
Enhancing OPM-based Reservoir
Simulation via PETSc integration

Jørgen Kvalsvik

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

Problem Description

GPUs for high-performance computing has been receiving a lot
of attention lately. Major numerical libraries are starting to offer
GPU-accelerated support for kernels, but how efficient they are
when used with real-world applications is largely unknown.

This project includes implementing support for PETSc solvers in
the free software reservoir simulator OPM (Open Porous Media),
testing and measuring the performance of different algorithms and
implementations for CPU and GPU in a real-world application
with a real data set.

Abstract

Numerical libraries have different properties and performance
depending on the problem and data set at hand, and support
different features such as parallelisation, co-processor acceleration,
debugging and profiling. Having several libraries available can be
beneficial for a complicated and performance sensitive software
project. Utilising a new library is non-trivial, as libraries have
different design philosophies and semantics, so properly integrating
them is important for usability and adoption.

In this thesis, the well-established PETSc library was integrated
with the Open Porous Media (OPM), and an example application
was adapted to use PETSc for numerical computation. The
application performance was measured with several configurations
using a real-world data set.

We found that the fastest PETSc configuration was approximately
48% faster than the fastest unmodified configuration, and that
PETSc is a viable alternative numerics library for OPM. We did
not observe any benefit when performing numerics on the GPU
for this particular workload.

The integration described in this thesis is proposed as a draft for
a unified interface for linear algebra and numerics libraries for
OPM, with the goal of supporting even more third party libraries.

This work was done in collaboration with Statoil.

Sammendrag

Numerikkbiblioteker har forskjellige egenskaper og ytelse avhengig
av problemet og datasettet, samt øvrige egenskaper som støtte
for parallelisering, co-prosessorerakselerasjon, debugging og profi-
lering. Det er dermed attraktivt å kunne benytte flere bibilotek
for kompliserte og ytelsessensitive prosjekter. God integrasjon er
viktig for brukervennlighet og adopsjon, ettersom det kan være
ikke-trivielt å bruke et nytt bibliotek grunnet forskjellig designfi-
losofi og semantikk.

I denne oppgaven ble det veletablerte biblioteket PETSc inte-
grert i Open Porous Media (OPM), og en eksempelapplikasjon
ble omskrevet til å benytte PETSc for numeriske beregninger.
Applikasjonsytelsen ble målt med et representativt datasett og
flere konfigurasjoner.

Målingene viser at den raskeste PETSc-konfigurasjonen var om-
trent 48% raskere enn den raskeste umodifiserte versjonen, og at
PETSc dermed er et egnet alternativ for numeriske beregninger i
OPM. Ingen målinger viste forbedring for denne oppgaven ved å
gjøre numerikken på en grafikkprosessor.

Integrasjonen beskrevet i denne oppgaven er et foreslått utkast for
et unifisert grensesnitt for lineær algebra- og numerikkbibilotek i
OPM, hvis mål er å støtte enda flere tredjepartsbibilotek.

Dette arbeidet ble utført i samarbeid med Statoil.

Acknowledgements

I would like to thank Dr. Anne C. Elster for being my supervisor,
introducing me to PETSc and organising the project with Statoil.

I would also like to thank Dr. Alf B. Rustad at Statoil Research
for the opportunity to work with him, the OPM community, and
for all the feedback and technical assistance I received. A special
thanks to him and the Statoil Research Centre at Rotvoll for
providing a data set for me to experiment with.

I would like to thank my fellow students at the HPC-lab for their
general support and assistance, with a special mention to Imre
Kerr and Bjør Åge Tungesvik for all the help and the interesting
discussions. Many thanks to Matthew Greening for helping me
proof read.

Finally, I would like to thank NTNU, AMD and NVIDIA, and
Statoil for their support of the HPC-lab, which allowed me to
work on this thesis.

Trondheim, June 10, 2015

Jørgen Kvalsvik

Contents

List of Figures xiii

List of Tables xv

List of Listings xix

List of Acronyms xxi

1 Introduction 1
1.1 Project goals . 1
1.2 Outline . 2

2 Background 3
2.1 Numerical methods . 3

2.1.1 Linear algebra . 3
2.1.2 System of linear equations 10
2.1.3 Numerical solvers . 11
2.1.4 Direct methods . 11
2.1.5 Iterative methods . 12
2.1.6 Conjugent Gradient 13
2.1.7 Generalised Minimal Residual 14
2.1.8 Algebraic Multigrid Method 16

2.2 High-performance computing 16
2.2.1 Amdahl’s Law . 17
2.2.2 Gustafson’s Law . 17
2.2.3 Amdahl’s Law and Gustafson’s Law for multicore systems 18
2.2.4 MPI . 19

ix

2.3 Numerical software . 21
2.3.1 BLAS and LAPACK 21
2.3.2 DUNE . 22
2.3.3 Hypre . 22
2.3.4 Fluent . 22

2.4 PETSc . 22
2.5 C++ . 25

2.5.1 Complex objects . 25
2.5.2 Constructor and destructor 26
2.5.3 The this pointer . 27
2.5.4 Inheritance . 28
2.5.5 Overloading . 29
2.5.6 Template programming 30
2.5.7 Move semantics . 31
2.5.8 Resource Acquisition is Initialisation 32

2.6 Further reading . 32

3 Upscaling 35
3.1 Reservoir engineering, permeability and Darcy’s Law 35
3.2 Grid . 37
3.3 Basics of upscaling . 39
3.4 Program design . 41
3.5 Scalability . 43

4 Integrating PETSc with OPM 47
4.1 On development . 47
4.2 Motivation for a library . 48
4.3 Types and containers . 49
4.4 High-level interface . 50
4.5 Common and mixins . 51
4.6 Vector . 53
4.7 Matrix . 55
4.8 Solver . 57
4.9 Porting upscale_relperm to use PETSc 60
4.10 Bugs . 61

5 Results and Measurements 65

5.1 Configuration . 65
5.2 Differences . 66
5.3 Computation time . 69

6 Conclusions and Future Work 75
6.1 Contributions . 75
6.2 Conclusions . 76
6.3 Future Work . 76

References 79

Appendices

A Code snippets 83

B Programs 99

C Tables & figures 105

List of Figures

2.1 Matrices and vectors . 4
2.2 Block matrix . 6
2.4 Linear system and augmented matrix 10
2.5 Ax = b . 10
2.6 A generalised Ax = b problem . 11
2.7 Speedup: Amdahl’s Law . 19
2.8 Speedup: Gustafson’s Law . 20
2.9 MPI communicators . 21
2.10 PETSc class relationship . 24

3.1 Porous rock . 36
3.2 The Norne reservoir . 37
3.3 Simple 3D Cartesian grid . 38
3.4 3D hexahedral grid . 38
3.5 Upscaling . 39
3.6 Upscaled relative permeability 40
3.7 Diff satpoints . 45
3.8 Upscaler-relperm parallel design 46

5.1 upscale_relperm output . 67
5.2 PETSc timings . 72
5.3 DUNE timings . 72

C.1 PETSc timings . 106
C.2 DUNE timings . 106
C.3 upscale_relperm output . 107

xiii

List of Tables

2.1 Linear algebra operations . 6
2.2 Axioms for vector spaces . 9
2.3 Achievable speedup according to Amdahl’s Law 18
2.4 PETSc components . 23

3.1 Execution time: upscale_relperm 42

4.1 Workstation . 48
4.2 Containers in DUNE 2.3 . 49
4.3 Interface: Vector . 54
4.4 Interface: Matrix . 56
4.5 Interface: Builder . 58
4.6 Interface: Solver . 59

5.1 Testing system . 66
5.2 PETSc output difference I . 68
5.3 PETSc output difference II . 69
5.4 PETSc timings . 71
5.5 DUNE timings . 73
5.6 Single process timings . 73

C.1 Workstation . 105
C.2 Testing system . 108

xv

List of Algorithms

2.1 Conjugent Gradient . 14
2.2 k-th Arnoldi iteration . 15
2.3 Generalised Minimal Residual 15
2.4 General AMG . 16
3.1 OPM upscale design . 35
3.2 OPM upscale_relperm design 41

xvii

List of Listings

2.1 Class member accessability 26
2.2 Inheritance . 28
2.3 Private inheritance . 30
2.4 Template programming . 31
2.5 move without copy . 32
2.6 RAII managing a heap-allocated array 33
4.1 Ported IncompFlowSolverHybrid matrix setup 62
4.2 PETSc-ViennaCL patch . 63
4.3 upscale_relperm patch . 64
A.1 uptr . 83
A.2 Vector as a raw PETSc handle 83
A.3 Managed resource from PETSc handle 84
A.4 Deleter . 84
A.5 Deleter with decltype . 84
A.6 Value oriented dot . 84
A.7 Variadic arguments to solve 84
A.8 Solving with DUNE . 85
A.9 Solving with PETSc . 86
A.10 Solving a linear system with OPM-PETSc 87
A.11 Solving a linear system with PETSc. 87
A.12 Removed DUNE code . 88
B.1 matrix-diff.hs . 100
B.2 make-result-tables.sh . 101
B.3 opm-bench.sh I . 102
B.4 opm-bench.sh II . 103
B.5 extract-timing.pl . 104

xix

List of Acronyms

AMG Algebraic Multigrid Method.

BLAS Basic Linear Algebra Subprograms.

CG Conjugate Gradient method.

DUNE Distributed and Unified Numerics Environment.

FFI Foreign Function Interface.

GMRES Generalised Minimal Residual Method.

ILU Incomplete Lower Upper factorisation.

ISTL Iterative Template Solver Library.

LAPACK Linear Algebra Package.

MPI Message Passing Interface.

PETSc Portable, Extensible Toolkit for Scientific Computation.

POD Plain Old Data.

RAII Resource Acquisition Is Initialisation.

SOR Successive over-relaxation.

SSOR Symmetric SOR.

xxi

Chapter1Introduction

Solving systems of linear equations is a core component in several aspects of
petroleum reservoir simulation, and simulator performance largely depends
on the algorithm chosen and the speed of the numerical kernels.

The Open Porous Media project is a collection of free libraries and pro-
grams developed by several industrial partners and research institutions,
which largely depends on DUNE for numerical computation. A component of
the OPM project is the upscaler, a component that coarsens flow properties of
the reservoir in order to reduce the computational load in subsequent phases
of simulation.

In this thesis, the numerical component DUNE has been replaced by the
alternative component PETSc, developed by the Argonne National Labora-
tory, which has been integrated into the project, and the test application
upscale_relperm has been ported to utilise this new backend.

1.1 Project goals

The main goal of the project is to provide an alternative to DUNE and
UMFPACK for numerical computation in OPM. This is motivated by sup-
porting more algorithms, more matrix representation formats, more third
party packages, and more debugging and profiling tools. PETSc has for many
years been one of the leading projects for scientific computations and is well
established in the community. Additionally, improvements and additions to

1

2 1. INTRODUCTION

the PETSc project will directly benefit OPM, and contributions from the
OPM project will also benefit other projects relying on PETSc.

With support for more algorithms comes the potential for improved
performance. While optimisation is not a goal for this thesis in itself, it is a
potential benefit for some inputs or classes of problems.

1.2 Outline

The rest of the thesis is structured as follows:

Chapter 2: Relevant background material and concepts related to this thesis,
including a brief introduction to linear algebra, numerical methods and
the C++ programming language.

Chapter 3: The upscaling process and the OPM upscale family of programs
are introduced, as well as basics of petroleum engineering and grids.

Chapter 4: The main work of this thesis is described, including decisions
and considerations made integrating PETSc into the OPM project, and
the final design of the necessary components to effectively use PETSc
in OPM.

