis direction as zero. From equation 2.9, the stator current is then shifted 

onto the q axis, making the electromagnetic torque directly proportional to the q current 𝑖𝑠𝑞. 

 𝑖𝑠 = √𝑖𝑠𝑑
2 + 𝑖𝑠𝑞2         (2.9) 

𝑇𝑒 ∝ 𝜑𝑟𝑑 ∙ 𝑖𝑠𝑞         (2.10) 

If a non-zero reference value for the d current is used, the rotor speed can be increased beyond 

the nominal speed limitations for the motor. This phenomenon is called field weakening, and 

can be used to increase the speed range of the motor at expense of the applied output torque. A 

magnetic flux opposing the permanent-magnet flux can be damaging for the permanent-

magnets if applied over a longer time period. It may lead to demagnetized permanent-magnets, 

which again leads to reduced torque production (equation 2.10), and heat generation. 

 

2.2. Pulse Width Modulation 

The most common way to control power semiconductor transistors, is by using pulse width 

modulation (PWM). This is done as shown in figure 2.3, with a triangular waveform compared 

to a reference signal, giving a duty cycle for the transistors to stay turned on. The carrier 
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waveform can either be saw tooth or centered triangular shaped. In the Revolve design, centered 

triangular carrier waveforms is preferred, to easier synchronize the control loop frequency with 

the PWM. In this case, the phase current measurements can be synchronized with the carrier 

frequency. By keeping the control loop frequency at twice the carrier frequency, the current 

measurements can be averaged for improved performance. 

 

Figure 2.3: Triangular carrier pulse width modulation. 

 

2.3. Space Vector Modulation 

Space vector (SV) modulation is an alternative and more advanced modulation technique, 

where the modulated waveforms are given by applying specific voltage space vectors. By 

turning on and off (1 or 0) the phase legs 𝑆1, 𝑆1 and 𝑆1 in equation 2.11, the eight voltage space 

vectors in figure 2.4 can be made. 

𝑣𝑠⃗⃗  ⃗(𝑆1,  𝑆2,  𝑆3) =
√3

2
∙ 𝑉𝐷𝐶 ∙ [𝑆1 + 𝑆2 ∙ 𝑒𝑗

2𝜋

3 + 𝑆3 ∙ 𝑒𝑗
4𝜋

3 ]   (2.11) 

These are the available space vectors for a 2-level VSI. For a multilevel VSI, there are more 

possible combinations, giving the possibility to experiment and design selection algorithms to 

cancel out harmonic components. As is clear from equations 2.12 and 2.13 given in [6], the 

maximum line-to-line voltage 𝑉𝐿𝐿 𝑚𝑎𝑥
𝑆𝑉 𝑃𝑊𝑀 for SV PWM utilizes more of the DC bus voltage 𝑉𝐷𝐶 

than the maximum line-to-line voltage for the ordinary PWM 𝑉𝐿𝐿 𝑚𝑎𝑥
𝑃𝑊𝑀 . 
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Figure 2.4: Available voltage space vectors. 

𝑉𝐿𝐿 𝑚𝑎𝑥
𝑆𝑉 𝑃𝑊𝑀 =

1

√2
∙ 𝑉𝐷𝐶 = 0.707 ∙ 𝑉𝐷𝐶      (2.12) 

𝑉𝐿𝐿 𝑚𝑎𝑥
𝑃𝑊𝑀 =

√3

2√2
∙ 𝑉𝐷𝐶 = 0.612 ∙ 𝑉𝐷𝐶      (2.13) 

By adjoining the different space vectors from figure 2.4 over a time period, an average voltage 

vector can be made to fit whatever voltage required to supply the motor with appropriate 

current. There are different tactics for choosing vectors to cancel out harmonics components, 

minimizing switching losses or to keep the switching frequency constant. As can be understood 

from this, SV modulation gives higher performance than ordinary PWM. On the other hand, it 

also brings more complexity into the system. Ordinary PWM was chosen for the Revolve design 

because of its simplicity and robustness. The implementation of PWM on a microcontroller is 

much easier than SV modulation, reducing the chance for mistakes and failure. 

 

2.4. Field Oriented Control 

To optimize the output torque production for a given stator current 𝑖𝑠, a common strategy is to 

set the current reference set point in the d direction 𝑖𝑠𝑑 𝑠𝑒𝑡 to 0. From equation 2.9, the current 

controller will then shift the stator current onto the q axis, giving the relationship in equation 
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2.10. As explained before, for a PM motor with zero stator current in the d direction, the 

produced output torque will be directly proportional to the current in the q direction. Because 

the dq reference frame is rotating with the electrical angular speed of the permanent-magnet 

flux, the dq currents are DC values. This makes it possible to use simple PI controllers to control 

the currents and produced output torque. This control scheme is normally called field oriented 

control (FOC). The FOC system structure proposed in the Revolve design is shown in figure 

2.5.  

 

Figure 2.5: Field oriented control schematic structure. 

In this system the ab current phases and the rotor position are measured and used to perform 

Clark and Park transformations into the rotating dq reference frame with equation 2.2 and 2.4. 

The currents are then compared to the reference set points 𝑖𝑠𝑑 𝑠𝑒𝑡 and 𝑖𝑠𝑞 𝑠𝑒𝑡 and corrected by 

the means of PI controllers. The output from these controllers are then transformed back into 

the αβ reference frame by inverse Park transformation (equation 2.5). The output phase voltages 

of the inverse Clark are fed into a PWM module, giving appropriate duty cycles. The DC bus 

voltage measurement is used to scale the duty cycles from the PWM module. This is to give 

appropriate duty cycle values independently of applied voltage level. This is done to give good 



24  

performance at both, higher and lower input DC voltage. This is a useful feature when using 

the system in a laboratory setup. 

It is also worth mentioning that the outer control loop for rotor speed is not part of the system. 

This is because it is more natural for the driver of the vehicle to function as the outer speed 

loop. 

 

2.5. Direct Torque Control 

According to [8], the direct torque control system is the superior control structure for an AC 

motor drive. The basic idea of direct torque control (DTC), as further discussed in [9], [10] and 

[11], is to control the stator flux vector by estimation of electromagnetic output torque and stator 

flux. The angle between the stator flux and the permanent-magnet rotor flux, 𝛿 in figure 2.6, is 

called the torque angle (equation 2.12). 

𝛿 = arctan (
𝐿𝛽 ∙ 𝑖𝛽

𝐿𝛼 ∙ 𝑖𝛼 + 𝜑𝑚
)        (2.12) 

 

Figure 2.6: Stator and rotor flux linkages. 

In steady state, 𝛿 will be constant corresponding to the load torque. Then, both the stator flux 

and the rotor flux will rotate with the electrical angular speed. In transient operation on the other 

hand, 𝛿 will vary, giving the stator and rotor fluxes different rotational speeds. The speed of the 

stator flux can easily be changed with respect to the rotor flux. This is due to the small electrical 
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time constants in relation to the mechanical time constants of the system. As given for surface 

mounted PM motors in [12], the output torque becomes like in equation 2.13. 

𝑇𝑒 =
3

2
∙ 𝑃 ∙ 𝜑𝑚 ∙ 𝑖𝑠 ∙ sin (𝛿)       (2.13) 

As can be understood from equation 2.13 and figure 2.7, the torque angle and the stator flux is 

changed by applying different voltage space vectors. In figure 2.7, the stator flux vector is in 

sector 1 (S1) of the alpha-beta frame. By applying a voltage vector within one of the four 

quadrants (Q1, Q2, Q3 or Q4), different effects on the output torque and stator flux will result, 

as is shown in the figure and listed in table 2.1. The change in electromagnetic output torque is 

coming from a change in torque angle. 

 

Figure 2.7: Optimal selection of voltage space vectors. 

To estimate the stator flux, equation 2.14 and 2.15 are used. Then the electromagnetic output 

torque can be calculated from the estimated stator flux with equation 2.16. To be able to find 

and apply the optimal voltage space vector, equation 2.17 is used to get the absolute value and 

angle of the stator flux vector. The angle is used to locate what sector in figure 2.7 the vector is 

in, while the amplitude is used for the flux controller. 
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𝜑𝛼 = ∫(𝑣𝛼 − 𝑅𝑠 ∙ 𝑖𝛼)𝑑𝑡 + 𝜑𝛼0      (2.14) 

𝜑𝛽 = ∫(𝑣𝛽 − 𝑅𝑠 ∙ 𝑖𝛽)𝑑𝑡 + 𝜑𝛽0      (2.15) 

𝑇𝑒 =
3

2
∙ 𝑃 ∙ (𝜑𝛼 ∙ 𝑖𝛽 − 𝜑𝛽 ∙ 𝑖𝛼)      (2.16) 

𝜑𝑠 = √𝜑𝛼
2 + 𝜑𝛽

2  < arctan (
𝜑𝛼

𝜑𝛽
)       (2.17) 

In figure 2.8, a proposed DTC system is proposed. The phase currents are measured and used 

for flux and torque estimation with equation 2.14, 2.15 and 2.16. Equation 2.17 is used to find 

the stator flux amplitude and sector for the vector selection table and flux controller. 

 

Figure 2.8: Direct torque control schematic structure. 

In the torque controller, the estimated torque from equation 2.16 is compared to a torque set 

point. The vector selection table is basically like table 2.1, giving different voltage vectors based 

on if the torque and flux should be increased or decreased. The stator voltage calculator block 

in the figure is needed to get the stator voltages. To do this, it is more convenient to use the DC 
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bus voltage and calculate the stator voltages, than actually measuring it. The rotor position is 

also measured in figure 2.8. For the proposed system, this is not needed, as it is not included in 

any of the applied equations. The angular position can be applied if Park transformation is used 

in the DTC system.  

 

 
Sector: 

S0 S1 S2 S3 S4 S5 

Stator 

flux: 

Output 

torque: 

φs = 1 

Te = 1 
v2 

[1,1,0] 

v3 

[0,1,0] 

v4 

[0,1,1] 

v5 

[0,0,1] 

v6 

[1,0,1] 

v1 

[1,0,0] 

Te = -1 
v6 

[1,0,1] 

v1 

[1,0,0] 

v2 

[1,1,0] 

v3 

[0,1,0] 

v4 

[0,1,1] 

v5 

[0,0,1] 

φs = -1 

Te = 1 
v3 

[0,1,0] 

v4 

[0,1,1] 

v5 

[0,0,1] 

v6 

[1,0,1] 

v1 

[1,0,0] 

v2 

[1,1,0] 

Te = -1 
v5 

[0,0,1] 

v6 

[1,0,1] 

v1 

[1,0,0] 

v2 

[1,1,0] 

v3 

[0,1,0] 

v4 

[0,1,1] 

Table 2.1: Optimal selection of non-zero voltage space vectors. 

DTC is more complex than FOC. It is therefore more difficult to implement and requires more 

processing power. Because of the integrations in the flux estimations, proper filtering is needed 

to avoid drifting in the results. To keep it simple and avoid unnecessary risks, FOC was chosen 

for the Revolve design.  



28  

3. Sensors and Measurements 

3.1. Closed Loop Current Transducer 

A closed loop current transducer provides accurate current measurement for AC, DC and 

complex currents. It gives galvanic isolation, fast response and high accuracy for DC and for 

high frequency AC measurements. In other words, ideal for measuring the phase currents in a 

motor control system like FOC or DTC. The principle of operation is sketched in figure 3.1. 

 

Figure 3.1: Closed loop current transducer functionality. 

A closed loop current transducer uses the Hall effect to create a compensating current in the 

secondary coil, giving a total flux equal to zero. The secondary current IS, creates a flux 

opposing and cancelling out the flux from the primary current IP in figure 3.1. With the flux 

cancelled out, the magnetic potentials become identical, and the relationship between the 

secondary and primary currents constant, like in equation 3.1. 

𝐼𝑆 = 𝐼𝑃 ∙  
𝑁𝑃

𝑁𝑆
         (3.1) 

To be able to cancel, or compensate, the primary flux, a Hall effect element is used. The Hall 

voltage from the Hall effect element is proportional to the product of the control current IC and 

the magnetic field from the core. The Hall voltage is used to control the secondary current with 

the operational amplifier and transistor circuit shown in figure 3.1. The secondary current can 
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then easily be measured from the voltage VM, over the measuring resistance RM. In the datasheet 

for a current transducer, the relationship 𝑁𝑃/𝑁𝑆 is called the conversion ratio. The maximum 

measuring range is given by the magnetic properties of the core and the properties of the control 

circuitry. It can be scaled by changing the measuring resistance, where a lower resistance gives 

higher measuring range. With a supply voltage of ± 15 V for the control circuitry, the lowest 

measuring resistance value is given by the maximum allowable secondary current. 

In the application of a VSI, the primary current would be the phase currents, while the ± 15 V 

supply voltage will be given from the control circuit board. Two different closed loop current 

transducers from LEM was used in the Revolve design. At first the LEM LA 150-P, as shown 

in figure 3.2. This is a through hole circuit board mounted sensor, with maximum measuring 

range of ± 212 A. It features high accuracy, good linearity and a wide frequency bandwidth. It 

is a compact and lightweight device, with a weight of less than 25 g. 

 

Figure 3.2: LEM LA 150-P current sensor. 

This was the preferred current sensor device until an incident happened during testing of the 

inverter. At the most extreme operating conditions, the maximum measuring range of ± 212 A 

was not enough, and a new current sensor was needed. A more detailed description of the 

incident and why the sensor was replaced, is given in appendix A. 

 The new current sensor, the LEM LF 205-S, is also a closed loop current transducer. The main 

differences from the LA 150-P are that it has a higher current measuring range, it is chassis 

mounted, and has a larger and heavier design. The LF 205-S has a measuring range of ± 420 A, 

it weighs 78 g, and is considerably larger. It is not meant to be mounted on a circuit board, but 

directly to the inverter casing. The additional weight and size was not ideal, but made it possible 

to drive the inverter at higher peak currents. Luckily, the larger sized device still fit into the 

inverter casing. The LF 205-S also has the same interface as the LA 150-P, with three pins; one 

for the measuring signal and two for the ± 15 V supply voltage. Because the sum of the three 
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phase currents add up to zero, only two sensors are needed for the phase current measurements. 

On the other hand, by using three sensors, possible offsets in the measurements can be 

accounted for. This was still not done due to the limited space and because the two-sensor setup 

gave good performance. The LEM LF 205-S sensor is shown in figure 3.3. 

 

Figure 3.3: LEM LF 205-S current sensor. 

 

3.2. Magnetic Shaft Encoder 

An encoder is a sensor that generates a digital signal in response to movement. For rotational 

movement sensing, like for the rotor in a PM motor, a shaft encoder can be applied. Shaft 

encoders are available with both optical and magnetic sensing technologies. The magnetic 

encoders use permanent-magnets and Hall effect elements for sensing, while the optical use 

light emitting diodes (LEDs) and phototransistors. The magnetic technology is more resistant 

to thermal and mechanical shock, while the optical is more reliable for industrial applications. 

For use in automotive applications, it is important with a robust design that can handle 

vibrations. The magnetic sensing with Hall effect elements was therefore chosen for this design. 

An incremental encoder with ABZ interface generates two pulses and one reference impulse, 

like illustrated in figure 3.4. The A and B pulses are phase shifted by 90 degrees and therefore 

called quadrature output pulses. The states of the two quadrature pulses can be decoded to 

counts, where the number of counts per revolution (cpr) gives the resolution of the encoder. To 

be able to measure position with an incremental ABZ encoder, the Z pulse is needed as 
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reference. The pulse occurs once per revolution and makes it possible to reference the encoder 

counts to an absolute value. 

 

Figure 3.4: Incremental ABZ encoder functionality. 

Because the Z pulse is needed for position measurement, the encoder needs to be initialized at 

startup. Meaning, before the ABZ encoder can be used for measuring absolute position, the Z 

pulse needs to occur at least once. For motor control systems where the rotor position is needed 

for Park transformation, this is important to bear in mind. For example, if the motor control 

system loses GLV power, the encoder needs to be initialized by turning the rotor until the Z 

pulse occurs. To avoid initialization, there are also multi-turn absolute encoders available on 

the market. Instead of giving incremental rotational information, an absolute encoder generates 

a digital representation of the absolute position. 

At first, an absolute encoder with binary synchro-serial interface (SSI) was acquired for the 

Revolve design. SSI is a serial data communication where the transmission is synchronized at 

the receiving and sending ends by a common clock signal. The data sent from the encoder is 

binary codes representing sectors of one revolution. For an absolute binary encoder, the 

resolution is therefore given as the number of bits needed to represent all the sectors of one 

revolution. The acquired encoder was the RM44SC absolute binary SSI encoder from RLS. The 

encoder requires power supply of 5 V and features a resolution of 8192 pulses per revolution 

(ppr) (can be represented by 13 bits). As explained in more detail in appendix A, this encoder 

has a maximum speed rating of 2500 rpm. Because the PM motor, the Emrax 228, has a 

maximum rating of 6000 rpm, this encoder was useless for the application. It was therefore 

decided to acquire a new encoder from the same manufacturer. The RM44IC is an encoder from 
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RLS with the same magnetic encoder flange and supply power. This is an incremental ABZ 

encoder with a resolution of 2048 cpr and a maximum speed rating of 10000 rpm. Because it 

uses the same encoder flange and power supply, it was easily changed. The encoder flange is 

the part connected to the rotor of the motor and is shown as the bottom part in figure 3.5. As 

can be seen from the figure, the encoder base unit is attached to the flange with two screws. 

The control circuit board could use the same power supply, but the data interface had to be 

changed. By using an internal decoder in the microcontroller on the control circuit board, the 

ABZ pulses were easily translated into counts. By using this decoder, the need for 

computational power from the processor was reduced compared to using the binary SSI 

encoder. 

 

Figure 3.5: Magnetic shaft encoder from RLS 

The downside with using the ABZ encoder, is that it has to be initialized every time the GLV 

system is turned off. The easiest way of doing this, is to push the vehicle until the rotor has 

rotated a maximum of one revolution. Because the gear exchange ratio of the vehicle is 3.91:1, 

the driveshaft and wheels only have to be rotated a maximum of ¼ a revolution. The problem 

with this approach occurs if the vehicle stops during a race and the GLV needs to be reset. A 

solution to this problem would be to use a startup procedure without rotor position and feedback 

control until the Z pulse occurs. 
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3.3. Voltage Measurement 

Like for the phase current measurement, a closed loop voltage transducers with Hall effect 

elements can also be used for measuring the DC bus voltage. LEM offer voltage transducers 

for similar power supply and output characteristics, as for the current transducers. Because the 

DC bus voltage is centered around a constant value with smaller deviations than the phase 

currents, and because the accuracy is less important for the applied control system, a simpler 

and more compact solution was chosen. As shown in figure 3.6, and in more detain given in the 

schematic drawing of the circuit in appendix H, a voltage divider circuit is used. 

 

Figure 3.6: DC bus voltage measurement. 

The DC bus voltage 𝑉𝐷𝐶 is measured by dividing it with a constant resistance value, like in 

figure 3.6 and equation 3.2. By using a large resistance 𝑅1 and a smaller resistance 𝑅2, the 

measurement voltage 𝑉𝑜𝑢𝑡 becomes small enough for the anaolog-to-digital converter (ADC) 

in the microcontroller to handle.  

𝑉𝑜𝑢𝑡 = 𝑉𝐷𝐶 ∙
𝑅2

𝑅1+𝑅2
        (3.2) 

To avoid large currents in this circuit, the total resistance should be large. With a total resistance 

of 1204 kΩ, large currents will not be a problem. This makes it possible to put the measurement 

circuit on the control circuit board. To make the circuitry compact, a number of small surface 

mount device (SMD) resistors in series are used, instead of one large 600 V rated resistor.  
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4. Control System Simulation 

To simulate the motor control system, Simulink models were developed. The 

SimPowerSystems library was used for standard models for PM motor and IGBTs, as seen in 

figure 4.1. 

 

Figure 4.1: PM motor and IGBT Simulink models. 

An ideal voltage source model was used to supply the 2-level VSI and PM motor. 

SimPowerSystem also has a lithium-ion battery cell model available. An attempt to use this was 

done at first. A battery accumulator model containing a total of 288 lithium-ion cell models 

were made, as can be seen in appendix E. This model turned out to be too complex to simulate, 

and was therefore dropped. 

It was considered using the C code generator in Simulink to generate the program code for the 

motor control system directly. This concept was disregarded because the generated code was 

difficult to read and it was considered easier and more efficient to manually write it. The 

Simulink models were therefore mostly used to simulate different operating conditions, finding 

initial tuning parameters and required control loop frequencies. 

 

4.1. Field Oriented Control Simulation 

To simulate FOC, the models in appendix F were used. The models were run with a control 

loop frequency of 16 kHz and PM motor settings equal to the Emrax 228 characteristics. In the 

FOC PWM model, the standard Simulink models for Clark and Park transformation and PWM 
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generator were applied. With an outer speed control loop, the result was like in figure 4.2, while 

it with torque control ended up like in figure 4.3. 

 

Figure 4.2: Simulink model of FOC with PWM speed control, speed plot. 

 

Figure 4.3: Simulink model of FOC with PWM torque control, torque plot. 
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The results with both, speed control and torque control were good. In figure 4.2, the upper 

waveform is the speed reference, while the lower one is the actual speed. The same applies for 

the torque plots, where the upper is the reference torque, and the lower the produced 

electromagnetic torque. The produced torque has some ripples, but still follows the reference 

value. These plots were made with a reference torque equal to the load torque applied to the 

motor, at lightly loaded operation and 530 V DC voltage supply from an ideal voltage source. 

In the next model, hysteresis was used instead of PWM. In figure 4.4, the load torque is plotted 

against the produced torque. The hysteresis effect can clearly be seen in the plot. The way the 

hysteresis in this model works, is that the error from the PI controllers were compared to a 

hysteresis limit, giving the direct control of the IGBTs. The model could have been improved 

further, but the concept was early disregarded, and put aside. 

 

Figure 4.4: Simulink model of FOC with hysteresis speed control, torque plot. 

In the following model, SV PWM was used. Just as with the hysteresis model, this model was 

not prioritized. The reason for this, was that it was decided to go for ordinary PWM in the actual 

VSI design. SV PWM could have given better performance, as discussed in chapter 2, but it is 

also more complex and needs more processing power. In figure 4.5, a speed plot with speed 
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control is shown. Like in the other plots, the upper is the reference, while the lower is the actual 

speed. The result could have been improved by tuning parameters more carefully. 

 

Figure 4.5: Simulink model of FOC with SV PWM speed control, speed plot. 

While testing the actual inverter, the FOC Simulink models were used to explore the effects of 

using different control loop and switching frequencies. In the actual inverter, the control loop 

frequency ended up at the maximum frequency the microcontroller could handle, leaving the 

microcontroller as the limiting factor for system control speed. 

 

4.2. Direct Torque Control Simulation 

A successful Simulink model for DTC was never developed. The last model in appendix F is 

actually running on FOC, while the estimations for DTC are done in parallel. This was done to 

verify estimations, as a start of the development of the DTC model. In the model, the estimations 

from chapter 2 are done. The stator flux is estimated from the stator currents and voltages, while 

the torque is estimated from the stator flux and currents. In figure 4.6, the load torque, estimated 

torque and actual torque are plotted. The actual torque follows the load torque well, while the 

estimated torque curve is a little misshaped. The reason why the actual torque follows the load 



38  

torque so well, is because the control system is running FOC. In figure 4.7, one of the problems 

with DTC is shown. The flux estimation tends to drift because of the integration done in the 

equations. In this model, an attempt to filter and correct the flux was made. This improved the 

results, but more advanced filtering should be applied to solve the problem. 

 

Figure 4.6: Simulink model with torque estimation. 

 

Figure 4.7: Simulink model of stator flux drift.  
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5. Control System Hardware 

5.1. Circuit Board Design 

To process the measurement data and execute the FOC algorithm, controlling the IGBTs, a 

control circuit board was designed. As sketched in figure 5.1, the board is supplied with power 

from the GLV system and is connected to both the CAN busses in the vehicle. A microcontroller 

receives measurement data from the encoder, the current sensor circuits, the DC bus voltage 

measurement circuit, and temperature measurements from the heatsink and PM motor. 

 

Figure 5.1: Inverter control circuit board schematic drawing. 

The control circuit board was designed using the design tool Altium, with the version control 

program Vault. In figure 5.2, a rendering of the final circuit board is shown, while all the 

schematic drawings of the circuits are given in appendix H.  
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In the beginning of the design period, a component and schematic library in Vault was created. 

By using the library, and always uploading and updating the work to the server, it was made 

possible to reuse and modify circuit designs for other circuit boards in the vehicle. Most of the 

power supply circuits, the microcontroller circuit, the CAN transceiver circuit and temperature 

measurement circuits are examples of standardized designs.  

 

Figure 5.2: Inverter control circuit board rendering. 

As mentioned, the board is supplied with 26 V from the GLV. Internally on the board, the 

different circuits need different power supplies. The microcontroller requires 3.3 V, the gate 

drivers 15 V, the current sensors ± 15 V, the encoder and DC bus voltage measurement circuits 

5 V, and so on. The board has therefore been given internal power supplies for 15 V, 5 V and 

3.3 V. An overview of the power supply circuits can be seen in appendix figure H.2, while the 
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GLV input filter, 3.3 V, 5 V, 15 V and negative 15 V supplies are given in the appendix figures 

H.3-H.7. Apart from the negative 15 V supply, these circuits are used on several other circuit 

boards in the vehicle. This also goes for the CAN transceiver and microcontroller circuit in the 

appendix figures H.8 and H.9. The schematic drawings that have been exclusively made for the 

inverter control circuit board, are the gate driver interface, encoder, current sensor, and voltage 

measurement circuits given in appendix figure H.10-H.14. The temperature measurement 

circuits and the FRAM (ferroelectric random-access memory) in appendix figure H.15-H.17 

are circuits partly standardized for the rest of the circuit boards. The schematic drawing in 

appendix figure H.1 is an overview of the circuit board, in more detail than figure 5.1. 

The schematic drawing in appendix figure H.18 is not part of the inverter control board. That 

is the schematic for the discharge circuit board. This is another circuit board in the VSI casing. 

Its functionality is discussed in more detail in chapter 7. 

 

5.2. Data and Computational Processing Unit 

To process the measurement data and perform the required calculations and operations for the 

motor control, a microcontroller (MCU) is used. In the initial design phase, it was considered 

to use a system-on-chip (SoC) solution. This is an integrated circuit, normally containing 

digital, analog and mixed-signal functions on a single chip. A SoC with a powerful MCU or 

digital signal processor (DSP) and a field programmable gate array (FPGA) was considered as 

a viable design concept. The FPGA contains programmable logic blocks, allowing fast data 

processing. For a motor control application, the measurement data could then be handled in 

parallel, making the control system very fast and accurate. Programming of FPGA is a complex 

process, more difficult and time consuming than only handling a MCU. The SoC concept was 

therefore set aside in favor for a MCU-based design. 

To make the circuit board designs in the vehicle as standardized as possible, it was decided to 

only use two different MCU chips. These are MCUs of the Atmel-MEGA and Atmel-SAM 

series. The applied Atmel-MEGA MCU is an 8-bit microcontroller, while the applied Atmel-

SAM is a 32-bit, more sophisticated MCU. Because of this, the SAM4E16E MCU ended up as 

the choice for the inverter control circuit. This is an ARM Cortex-M4 processor-based MCU 

with floating point unit and high data bandwidth. The chip has 144-pins and can be operated 

with a maximum frequency up to 120 MHz. It also features desirable functionalities like CAN 
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interface, serial peripheral interface (SPI), quadrature decoder, ADCs and PWM modules. The 

CAN interface is important for the communication with the rest of the vehicle. The SPI bus for 

receiving data from the external ADCs in the current sensor circuits. The quadrature decoder is 

required to decode the ABZ encoder pulses. The PWM modules to operate of the insulated-gate 

bipolar transistors (IGBTs). While the internal ADCs are used to convert the analog voltage 

and temperature measurement signals to digital representation. 

 

5.3. Circuit Board Production 

The control circuit board was designed in-house by the team, but produced and assembled at 

the workshop of a professional industry partner. The printed circuit boards (PCBs) were 

produced according to files generated from the control circuit board Altium design model, 

together with a stencil showing the component pads. During assembly, the stencil was used to 

apply solder paste to all the pads where components were to be placed. Then, component 

placement was then done by hand, as shown in figure 5.3. With all the components in the right 

place, the PCB was sent through a reflow oven. 

 

Figure 5.3: Control circuit board production. 

With the components on both sides of the PCB soldered, the board was inspected with an x-ray 

machine to control the quality of the solders. In figure 5.4, an x-ray image of the MCU and 

some of the closest components is shown. In the image, the 144 pins and their paths into the 
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integrated circuit in the middle of the MCU are clearly seen. The close by components are small 

SMD capacitors connected to the MCU pins, while the component at the upper right side, is an 

external oscillator used for synchronization of the CAN busses for the MCUs in the vehicle 

network. The components overlapping with the MCU, in the middle, are in reality on the other 

side of the PCB. 

 

Figure 5.4: X-ray image of the microcontroller on the control circuit board.  
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6. Control System Software 

6.1. Motor Control Program Code 

The MCU program code is written in C, using the integrated development platform (IDP) Atmel 

Studio 6 and the version control system GitHub. Atmel Studio 6 provides a platform for writing, 

building and debugging C code for the MCU. For programming and debugging it, the Atmel-

ICE debugger was used. This is the white box connected to the circuit board in figure 6.1. 

 

Figure 6.1: Control circuit board programming. 

In figure 6.2, the inverter control program structure is shown. Before the system starts running, 

the first block in figure 6.2, initializes the different modules of the system. In this block, the 

initialization of flash, floating point unit (FPU), power management controller (PMC), light 

emitting diodes (LEDs), CAN, PWM and analog front end controller (AFEC) is done. Together 

with the initialization of the current data conversion and reading, encoder data reading, error 

status reading and sending, and the field oriented control calculations. After initialization is 

completed, an infinite while loop, containing the inverter control program, starts running. 
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Figure 6.2: Inverter control program. 
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The first stop in the program loop, is to wait for new PWM duty cycle to be calculated. This is 

done to synchronize the control loop with the PWM duty cycle. Then, the current conversion 

from ADC 1 and ADC 4 is started. In figure 6.1, the two contacts with red-purple-blue wires 

are the applied current sensor circuits. Current sensor circuit 1 (ADC 1) is the left circuit, while 

current sensor circuit 4 (ADC 4) is right one. After this, the MCU reads the CAN messages 

relevant for the system. To continue at this point, the encoder initialization needs to be 

complete. If not, the program will never enter the FOC system part. 

If the encoder is initialized (at least one Z pulse have occurred, as explained in chapter 3), the 

torque set point will be calculated. This is done by multiplying the torque request from the ECU 

with a motor constant. Then, the encoder and the DC bus voltage measurements will be read in 

the following two blocks. After this, the program will stop and wait until the current conversion 

is finished, before the current measurements are read. In the blue and red boxes in figure 6.2, 

the FOC algorithm is executed and the error status checked. After this, the new duty cycles are 

calculated and applied to the PWM modules commanding the switching of the IGBTs. Before 

starting the whole procedure again, the MCU sends its CAN messages. 

Polling is used instead of interrupts in the program flow. At first a more interrupt-based program 

structure was used. In this system, the interrupts with highest priority cut in, when ready to 

execute. The interrupt-based program showed good performance, but polling was still 

considered better. This control structure was executed faster, allowing faster control loop speed. 

The system is also easier to follow and to modify without disturbing important functionalities. 

The program code has been divided into folders and files to make it easier to follow. All the 

code is given in appendix B, where the specific folders and files have been divided into 

subchapters. 