Chapter 5: A presentation of experimental results and measurements of
various DUNE and PETSc driven runs of upscale_relperm.

Chapter 6: The contributions and conclusion of the thesis are presented, as
well as topics for future work.

Appendix A: Relevant code snippets from the PETSc integration.

Appendix B: Various helper and utility programs

Appendix C: A collection of tables and figures for ease-of-access.

Chapter2Background

This Chapter introduces the basic concepts needed to understand the material
of this thesis. A brief overview of linear algebra and numerical methods is
presented in Section 2.1. Some important concepts for high-performance
computing are presented in Section 2.2. Section 2.3 introduces and describes
some key pieces of numerical software either used in or considered for this
thesis. The chosen library and some key aspects of it are described in
Section 2.4. Finally, Section 2.5 describes the relevant features and idioms
that form the tools for this thesis in detail.

Some parts of this chapter are built on the background chapter of my
project in the autumn of 2014.

2.1 Numerical methods

2.1.1 Linear algebra

Linear algebra is a branch of mathematics that mainly concerns vector spaces
and linear mappings between such spaces, and forms a foundation for numerical
methods. This section gives a brief introduction to the key concepts and
terms required to understand the algorithms discussed and the motivations
for this thesis.

A linear equation is an equation where each term is either constant or the
prodct of a constant and a single variable. In general, a linear equation is an

3

4 2. BACKGROUND

[
0.5 12 4 −5
3 0.1 1 2

]
[
2x e−x

1 e3x

]

2 π

x 1
2

4 1

[
1 1 2 3 5 8 13

]
Figure 2.1: Three matrices and a vector. Dimensions 2× 4, 3× 2, 2× 2 and
1× 7 respectively.

equation of the form of Equation 2.1.

a1x1 + a2x2 + · · ·+ anxn = b (2.1)

The main tools of linear algebra are matrices and vectors, see Figure 2.1.
A matrix is a rectangular array of numbers or functions, called entries, and
a vector is a one-dimensional sequence of entries. A matrix is denoted with a
capital letter, A, with its element denoted with an ij subscript. aij denotes an
element at the ith row and jth column of the matrix A. Vectors are denoted
with a lowercase letter. A matrix with m rows and n columns, or m-by-n, is
typically written as m× n, where m× n are called the dimensions of the
matrix. A matrix with m = 1 is called a row vector, n = 1 is called a column
vector and m = n is called a square matrix. A matrix where every element is
either zero or positive is called a positive matrix or non-negative matrix,
and analoguously, a matrix that has only zero or negative elements is called
a negative matrix. A matrix where every element is zero is called a zero
matrix or a null matrix.

There are several fundamental arithmetic operations on matrices and
vectors. For easier reference, the operations, their notations, their names and
their result is presented in Table 2.1.

Both vectors and matrices can be multiplied with a constant, scaled,
which is an element-wise multiplication of the constant and the entries of the
structure. There are two binary operations for pairs of vectors, the cross

2.1. NUMERICAL METHODS 5

product u×v and the dot product u ·v. The cross product of two linearly
independent vectors is a vector peripendicular on the plane they create.
The dot product is defined algebraicly as u · v = ∑n

i=1 uivi. Geometrically
this is defined through the cosine of the angle between the vectors.

Definition 2.1. Linear dependence A set of vectors V is linearly
dependent if one of the vectors of the set can be defined as a combination
of the other vectors.

Pairs of matrices can be added and subtracted by performing the binary
operation element-wise, i.e. A+B = C ⇒ cij = aij + bij . Since vectors can
be considered matrices with n = 1, this also applies to vectors. Addition and
substraction will produce a matrix for matrices and a vector for vectors.

Matrix multiplication is a binary operation that produces a matrix.
There are several different definitions for what constitues matrix multiplication,
but the most common one, which is the one used in this thesis, is AB = C ⇒
cij = ∑m

k=1 aikbkj .

The unit vector e is a vector of length 1, the simplest being the vector ei

where all entries are zero except for the ith, which is 1. The general notion of
norm is a function that assigns a length to a vector. In a eucledian space,
the norm is ||x|| =

√
x2

1 + · · ·+ x2
n.

An identity matrix is the n×n matrix In where themain diagonal entries
are 1 and all other entries are zero. The ith column an identity matrix is the
unit vector ei. The identity matrix has the property that AIn = InA = A.
Finally, matrix-vector multiplication, which can be considered a special
case of matrix-matrix multiplication, where the second operand is a column
vector, results in a new a vector. Matrix-vector multiplication is an important
part of many scientific and engineering applications, and a lot of research
goes into optimising these computations. An example of this is autotuning
frameworks and knowledge databases [8].

A block matrix is a matrix that can considered broken down into blocks
or submatrices. Submatrix entries are denoted with capital letters, and zero
matrices are denoted with 0.

6 2. BACKGROUND

Table 2.1: The operations of linear algebra and their results. Lower-case
symbols are vectors, upper-case symbols are matrices and Greek symbols are
scalars.

Symbol Name Expression Result
Vector

α Scale αu = w Vector
+ Addition u+ v = w Vector
- Subtraction u− v = w Vector
× Cross product u× v = w Vector
· Dot product u · v = β Scalar

Matrix
α Scale αA = C Matrix
+ Addition A+B = C Matrix
- Subtraction A−B = C Matrix
· Multiplication AB = C Matrix

Matrix-vector
· Multiplication Av = w Vector

M =

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

A =

[
1 1
1 1

]
B =

[
2 2
2 2

]
C =

[
3 3
3 3

]
D =

[
4 4
4 4

]

M =
[
A B

C D

]

Figure 2.2: Block matrix notation.

2.1. NUMERICAL METHODS 7

Pairs of vectors can be orthogonal and orthonormal.

Definition 2.2. Orthogonal Two vectors u and v are orthogonal to
eachother if they are perpendicular. If two vectors are peripendicular, u ⊥ v,
then their dot product is zero.

u · v = 0 (2.2)

Definition 2.3. Orthonormal If u and v are orthogonal and unit vectors,
they are considered orthonormal.

A diagonal of a matrix A is a collection of entries aij laid out diagonally
in A. The main diagonal has already been mentioned, and can help create
the transpose. Another common diagonal is the antidiagonal.

Definition 2.4. Main diagonal The entries aij where i = j form the
main diagonal of the matrix A. The following three matrices have their
main diagonal indicated with 1s in red.

1 0 0
0 1 0
0 0 1

[
1 0 0
0 1 0

]
1 0
0 1
0 0

Definition 2.5. Antidiagonal The antidiagonal of a square matrix A
of dimension n are the entries aij where i+ j = n+ 1.

0 0 1
0 1 0
1 0 0

Definition 2.6. Transpose The tranpose of a matrix A, denoted AT , is
the matrix created by any of the equivalent actions:

• Reflect A over its main diagonal

• Make the rows of A the columns of AT

8 2. BACKGROUND

• Make the columns of A the rows of AT

This yields the matrix AT so that the entries of AT can be described by
Equation 2.3.

aT
ij = aji (2.3)

From the transpose we can describe the symmetric matrix, which is a
prerequisite for some numerical algorithms. Since the symmetric matrix A
is symmetric with respect to its main diagonal, the entries aij = aji for all
indices i and j.

Definition 2.7. Symmetric matrix The matrix A is symmetric if it is
identical to its transpose AT . Formally:

A = AT (2.4)

The following concepts, vector space, basis and span, are of general
interest in linear algebra, and they form an important foundation for some
applications. Additionally, conjugates and positive-definite matrices are
requirements for some algorithms.

Definition 2.8. Vector space A nonempty set of vectors V , such that
with any two vectors a, b ∈ V all their linear combinations are elements of V
and satisfy the axioms in Table 2.2, is a vector space.

Definition 2.9. Basis A linearly independent set of vectors in V consisting
of a maximum possible number n of vectors (in V) is called a basis.

v(1) =
[
1 0 · · · 0

]
v(2) =

[
0 1 · · · 0

]
...

v(n) =
[
0 0 · · · 1

]

2.1. NUMERICAL METHODS 9

Table 2.2: Axioms for vector spaces. The letters in bold are vectors, capital
letters are vector spaces, and rest are scalars.

Axiom Consequence
Associativity of addition u + (v + w) = (u + v) + w
Commutativity of addition u + v = v + u
Identity of addition ∃0 ∈ V such that ∀v ∈ V : v + 0 = v
Inverse of addition ∀v ∈ V : ∃−v ∈ V such that v + (−v) = 0
Compatibility a(bv) = (ab)v
Identity of addition ∃1 ∈ V : 1v = v
Distributivity, vector addition a(u + v) = au + av
Distributivity, field addition (a+ b)v = av + bv

Definition 2.10. Span The set of all linear combinations of the vectors
v(1), · · · , v(n) is called the span of these vectors. The span is a vector space.

Definition 2.11. Conjugation A function where some operation is applied,
followed by another operation and the reversed initial operation is called a
conjungation, and is a component of the abstract algebra concept of inner
automorphism. The right-hand side in Equation 2.5 is a general conjugation
for some function f : G→ G defined for all x in the group G, where a is an
arbitrary reversible function.

f(x) = a−1xa (2.5)

The non-zero vectors u and v are conjugate with respect to A if uTAv = 0.

Some square matrices can be characterised by other structural proprties,
which can be prequisites for certain numerical algorithms. These properties
include positive-definitness and invertability.

Definition 2.12. Positive-definite matrix A n × n real matrix A is
positive-definite if vTAv is positive for every non-zero column vector v of
real numbers and length n.

10 2. BACKGROUND

2x1 + 5x2 = 2
−4x1 + 3x2 = −30

[
2 5 2
−4 3 −30

]

Figure 2.4: A simple linear system and its corresponding augmented matrix.

[
2 5
−4 3

] [
x1

x2

]
=
[

2
−30

]

Figure 2.5: Figure 2.4 written as Ax = b.

Definition 2.13. Invertible matrix The n× n matrix A is invertible if
there exists an n× n matrix B so that Equation 2.6 holds.

AB = BA = In (2.6)

2.1.2 System of linear equations

A system of linear equations, briefly a linear system, is a collection of
equations with the same set of variables. These systems can be solved (if they
have solutions) with the use of matrices, see Figure 2.4.

Many engineering problems are modelled mathematically as linear systems,
so solving these systems are important kernels of many applications. We
often rely on numerical methods (section 2.1.3) to solve (large) linear systems.
Linear systems are often presented as Equation 2.7.

Ax = b (2.7)

A is known as the coefficient matrix, x is known as the solution vector,
and b is known as the constant vector. Figure 2.5 shows the system of
linear equations presented in Figure 2.4 written as Ax = b.

This can be generalised to matrices of arbitrary sizes, as shown in Figure 2.6.
Real world problems often have millions or even billions of variables, and the
matrices required to model these are as large.

2.1. NUMERICAL METHODS 11

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

am,1 am,2 · · · am,n

x1

x2
...
xn

 =

b1

b2
...
bn

Figure 2.6: A generalised Ax = b problem

2.1.3 Numerical solvers

Sometimes it is intractable, or even impossible, to find a solution, but possible
to approximate it. Numerical analysis is solving problems in terms of numbers,
or numerically, typically using a calculator or computer. Such problems arise
from real-world applications in engineering, physics, meteorology, finance,
medicine, throughout all the sciences. Particularly relevant for this project
are the numerical problems that stem from reservoir - and flow simulations.
There are two general techniques for solving these systems numerically; using
direct methods (2.1.4) or using iterative methods (2.1.5).