 

6.2. Field Oriented Control Code 

As explained before, the initialization of the FOC system is done before the program loop starts 

running. In the initialization sequence, the control parameters for the PI controllers are set. In 

the blue box in figure 6.2, the FOC calculation block, is where all the operations involved in 

the control system are executed. First, the Clark and Park transformations are performed using 

the phase currents 𝑖𝑎 and 𝑖𝑏, and the electrical position 𝜃𝑒. Then, the error between the setpoint 

and actual dq currents are calculated, before the PI controllers are run. After this, reverse Park 
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and Clark transformations are performed, giving the voltages for the duty cycle calculations. 

To optimize these calculations for speed, the CMSIS DSP software library is used. This is a 

library of common signal processing functions optimized for the Cortex-M processor. These 

applied functions with inputs/outputs are shown in table 6.1. 

 Input Output 

arm_sin_cos_f32 Electrical angular position Equivalent sine and cosine values 

arm_pid_f32 Pointers to control parameters No output 

arm_clarke_f32 ab phase currents αβ axis currents 

arm_inv_clarke_f32 αβ axis currents ab phase currents 

arm_park_f32 αβ axis currents dq axis currents 

arm_inv_park_f32 dq axis currents αβ axis currents 

Table 6.1: CMSIS-DSP software library functions. 

The functions in table 6.1 require floating point inputs and generate floating point outputs. 

Because the Atmel SAM4E16E MCU have a FPU and because the CMSIS DSP library provide 

the needed functions for floating point representation, the use of fixed point integers has been 

avoided in the whole program.  

 

6.3. CAN Messages and Error Status  

In appendix B.8, the header file containing the identification and priority numbering for all the 

CAN messages, on both the CAN busses in the vehicle, are shown. In appendix C, lists of input 

and output data with specific priority are listed. All the receiving data in these lists are on the 

CAN bus, but some of the sending data had to be dropped. The reason for this was that the CAN 

busses got overloaded. The most significant receiving data are the dq current set points. The d 

current set point is set to zero (as long as field weakening is not desired), while the q current is 

given from the ECU. The most significant sending data are the rotor speed, DC bus voltage, dq 

currents, the fault vector, and the encoder initialization status. The dq currents are important 
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parameters for tuning the PI controllers. These values can be sent from the car via a telemetry 

system, and be represented in the in-house developed analysis software, Revolve Analyze. 

Revolve Analyze provides two-way telemetry and feature a function for sending back new 

tuning values for the PI controllers. The analysis software also provides information about the 

errors and status information for the VSI. This information is given as status bits in the header 

file for error codes in appendix B, and shown in table 6.2. The status bit 24 starts the VSI, while 

bit 25 allows the VSI to receive torque request from Revolve Analyze instead of the ECU. This 

was a convenient function during laboratory testing, but a dangerous feature when testing in the 

car. The rest of the bits are self-explanatory. 

Bit: Function:    

0 Permanent current limit exceeded  16 Encoder not initialized 

1 Permanent voltage limit exceeded  17  

2   18 PID saturation phase A 

3   19 PID saturation phase B 

4   20 PID saturation phase C 

5   21 Gate driver error phase A 

6   22 Gate driver error phase B 

7   23 Gate driver error phase C 

8 Current limit phase A exceeded  24 Ready to drive 

9 Current limit phase B exceeded  25 Accept torque request from telemetry 

10 Current limit phase C exceeded  26  

11 Upper voltage limit exceeded  27  

12 Speed limit exceeded  28  

13 Gate driver error  29  

14 Lower voltage limit exceeded  30  

15 Lower torque request limit exceeded  31  

Table 6.2: Status bits in Revolve Analyze. 
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7. Voltage Source Inverter Design 

7.1. Power Semiconductor Transistors 

The most important components in a voltage source inverter are the power semiconductor 

transistors, switching the voltage source on and off. There are many different solutions available 

on the market. The most suitable solution for this design, is power semiconductor modules, 

either single modules, half-bridge modules or a full six-pack module. The reason for 

considering modules more suitable than discrete transistors, is because a semiconductor module 

is easier to cool and because the inductances are symmetrically distributed between the internal 

components. The reason why a module is easier to cool, is due to the copper base plate it is 

mounted to. This base plate can easily be mounted to a water-cooled or air-cooled heatsink. A 

half-bridge module is a module containing two IGBTs and two antiparallel diodes (as shown in 

figure 7.1). In other words, one phase of the VSI. For a three-phase VSI, three half-bridge 

modules are needed. This solution becomes more compact than using single modules, where a 

total of six modules are needed. On the other hand, it is less compact than using one six-pack 

module. The reason why a six-pack module is not used, is due to the required ratings for the 

system. According to Semikron [13], a voltage rating of 1200 V and a current rating of 300 A 

is suitable for this design.  

 

Figure 7.1: Inside of a power semiconductor module [13]. 
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In figure 7.2 and 7.3, two alternative half-bridge module packages are shown. The Semitrans 3 

package is used by many manufacturers and available for all types, ratings and generations of 

transistors. The SEMiX package is a newer design, not available for a selection like the 

Semitrans 3, but still widely used in industry. The main difference between the two, are where 

the connections are located. On the Semitrans 3 module, the three terminals on the top are for 

DC +/- and AC, while the four contacts on the left side are for controlling the IGBTs. 

 

Figure 7.2: Semitrans 3 power semiconductor module. 

On the SEMiX module, the DC +/- and AC terminals are at each of the sides of the module, 

while the contacts for controlling the IGBTs are at the top of the module. This way the control 

circuitry can be directly mounted on top of the module. 

 

 

 

Figure 7.3: SEMiX power semiconductor module. 



51  

The Semitrans 3 module package was chosen for this design. The reason for this was because 

of the simple design and because of its large range of available alternatives. It is for example 

available with silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors 

(MOSFETs) instead of IGBTs. In table 7.1, both the SKM300GB12V and the 

CAS300M12BM2 has Semitrans 3 module packages. The difference between the modules is 

that the SKM300GB12V is an IGBT half-bridge module from Semikron, while the 

CAS300M12BM2 is a SiC MOSFET half-bridge module from Cree. As is clear from the table, 

the Semikron half-bridge modules, SKM300GB12V and SEMiX303GB12Vs, have similar 

ratings, while the SiC MOSFET module from Cree is quite different. 

 
SKM300GB12V 

(IGBT) 

SEMiX303GB12Vs 

(IGBT) 

CAS300M12BM2 

(MOSFET) 

Maximum collector current 

@ Tc = 80 °C 
319 A 342 A 300 A 

On-state resistance @ Tj = 

150 °C, 300 A 
4.57 mΩ 4.4 mΩ 8.6 mΩ 

Switching energy (Eon + Eoff) 

@ Tj = 150 °C, 300 A 
23 mJ + 33 mJ 27 mJ + 36 mJ 6 mJ + 6 mJ 

Total gate charge @ 300 A 3310 nC 3300 nC 1025 nC 

Unit price $ 174 $ 146 $ 561 

Table 7.1: Comparison of power semiconductor module characteristics. 

Both IGBTs and MOSFETs are voltage controlled transistors. An IGBT is turned on by 

applying a positive voltage between the gate and emitter in figure 7.4. By doing this, the 

collector current 𝑖𝐶 is allowed to flow from collector to emitter. A positive gate-emitter voltage 

induces positive charge on the gate conductor, attracting negative charge to the other side of 

the gate oxide. This opens a channel through the P-type and N-type silicon layers where the 

collector current can flow. The P-type silicon in figure 7.4 is silicon doped with boron and has 

electrons as majority carrier, while the N-type silicon is doped with phosphorous and have holes 

as majority carrier.  

A MOSFET is controlled in the same way. The difference is that it lacks the P+ collector silicon 

layer as is in the IGBT. For an IGBT during turn-on, the collector current causes hole injection 
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from the P+ collector region into the N- region, attracting electrons from the N+ emitter region. 

This is called double injection and leads to a higher charge density, increasing the conductivity 

and reducing the on-state resistance. Double injection is the main difference between an IGBT 

and a MOSFET, and is responsible for the differences in table 7.1. 

 

Figure 7.4: IGBT structure with silicon layers [5]. 

Because of double injection, an IGBT can be manufactured with more silicon and still have low 

ohmic losses due to the high conductivity of the silicon in the on-state. With more silicon, it 

can be designed for higher voltage levels and higher collector currents. On the other side, double 

injection also makes the transistor slower than a MOSFET. More energy is needed to turn it on 

and off, giving higher switching energies and needed gate charge. 

For a normal silicon (Si) MOSFET, the ohmic losses will become too high if designed for higher 

voltages and currents. This is why Si MOSFETs only are used in low power electronic circuits. 

With SiC MOSFETs, on the other hand, the transistors can be designed to handle higher 

voltages and currents, while still having reasonably low on-state resistance. The SiC MOSFET 

is new technology compared to the IGBT and not yet taken up by the industry. It is promising 

technology for applications where high switching frequency and high power is wanted, [14] 

and [15]. By choosing the SKM300GB12V IGBT module from Semikron, the rest of the design 

is still compatible with the CAS300M12BM2 SiC MOSFET from Cree. This makes it possible 

to try out the SiC MOSFET modules in the same design at a later time. This is interesting for 

further research and development on the inverter.  

In figure 7.5, the turn-on characteristics for a power semiconductor transistor is shown. At t1 

the gate-emitter voltage reaches the threshold voltage where the collector current iC starts to 

flow. The voltage and current characteristics from t1 to t4 is of importance when estimating the 
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power dissipation of the transistor. In equation 7.1, the conduction losses of the transistor is 

given. The conduction losses can be calculated from the applied collector current and collector-

emitter voltage or by the on-state resistance, when the transistor is in the on-state. In equation 

7.2, the switching losses are given. This is the losses coming from the turn-on and turn-off 

characteristics of the transistor. The turn-on loss can be calculated by integrating the product of 

the collector current and collector-emitter voltage waveforms over the time t1 to t4 in figure 7.5. 

Normally the turn-on and turn-off energies are given in the datasheet of the transistor for 

different operating conditions. 

𝑃𝑐𝑜𝑛𝑑 = 𝑉𝐶𝐸 ∙ 𝑖𝐶        (7.1) 

𝑃𝑠𝑤 = (𝐸𝑜𝑛 + 𝐸𝑜𝑓𝑓) ∙ 𝑓𝑠𝑤       (7.2) 

 

Figure 7.5: Turn-on characteristics for a power semiconductor transistor. 

The total power dissipation of the transistor is an important design parameter when it comes to 

heatsink design. By averaging the power dissipation over a time of typical operation, an 
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appropriate estimation can be found. With an average battery accumulator power of 30 kW and 

a switching frequency of 8 kHz, a conservative power dissipation estimate is 100 W per IGBT 

module.  

 

7.2. Gate Drive Circuit 

A gate driver circuit is needed to charge and discharge the gate capacitances to switch a power 

semiconductor transistors on and off. The circuit is the interface between the low voltage 

control system and the voltage level of the tractive system, providing galvanic isolation between 

the systems. It also provides safety features like short circuit protection and interlocking 

between upper and lower transistor in a phase leg. 

 

Figure 7.6: Gate driver functionality schematic. 

It was decided to buy the gate drivers from Semikron, the same manufacturer as the IGBTs. 

The reason for not designing the gate driver circuit in-house was to reduce risks and to get a 

gate driver designed to work well with the chosen IGBT module. The SKHI 23/12 R driver 

from Semikron in figure 7.7 has all the features and functionalities required for such a circuit 

and is recommended by the manufacturer. One gate driver circuit board, controls the two 

transistors in one IGBT half-bridge module, requiring one board per phase leg. If the gate 

drivers had been designed in-house, the three gate driver circuit boards needed for a three phase 

system could have been put onto one circuit board, making the system more compact and 

lightweight. As previously mentioned this was not done due to the risks associated with 

designing the circuit in-house. 



55  

 

Figure 7.7: SKHI 23/12 R gate driver from Semikron. 

As is clear from figure 7.5, the gate driver has to apply a voltage higher than the gate-emitter 

threshold value for the IGBT, before any collector current can flow. During the turn-on, the 

gate driver has to supply enough current to charge the gate-emitter and gate-collector (Miller 

capacitance) capacitances before the full collector current can flow with low conduction losses. 

In figure 7.5, the gate-emitter voltage reaches the threshold value at t1. Due to the Miller 

capacitance, the gate-emitter voltage will be kept on a plateau from t2 to t3, before it reaches the 

voltage level which leads the collector-emitter voltage to saturation at t4. As given in figure 7.5 

and equations 7.1 and 7.2, the time between t1 and t4 represents the switching losses of the 

IGBT.  The switching waveform of the IGBT can be modified on the gate drivers by changing 

the gate resistance values RG in figure 7.6. By soldering on lower gate resistances, the IGBTs 

will be turned on and off faster. Faster switching reduces the switching losses, but leads to 

oscillations if set too fast. 

The SKHI 23/12 R gate driver also features collector-emitter voltage monitoring, short circuit 

protection, soft short circuit protection, under voltage supply monitoring, interlock between 

upper and lower IGBT in a phase leg, internal isolated power supply and error message 

communication.  If the control system tries to turn on both IGBTs in a phase leg at the same 

time, or if the supply voltage to the gate driver drops below 13 V, the gate driver will shut down 

the IGBT module and report an error message back to the control circuit board. In normal 

operation the gate driver should be supplied with 15 V from the control circuit board, together 
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with the switching signals for the IGBTs. How to correctly connect the driver to the IGBT 

module and to the control circuit board is explained in more detail in the “Inverter Prototype 

Setup Manual” in appendix D. This setup manual was made so that the VSI prototype easily 

could be modified and assembled during testing. 

The functions mentioned can be modified and controlled by soldering different resistor values 

or strappings on the board. As already mentioned, the gate resistance can easily be modified in 

this way. The interlock dead time between upper and lower IGBT can also be modified in a 

similar way. The standard dead time for the board from the manufacturer is set to 10µs. This a 

conservative setup and should be modified according to the system. This is done by soldering 

on smaller resistors on the board. Finding the optimum dead time and gate resistor can only be 

done by testing and measuring the collector-emitter voltages in a test setup.  

It is also worth mentioning that the standard setup for the gate driver is to control two IGBT 

modules in parallel. By soldering on a specific strapping on the board, this is easily changed to 

single IGBT module control. 

 

7.3. Input Capacitor Bank 

As explained in [1], a capacitor bank on the DC input side of the VSI is important to provide a 

low impedance path for ripple currents associated with the switching frequency and control 

loop frequency. The capacitor bank should be placed as close as possible to the terminals of the 

IGBT modules and be capable of absorbing enough energy to damp the DC side ripples. This 

is important to protect the battery accumulator against high frequency voltage ripples. On the 

other hand, it is also important that the stored energy can be discharged fast at shutdown of the 

system. As can be understood from equation 7.3, the stored energy 𝐸 can become dangerous 

for a capacitor bank with high equivalent capacitance 𝐶𝑒𝑞 at a voltage level of 530 V. It is 

therefore important to find capacitors with appropriate ratings and capacitance.  

𝐸 =  
1

2
𝐶𝑒𝑞 ∙ 𝑉𝐷𝐶

2         (7.3) 

The most typical types of capacitors for this application are film capacitors or electrolyte 

capacitors, [16]. In table 7.2, two suitable capacitor alternatives are listed. The PEH169UT433 

is an aluminum electrolyte capacitor, while the 944U161K801ABM is a metallized 

polypropylene film capacitor. To obtain the required voltage rating and current ripple 
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capability, two capacitors in series and two in parallel are needed for the aluminum electrolyte 

capacitor alternative. While it for the film capacitor, only two in parallel are needed. 

  PEH169UT433 944U161K801ABM 

Voltage rating V 350 800 

Capacitance µF 3300 160 

Height mm 105 52 

Diameter mm 75 84 

Equivalent series 

resistance 
mΩ 20 0.8 

Maximum current ripple Apeak
RMS 32.8 73 

Table 7.2: Alternative capacitors for input capacitor bank. 

There are also available electrolyte capacitors with higher voltage ratings, but then the size gets 

bigger. The capacitance and energy storage will then also become higher than desired. With the 

alternative with four of the electrolyte capacitors, the total capacitance becomes 1650 µF, which 

already is on the upper limit for this system. The VSI from last season, the Bamocar d3 from 

Unitek, had a DC side input capacitance of 320 µF [4], while the standard VSI from Sintef 

Energy [17] has a capacitance of 3300 µF. In the Bamocar d3, film capacitors are used, while 

there are electrolyte capacitors in the VSI from Sintef Energy. If the equivalent series resistance 

(ESR), maximum current ripple capability and physical size also are taken into consideration, 

the choice is leaning towards the film capacitor for this application. With two of the 

944U161K801ABM capacitors from Cornell Dubilier, the total capacitance becomes 320 µF. 

This is the exact same as for the Bamocar d3, and considered as a suitable capacitance level. 

Because of the relatively low capacitance, the discharge circuitry also becomes smaller and 

simpler. On the other hand, higher capacitance could give higher performance, because of 

higher amount of stored energy at the inverter side of the energy meter. This will make it 

possible for the inverter to feed the PM motor with higher power transients, without the energy 

meter noticing. 
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Figure 7.8: Cornell Dubilier 944U metallized polypropylene film capacitor. 

Another point in this discussion is that film capacitors are bipolar. Unlike the electrolyte 

capacitor, the film capacitor can be connected both ways. If an electrolyte capacitor is connected 

the wrong way, it might blow up when energized. The choice finally fell on two of the film 

capacitor in table 7.2 (Cornell Dubilier 944U161K801ABM). 

 

7.4. Discharge Circuit 

According to the rules from SAE International [2], the input capacitor bank voltage of the VSI 

has to be discharged to a voltage level below 60 VDC within five seconds after the shutdown 

circuit is opened. The DC side input voltage 𝑣𝑑𝑖𝑠 is given by equation 7.4, where 𝑉0 is the initial 

capacitor bank voltage and 𝑅𝑑𝑖𝑠  the discharge resistance. Equation 7.5 gives the discharge 

current 𝑖𝑑𝑖𝑠. The discharge resistance and current determines the power and heat production in 

the discharge resistor, and is thus important for dimensioning the circuitry. 

𝑣𝑑𝑖𝑠 = 𝑉0 ∙ 𝑒
−

𝑡

𝑅𝑑𝑖𝑠 ∙ 𝐶𝑒𝑞        (7.4) 

𝑖𝑑𝑖𝑠 =
𝑣𝑑𝑖𝑠

𝑅𝑑𝑖𝑠
         (7.5) 

Like shown in figure 7.9, the discharge resistor needs to be dimensioned so that it will discharge 

sufficient energy to get below 60 V within five seconds, without too high transients of power 

dissipation. 
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Figure 7.9: Discharge voltage and current waveforms [1]. 

In figure 7.9, the discharge voltages and currents for three alternative resistors of the type 

Welwyn WH100 (figure 7.10) are plotted. To keep the instantaneous power and heat production 

to a minimum and still stay within the five second rule, the 3.3 kΩ alternative was chosen.  

 

Figure 7.10: Welwyn WH100 discharge resistor. 
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To control the discharging, a circuit board and two relays are used. Because the discharge circuit 

is a critical safety system, two discharge relays in series are used for increased redundancy. 

Temperature measurement on the discharge resistor is also an important safety feature. 

 

Figure 7.11: Discharge control circuit board. 

The discharge control circuit board in figure 7.11 (circuit schematic drawing in appendix figure 

H.18) is supplied from the GLV system and controls the two discharge relays (figure 7.12) 

parallel. The control is based on the shutdown circuit state and the discharge resistor 

temperature. The Cynergy3 DBT72410P relay is a normally-closed relay and will close the 

discharge circuit whenever the shutdown circuit is opened. This means that if an error or fault 

is detected (shutdown circuit opens), or the tractive system is shut off due to transportation, 

storage or maintenance, the discharge circuit will be active. If the temperature measurement on 

the resistor crosses the limit of 80 ° C, the control circuit board will overrule the shutdown 

circuit and open the relays until the temperature has dropped to a safe level. 

 

Figure 7.12: Cynergy3 discharge relay. 

The reason for extra safety measures like multiple relays in series and temperature monitoring, 

is due to an unwanted incident with this circuit last season. Last season, one of the battery 

accumulators was destroyed because it was discharged to an unsafe voltage level over the 

discharge resistor. 
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7.5. Heatsink Design 

As explained and discussed in [1], the VSI needs a heatsink to transport heat away from the 

IGBT modules. Because the PM motor is water-cooled, it is also convenient to use water-

cooling in the VSI. Then the same cooling system, with radiator and hoses, can be used for both 

the VSI and the PM motor. When dimensioning the heatsink, the power losses from the IGBT 

modules need to be estimated, and an appropriate thermal model set up. The power losses 𝑃𝑙𝑜𝑠𝑠 

from the IGBT modules are estimated in equation 7.1 and 7.2. The applied thermal model from 

[13], as shown in figure 7.13 and given in equation 7.6, is applied.  

𝑇𝑗 − 𝑇𝑠 = 𝑃𝑙𝑜𝑠𝑠 ∙ 𝑅𝑡ℎ(𝑗−𝑠)       (7.6) 

𝑇𝑗, 𝑇𝑐, 𝑇𝑠 and  𝑇𝑎 represent the temperatures at the junction of the semiconductor chips in the 

IGBT modules, at the module casings, the heatsink surface, and ambient. 

 

Figure 7.13: Thermal heatsink model [13]. 
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The thermal resistances 𝑅𝑡ℎ(𝑗−𝑐), 𝑅𝑡ℎ(𝑐−𝑠) and 𝑅𝑡ℎ(𝑠−𝑎) are values that is found in the respective 

datasheets or from simulation. They represent the thermal resistances from junction to case, 

from case to heatsink and from heatsink to ambient. In figure 7.14 and 7.15, renderings of the 

heatsink design are shown. The models are computer aided design (CAD) models made in 

SolidWorks. In figure 7.16, a computational fluid dynamics (CFD) analysis of the heatsink 

CAD model, is shown. The simulation is done using the CFD software STAR-CCM+, with a 

water flow rate of 0.04 kg/s, where only the heat transfer between IGBT module and heatsink 

is considered. In figure 7.16, each of the IGBT modules are modeled as constant power sources 

of 100 W, which is a conservative estimation of the normal operational condition. This value is 

based on the power dissipation estimations done before. With 100 W per IGBT module, the 

losses are still small compared to the estimated losses of the PM motor. These losses are 

estimated to be 2 kW under heavy load. The IGBT modules will break down due to heat at a 

junction temperature 𝑇𝑗 of 175 °C. Based on equation 7.6, this is equivalent to a heatsink surface 

temperature of about 125 °C. With a maximum heatsink temperature of 75 °C in the CFD 

analysis, the design should be dimensioned appropriately. 

 

Figure 7.14: Heat sink rendering, bottom side. 
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Figure 7.15: Heat sink rendering, top side, with IGBT module. 

 

 

Figure 7.16: Heatsink simulation of temperature distribution. 
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7.6. Voltage Source Inverter Casing Design 

As discussed and explained in [1], all tractive system components should be properly 

encapsulated and isolated from the GLV system and chassis. The components should also be 

able to withstand moisture in the form of rain or puddles. For the VSI, this means that the system 

have to be built into a sealed casing with waterproof contacts. The VSI from last season, the 

Bamocar d3, was delivered with a heavy aluminum casing and weighted a total of 8.5 kg. For 

this year’s design, with a carbon fiber casing, it is estimated that the weight will be reduced to 

about 4 kg.  

In figure 7.17 and 7.18, a CAD assembly model of the VSI casing is shown. The model is made 

with the modelling tool SolidWorks and the version control program PDM. It shows the casing, 

with IGBT modules, input capacitor bank, discharge circuit, gate drivers, control circuit board, 

current sensors and contacts. The wiring harness in the casing is left out of the model, but is 

given in detail in appendix G. The VSI wiring harness schematic drawing in appendix G gives 

a complete overview of the tractive system GLV wiring, and pin identifications for the contacts 

in the VSI casing.  

 

Figure 7.17: Voltage source inverter casing rendering, front side. 
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Figure 7.18: Voltage source inverter casing rendering, rear side. 

7.6.1. Placement in the Monocoque 

Figure 7.19 shows the placement of the VSI in the monocoque. The VSI and the energy meter 

are the green boxes in the figure, while the red box is the battery accumulator. The yellow 

structure is the motor shielding housing with differential and gear box, while the purple 

structure is the seat. The VSI is attached with suspension plates to the inside top of the 

monocoque. The suspension plates are not shown in figure 7.17, 7.18 or 7.19. One plate is glued 

to each side of VSI and one on the rear side, attaching the VSI to the ceiling with four bolts. 

The energy meter is attached to the VSI with clip bonds and designed with the same tractive 

system contacts, making it easy to install. 

To remove the VSI, the seat and a fire wall has to be removed from the cockpit. The firewall is 

a thin Kapton tape-covered aluminum wall between the seat and the battery accumulator. With 

the seat and firewall removed, the battery accumulator can be taken out through the cockpit. 

Then the tractive system DC contact can be disconnected through the cockpit, and the tractive 

system AC contact, encoder and motor temperature contact, CAN bus and power contact and 
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water hoses disconnected through the rear service hatch. The rear service hatch is not shown in 

figure 7.19, but is located just above the motor shielding housing. Then, the four bolts attaching 

the VSI suspension plates to the monocoque can be loosened, and the VSI taken out through 

the cockpit. The VSI is not the easiest component to remove, but this was seen as the most 

compact way of packing the motor room. It is anyways required by the SAE International rules 

[2] that the battery accumulator is removed during charging. With the battery accumulator out, 

half of the works is already done. 

 

Figure 7.19: Placement in the monocoque [1]. 

7.6.2. DC Side Plate Conductors 

According to [18], using parallel plate conductors from the capacitor bank to the IGBT modules 

on the input DC side of the VSI, is important for increased performance and safety. From 

equation 7.7, it is clear that increased inductance 𝐿 leads to overvoltages 𝑉 when the change in 

current is fast (𝑑𝑖/𝑑𝑡). For a VSI, rapid change in the current is unavoidable. It then becomes 

important to keep the inductance as low as possible.   

𝑉 = 𝐿 ∙
𝑑𝑖

𝑑𝑡
          (7.7) 

𝐿

𝑚
≈ 𝜇 ∙

ℎ

𝑤
          (7.8) 

In [18], the design of the plate conductors is done according to equation 7.8 and figure 7.20, 

where 𝑤  is the width, ℎ  the space between the plates, 𝑚  the length, 𝜇  the magnetic 
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permeability of the material, and 𝐿 the resulting inductance. The formula in equation 7.8 is an 

approximation or a guidance to how the plates should be designed. To minimize the inductance, 

it is desirable to minimize the distance between the plates, minimize the length and maximize 

the width. 

 

Figure 7.20: DC side plate conductors [18]. 

The final plate conductor design can be seen in the CAD model in figure 7.17. The DC cables 

are not included in this model, but are in reality connected on the middle of a copper plate 

between the capacitor terminals on each of the poles. 

 

7.7. Cables and Contacts 

The SAE International rules [2] require all tractive system cables to be rated for 90 °C, be 

colored orange, and have appropriate copper cross sectional area according to the current flow. 

Early in the design phase, it was decided to use 35mm2 cables on the DC side and 16 mm2 

cables on the AC side. After realizing that the high frequency components from the VSI was 

contributing to more heat production on the AC side than the DC side, the cables were changed 

to 25 mm2 on both the AC and DC side. The shielded cable Ölflex FD 90 CY was chosen 

because of its flexibility and robustness. The manufacturer recommends [20] it for motors 

driven by frequency converters and for automotive applications. As dictated from the rules, the 

cable is colored orange and rated for 90 °C. By using the cable shielding it is possible to include 

the grounding of the tractive system components in the cable. 

All the contacts used in the VSI are Deutsch contacts from the autosport series. They feature a 

compact design, positive locking mechanism and a conductive aluminum alloy finish for 

grounding purposes. The contacts used in the VSI are listed in table 7.3. To avoid mixing up 
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the contacts with equal number of pins, one male and one female contact are used. The Deutsch 

AS Heavy Duty contacts for the tractive system also feature smaller pins for possibility to 

include signal cables. In table 7.3, this is shown with the number inside the parentheses. These 

pins are used to bring the shutdown circuit into the VSI. By letting the shutdown circuit through 

the tractive system contacts, the circuit will be opened whenever the contacts are disconnected. 

 Pins: Contact: 

DC side tractive system 2 (3) Deutsch ASHD 2-way (male) 

AC side tractive system 3 (2) Deutsch ASHD 3-way (female) 

Encoder and motor temperature 13 Deutsch AS (female) 

CAN bus 1 & 2 + GLV supply 6 Deutsch AS mini (female) 

Programming 6 Deutsch AS mini (male) 

Table 7.3: Voltage source inverter contacts. 
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8. Assembly and Manufacturing 

8.1. Prototype Voltage Source Inverter Assembly 

The prototype inverter casing was made by Lexan and aluminum. The walls and lid are Lexan, 

while the floor is a thin aluminum plate. The prototype was built larger than the original design, 

to make room for unforeseen design changes and to be able to fit measuring equipment. As can 

be seen in figure 8.1, 8.2 and 8.3, the prototype is much alike the design model from figure 7.17 

and 7.18, with IGBT modules, capacitor bank, DC side plate conductors, gate drivers and 

aluminum shielding wall towards the low voltage section. 

 

Figure 8.1: Voltage source inverter prototype, right side.  

 

Figure 8.2: Voltage source inverter, rear side. 
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The water-cooled heatsink shown in figure 8.1 was a spare part from last season. In the 

prototype setup, it is meant to be cooled with tap water from the sink. The water hoses in figure 

8.1 are connected to the nearest sink in the laboratory. The prototype VSI is grounded through 

the heatsink, with the green/yellow cable shown in figure 8.1. 

 

Figure 8.3: Voltage source inverter prototype, left side. 

For the cabling and wiring, no contacts are used in the prototype. Using Deutsch contacts for 

this application would be too expensive. All the cables and wires are therefore led through holes 

in the casing. The holes are located at approximately the same position as the contacts in figure 

7.17 and 7.18. 

A more detailed description of the prototype VSI for setup and assembly is given in the 

“Inverter Prototype Setup Manual” in appendix D and in the “Voltage Source Inverter Wiring 

Harness” in appendix G. 

 

8.2. Heatsink Manufacturing 

The heatsink design was milled from an aluminum base piece as shown in figure 8.4, while the 

base plate was cut from a thin aluminum plate. The nipples for connecting the water hoses to 

the heatsink was turned in a lathe. The base plate and nipples were glued onto the heatsink with 

the glue Araldite AW4859. To increase the surface contact and thermal conductivity between 
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the IGBT modules and heatsink, thermal grease was used. The thermal grease was applied to 

the base plate of the IGBT modules before mounting them to the heatsink, like given in [21]. 

The total weight of the heatsink, with lid, nipples and glue ended up on 396 g. 

 

Figure 8.4: Aluminum heatsink with base plate and nipples. 

 

8.3. Carbon Fiber Casing Manufacturing 

The inverter casing is made by four layers of TeXtreme carbon fiber with Rohacell IG31 core 

material in the middle. As shown in figure 8.5, a negative mold of MDF (medium density 

fiberboards) was made to get the wanted shape for the casing. The surfaces of the mold was 

covered with epoxy, before the carbon fiber and core was glued to the walls of mold, like shown 

in figure 8.6. Then, the mold was vacuum packed, like in figure 8.7, and put into an oven to 

cure for several hours. 
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Figure 8.5: Carbon fiber casing mold. 

 

Figure 8.6: Carbon fiber casing production. 
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Figure 8.7: Carbon fiber casing vacuum packing. 

After detaching the mold, the result ended up like in figure 8.8. The outside finish could have 

been better, with rough surfaces and pieces of MDF from the mold stuck in between the fibers. 

The inside finish on the other hand, ended up nice and smooth. For better visual finish, a positive 

mold might have given a better result.  

 

Figure 8.8: Carbon fiber casing production result. 