There are many algorithms and software libraries for numerical analysis
available, both free and proprietary. Some of these include BLAS, LAPACK,
and DUNE, Trilinos, and PETSc. BLAS, LAPACK and DUNE are de-
scribed in Sections 2.3.1 and 2.3.2, and PETSc is described in more detail in
Section 2.4.

2.1.4 Direct methods

A direct numerical method is an algorithm in which the number of operations
can be specified in advance. Direct methods would give exact answers assuming
they were performed with infinite-precision arithmetic [7]. In practice, however,
we do not use infinite-precision representation of numbers, and every step can
introduce new rounding errors, resulting in an accumulation that cannot be
corrected. Real-world applications also often has other sources of imprecision,
such as slightly imperfect measurement data (e.g. sensor data), contributing
further to errors. Additionally, large systems are often very time consuming,
if even possible, to solve.

12 2. BACKGROUND

2.1.5 Iterative methods

In contrast to the direct methods, iterative methods, or indirect methods,
start from an approximation to the true solution, or an initial guess, acquire
better and better approximations from repeating the algorithm as many
times as required for achieving the desired accuracy. The error of the current
solution is called the residual. Increasing the accuracy can be seen as the
dual problem of minimising the residual.

Definition 2.14. Residual Given a system Ax = b, the residual r of x
is defined by

r = b−Ax (2.8)

Iterative methods are applied if the convergence is fairly rapid, which
can be determined with either convergence analysis or a heuristic. They
are also typically much faster than direct methods, and enables us to solve
systems much larger than available computing power would be able to do with
a direct method. There are two main classes of iterative methods; stationary
iterative methods and Krylov subspace methods.

Stationary iterative methods

Stationary iterative methods can in their simplest form be expressed as in
Equation 2.9.

xk = Bxk−1 + c (2.9)

Notice that neither B nor c are dependent on the iteration count k; this
gives the class of methods its name. B is an operator, a mapping between
two vector spaces. The four main stationary iterative methods are Jacobi,
Gauss-Seidel, Successive over-relaxation (SOR) [36], and Symmetric SOR
(SSOR).

Definition 2.15. Operator Let X and Y be two sets. A correspondence
or rule which uniquely assigns an element A(x) ∈ Y to every element x of a
subset D ⊂ X is an operator from A from X into Y .

2.1. NUMERICAL METHODS 13

A : D → Y, where D ⊂ X

Krylov subspace methods

Krylov methods work by forming a Krylov subspace multiplied with the initial
residual then minimise the residual over the subspace.

Definition 2.16. Krylov subspace The Krylov subspace Kt is the
subspace that is spanned by Kt =

[
b Ab A2b · · · At−1b

]
, that is

Kt(A, b) = span{b, Ab,A2b, . . . , At−1b} (2.10)

Krylov subspace methods include CG and GMRES, discussed in Sec-
tions 2.1.6 and 2.1.7.

2.1.6 Conjugent Gradient

The Conjugate Gradient method (CG), developed mainly by Hestenes
and Stiefel [12], is a Krylov subspace method for symmeteric and positive-
definite matrices.

The goal is to solve Equation 2.7. CG uses a metric function, the quadratic
function in Equation 2.11, to decide if it should keep iterating. The unique
minimiser to this function is the solution to Ax = b.

f(x) = 1
2x

TAx− xT b (2.11)

The residual at each step k is, as in Equation 2.8:

rk = b−Axk (2.12)

Which gives us the full conjugent gradient method in Algorithm 2.1. The
dominating operations are the matrix-vector products, which in the general
case require O(m) operations, where m are the number of non-zero entries in
the matrix. When A is sparse, and m ∈ O(n). Convergence also depends on
the condition number κ, a measure on how sensitive the function is to small
changes in its input. CG has a time complexity of O(n

√
κ) [25].

14 2. BACKGROUND

Algorithm 2.1 Conjugent Gradient
Input: The real, symmetric, positive-definite coefficient matrix A
Input: The constant vector b
Output: The solution vector x

1: r0 ← b−Ax0
2: p0 ← r0
3: k ← 0
4: loop
5: αk ←

rT
k rk

pT
k

Apk

6: xk+1 ← xk + αkpk

7: rk+1 ← rk + αkApk

8: if rk+1 is sufficiently small then
9: return xk+1

10: end if
11: βk ←

rT
k+1rk+1

rT
k

rk

12: pk+1 ← rk + βkpk
13: k ← k + 1
14: end loop

2.1.7 Generalised Minimal Residual

The Generalised Minimal Residual Method (GMRES) was developed
by Saad and Schultz [24] and, like CG, is a Krylov subspace method. GMRES
assumes them×mmatrix A is invertible, and relies on the Arnoldi iteration [3]
of Algorithm 2.2 for the generation of a set of orthonormal vectors q2, q3, . . . , qn

that ensures linear independence, which cannot be guaranteed by the vectors
b, Ab,A2b, . . . , At−1b. q1 is an arbitrary vector with norm 1.

The vectors q1, q2, . . . , qn forms an m × n matrix Qn. Since the vectors
form a basis for the Krylov subspace K, the vector xn can be expressed as in
Equation 2.13, where yn is some approperiate vector.

xn = Qnyn (2.13)

2.1. NUMERICAL METHODS 15

Algorithm 2.2 k-th Arnoldi iteration
Input: The coefficient matrix A
Input: Qk−1, Hk−1
Output: The matrices Qk, Hk

1: qk ← Aqk−1
2: for j ← 1, 2, . . . , k − 1 do
3: hj,k−1 ← qjqk

4: qk ← qk − hj,k − qj

5: end for
6: hk,k−1 ← ||qk||
7: qk ← qk

hk,k−1

The hi,j variables of the Arnoldi iterations are organised in the matrix Hn,
where AQn = Qn+1Hn. By the orthogonality of the columns in Qn, we have

||Axn − b|| = ||Hnyn − βe1|| (2.14)

where vector e1 = (1, 0, 0, . . . , 0)T and the default initial residual β =
||b−Ax0||. We can compute xn by minimising the residual rn = Hnyn − βe1,
which gives the method its name. The full procedure is shown in Algorithm 2.3.
The matrix-vector product must be computed at every iteration, in addition
to O(nm) floating point operations, but the algorithm will converge in O(m)
iterations, although the solution is often a good approximation after fewer
iterations.

Algorithm 2.3 Generalised Minimal Residual
Input: The coefficient matrix A
Input: The constant vector b
Output: The solution vector x

1: β ← ||b−Ax0||
2: repeat
3: Qn, Hn ← arnoldi(A,Qn−1, Hn−1)
4: rn, yn ← minimise(rn = Hnyn − βe1)
5: xn ← Qnyn

6: until rn is sufficiently small

16 2. BACKGROUND

2.1.8 Algebraic Multigrid Method

Algebraic Multigrid Methods (AMGs) [9] are a family of multigrid methods
that solve a hierarchy of discretisations. They are named algebraic because
only depend on the coefficients of the matrix. Multigrid methods are optimal
because they can solve systems with N unknowns doing O(N) work, and
parts of the work can be efficiently distributed and performed in parallel [35].

Multigrid methods employs two processes, smoothing and course-grid
correction. Smoothing is applying a smoother, typically a simpler iterative
method like Incomplete Lower Upper factorisation (ILU) or Gauss-Seidel, and
course-grid correction is solving a course-grid system of equations and transfer
the result back into the finer grid through interpolation. Alternative names
are relaxation and prolongation for the smoothing and the interpolation,
respectively. Falgout [9] is a nice introduction to AMGs, and Algorithm 2.4
is the generalised two-grid method described in the paper.

Algorithm 2.4 Generalised two-grid AMG
Input: The real coefficient matrix A
Input: The constant vector b
Input: the course-to-fine grid prolongation mapping P
Output: The solution vector x

1: Do v1 smoothing steps on Ax = b
2: r = b−Ax = Ab
3: Solve Acbc = P T r
4: Correct x← x + Pbc

5: Do v2 smoothing steps on Ax = b

2.2 High-performance computing

This section briefly discusses they key concepts of scalable - and high per-
formance computing. Since it is not an integral part of this thesis, but is
an important aspect of OPM and reservoir simulation in general, it is in-
cluded. For a thorough description of the modeling of high performance and
heterogeneous systems, see Meyer’s doctoral thesis [20].

2.2. HIGH-PERFORMANCE COMPUTING 17

2.2.1 Amdahl’s Law

Amdahl’s Law is a model that describes the maximum achievable improve-
ment to a solution when only a part of the solution is improved. Amdahl’s
observation [2] was later used to derive the following formula.

Definition 2.17. Amdahl’s Law

Speedup = 1
rs + rp

n

(2.15)

where rs +rp = 1, rp is the sequential part of a program, rp is the parallelisable
part of a program and n are the number of processors.

Briefly, the consequence of Amdahl’s Law is that achievable improvement
from parallelisation is bounded by the sequential portion, which quickly
dominates the execution time. This is known as strong scaling, i.e. how
quickly can I solve this problem.

Put into numbers, consider a problem where exactly 50% of the solution
can be parallelised. Putting these numbers into Equation 2.15 we get:

1
0.5 + 0.5

n

The equation is similar for a parallel portion of 95%. Solving this for
n = 1, 4, 8, 32, 64, 128, 256 we get the results in Table 2.3. Regardless of
how many processors we add we cannot achieve more than 2x and 20x
speedup respectively. Figure 2.7 plots Amdahl’s Law for different values, and
demonstrates that improvements to parallelism has an upper bound.

2.2.2 Gustafson’s Law

Gustafson’s Law provides a counterpoint to the pessimistic view of Amdahl’s
Law by changing the assumption that the data set is of constant size. The
law was first described by Gustafson and Barsis [11].

Definition 2.18. Gustafson’s Law

Speedup = n− α · (n− 1) (2.16)

18 2. BACKGROUND

Table 2.3: Achievable speedup according to Amdahl’s Law

n 50% 95%
1 1.0 1.0
4 1.6 3.48
8 1.78 5.92
32 1.93 12.54
64 1.97 15.42
128 1.98 17.42
256 1.99 18.62

where

n is the number of processors

α is the non-parallelisable portion (ps in Amdahl’s Law).

This observation gives a new dimension to scaling, which is sometimes
referred to as weak scaling, and briefly turns the question of improvement
into how big a problem can we solve given a set amount of time?. According
to Gustafson, improvement through parallelisation is possible and feasible,
given that the problem is scaled accordingly. Figure 2.8 plots the scaling
predicted by Gustafson’s Law, analoguous to Figure 2.7

2.2.3 Amdahl’s Law and Gustafson’s Law for multicore
systems

Recent research discuss the validity of both Amdahl’s Law and Gustafson’s
Law in modern computing. Hill and Marty [13] suggest that Amdahl’s Law
also applies for multicore chips. However, Sun and Chen [32] claim this is just
a corollary to Amdahl’s Law, and propose a memory bounded performance
model, and points out that multicore architectures tends to have more (fast)
memory with more cores, and claim that by scaling the problem size according

2.2. HIGH-PERFORMANCE COMPUTING 19

21 23 25 27 29 211 213 215 217

2

4

6

8

10

12

14

16

18

20

Number of processors

Sp
ee
du

p

Parallel portion
20%
50%
75%
90%
95%

Figure 2.7: Achievable speedup and their bounds for different parallel
portions according to Amdahl’s Law. The x-axis scale is logarithmic.

to the number of cores we can achieve scaling, in accordance with Gustafson’s
Law.

2.2.4 MPI

Message Passing Interface (MPI) [18] is a message passing library specification,
with multiple available implementations, including the popular free1 MPICH
and OpenMPI. It is supported by virtually all high-performance computing
systems, and allows application developers to write performant and portable
code. MPI-1 was designed for C and Fortran77. MPI-2 [19] extends on this
by adding bindings for Fortran90 and C++.

1Free as in free licence, not just cost-free.

20 2. BACKGROUND

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
·105

0

0.5

1

1.5

2

2.5

·105

Number of processors

Sp
ee
du

p

Parallel portion
20%
50%
75%
90%
95%

Figure 2.8: Achievable speedup and their bounds for different parallel
portions according to Gustafson’s Law.

MPI is designed around the concept of a communicator, an object
that acts as a post office for subsets of the processes involved in the full
system. This is the only way for processes to communicate - no direct memory
sharing is possible and all messages between processes must be sent via a
communicator that both processes are a part of. This means all communication
and parallelisation is explicit. Any MPI process can be a part of arbitrary
many communicators. An MPI process is an execution of a full program, i.e.
it has a one-to-one mapping with say a unix process, but the processes do
not require to be run on the same computer in order to communicate. These
are important concepts for PETSc and other libraries that rely on MPI for

2.3. NUMERICAL SOFTWARE 21

0

2

4

6

8

1

3

5

7

9

Comm-even Comm-odd

Comm-world

Figure 2.9: An MPI application with three communicators

communication, but it is often sufficient for programs to only use a global
communicator and a single computer.

2.3 Numerical software

This section briefly introduces some well established numerical software
packages that have been studied, considered or used for this thesis.

2.3.1 BLAS and LAPACK

Basic Linear Algebra Subprograms (BLAS) is a specification originat-
ing from a Fortran library [16], with bindings to both C and Fortran, and is
the de facto interface for linear algebra libraries. Many vendors offer their
own BLAS-compatible library, such as ACML by AMD and MKL by Intel.

Linear Algebra Package (LAPACK) [21] is one of the standard li-
braries, written in Fortran, that relies on BLAS and provides routines for
solving higher level problems than BLAS, such as eigenvalue problems and
linear least squares.

22 2. BACKGROUND

2.3.2 DUNE

Distributed and Unified Numerics Environment (DUNE) and the DUNE
Iterative Template Solver Library (ISTL) [5] is a modular GPLv2 licenced
collection of solvers and data structures, developed in C++ by several uni-
versities and research institutions, including the universities of Heidelberg,
Freiburg and Münster, as well as the International Research Institute of
Stavanger. Similarly to the C++ standard template library, DUNE separates
data structures from algorithms and relies heavily on generic programming
techniques and static polymorphism to achieve high-performant and flexible
code.

DUNE is the established numerical engine in the upstream OPM project.

2.3.3 Hypre

Hypre is a library developed at Lawrence Livermore National Laboratory
which provides several high-performance solutions for linear systems. The
main strength is the multigrid preconditioners for structured and unstructred
problems [10].

2.3.4 Fluent

The Fluent software by ANSYS is a commercially avilable software for mod-
elling flow, turbulance and similar pyhsics. While the licencing model of
Fluent is not compatible with OPM, they have since the 15.0 release support
for GPU accelerated numerical computation [22].

2.4 PETSc

Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of
data structures and routines for scientific computing [4] developed by Argonne
National Laboratory. It is designed for large-scale scientific computation,
written mainly in C with some code in Fortran and C++, uses MPI for
distributed computing and message passing and performs basic numerical
computation with BLAS and LAPACK. It is broken up into into several
major components, summarised in Table 2.4, all with multiple underlying
implementations with different characteristics. The same program can thus

2.4. PETSC 23

Table 2.4: Major components in PETSc, e.g. Mat has several different
matrix representations.

Vec Vectors and vector operations
Mat Matrices and matrix operations
PC Preconditioner algorithms and configuration
KSP Krylov subspace methods
SNES Non-linear equations solvers and configuration
TS Time-stepping components

solve a linear system using both CG and GMRES, determined by command-
line options.

This architecture also enables extensions and plugins, as well as third-party
sub engines. PETSc currently has experimental GPU acceleration support,
which is achieved through the ViennaCL library for OpenCL and CUDA
routines for CUDA. PETSc also supports the Hypre package, UMFPACK2,
MUMPS3, SuperLU4 and more.

Run time configuration is done by storing options in a global options
database, which is made available to all processes. PETSc code can then opt
to not specify what implementation to use for some object, and have PETSc
query the database to determine what to use. The options database can be pop-
ulated both by user run-time options (typically the command line, but also en-
vironment variables and configuration files), calls to PetscOptionsSetValue
and PETSc defaults. This allows for last-minute configuration of memory
layout and algorithm choice, depending on what works best for the data set
at hand, and what hardware is available at the machine running an instance
of the program.

MPI plays a major role in the design of PETSc, and all objects must
be connected to some MPI communicator, even when PETSc is compiled

2http://faculty.cse.tamu.edu/davis/suitesparse.html
3http://mumps-solver.org/
4http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://mumps-solver.org/
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

24 2. BACKGROUND

without MPI support, in which case the communicator is a trival handle,
and single-processes executions. This however, mean that the same program
can be used for single-processor, multi-process and distributed execution
environments, which makes code written in PETSc very flexible and portable.

The design is object oriented, meaning that the major components of
Table 2.4 are the classes that can be instantiated. The class of an object
determines what messages, implemented as C function calls, it can receive.
This ensures a uniform interface and hidden implementation, which helps
PETSc achieve polymorphism. Objects can only interact with eachother if
they belong to the same communicator.

PETSc-object

Vec

Mat

seqaij

mpiaij

seqbaij

mpibaij

· · ·

seqdense

mpidense

seqviennacl

mpiviennacl

PC

KSP

SNES

TS

Figure 2.10: PETSc classes and their is-a relations.

Finally, PETSc provide excellent debugging and profiling tools, such

2.5. C++ 25

as run-time measurement on matrix insertion efficiency, allocations needed,
wasted space as well as error tracing, performance logging, event logging,
distributed GDB integration and more.

2.5 C++

C++ is a powerful and standardised [14] multi-vendor programming language
that is mostly source-compatible with C [28] and has a strong focus on low-
cost abstractions. C++, along with C and Fortran, make up the three most
popular languages for performant scientific computing. This section describes
som of the core features that are important for this work. Some familiarity
with C-like programming languages is required to understand this section.
For a thorough introduction and description of the language, please refer to
the books discussed in Section 2.6. This section relies on basic understanding
of C-like syntax and basic programming concepts.

The C programming languages deals primarily with raw types of data,
namely primary types such as char, int, and double, the aggregates struct
and union, and pointers. The term object has traditionally been used for
an arbitrary block of data, including integers, but has additional meanings in
certain C++ contexts. The term object throughout this thesis generally refer
to this exact meaning, not a strict object-oriented programming definition,
although the object-oriented meaning can arguably apply in all both at the
conceptual level. union will not be discussed as it is a rarely used feature in
C++ and does not appear in the thesis work at all.

2.5.1 Complex objects

Primary types are largely the same in C++ as in C, but C++ extends struct
behaviour and introduces the new keyword class. Both enable the design
of complex objects, which has access rules, implicitly called routines and
(optionally) member variables and functions, sometimes called methods.

The C++ compiler enforces complex type member access. This enables
class designers to hide data and functionality from the user and expose it to
the compiler. An example can be seen in Listing 2.1 where an instantiation

26 2. BACKGROUND

Listing 2.1 Class member accessability
1 class A {
2 public :
3 int read () const { return this ->x; }
4 private :
5 int x = 10;
6 };
7
8 int main () {
9 A a;

10 std :: cout << a.x << std :: endl; // illegal
11 std :: cout << a.read () << std :: endl; // legal
12 }

can be allocated in an activation record, but disallow direct member access.
The types of memory access are:

Public All code with a reference to the object can access public members.

Protected No code outside the scope of the class itself or its children can
access protected members.

Private No code outside the scope of the class itself can access private
members.

While the struct is a complex type, C++ preserves the notion of the C
struct with the definition of Plain Old Data (POD)[14, §9 class]. Briefly, a
POD is guaranteed to have the same memory layout as if written in C, which
requires it to only consist of primary types and other PODs, have no protected
or private members, only trivial constructors and no explicit destructor. The
struct and class keywords are equivalent with the exception that members
of a struct are public by default, and members of a class are private by
default.

2.5.2 Constructor and destructor

C++ introduces the concept of the constructor. The constructor is a special
function that initialises an object. Primary types, such as int and double,

2.5. C++ 27

are for performance reasons and C compability not initialised, i.e. unless
a value has explicitly been assigned to a variable, its value is unspecified.
Complex objects, such as classes and structs, will always be properly initialised
by either a compiler-generated constructor or an explicitly defined one. The
constructor will initialise, and potentially recursively construct, the members
of a complex type in the order they were defined.

The destructor in C++ is a procedure performed at the end of the object’s
lifetime, and can be considered the reverse constructor. The destructor is
defined by the standard to always run whenever an object is about to go
out of scope, even in the case of exceptions [14, §15.2], and is a clean and
powerful way of cleaning up after objects. All classes have destructors, but it is
usually implicitly implemented by the compiler. Explicit destructors are still
sometimes needed, particularly when dealing with pointers and other explicitly
managed resources. For primary types the destructor can be considered a
no-op during the tear-down of the activation record.

Analogous to constructors, destructors are recursive in terms of classes,
so that every child will be fully destructed before the parent’s destructor is
called, and members are destroyed in the reverse order they were defined.
Accessing a destroyed object is undefined behaviour.

These features give rise to the concept of object lifetimes. An object is
considered to be alive when its constructor has finished executing, and before
its destructor is invoked. Both constructors and destructors can perform
arbitrary computation, which includes the acquisition or release of non-trivial
resources such as file handles and heap objects.

2.5.3 The this pointer

Within the scope of a class member function, there is a special variable called
the this pointer [14, §9.3.2 class.this], which has the value of the adress of
object on which the function is called.

When a function is declared a member of a class, it is actually the
function being made aware of the object, not the object being made aware
of the function. The compiler implicitly passes the object adress as an

28 2. BACKGROUND

Listing 2.2 Inheritance
1 class A {
2 public :
3 int read () const { return x; }
4
5 private :
6 int x = 10;
7 };
8
9 class B {

10 public :
11 /* expose and call A (parent ’s) read */
12 int read () const { return parent .read (); }
13
14 private :
15 A parent ;
16 };
17
18 class C : public A {};

argument to the function, effectively transforming the call foo.method() into
method(&foo).

2.5.4 Inheritance

Class inheritance is specifying a special relationship between two distinct
classes, as summarised in Listing 2.2, where class C automatically does what
class B does manually - make class A a hidden member, but expose its
operations. Inheritance is subject to accessors analogous to members.

Public inheritance in C++ establishes an is-a relationship between two
classes, called the parent and the child, as well as automatically adding
every public visible symbol of the parent class to the child class. In C++, a
public-inherited child class is a subtype of its parent. Briefly, anything that
is public in the parent class is public in the child class in the case of public
inheritance. Child classes can provide their own implementation to parent
methods if the parent method has been marked as virtual, but this C++
feature has not been utilised in the thesis work and will not be discussed
further.

2.5. C++ 29

When a child classed is used in a function, the compiler will first look after
the function that takes the child class C as an argument. If it cannot be found,
it will look for the symbol which takes its immediate parent A as an argument,
effectivly casting from C to A. Going with the example in Listing 2.2, the com-
piler can translate c.read() to read(&c), a symbol which will not be found,
before it tries read((A*)&c). Two submitted proposals for C++17, N4164 [33]
by Sutter and N4174 [30] by Strostroup, put forward a unified call syntax
where this relationship is explicit, i.e. the function seek(file, bytes,
options) can be called as file->seek(bytes, options). Strostroup also
argues that the reverse should also be valid.