Although the finish was not perfect, the casing is mechanically strong and extremely 

lightweight. The total weight of the casing, with lid, ended up on 320 g. 
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8.4. Voltage Source Inverter Assembly 

As shown in figure 8.9 and 8.10, the input plate conductors are bended and covered with Kapton 

tape, connecting the IGBT module terminals to the input capacitors. Same as for the plate 

conductors, the internal shielding plate between the tractive system section and the low voltage 

section, is covered with Kapton tape. Kapton tape is used to isolate all grounded conductive 

parts located close to current conductive components. The DC cables are attached to the plate 

conductors and capacitor terminals with cable lugs and bolts to thin copper plates. As shown in 

the figures, all conductive bolts and nuts in the VSI that are not supposed to conduct current, 

are grounded with wires to the heatsink. This includes the bolts attaching the contacts, 

capacitors, lid, discharge resistor and internal shielding plate, to the casing. To the right in figure 

8.9, the discharge resistor and discharge relays can be seen. The discharge circuit board is not 

shown in these pictures, but is located at the right side, next to the discharge relays. The purple 

wires in the pictures are the shutdown circuit, coming in through the DC contact, going through 

the discharge circuit board, through the AC contact, and back and out again through the DC 

contact. 

 

Figure 8.9: Voltage source inverter assembly, tractive system section. 
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Figure 8.10: Voltage source inverter assembly wiring. 

 

Figure 8.11: Positive locking of the AC terminal contacts. 

From the SAE International rules [2], all tractive system components need to be locked together 

with positive locking. The Deutsch contacts already feature positive locking. For the 

connections to the DC and AC terminals on the IGBT modules, lock wire is used to lock the 

bolts, as shown in figure 8.11 and 8.12. For locking the bolts on the capacitors, elliptical offset 

nuts are used. 
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Figure 8.12: Positive locking of the conductor plates. 

 

Figure 8.13: Voltage source inverter assembly from above. 
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Figure 8.14: Voltage source inverter, front side. 

In figure 8.13 and 8.14, the suspension plates discussed in chapter 7 are shown. They are glued 

to the inverter casing and attached to the monocoque with aluminum brackets and bolts. In the 

pictures, the Deutsch contacts discussed in chapter 7 can also be seen. The circuit board stacking 

solution barely shown in figure 8.13, are three 3D printed spacers. Two spacers are glued to the 

floor of the VSI, while one is attached to the upper left wall with nylon bolts. These three 

spacers make sure the circuit boards are hold in place. 

As mentioned before the carbon fiber casing and lid ended up weighing 320 g, while the 

heatsink with base plate and nipples ended up on 396 g. The weight of the input plate conductors 

ended up on 230 g. Together with the weight of the IGBT modules, capacitors, contacts, current 

sensors, circuit boards, and so on, the total inverter weight ended up on 4.4 kg. This is almost 

half of the weight compared to last year’s VSI of 8.5 kg. 

 

8.5. Assembly in the Monocoque 

As is shown in figure 8.15, the inverter fits well with the motor housing, in the motor room. In 

the picture, the three motor phases and the water hoses can clearly be seen, together with the 

encoder and motor temperature cables and contacts to the inverter. The contacts on the right 

side are, starting from above, GLV power and CAN, encoder and motor temperature, and 

contact for programming. All the contacts are easy to reach from the rear service hatch. The 
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programming contact makes it possible to reprogram the motor control circuit board without 

removing it from the monocoque. This is convenient when testing and debugging the system. 

On the right side of the picture in figure 8.15, the GLV battery is barely shown. It is designed 

with the same battery cells as the tractive system battery accumulator and supplies the vehicle 

with GLV power of about 26 V. In figure 8.16, the inverter and energy meter is shown from the 

cockpit side, without the seat, firewall and battery accumulator. The energy meter is attached 

to the inverter with click bonds. It is easy to install and remove due to the use of the same 

Deutsch DC contact as on the inverter. 

 

Figure 8.15: Motor room assembly, voltage source inverter and PM motor. 

 

Figure 8.16: Energy meter attached to the voltage source inverter.  
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9. Motor and Motor Control Testing 

9.1. Initial Laboratory Test Setup 

The first testing was done with an IGBT module, gate driver, and a prototype control circuit 

board with only the gate driver interface. This circuit board was capable of turning on and off 

the IGBT and receiving error messages from the gate driver. This prototype was made to make 

sure the gate driver interface was designed correctly. In figure 9.1, the gate-emitter voltage 

applied in this test is shown.  

 

Figure 9.1: Gate-emitter voltage measurement during initial testing. 

When the control circuit board design was finished and the circuit board produced and 

assembled, the initial laboratory test setup was started. As shown in figure 9.2 and 9.3, the DC 

voltage supply was an isolation transformer, autotransformer, rectifier and capacitor bank. The 

isolation transformer was used to bring the three-phase 230 V mains voltage up to 400 V with 

a ΔY-connection. The autotransformer was used to make it possible to run on different voltage 

levels and for safety reasons (internal fuses on the phases). The three-phase rectifier and the 

capacitor bank (the black boxes in figure 9.3) were used to rectify and smooth the AC voltage.  

With the prototype inverter from chapter 8, the system was connected to a static load. This load 

was a three-phase 2000 µH inductor with a resistive load in series, as shown in figure 9.3. 

Initially the inverter was not cooled due to low power operation. The power dissipation could 

then be observed by feeling the heatsink temperature. Without cooling, the aluminum heatsink 
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was easily heated. When higher currents and voltages were applied, the cooling was properly 

installed. In the test setup, water hoses were supplying the heatsink with tap water from a nearby 

sink. 

 

Figure 9.2: Supply voltage source for initial test setup. 

 

Figure 9.3: Initial test setup with static load. 
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In figure 9.4, the phase current waveforms with the static load is shown. The VSI was not 

running any control system at this point. The waveforms were generated by software PWM 

from the control circuit board. Software PWM was used because the PWM pins on the 

microcontroller was not yet connected. At first, the concept was to use hysteresis control and 

not PWM. This was later changed, and the PWM pins on the MCU connected to the gate drive 

interface. 

As can be seen in figure 9.4, the waveforms are smooth and with small ripples. This is because 

of the high inductance of the load. With 2000 µH, this was a factor of 10 higher than the stator 

inductance of the PM motor in the car.  

 

Figure 9.4: Software PWM with static load. 

 

9.2. Laboratory Test Setup with Load 

The first test with the VSI driving a motor, was done on an asynchronous motor without 

feedback control and with software PWM. The motor power and speed was controlled by 

adjusting the autotransformer voltage to the DC bus supply. This setup was used to start 

configuration the current measurement circuits and program code for ADCs and SPI bus. 

The asynchronous motor was changed to a synchronous motor as the laboratory setup was 

moved to new motor lab. The new motor was the one shown in figure 9.5. This setup was used 
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to further develop the current and rotor position sensing circuits and code. As can be seen at the 

right side of the motor in the picture, a shaft encoder was attached to the rotor shaft. 

 

Figure 9.5: Testing with a synchronous motor in laboratory test setup. 

The synchronous motor in figure 9.5 was used until the Emrax 228 PM motor, for the car, was 

ready and installed in the rig shown in figure 9.6 and 9.7. 

 

Figure 9.6: Initial PM motor test rig, front side. 
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Figure 9.7: Initial PM motor test rig, rear side. 

The Emrax 228 rig was initially run without load. The PM motor was connected on the same 

water-cooling circuit as the VSI heatsink, with tap water from a nearby sink, and the encoder 

and stator phase cables connected as shown in figure 9.7. The FOC system with current and 

rotor position sensing was developed in this setup. Effort was put into finding the optimum 

offset value for the encoder and to develop an initialization procedure for the ABZ encoder. 

The encoder offset value was initially found by trying out different values, listening to the 

sounds coming from the motor and inspecting the current waveforms. Later, the method 

proposed in [22] was used. This is a procedure where a fixed current vector is applied the motor. 

The rotor flux will then align itself with the q axis. Because the rotor is presently at standstill, 

the position of the rotor flux is known. This position can then be defined as the d axis. By doing 

this the permanent-magnet rotor flux (d axis) and the stator flux become phase shifted by 90 

electrical degrees, which produces the output torque when the fluxes start rotating. 

The next step was to connect the PM motor to a load. This was done as shown in figure 9.8 and 

9.9. The rotor of the PM motor was connected to the rotor shaft of a DC machine with a claw 

connection as shown in figure 9.9. This way, the output torque from the PM motor could run 

the DC machine as a generator. The generated energy could then be sent back to the grid. By 

controlling the torque on the DC machine, the load could easily be changed. 
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Figure 9.8: Laboratory test setup schematic drawing. 

 

Figure 9.9: Test setup with PM motor and DC machine load. 
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At this point, the control circuit board design had been changed to include hardware PWM from 

the MCU and the SSI encoder had been changed to ABZ interface. 

 

9.3. Laboratory Test Setup with Load and Battery Accumulator 

The next step of the testing phase was to use the battery accumulator as voltage source, instead 

of the rectified grid voltage. The battery accumulator, with its eight battery modules, and 288 

battery cells, is shown in figure 9.10. At the output of the accumulator, there are AIRs at each 

of the battery poles and a fuse in series with one of the poles. If the shutdown circuit is opened, 

the AIRs open both the poles. In the laboratory setup, the shutdown circuit was opened if the 

IMD or the BMS reported an error or fault. In addition to this, the precharge and discharge 

circuits had to be installed before the battery accumulator could be used. In the previous setup, 

the three-phase rectifier had provided the VSI with pre- and dis- charging. The precharge circuit 

was now located in the battery accumulator, while the discharge circuit in the VSI.  

 

Figure 9.10: Battery accumulator in the laboratory test setup. 
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As can be seen in figure 9.11, the test setup was expanded to include parts of the vehicle 

communication network. The prototype inverter was connected to the dashboard, torque pedal 

with TPS units, ECU and a telemetry unit. Because both the TPS units are used in the torque 

pedal, the network was using both the CAN busses in the vehicle. With this setup, the VSI was 

driving the load-connected PM motor on command from the torque pedal, while the dashboard 

and telemetry unit provided information about the system states and errors. 

 

Figure 9.11: Test setup with torque pedal, ECU and dashboard. 

In figure 9.12, the phase currents and DC bus voltage waveforms are shown. The picture is an 

oscilloscope view with current probes (Fluke 80i-110s) on each of the phases, and differential 

voltage probe (Tektronix P5200A) on the DC bus battery voltage. As can be seen in figure 9.12, 

the waveforms are smooth and with low ripples. The picture shows the system under heavy 

load, with more than 200 A peak-peak phase currents and at very low speed. As is clear from 

the figure, the VSI was well tuned for low speed conditions at this point. The reason for this, 

was that the load machine was not rated for high speed operation. Because of this, all the testing 

at the time, was done at low speeds. Higher speeds also led to vibrations in the test rig, and was 

not considered safe. The vibrations were a result of a small deviation between the two rotor 

shaft connections, due to high tolerances in the in-house constructed motor rig. 
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Figure 9.12: Phase current and DC voltage waveforms under heavy load conditions. 

With the battery accumulator as voltage source for the VSI, issues with electromagnetic 

interference (EMI) were encountered. In figure 9.13, the common-mode voltage between the 

accumulator carbon fiber casing and the tractive system poles is shown. Because the IGBTs are 

switching between 0 V and 530 V at a high frequency, the heatsink-to-IGBTmodule connection 

becomes like a capacitor. With the accumulator casing grouned in the VSI heatsink, the 

resulting common-mode voltage became like in figure 9.13. The frequency of the waveform is 

the same as the switching frequency of the IGBTs. 

 

Figure 9.13: Common-mode voltage measured in the battery accumulator container. 
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In the beginning, the common-mode voltage caused trouble for the BMS in the battery 

accumulator. The BMS communication with the battery cells was interrupted by EMI, resulting 

in the BMS shutting down the system. The problem was solved by changing to shielded cables 

for the battery communication, and by proper grounding of the circuit boards. 

In figure 9.14 and 9.15, the PM motor is driven at heavy load and at a faster speed than in figure 

9.12. In the figures, ripples in the waveforms are clearly visible. As can be seen in figure 9.15, 

the frequency of the ripples coincides with the control loop frequency of 16 kHz. 

 

Figure 9.14: Voltage and phase current ripples from control loop frequency. 

 

Figure 9.15: Current ripples from control loop frequency. 
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Figure 9.16 shows the test setup with PM motor, load, battery accumulator and final VSI design. 

This was the last test setup before the system was installed in the car. 

 

Figure 9.16: Test setup with battery accumulator and load. 

 

9.4. Testing in the Car 

The first tests of the drivetrain after installing it in the car, was done with the vehicle on rig, 

without wheels, like shown in figure 9.18. In figure 9.17, one of the phase current measurements 

for this test setup is shown. 

 

Figure 9.17: Phase current during testing of the car on rig with no load. 
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Figure 9.18: Initial testing of the car on rig. 

 

Figure 9.19: Initial testing of the car at parking lot at NTNU. 

After obtaining satisfactory operation of the vehicle drivetrain on rig, the car was brought out 

for testing on a parking lot at NTNU. In this test environment, oscilloscope and current probes 
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could not be used. For analysis and tuning, the in-house developed software Revolve Analyze, 

was applied. Revolve Analyze uses the telemetry system in the vehicle to analyze and represent 

data from the CAN busses in the car. In figure 9.20, the yellow line is the d current, the purple 

line the q current, and the green line the torque request from the driver. By using this 

information, the VSI could be tuned to follow the set points. 

 

Figure 9.20: Revolve Analyze, dq currents and torque request. 

 

Figure 9.21: Revolve Analyze, inverter plugin. 
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In figure 9.21, the inverter plugin in Revolve Analyze is shown. As was discussed in chapter 6, 

this plugin system has been used to control the VSI during laboratory testing. The 32 status bits 

show the errors and the system status, according to table 6.2. During the laboratory testing, the 

sliding bar below the status bits was used to control the torque request to the VSI. The table 

below the sliding bar was used to send new parameters to the motor control system. It was for 

instance used to feed the control system with new control parameters for the PI controllers and 

to try different offset values for the encoder. 

The final testing before the Formula Student competition at Silverstone, was done at the race 

circuit at Lånke at Stjørdal. This is a larger track, where the maximum speed and power 

limitations of the drivetrain can be tested properly. 

The final test of the voltage source inverter design, was the Formula Student competition at 

Silverstone. The only problem with the motor control system during the competition, was that 

the power limiting function in the ECU was not set up right. In the acceleration event, this 

resulted in a power overshoot, with a moving average of 84 kW over 500 ms. Because the limit 

is 80 kW, the team was disqualified. In the endurance event, the car managed to get one of the 

fastest lap times in the competition! Unfortunately, the car was not able to finish the race due 

to a fault in the brake system. Apart from this, the rest of the events went well, and the team 

managed to get a third place in the design event.   
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10. Discussion 

The testing of the voltage source inverter in the car has given good results. After changing the 

current sensors, no problems have been encountered at the required operating conditions. The 

system seems robust and the cooling effective. For higher performance and lower weight, the 

margins for the system need to be pushed further or different solutions applied. 

By designing gate driver in-house, the three driver circuit boards in this design could be 

replaced with one, saving weight and space. The board could then be custom fit to the applied 

IGBT modules and casing geometry. The functionalities on the board can then be decided by 

the designer, giving more possibilities and flexibility. Along with in-house designed gate driver, 

the possibilities to use different semiconductor transistor technologies or designs, may give a 

boost in performance. For example, by using SiC MOSFETs the switching frequency can be 

increased significantly. With higher switching frequency the motor losses associated with the 

ripples as in figure 9.14, will be reduced. These rippels would also have been lower if a motor 

with higher stator inductance had been used. Because of the outer rotor, the Emrax 228 has 

room for many pole pairs, but not that much room for the stator coil conductors. The motor is 

designed for lower rotational speeds and higher currents, not to be simple to control.  

For faster switching, the losses are shifted from the motor to the VSI, as the current ripples are 

smoothed. With the capacity of the present heatsink, shifting some of the losses to the VSI, 

could be overall beneficial. With the present MCU, this is not possible. With the applied control 

system, the maximum control loop frequency is 16 kHz and maximum switching frequency 8 

kHz. To be able to switch faster, a new MCU or a SoC solution with FPGA is required. With 

more processing power, the possibility to use more complex operations and systems are also 

made possible. As discussed in chapter 2, SV PWM utilizes more of the DC bus voltage. It 

would also be possible to implement advanced filtering or compensation for the flux estimation 

in DTC. 

A way to reduce the power dissipation in the VSI, even at high switching frequencies, is to 

optimize the gate resistor. The smaller the resistor value, the faster the capacitances in the IGBT 

will be charged and discharged. The SKM300GB12V IGBT module used in the Revolve 

design, actually features internal gate resistance. In the laboratory test setup, because of this, 

the IGBT module were able to operate with a gate resistance equal to zero. At this point the 

waveforms were starting to oscillate, meaning that the operating point was close to its limit.   
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If the optimal power dissipation distribution between VSI and motor is found, weight can be 

saved on the whole cooling system. Weight can also be saved on the sensors. Instead of using 

current transducers, it is also possible to use simpler, more lightweight sensors. If DTC is 

applied, it is also possible to skip the encoder and run sensorless drive. A way to simulate this, 

is to include it in the Simulink model for the system. By looking at different operating 

conditions, the ripples and the power dissipation can be roughly estimated. The best way to find 

out, would be in a test setup with temperature measurements. 

Weight and performance are two of the most important parameters in Formula Student. At the 

same time it is also important to keep safety margins and to not take unnecessary risks in the 

design. By keeping things simple, the development time is decreased, giving more time for 

testing. 
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11. Conclusion 

Compared to the voltage source inverter from last season, this design ended up more than 4 kg 

lighter, going from 8.5 kg to 4.4 kg. This is the largest weight reduction of any system in the 

vehicle compared to last year. Most of the reduction has come from using a carbon fiber casing, 

lightweight input capacitors, and an in-house designed heatsink. 

The VSI casing fits well into the monocoque and motor room. Because of this, the length of 

cables and cooling circuits could be shortened. All the contacts are easy to reach from the rear 

service hatch or from the cockpit. The control circuit board can easily be reprogrammed from 

the service hatch, without needing to disassemble the casing. The system is well integrated into 

the vehicle and the communication network, giving direct information to the dashboard and 

two-ways communication over the vehicle’s telemetry system. The telemetry system can easily 

be used for tuning the controller, making testing and development easier. 

 

Figure 11.1: Final rendering of Vilje. 

Based on extensive testing in a laboratory environment and actual driving of the car on track, 

the VSI design has been verified. The applied control system, field oriented control, works as 

expected. Same applies for the sensor devices, IGBT modules, discharge circuit and the other 

hardware components. The control circuit board and program code operate with high 

performance, while the safety functions contribute to the driver’s safety. Through the design 
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process, different technologies and solutions have been investigated. This have been done 

through literature, simulation and laboratory testing. To model and design the system, several 

software tools have been applied. For the control system modelling, a Simulink model was 

developed. For the mechanical design and electrical design, 3D modelling tools were applied. 

These tools and models helped making design choices and were of great assistance in the 

manufacturing process. 

A large part of the work have been laboratory testing and setup. Because of all the test and 

development work, few errors and faults have occurred in the later testing period. The VSI 

system performed well at the Formula Student competition at Silverstone and no design errors 

or flaws have been discovered. 
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12. Further Work 

As discussed in chapter 10, there are ways of improving the system performance and lowering 

its weight. To be able to speed up the control loop and the switching, other alternatives for 

processing units should be investigated. Then, space vector modulation, direct torque control 

and flux estimation become more interesting concepts. For weight reduction, in-house designed 

gate driver or a more lightweight heatsink design may work. 

Next season, 4WD will probably be one of the big concepts. 4WD with four individual PM 

motors, require four individual VSIs for motor control. To make such a system compact and 

lightweight, there are several alternative approaches. The VSIs can either be distributed as close 

as possible to the respective motors. They can be centralized to one unit, sharing a common 

heatsink. Or the compromise solution, where they are divided into two units, one on each side 

of the battery accumulator.  

In a 4WD system, the ECU becomes more complex. Instead of supplying torque request to one 

VSI, it now has to handle four individual VSIs. To obtain good cornering abilities and 

regenerative braking, an algorithm for torque vectoring must be developed. In a system like 

this, the actual speed of the vehicle compared to the ground becomes important measurement 

data. In a rear wheel driven car, the front wheels can be used to get the actual speed, because 

the front wheels will never spin. With 4WD, on the other hand, an IMU or a laser is needed to 

find the true vehicle speed.  
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A.  Problems and Issues During Testing 

Control Circuit Board Fix 

As can be seen in figure A.1, in the first design iteration of the control circuit board, the PWM 

pins on the MCU was not connected. At first the plan was to run the control system with 

hysteresis control or with software PWM, not using the PWM modules in the MC. This plan 

was later disregarded and a temporary fix was made before the next production run. 

 

Figure A.1: Control circuit board prototype fix to include PWM.  

 

Encoder Interface and Rating 

At first, an absolute binary SSI encoder was used. This was an encoder with a resolution of 

8192 ppr and only rated for a maximum rotational speed of 2500 rpm. Because the Emrax 228 

has a maximum rotational speed of 6000 rpm, this encoder was more or less useless. The high 

resolution was also more than required, and took up to more processing power than needed. 

Instead of using this, the inverter control circuit board was redesigned to interface with an 

incremental ABZ encoder with a resolution of 2048 cpr and rated for a maximum rotational 

speed of 10000 rpm. Because of the lower resolution and because the internal decoder in the 

microcontroller could be used, this encoder required less computational power. This was partly 

due to lower resolution, but also because the synchronizing clock required for the SSI, is not 

required with ABZ interface. 
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In the meantime, while waiting for the new encoder and for the new control circuit board, a 

temporary fix was made. This was an ABZ encoder borrowed from the university, mounted to 

the rotor of a synchronous motor, as shown in figure A.2. Because the present control board 

was designed for SSI interface, a MCU was set to translate the ABZ signals to SSI signals. This 

was not a very good solution, but kept things going for a while. 

 

Figure A.2: ABZ encoder fix on synchronous motor. 

 

Current Sensor Saturation in Test Setup 

In figure A.3, the phase currents, DC current and DC voltage waveforms are captured on an 

oscilloscope during saturation of the current sensors. The yellow line (line 1) is the DC voltage 

(too high resolution to observe the waveform), the cyan (line 2) line the DC current, the pink 

(line 3) and green (line 4) lines the phase currents and the white lines the PWM signals (too 

high resolution to observe the signals). In this test, the water-cooling temperature was set as 

cold as possible and the VSI shut down shortly after the incident, resulting in no damaged 

equipment. As is clear from the oscilloscope view, the motor control loses control over the 

phase currents and large spikes appear. It can also be seen that the DC current is varying a lot, 

in both positive and negative directions. During the negative DC current spikes, the battery 

accumulator is charging. High charging currents like this might damage the battery cells. 

Luckily no damage was done to the battery cells this time. 
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The current sensor saturation occurred at high phase currents, not at normal operating 

conditions. The problem still had to be fixed to prevent it from happening under more extreme 

operating conditions in the car. The solution was to change current sensors to sensors with 

higher current measuring range. 

 

Figure A.3: Current and voltage waveforms during current sensor saturation. 

With new current sensors and by increasing the transfer rate of the ADCs in the current sensor 

circuit, the problem was solved. 

 

PM motor Problems and Solutions 

During testing and assembly, two major issues occurred with the PM motor. The first issue was 

that one of the cable lugs for one of the stator phases came loose during assembly. The other 

issue was that the permanent-magnets got displaced during testing in the car. 

As can be seen in figure A.4, the lowest cable lug is missing. It came loose during assembly of 

the motor in the test rig. The fix for this, was to use a powerful soldering iron and try to 

reconnect the lug with enough soldering tin. It was difficult to get enough heat and the quality 

of the soldering is unknown. Regardless of this, the result was good enough as long as the cable 

lugs were treated with care. 
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Figure A.4: Loose cable lug on PM motor phase. 

The more critical issue was the permanent-magnet displacement. The problem was discovered 

during one of the last test runs at Lånke before the Formula Student competition at Silverstone. 

At the time, the reason for the problem was unknown. The symptoms were reduced output 

torque and unusual heat production in the motor.  

 

Figure A.5: PM motor assembly at Silverstone. 

The solution for the problem was to send the motor back to the manufacturer in Slovenia for 

service. Because this was one of the last days of testing before departure for UK, it was no time 

for doing this. The car was therefore sent to the UK without motor, while one of the team 

members travelled to Slovenia with the motor in his luggage. In Slovenia, the problem was 
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quickly identified at the manufacturer workshop. Due to heat, the glue, holding the permanent-

magnets in place, had loosened. This was considered a warranty issue, so a new motor was 

given free of charge. And luckily the next flight from Ljubljana to London was just in time to 

reach Silverstone before the car and the rest of the team arrived. Figure A.5 shows the assembly 

of the new motor, in its motor housing, only hours before moving the car into the pits at 

Silverstone race circuit. 

 

IGBT and Heatsink Failure 

During testing in the car, problems with overheating and overcurrents in the IGBT modules 

occured a couple of times. The lower IGBT module in figure A.6 was destoyed due to 

overcurrents during a test run. In this test run, the safety function for overcurrents had been 

pushed to the limit, and the incident happened before the new current sensors (see chapter 

above) with higher measuring range had been installed. The high currents lead to current sensor 

saturation and loss of control. 

 

Figure A.6: IGBT and heatsink failure. 

The lower IGBT module in figure A.6 was destroyed, while the two other modules survived. 

The symptoms were an unpleasant sound coming from the motor, together with significantly 



105  

reduced output torque. The VSI could still make the motor spin slowly with two phases, but not 

well enough to drive. The destroyed IGBT module was cut open for internal inspection, as 

shown in figure A.7. As can be seen, the IGBTs and terminals are totally burned out. 

 

Figure A.7: Inside of failed IGBT. 

The main issues with overheating during testing have been the test responsible forgetting to 

turn on the radiator pump and fan. One time, this resulted in the glue holding together the 

heatsink baseplate coming loose. After this, a new baseplate was made. This time, attached to 

the heatsink with both glue and bolts. 

It is also worth mentioning that the gate-oxide in the IGBTs is very sensitive to electrostatic 

discharge (ESD). Two of the IGBT modules were destroyed due to ESD during assembly. To 

avoid this, the gate-emitter contacts should have been short circuited and the modules be carried 

in ESD approved containers or be connected to the gate drivers. 

 

Control Circuit Board Issues 

During the test period, a number of issues on the control circuit board has occurred. Most of the 

problems have been manufacturing errors or short circuits in power supply circuits. The 

manufacturing errors have normally been that a wrong resistor or a wrong capacitor has been 

picked during the circuit board assembly. When a wrong component is used in a power supply 

circuit, the components might get overheated and destroyed. This has happened a number of 

times and resulted in the death of a couple of control circuit boards. The issue with short circuits 

has normally been a result of measuring probes shorting two pads on the circuit board. This has 
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happened a couple of times when trying to measure the current sensor signals. The measurement 

probe has then short circuited the measurement pin to the negative 15 V supply. The negative 

15 V supply circuit has then been overloaded and destroyed. 

The best solution for this problem would be to design better short circuit protection for the 

power supply circuits. This is too late to do at this stage, but should be done in the next design 

iteration.  
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B.  Program Code for Motor Control 

The motor control code is written in C, using the version control system GitHub. The main file 

is inverter_control.c. This file is calling functions from other files and folders.  

In the folder InverterDrivers, there are files with functions and code for blinking LEDs, PWM, 

individual IGBT control, SPI and current sensing and encoder reading.  

In the folder Modules, there are files with functions and code for ADC, error handling, 

initialization of systems, and the field oriented control calculation function. 

In the folder Settings, header files with parameters and error states are found. 

The code in these folders is developed specifically for the motor control system. The rest of the 

folders and files used in the system are developed as standardized code for all MCU-based 

systems in the vehicle. This code is found in the folder RevolveDrivers. 