While not enforced by the language, it is considered bad design if a child
class, or subtype, does not match the properties of the parent. This was
formulated by Liskov and Wing in 1994 [17], and is known as the Liskov
substitution principle.

Definition 2.19. Liskov substitution principle Let q(x) be a property
provable about objects x of type T . Then q(y) should be provable for objects
y of type S, where S is a subtype of T .

Private inheritance does not establish the is-a relationship between the
parent and the child; instead, the parent class is merely an implementation
detail of the child class and the inheritance is used as an implementation
technique for code reuse and modularity. An example of this is discussed in
Section 4.5. It does not automatically get the parent class interface, but can
internally use the parent’s public members, as well as implcitly using the
parent’s storage. This is equivalent of using the parent class as a member
variable, but using inheritance can provide some syntactical shortcuts. The
child class can expose individual parent features through the using keyword.
See Listing 2.3 for an example.

2.5.5 Overloading

C++ supports overloading, i.e. using the same symbol name for different
symbols. In C++, the function name, arity and argument types are all parts
of the symbol name, meaning foo(int), foo(int, int) and foo(double)
are three different functions.

30 2. BACKGROUND

Listing 2.3 Private inheritance
1 class A {
2 public :
3 void foo ();
4 void bar ();
5 };
6
7 class B : private A {
8 public :
9 using A:: foo;

10 };
11
12 int main () {
13 B b;
14 b.foo (); // ok
15 b.bar (); // illegal
16 }

Overloading does not only apply to functions, but also class methods and
operators. This is a very useful feature when writing (statically) polymorphic
code and in the design of good interfaces.

2.5.6 Template programming

C++ offers a very powerful [34] compile time sub language called templates.
Templated functions and classes are parsed and represented internally in the
compiler, but not fully completed until they are instantiated with a specific
type. The representation is then copied and the template placeholders are
substituted with the actual type. This allows for very flexible, type safe code
at the cost of more expensive compilations.

The C++ standard library is packed with templated code. An exam-
ple is the popular vector container which is templated on both a value
type and its resource allocator. std::vector<int> is a different type than
std::vector<char>, but their interfaces are identical and they perform as if
they were implemented by hand as vector_int and vector_char.

Templates and template signatures are sometimes time consuming to write,
but are rewarding in terms of extra compile time safety. The compiler can in a

2.5. C++ 31

Listing 2.4 Template programming
1 template < typename T, typename U >
2 T max(T x, U y) {
3 // assumes T > U is defined
4 if(x > y) return x;
5 return y;
6 }
7
8 int find_max (int* arr , int size) {
9 int current = numeric_min ();

10 for(int i = 0; i < size; ++i) {
11 // calls max < int , int >
12 current = max(current , arr[i]);
13 }
14
15 return current ;
16 }

lot of cases infer what specific template to use at the call site from arguments,
see listing 2.4 for an example.

C++11 introduced variadic templates, templates that take a variable
number of arguments. This is similar to C’s va_arg, except types are expanded
and instantiated compile time. One key application is recursively expanding
and generating functions, classes and invocations - such as the solve function
described in Section 4.8.

2.5.7 Move semantics

Temporary values in C++ before C++11 were unmodifiable, but the introduc-
tion of move semantics and rvalues, syntactically denoted T&&, changed
this. Move semantics allow some optimisations that would otherwise trigger
deep copies right before the destruction of the original. Since temporary value
references are now distinguishable from regular references, classes can provide
different constructors and overloads, which can help implement clear transfer
of resource ownership.

Consider the code in Listing 2.5. Until C++11, the contents of the

32 2. BACKGROUND

Listing 2.5 move without copy
1 std :: vector allocate_large_vector ();
2
3 int main () {
4 std :: vector x = allocate_large_vector ();
5 }

std::vector would have to be copied into a temporary5 variable, and the
original, inside the allocate_large_vector function would be destroyed by
going out of scope. Values given to return are implicitly rvalues as they can
no longer be used anyway, so the underlying pointers of the std::vector
containers are simply copied, without having to copy whatever they point to.
This saves a potentially expensive copy operation, even though the program
behaves as if the std::vector was copied.

2.5.8 Resource Acquisition is Initialisation

Resource Acquisition Is Initialisation (RAII) is an idiom, not a feature, but
relies on the capabilities of the constructor and the destructor, and is fun-
damental to the design of the library. Using RAII, resources are acquired
during object construction, the beginning of its lifetime, and released when the
object lifetime ends and its destructor is called, as opposed to use temporarily
uninitialised variables, init functions etc. This idiom simplifies resource man-
agement, provides exception safety and simplifies reasoning about programs.

The simplest example of RAII is the management of heap-allocated mem-
ory, see Listing 2.6. However, RAII works for resources in general, including
file descriptors, database handles and third party initialsation and cleanup
routines.

2.6 Further reading

Kreyszig [15, parts B and E] is an easy introduction to the fundamentals
of linear algebra and numerical methods through software; Butenko [7] is

5We assume that return-value optimisation does not apply.

2.6. FURTHER READING 33

Listing 2.6 RAII managing a heap-allocated array
1 class vec {
2 public :
3 vec(int s) :
4 storage (new int[sz]),
5 size(sz)
6 { /* acquire resources */ }
7
8 ~vec () {
9 /* release resources */

10 delete [] this -> storage ;
11 }
12
13 private :
14 int* storage ;
15 int size;
16 };

another nice alternative. Press [23] provides an introduction to numerical
analysis and a lot of algorithms with code examples.

Stroustrup [31] is a thorough and beginner-friendly introduction to C++
programming. For an introduction to effective generic programming tech-
inuqes, see Alexandrescu [1]. For a K&R style language reference, see
Strostroup [29].

For an introduction to profiling tools such as gprof and valgrind, GPUs,
and optimising for GPUs, see Stinessen [27] and Skolmedal [26].

Chapter3Upscaling

This Chapter introduces some of the terms and concepts that comes across
in reservoir simulation, reservoir engineering and exploration, and describes
the main aspects of upscaling and the upscale family of programs in OPM.
Section 3.1 introduces some basic concepts of reservoir engineering and Darcy’s
Law. Section 3.2 explains the basics grids required to understand upscaling,
while Section 3.3 describes the basics of upscaling. Section 3.4 describes the
upscale program design and characteristics. Finally, Section 3.5 discusses the
scalability of the upscale programs.

Algorithm 3.1 The general OPM upscale design.
Input: Model and rock descriptions
Output: Upscaled model

1: parse model
2: parse functions
3: tesselate the grid
4: upscale

3.1 Reservoir engineering, permeability and
Darcy’s Law

Hydrocarbons such as petroleum and natural gas are typically found in
subsurface reservoirs, pools of porous or fractured rock formations trapped
under overlying rocks with low permeability that form a seal. Permeability
is the measure of the ability a porous medium has to allow fluid to pass

35

36 3. UPSCALING

Figure 3.1: A porous rock with clearly visible perforations. Used with
permission from Jonathan Zander.

through it. The SI unit is m2, however the practical unit darcy, d = 10−12m2,
is often used. A porous medium, sometimes referred to as a porous material,
is a material that consists of pores or voids. Typically these pores are filled
with a fluid, which in the case of the oil reservoir would be hydrocarbons.

Hydrocarbons and other fluids can flow through porous media. The
superficial flow velocity, the hypothetical flow velocity if the fluid in
question was the only one present in a given area, is described by Darcy’s
Law.

Definition 3.1. Darcy’s Law

v = κ

µ

∆P
∆x (3.1)

v is the superficial fluid flow velocity.

κ is the permeability of the medium.

3.2. GRID 37

Figure 3.2: The tesselated Norne reservoir. Used with permission from the
OPM Initiative.

µ is the dynamic viscosity of the fluid.

∆P is the applied pressure difference.

∆x is the thickness of the porous medium bed.

A fault is a fracture or discontinuity of rock with relative displacement of
the rocks on the opposite sides of the fracture. Flux is the rate of flow per
unit area.

3.2 Grid

A grid is a discretisation of a model, meaning turning a geological model of
a field into a discrete system on which we can solve equations. A tesselated
representation of the Norne reservoir can be seen in Figure 3.2

38 3. UPSCALING

Figure 3.3: A simple 3D Cartesian grid (dimensions 5 x 3 x 2)

Figure 3.4: A 3D hexahedral grid.

The simplest 3D grid is the cartesian grid, where the identically shaped
cells can simply be identified with their (x, y, z) index values, as seen in
Figure 3.3.

The simple cartesian grid is rarely sufficient for a good capture of the
geometry of a reservoir. OPM has support for several different grid types,
but the most common are hexahedral grid (or corner-point grid), which
allows a more precise description of faults, and the unstructured grid. The
hexahedral cell is defined by the positions of its eight corners and bilinear
planes as its geometry, as shown in Figure 3.4. The pillars of the corner-point
have some lexicographic ordering.

The basic coordinate system of the corner-point grod can still be unsuitable
for the irregularities of a reservoir. In these cases, truncating or distorting
the grid can be done, but other solutions include multiple-domain grids,

3.3. BASICS OF UPSCALING 39

Figure 3.5: Used with permission from Statoil.

where an additional parameter to the (x, y, z) indexing is added to specify
the local grid system, local grid refinements or the unstructured grid.

An unstructured grid is a space tesselated by simple shapes. Unlike
the discussed grids in a regular coordinate system, unstructured grids requires
tracking of connectivity, as in a graph.

3.3 Basics of upscaling

Upscaling is an averaging procedure where we coarsen the characteristics
of a finer scale model into a coarser model. Coarser in this sense means
with larger, less precise grid cells. 3D geological models may contain very
detailed descriptions of the reservoir, and while it would be nice to preserve
these details in all simulations, the computational requirements can become
impractical. The coarser, upscaled model is often sufficient for reservoir
engineering, and can greatly reduce the total computational cost.

Simplified, we calculate the flow velocity through a cell with Equation 3.1,
Darcy’s Law. We ignore viscosity for now, as it is a constant contribution
for a single fluid, and the thickness of the bed can be considered constant as
well. This reduces upscaling to the approximation of Equation 3.2, a linear
function of permeability and the pressure difference.

v = κ∆P (3.2)

40 3. UPSCALING

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

0

0.2

0.4

0.6

0.8

1

Water saturation (Sw)

R
el
at
iv
e
Pe

rm
ab

ili
ty

(κ
r
)

Water phase permeability (κrw)
Oil phase permeability (κro)

Figure 3.6: Upscaled relative permeability of an example grid.

κ is as before a property of the rock. However, the assumption for the
upscale_relperm there is not only water, but also oil present. We introduce
the functions krw and kro to correct for this, as oil flows better when most
of the rock content is oil, and vice versa for water. The term krκ is called
phase permeability and depends on the water saturation of the cell, as
seen in Figure 3.6.

v = krκ∆P (3.3)

3.4. PROGRAM DESIGN 41

3.4 Program design

The family of upscaling programs in OPM follow the same design, depicted in
Figure 3.1. Exactly what the upscale step entails depends on the considered
property of that particular run or configuration. The case I have studied
the most is upscale_relperm program which performs upscaling as discussed
in the previous section. Algorithm 3.2 fleshes out the upscaling step from
Algorithm 3.1.