The file revolve_can_definitions.h shows all the CAN messages and ID numbers for the two 

CAN busses in the vehicle. 
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B.1: inverter_control.c 

#include <stdbool.h> 
#include <sam.h> 
#include <stdlib.h> 
 
#include "fpu.h" 
 
#include "InverterDrivers/tc.h" 
#include "InverterDrivers/LED.h" 
#include "sam4e-base/RevolveDrivers/pmc.h" 
#include "sam4e-base/RevolveDrivers/eefc.h" 
#include "sam4e-base/RevolveDrivers/can.h" 
#include "sam4e-base/RevolveDrivers/afec.h" 
#include "InverterDrivers/abz.h" 
#include "InverterDrivers/pwm.h"  
#include "InverterDrivers/CurrentSensor.h" 
#include "InverterDrivers/Switch.h"  
#include "InverterDrivers/spi.h" 
 
#include "sam4e-base/RevolveDrivers/pio.h" 
 
#include "Modules/angleConversions.h" 
#include "Modules/adcConversion.h" 
#include "Modules/error.h" 
 
#include "Settings/ControlSettings.h" 
#include "Settings/boardHardware.h" 
#include "Settings/errorCodes.h" 
#include "Settings/motorConstants.h" 
 
#include "Modules/foc.h" 
#include "Modules/commutation.h" 
#include "Modules/voltageModulation.h" 
 
#include "can-definitions/revolve_can_definitions.h" 
 
#include "sam4e-base/util/delay.h" 
 
static const uint32_t CALIBRATION_TIME_MS = 5000; 
 
static struct Tc_abz_param encoder_settings = { 
 .enabled = true, 
 .measure_position = true, 
 //.auto_correct = true, 
 //.swap_inputs = true 
 .count_phB = true, 
 //.invert_phZ = true, 
 .filter_max_ticks =  10 
}; 
 
void inverter_init() 
{ 
 WDT->WDT_MR &= ~(1<<13); 
 init_flash(); 
 fpu_enable(); 
  
 struct PmcInit pmcInit = { 
  .freq = INTERNAL_12MHZ, 
  .css = PLLA_CLOCK, 
  .pres = CLK_1, 
  .divide = 1, 
  .multiply = 9 
 }; 
  
 pmc_init(pmcInit); 
  
 led_init(); 
  
 struct TcInit tcInit = { 
  .tcChannel = (&(TC1->TC_CHANNEL[0])), 
  .timerClockSource = TIMER_CLOCK1, 
  .timerOperatingMode = WAVEFORM_MODE, 
  .rcCompareStopClock = false, 
  .rcCompareDisableClock = false, 
  .timerWaveformSelection = UP_RC, 
 }; 
  
 // Initalization of controllers 
  
 commutation_init(KP_BASE, KI_BASE, KD_BASE); 
 foc_init(KP_BASE, KI_BASE, KD_BASE); 
  
 // CAN 
  
 uint32_t acceptence_mask[7] = {0}; 
 uint32_t id_masks[7] = {0}; 
 
  
 can_init(CAN0,  
   120000000,  
   CAN_BPS_1000K,  
   acceptence_mask,  
   id_masks,  
   NULL); 
 
 // Current sensing initialization 
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 spi_init(120000000, 40000000); 
 current_init(); 
  
 // Enable encoder 
   
 tc_abz_init(&encoder_settings, 0, TC0); 
  
 // Status/error reigstry 
  
 error_init(TRANSIENT_ERRORS|STATUS_BITS); 
 error_signal(ENCODER_ZERO_NOT_PASSED); 
  
 // PWM initialization 
  
 pwm_init(120000000, PWM_FREQUENCY, DEAD_TIME_FREQUENCY); 
 switch_init();  
  
 // Initalization of afec 
 afec_init(HV_VOLTAGE_MEASURE_ADC_INSTANCE, CPU_FREQ, (1<<HV_VOLTAGE_MEASURE_ADC_NUM)); 
  
  
} 
 
int main() 
{  
 delay_init(CPU_FREQ); 
 delay_ms(50); 
 inverter_init(); 
 
 while(1) 
 { 
 // Variables needed to run the control loop, made static for performance 
  static float currentA, currentB, currentC; 
  static float torqueRequest; 
  static float previousCurrentA, previousCurrentB, previousCurrentC; 
  static float eletricalDegree, eletricalDegreeCompensated; 
  static int32_t encoderValue, lastEncoderValue, compensatedEncoderValue, numRevolutions; 
  static bool autoCalibrate = false; 
  static uint16_t encoderOffset = ENCODER_OFFSET; 
  static float dcVoltageFiltered; 
  static float violationCurrentA, violationCurrentB, violationCurrentC; 
  static float rpm; 
  static float setpointQ, setpointD; 
  static float KP = KP_BASE; 
  static float KI = KI_BASE; 
  static float KD = KD_BASE; 
  static float currentD, currentQ; 
   
  // Wait for PWM duty cycle 
   
  while(!(PWM->PWM_ISR1 & PWM_ISR1_CHID0)); // running control loop synchronous with PWM 
 
  led_enable(3); 
 
  // Start current conversion 
  current_startConversion(1); 
  current_startConversion(4); 
 
  // Read events from CAN-bus 
  struct CanMessage receiveMessage; 
   
  can_popMessage(CAN0, &receiveMessage); 
  switch(receiveMessage.messageID){ 
   case TELEMETRY_TO_INVERTER_DATA_ID: 
    switch(receiveMessage.data.u8[0]){ 
     case TORQUE_REQUEST_COMMAND: 
      if(error_check(ACCEPT_TORQUE_REQUEST_FROM_TELEMETRY_NOT_ECU)) 
       torqueRequest = *( (float *) ( receiveMessage.data.u8 + 1 ) ); 
     break;  
     case STATUS_BIT_FLIP_REQUEST_COMMAND: 
      if(error_check( (1<<receiveMessage.data.u8[1]) )) 
       error_clear( (1<<receiveMessage.data.u8[1]) ); 
      else 
       error_signal( (1<<receiveMessage.data.u8[1]) ); 
     break; 
     case CONTROLLER_PARAMETER_P_SET_REQUEST_COMMAND: 
      KP = *( (float *) ( receiveMessage.data.u8 + 1 ) ); 
      foc_init(KP, KI, KD); 
     break; 
     case CONTROLLER_PARAMETER_I_SET_REQUEST_COMMAND: 
      KI = *( (float *) ( receiveMessage.data.u8 + 1 ) ); 
      foc_init(KP, KI, KD); 
     break; 
     case CONTROLLER_PARAMETER_D_SET_REQUEST_COMMAND: 
      KD = *( (float *) ( receiveMessage.data.u8 + 1 ) ); 
      foc_init(KP, KI, KD); 
     break; 
    } 
   break; 
   case ECU_TORQUE_REQUEST_ID: 
    if(!error_check(ACCEPT_TORQUE_REQUEST_FROM_TELEMETRY_NOT_ECU)) 
     torqueRequest = receiveMessage.data.f[0]; 
   break; 
  } 
 
 
  if(tc_abz_is_initialized()) 
   error_clear(ENCODER_ZERO_NOT_PASSED); 
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  // Calculate set points 
  setpointQ = torqueRequest * (1.0 / MOTOR_TORQUE_PER_CURRENT);    
  setpointD = 0; 
    
  // Read encoder 
  
  encoderValue = abz_getCount(TC0); 
  if( (encoderValue < 512) && (lastEncoderValue > 1536) ) 
   numRevolutions++; 
    
  if( (encoderValue > -512) && (lastEncoderValue < -1536) ) 
   numRevolutions--; 
   
  compensatedEncoderValue = encoderValue - encoderOffset; 
   
//   if(compensatedEncoderValue < 0) 
//    compensatedEncoderValue += 2048; 
 
  rpm = angleConversions_encoderToRPM(encoderValue, numRevolutions, (PWM_FREQUENCY*2) ); 
 
  eletricalDegree = angleConversions_encoderToEletricalDegrees(11, compensatedEncoderValue, 10); 
   
 
   
  // Check voltage 
   
  uint16_t adcVoltageReading = afec_read_last_conversion(HV_VOLTAGE_MEASURE_ADC_INSTANCE, HV_VOLTAGE_MEASURE_ADC_NUM); 
   
  float dcVoltage = adcConversion_linearConversion(adcVoltageReading, 
            
  HV_VOLTAGE_MEASURE_ADC_OFFSET, 
            
  HV_VOLTAGE_MEASURE_ADC_VALUE_AT_MAX, 
            
  HV_VOLTAGE_MEASURE_VOLTAGE_MIN, 
            
  HV_VOLTAGE_MEASURE_VOLTAGE_MAX); 
   
  dcVoltageFiltered = 0.95 * dcVoltageFiltered + 0.05 * dcVoltage; 
   
  // Wait untill conversion is done 
   
  while(pio_readPin(CURRENT_1_INT_PIO, CURRENT_1_INT_PIN)); 
  while(pio_readPin(CURRENT_4_INT_PIO, CURRENT_4_INT_PIN)); 
   
  // Set low conversion pin 
   
  pio_setOutput(CURRENT_1_CONV_PIO, CURRENT_1_CONV_PIN, LOW); 
  pio_setOutput(CURRENT_4_CONV_PIO, CURRENT_4_CONV_PIN, LOW); 
   
  // Read conversion over SPI bus 
   
  int16_t adcValueCurrentA = (0xffff)&spi_tranceive(0x0000, CURRENT_A_SPI_CS); 
  int16_t adcValueCurrentB = (0xffff)&spi_tranceive(0x0000, CURRENT_B_SPI_CS); 
   
  currentA = current_calculateCurrent(adcValueCurrentA, 1); 
  currentB = current_calculateCurrent(adcValueCurrentB, 4); 
  currentC = -currentB - currentA; 
   
  // Blink LED 
  static bool ledState = false; 
 
  led_set(1, ledState); 
   
  ledState = ! ledState; 
   
  // Calculate FOC 
   
     
  // Error/status checking 
   
  static int errorCheckIterator = 4; 
  const int NUMBER_OF_ERRORS_CHECKS = 11; 
  uint8_t errorMask = switch_getError(); 
  static uint8_t errorCounter_phaseA = 0; 
  static uint8_t errorCounter_phaseB = 0; 
  static uint8_t errorCounter_phaseC = 0; 
  static uint8_t errorCounter_voltage = 0; 
   
  switch(errorCheckIterator){ 
   case 0: 
    // Check for permanent current limits 
    if( ( (currentA + previousCurrentA)/2.0 > CURRENT_PHASE_LIMIT_PERMANENT ) || ( ( -(currentA + 
previousCurrentA)/2.0 < -CURRENT_PHASE_LIMIT_PERMANENT) ) ) { 
     error_signal(CURRENT_LIMIT_EXCEEDED_PERMANENT); 
     violationCurrentA = currentA; 
    } 
   break; 
   case 1: 
    if( ( (currentB + previousCurrentB)/2.0 > CURRENT_PHASE_LIMIT_PERMANENT ) || ( ( - (currentB + 
previousCurrentB)/2.0 < -CURRENT_PHASE_LIMIT_PERMANENT) ) ) { 
     error_signal(CURRENT_LIMIT_EXCEEDED_PERMANENT); 
     violationCurrentB = currentB; 
    } 
   break; 
   case 2: 
    if( ( (currentC + previousCurrentC)/2.0 > CURRENT_PHASE_LIMIT_PERMANENT ) || ( ( - (currentC + 
previousCurrentC)/2.0 < -CURRENT_PHASE_LIMIT_PERMANENT) ) ) { 
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     error_signal(CURRENT_LIMIT_EXCEEDED_PERMANENT); 
     violationCurrentC = currentC; 
    } 
   break; 
   case 3: 
    // Check for transient current limits 
    if( ( (currentA + previousCurrentA)/2.0 > CURRENT_PHASE_LIMIT_TRANSIENT ) || ( ( -(currentA + 
previousCurrentA)/2.0 < -CURRENT_PHASE_LIMIT_TRANSIENT) ) ) { 
     errorCounter_phaseA++; 
     if(errorCounter_phaseA > MAX_TRANSIENT_CURRENT_ERRORS){ 
      error_signal(CURRENT_LIMIT_EXCEEDED_PHASE_A_TRANSIENT); 
      violationCurrentA = currentA; 
      errorCounter_phaseA = 0;   
     } 
    } else { 
     errorCounter_phaseA = 0; 
     error_clear(CURRENT_LIMIT_EXCEEDED_PHASE_A_TRANSIENT); 
    } 
   break; 
   case 4: 
     
     if( ( (currentB + previousCurrentB)/2.0 > CURRENT_PHASE_LIMIT_TRANSIENT ) || ( ( - (currentB + 
previousCurrentB)/2.0 < -CURRENT_PHASE_LIMIT_TRANSIENT) ) ) { 
      
     errorCounter_phaseB++; 
     if(errorCounter_phaseB > MAX_TRANSIENT_CURRENT_ERRORS){ 
      error_signal(CURRENT_LIMIT_EXCEEDED_PHASE_B_TRANSIENT); 
      violationCurrentB = currentB; 
      errorCounter_phaseB = 0; 
     } 
    } else { 
     errorCounter_phaseB = 0; 
     error_clear(CURRENT_LIMIT_EXCEEDED_PHASE_B_TRANSIENT); 
    }  
   break; 
   case 5: 
  
    if( ( (currentC + previousCurrentC)/2.0 > CURRENT_PHASE_LIMIT_TRANSIENT ) || ( ( - (currentC + 
previousCurrentC)/2.0 < -CURRENT_PHASE_LIMIT_TRANSIENT) ) ) { 
     errorCounter_phaseC++; 
     if(errorCounter_phaseC > MAX_TRANSIENT_CURRENT_ERRORS){ 
      error_signal(CURRENT_LIMIT_EXCEEDED_PHASE_C_TRANSIENT); 
      violationCurrentC = currentC; 
      errorCounter_phaseC = 0; 
     } 
    } else { 
     errorCounter_phaseC = 0; 
     error_clear(CURRENT_LIMIT_EXCEEDED_PHASE_C_TRANSIENT); 
    } 
   break; 
   case 6: 
    // Check for permanent DC voltage limit 
    if (dcVoltageFiltered > VOLTAGE_DC_MAX_LIMIT_PERMANENT) 
     error_signal(VOLTAGE_LIMIT_EXCEEDED_PERMANENT); 
       
    // Check for transient DC voltage limit 
    if (dcVoltageFiltered > VOLTAGE_DC_MAX_LIMIT_TRANSIENT) 
     errorCounter_voltage++; 
     if(errorCounter_voltage > MAX_TRANSIENT_CURRENT_ERRORS){ 
      error_signal(VOLTAGE_LIMIT_EXCEEDED_TRANSIENT); 
      errorCounter_voltage = 0; 
     } 
    else{ 
     errorCounter_voltage = 0; 
     error_clear(VOLTAGE_LIMIT_EXCEEDED_TRANSIENT); 
    } 
   break; 
   case 7: 
    if(rpm > RPM_LIMIT_TRANSIENT) 
     error_signal(SPEED_LIMIT_EXCEEDED_TRANSIENT); 
    else if (rpm < (RPM_LIMIT_TRANSIENT - RPM_HYSTERESIS)) 
     error_clear(SPEED_LIMIT_EXCEEDED_TRANSIENT); 
   case 8: 
    if(errorMask != 0) 
     error_signal(GATE_DRIVER_ERROR); 
    else 
     error_clear(GATE_DRIVER_ERROR); 
      
    if(errorMask & (1<<0)) 
     error_signal(GATE_DRIVER_ERROR_A); 
    else 
     error_clear(GATE_DRIVER_ERROR_A); 
      
    if(errorMask & (1<<0)) 
     error_signal(GATE_DRIVER_ERROR_B); 
    else 
     error_clear(GATE_DRIVER_ERROR_B); 
     
    if(errorMask & (1<<0)) 
     error_signal(GATE_DRIVER_ERROR_C); 
    else 
     error_clear(GATE_DRIVER_ERROR_C);  
   break; 
   case 9: 
    if(dcVoltageFiltered < VOLTAGE_DC_MIN_LIMIT_TRANSIENT) 
     error_signal(VOLTAGE_TO_LOW); 
    else 
     error_clear(VOLTAGE_TO_LOW); 
   break; 
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   case 10: 
    if(fabs(torqueRequest) < TORQUE_REQUEST_LOWER_LIMIT_TRANSIENT) 
     error_signal(TORQUE_REQUEST_TOO_LOW_TRANSIENT); 
    else 
     error_clear(TORQUE_REQUEST_TOO_LOW_TRANSIENT); 
    
  } 
 
  errorCheckIterator++; 
   
  if (errorCheckIterator >= NUMBER_OF_ERRORS_CHECKS) 
   errorCheckIterator = 0; 
   
  static float voltageA; 
  static float voltageB; 
  static float voltageC; 
   
   
   
  if ( error_check(TRANSIENT_ERRORS|PERMANENT_ERRORS|ENCODER_ZERO_NOT_PASSED|TORQUE_REQUEST_TOO_LOW_TRANSIENT) | ( 
!error_check(READY_TO_DRIVE))){ 
   foc_calculate( 
    (previousCurrentA + currentA)/2, 
    (previousCurrentB + currentB)/2, 
    eletricalDegree, 
    setpointQ, 
    setpointD, 
    &currentQ, 
    &currentD, 
    &voltageA, 
    &voltageB, 
    &voltageC, 
    false 
   ); 
   pwm_setDrivers(false); 
   foc_antiWindup(true); 
  } else { 
    
   foc_calculate( 
    (previousCurrentA + currentA)/2, 
    (previousCurrentB + currentB)/2, 
    eletricalDegree, 
    setpointQ, 
    setpointD, 
    &currentQ, 
    &currentD, 
    &voltageA, 
    &voltageB, 
    &voltageC, 
    true 
   ); 
    
   // Calculate duty cycles 
    
   bool saturationA, saturationB, saturationC; 
    
   float dutyA = voltageModulation_voltageToPwm(voltageA, dcVoltageFiltered, 0.0, 1.0, WINDUP_ALLOWANCE, &saturationA); 
   float dutyB = voltageModulation_voltageToPwm(voltageB, dcVoltageFiltered, 0.0, 1.0, WINDUP_ALLOWANCE, &saturationB); 
   float dutyC = voltageModulation_voltageToPwm(voltageC, dcVoltageFiltered, 0.0, 1.0, WINDUP_ALLOWANCE, &saturationC); 
    
   foc_antiWindup(saturationA|saturationB|saturationC); 
    
    
   error_signal((saturationA << PID_SATURATION_A) | (saturationB << PID_SATURATION_B) | (saturationC << PID_SATURATION_C)); 
   error_clear((!saturationA << PID_SATURATION_A) | (!saturationB << PID_SATURATION_B) | (!saturationC << PID_SATURATION_C)); 
    
   pwm_setDrivers(true); 
    
    
   // Apply voltage through PWM 
    
   pwm_updateDutyCycles(dutyA, dutyB, dutyC); 
  } 
   
  if(error_check(PERMANENT_ERRORS|ENCODER_ZERO_NOT_PASSED|VOLTAGE_TO_LOW)||!error_check(READY_TO_DRIVE)){ 
   foc_reset_regulator(); 
  } 
   
  // Send CAN messages with data 
   
  uint32_t MESSAGE_SENDING_PERIOD = 30000; 
  static uint32_t messageSendingCounter; 
  int sendNum = messageSendingCounter % 300; 
 
  struct CanMessage sendMessage; 
 
  if (messageSendingCounter == 0) 
  { 
   sendMessage.dataLength = CANR_ALIVE_MSG_DLC; 
   sendMessage.messageID = CAN_ALIVE_MSG_ID; 
   sendMessage.data.u8[0] = ALIVE_INVERTER; 
   can_sendMessage(CAN0, sendMessage); 
  } 
     
  switch(sendNum){ 
   case 10: 
    sendMessage.dataLength = CAN_INVERTER_DATA_CURRENT_DLC; 
    sendMessage.messageID = CAN_INVERTER_DATA_CURRENT_ID; 
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    sendMessage.data.f[0] = currentQ; 
    sendMessage.data.f[1] = currentD; 
    can_sendMessage(CAN0, sendMessage); 
   break; 
   case 20: 
    sendMessage.dataLength = CAN_INVERTER_DATA_ENCODER_POS_DLC; 
    sendMessage.messageID = CAN_INVERTER_DATA_ENCODER_POS_ID; 
    sendMessage.data.i32[0] = encoderValue; 
    sendMessage.data.i32[1] = numRevolutions; 
    can_sendMessage(CAN0, sendMessage); 
   break; 
   case 30: 
    sendMessage.dataLength = CAN_INVERTER_DATA_RPM_DLC; 
    sendMessage.messageID = CAN_INVERTER_DATA_RPM_ID; 
    sendMessage.data.f[0] = rpm; 
    can_sendMessage(CAN0, sendMessage); 
   break; 
   case 40: 
    sendMessage.dataLength = CAN_INVERTER_DATA_VOLTAGE_DLC; 
    sendMessage.messageID = CAN_INVERTER_DATA_VOLTAGE_ID; 
    sendMessage.data.f[0] = dcVoltageFiltered; 
    can_sendMessage(CAN0, sendMessage); 
   break; 
   case 50: 
    sendMessage.dataLength = CAN_INVERTER_DATA_STATUS_DLC; 
    sendMessage.messageID = CAN_INVERTER_DATA_STATUS_ID; 
    sendMessage.data.u32[0] = error_getVector(); 
    can_sendMessage(CAN0, sendMessage); 
   break; 
   case 60: 
    sendMessage.dataLength = CAN_INVERTER_DATA_ACCUMULATED_STATUS_DLC; 
    sendMessage.messageID = CAN_INVERTER_DATA_ACCUMULATED_STATUS_ID; 
    sendMessage.data.u32[0] = error_getLastVector(); 
    can_sendMessage(CAN0, sendMessage); 
   break; 
   /* 
   case 70: 
    sendMessage.dataLength = 6; 
    sendMessage.messageID = 106; 
    sendMessage.data.i16[0] = ((int16_t)KP); 
    sendMessage.data.i16[1] = ((int16_t)KI); 
    sendMessage.data.i16[2] = ((int16_t)KD); 
    can_sendMessage(CAN0, sendMessage); 
   break; 
   case 80: 
    sendMessage.dataLength = 6; 
    sendMessage.messageID = 107; 
    sendMessage.data.i16[0] = ((int16_t)rpm); 
    can_sendMessage(CAN0, sendMessage); 
   break; 
   case 90: 
    sendMessage.dataLength = 2; 
    sendMessage.messageID = 108; 
    sendMessage.data.i16[0] = ((int16_t)encoderOffset); 
    can_sendMessage(CAN0, sendMessage); 
   break; 
   case 100: 
    sendMessage.dataLength = 4; 
    sendMessage.messageID = 109; 
    sendMessage.data.u32[0] = error_getLastVector(); 
    can_sendMessage(CAN0, sendMessage); 
   break; 
   case 110: 
    sendMessage.dataLength = 4; 
    sendMessage.messageID = 110; 
    sendMessage.data.u32[0] = error_getCount(); 
    can_sendMessage(CAN0, sendMessage); 
   break; 
   case 120: 
    sendMessage.dataLength = 8; 
    sendMessage.messageID = 111; 
    sendMessage.data.i32[0] = encoderValue; 
    sendMessage.data.i32[1] = numRevolutions; 
    can_sendMessage(CAN0, sendMessage); 
   break;*/ 
     
  } 
   
  messageSendingCounter++; 
   
  if(messageSendingCounter >= MESSAGE_SENDING_PERIOD) 
   messageSendingCounter = 0; 
   
  previousCurrentA = currentA; 
  previousCurrentB = currentB; 
  previousCurrentC = currentC; 
   
  lastEncoderValue = encoderValue; 
   
  led_disable(3); 
   
 } 
}  
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B.2: fpu.h 

#ifndef FPU_H_ 
#define FPU_H_ 
 
#include <stdbool.h> 
#include <stdint.h> 
 
/** Address for ARM CPACR */ 
#define ADDR_CPACR 0xE000ED88 
 
/** CPACR Register */ 
#define REG_CPACR (*((volatile uint32_t *)ADDR_CPACR)) 
 
/** Enable FPU */ 
static void fpu_enable(void) 
{ 
  REG_CPACR |= (0xFu << 20); 
} 
 
/** Disable FPU */ 
static void fpu_disable(void) 
{ 
 REG_CPACR &= ~(0xFu << 20); 
} 
 
/** Check if FPU is enabled */ 
static bool fpu_is_enabled(void) 
{ 
 return (REG_CPACR & (0xFu << 20)); 
} 
 
#endif /* FPU_H_ */ 
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B.3: InverterDrivers 

tc.c 

#include <sam.h> 
#include <stdbool.h> 
 
#include "../sam4e-base/RevolveDrivers/pmc.h" 
 
#include "tc.h" 
 
#ifndef TC_WPMR_WPKEY_PASSWD 
#define TC_WPMR_WPKEY_PASSWD TC_WPMR_WPKEY((uint32_t)0x54494D) 
#endif 
 
void tc_enable_writeprotect(Tc * tc) 
{ 
 tc->TC_WPMR = TC_WPMR_WPKEY_PASSWD | TC_WPMR_WPEN; 
} 
 
void tc_disable_writeprotect(Tc * tc) 
{ 
 tc->TC_WPMR = TC_WPMR_WPKEY_PASSWD; 
} 
 
void tc_clockEnable(TcChannel * tcChannel) 
{ 
 tcChannel->TC_CCR = TC_CCR_CLKEN; 
} 
 
void tc_clockDisable(TcChannel * tcChannel) 
{ 
 tcChannel->TC_CCR = TC_CCR_CLKDIS; 
} 
 
void tc_resetAndStart(TcChannel * tcChannel) 
{ 
 tcChannel->TC_CCR = TC_CCR_CLKEN|TC_CCR_SWTRG; 
} 
 
void tc_setMode(TcChannel * tcChannel, enum TimerOperatingMode timerOperatingMode, enum TimerClockSource timerClockSource, enum TimerWaveformSelection 
timerWaveformSelection) 
{ 
 uint32_t bitMask = 0; 
  
 switch(timerOperatingMode){ 
  case WAVEFORM_MODE: 
   bitMask += timerClockSource; 
   bitMask += timerWaveformSelection; 
   bitMask += TC_CMR_WAVE; 
 } 
  
  
 tcChannel->TC_CMR = bitMask; 
} 
 
void tc_init(struct TcInit tcInit) 
{ 
  
 // Add switch case 
 pmc_enable_periph_clk(TC0_IRQn); 
 tc_disable_writeprotect(TC0); 
 pmc_enable_periph_clk(TC3_IRQn); 
 tc_disable_writeprotect(TC1);  
 pmc_enable_periph_clk(TC6_IRQn); 
 tc_disable_writeprotect(TC2); 
 
 /*  Disable TC clock. */ 
 tc_clockDisable(tcInit.tcChannel); 
 
 /*  Disable interrupts. */ 
 tcInit.tcChannel->TC_IDR = 0xFFFFFFFF; 
 
 /*  Clear status register. */ 
 tcInit.tcChannel->TC_SR; 
 
 /*  Set mode. */ 
 tc_setMode(tcInit.tcChannel, tcInit.timerOperatingMode, tcInit.timerClockSource, tcInit.timerWaveformSelection); 
  
} 
 
void tc_sync(Tc * tc) 
{ 
 tc->TC_BCR = TC_BCR_SYNC; 
} 
 
uint32_t tc_readStatus(TcChannel * tcChannel) 
{ 
 return tcChannel->TC_SR; 
} 
 
void tc_setRA(TcChannel * tcChannel, uint32_t value) 
{ 
 tcChannel->TC_RA = value; 
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} 
 
void tc_setRB(TcChannel * tcChannel, uint32_t value) 
{ 
 tcChannel->TC_RB = value; 
} 
 
void tc_setRC(TcChannel * tcChannel, uint32_t value) 
{ 
 tcChannel->TC_RC = value; 
} 

 

tc.h 

#ifndef TC_H_ 
#define TC_H_ 
 
#include <sam.h> 
#include <stdbool.h> 
 
enum TimerClockSource {TIMER_CLOCK1 = TC_CMR_TCCLKS_TIMER_CLOCK1, 
 TIMER_CLOCK2 = TC_CMR_TCCLKS_TIMER_CLOCK2, 
 TIMER_CLOCK3 = TC_CMR_TCCLKS_TIMER_CLOCK3, 
 TIMER_CLOCK4 = TC_CMR_TCCLKS_TIMER_CLOCK4, 
 TIMER_CLOCK5 = TC_CMR_TCCLKS_TIMER_CLOCK5, 
 XC0 = TC_CMR_TCCLKS_XC0, 
 XC1 = TC_CMR_TCCLKS_XC1, 
 XC2 = TC_CMR_TCCLKS_XC2 
}; 
enum TimerOperatingMode {WAVEFORM_MODE = 1}; 
enum TimerWaveformSelection { 
 UP = TC_CMR_WAVSEL_UP, 
 UPDOWN = TC_CMR_WAVSEL_UPDOWN, 
 UP_RC = TC_CMR_WAVSEL_UP_RC, 
 UPDOWN_RC = TC_CMR_WAVSEL_UPDOWN_RC 
}; 
//enum TimerRcCompareEffect {NONE = 0, SET = 1, CLEAR = 2, TOGGLE = 3}; 
 
struct TcInit { 
 TcChannel * tcChannel; 
 enum TimerClockSource timerClockSource; 
 enum TimerOperatingMode timerOperatingMode; 
 bool rcCompareStopClock; 
 bool rcCompareDisableClock; 
 enum TimerWaveformSelection timerWaveformSelection; 
}; 
 
 
void tc_init(struct TcInit tcInit); 
void tc_setRA(TcChannel * tcChannel, uint32_t value); 
void tc_setRC(TcChannel * tcChannel, uint32_t value); 
uint32_t tc_readStatus(TcChannel * tcChannel); 
void tc_resetAndStart(TcChannel * tcChannel); 
void tc_sync(Tc * tc); 
 
void tc_enable_writeprotect(Tc * tc); 
void tc_disable_writeprotect(Tc * tc); 
 
 
#endif /* TC_H_INCLUDED */ 

 

LED.c 

#include <stdbool.h> 
#include "LED.h" 
#include "../sam4e-base/RevolveDrivers/pio.h" 
 
 
void led_init() 
{ 
 pio_enableOutput(PIOLED1, LED1); 
 pio_enableOutput(PIOLED2, LED2); 
 pio_enableOutput(PIOLED3, LED3); 
} 
 
void led_enable(int ledNum) 
{ 
 switch(ledNum){ 
  case 1: 
   pio_setOutput(PIOLED1, LED1, HIGH); 
   break; 
  case 2: 
   pio_setOutput(PIOLED2, LED2, HIGH); 
   break; 
  case 3: 
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   pio_setOutput(PIOLED3, LED3, HIGH); 
   break; 
 } 
} 
 
void led_disable(int ledNum) 
{ 
 switch(ledNum){ 
  case 1: 
   pio_setOutput(PIOLED1, LED1, LOW); 
   break; 
  case 2: 
   pio_setOutput(PIOLED2, LED2, LOW); 
   break; 
  case 3: 
   pio_setOutput(PIOLED3, LED3, LOW); 
   break; 
 } 
} 
 
void led_set(int ledNum, bool value){ 
 if(value){ 
  led_enable(ledNum); 
 } 
 else{ 
  led_disable(ledNum); 
 } 
} 

 

LED.h 

#ifndef LED_H_ 
#define LED_H_ 
 
#include "sam.h" 
 
void led_init(); 
void led_enable(int ledNum); 
void led_disable(int ledNum); 
void led_set(int ledNum, bool value); 
 
#define PIOLED1 PIOD 
#define PIOLED2 PIOD 
#define PIOLED3 PIOC 
 
#define LED1 5 
#define LED2 4 
#define LED3 23 
 
 
#endif /* LED_H_ */ 

 

abz.c 

#include "tc.h" 
#include "../sam4e-base/RevolveDrivers/pmc.h" 
#include "../sam4e-base/RevolveDrivers/pio.h" 
#include "abz.h" 
 
const uint16_t encoder_max = 2048; 
volatile bool  encoder_initialized = false; 
volatile bool encoder_index_reached = false; 
// Private tc functions: 
void tc_enable_writeprotect(Tc * tc); 
void tc_disable_writeprotect(Tc * tc); 
 
void tc_abz_init(struct Tc_abz_param* settings, uint32_t timeBase, Tc *tc){ 
  
 if(tc == TC0){ 
    
   pio_setPull(PIOA, 0, NOPULL); 
   pio_setPull(PIOA, 1, NOPULL); 
   pio_setPull(PIOA, 16, NOPULL); 
   pmc_enable_periph_clk(TC0_IRQn); 
   pmc_enable_periph_clk(TC1_IRQn); 
   pmc_enable_periph_clk(TC2_IRQn); 
   pio_setMux(PIOA, 0 , B); 
   pio_setMux(PIOA, 1 , B); 
   pio_setMux(PIOA, 16, B); 
   //TC0->TC_QIER |= TC_QIER_IDX; 
 
   /*NVIC_ClearPendingIRQ(TC0_IRQn); 
   NVIC_EnableIRQ(TC0_IRQn);*/ 
 } 
 else if(tc == TC1){ 
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//   pio_setMux(PIOA, 0 , B); 
//    pio_setMux(PIOA, 1 , B); 
//    pio_setMux(PIOA, 16, B); 
   pmc_enable_periph_clk(TC3_IRQn); 
   pmc_enable_periph_clk(TC4_IRQn); 
   pmc_enable_periph_clk(TC5_IRQn); 
 
   TC1->TC_QIER |= TC_QIER_IDX; 
 
   NVIC_ClearPendingIRQ(TC1_IRQn); 
   NVIC_EnableIRQ(TC1_IRQn); 
 } 
 else if(tc == TC2){ 
//    pio_setMux(PIOA, 0 , B); 
//    pio_setMux(PIOA, 1 , B); 
//    pio_setMux(PIOA, 16, B); 
   pmc_enable_periph_clk(TC6_IRQn); 
   pmc_enable_periph_clk(TC7_IRQn); 
   pmc_enable_periph_clk(TC8_IRQn); 
 
   TC2->TC_QIER |= TC_QIER_IDX; 
 
   NVIC_ClearPendingIRQ(TC2_IRQn); 
   NVIC_EnableIRQ(TC2_IRQn); 
 } 
  
 tc_disable_writeprotect(tc); 
  
 tc->TC_BMR = 0x0000; 
  
 tc->TC_CHANNEL[0].TC_CMR |= XC0; 
 tc->TC_CHANNEL[1].TC_CMR |= XC0; 
 tc->TC_CHANNEL[2].TC_CMR |= XC0; 
  
 //tc_enable_writeprotect(tc); 
  
 tc->TC_CHANNEL[0].TC_CMR &= ~TC_CMR_WAVE; 
 tc->TC_CHANNEL[1].TC_CMR &= ~TC_CMR_WAVE; 
 tc->TC_CHANNEL[2].TC_CMR |= TC_CMR_WAVE; 
 uint32_t reg = 0; 
  
 if(settings->enabled){ 
  reg |= TC_BMR_QDEN; 
 } 
 if(settings->no_dir_sense){ 
  reg |= TC_BMR_QDTRANS; 
 } 
 if(settings->count_phB){ 
  reg |= TC_BMR_EDGPHA; 
 } 
 if(settings->invert_phA){ 
  reg |= TC_BMR_INVA; 
 } 
 if(settings->invert_phB){ 
  reg |= TC_BMR_INVB; 
 } 
 if(settings->invert_phZ){ 
  reg |= TC_BMR_INVIDX; 
 } 
 if(settings->auto_correct){ 
  reg |= TC_BMR_AUTOC; 
 } 
 reg |= settings->filter_max_ticks << TC_BMR_MAXFILT_Pos; 
  
 //tc_disable_writeprotect(tc); 
  
 tc->TC_BMR |= reg; 
  
 if(settings->measure_position){ 
  reg |= TC_BMR_POSEN; 
  //Setup input capture 
  tc->TC_CHANNEL[1].TC_CMR |= TC_CMR_ABETRG; 
  tc->TC_CHANNEL[0].TC_CMR |= TC_CMR_ABETRG| TC_CMR_ETRGEDG_RISING; 
 } 
 if(settings->measure_speed){ 
  reg |= TC_BMR_SPEEDEN; 
  //Setup Timebase 
  tc->TC_CHANNEL[2].TC_CMR |= (TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC|TC_CMR_ACPC_TOGGLE); 
  tc->TC_CHANNEL[2].TC_RC = timeBase; 
  tc->TC_CHANNEL[0].TC_CMR |= TC_CMR_ABETRG; 
  tc->TC_CHANNEL[2].TC_CMR |= TC_CMR_ETRGEDG_RISING|TC_CMR_LDRA_RISING|TC_CMR_LDRB_RISING; 
  tc->TC_CHANNEL[2].TC_CCR |= TC_CCR_CLKEN|TC_CCR_SWTRG; 
 } 
  
 volatile uint32_t temp = tc->TC_QISR; 
   
 tc->TC_BMR |= reg; 
  
 tc_resetAndStart(&(tc->TC_CHANNEL[0])); 
 tc_resetAndStart(&(tc->TC_CHANNEL[1])); 
 tc_resetAndStart(&(tc->TC_CHANNEL[2])); 
  
 tc_enable_writeprotect(tc); 
} 
 
enum Tc_abz_direction tc_abz_get_direction(Tc *tc){ 
 return !!(tc->TC_QISR & TC_QISR_DIR); 
} 
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bool tc_abz_is_initialized(){ 
 return !!(TC0->TC_QISR & TC_QISR_IDX); 
} 
 
 
int16_t abz_getCount(Tc * tc) 
{ 
 return  -tc->TC_CHANNEL[0].TC_CV; 
} 
 
void abz_getPosition(Tc * tc, int32_t * encoderPosPointer, int32_t * numRevolutionsPointer) 
{ 
 int16_t firstRevolutionsSample = - tc->TC_CHANNEL[1].TC_CV; 
 int16_t firstPosSample = - tc->TC_CHANNEL[0].TC_CV; 
 int16_t secondRevoltionsSample = - tc->TC_CHANNEL[1].TC_CV; 
  
 if(secondRevoltionsSample != firstRevolutionsSample){ 
  *encoderPosPointer = - tc->TC_CHANNEL[0].TC_CV; 
  *numRevolutionsPointer = secondRevoltionsSample; 
 } else if (secondRevoltionsSample == firstRevolutionsSample) { 
  *encoderPosPointer = firstPosSample; 
  *numRevolutionsPointer = firstRevolutionsSample; 
 } 
  
} 

 

abz.h 

#ifndef ABZ_H_ 
#define ABZ_H_ 
 
#include <stdbool.h> 
 
enum Tc_abz_direction{ 
 ABZ_DIR_POSITIVE = false, 
 ABZ_DIR_NEGATIVE = true 
}; 
 
struct Tc_abz_param{ 
 bool enabled; 
 bool measure_position; 
 bool measure_speed; 
 bool no_dir_sense; 
 bool count_phB; 
 bool invert_phA; 
 bool invert_phB; 
 bool invert_phZ; 
 bool swap_inputs; 
 bool phB_as_phZ; 
 bool auto_correct; 
 uint8_t filter_max_ticks; 
}; 
 
struct Tc_abz_result{ 
 int32_t position_raw; 
 int32_t rotations_raw; 
 uint16_t position; 
 int32_t rotations; 
 int32_t speed; 
 enum Tc_abz_direction direction; 
}; 
 
void tc_abz_init(struct Tc_abz_param* settings, uint32_t timeBase, Tc *tc); 
enum Tc_abz_direction tc_abz_get_direction(Tc *tc); 
bool tc_abz_is_initialized(); 
int16_t abz_getCount(Tc * tc); 
void abz_getPosition(Tc * tc, int32_t * encoderPosPointer, int32_t * numRevolutionsPointer); 
 
extern const uint16_t encoder_max; 
 
 
#endif /* ABZ_H_ */ 
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pwm.c 

#include <sam.h> 
#include <stdbool.h> 
 
#include "sam4e-base/RevolveDrivers/pio.h" 
#include "sam4e-base/RevolveDrivers/pmc.h" 
 
// Private functions prototypes 
int pwm_selectChannelPrescaler(uint8_t channel, uint8_t channelPrescalerBM); 
void pwm_enableChannels(uint8_t channelBitmap); 
void pwm_setChannelPeriodRegister(uint8_t channel, uint32_t counterTopValue); 
void pwm_setWavePolarity(uint8_t channel, bool startHighNotLow); 
void pwm_setWaveAlignment(uint8_t channel, bool centerNotLeftAlignment); 
int pwm_selectChannelPrescaler(uint8_t channel, uint8_t channelPrescalerBM); 
void pwm_setChannelCounterEventSelection(uint8_t channel, bool eventAtHalfPeriod); 
void pwm_setChannelUpdateSelection(uint8_t channel, bool updateAtHalfPeriod); 
void pwm_setOutputOverrideValue(bool highNotLow); 
void pwm_disableWriteprotect(); 
void pwm_enableWriteprotect(); 
 
static uint32_t periodRegisterValue; 
 
// API functions 
void pwm_init(uint32_t peripheralClockFrequency, uint32_t pwmFrequency, uint32_t deadTimeFrequency) 
{ 
 pmc_enable_periph_clk(PWM_IRQn); 
  
 pio_setMux(PIOD, 21, A); 
 pio_setMux(PIOD, 25, A); 
  
 pio_setMux(PIOD, 22, A); 
 pio_setMux(PIOD, 26, A); 
  
 pio_setMux(PIOD, 23, A); 
 pio_setMux(PIOD, 27, A); 
  
 pwm_disableWriteprotect(); 
  
 PWM->PWM_SCM |= PWM_SCM_SYNC0 | PWM_SCM_SYNC1 | PWM_SCM_SYNC2 | PWM_SCM_SYNC3; // set all channels in sync mode 
 
 pwm_setDeadTime(1, peripheralClockFrequency/deadTimeFrequency); 
 pwm_setDeadTime(2, peripheralClockFrequency/deadTimeFrequency); 
 pwm_setDeadTime(3, peripheralClockFrequency/deadTimeFrequency); 
  
 pwm_selectChannelPrescaler(0, PWM_CMR_CPRE_MCK); 
 periodRegisterValue = peripheralClockFrequency/pwmFrequency/2; 
  
 pwm_setChannelPeriodRegister(0, periodRegisterValue); 
 pwm_setChannelCounterEventSelection(0, true); 
  
 pwm_setChannelUpdateSelection(0, true); 
 pwm_setChannelUpdateSelection(1, true); 
 pwm_setChannelUpdateSelection(2, true); 
 pwm_setChannelUpdateSelection(3, true); 
  
 pwm_setWavePolarity(1, false); 
 pwm_setWavePolarity(2, false); 
 pwm_setWavePolarity(3, false); 
  
 pwm_setWaveAlignment(0, true); 
  
 pwm_setOutputOverrideValue(false); 
  
 pwm_enableChannels(PWM_ENA_CHID0 | PWM_ENA_CHID1 | PWM_ENA_CHID2 | PWM_ENA_CHID3); 
  
 pwm_enableWriteprotect(); 
} 
 
void pwm_updateDutyCycles(float duty1, float duty2, float duty3) 
{ 
 PWM->PWM_CH_NUM[1].PWM_CDTYUPD = duty1 * periodRegisterValue; 
 PWM->PWM_CH_NUM[2].PWM_CDTYUPD = duty2 * periodRegisterValue; 
 PWM->PWM_CH_NUM[3].PWM_CDTYUPD = duty3 * periodRegisterValue; 
 PWM->PWM_SCUC = PWM_SCUC_UPDULOCK; 
} 
 
void pwm_setDrivers(bool enableDrivers){ 
 if(enableDrivers) 
  PWM->PWM_OSC = 
(PWM_OS_OSH0|PWM_OS_OSH1|PWM_OS_OSH2|PWM_OS_OSH3|PWM_OS_OSL0|PWM_OS_OSL1|PWM_OS_OSL2|PWM_OS_OSL3); 
 else 
  PWM->PWM_OSS = 
(PWM_OS_OSH0|PWM_OS_OSH1|PWM_OS_OSH2|PWM_OS_OSH3|PWM_OS_OSL0|PWM_OS_OSL1|PWM_OS_OSL2|PWM_OS_OSL3); 
} 
 
// Helper functions 
void pwm_setChannelUpdateSelection(uint8_t channel, bool updateAtHalfPeriod) 
{ 
 #ifndef PWM_CMR_UPDS 
  #define PWM_CMR_UPDS (1<<11) 
 #endif 
 PWM->PWM_CH_NUM[channel].PWM_CMR &= ~ PWM_CMR_UPDS; 
 if (updateAtHalfPeriod) 
  PWM->PWM_CH_NUM[channel].PWM_CMR |= PWM_CMR_UPDS; 
} 
 
void pwm_setOutputOverrideValue(bool highNotLow) 
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{ 
 if(highNotLow) 
  PWM->PWM_OOV |= 
(PWM_OOV_OOVH0|PWM_OOV_OOVH1|PWM_OOV_OOVH2|PWM_OOV_OOVH3|PWM_OOV_OOVL0|PWM_OOV_OOVL1|PWM_OOV_OOVL2|PWM_OOV_OOVL3); 
 else 
  PWM->PWM_OOV &= 
~(PWM_OOV_OOVH0|PWM_OOV_OOVH1|PWM_OOV_OOVH2|PWM_OOV_OOVH3|PWM_OOV_OOVL0|PWM_OOV_OOVL1|PWM_OOV_OOVL2|PWM_OOV_OOVL3); 
} 
 
void pwm_setChannelCounterEventSelection(uint8_t channel, bool eventAtHalfPeriod) 
{ 
 PWM->PWM_CH_NUM[channel].PWM_CMR &= ~PWM_CMR_CES; 
 if (eventAtHalfPeriod) 
  PWM->PWM_CH_NUM[channel].PWM_CMR |= PWM_CMR_CES; 
} 
 
void pwm_setDeadTime(uint8_t channel, uint32_t deadTimeCycles) 
{ 
 PWM->PWM_CH_NUM[channel].PWM_CMR |= PWM_CMR_DTE|PWM_CMR_DTHI|PWM_CMR_DTLI; // enable dead time generator 
  
 PWM->PWM_CH_NUM[channel].PWM_DT = 0x00; 
 PWM->PWM_CH_NUM[channel].PWM_DT |= PWM_DT_DTH(deadTimeCycles); // set deadTimeHigh 
 PWM->PWM_CH_NUM[channel].PWM_DT |= PWM_DT_DTL(deadTimeCycles); // set deadTimeLow 
} 
 
 
void pwm_enableChannels(uint8_t channelBitmap) 
{ 
 uint8_t channelMask = PWM_ENA_CHID0 | PWM_ENA_CHID1 | PWM_ENA_CHID2 | PWM_ENA_CHID3; 
 PWM->PWM_ENA = channelMask & channelBitmap; 
} 
 
// pwm_setChannelPeriodRegister requires peripheral clock for PWM to be enabled 
void pwm_setChannelPeriodRegister(uint8_t channel, uint32_t counterTopValue) 
{ 
 PWM->PWM_CH_NUM[channel].PWM_CPRD = (counterTopValue & PWM_CPRD_CPRD_Msk); 
} 
 
// pwm_setWavePolarity requires peripheral clock for PWM to be enabled 
void pwm_setWavePolarity(uint8_t channel, bool startHighNotLow){ 
 PWM->PWM_CH_NUM[channel].PWM_CMR &= ~PWM_CMR_CPOL; 
 if (startHighNotLow) 
  PWM->PWM_CH_NUM[channel].PWM_CMR |= PWM_CMR_CPOL; 
} 
 
void pwm_setWaveAlignment(uint8_t channel, bool centerNotLeftAlignment){ 
 PWM->PWM_CH_NUM[channel].PWM_CMR &= ~PWM_CMR_CALG; 
 if (centerNotLeftAlignment) 
  PWM->PWM_CH_NUM[channel].PWM_CMR |= PWM_CMR_CALG; 
} 
 
// This function is not very intuitive. channelPrescalerBM values can only be what's described in switch - case. Consider making it an enumerator. 
int pwm_selectChannelPrescaler(uint8_t channel, uint8_t channelPrescalerBM) 
{  
 if (channel > 3 && channel < 0) 
  return -1; 
   
 switch (channelPrescalerBM){ 
  case PWM_CMR_CPRE_CLKA: 
  case PWM_CMR_CPRE_CLKB: 
  case PWM_CMR_CPRE_MCK_DIV_1024: 
  case PWM_CMR_CPRE_MCK_DIV_512: 
  case PWM_CMR_CPRE_MCK_DIV_256: 
  case PWM_CMR_CPRE_MCK_DIV_128: 
  case PWM_CMR_CPRE_MCK_DIV_64: 
  case PWM_CMR_CPRE_MCK_DIV_32: 
  case PWM_CMR_CPRE_MCK_DIV_16: 
  case PWM_CMR_CPRE_MCK_DIV_8: 
  case PWM_CMR_CPRE_MCK_DIV_4: 
  case PWM_CMR_CPRE_MCK_DIV_2: 
  case PWM_CMR_CPRE_MCK: 
   break; 
  default: 
   return -1;    
 } 
  
 PWM->PWM_CH_NUM[channel].PWM_CMR &= ~PWM_CMR_CPRE_Msk; 
 PWM->PWM_CH_NUM[channel].PWM_CMR |= channelPrescalerBM; 
  
 return 0; 
} 
 
void pwm_disableWriteprotect(){ 
 PWM->PWM_WPCR = PWM_WPCR_WPKEY_PASSWD | PWM_WPCR_WPCMD_DISABLE_SW_PROT | PWM_WPCR_WPRG0 | PWM_WPCR_WPRG1 | 
PWM_WPCR_WPRG2 | PWM_WPCR_WPRG3 | PWM_WPCR_WPRG4 | PWM_WPCR_WPRG5; 
} 
 
void pwm_enableWriteprotect(){ 
 PWM->PWM_WPCR = PWM_WPCR_WPKEY_PASSWD | PWM_WPCR_WPCMD_ENABLE_SW_PROT | PWM_WPCR_WPRG0 | PWM_WPCR_WPRG1 | 
PWM_WPCR_WPRG2 | PWM_WPCR_WPRG3 | PWM_WPCR_WPRG4 | PWM_WPCR_WPRG5; 
} 
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pwm.h 

#ifndef PWM_H_ 
#define PWM_H_ 
 
#include <stdint.h> 
#include <stdbool.h> 
 
void pwm_init(uint32_t peripheralClockFrequency, uint32_t pwmFrequency, uint32_t deadTimeFrequency); 
void pwm_updateDutyCycles(float duty1, float duty2, float duty3); 
void pwm_setDrivers(bool enableDrivers); 
 
#endif /* PWM_H_ */ 

 

CurrentSensor.c 

#include "CurrentSensor.h" 
 
#define ARM_MATH_CM4 
#include <CMSIS/Include/arm_math.h> 
#include "sam4e-base/RevolveDrivers/can.h" 
 
void current_init() 
{ 
 pio_init(); 
 
 pio_setOutput(CURRENT_1_CONV_PIO, CURRENT_1_CONV_PIN, LOW); 
 pio_enableOutput(CURRENT_1_CONV_PIO, CURRENT_1_CONV_PIN); 
 
 pio_setOutput(CURRENT_2_CONV_PIO, CURRENT_2_CONV_PIN, LOW); 
 pio_enableOutput(CURRENT_2_CONV_PIO, CURRENT_2_CONV_PIN); 
 
 pio_setOutput(CURRENT_3_CONV_PIO, CURRENT_3_CONV_PIN, LOW); 
 pio_enableOutput(CURRENT_3_CONV_PIO, CURRENT_3_CONV_PIN); 
 
 pio_setOutput(CURRENT_4_CONV_PIO, CURRENT_4_CONV_PIN, LOW); 
 pio_enableOutput(CURRENT_4_CONV_PIO, CURRENT_4_CONV_PIN); 
 
 pio_disableOutput(CURRENT_1_INT_PIO, CURRENT_1_INT_PIN); 
 pio_disableOutput(CURRENT_2_INT_PIO, CURRENT_2_INT_PIN); 
 pio_disableOutput(CURRENT_3_INT_PIO, CURRENT_3_INT_PIN); 
 pio_disableOutput(CURRENT_4_INT_PIO, CURRENT_4_INT_PIN); 
} 
 
void current_startConversion(uint8_t sensorNum) 
{ 
 switch(sensorNum){ 
  case 1: 
  pio_setOutput(CURRENT_1_CONV_PIO, CURRENT_1_CONV_PIN, HIGH); 
  break; 
 case 2: 
  pio_setOutput(CURRENT_2_CONV_PIO, CURRENT_2_CONV_PIN, HIGH); 
  break; 
 case 3: 
  pio_setOutput(CURRENT_3_CONV_PIO, CURRENT_3_CONV_PIN, HIGH); 
  break; 
 case 4: 
  pio_setOutput(CURRENT_4_CONV_PIO, CURRENT_4_CONV_PIN, HIGH); 
  break; 
 } 
} 
 
float current_calculateCurrent(int16_t adcValue, int sensorNum) 
{ 
 float32_t ratio = ((float32_t)adcValue)/((float32_t)MAX_ADC_VALUE); 
 
 float32_t voltage = ratio * ((float32_t)MAX_VOLTAGE); 
 
 float32_t current = 0.0; 
 
 switch(sensorNum){ 
  case 1: 
   current = voltage/((float32_t) R1); 
  break; 
  case 2: 
   current = voltage/((float32_t) R2); 
  break; 
  case 3: 
   current = voltage/((float32_t) R3); 
  break; 
  case 4: 
   current = voltage/((float32_t) R4); 
  break; 
 } 
  
 current = current*LEM_CURRENT_RATIO; 
 
 return current; 
} 
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CurrentSensor.h 

#ifndef CURRENTSENSOR_H_ 
#define CURRENTSENSOR_H_ 
 
#include "sam4e-base/RevolveDrivers/pio.h" 
 
#define CURRENT_1_CONV_PIO PIOA 
#define CURRENT_1_CONV_PIN 20 
 
#define CURRENT_1_INT_PIO PIOC 
#define CURRENT_1_INT_PIN 13 
 
#define CURRENT_2_CONV_PIO PIOC 
#define CURRENT_2_CONV_PIN 3 
 
#define CURRENT_2_INT_PIO PIOC 
#define CURRENT_2_INT_PIN 2 
 
#define CURRENT_3_CONV_PIO PIOD 
#define CURRENT_3_CONV_PIN 28 
 
#define CURRENT_3_INT_PIO PIOA 
#define CURRENT_3_INT_PIN 27 
 
#define CURRENT_4_CONV_PIO PIOD 
#define CURRENT_4_CONV_PIN 17 
 
#define CURRENT_4_INT_PIO PIOA 
#define CURRENT_4_INT_PIN 5 
 
#define MAX_ADC_VALUE 0x7fff 
#define MAX_VOLTAGE 10.24 
 
#define R1 25 
#define R2 50 
#define R3 50 
#define R4 25 
 
#define LEM_CURRENT_RATIO 2000 
 
void current_init(); 
void current_startConversion(uint8_t sensorNum); 
float current_calculateCurrent(int16_t adcValue, int sensorNum); 
#endif /* CURRENTSENSOR_H_ */ 

 

Switch.c 

#include <stdbool.h> 
 
#include "Switch.h" 
#include "../sam4e-base/RevolveDrivers/pio.h" 
#include "../sam4e-base/RevolveDrivers/pmc.h" 
 
 
void switch_init() 
{ 
/* pio_setOutput(SWITCH_BOT_1_PIO, SWITCH_BOT_1_PIN, LOW); 
 pio_setOutput(SWITCH_TOP_1_PIO, SWITCH_TOP_1_PIN, LOW); 
 pio_setOutput(SWITCH_BOT_2_PIO, SWITCH_BOT_2_PIN, LOW); 
 pio_setOutput(SWITCH_TOP_2_PIO, SWITCH_TOP_2_PIN, LOW); 
 pio_setOutput(SWITCH_BOT_3_PIO, SWITCH_BOT_3_PIN, LOW); 
 pio_setOutput(SWITCH_TOP_3_PIO, SWITCH_TOP_3_PIN, LOW); 
  
 pio_enableOutput(SWITCH_BOT_1_PIO, SWITCH_BOT_1_PIN); 
 pio_enableOutput(SWITCH_TOP_1_PIO, SWITCH_TOP_1_PIN); 
 pio_enableOutput(SWITCH_BOT_2_PIO, SWITCH_BOT_2_PIN); 
 pio_enableOutput(SWITCH_TOP_2_PIO, SWITCH_TOP_2_PIN); 
 pio_enableOutput(SWITCH_BOT_3_PIO, SWITCH_BOT_3_PIN); 
 pio_enableOutput(SWITCH_TOP_3_PIO, SWITCH_TOP_3_PIN); 
*/ 
 pio_disableOutput(PIOD, 21); 
 pio_disableOutput(PIOD, 25); 
 pio_disableOutput(PIOD, 22); 
 pio_disableOutput(PIOD, 26); 
 pio_disableOutput(PIOD, 23); 
 pio_disableOutput(PIOD, 27); 
  
 pmc_enable_periph_clk(PIOA_IRQn); 
 pmc_enable_periph_clk(PIOB_IRQn); 
 pmc_enable_periph_clk(PIOC_IRQn); 
 pmc_enable_periph_clk(PIOD_IRQn); 
 pmc_enable_periph_clk(PIOE_IRQn); 
} 
 
 
void switch_disable() 
{ 
 pio_setOutput(SWITCH_BOT_1_PIO, SWITCH_BOT_1_PIN, LOW); 
 pio_setOutput(SWITCH_TOP_1_PIO, SWITCH_TOP_1_PIN, LOW); 
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 pio_setOutput(SWITCH_BOT_2_PIO, SWITCH_BOT_2_PIN, LOW); 
 pio_setOutput(SWITCH_TOP_2_PIO, SWITCH_TOP_2_PIN, LOW); 
 pio_setOutput(SWITCH_BOT_3_PIO, SWITCH_BOT_3_PIN, LOW); 
 pio_setOutput(SWITCH_TOP_3_PIO, SWITCH_TOP_3_PIN, LOW); 
} 
 
// Return binary number where bits represents which switches that has error 
int switch_getError() 
{ 
 int error = 0; 
 if(pio_readPin(ERROR_1_PIO, ERROR_1_PIN)) 
  error += (1<<0); 
   
 if(pio_readPin(ERROR_2_PIO, ERROR_2_PIN)) 
  error += (1<<1); 
   
 if(pio_readPin(ERROR_3_PIO, ERROR_3_PIN)) 
  error += (1<<2); 
  
 return error; 
} 
 
 
void switch_set(int switchNum, bool topNotBot) 
{ 
 switch(switchNum){ 
  case(1): 
   if(topNotBot){ 
    pio_setOutput(SWITCH_BOT_1_PIO, SWITCH_BOT_1_PIN, LOW); 
    pio_setOutput(SWITCH_TOP_1_PIO, SWITCH_TOP_1_PIN, HIGH); 
   } else { 
    pio_setOutput(SWITCH_TOP_1_PIO, SWITCH_TOP_1_PIN, LOW); 
    pio_setOutput(SWITCH_BOT_1_PIO, SWITCH_BOT_1_PIN, HIGH); 
   } 
   break; 
  case(2): 
   if(topNotBot){ 
    pio_setOutput(SWITCH_BOT_2_PIO, SWITCH_BOT_2_PIN, LOW); 
    pio_setOutput(SWITCH_TOP_2_PIO, SWITCH_TOP_2_PIN, HIGH); 
    } else { 
    pio_setOutput(SWITCH_TOP_2_PIO, SWITCH_TOP_2_PIN, LOW); 
    pio_setOutput(SWITCH_BOT_2_PIO, SWITCH_BOT_2_PIN, HIGH); 
   } 
   break; 
  case(3): 
   if(topNotBot){ 
    pio_setOutput(SWITCH_BOT_3_PIO, SWITCH_BOT_3_PIN, LOW); 
    pio_setOutput(SWITCH_TOP_3_PIO, SWITCH_TOP_3_PIN, HIGH); 
   } else { 
    pio_setOutput(SWITCH_TOP_3_PIO, SWITCH_TOP_3_PIN, LOW); 
    pio_setOutput(SWITCH_BOT_3_PIO, SWITCH_BOT_3_PIN, HIGH); 
   } 
   break; 
 } 
}  
 
 
void switch_applyVector(int vector) 
{ 
 switch(vector){ 
  case 0: 
   switch_set(1, false); 
   switch_set(2, false); 
   switch_set(3, false); 
   break; 
  case 1: 
   switch_set(1, true); 
   switch_set(2, false); 
   switch_set(3, false); 
   break; 
  case 2: 
   switch_set(1, false); 
   switch_set(2, true); 
   switch_set(3, false); 
   break; 
  case 3: 
   switch_set(1, true); 
   switch_set(2, true); 
   switch_set(3, false); 
   break; 
  case 4: 
   switch_set(1, false); 
   switch_set(2, false); 
   switch_set(3, true); 
   break; 
  case 5: 
   switch_set(1, true); 
   switch_set(2, false); 
   switch_set(3, true); 
   break; 
  case 6: 
   switch_set(1, false); 
   switch_set(2, true); 
   switch_set(3, true); 
   break; 
  case 7: 
   switch_set(1, true); 
   switch_set(2, true); 
   switch_set(3, true); 
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   break; 
  default: 
   break; 
 }    
} 

 

Switch.h 

#ifndef SWITCH_H_ 
#define SWITCH_H_ 
 
#include "../sam4e-base/RevolveDrivers/pio.h" 
#include <stdbool.h> 
 
int switch_getError(); 
void switch_set(int switchNum, bool topNotBot); 
void switch_applyVector(int vector); 
int switch_getError(); 
void switch_init(); 
void switch_disable(); 
 
#define SWITCH_BOT_1_PIO PIOA 
#define SWITCH_BOT_1_PIN 6 
 
#define SWITCH_TOP_1_PIO PIOA 
#define SWITCH_TOP_1_PIN 30 
 
#define ERROR_1_PIO PIOD 
#define ERROR_1_PIN 10 
 
#define SWITCH_BOT_2_PIO PIOA 
#define SWITCH_BOT_2_PIN 28 
 
#define SWITCH_TOP_2_PIO PIOD 
#define SWITCH_TOP_2_PIN 8 
 
#define ERROR_2_PIO PIOC 
#define ERROR_2_PIN 16 
 
#define SWITCH_BOT_3_PIO PIOD 
#define SWITCH_BOT_3_PIN 9 
 
#define SWITCH_TOP_3_PIO PIOC 
#define SWITCH_TOP_3_PIN 18 
 
#define ERROR_3_PIO PIOD 
#define ERROR_3_PIN 11 
 
#endif /* SWITCH_H_ */ 

 

spi.c 

#include "sam4e-base/RevolveDrivers/pio.h" 
#include "sam4e-base/RevolveDrivers/pmc.h" 
 
void spi_disableWriteProtetction() 
{ 
 SPI->SPI_WPMR = SPI_WPMR_WPKEY_PASSWD; 
} 
 
void spi_enableWriteProtetction() 
{ 
 SPI->SPI_WPMR = SPI_WPMR_WPKEY_PASSWD|SPI_WPMR_WPEN; 
} 
 
void spi_init(uint32_t peripheralClockFrequency, uint32_t spiClockFrequency) 
{ 
 spi_disableWriteProtetction(); 
  
 pio_setMux (PIOA, 12, A);  //MISO 
 pio_setMux (PIOA, 13, A);  //MOSI 
  
 pio_setMux (PIOA, 11, A);  //cs0 
 pio_setMux (PIOA, 9, B);  //cs1 
 pio_setMux (PIOA, 10, B);  //cs2 
 pio_setMux (PIOA, 3, B);  //cs3 
  
 pio_setMux (PIOA, 14, A);  //SPCK 
  
 pmc_enable_periph_clk(SPI_IRQn); 
  
//  NVIC_ClearPendingIRQ(SPI_IRQn); 
//  NVIC_EnableIRQ(SPI_IRQn); 
  
 #define DELAY_BETWEEN_CS 10 
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 SPI->SPI_CR = SPI_CR_SPIEN;  // enable SPI 
 SPI->SPI_MR = SPI_MR_MSTR|SPI_MR_PS|(DELAY_BETWEEN_CS<<SPI_MR_DLYBCS_Pos); 
  
 /*SPI->SPI_IER = SPI_IER_RXBUFF;*/ 
  
 uint32_t scbr = peripheralClockFrequency/spiClockFrequency; 
  
 for(int i = 0; i < 4; i++) 
 { 
  SPI->SPI_CSR[i] = SPI_CSR_CSNAAT|SPI_CSR_BITS_16_BIT|(scbr<<SPI_CSR_SCBR_Pos)|SPI_CSR_NCPHA|SPI_CSR_CPOL|SPI_CSR_DLYBS(3); 
 } 
} 
 
uint32_t spi_tranceive(uint16_t transmit, uint8_t cs) 
{ 
 SPI->SPI_TDR = ( (0xf & ~(1<<cs) ) << SPI_TDR_PCS_Pos)|SPI_TDR_LASTXFER|transmit; 
   
 while(!(SPI->SPI_SR & SPI_SR_RDRF)); // block untill new data is received 
  
 return SPI->SPI_RDR; 
} 

 

spi.h 

#ifndef SPI_H_ 
#define SPI_H_ 
 
uint32_t spi_tranceive(uint16_t transmit, uint8_t cs); 
void spi_init(uint32_t peripheralClockFrequency, uint32_t spiClockFrequency); 
 
#endif /* SPI_H_ */ 
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B.4: Modules 

angleConversion.c 

#include <stdint.h> 
 
float angleConversions_encoderToDegrees(uint8_t mostSignificantBitNumber, uint32_t encoderValue) 
{ 
 uint32_t encoderMaxValue = ( 1 << mostSignificantBitNumber ) - 1; 
 return ((float)(encoderValue * 360))/((float) encoderMaxValue); 
} 
 
float angleConversions_encoderToEletricalDegrees(uint8_t mostSignificantBitNumber, int32_t encoderValue, uint8_t polePairs) 
{ 
 int32_t encoderMaxValue = ((1 << mostSignificantBitNumber) - 1); 
 return ((float) ( ((encoderValue * polePairs) % encoderMaxValue) * 360 ) )/((float) encoderMaxValue);  
} 
 
float angleConversions_encoderToRPM(int32_t encoderValue, int32_t numRevolutions, int32_t sampleFrequency) 
{ 
 static float rpmEstimate; 
 static int32_t lastNumRevolutions; 
 static int32_t lastEncoderValue; 
 static int32_t callsSinceLastChange; 
  
 if((encoderValue == lastEncoderValue) && (numRevolutions == lastNumRevolutions)){ 
  callsSinceLastChange++; 
 } else { 
  int32_t deltaEncoderValue = (numRevolutions - lastNumRevolutions)*2048 + (encoderValue - lastEncoderValue); 
  float rawRpmEstimate = ((float)deltaEncoderValue) * ((float)sampleFrequency) * 60.0 / ((float)(callsSinceLastChange)) / 2048.0; 
  rpmEstimate = rpmEstimate * 0.9 + 0.1*rawRpmEstimate; // needs tuning 
  callsSinceLastChange = 1; 
 } 
  
 lastNumRevolutions = numRevolutions; 
 lastEncoderValue = encoderValue; 
 
 return rpmEstimate; 
} 

 

angleConversion.h 

#include <stdint.h> 
 
#ifndef ANGLECONVERSIONS_H_ 
#define ANGLECONVERSIONS_H_ 
 
float angleConversions_encoderToDegrees(uint8_t mostSignificantBitNumber, uint32_t encoderValue); 
float angleConversions_encoderToEletricalDegrees(uint8_t mostSignificantBitNumber, uint32_t encoderValue, uint8_t polePairs); 
float angleConversions_encoderToRPM(int32_t encoderValue, int32_t numRevolutions, int32_t sampleFrequency); 
 