Algorithm 3.2 The general OPM upscale_relperm design
Input: Model and rock descriptions
Output: Upscaled model

1: parse model
2: parse functions
3: tesselate the grid
4: upscale capillary
5: upscale single-phase permeability
6: for all upscaling points do
7: upscale saturation point
8: end for

The upscale programs use DUNE as the third party numerical engine for
most of its work, which is solving the linear system that arises from some
equation, typically Darcy’s Law, such as the solver I have studied which is
described in this section. A significant portion of the program is spent solving
these linear systems: Table 3.1 shows the timings for the different parts of an
unmodified upscale_relperm with DUNE as its backend. The measurements
was performed on my workstation and development machine, the specification
of which can be found in Table 4.1. The unmodified program uses FastAMG
as preconditioner and CG as the Krylov subspace algorithm.

The upscale programs use the IncompFlowSolverHybrid solver in opm-
porsol, which uses Darcy’s Law to model mixed formulation incompressible
flow. The discretisation procedure produces the linear system of Equation 3.4,
where v are the interface fluxes of each cell and p are the cell interface

42 3. UPSCALING

Table 3.1: Execution time breakdown for an unmodified upscale_relperm.

Program part Time (seconds) Portion (%)
Parsing grid 16.5 3.46 · 10−2

Tesselation 5.1 1.07 · 10−2

Min/max capillary pressure 0.06 1.26 · 10−4

Upscaling capillary pressure 42.9 9 · 10−2

Upscaling 4702.39 98.6
Total 4766.95 100

pressures.

B C D

CT 0 0
DT 0 0

v

−p
π

 =

f

g

h

 (3.4)

By performing Schur complement analysis [37] Equation 3.4 is transformed
to Equation 3.5.

B C D

0 −L −F
0 0 S

v

−p
π

 =

f

ĝ

r

 (3.5)

where

L = CTB−1C

F = CTB−1D

S = DTB−1D − F TL−1F

ĝ = g − CTB−1f

r = DTB−1f + F TL−1ĝ − h

3.5. SCALABILITY 43

A linear solver package, e.g. DUNE, solves the subsystem

Sπ = r (3.6)

By using the computed solution to Equation 3.6, the simpler systems of
Equation 3.7 and Equation 3.8 yield the cell fluxes and interface pressures
through a back substitution process.

Lp = ĝ + Fπ (3.7)
Bv = f + Cp−Dπ (3.8)

3.5 Scalability

Achieving scalability is not the main topic of this thesis, however, it is an
interesting and useful property for reservoir software to have, and is desirable
in order to simulate large reservoirs within reasonable time. This section
briefly discusses some design choices and its consequences for parallelism in
the upscale family of programs.

The upscale programs all use a very simple parallelisation scheme. The
upscaling of the the single phase permeability is only done on the master
node, and the saturation points are distributed among the available MPI
processes. Interpreting this in the context of Amdahl’s Law (Equation 2.15),
the maximum achievable speedup is bounded by how much computing the
saturation points makes up of the full program. While this portion is quite
large (> 98%, see Table 3.1), Amdahl’s Law limits speedup to 71x with
the assumption that the parallel portion can be perfectly broken down. This
assumption, however, does not hold with the current implementation.

On the other hand, interpreting the scalability of this design choice in
context of Gustafson’s Law, as demonstrated in Equation 3.9, we can compute
Sp, the number of saturation points, within a time limit. Gustafson’s Law,
which fixes time spent instead, provides a better tool for modelling the
scalability in a task-oriented manner, which applies to the upscale design. A

44 3. UPSCALING

task is an uninterruptable computation that runs linearly from start to finish,
and the upscaling of each saturation point is an example of such a task. It is
worth noting that performing the task-internal computation in parallel is a
possibility, but would in terms of scaling reduce the wallclock time of each
task, without changing their externally sequential behaviour.

n = Sp

Speedup = n− α · (n− 1) (Gustafson’s Law) (3.9)

A noteworthy property of upscaling is that the problem size has its natural
limits. It is bounded both by the the practical size of the surveyed data, i.e.
how big the reservoir actually is, and the limits of significance for the results,
i.e. properties of rock far away from the reservoir will not have any impact on
the reservoir itself. This means we cannot keep on increasing the size of the
reservoir to preserve scaling. However, since the limiting factor in scalability
is the number of saturation points to be upscaled, and more processors would
allow us to upscale more saturation points within a given time, as modelled
by Equation 3.9. Increasing the number of saturation points will yield a more
fine-grained function, as show by the two graphs in Figure 3.7. This may or
may not be interesting beyond a certain point.

The parallelisation scheme is static, i.e. there is no work stealing, load
balancing or scheduling. Assuming no overhead and perfect parallelisation,
execution time is dominated by the slowest saturation point. Figure 3.8
demonstrates a parallel run of the upscale_relperm. The linear solver is called
within each instance of perm and satnum.

3.5. SCALABILITY 45

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

0

0.2

0.4

0.6

0.8

1

Water saturation (Sw)

κ
r o

κr0 , 30 saturation points

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

0

0.2

0.4

0.6

0.8

1

Water saturation (Sw)

κ
r o

κr0 , 60 saturation points

Figure 3.7: Upscaled relative permeability with 30 and 60 saturation points.

46 3. UPSCALING

parse model

parse
functions

tesselate grid

upscale
capillary

perm satpoint satpoint

output

· · · satpoint

Figure 3.8: The OPM upscale_relperm parallel design.

Chapter4Integrating PETSc with
OPM

This Chapter describes the main work of this thesis, which is the design
and implementation of the integration layer so that PETSc could be used
with ease in OPM programs. The motivation for this is access to PETSc’s
algorithms, third party support and excellent profiling - and debugging tools.
While performance always is of interest, improving overall performance is not
the goal, but instead a potential benefit. Section 4.1 briefly describes how the
thesis work was done, while Section 4.2 discusses the motivations for additional
code on top of PETSc, instead of just porting applications using no abstraction.
Section 4.3 describes the use of types, and Section 4.4 extends on the idea
of a higher level interface to PETSc features. Sections 4.5, 4.6, 4.7, and 4.8
describe the interfaces and implementations of the individual components of
the thesis work. Finally, Section 4.9 describes the necessary steps to port
upscale_relperm to the PETSc backend, and Section 4.10 describes bugs found
and fixed during development and testing.

4.1 On development

An iterative refinement model was employed for the thesis work, where a
component, say Vector, was the focus of the design. An initial design was
developed, tested, before the need of a redesign was evaluted. Testing includes
profiling and performance evaluation as well as experimenting with the quirks,
edge cases and general behaviour of the component in question. More than
three different Vector approaches were tested before the final design was
settled. To test the finalised design, the upscale_relperm was ported to get a

47

48 4. INTEGRATING PETSC WITH OPM

Table 4.1: Workstation hardware configuration.

System
CPU Intel Core i7 950 (Bloomfield)
Frequency 3.07 GHz
Cores 4 (8 with HT)
Memory 12 GB
Instruction set x86_64
GPU Nvidia GeForce GTX980
Video driver nvidia-346.47
OS Ubuntu 14.04
GCC 4.8.2

feeling of how the design worked in practice. The resulting interfaces were
submitted as a working draft on a standard interface for linear algebra and
numerical computation in OPM.

Development and initial profiling was done on my HPC-lab workstation,
specifications listed in Table 4.1.

4.2 Motivation for a library

Adding support for a new third-party mathematical engine into an existing,
well-established project can require substantial effort. Different conventions,
slightly different semantics, different interface guidlines and different types
all contribute to friction between established code and code yet to be written.
This chapter discusses the design choices, techniques and the resulting PETSc
support library developed during this thesis.

Consider the code examples in Listing A.11. This is solving a very simple
system in PETSc. While still easy to understand, this style of code is alien
to a modern C++ codebase. Listing A.10 is equivalent code written with the
OPM PETSc library.

4.3. TYPES AND CONTAINERS 49

The goal of this is to make interacting with PETSc easier, so that code
can be developed faster, simpler, and, ideally, with fewer bugs.

A remark on philosophy: the goal was not to support all of PETSc’s
features, but rather provide easier access to commonly used structures and
functions. In light of this, I have only implemented a small subset of the
features for both containers and solvers, and extended this subset when
needed. This way, less initial code must be developed and tested, at the
cost of burdening future maintenance with adding more features as needed.
However, this removes a burden of implementing features that will never be
used, and keeps the library as slim and simple as possible.

4.3 Types and containers

As discussed in Section 2.1.1, the primary tools for linear algebra and numerical
computation are matrices and vectors. One of the established third-party
numerics engine in OPM, DUNE, has a variety of matrix and vector types.
Table 4.2 lists the matrix and vector types available in DUNE 2.3. BCRSMatrix
is by far the most used matrix class.

Table 4.2: Containers in DUNE 2.3

Matrix
BCRSMatrix< > Block compressed-row storage
BDMatrix< > Block-diagonal
BTDMatrix< > Block-tridiagonal
Matrix< > Dense matrix

Vector
BlockVector< > Vector of blocks
VariableBlockVector< > Vector of differently sized blocks

PETSc offers its own vector and matrix types. However, contrary to DUNE,
PETSc only provides a polymorphic handle to all types, and determines the
actual implementation at runtime. This design choice, coupled with PETSc
being written in C, means there is no lifetime management of objects, and

50 4. INTEGRATING PETSC WITH OPM

the programmer is responsible for managing and releasing resources. This
applies to all PETSc types, and is not limited to matrices and vectors. This
conflicts with the lifetime-managed idioms of modern C++, which is applied
by DUNE and OPM, and in order for PETSc to integrate well with OPM and
be easier to use, and a set of smart pointers areound the PETSc handles are
developed. These provides automatic memory management at zero additional
runtime cost through RAII, as described in Section 2.5.8.

The polymorphic property of PETSc containers has been carried over to
the library. Consequently, there are only two containers in the library; Vector
and Matrix. This was a conscious design choice in order to map closely onto
PETSc definitions and to support configuration via the options database
(described in Section 2.4). Extensions, such as strict single-type containers,
are discussed in Section 6.3.

4.4 High-level interface

PETSc is written in C, and can be called without modification or special
Foreign Function Interface (FFI) bindings from a C++ program. However,
due to some design choices in PETSc and some limitations in the C language,
the interface is largely alien in a modern C++ codebase. Since there is no
need for language bindings per se, my support library consists mostly of a
higher-level reformulated interface to PETSc functionality.

When designing the library I put an emphasis on static properties and
ease of use. The main solution for this was encouraging only expressing
data transformation in terms of algebraic operations, and not through direct
memory manipulation, i.e. on a higher level. This brings three major benefits.

Brevity Reducing the amount of code needed to utilise PETSc solvers in
either a new program or when porting a program to the new numerical
back-end. Listing A.10 demonstrates how to solve a linear system using
my support library, and Listing A.11 shows the equivalent code in
unmodified PETSc.

Code clarity The second is code clarity, and is related to brevity. With
algorithms easier to read and implementation complexity abstracted

4.5. COMMON AND MIXINS 51

away, it is easier to focus on the problem at hand. OPM does not
attempt to be a linear solver, but a simulator, so the full-scale flexilibity
and configurability of a linear solver package is not needed.

Scalability When the programmer cannot directly modify or even read
memory, the synchronisation task is much less daunting, because we
now can assume more about memory accesses, thread safety and data
dependencies.

In fact, due to PETSc’s MPI-oriented nature, there are rarely guarantees
that the cell you want to read or perform some low-level operation on it
actually is available to your process without (expensive) communication.
Considering that direct memory access are rarely ever needed, i.e. there
are usually other and better ways of expressing the algorithm, this is a
beneficial tradeoff.

The interfaces are discussed in more detail in the following sections.