#endif /* ANGLECONVERSIONS_H_ */ 

 

adcConversion.c 

#include <stdint.h> 
 
float adcConversion_linearConversion(int32_t rawValue, 
         int32_t rawValueMin,  
         int32_t rawValueMax,  
         float conversionValueMin,  
         float conversionValueMax) 
{ 
 int32_t rawRangeSize = rawValueMax - rawValueMin; 
 int32_t compensatedRawValue = rawValue - rawValueMin; 
  
 float conversionRangeSize = conversionValueMax - conversionValueMin; 
  
 return conversionValueMin + ((float) compensatedRawValue)*conversionRangeSize/( (float) rawRangeSize); 
} 

  



128  

adcConversion.h 

#ifndef ADCCONVERSION_H_ 
#define ADCCONVERSION_H_ 
 
 
#include <stdint.h> 
 
float adcConversion_linearConversion(int32_t rawValue, 
         int32_t rawValueMin, 
         int32_t rawValueMax, 
         float conversionValueMin, 
         float conversionValueMax); 
#endif /* ADCCONVERSION_H_ */ 

 

error.c 

#include <stdbool.h> 
#include <stdint.h> 
 
 
#include "error.h" 
 
static bool initiated = false; 
static uint32_t errorCounter; 
static uint32_t recoverableErrorVector; 
static uint32_t errorVector, accumulatedErrorVector; // assumingnever more than 32 errors 
 
int error_init(uint32_t recoverableErrorBitMask) 
{ 
    if(initiated) 
  return -1; 
    recoverableErrorVector = recoverableErrorBitMask; 
    errorVector = 0; 
 accumulatedErrorVector = 0; 
    initiated = true; 
    return 0; 
} 
 
void error_signal(uint32_t errorBitMask) 
{ 
    errorVector |= errorBitMask; 
 accumulatedErrorVector |= errorVector; 
 errorCounter++; 
} 
 
void error_clear(uint32_t errorBitMask) 
{ 
    uint32_t recoverVector = errorBitMask & recoverableErrorVector; 
    errorVector &= ~(recoverVector); 
} 
 
bool error_check(uint32_t errorBitMask) 
{ 
    return ((bool)(errorVector & errorBitMask)); 
} 
 
uint32_t error_getVector() 
{ 
 return errorVector; 
} 
 
uint32_t error_getLastVector() 
{ 
 return accumulatedErrorVector; 
} 
 
uint32_t error_getCount() 
{ 
 return errorCounter; 
} 

 

error.h 

#ifndef ERROR_H_ 
#define ERROR_H_ 
 
 
int error_init(uint32_t recoverableErrorBitMask); 
void error_signal(uint32_t errorBitMask); 
void error_clear(uint32_t errorBitMask); 
bool error_check(uint32_t errorBitMask); 
uint32_t error_getVector(); 
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uint32_t error_getLastVector(); 
uint32_t error_getCount(); 
 
#endif /* ERROR_H_ */ 

 

foc.c 

#include <sam.h> 
#include <stdbool.h> 
 
#define ARM_MATH_CM4 
#include <CMSIS/Include/arm_math.h> 
#include <math.h> 
 
#include "foc.h" 
 
// The controller tuning should be moved to config file and made agnostic due to to loop frequency 
static arm_pid_instance_f32 qPid; 
static arm_pid_instance_f32 dPid; 
static float qPid_Ki, dPid_Ki; // Used in integral anti windup  
 
void foc_init(float K_p, float K_i, float K_d) 
{ 
 dPid.Kp = K_p; 
 dPid.Kd = K_d; 
 dPid.Ki = K_i; 
 dPid_Ki = K_i; 
  
 qPid.Kp = K_p; 
 qPid.Kd = K_d; 
 qPid.Ki = K_i; 
 qPid_Ki = K_i; 
  
 arm_pid_init_f32(&qPid, 1); 
 arm_pid_init_f32(&dPid, 1); 
} 
 
void foc_antiWindup(bool enable) 
{ 
 if(enable){ 
  qPid.Ki = 0.0; 
  dPid.Ki = 0.0; 
  arm_pid_init_f32(&qPid, 0); 
  arm_pid_init_f32(&dPid, 0); 
 } else { 
  qPid.Ki = qPid_Ki; 
  dPid.Ki = dPid_Ki; 
  arm_pid_init_f32(&qPid, 0); 
  arm_pid_init_f32(&dPid, 0); 
 } 
} 
 
void foc_reset_regulator(){ 
 arm_pid_init_f32(&qPid, 1); 
 arm_pid_init_f32(&dPid, 1); 
} 
 
void foc_calculate( 
     // Inputs 
     float currentA, 
     float currentB, 
     float eletricalDegrees, 
     float setPointCurrentQ, 
     float setPointCurrentD, 
     // Outputs 
     float * currentQPointer, 
     float * currentDPointer, 
     float * voltageAPointer, 
     float * voltageBPointer, 
     float * voltageCPointer, 
     bool runPid 
     ) 
{ 
 // Variables made static to increase performance 
 static float32_t currentAlpha, currentBeta; 
 static float32_t currentD, currentQ; 
 static float32_t sinVal, cosVal; 
 
 static float32_t deltaCurrentQ, deltaCurrentD; 
 
 static float32_t voltageQ, voltageD; 
 static float32_t voltageAlpha, voltageBeta; 
  
  
 arm_sin_cos_f32(eletricalDegrees, &sinVal, &cosVal); 
 arm_clarke_f32(currentA, currentB, &currentAlpha, &currentBeta); 
 arm_park_f32(currentAlpha, currentBeta, &currentD, &currentQ, sinVal, cosVal); 
  
 deltaCurrentQ = setPointCurrentQ - currentQ; 
 deltaCurrentD = setPointCurrentD - currentD; 
  
 if(runPid){ 
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  voltageQ = arm_pid_f32(&qPid, deltaCurrentQ); 
  voltageD = arm_pid_f32(&dPid, deltaCurrentD); 
  
 } 
 else{ 
  voltageQ = 0; 
  voltageD = 0; 
 } 
  
 arm_inv_park_f32(voltageD, voltageQ, &voltageAlpha, &voltageBeta, sinVal, cosVal); 
 arm_inv_clarke_f32(voltageAlpha, voltageBeta, voltageAPointer, voltageBPointer); 
  
 *currentDPointer = currentD; 
 *currentQPointer = currentQ; 
 *voltageCPointer = - *voltageAPointer - *voltageBPointer; 
} 

 

foc.h 

#ifndef FOC_H_ 
#define FOC_H_ 
 
#include <stdbool.h> 
 
void foc_init(float K_p, float K_i, float K_d); 
 
void foc_calculate( 
 // Inputs 
 float currentA, 
 float currentB, 
 float eletricalDegrees, 
 float setPointCurrentQ, 
 float setPointCurrentD, 
 // Outputs 
 float * currentQPointer, 
 float * currentDPointer, 
 float * voltageAPointer, 
 float * voltageBPointer, 
 float * voltageCPointer, 
 bool runPid 
); 
 
void foc_reset_regulator(); 
 
void foc_antiWindup(bool enable); 
 
#endif /* FOC_H_ */ 

 

commutation.c 

#include <sam.h> 
#include <stdbool.h> 
 
#define ARM_MATH_CM4 
#include <CMSIS/Include/arm_math.h> 
#include <math.h> 
 
static arm_pid_instance_f32 alphaPid; 
static arm_pid_instance_f32 betaPid; 
 
void commutation_init(float K_p, float K_i, float K_d) 
{ 
 alphaPid.Kp = K_p; 
 alphaPid.Kd = K_d; 
 alphaPid.Ki = K_i; 
  
 betaPid.Kp = K_p; 
 betaPid.Kd = K_d; 
 betaPid.Ki = K_i; 
 
 arm_pid_init_f32(&alphaPid, 1); 
 arm_pid_init_f32(&betaPid, 1); 
} 
 
void commutation_sinusodial( 
      float currentA, 
      float currentB, 
      float eletricalDegreeSetpoint, 
      float currentSetpoint, 
      float * voltageAPointer, 
      float * voltageBPointer, 
      float * voltageCPointer)     
{ 
 static float32_t sinVal, cosVal; 
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 static float32_t currentAlpha, currentBeta; 
 static float32_t voltageAlpha, voltageBeta; 
 static float32_t setpointCurrentAlpha, setpointCurrentBeta; 
 static float32_t deltaCurrentAlpha, deltaCurrentBeta; 
  
 arm_sin_cos_f32(eletricalDegreeSetpoint, &sinVal, &cosVal); 
 arm_clarke_f32(currentA, currentB, &currentAlpha, &currentBeta); 
 
 setpointCurrentAlpha = cosVal * currentSetpoint; 
 setpointCurrentBeta = sinVal * currentSetpoint; 
 
 deltaCurrentAlpha = setpointCurrentAlpha - currentAlpha; 
 deltaCurrentBeta = setpointCurrentBeta - currentBeta; 
  
 voltageAlpha = arm_pid_f32(&alphaPid, deltaCurrentAlpha); 
 voltageBeta = arm_pid_f32(&betaPid, deltaCurrentBeta); 
 
 arm_inv_clarke_f32(voltageAlpha, voltageBeta, voltageAPointer, voltageBPointer); 
  
 *voltageCPointer = - *voltageAPointer - *voltageBPointer;   
} 

 

commutation.h 

#ifndef COMMUTATION_H_ 
#define COMMUTATION_H_ 
 
void commutation_init(float K_p, float K_i, float K_d); 
 
void commutation_sinusodial( 
 float currentA, 
 float currentB, 
 float eletricalDegreeSetpoint, 
 float currentSetpoint, 
 float * voltageAPointer, 
 float * voltageBPointer, 
 float * voltageCPointer); 
#endif /* COMMUTATION_H_ */ 

 

voltageModulation.c 

#include <stdbool.h> 
 
// Gives duty cycle between 0.0 and 1.0 centered around 0.5 (modulatedVoltages = 0 -> dutyCycle 0.5) 
float voltageModulation_voltageToPwm(float modulatedVoltage, float dcVoltage, const float minDutyCycle, const float maxDutyCycle, const float saturation_overflow_allowed, 
bool * saturation) 
{ 
 float dutyCycle = 0.5 + (modulatedVoltage/dcVoltage)*0.5; 
  
 if((dutyCycle > (maxDutyCycle + saturation_overflow_allowed)) || (dutyCycle < (minDutyCycle - saturation_overflow_allowed))){ 
  *saturation = true; 
 } 
 else{ 
  *saturation = false; 
 } 
  
 if(dutyCycle > maxDutyCycle) 
 { 
  dutyCycle = maxDutyCycle; 
 } else if(dutyCycle < minDutyCycle) { 
  dutyCycle = minDutyCycle; 
 } 
   
 return dutyCycle; 
} 
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voltageModulation.h 

#ifndef VOLTAGEMODULATION_H_ 
#define VOLTAGEMODULATION_H_ 
 
float voltageModulation_voltageToPwm(float modulatedVoltage, float dcVoltage, const float minDutyCycle, const float maxDutyCycle, const float saturation_overflow_allowed, 
bool * saturation); 
 
#endif /* VOLTAGEMODULATION_H_ */ 
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B.5: Settings 

ControlSettings.h 

#ifndef CONTROLFLOW_H_ 
#define CONTROLFLOW_H_ 
 
/* General timing settings */ 
#define CPU_FREQ 120000000 
 
#define PWM_FREQUENCY 8000 
#define DEAD_TIME_FREQUENCY 500000 
 
 
/* Controller tuning settings */ 
#define KP_BASE 2.05 
#define KI_BASE 0.001 
#define KD_BASE 0.0 
 
#define WINDUP_ALLOWANCE 0.2 
 
#endif /* CONTROLFLOW_H_ */ 

 

boardHardware.h 

#include <sam.h> 
 
#ifndef BOARDHARDWARE_H_ 
#define BOARDHARDWARE_H_ 
 
// HV voltage measure definition 
#define HV_VOLTAGE_MEASURE_ADC_INSTANCE AFEC1 
#define HV_VOLTAGE_MEASURE_ADC_NUM 4 
#define HV_VOLTAGE_MEASURE_ADC_OFFSET (683 - 9) 
#define HV_VOLTAGE_MEASURE_ADC_VALUE_AT_MAX (HV_VOLTAGE_MEASURE_ADC_OFFSET + 2482) 
 
#define HV_VOLTAGE_MEASURE_VOLTAGE_MIN 0.0 
#define HV_VOLTAGE_MEASURE_VOLTAGE_MAX 800.0 
 
// Current measurement definitions 
#define CURRENT_1_SPI_CS 0 
#define CURRENT_2_SPI_CS 1 
#define CURRENT_3_SPI_CS 2 
#define CURRENT_4_SPI_CS 3 
 
#define CURRENT_A_SPI_CS CURRENT_1_SPI_CS 
#define CURRENT_B_SPI_CS CURRENT_4_SPI_CS 
 
// ENCODER settings 
#define ENCODER_OFFSET 0x426 
 
#endif /* BOARDHARDWARE_H_ */ 

 

errorCodes.h 

#ifndef STATUSBITS_H_ 
#define STATUSBITS_H_ 
 
// List of permanent shutdown limits 
#define CURRENT_PHASE_LIMIT_PERMANENT 400.0 
#define VOLTAGE_DC_MAX_LIMIT_PERMANENT 700.0 
 
#define MAX_TRANSIENT_CURRENT_ERRORS 3 
 
// List of transient shutdown limits 
#define CURRENT_PHASE_LIMIT_TRANSIENT 420.0 
#define VOLTAGE_DC_MAX_LIMIT_TRANSIENT 600.0 
#define VOLTAGE_DC_MIN_LIMIT_TRANSIENT 15.0 
#define RPM_LIMIT_TRANSIENT 5000.0 
#define TORQUE_REQUEST_LOWER_LIMIT_TRANSIENT 0.1 
#define RPM_HYSTERESIS 100.0 
 
// List of all possible errors 
#define CURRENT_LIMIT_EXCEEDED_PERMANENT 0  // (1<<0) 
#define VOLTAGE_LIMIT_EXCEEDED_PERMANENT (1<<1) 
 
#define CURRENT_LIMIT_EXCEEDED_PHASE_A_TRANSIENT (1<<8) 
#define CURRENT_LIMIT_EXCEEDED_PHASE_B_TRANSIENT (1<<9) 
#define CURRENT_LIMIT_EXCEEDED_PHASE_C_TRANSIENT (1<<10) 
#define VOLTAGE_LIMIT_EXCEEDED_TRANSIENT (1<<11) 
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#define SPEED_LIMIT_EXCEEDED_TRANSIENT (1<<12) 
#define GATE_DRIVER_ERROR (1<<13) 
#define VOLTAGE_TO_LOW (1<<14) 
#define TORQUE_REQUEST_TOO_LOW_TRANSIENT (1 << 15) 
 
// Status bits 
#define ENCODER_ZERO_NOT_PASSED (1<<16) 
 
// Gate driver fault add hoc 
#define GATE_DRIVER_ERROR_A (1<<21) 
#define GATE_DRIVER_ERROR_B (1<<22) 
#define GATE_DRIVER_ERROR_C (1<<23) 
 
// Integrator saturation 
#define PID_SATURATION_A (1 << 18) 
#define PID_SATURATION_B (1 << 19) 
#define PID_SATURATION_C (1 << 20) 
 
// Switchable status bits 
#define READY_TO_DRIVE (1<<24) 
#define ACCEPT_TORQUE_REQUEST_FROM_TELEMETRY_NOT_ECU (1<<25) 
 
// Permanent (unrecoverable) errors 
#define PERMANENT_ERRORS (CURRENT_LIMIT_EXCEEDED_PERMANENT|VOLTAGE_LIMIT_EXCEEDED_PERMANENT) 
 
// Transient errors 
#define TRANSIENT_ERRORS (SPEED_LIMIT_EXCEEDED_TRANSIENT \ 
       |CURRENT_LIMIT_EXCEEDED_PHASE_A_TRANSIENT \ 
       |CURRENT_LIMIT_EXCEEDED_PHASE_B_TRANSIENT \ 
       |CURRENT_LIMIT_EXCEEDED_PHASE_C_TRANSIENT \ 
       |VOLTAGE_LIMIT_EXCEEDED_TRANSIENT \ 
       |GATE_DRIVER_ERROR \ 
       |VOLTAGE_TO_LOW) 
 
// Status, not errors 
#define STATUS_BITS (ENCODER_ZERO_NOT_PASSED \ 
     |READY_TO_DRIVE \ 
     |ACCEPT_TORQUE_REQUEST_FROM_TELEMETRY_NOT_ECU\ 
     |TORQUE_REQUEST_TOO_LOW_TRANSIENT\ 
     |PID_SATURATION_A\ 
     |PID_SATURATION_B\ 
     |PID_SATURATION_C) 
 
#endif /* STATUSBITS_H_ */ 

 

motorConstants.h 

#ifndef MOTORCONSTANTS_H_ 
#define MOTORCONSTANTS_H_ 
 
#define MOTOR_TORQUE_PER_CURRENT 1.1 // 1.1 NM / Arms 
 
#endif /* MOTORCONSTANTS_H_ */ 
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B.6: RevolveDrivers 

pmc.c 

#include "pmc.h" 
#include <sam.h> 
 
#define MAX_PERIPH_ID    47 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
void pmc_enable_writeprotect(void) 
{ 
 PMC->PMC_WPMR = PMC_WPMR_WPKEY_PASSWD | PMC_WPMR_WPEN; 
} 
 
void pmc_disable_writeprotect(void) 
{ 
 PMC->PMC_WPMR = PMC_WPMR_WPKEY_PASSWD; 
} 
 
void pmc_mck_set_prescaler(uint32_t pres) 
{ 
 PMC->PMC_MCKR = (PMC->PMC_MCKR & (~PMC_MCKR_PRES_Msk)) | pres; 
 while (!(PMC->PMC_SR & PMC_SR_MCKRDY)); 
} 
 
void pmc_mck_set_source(uint32_t css) 
{ 
 PMC->PMC_MCKR = (PMC->PMC_MCKR & (~PMC_MCKR_CSS_Msk)) | css; 
 while (!(PMC->PMC_SR & PMC_SR_MCKRDY)); 
} 
 
void pmc_switch_mainck_to_fastrc(void) 
{ 
 PMC->CKGR_MOR = (PMC->CKGR_MOR & ~CKGR_MOR_MOSCSEL) | CKGR_MOR_KEY_PASSWD; 
} 
 
void pmc_enable_fastrc(void) 
{ 
 PMC->CKGR_MOR |= (CKGR_MOR_KEY_PASSWD | CKGR_MOR_MOSCRCEN); 
 while (!(PMC->PMC_SR & PMC_SR_MOSCRCS));  /* Wait the Fast RC to stabilize */ 
} 
 
void pmc_set_fastrc_frequency(uint32_t moscrcf) 
{ 
 PMC->CKGR_MOR = (PMC->CKGR_MOR & ~CKGR_MOR_MOSCRCF_Msk) | CKGR_MOR_KEY_PASSWD | moscrcf; 
 while (!(PMC->PMC_SR & PMC_SR_MOSCRCS));  /* Wait the Fast RC to stabilize */ 
} 
 
void pmc_disable_fastrc(void) 
{ 
 PMC->CKGR_MOR = (PMC->CKGR_MOR & ~CKGR_MOR_MOSCRCEN & ~CKGR_MOR_MOSCRCF_Msk) | CKGR_MOR_KEY_PASSWD; 
} 
 
uint32_t pmc_osc_is_ready_fastrc(void) 
{ 
 return (PMC->PMC_SR & PMC_SR_MOSCRCS); 
} 
 
uint32_t pmc_xtal_ready(void) 
{ 
 return (PMC->PMC_SR & PMC_SR_MOSCXTS); 
} 
 
void pmc_enable_main_xtal(uint32_t xtalStartupTime) 
{ 
 uint32_t mor = PMC->CKGR_MOR; 
 mor &= ~(CKGR_MOR_MOSCXTBY|CKGR_MOR_MOSCXTEN); 
 mor |= CKGR_MOR_KEY_PASSWD | CKGR_MOR_MOSCXTEN | 
   CKGR_MOR_MOSCXTST(xtalStartupTime); 
 PMC->CKGR_MOR = mor; 
 /* Wait the main Xtal to stabilize */ 
 while (!pmc_xtal_ready()); 
} 
 
void pmc_switch_mainck_to_xtal(void) 
{ 
 PMC->CKGR_MOR |= CKGR_MOR_KEY_PASSWD | CKGR_MOR_MOSCSEL; 
 while(!pmc_xtal_ready()); 
} 
 
uint32_t pmc_mainck_ready(void) 
{ 
 return PMC->PMC_SR & PMC_SR_MOSCSELS; 
} 
 
void pmc_disable_pllack(void) 
{ 
 PMC->CKGR_PLLAR = CKGR_PLLAR_ONE | CKGR_PLLAR_MULA(0); 
} 
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uint32_t pmc_plla_is_locked(void) 
{ 
 return (PMC->PMC_SR & PMC_SR_LOCKA); 
} 
 
void pmc_enable_pllack(uint32_t mula, uint32_t pllacount, uint32_t diva) 
{ 
 /* first disable the PLL to unlock the lock */ 
 pmc_disable_pllack(); 
 
 PMC->CKGR_PLLAR = CKGR_PLLAR_ONE | CKGR_PLLAR_DIVA(diva) | CKGR_PLLAR_PLLACOUNT(pllacount) | CKGR_PLLAR_MULA(mula); 
 if(diva == 0 || mula == 0) 
  return; 
 
 while (!pmc_plla_is_locked()); 
} 
 
void pmc_disable_usb_clock(void) 
{ 
 PMC->PMC_SCDR = PMC_SCDR_UDP; 
} 
 
void pmc_enable_interrupt(uint32_t ul_sources) 
{ 
 PMC->PMC_IER = ul_sources; 
} 
 
void pmc_disable_interrupt(uint32_t ul_sources) 
{ 
 PMC->PMC_IDR = ul_sources; 
} 
 
uint32_t pmc_get_interrupt_mask(void) 
{ 
 return PMC->PMC_IMR; 
} 
 
void pmc_enable_clock_failure_detector(void) 
{ 
 PMC->CKGR_MOR |= CKGR_MOR_KEY_PASSWD | CKGR_MOR_CFDEN; 
} 
 
void pmc_disable_clock_failure_detector(void) 
{ 
 PMC->CKGR_MOR = (PMC->CKGR_MOR & (~CKGR_MOR_CFDEN)) | CKGR_MOR_KEY_PASSWD; 
} 
 
void pmc_select_main_clock(MainClockFrequency freq) 
{ 
 switch(freq){ 
  case INTERNAL_4MHZ: 
  case INTERNAL_8MHZ: 
  case INTERNAL_12MHZ: 
   
  pmc_enable_fastrc(); 
  pmc_set_fastrc_frequency(freq); 
  pmc_switch_mainck_to_fastrc(); 
   
  break; 
   
  case EXTERNAL: 
  pmc_enable_main_xtal(0xff); 
  pmc_switch_mainck_to_xtal(); 
  pmc_disable_fastrc(); 
   
  break; 
 } 
} 
 
void pmc_select_master_clock(MasterClockSource css, ProcessorClockPrescaler pres) 
{ 
 if(css == PLLA_CLOCK){ 
  pmc_mck_set_prescaler(pres); 
  pmc_mck_set_source(css); 
  } else { 
  pmc_mck_set_source(css); 
  pmc_mck_set_prescaler(pres); 
 } 
} 
 
uint32_t pmc_disable_periph_clk(uint32_t irqnNumber) 
{ 
 if (irqnNumber > MAX_PERIPH_ID) 
 return 1; 
 
 if (irqnNumber < 32) { 
  if ((PMC->PMC_PCSR0 & (1u << irqnNumber)) == (1u << irqnNumber)) 
  PMC->PMC_PCDR0 = 1 << irqnNumber; 
  } else { 
  irqnNumber -= 32; 
  if ((PMC->PMC_PCSR1 & (1u << irqnNumber)) == (1u << irqnNumber)) 
  PMC->PMC_PCDR1 = 1 << irqnNumber; 
 } 
 return 0; 
} 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
void pmc_enable_usb_clock(int divide) 
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{ 
 if(divide > 16 && divide < 1) 
  return; 
  
 pmc_enable_periph_clk(UDP_IRQn); 
  
 pmc_disable_writeprotect(); 
 
 PMC->PMC_USB = PMC_USB_USBDIV(divide-1); 
 PMC->PMC_SCER = PMC_SCER_UDP;  
   
 pmc_enable_writeprotect(); 
} 
 
uint32_t pmc_enable_periph_clk(uint32_t irqnNumber) 
{ 
 if (irqnNumber > MAX_PERIPH_ID) 
 return 1; 
 
 pmc_disable_writeprotect(); 
 if (irqnNumber < 32) { 
  if ((PMC->PMC_PCSR0 & (1 << irqnNumber)) != (1 << irqnNumber)) 
  PMC->PMC_PCER0 = (1 << irqnNumber); 
  } else { 
  irqnNumber -= 32; 
  if ((PMC->PMC_PCSR1 & (1 << irqnNumber)) != (1 << irqnNumber)) 
  PMC->PMC_PCER1 = (1 << irqnNumber); 
 } 
 pmc_enable_writeprotect(); 
 
 return 0; 
} 
 
uint32_t pmc_init(struct PmcInit pmc_init_struct) 
{ 
 pmc_disable_writeprotect(); 
 pmc_select_main_clock(pmc_init_struct.freq); 
 pmc_enable_pllack(pmc_init_struct.multiply, 0x3f, pmc_init_struct.divide); 
 pmc_select_master_clock(pmc_init_struct.css, pmc_init_struct.pres); 
 pmc_enable_writeprotect(); 
 
 return 0; 
} 
 
#ifdef __cplusplus 
} 
#endif 

 

pmc.h 

#ifndef PMC_H_INCLUDED 
#define PMC_H_INCLUDED 
 
#include "sam.h" 
 
/// @cond 0 
/**INDENT-OFF**/ 
#ifdef __cplusplus 
extern "C" { 
#endif 
/**INDENT-ON**/ 
/// @endcond 
 
/** Bit mask for peripheral clocks (PCER0) */ 
#define PMC_MASK_STATUS0        (0xFFFFFFFC) 
 
/** Bit mask for peripheral clocks (PCER1) */ 
#define PMC_MASK_STATUS1        (0xFFFFFFFF) 
 
/** Loop counter timeout value */ 
#define PMC_TIMEOUT             (2048) 
 
/** Key to unlock CKGR_MOR register */ 
#ifndef CKGR_MOR_KEY_PASSWD 
#define CKGR_MOR_KEY_PASSWD    CKGR_MOR_KEY(0x37U) 
#endif 
 
/** Key used to write SUPC registers */ 
#ifndef SUPC_CR_KEY_PASSWD 
#define SUPC_CR_KEY_PASSWD    SUPC_CR_KEY(0xA5U) 
#endif 
 
#ifndef SUPC_MR_KEY_PASSWD 
#define SUPC_MR_KEY_PASSWD    SUPC_MR_KEY(0xA5U) 
#endif 
//  
// /** Mask to access fast startup input */ 
// #define PMC_FAST_STARTUP_Msk    (0x7FFFFu) 
 
/** PMC_WPMR Write Protect KEY, unlock it */ 
#ifndef PMC_WPMR_WPKEY_PASSWD 
#define PMC_WPMR_WPKEY_PASSWD    PMC_WPMR_WPKEY((uint32_t) 0x504D43) 
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#endif 
 
// /** Using external oscillator */ 
// #define PMC_OSC_XTAL            0 
//  
// /** Oscillator in bypass mode */ 
// #define PMC_OSC_BYPASS          1 
//  
// #define PMC_PCK_0               0 /* PCK0 ID */ 
// #define PMC_PCK_1               1 /* PCK1 ID */ 
// #define PMC_PCK_2               2 /* PCK2 ID */ 
//  
// /** Flash state in Wait Mode */ 
// #define PMC_WAIT_MODE_FLASH_STANDBY         PMC_FSMR_FLPM_FLASH_STANDBY 
// #define PMC_WAIT_MODE_FLASH_DEEP_POWERDOWN  PMC_FSMR_FLPM_FLASH_DEEP_POWERDOWN 
// #define PMC_WAIT_MODE_FLASH_IDLE            PMC_FSMR_FLPM_FLASH_IDLE 
 
//  
// /** Convert startup time from us to MOSCXTST */ 
// #define pmc_us_to_moscxtst(startup_us, slowck_freq)      \ 
//  ((startup_us * slowck_freq / 8 / 1000000) < 0x100 ?  \ 
//   (startup_us * slowck_freq / 8 / 1000000) : 0xFF) 
 
 
typedef enum {INTERNAL_4MHZ = CKGR_MOR_MOSCRCF_4_MHz,  
 INTERNAL_8MHZ = CKGR_MOR_MOSCRCF_8_MHz,  
 INTERNAL_12MHZ = CKGR_MOR_MOSCRCF_12_MHz,  
 EXTERNAL 
 } MainClockFrequency; 
 
typedef enum {CLK_1 = PMC_MCKR_PRES_CLK_1, 
 CLK_2 = PMC_MCKR_PRES_CLK_2, 
 CLK_4 = PMC_MCKR_PRES_CLK_4, 
 CLK_8 = PMC_MCKR_PRES_CLK_8, 
 CLK_16 = PMC_MCKR_PRES_CLK_16, 
 CLK_32 = PMC_MCKR_PRES_CLK_32, 
 CLK_64 = PMC_MCKR_PRES_CLK_64, 
 CLK_3 = PMC_MCKR_PRES_CLK_3 
 } ProcessorClockPrescaler; 
 
typedef enum {SLOW_CLOCK = PMC_MCKR_CSS_SLOW_CLK, 
 MAIN_CLOCK = PMC_MCKR_CSS_MAIN_CLK, 
 PLLA_CLOCK = PMC_MCKR_CSS_PLLA_CLK 
 } MasterClockSource; 
 
struct PmcInit { 
 MainClockFrequency freq; 
 MasterClockSource css; 
 ProcessorClockPrescaler pres; 
 uint8_t divide; 
 uint8_t multiply; 
}; 
 
void pmc_enable_usb_clock(int divide); 
uint32_t pmc_enable_periph_clk(uint32_t irqnNumber); 
uint32_t pmc_init(struct PmcInit pmc_init_struct); 
 
#endif /* PMC_H_INCLUDED */ 

 

eefc.c 

#define MASTER_CLOCK_FREQ 120000000 
 
#include "sam.h" 
 
void init_flash(void) 
{  
 /* Set FWS for embedded Flash access according to operating frequency */ 
 if ( MASTER_CLOCK_FREQ < CHIP_FREQ_FWS_0 ) { 
  EFC->EEFC_FMR = EEFC_FMR_FWS(0)|EEFC_FMR_CLOE; 
  } else { 
  if (MASTER_CLOCK_FREQ < CHIP_FREQ_FWS_1) { 
   EFC->EEFC_FMR = EEFC_FMR_FWS(1)|EEFC_FMR_CLOE; 
   } else { 
   if (MASTER_CLOCK_FREQ < CHIP_FREQ_FWS_2) { 
    EFC->EEFC_FMR = EEFC_FMR_FWS(2)|EEFC_FMR_CLOE; 
    } else { 
    if ( MASTER_CLOCK_FREQ < CHIP_FREQ_FWS_3 ) { 
     EFC->EEFC_FMR = EEFC_FMR_FWS(3)|EEFC_FMR_CLOE; 
     } else { 
     if ( MASTER_CLOCK_FREQ < CHIP_FREQ_FWS_4 ) { 
      EFC->EEFC_FMR = EEFC_FMR_FWS(4)|EEFC_FMR_CLOE; 
      } else { 
      EFC->EEFC_FMR = EEFC_FMR_FWS(5)|EEFC_FMR_CLOE; 
     } 
    } 
   } 
  } 
 } 
} 
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eefc.h 