4.5 Common and mixins

The core of all types introduced in the library is the uptr - a slightly modified
std::unique_ptr. The full implementation can be seen in Listing A.1. uptr
privately inherits from std::unique_ptr to relinquish the is-a relationship
and avoid the potentially wrong overload being called in the case where a
function takes an arbitrary std::unique_ptr< T >&&. The typedefs are
there to easier be able to access the raw, underlying types from classes using
this mixin.

The uptr modifies std::unique_ptr by removing some operations; the
assignment operator (=), the dereference operators (* and ->), the methods
release, reset, swap, get, and get_deleter. These operations are all
pointer specific, and the idea is for the uptr class to be the only one actually
dealing with a pointer - the classes using the mixin and their resulting interface
should not expose this implementation detail. Additionally, this ensures the
the responsilibties for resource management is left fully to the mixin.

52 4. INTEGRATING PETSC WITH OPM

As previously discussed, the aim has been to simplify PETSc use. However,
for some problems the programmer must do fine-grained configuration in
order to achieve performance or to use some feature not supported by the
OPM library. In these situations, an implicit conversion to the underlying
PETSc type is supported, operator pointer(). This allows uptr derived
objects to be used as drop-in replacements for PETSc handles in raw PETSc
functions.

The class is templated on the arbitrary type T, but the mixin itself is defined
in terms of T. This is done as an effort to make code more understandable, as
PETSc exposes the types Vec, Mat etc., which are pointers to some opaque
structures _p_Vec and _p_Mat. By defining uptr< T* > instead of uptr<
T >, it is sufficient for classes using the mixin to specify the PETSc handle,
not whatever the opaque structure is actually called, as seen in Listing A.3.
The uptr requires that struct deleter is defined for the child class, which
it in turn passes to std::unique_ptr. By not passing this explicitly as
in std::unique_ptr we keep declarations slightly simpler, at the cost of
implicitly passed information. deleter should call the approperiate Destroy
function for the PETSc object in question. Using this techinque, PETSc’s
explicit cleanup functions are called implicitly when an object goes out of
scope, which is what a modern C++ programmer would expect.

Besides modularising and reducing code duplication, the mixin provides
some level of provability to classes using it. Since all ownership and resource
management are managed in uptr, any class derived from this, as long as
they do not specifically override behaviour, will also have sound and verified
resource management, resulting in more confidence in code.

Implementing resource management using the uptr class does not con-
tribute any overhead in the resulting program. Resources would have to
be released regardless of mechanism, and the compiler will simply inject
deleter’s destructor whenever the object, and consequently uptr, goes out
of scope, and is no different from the programmer calling e.g. VecDestroy
manually. Additionally, since uptr has no member variables it does not
increase the size of the object [14, §5.10 expr.eq, §5.3.3 expr.sizeof, §9 class,
§9.2 class members].

4.6. VECTOR 53

4.6 Vector

The Vector class provides automatic storage and operations for PETSc’s Vec
class. The full interface with brief descriptions can be found in Table 4.3.

No default constructor is offered by Vector, which means that the library
actively prevents (i.e the compiler will refuse the program) classes of errors
and the need for checks that arises from performing operations that would
otherwise be undefined. The compiler enforces that Vectors must have a
size, that they are initialised properly and perform undefined actions such
as adding two vectors where one is of size 0. This also means that classes
that has Vector as a member variable must ensure it is initialised properly
during its own constructor to not be ill-formed. When programming with C
and PETSc directly, this is something the programmer must manually keep
track of and ensure, so the burden on the programmer is strictly less than
without the library.

Resource management for Vector is provided by uptr. This means that
a deleter struct must be defined, and is as in Listing A.4. This, unlike
uptr, uses the underlying symbol _p_Vec. This is an arbitrary choice, but
I consider deleter a very simple implementation detail, meaning the only
time it should be exposed is to a library developer, who is expected to have a
firm grasp of the concept. Additionally, implementing it differently requires
either as many lines of delegating code as the struct itself, or the use of a
new C++11 feature seen in Listing A.5 called decltype. While elegant, it is
slightly exotic and has not seen that much use yet, so I concluded that using
_p_Vec would be simpler.

In the code examined during the thesis work there has been little manipu-
lation of vectors - in fact, the most advanced use has been writing the constant
vectors and reading the solution vectors, and consequently few operations
have been implemented in Vector. Regardless, none of these features include
direct element access or reading memory. Instead, vectors are treated as
complete algebraic objects. Vector contents may possibly be distributed
across several MPI processes, but support for this is only experimental.

The Vector class uses a value-oriented design. Considering the code in

54 4. INTEGRATING PETSC WITH OPM

Table 4.3: Vector interface. const qualifiers omitted.

Constructors
Vector(Vec) Takes ownership of PETSc handle
Vector(Vector&) Copy constructor
Vector(Vector&&) Move constructor
Vector(size_type n) n-sized vector
Vector(size_type n,
scalar x)

n-sized x-element vector

Vector(std::vector&) Copy of a std::vector

Vector(std::vector&,
std::vector&)

std::vector copy at specific in-
dices

Queries
size_type size() Query vector size

Modifiers
void assign(scalar) Assign a single value to all entries

Operators
Vector& =(Vector&) Copy assignment
Vector& =(Vector&&) Move assignment
Vector& += scalar Add a constant to all entries
Vector& -= scalar Remove a constant to all entries
Vector& *= scalar Scale all entries
Vector& /= scalar Scale all entries
Vector +(Vector, scalar) Copy-then-add
Vector -(Vector, scalar) Copy-then-subtract
Vector *(Vector, scalar) Copy-then-scale
Vector /(Vector, scalar) Copy-then-scale
Vector +(Vector, Vector) Vector addition
Vector -(Vector, Vector) Vector subtraction
scalar *(Vector, Vector) Dot product

Functions
scalar dot(Vector&,
Vector&)

Dot product

scalar sum(Vector&) Sum
scalar max(Vector&) Max
scalar min(Vector&) Min

4.7. MATRIX 55

Listing A.6, a function from the library, where PETSc uses pointers and error
codes, and the library uses a return value. All features are implemented this
way, including matrices and solvers, which enables programmers to write
simpler code, with less aliasing. Additionally, since functions have return
values, there is no need for temporary variables that pollute the namespace
in order to read function output.

Most of the library consists of trivial calls to some corresponding PETSc
function, as seen in Listing A.6. While this might seem like unecessary to, in
the worst case, requires an extra activation record and return-value copy, all
which add up in a large program, there are some compelling arguments for
still doing it:

Memory access Most PETSc functions would immediately dereference the
PETSc object, which causes memory access assuming the object has
been evicted from the cache, which quickly dominates the overhead of
an extra activation record.

Non-trivial work Most functions perform non-trivial work which, which
makes the extra time spent handling activation records insignificant.

Programmer efficiency A small rise in programmer efficiency can be worth
a slight increase in runtime cost - otherwise, slower and higher level
languages such as Perl would not see much use.

Optimisation Through inlining, return-value optimisations and link-time
optimisations the overhead can even disappear completely, meaning we
get a nicer interface for free.

4.7 Matrix

The Matrix class uses uptr to wrap around PETSc’s Mat handle, and is
designed similarly to Vector. In fact, most of the considerations and deci-
sions discussed in Section 4.6 retarding value orientation, optimisation and
management also applies to Matrix. The interface is summarised in Table 4.4.

Matrices are often built in steps. In the case of the upscaler programs,
they are constructed by renumbering the grid, which is then traversed and

56 4. INTEGRATING PETSC WITH OPM

Table 4.4: Matrix interface. const qualifiers omitted

Constructors
Matrix(Mat) Takes ownership of PETSc handle
Matrix(Matrix&) Copy constructor
Matrix(Matrix&&) Move constructor

Queries
size_type rows() Query number of rows
size_type cols() Query number of columns

Operators
Matrix& =(Matrix&) Copy assignment
Matrix& =(Matrix&&) Move assignment
Matrix& *= scalar A = cA

Matrix& /= scalar A = 1
cA

Matrix& += Matrix A = A+B

Matrix& -= Matrix A = A−B
Matrix& *= Matrix A = AB

Matrix& /= Matrix A = A
B

Matrix *(Matrix, scalar) B = cA

Matrix /(Matrix, scalar) B = 1
cA

Matrix +(Matrix, Matrix) C = A+B

Matrix -(Matrix, Matrix) C = A−B
Matrix *(Matrix, Matrix) C = AB

Matrix /(Matrix, Matrix) C = A
B

Vector *(Matrix, Vector) b = Ax

Functions
Matrix multiply(Matrix&,
Matrix&)

Matrix multiplication

Vector multiply(Matrix&,
Vector&)

Matrix-vector multiplication

Matrix transpose(Matrix) Matrix transpose
Matrix
hermetian_transpose(Matrix)

Matrix hermetian transpose

4.8. SOLVER 57

constructs the non-zero pattern, which results in a phase of the program
where a matrix is partially built and partially populated, but not complete
and does not support matrix operations. This is controlled via run-time
checks, which will most likely abort your program if you violate this, but a
better design would be to statically disallow invalid operations. By making
an incomplete building matrix a type distinct from a complete built matrix,
the type system ensures some invalid states cannot be reached, which reduces
the need for run-time checks, and allows code to convey more information
about the execution of the program.

The implementation uses a family of builder classes. A family was used
because there are different strategies for handling multiple assignments in
the same cell. The current supported operations are insertion, which means
the last value v that was given to the cell ij is the resulting value of aij , and
accumulation, which means aij is the sum of all values vk. The builders can
also act as a staging ground for partially-built matrices.

The Matrix class does in fact not have any way of directly constructing
a Matrix, except through copying, which ensures the only way to obtain
a Matrix is through the builders, which guarantees a valid state, or other
matrices, which obviously are valid. This is not too strange to raw PETSc, as
the functions MatAssemblyBegin and MatAssemblyEnd mark the end of the
building phase and the beginning of the completed matrix phase.

Using explicit building phase objects does not introduce additional over-
head, since PETSc requires a call to MatrixAssembly. The builders do not
introduce extra members, object storage is still trivial, and the conversion
from a builder to a completed object is a pointer copy, which can be elided,
plus the required MatrixAssembly call. As seen in Table 4.5, this conversion
is handled by the commit functions, which can use either a copy or a move,
depending on the builder’s reference type.

4.8 Solver

Similar to Vector and Matrix, the Solver class also relies on uptr for its
resource management, but unlike Vector and Matrix, Solver’s resources is
mostly configuration related, and not actual data.

58 4. INTEGRATING PETSC WITH OPM

Table 4.5: Builder interface for inserter. const qualifiers omitted. The
interface is identical for the accumulator, with add substituted for insert.

Constructors
Builder(size_type,
size_type)

m× n matrix

Builder(size_type,
size_type, std::vector&)

m × n matrix with preallocation
hints

Builder(size_type,
size_type, std::vector&,
std::vector&)

m × n matrix with preallocation
hints

Operations
insert(size_type,
size_type, scalar)

Insert at aij

insert(std::vector&,
std::vector&,
std::vector&)

Insert CSR-formatted submatrix

insert_row(size_type,
std::vector&, size_type)

Insert a (partial) row

insert_row(size_type,
std::vector&,
std::vector&)

Insert a non-continuous row

Modifiers
Matrix commit(Builder&) Finalise the matrix and create a

copy. The builder can still be used.
Matrix commit(Builder&&) Finalise the matrix. The builder

is left in an unspecified state and
can no longer be used.

4.8. SOLVER 59

Table 4.6: Solver interface. const qualifiers omitted.

Constructors
Solver() Default constructor

Configuration
set(Linear_tolerance&) Set linear tolerances, max itera-

tions etc
set(Nonlinear_tolerance&) Set non-linear tolerances
set(Matrix&) Set operator for the preconditioner
set(Pc_type) Set preconditioning algorithm
set(Ksp_type) Set Krylov subspace method
set(Snes_type) Set non-linear solve

Operators
()(Matrix&, Vector&) Solve Ax = b.