#ifndef EEFC_H_ 
#define EEFC_H_ 
 
void init_flash(void); 
 
#endif /* EEFC_H_ */ 

 

can.c 

#include <stdlib.h> 
#include "can.h" 
#include "pio.h" 
#include "pmc.h" 
 
/** The max value for CAN baudrate prescale. */ 
#define CAN_BAUDRATE_MAX_DIV       128 
 
/** Define the scope for TQ (time quantum). */ 
#define CAN_MIN_TQ_NUM             8 
#define CAN_MAX_TQ_NUM             25 
 
/** Define the mailbox mode. */ 
#define CAN_MB_DISABLE_MODE           0 
#define CAN_MB_RX_MODE                1  
#define CAN_MB_RX_OVER_WR_MODE        2   
#define CAN_MB_TX_MODE                3  
#define CAN_MB_CONSUMER_MODE          4 
#define CAN_MB_PRODUCER_MODE          5 
 
#define TX_BOX_ID 0 
#define NUMBER_OF_MAILBOXES 8 
 
#define CAN_WPMR_WP 
 
/* Init help functions and data structures */ 
 
//ASF-stuff 
typedef struct { 
 uint8_t tq;      /**< CAN_BIT_SYNC + uc_prog + uc_phase1 + uc_phase2 
                        = uc_tq, 8 <= uc_tq <= 25. */ 
 uint8_t prog;    /**< Propagation segment, (3-bits + 1), 1~8; */ 
 uint8_t phase1;  /**< Phase segment 1, (3-bits + 1), 1~8; */ 
 uint8_t phase2;  /**< Phase segment 2, (3-bits + 1), 1~8, CAN_BIT_IPT 
                        <= uc_phase2; */ 
 uint8_t sjw;     /**< Resynchronization jump width, (2-bits + 1), 
                        min(uc_phase1, 4); */ 
 uint8_t sp;      /**< Sample point value, 0~100 in percent. */ 
} can_bit_timing_t; 
 
/** Values of bit time register for different baudrates, Sample point = 
 * ((1 + uc_prog + uc_phase1) / uc_tq) * 100%. */ 
const can_bit_timing_t can_bit_time[] = { 
 { 8, (2 + 1), (1 + 1), (1 + 1), (2 + 1), 75}, 
 { 9, (1 + 1), (2 + 1), (2 + 1), (1 + 1), 67}, 
 {10, (2 + 1), (2 + 1), (2 + 1), (2 + 1), 70}, 
 {11, (3 + 1), (2 + 1), (2 + 1), (3 + 1), 72}, 
 {12, (2 + 1), (3 + 1), (3 + 1), (3 + 1), 67}, 
 {13, (3 + 1), (3 + 1), (3 + 1), (3 + 1), 77}, 
 {14, (3 + 1), (3 + 1), (4 + 1), (3 + 1), 64}, 
 {15, (3 + 1), (4 + 1), (4 + 1), (3 + 1), 67}, 
 {16, (4 + 1), (4 + 1), (4 + 1), (3 + 1), 69}, 
 {17, (5 + 1), (4 + 1), (4 + 1), (3 + 1), 71}, 
 {18, (4 + 1), (5 + 1), (5 + 1), (3 + 1), 67}, 
 {19, (5 + 1), (5 + 1), (5 + 1), (3 + 1), 68}, 
 {20, (6 + 1), (5 + 1), (5 + 1), (3 + 1), 70}, 
 {21, (7 + 1), (5 + 1), (5 + 1), (3 + 1), 71}, 
 {22, (6 + 1), (6 + 1), (6 + 1), (3 + 1), 68}, 
 {23, (7 + 1), (7 + 1), (6 + 1), (3 + 1), 70}, 
 {24, (6 + 1), (7 + 1), (7 + 1), (3 + 1), 67}, 
 {25, (7 + 1), (7 + 1), (7 + 1), (3 + 1), 68} 
}; 
 
void (*can_callback_function[2])(void); 
 
void CAN0_Handler(){ 
 if(can_callback_function[0] != NULL){ 
  (*can_callback_function[0])(); 
 } 
} 
void CAN1_Handler(){ 
 if(can_callback_function[1] != NULL){ 
  (*can_callback_function[1])(); 
 } 
} 
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void can_enableRXInterrupt(Can *can, void *(callback_function)(void)); 
 
void can_writeProtectionEnable(Can *can){ 
 can->CAN_WPMR = CAN_WPMR_WPKEY_PASSWD | CAN_WPMR_WPEN; 
} 
 
void can_writeProtectionDisable(Can *can){ 
 can->CAN_WPMR = CAN_WPMR_WPKEY_PASSWD; 
} 
 
void can_enable(Can *can) 
{ 
 can_writeProtectionDisable(can);  
 can->CAN_MR |= CAN_MR_CANEN; 
 can_writeProtectionEnable(can); 
} 
 
void can_disable(Can *can) 
{ 
 can_writeProtectionEnable(can); 
 can->CAN_MR &= ~CAN_MR_CANEN; 
 can_writeProtectionDisable(can); 
} 
 
// ASF 
static uint32_t can_setBaudrate(Can *can, uint32_t mck, uint32_t baudrate) 
{ 
 can_writeProtectionDisable(can); 
 uint8_t tq; 
 uint8_t prescale; 
 uint32_t mod; 
 uint32_t cur_mod; 
 can_bit_timing_t *bitTime; 
 
 /* Check whether the baudrate prescale will be greater than the max divide value. */ 
 if (((mck + (baudrate * CAN_MAX_TQ_NUM * 1000 - 1)) / 
   (baudrate * CAN_MAX_TQ_NUM * 1000)) > 
   CAN_BAUDRATE_MAX_DIV) { 
  return 0; 
 } 
 
 /* Check whether the input MCK is too small. */ 
 if ((mck / 2)  < baudrate * CAN_MIN_TQ_NUM * 1000) { 
  return 0; 
 } 
 
 /* Initialize it as the minimum Time Quantum. */ 
 tq = CAN_MIN_TQ_NUM; 
 
 /* Initialize the remainder as the max value. When the remainder is 0, get the right TQ number. */ 
 mod = 0xffffffff; 
 /* Find out the approximate Time Quantum according to the baudrate. */ 
 for (uint8_t i = CAN_MIN_TQ_NUM; i <= CAN_MAX_TQ_NUM; i++) { 
  if ((mck / (baudrate * i * 1000)) <= 
    CAN_BAUDRATE_MAX_DIV) { 
   cur_mod = mck % (baudrate * i * 1000); 
   if (cur_mod < mod) { 
    mod = cur_mod; 
    tq = i; 
    if (!mod) { 
     break; 
    } 
   } 
  } 
 } 
 
 /* Calculate the baudrate prescale value. */ 
 prescale = mck / (baudrate * tq * 1000); 
 if (prescale < 2) { 
  return 0; 
 } 
 
 /* Get the right CAN BIT Timing group. */ 
 bitTime = (can_bit_timing_t *)&can_bit_time[tq - CAN_MIN_TQ_NUM]; 
 
 /* Before modifying the CANBR register, disable the CAN controller. */ 
 can_disable(can); 
 
 /* Write into the CAN baudrate register. */ 
 can->CAN_BR = CAN_BR_PHASE2(bitTime->phase2 - 1) | 
   CAN_BR_PHASE1(bitTime->phase1 - 1) | 
   CAN_BR_PROPAG(bitTime->prog - 1) | 
   CAN_BR_SJW(bitTime->sjw - 1) | 
   CAN_BR_BRP(prescale - 1); 
 can_writeProtectionEnable(can); 
 return 1; 
} 
 
void can_setPeripheralMux(Can *can){ 
 if(can == CAN0){ 
  pio_setMux(PIOB, 3, A); 
  pio_setMux(PIOB, 2, A); 
 } 
 else if(can == CAN1){ 
  pio_setMux(PIOC, 12, C); 
  pio_setMux(PIOC, 15, C); 
 } 
} 
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void can_enablePMC(Can *can){ 
 can_writeProtectionDisable(can); 
 if(can == CAN0){ 
  pmc_enable_periph_clk(37); 
  //PMC->PMC_PCER1 |= 1<<5;   //ENABLE CLOCK, PID = 37 
 } 
 else if(can == CAN1){ 
  pmc_enable_periph_clk(38); 
  //PMC->PMC_PCER1 |= 1<<6;   //ENABLE CLOCK, PID = 38 
 } 
 can_writeProtectionEnable(can); 
} 
 
void can_setupTXMailbox(Can *can, uint8_t mailbox_id, uint8_t priority){ 
 can_writeProtectionDisable(can); 
 /* Set the priority in Transmit mode. */ 
 can->CAN_MB[mailbox_id].CAN_MMR =  
  (can->CAN_MB[mailbox_id].CAN_MMR & ~CAN_MMR_PRIOR_Msk) | 
  (priority << CAN_MMR_PRIOR_Pos); 
  
 /* Set box into TX mode*/ 
 can->CAN_MB[mailbox_id].CAN_MMR =  
  (can->CAN_MB[mailbox_id].CAN_MMR & ~CAN_MMR_MOT_Msk) | 
  (CAN_MB_TX_MODE << CAN_MMR_MOT_Pos); 
 can_writeProtectionEnable(can); 
} 
 
void can_setupRXMailbox(Can *can, uint8_t mailbox_id, uint32_t acceptence_mask, uint32_t id_mask){ 
 can_writeProtectionDisable(can); 
 /* Set acceptance mask  */ 
 can->CAN_MB[mailbox_id].CAN_MAM = CAN_MAM_MIDvA(acceptence_mask); 
 /* Set message ID mask */ 
 can->CAN_MB[mailbox_id].CAN_MID = CAN_MID_MIDvA(id_mask); 
 /* Set box into RX mode */ 
 can->CAN_MB[mailbox_id].CAN_MMR = 
  (can->CAN_MB[mailbox_id].CAN_MMR & ~CAN_MMR_MOT_Msk) | 
  (CAN_MB_RX_MODE << CAN_MMR_MOT_Pos); 
 can_writeProtectionEnable(can); 
} 
 
void can_disableMailbox(Can *can, uint8_t mailbox_id){ 
 can_writeProtectionDisable(can); 
 can->CAN_MB[mailbox_id].CAN_MMR = 0; 
 can->CAN_MB[mailbox_id].CAN_MAM = 0; 
 can->CAN_MB[mailbox_id].CAN_MID = 0; 
 can->CAN_MB[mailbox_id].CAN_MDL = 0; 
 can->CAN_MB[mailbox_id].CAN_MDH = 0; 
 can->CAN_MB[mailbox_id].CAN_MCR = 0; 
 can_writeProtectionEnable(can); 
} 
 
void can_setupFilters(Can *can, uint32_t acceptence_masks[7], uint32_t id_masks[7]){ 
 can_writeProtectionDisable(can); 
 for (int mailboxID = 0; mailboxID < NUMBER_OF_MAILBOXES; mailboxID++) 
 { 
  if ( mailboxID != TX_BOX_ID) 
  { 
   can_setupRXMailbox(can, mailboxID, acceptence_masks[mailboxID], id_masks[mailboxID]); 
  } 
 } 
 can_writeProtectionEnable(can); 
} 
 
void can_init(Can *can, uint32_t peripheral_clock_hz, uint32_t baudrate_kbps, uint32_t acceptence_masks[7], uint32_t id_masks[7], void *(callback_function)(void)){ 
 can_writeProtectionDisable(can); 
 can_disable(can); 
 can_setPeripheralMux(can); 
 can_enablePMC(can); 
 if(!can_setBaudrate(can, peripheral_clock_hz, baudrate_kbps)){ 
  return; // Illegal combination of peripheral_clock_hz and baudrate_kbps 
 } 
  
 // Reset 8 all mailboxes 
 for (int i = 0; i<8; i++) 
 { 
  can_disableMailbox(can, i); 
 } 
 can_enable(can); 
 /* Wait until the CAN is synchronized with the bus activity. */ 
 while(!(can->CAN_SR & CAN_SR_WAKEUP)); 
  
 //init TX mailbox: 
 can_setupTXMailbox(can, TX_BOX_ID, 0); 
 can_setupFilters(can, acceptence_masks, id_masks); 
 can_enableRXInterrupt(can, callback_function); 
 can_writeProtectionEnable(can); 
} 
 
enum CanTXstatus can_sendMessage(Can *can, struct CanMessage message){ 
 //check if mailbox is ready 
 if ( !(can->CAN_MB[TX_BOX_ID].CAN_MSR & CAN_MSR_MRDY) ) 
 { 
  return TRANSFER_BUSY; 
 } 
 can_writeProtectionDisable(can); 
 // Write message id to mailboxz 
 can->CAN_MB[TX_BOX_ID].CAN_MID = CAN_MID_MIDvA(message.messageID); 
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 // Write data 
 can->CAN_MB[TX_BOX_ID].CAN_MDL = message.data.u32[0]; 
 if (message.dataLength > 4) 
 { 
  can->CAN_MB[TX_BOX_ID].CAN_MDH = message.data.u32[1]; 
 } 
  
 // Write data length and initate transfer 
 can->CAN_MB[TX_BOX_ID].CAN_MCR = CAN_MCR_MTCR | CAN_MCR_MDLC(message.dataLength); 
 can_writeProtectionEnable(can); 
 return TRANSFER_OK;  
} 
 
void can_read_message(Can *can, uint8_t mailboxID, struct CanMessage *message){ 
 // Get data length 
 message->dataLength = (can->CAN_MB[mailboxID].CAN_MSR & CAN_MSR_MDLC_Msk) >> CAN_MSR_MDLC_Pos; 
  
 // Get the message id 
 message->messageID = (can->CAN_MB[mailboxID].CAN_MID & CAN_MID_MIDvA_Msk) >> CAN_MID_MIDvA_Pos; 
  
 // Get the data 
 message->data.u32[0] =  can->CAN_MB[mailboxID].CAN_MDL; 
 if (message->dataLength > 4) 
 { 
  message->data.u32[1] =  can->CAN_MB[mailboxID].CAN_MDH; 
 } 
  
 // Allow new incomming message 
 can->CAN_MB[mailboxID].CAN_MCR = CAN_MCR_MTCR; 
} 
 
void can_enableRXInterrupt(Can *can, void *(callback_function)(void)){ 
  
 if(callback_function == NULL){ 
  return; 
 } 
 else{ 
  if (can == CAN0){ 
   can_callback_function[0] = callback_function; 
   NVIC_DisableIRQ(CAN0_IRQn); 
   NVIC_ClearPendingIRQ(CAN0_IRQn); 
   NVIC_SetPriority(CAN0_IRQn,5); // must be >= 5 
   NVIC_EnableIRQ(CAN0_IRQn); 
  }else if(can == CAN1){ 
   can_callback_function[1] = callback_function; 
   NVIC_DisableIRQ(CAN1_IRQn); 
   NVIC_ClearPendingIRQ(CAN1_IRQn); 
   NVIC_SetPriority(CAN1_IRQn,5); // must be >= 5 
   NVIC_EnableIRQ(CAN1_IRQn);  
  } 
  can_writeProtectionDisable(can); 
  // Enable all interrupts on mailboxes that are in RX mode 
  can->CAN_IER = 0xff & ~(1<<TX_BOX_ID);  
  can_writeProtectionEnable(can); 
 } 
} 
 
void can_disableRXInterrupt(Can *can){  
 if (can == CAN0){ 
  can_callback_function[0] = NULL; 
  NVIC_DisableIRQ(CAN0_IRQn); 
  NVIC_ClearPendingIRQ(CAN0_IRQn); 
 }else if(can == CAN1){ 
  can_callback_function[1] = NULL; 
  NVIC_DisableIRQ(CAN1_IRQn); 
  NVIC_ClearPendingIRQ(CAN1_IRQn); 
 } 
} 
 
enum CANReceiveStatus can_popMessage(Can *can, struct CanMessage *message){ 
  
 for (int i = 0; i < NUMBER_OF_MAILBOXES; i++) 
 { 
  if (i != TX_BOX_ID && (can->CAN_MB[i].CAN_MSR & CAN_MSR_MRDY)) 
  { 
   can_read_message(can, i, message); 
   return GOT_NEW_MESSAGE; 
  } 
 } 
 return NO_NEW_MESSAGE; 
} 
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can.h 

#ifndef _CAN_H_ 
#define _CAN_H_ 
 
#include "sam.h" 
 
#define CAN_BPS_1000K                 1000 
#define CAN_BPS_800K                  800 
#define CAN_BPS_500K                  500 
#define CAN_BPS_250K                  250 
#define CAN_BPS_125K                  125 
#define CAN_BPS_50K                   50 
#define CAN_BPS_25K                   25 
#define CAN_BPS_10K                   10 
#define CAN_BPS_5K                    5 
 
enum CanTXstatus {TRANSFER_OK = 0, TRANSFER_BUSY = 1}; 
enum CANReceiveStatus {GOT_NEW_MESSAGE = 0, NO_NEW_MESSAGE = 1}; 
 
typedef union can_data_t{ 
 // INTEGERS 
 uint64_t u64; 
 int64_t  i64; 
 uint32_t u32[2]; 
 int32_t  i32[2];  
 uint16_t u16[4]; 
 int16_t  i16[4]; 
 uint8_t  u8[8]; 
 int8_t   i8[8]; 
  
 // FLOAT 
 float f[2]; 
 double db; 
}CanData ; 
 
struct CanMessage{ 
 CanData data; 
 uint8_t dataLength; 
 uint32_t messageID; 
};  
 
// All setup is now handled in can_init. Callback_function is called on interrupt. 
void can_init(Can *can, uint32_t peripheral_clock_hz, uint32_t baudrate_kbps, uint32_t acceptence_masks[7], uint32_t id_masks[7], void *(callback_function)(void)); 
// When using can_setupFilters, CAN1_handler or/and CAN0_handler must be defined by user 
// void can_setupFilters(Can *can, uint32_t acceptence_masks[7], uint32_t id_masks[7]); 
enum CanTXstatus can_sendMessage(Can *can, struct CanMessage message); //NOT THREADSAFE 
enum CANReceiveStatus can_popMessage(Can *can, struct CanMessage *message);  //NOT THREADSAFE 
 
#endif /* _CAN_H_ */ 

 

afec.c 

#include <sam.h> 
 
void afec_set_offset(Afec * AFEC, uint16_t offset); 
void afec_set_tracktime_in_clock_periods(Afec * AFEC, uint32_t clockPeriods); 
void afec_set_prescaler(Afec * AFEC, uint32_t peripheralClockFrequency, uint32_t afecClockFrequency); 
void afec_enable_free_run_mode(Afec * AFEC); 
void afec_enable_free_run_mode(Afec * AFEC); 
void afec_enable_write_protect(Afec * AFEC); 
void afec_disable_write_protect(Afec * AFEC); 
 
void afec_init(Afec * AFEC, uint32_t peripheralClockFrequency, uint16_t activeChannelsBitmap) 
{ 
 if (AFEC == AFEC0) 
  pmc_enable_periph_clk(AFEC0_IRQn); 
 else if(AFEC == AFEC1) 
  pmc_enable_periph_clk(AFEC1_IRQn); 
  
 afec_disable_write_protect(AFEC); 
 AFEC0->AFEC_MR |= AFEC_MR_STARTUP_SUT640; 
 afec_set_offset(AFEC, 2048); 
 AFEC->AFEC_CHER = activeChannelsBitmap; 
 afec_set_tracktime_in_clock_periods(AFEC, 4); 
 afec_set_prescaler(AFEC, peripheralClockFrequency, 20000000); 
 afec_enable_free_run_mode(AFEC); 
 afec_enable_write_protect(AFEC); 
  
} 
 
uint16_t afec_read_last_conversion(Afec * AFEC, uint8_t channel) 
{ 
 AFEC->AFEC_CSELR = channel; 
 return AFEC->AFEC_CDR; 
} 
 
/* Helper/convinience functions */ 
void afec_set_offset(Afec * AFEC, uint16_t offset) 
{ 
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 AFEC->AFEC_COCR = AFEC_COCR_AOFF(offset); 
} 
 
void afec_set_tracktime_in_clock_periods(Afec * AFEC, uint32_t clockPeriods) 
{ 
 AFEC->AFEC_MR &= ~AFEC_MR_TRACKTIM_Msk; 
 AFEC->AFEC_MR |= AFEC_MR_TRACKTIM(clockPeriods-1); 
} 
 
void afec_set_prescaler(Afec * AFEC, uint32_t peripheralClockFrequency, uint32_t afecClockFrequency) 
{ 
 AFEC->AFEC_MR &= ~AFEC_MR_PRESCAL_Msk; 
 AFEC->AFEC_MR |= AFEC_MR_PRESCAL(peripheralClockFrequency / (afecClockFrequency * 2) - 1); 
} 
 
void afec_enable_free_run_mode(Afec * AFEC) 
{ 
 AFEC->AFEC_MR |= AFEC_MR_FREERUN; 
} 
 
void afec_disable_free_run_mode(Afec * AFEC) 
{ 
 AFEC->AFEC_MR &= ~AFEC_MR_FREERUN; 
} 
 
void afec_enable_write_protect(Afec * AFEC) 
{ 
 AFEC->AFEC_WPMR = AFEC_WPMR_WPKEY_PASSWD | AFEC_WPMR_WPEN; 
} 
 
void afec_disable_write_protect(Afec * AFEC) 
{ 
 AFEC->AFEC_WPMR = AFEC_WPMR_WPKEY_PASSWD; 
} 

 

afec.h 

#include <sam.h> 
 
#ifndef AFEC_H_ 
#define AFEC_H_ 
 
int16_t afec_read_last_conversion(Afec * AFEC, uint8_t channel); 
void afec_init(Afec * AFEC, uint32_t peripheralClockFrequency, uint16_t activeChannelsBitmap); 
 
#endif /* AFEC_H_ */ 

 

pio.c 

#include "pio.h" 
#include "sam.h" 
#include "pmc.h" 
#include <stdbool.h> 
 
static void pio_enablePullup   ( Pio * pio, uint8_t pin); 
static void pio_enablePulldown   ( Pio * pio, uint8_t pin); 
static void pio_disablePull    ( Pio * pio, uint8_t pin); 
static void pio_enableWriteProtection ( Pio * pio ); 
static void pio_disableWriteProtection ( Pio * pio ); 
 
#define WPKEY_ENABLE 0x50494F01 
#define WPKEY_DISABLE 0x50494F00 
 
static void (*pioaInterruptHooks[32])(); 
static void (*piobInterruptHooks[32])(); 
static void (*piocInterruptHooks[32])(); 
static void (*piodInterruptHooks[32])(); 
static void (*pioeInterruptHooks[32])(); 
 
void pio_init() 
{ 
 pmc_enable_periph_clk(PIOA_IRQn); 
 pmc_enable_periph_clk(PIOB_IRQn); 
 pmc_enable_periph_clk(PIOC_IRQn); 
 pmc_enable_periph_clk(PIOD_IRQn); 
 pmc_enable_periph_clk(PIOE_IRQn); 
  
 NVIC_EnableIRQ(PIOA_IRQn); 
 NVIC_EnableIRQ(PIOB_IRQn); 
 NVIC_EnableIRQ(PIOC_IRQn); 
 NVIC_EnableIRQ(PIOD_IRQn); 
 NVIC_EnableIRQ(PIOE_IRQn); 
} 
 
void pio_enableOutput(Pio * pio, uint8_t pin ){ 
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 pio_disableWriteProtection(pio); 
 pio->PIO_OER = ( 1 << pin ); 
 pio_enableWriteProtection(pio); 
} 
 
void pio_disableOutput(Pio * pio, uint8_t pin ){ 
  
 pio_disableWriteProtection(pio); 
 pio->PIO_ODR = ( 1 << pin ); 
 pio_enableWriteProtection(pio); 
} 
 
void pio_setOutput(Pio * pio, uint8_t pin, enum PinLevel pinlevel ){ 
   
 switch(pinlevel){ 
  case(LOW): 
   pio->PIO_CODR = (1<<pin); 
   break; 
  case(HIGH): 
   pio->PIO_SODR = (1<<pin); 
   break; 
 } 
} 
 
 
void pio_setMux(Pio * pio, uint8_t pin, enum Peripheral mux) 
{ 
 pio_disableWriteProtection(pio); 
 switch(mux){ 
  case PIO: 
   pio->PIO_PER = (1<<pin); 
   break;  
  case A: 
   pio->PIO_PDR = (1<<pin); 
   pio->PIO_ABCDSR[0] &= ~(1<<pin); 
   pio->PIO_ABCDSR[1] &= ~(1<<pin); 
   break; 
  case B:  
   pio->PIO_PDR = (1<<pin);  
   pio->PIO_ABCDSR[0] |= (1<<pin); 
   pio->PIO_ABCDSR[1] &= ~(1<<pin); 
   break; 
  case C: 
   pio->PIO_PDR = (1<<pin); 
   pio->PIO_ABCDSR[0] &= ~(1<<pin); 
   pio->PIO_ABCDSR[1] |= (1<<pin); 
   break; 
  case D: 
   pio->PIO_PDR = (1<<pin); 
   pio->PIO_ABCDSR[0] |= (1<<pin); 
   pio->PIO_ABCDSR[1] |= (1<<pin); 
   break; 
 } 
 pio_enableWriteProtection(pio); 
} 
 
void pio_setPull ( Pio * pio, uint8_t pin, enum PullType pulltype ){ 
  
  switch(pulltype){ 
   case PULLUP: 
    pio_enablePullup(pio,pin); 
    break; 
     
   case PULLDOWN: 
    pio_enablePulldown(pio,pin); 
    break;  
     
   case NOPULL: 
    pio_disablePull(pio,pin); 
    break; 
     
   default: 
    //do nothing 
    break; 
  } 
}; 
 
bool pio_readPin(Pio * pio, uint8_t pin) 
{ 
 if(pio->PIO_PDSR & (1<<pin)) 
  return true; 
 else 
  return false; 
} 
 
void pio_setFilter(Pio * pio, uint8_t pin, enum FilterType filter) 
{ 
 pio_disableWriteProtection(pio); 
 switch(filter){ 
  case NONE: 
   pio->PIO_IFDR = (1<<pin); 
   break; 
  case GLITCH: 
   pio->PIO_IFER = (1<<pin); 
   pio->PIO_IFSCDR = (1<<pin); 
   break; 
  case DEBOUNCE: 
   pio->PIO_IFER = (1<<pin); 
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   pio->PIO_IFSCER = (1<<pin); 
   break; 
 } 
 pio_enableWriteProtection(pio); 
} 
 
void pio_setFallingEdgeInterrupt(Pio * pio, uint8_t pin) 
{ 
 pio->PIO_AIMER = (1<<pin); 
 pio->PIO_ESR = (1<<pin); 
 pio->PIO_FELLSR = (1<<pin); 
} 
 
void pio_setRisingEdgeInterrupt(Pio * pio, uint8_t pin) 
{ 
 pio->PIO_AIMER = (1<<pin); 
 pio->PIO_ESR = (1<<pin); 
 pio->PIO_REHLSR = (1<<pin); 
} 
 
void pio_setLowLevelInterrupt(Pio * pio, uint8_t pin) 
{ 
 pio->PIO_AIMER = (1<<pin); 
 pio->PIO_LSR = (1<<pin); 
 pio->PIO_FELLSR = (1<<pin); 
} 
 
void pio_setHighLevelInterrupt(Pio * pio, uint8_t pin) 
{ 
 pio->PIO_AIMER = (1<<pin); 
 pio->PIO_LSR = (1<<pin); 
 pio->PIO_REHLSR = (1<<pin); 
} 
 
void pio_enableInterrupt(Pio * pio, uint8_t pin, enum InterruptType interruptType, void (*interruptFunction)(void)) 
{ 
 pio_disableWriteProtection(pio); 
  
 if(pio == PIOA){ 
  pioaInterruptHooks[pin] = interruptFunction; 
 } else if(pio == PIOB){ 
  piobInterruptHooks[pin] = interruptFunction; 
 } else if(pio == PIOC){ 
  piocInterruptHooks[pin] = interruptFunction; 
 } else if(pio == PIOD){ 
  piodInterruptHooks[pin] = interruptFunction; 
 } else if(pio == PIOE){ 
  pioeInterruptHooks[pin] = interruptFunction; 
 } 
  
 switch(interruptType){ 
  case FALLING_EDGE: 
   pio_setFallingEdgeInterrupt(pio, pin); 
   break; 
  case RISING_EDGE: 
   pio_setRisingEdgeInterrupt(pio, pin); 
   break; 
  case LOW_LEVEL: 
   pio_setLowLevelInterrupt(pio, pin); 
   break; 
  case HIGH_LEVEL: 
   pio_setHighLevelInterrupt(pio, pin); 
   break; 
 } 
  
 volatile uint32_t deleteInterrupts = pio->PIO_ISR; 
  
 pio->PIO_IER =  ( 1 << pin ); 
  
 pio_enableWriteProtection(pio); 
} 
 
void pio_disableInterrupt( Pio * pio, uint8_t pin) 
{ 
 pio_disableWriteProtection(pio); 
 pio->PIO_IDR = ( 1 << pin ); 
 pio_enableWriteProtection(pio); 
} 
 
void pio_enablePullup(Pio * pio, uint8_t pin) 
{ 
 pio_disableWriteProtection(pio); 
 pio->PIO_PPDDR = (1<<pin);  // disable pulldown 
 pio->PIO_PUER = (1<<pin);  // enable pullup 
 pio_enableWriteProtection(pio); 
} 
 
void pio_enablePulldown(Pio * pio, uint8_t pin) 
{ 
 pio_disableWriteProtection(pio); 
 pio->PIO_PUDR = (1<<pin);  // disable pullup 
 pio->PIO_PPDER = (1<<pin);  // enable pulldown 
 pio_enableWriteProtection(pio); 
} 
 
void pio_disablePull(Pio * pio, uint8_t pin) 
{ 
 pio_disableWriteProtection(pio); 
 pio->PIO_PUDR = (1<<pin);  // disable pullup 
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 pio->PIO_PPDDR = (1<<pin);  // disable pulldown 
 pio_enableWriteProtection(pio); 
} 
 
void pio_enableWriteProtection( Pio * pio ){ 
 pio->PIO_WPMR = WPKEY_ENABLE; 
} 
 
void pio_disableWriteProtection( Pio * pio ){ 
 pio->PIO_WPMR = WPKEY_DISABLE; 
} 
 
 
void PIOA_Handler() 
{ 
 uint32_t interruptMask = PIOA->PIO_ISR & PIOA->PIO_IMR; 
  
 for(int i = 0; i < 32; i++){ 
  if(interruptMask & (1<<i)){ 
   (*pioaInterruptHooks[i])(); 
  } 
 } 
} 
 
void PIOB_Handler() 
{ 
 uint32_t interruptMask = PIOB->PIO_ISR & PIOB->PIO_IMR; 
  
 for(int i = 0; i < 32; i++){ 
  if(interruptMask & (1<<i)){ 
   (*piobInterruptHooks[i])(); 
  } 
 } 
} 
 
void PIOC_Handler() 
{ 
 uint32_t interruptMask = PIOC->PIO_ISR & PIOC->PIO_IMR; 
  
 for(int i = 0; i < 32; i++){ 
  if(interruptMask & (1<<i)){ 
   (*piocInterruptHooks[i])(); 
  } 
 } 
} 
 
void PIOD_Handler() 
{ 
 uint32_t interruptMask = PIOD->PIO_ISR & PIOD->PIO_IMR; 
  
 for(int i = 0; i < 32; i++){ 
  if(interruptMask & (1<<i)){ 
   (*piodInterruptHooks[i])(); 
  } 
 } 
} 
 
void PIOE_Handler() 
{ 
 uint32_t interruptMask = PIOE->PIO_ISR & PIOE->PIO_IMR; 
  
 for(int i = 0; i < 32; i++){ 
  if(interruptMask & (1<<i)){ 
   (*pioeInterruptHooks[i])(); 
  } 
 } 
} 

 

pio.h 

#ifndef PIO_H_ 
#define PIO_H_ 
 
#include "sam.h" 
 
#include <stdbool.h> 
 
enum Peripheral  { PIO,   A, B, C, D  }; 
enum FilterType  { NONE,   DEBOUNCE, GLITCH }; 
enum PinLevel  { LOW,   HIGH    }; 
enum PullType  { PULLUP, PULLDOWN, NOPULL }; 
enum InterruptType {FALLING_EDGE, RISING_EDGE, LOW_LEVEL, HIGH_LEVEL}; 
 
 
 
 
void pio_init   (); 
void pio_enableOutput ( Pio * pio, uint8_t pin ); 
void pio_disableOutput ( Pio * pio, uint8_t pin ); 
void pio_setOutput  ( Pio * pio, uint8_t pin, enum PinLevel setState); 
void pio_setMux   ( Pio * pio, uint8_t pin, enum Peripheral mux ); 
void pio_setPull  ( Pio * pio, uint8_t pin, enum PullType pull ); 
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bool pio_readPin  ( Pio * pio, uint8_t pin ); 
void pio_setFilter  ( Pio * pio, uint8_t pin, enum FilterType filter); 
void pio_enableInterrupt(Pio * pio, uint8_t pin, enum InterruptType interruptType, void (*interruptFunction)(void)); 
void pio_disableInterrupt( Pio * pio, uint8_t pin); 
 
#endif 
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B.7: util 

delay.c 

#include <sam.h> 
#include "delay.h" 
 
static uint32_t freq; 
 
void delay_init(uint32_t frequency) 
{ 
 freq = frequency; 
} 
 
void delay_clk(volatile uint32_t cycles) 
{ 
 // R0 and R1 can be used freely inside the function, referance ARM calling convetion 
 __asm("MOV R1, #3");  // 3 clock cycles per loop 
 __asm("UDIV R0, R1"); // unsigned division 
 __asm("loop: SUBS R0, R0, #1"); 
 __asm("BNE loop"); 
} 
 
void delay_ms(uint32_t ms) 
{ 
 delay_clk(ms*(freq/1000)); 
} 
 
void delay_us(uint32_t us) 
{ 
 delay_clk(us*(freq/1000000)); 
} 

 

delay.h 

#ifndef DELAY_H_ 
#define DELAY_H_ 
 
#include <sam.h> 
 
void delay_init(uint32_t frequency); 
void delay_ms(uint32_t ms); 
void delay_us(uint32_t us); 
 
#endif /* DELAY_H_ */ 
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B.8: revolve_can_definitions.h 

#ifndef REVOLVE_CAN_DEFINITIONS_H_ 
#define REVOLVE_CAN_DEFINITIONS_H_ 
 
//ID 
//Module ID 
//Bytemapping 
 
//------------------------------------------------------------------------------ 
// EXAMPLE: function = command, group = dash, module ID = 0 
/* .id = CANR_FCN_CMD_ID | CANR_GRP_DASH_ID | CANR_MODULE_ID0 */ 
//------------------------------------------------------------------------------ 
 
//------------------------------------------------------------------------------ 
/* ------- ARBITRATION ID DEFINITIONS ---------------------------------------*/ 
//------------------------------------------------------------------------------ 
 
//- ID[10..8] 
#define CANR_FCN_PRI_ID    0x000  // Most significant 
#define CANR_FCN_BOOT_ID   0x200  // Priority data 
#define CANR_FCN_CMD_ID    0x400  // Module_id control 
#define CANR_FCN_DATA_ID   0x600  // Data 
 
//- ID[7..3] 
#define CANR_GRP_SENS_ROTARY_ID  0x10  // Torque and steering encoder 
#define CANR_GRP_SENS_BRK_ID  0x18  // Brake encoder 
#define CANR_GRP_SENS_SPEED_ID  0x20  // Wheel speed 
#define CANR_GRP_BMS_ID    0x28  // BMS-data 
#define CANR_GRP_ECU_ID    0x30  // ECU 
#define CANR_GRP_INVERTER_ID  0x38  // Inverter data 
#define CANR_GRP_SUSP_ID   0x40  // Suspension 
#define CANR_GRP_SENS_IMU_ID  0x48  // IMU master 
#define CANR_GRP_SENS_DAMPER_ID  0x50  // Damper position 
#define CANR_GRP_SENS_TEMP_ID  0x56  // Gearbox and water temp 
#define CANR_GRP_SENS_GLVBMS_ID  0x58  // GLV BMS 
#define CANR_GRP_DASH_ID   0x60  // Dashboard 
#define CANR_GRP_SENS_BSPD_ID   0x68  // BSPD 
#define CANR_GRP_SENS_IMD_ID  0x70  // Laptimer 
#define CANR_GRP_TELEMETRY_ID  0x78  // Telemetry 
#define CANR_GRP_FAN_CTRL_ID  0x80  // Fan control 
//#define CANR_GRP_     0x88  //  
//#define CANR_GRP_     0x90  //  
 
//- ID[2..0] 
#define CANR_MODULE_ID0_ID   0x0 
#define CANR_MODULE_ID1_ID   0x1 
#define CANR_MODULE_ID2_ID   0x2 
#define CANR_MODULE_ID3_ID   0x3 
#define CANR_MODULE_ID4_ID   0x4 
#define CANR_MODULE_ID5_ID   0x5 
#define CANR_MODULE_ID6_ID   0x6 
#define CANR_MODULE_ID7_ID   0x7 
 
 
//------------------------------------------------------------------------------ 
/* ------- MASKS ---------------------------------------------------------*/ 
//------------------------------------------------------------------------------ 
/*MASK function: 
 ID = ID in CAN controller filter 
 MASK = Mask in CAN controller filter 
 ID_msg = ID from incoming message 
  
 Accept = (ID xor ID_msg) | (~MASK); 
 if(Accept == 0xFF)  Message recieved 
 else    Message rejected 
*/ 
 
//Mask for recieving one group specifically, 
//Group together to add more messages 
//High bit means bit is significant in ID_ext 
#define MASK_RECIEVE_FCN  (0x600) 
#define MASK_RECIEVE_GRP  (0x1F8) 
#define MASK_RECIEVE_MODULE  (0x007) 
#define MASK_RECIEVE_ALL  (MASK_RECIEVE_FCN|MASK_RECIEVE_GRP|MASK_RECIEVE_MODULE) 
 
 
//------------------------------------------------------------------------------ 
/* ------- ALIVE  ---------------------------------------------------------*/ 
//------------------------------------------------------------------------------ 
 
// ---------------------------------------------------------------------// 
// Functionality description:          
 // 
// Each module sends out a message with the following properties:  // 
// ID = CANR_FCN_DATA_ID | CANR_GRP_DASH_ID | CANR_MODULE_ID7_ID  // 
// DATA[0] = MODULE ID           
  // 
// Frequency = 1 Hz           
   // 
// ---------------------------------------------------------------------// 
 
//-ALIVE ID 
#define CAN_ALIVE_MSG_ID   (CANR_FCN_DATA_ID |CANR_GRP_DASH_ID|CANR_MODULE_ID7_ID) 
 
//- ALIVE BYTES 
#define CANR_ALIVE_MSG_DLC   1 
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#define CANR_ALIVE_MODULE_B   0 
 
//Module Alive IDs 
#define ALIVE_ECU     0x00 
#define ALIVE_BSPD     0x01 
#define ALIVE_TELEMETRY    0x02 
#define ALIVE_DASH     0x03 
#define ALIVE_ADC_FR    0x04 
#define ALIVE_ADC_FL    0x05 
#define ALIVE_ADC_RR    0x06 
#define ALIVE_ADC_RL    0x07 
#define ALIVE_INVERTER    0x08 
#define ALIVE_FAN     0x09 
#define ALIVE_BMS     0x0A 
#define ALIVE_GLVBMS    0x0B 
#define ALIVE_IMU     0x0C 
#define ALIVE_IMD     0x0D 
#define ALIVE_STEER_POS    0x0E 
#define ALIVE_STEER_POS_UNINIT  0x0F 
#define ALIVE_TRQ     0x10 
#define ALIVE_TRQ_UNINIT   0x11 
 
//------------------------------------------------------------------------------- 
/* ------- Module ID overrides  ----------------------------------------------*/ 
/*   If you want to make your own macro to replace module_id_x, make it here   */ 
//------------------------------------------------------------------------------- 
 
/* BMS ID OVERRIDES */ 
 
#define BMS_I_AM_ALIVE_ID  (CANR_FCN_DATA_ID |CANR_GRP_DASH_ID|CANR_MODULE_ID7_ID) 
 
 
 
#define BMS_COMMFAULTS_MSG_ID (CANR_FCN_DATA_ID    |CANR_GRP_BMS_ID|CANR_MODULE_ID0_ID ) 
 
#define BMS_TOTVTG_ID    (CANR_FCN_DATA_ID   |CANR_GRP_BMS_ID | CANR_MODULE_ID2_ID ) 
#define BMS_MAXMIN_TEMP_ID   (CANR_FCN_DATA_ID  |CANR_GRP_BMS_ID | CANR_MODULE_ID3_ID )   
#define BMS_CURRENT_ID    (CANR_FCN_DATA_ID   |CANR_GRP_BMS_ID | CANR_MODULE_ID4_ID ) 
#define BMS_MAXMIN_VTG_ID  (CANR_FCN_DATA_ID   |CANR_GRP_BMS_ID | CANR_MODULE_ID5_ID ) 
#define BMS_TEMP_ID    (CANR_FCN_DATA_ID   |CANR_GRP_BMS_ID | CANR_MODULE_ID6_ID )   
#define BMS_VTG_ID    (CANR_FCN_DATA_ID   |CANR_GRP_BMS_ID | CANR_MODULE_ID7_ID ) 
 
 
#define BMS_ANALYZE_CMD_ID  (CANR_FCN_CMD_ID |CANR_GRP_BMS_ID |CANR_MODULE_ID0_ID) 
#define BMS_ANALYZE_ACK_ID   (CANR_FCN_CMD_ID    |CANR_GRP_BMS_ID |CANR_MODULE_ID1_ID) 
#define BMS_STATE_MSG_ID  (CANR_FCN_CMD_ID |CANR_GRP_BMS_ID|CANR_MODULE_ID2_ID )   
 
/* GLVBMS ID OVERRIDES */ 
 
#define GLVBMS_VTG_ID   (CANR_FCN_DATA_ID | CANR_GRP_SENS_GLVBMS_ID | CANR_MODULE_ID0_ID )  // 0x658 
#define GLVBMS_TEMP_ID   (CANR_FCN_DATA_ID | CANR_GRP_SENS_GLVBMS_ID | CANR_MODULE_ID1_ID )  // 0x659 
#define GLVBMS_CURRENT_ID   (CANR_FCN_DATA_ID | CANR_GRP_SENS_GLVBMS_ID | CANR_MODULE_ID2_ID )  // 0x65A 
#define GLVBMS_MAXMIN_VAL_ID (CANR_FCN_DATA_ID | CANR_GRP_SENS_GLVBMS_ID | CANR_MODULE_ID4_ID )  // 0x65C 
#define GLVBMS_STATE_MSG_ID  (CANR_FCN_DATA_ID | CANR_GRP_SENS_GLVBMS_ID | CANR_MODULE_ID5_ID )  // 0x65D 
#define GLVBMS_TOTVTG_ID  (CANR_FCN_DATA_ID | CANR_GRP_SENS_GLVBMS_ID | CANR_MODULE_ID6_ID )  // 0x65E   
#define GLVBMS_ERROR_MSG_ID  (CANR_FCN_DATA_ID | CANR_GRP_SENS_GLVBMS_ID | CANR_MODULE_ID7_ID )  // 0x65F 
 
/* Inverter ID OVERRIDES */ 
 
#define INVERTER_RESERVED0   (CANR_FCN_DATA_ID  |CANR_GRP_INVERTER_ID | CANR_MODULE_ID7_ID) 
#define INTERTER_RESERVED1   (CANR_FCN_DATA_ID  |CANR_GRP_INVERTER_ID | CANR_MODULE_ID6_ID) 
 
#define CAN_INVERTER_MOTOR_TEMP_ID  (CANR_FCN_DATA_ID | CANR_GRP_INVERTER_ID | CANR_MODULE_ID6_ID) 
#define CAN_INVERTER_MOTOR_TEMP_DLC  2 
 
#define CAN_INVERTER_DATA_ACCUMULATED_STATUS_ID  (CANR_FCN_DATA_ID  |CANR_GRP_INVERTER_ID | CANR_MODULE_ID5_ID) 
#define CAN_INVERTER_DATA_ACCUMULATED_STATUS_DLC    4 
 
#define CAN_INVERTER_DATA_STATUS_ID  (CANR_FCN_DATA_ID  |CANR_GRP_INVERTER_ID | CANR_MODULE_ID4_ID) 
#define CAN_INVERTER_DATA_STATUS_DLC 4 
 
#define CAN_INVERTER_DATA_ENCODER_POS_ID (CANR_FCN_DATA_ID  |CANR_GRP_INVERTER_ID | CANR_MODULE_ID3_ID) 
#define CAN_INVERTER_DATA_ENCODER_POS_DLC 8 
 
#define CAN_INVERTER_DATA_RPM_ID  (CANR_FCN_DATA_ID  |CANR_GRP_INVERTER_ID | CANR_MODULE_ID2_ID) 
#define CAN_INVERTER_DATA_RPM_DLC  4 
 
#define CAN_INVERTER_DATA_CURRENT_ID (CANR_FCN_DATA_ID  |CANR_GRP_INVERTER_ID | CANR_MODULE_ID1_ID) 
#define CAN_INVERTER_DATA_CURRENT_DLC 8 
 
#define CAN_INVERTER_DATA_VOLTAGE_ID (CANR_FCN_DATA_ID  |CANR_GRP_INVERTER_ID | CANR_MODULE_ID0_ID) 
#define CAN_INVERTER_DATA_VOLTAGE_DLC 4 
 
 
/* Telemetry ID OVERRIDES */ 
 
#define TELEMETRY_TO_INVERTER_DATA_ID (CANR_FCN_DATA_ID | CANR_GRP_TELEMETRY_ID | CANR_MODULE_ID3_ID) 
 
/* ECU OVERRIDES */ 
 
#define ECU_ALIVE_ID         CANR_FCN_DATA_ID | 
CANR_GRP_DASH_ID | CANR_MODULE_ID7_ID 
 
#define ECU_PLAY_RTDS_DATA         0x1 
#define ECU_PLAY_RTDS_ID         CANR_FCN_BOOT_ID | 
CANR_GRP_ECU_ID | CANR_MODULE_ID0_ID 
#define ECU_PLAY_RTDS_DLC         1 
 
#define ECU_DRIVE_ENABLED_DATA        0x2 
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#define ECU_DRIVE_ENABLED_ID        CANR_FCN_BOOT_ID | 
CANR_GRP_ECU_ID | CANR_MODULE_ID0_ID 
#define ECU_DRIVE_ENABLED_DLC        1 
 
#define ECU_DRIVE_DISABLED_DATA        0x3 
#define ECU_DRIVE_DISABLED_ID        CANR_FCN_BOOT_ID | 
CANR_GRP_ECU_ID | CANR_MODULE_ID0_ID 
#define ECU_DRIVE_DISABLED_DLC        1 
 
#define ECU_PRAMETER_ADJUSTMENT_CONFIRMED_DATA    0x0 
#define ECU_PRAMETER_ADJUSTMENT_CONFIRMED_ID    CANR_FCN_BOOT_ID | CANR_GRP_ECU_ID | 
CANR_MODULE_ID1_ID 
#define ECU_PRAMETER_ADJUSTMENT_CONFIRMED_DLC    0 
  
#define ECU_LAUNCH_CONTROL_REQUEST_CONFIRMED_DATA   0x0F 
#define ECU_LAUNCH_CONTROL_REQUEST_CONFIRMED_ID    CANR_FCN_BOOT_ID | CANR_GRP_ECU_ID | 
CANR_MODULE_ID2_ID 
#define ECU_LAUNCH_CONTROL_REQUEST_CONFIRMED_DLC   1 
 
#define ECU_LAUNCH_CONTROL_ARMED_DATA      0xF0 
#define ECU_LAUNCH_CONTROL_ARMED_ID       CANR_FCN_BOOT_ID | 
CANR_GRP_ECU_ID | CANR_MODULE_ID2_ID 
#define ECU_LAUNCH_CONTROL_ARMED_DLC      1 
 
#define ECU_LAUNCH_CONTROL_DISARMED_DATA     0x00 
#define ECU_LAUNCH_CONTROL_DISARMED_ID      CANR_FCN_BOOT_ID | CANR_GRP_ECU_ID | 
CANR_MODULE_ID2_ID 
#define ECU_LAUNCH_CONTROL_DISARMED_DLC      1 
 
#define ECU_TORQUE_REQUEST_DATA        0x0 
#define ECU_TORQUE_REQUEST_ID        CANR_FCN_PRI_ID | 
CANR_GRP_ECU_ID | CANR_MODULE_ID3_ID 
#define ECU_TORQUE_REQUEST_DLC        4 
 
#define ECU_TRACTION_CONTROL_ON_DATA       0x0F 
#define ECU_TRACTION_CONTROL_ON_ID       CANR_FCN_BOOT_ID | 
CANR_GRP_ECU_ID | CANR_MODULE_ID4_ID 
#define ECU_TRACTION_CONTROL_ON_DLC       1 
 
 
#define ECU_TRACTION_CONTROL_OFF_DATA      0xF0 
#define ECU_TRACTION_CONTROL_OFF_ID       CANR_FCN_BOOT_ID | 
CANR_GRP_ECU_ID | CANR_MODULE_ID4_ID 
#define ECU_TRACTION_CONTROL_OFF_DLC      1 
 
#define ECU_CURRENT_MAX_DATA         0 
#define ECU_CURRENT_MAX_ID         CANR_FCN_DATA_ID | 
CANR_GRP_ECU_ID | CANR_MODULE_ID0_ID 
#define ECU_CURRENT_MAX_DLC         4 
 
#define ECU_CURRENT_ERROR_DATA        0 
#define ECU_CURRENT_ERROR_ID        CANR_FCN_DATA_ID | 
CANR_GRP_ECU_ID | CANR_MODULE_ID1_ID 
#define ECU_CURRENT_ERROR_DLC        4 
 
#define ECU_CURRENT_OUTPUT_DATA        0 
#define ECU_CURRENT_OUTPUT_ID        CANR_FCN_DATA_ID | 
CANR_GRP_ECU_ID | CANR_MODULE_ID2_ID 
#define ECU_CURRENT_OUTPUT_DLC        4 
 
#define ECU_CURRENT_INTEGRAL_DATA       0 
#define ECU_CURRENT_INTEGRAL_ID        CANR_FCN_DATA_ID | 
CANR_GRP_ECU_ID | CANR_MODULE_ID3_ID 
#define ECU_CURRENT_INTEGRAL_DLC       4 
 
#define ECU_CURRENT_CONTROLLER_STATE_DATA     0 
#define ECU_CURRENT_CONTROLLER_STATE_ID      CANR_FCN_DATA_ID | CANR_GRP_ECU_ID | 
CANR_MODULE_ID4_ID 
#define ECU_CURRENT_CONTROLLER_STATE_DLC     1 
 
#define ECU_CURRENT_IMPLAUSIBILITY_DATA      0 
#define ECU_CURRENT_IMPLAUSIBILITY_ID      CANR_FCN_DATA_ID | CANR_GRP_ECU_ID | 
CANR_MODULE_ID5_ID 
#define ECU_CURRENT_IMPLAUSIBILITY_DLC      1 
 
 
 
//------------------------------------------------------------------------------- 
/* ------- Byte mapping         --------------------------------*/ 
/* If you want to describe the mapping of your can bus data, make macros here  */ 
//------------------------------------------------------------------------------- 
 
/* Inverter data, sent from telemetry (analyze) */ 
#define STATUS_BIT_FLIP_REQUEST_COMMAND 0x01 
#define CONTROLLER_PARAMETER_P_SET_REQUEST_COMMAND 0x11 
#define CONTROLLER_PARAMETER_I_SET_REQUEST_COMMAND 0x12 
#define CONTROLLER_PARAMETER_D_SET_REQUEST_COMMAND 0x13 
#define TORQUE_REQUEST_COMMAND 0x41 
 
//GLVBMS ERROR DATA 
#define GLVBMS_ERROR_NOERROR  0x00 
#define GLVBMS_ERROR_OVERCURRENT 0x01 
#define GLVBMS_ERROR_OVERVOLTAGE 0x02 
#define GLVBMS_ERROR_OVERTEMP  0x03 
#define GLVBMS_ERROR_REQUESTED  0x04 
 
//------------------------------------------------------------------------------------- 
 
#endif /* REVOLVE_CAN_DEFINITIONS_H_ */  
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C.  Inverter CAN Messages and Errors 

In table C.1 the CAN messages that are sent continuously from the VSI during operation are 

listed. These are sensor data reporting internal variables from the motor controller. These 

messages contain the calculated rotor speed, the measured phase currents, the calculated dq-

currents and the measured dc-bus voltage. 

 

 Direction: Data type: Size [bits]: Priority: 

Speed_RPM out float 32 medium 

Current_A out float 32 medium 

Current_B out float 32 medium 

Current_C out float 32 medium 

Current_Q out float 32 medium 

Current_D out float 32 medium 

Voltage_DC out uint 16 high 

 

Table C.1: CAN messages sent continuously during operation from the VSI. 

 

In table C.2 the CAN messages that reports the states of the VSI are listed. The fault vector is 

a vector containing information about the different possible faults in the VSI. This is 

information like permanent phase current limits exceeded, permanent upper voltage limit 

exceeded, transient phase current limits exceeded, transient upper voltage limit exceeded, speed 

limit exceeded, gate driver fault, lower voltage limit exceeded, lower torque request limit 

exceeded, motor temperature limit exceeded or heat sink temperature limit exceeded. The 

initialization complete message tells if the encoder is initialized (the Z-line is found) and the 

shutdown circuit message tells if the shutdown circuit is active.  
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 Direction: Data type: Size [bits]: Priority: 

Fault vector out uint 40 high 

Initialization 

complete 
out  0 high 

Active shutdown 

circuit 
out  0 high 

 

Table C.2: CAN messages reporting the states of the VSI. 

 

Table C.3 shows the CAN messages giving the set points for the dq-current controllers in the 

VSI. In field oriented control without field weakening the d-current set point will always be 

zero, while the d-current set point will be proportional to the requested electromagnetic output 

torque. 

 

 Direction: Data type: Size [bits]: Priority: 

Setpoint_Q in float 32 high 

Setpoint_D in float 32 high 

 

Table C.3: CAN messages with set points for the dq-current controllers. 

 

In table C.4 the input CAN messages giving the PID controller values are shown. By sending 

CAN messages with new values for the p (proportional), i (integral), d (derivative) values, the 

dq-current controllers can be tuned. The student developed telemetry software Revolve Analyze 

is used to send new tuning parameters to the current controllers during testing and setup. 
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 Direction: Data type: Size [bits]: Priority: 

PID_P_Q in float 32 low 

PID_I_Q in float 32 low 

PID_D_Q in float 32 low 

PID_P_D in float 32 low 

PID_I_D in float 32 low 

PID_D_D in float 32 low 

 

Table C.4: CAN messages with tuning parameters for the current controllers in the VSI. 

 

The parameters in table C.5 gives the voltage levels where the torque request will be limited. 

The parameters are used to tune the torque limitation based on the transient voltage limits so 

that the behavior of the motor controller gets smooth for the driver. When the motor is 

generating power during braking, the DC bus voltage tends to increase. It is therefore important 

to limit the torque request so that the voltage limit of 600 V is never exceeded for more than a 

moving average of 500 ms or a total of 100 ms. If this happens in one of the Formula Student 

competitions, the team will be disqualified. 

 

 Direction: Data type: Size [bits]: Priority: 

VDC_H_LIM_START in float 32 low 

VDC_H_LIM_END in float 32 low 

VDC_L_LIM_START in float 32 low 

VDC_L_LIM_END in float 32 low 

VDC_HYSTERESIS in float 32 low 

 

Table C.5: CAN messages for tuning voltage levels limiting torque request. 
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The parameters in table C.6 are used to tune the torque request based on power limits, in the 

same way as the voltage levels from table C.5. If more than 80 kW of power from the battery 

accumulator is spent for more than a moving average of 500 ms or for a total of 100 ms, the 

team will be disqualified from the Formula Student competitions. The organizers of the 

competitions supply the competing teams with an energy meter to measure this. 

 

 Direction: Data type: Size [bits]: Priority: 

P_H_LIM_START in float 32 low 

P_H_LIM_END in float 32 low 

P_L_LIM_START in float 32 low 

P_L_LIM_END in float 32 low 

P_HYSTERESIS in float 32 low 

 

Table C.6: CAN messages for tuning power limiting of the torque request. 

 

The parameters in table C.7 are used to tune the torque request based on speed limits of the 

motor, in the same way as the voltage levels from table C.5 and the power limits from table 

C.6. The main reason why this is done is to make sure the rotational speed of the motor never 

exceeds the maximum rpm-rating for the motor. 

 

 Direction: Data type: Size [bits]: Priority: 

N_H_LIM_START in float 32 low 

N_H_LIM_END in float 32 low 

N_L_LIM_START in float 32 low 

N_L_LIM_END in float 32 low 

N_HYSTERESIS in float 32 low 

 

Table C.7: CAN messages for tuning speed limitation of the torque request. 
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The parameters in table C.8 are used to tune the torque request based on temperature limits 

from the heat sink temperature measurements and from the motor temperature measurements, 

in the same way as before. The main reason for doing this is to make sure the motor and the 

IGBT modules never overheats. 

 

 Direction: Data type: Size [bits]: Priority: 

T_H_LIM_START in float 32 low 

T_H_LIM_END in float 32 low 

T_L_LIM_START in float 32 low 

T_L_LIM_END in float 32 low 

T_HYSTERESIS in float 32 low 

 

Table C.8: CAN messages for tuning temperature limitation of the torque request.  
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D.  Inverter Prototype Setup Manual 

 

IGBTs to gate drivers: 

IGBT A should be connected with gate driver A, IGBT B with gate driver B and so on. Looking 

from above with the capacitors on top, IGBT A is the one to the right, IGBT B the one in the 

middle and IGBT C the one to the left, while gate driver A is the first one, gate driver B the one 

in the middle and gate driver C the one on top. This can be seen in figure D.1. 

 

 

Figure D.1: Voltage source inverter prototype setup. 

 

Next, it is important to make sure the contacts are connected correctly to the IGBT modules. 

As is shown in figure D.2, yellow cable is the first (pin 4 on the IGBT), green the second (pin 

5 on the IGBT), blue the third (pin 7 on the IGBT), orange the fourth (pin 6 on the IGBT). 
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Brown cable should be connected to DC+ (pin 3 on the IGBT) and black cable to AC (pin 1 on 

the IGBT). 

Pin number: Function: 

1 AC 

2 DC- 

3 DC+ 

4 Upper gate 

5 Upper emitter 

6 Lower gate 

7 Lower emitter 

 

Table D.1: Pin connection on the IGBT modules. 

 

 

Figure D.2: Pin connections on the IGBT modules. 
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On the gate driver, the upper contact (to the right in figure D.3) is the one with the yellow, green 

and brown cables, while the lower contact is the one with the orange, blue and black cables. 

 

 

Figure D.3: Gate driver connections. 
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Control board: 

First, the gate drivers should be connected to the right headers on the control board. Gate driver 

A should be connected to the first header, gate driver B to the middle and gate driver C to the 

last one. In figure D.4 these contacts are shown, where the first one is the one to the outer left 

in the figure. 

 

Figure D.4: Control circuit board connections. 

 

Then, the current sensors should be connected. The current sensor on phase A should go to 

current sensor header in position 1, while the current sensor on phase B to position 4 (this is 

labeled on the PCB). 

Next, the encoder, the programming contact and CAN/power should be connected. CAN/power 

is easy (no wrong way to put it), but the programming contact and encoder should be connected 

as shown in figure D.4. 
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Motor: 

It is important to connect the motor phases correctly! In figure D.5, phase A is the upper one 

(parallel to the water inlet/outlet), phase B in the middle and phase C the lower one. 

 

Figure D.5: Motor phases connection. 

 

Encoder: 

To connect the encoder correctly, the color labeled wires in the encoder cable should be 

connected to the right pins on the control board. In the following image these wires have been 

connected to a ribbon cable leading to the control board. 
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Figure D.6: Encoder connection. 

 

 

Pin number: Color coding: Function: 

1 Blue 0V 

2 Red 5V 

3 Grey A+ 

4 Pink A- 

5 Green B+ 

6 Yellow B- 

7 White Data+ 

8 Brown Data- 

 

Table D.2: Pin connection for the encoder.  
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E.  Simulink Model of the Battery Accumulator 

In figure E.1 a Simulink model of the battery accumulator is shown. It contains the eight sub 

blocks shown in figure E.2, which represent the eight battery modules in the accumulator. Each 

of these modules contain the battery cell configuration shown in figure E.3, with 18 series 

connected, parallel connected battery cells. In each of the sub blocks in figure E.3, two LiCoO2 

cells are connected in parallel as shown in figure E.4. The battery cell models in figure E.4 are 

models from the SimPowerSystems library in Simulink. The applied block parameter settings 

for the models are shown in figure E.5. 

 

 

 

 

 

 

 

 

Figure E.1: Battery accumulator model in Simulink. 



165  

Figure E.2: Battery module configuration in Simulink. 
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Figure E.3: Battery cell configuration in a battery module in Simulink. 
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Figure E.4: Li-ion battery cell model in Simulink. 
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The use of this battery accumulator in the VSI model, made the overall model to large and 

complex to simulate. The model was therefore not used in this thesis work.  

Figure E.5: Block parameter settings for Li-ion battery cell model in Simulink. 
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F.  Simulink Control System Models 

 

Figure F.1: Simulink model of field oriented control with PWM. 
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Figure F.2: Simulink model of field oriented control with hysteresis. 
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Figure F.3: Simulink model of field oriented control with SV PWM. 
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Figure F.4: Simulink model for direct torque control flux estimation. 
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G.  Voltage Source Inverter Wiring Harness 

 

Figure G.1: Voltage source inverter wiring harness. 
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H.  Schematic Drawings 

 

Figure H.1: Schematic drawing of the inverter control board. 
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Figure H.2: Schematic drawing of the power modules. 



176  

 

Figure H.3: Schematic drawing of the 24V input filter. 

 

 

Figure H.4: Schematic drawing of the 5V and 3V3 supply. 



177  

 

Figure H.5: Schematic drawing of the 5V ADC circuit. 

 

 

Figure H.6: Schematic drawing of the 15V supply. 

 

 

Figure H.7: Schematic drawing of the negative 15V supply. 

 

 

Figure H.8: Schematic drawing of the CAN transceiver circuit. 
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Figure H.9: Schematic drawing of the computational circuitry. 
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Figure H.10: Schematic drawing of the gate driver interface circuit. 

 

 

Figure H.11: Schematic drawing of the encoder interface circuit. 

 

 

Figure H.12: Schematic drawing of the encoder with ABZ interface circuit. 
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Figure H.13: Schematic drawing of the current sensor interface. 

 

 

Figure H.14: Schematic drawing of the voltage measurement circuit. 
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Figure H.15: Schematic drawing of the temperature measurement circuit from heatsink. 

 

 

Figure H.16: Schematic drawing of the temperature measurement circuit from motor. 

 

 

Figure H.17: Schematic drawing of the FRAM circuitry. 
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Figure H.18: Schematic drawing of the discharge circuit. 