Functions
template< Args... >
Vector solve(Matrix&,
Vector&, Args && ...)

Solve Ax = b with arbitrary con-
figuration

PETSc uses inheritance as a code structure and interface tool. This is
most clear in the case of its solver objects, as the linear (Krylov subspace)
solvers must have an internal preconditioner (PC) object, and the non-linear
(SNES) solvers has an internal KSP object. Analogously this applies also for
TS. This is accomplished through explicit inheritance, as C has no syntactic
support for it. As in C++, this implies that constructing a KSP object also
implies constructing a PC object, and supports configuring PC through the KSP
handle. This relationship has partially been carried over to the library, where
the only implemented solver handle is SNES, even though the use case studied
has only been relying on KSP. The reasoning is that there is no significant
overhead when using SNES [6] and we get support for non-linearity for free, i.e.
without the need for extra code. Because features were developed as needed,
only linear solvers are implemented and tested properly.

There are two ways of using the solver: as a function and as a context object.
For plenty use cases the simple expression x = solve(A, b) is sufficient, e.g.

60 4. INTEGRATING PETSC WITH OPM

there is no need for caching, re-using the preconditioned solution or overriding
options from the options database. For more complicated systems, the solver
can be more finely tuned and stored, at the cost of more and potentially less
obvious code.

Both when used as a function and stored as an object, the solver uses
overloading type resolution to determine what aspect is being configured. All
configuration is done through the set member functions that are distinguished
through their argument type, which was done for two reasons:

Safety and declarativity The compiler will ensure you pass a supported
algorithm and that the configuration option is sane. Due to time
constraint and a small scope, this has not been fully done so some
run-time configuration issues can still occur, even though the framework
is in place.

Arbitrary and unordered configuration By using the same basic sym-
bol (set), combined with C++11 variadic templates, arbitrary signa-
tures for one-shot configuration is supported.

The second point is accomplished through the function solve in Table 4.6.
It uses C++ compile time recursive calls to transform a single explicit solve
call to repeated applications of solver.set, followed by operator(), as
demonstrated in Listing A.7. The y = solve line is transformed into code
using the object.

4.9 Porting upscale_relperm to use PETSc

As little code as possible was modified when ported from the DUNE backend to
the PETSc backend. Still, some assumptions of the IncompFlowSolverHybrid
code do no longer apply, and had to be changed. Listing A.8 is the original call
to upscale which delegates to a series of other functions, about 280 lines of
code, that performs the required setup and calls to DUNE, while Listing A.9
provides the same functionality via PETSc and the library. The actual DUNE
code is too verbose to print here, however, the solveLinearSystem functions

4.10. BUGS 61

are printed in Listing A.12. The other significant difference is the matrix
population in Listing 4.1.

As demonstrated, adapting code to use PETSc instead of DUNE will,
unless there is some dependency to a very DUNE specific feature, be simple
and easy and be mostly simple textual substitution. The entire porting
took approximately 10 minutes, removed approximately 400 lines (from an
1800 line source file) of code and supports more algorithms, more run-time
configurations, and includes experimental GPU acceleration.

4.10 Bugs

During development I discovered two critical bugs in upstream packages.
One was when experimenting with GPU accelerated solvers, which exposed
a memory leak in PETSc’s ViennaCL container. The second was the up-
scale_relperm program not sending all the data to the master node. Both
patches have been merged by the respective projects.

62 4. INTEGRATING PETSC WITH OPM

Listing 4.1 The port of matrix population in IncompFlowSolverHybrid.
diff syntax.

1 @@ -1836 ,7 +1522 ,7 @@ namespace Opm {
2 // equation of the form: a*x = a*p where ’p’ is
3 // the known pressure value (i.e., condval [r]).
4 //
5 - S_ [ii][ii] = S(r,r);
6 + B.add(ii , ii , S(r, r)); // S_[ii][ii] = S(r,r);
7 rhs_[ii] = S(r,r) * condval [r];
8 continue ;
9 case Periodic :

10 @@ -1859 ,13 +1545 ,13 @@ namespace Opm {
11 const double a = S(r,r), b = a * condval [r];
12
13 // Equation (1)
14 - S_ [ii][ii] += a;
15 - S_ [ii][ppartner [r]] -= a;
16 + B.add(ii , ii , a);
17 + B.add(ii , ppartner [r], -a);
18 rhs_[ii] += b;
19
20 // Equation (2)
21 - S_ [ppartner [r]][ii] -= a;
22 - S_ [ppartner [r]][ppartner [r]] += a;
23 + B.add(ppartner [r], ii , -a);
24 + B.add(ppartner [r], ppartner [r], a);
25 rhs_[ppartner [r]] -= b;
26 }
27
28 @@ -1892 ,7 +1578 ,7 @@ namespace Opm {
29 jj = ppartner [c];
30 }
31 }
32 - S_[ii][jj] += S(r,c);
33 + B.add(ii , jj , S(r, c));
34 }
35 break;
36 }

4.10. BUGS 63

Listing 4.2 PETSc-ViennaCL patch. Git patch syntax.
1 The sub containers in the ViennaCL matrix were not free’d
2 due to inversed logic. Since delete on a nullptr won’t do
3 anything we can unconditionally call delete on the
4 member pointers without checking for nullptr .
5 ---
6 src/mat/impls/aij/seq/ seqviennacl / aijviennacl .cxx | 10

++++++----
7 1 file changed , 6 insertions (+) , 4 deletions (-)
8
9 diff --git

a/src/mat/impls/aij/seq/ seqviennacl / aijviennacl .cxx
b/src/mat/impls/aij/seq/ seqviennacl / aijviennacl .cxx

10 index d2af327 .. da1e348 100644
11 --- a/src/mat/impls/aij/seq/ seqviennacl / aijviennacl .cxx
12 +++ b/src/mat/impls/aij/seq/ seqviennacl / aijviennacl .cxx
13 @@ -357 ,10 +357 ,12 @@ PetscErrorCode

MatDestroy_SeqAIJViennaCL (Mat A)
14
15 PetscFunctionBegin ;
16 try {
17 - if (! viennaclcontainer -> tempvec) delete

viennaclcontainer -> tempvec ;
18 - if (! viennaclcontainer ->mat) delete

viennaclcontainer ->mat;
19 - if (! viennaclcontainer -> compressed_mat) delete

viennaclcontainer -> compressed_mat ;
20 - delete viennaclcontainer ;
21 + if(viennaclcontainer) {
22 + delete viennaclcontainer -> tempvec ;
23 + delete viennaclcontainer ->mat;
24 + delete viennaclcontainer -> compressed_mat ;
25 + delete viennaclcontainer ;
26 + }
27 A-> valid_GPU_matrix = PETSC_VIENNACL_UNALLOCATED ;
28 } catch(std :: exception const & ex) {
29 SETERRQ1 (PETSC_COMM_SELF , PETSC_ERR_LIB ," ViennaCL

error: %s", ex.what ());

64 4. INTEGRATING PETSC WITH OPM

Listing 4.3 upscale_relperm patch. Git patch syntax.
1 In the case of both phases being upscaled , only one of
2 the tensors were sent , i.e. the send - buffer was 3 doubles
3 short. This causes program output to always be wrong in
4 the MPI version .
5 ---
6 examples / upscale_relperm .cpp | 2 +-
7 1 file changed , 1 insertion (+) , 1 deletion (-)
8
9 diff --git a/ examples / upscale_relperm .cpp

b/ examples / upscale_relperm .cpp
10 index 1650 df6 .. b2381bd 100644
11 --- a/ examples / upscale_relperm .cpp
12 +++ b/ examples / upscale_relperm .cpp
13 @@ -1631 ,7 +1631 ,7 @@ try
14 for (int voigtIdx =0; voigtIdx < tensorElementCount ;

++ voigtIdx) {
15 sendbuffer [2+ tensorElementCount + voigtIdx] =

Phase2Perm [idx][voigtIdx];
16 }
17 - MPI_Send (sendbuffer , 2+ tensorElementCount ,

MPI_DOUBLE , 0, 0, MPI_COMM_WORLD);
18 + MPI_Send (sendbuffer , 2+2* tensorElementCount ,

MPI_DOUBLE , 0, 0, MPI_COMM_WORLD);
19 }
20 else {
21 double sendbuffer [2+ tensorElementCount];

Chapter5Results and Measurements

This Chapter presents and discusses timing measurements and result differ-
ences between the DUNE- and PETSc backends.

5.1 Configuration

The tests were run on a the testing machine (Table 5.1). A Sandy Brige
platform was chosen instead of a Haswell platform because of availability on
the lab when I needed to run the measurements. PETSc was compiled from
source, git revision b0e188dedeffe8f0b01186133554504cb3c623ea, with the
makefile generated by the following configuration string:

./configure --with-fc=0 --with-blas-lapack-dir=/usr/
--with-open-mpi=yes --with-mpi-dir=/usr --prefix=/usr/local/
--with-opencl=yes --with-viennacl=yes --with-clanguage=c++
--with-hypre=yes --download-hypre=yes --with-debugging=0
COPTFLAGS="-O3 -march=native -mtune=native"
CXXOPTFLAGS="-O3 -std=c++11 -march=native -mtune=native"

All DUNE packages were the upstream master branched cloned 23-05-2015
and configured as the default release build -DCMAKE_BUILD_TYPE=RELEASE,
which passes the compiler flags CXX_FLAGS = -std=c++11 -O3 -DNDEBUG
-std=c++11, and all OPM packages, release 2015.04, were configured with
-DCMAKE_BUILD_TYPE=RELEASE DUSE_MPI=ON. The runs were orchestrated by

65

66 5. RESULTS AND MEASUREMENTS

Table 5.1: Testing system hardware configuration.

System
CPU Intel Core i7 3930K (Sandy Bridge)
Frequency 3.20 GHz
Cores 6 (12 with HT)
Memory 32 GB
Instruction set x86_64
GPU AMD Radeon HD 7950 (Tahiti)
Video driver fglrx-15.2
OS Ubuntu 14.04
GCC 4.8.2

the program B.3. All algorithms are implementations by the PETSc team
with the exception of hypre, which is BoomerAMG provided by the third
party Hypre library.

The input data was a 46MB representative, typically sized heterolithic
reservoir rock model.

5.2 Differences

The uperscaler performs an approximation, so small differences in output
between numerical backends and algorithms are likely, but since configurations
always approximate the same ideal solution, the expected differences between
configurations are ideally small. Differences can stem from many factors, but
the main two are floating point rounding errors and difference in numerical
stability.

The upscaler outputs a report as in Figure 5.1, which forms an 8 × 30
matrix. I wrote the small program B.1 that reads the output of two runs, forms
two matrices and calculates the differences between all entries C = A − B,
so that cij = |aij − bij |. The first matrix A is always the arbitrarily chosen
DUNE-driven ILU/BiCGStab solver, since the exact solution is unavailable.

5.2. DIFFERENCES 67

Figure 5.1: Output from upscale_relperm with 12 MPI processes driven by
PETSc.

68 5. RESULTS AND MEASUREMENTS

Table 5.2: Difference between PETSc driven solvers and the DUNE
ILU/BiCGStab base.

PC/KSP Sum Max
gamg/bcgsl 1.890 00 × 10−6 1.000 00 × 10−6

gamg/cg 1.030 20 × 10−4 1.000 00 × 10−4

gamg/gmres 4.229 00 × 10−5 1.000 00 × 10−5

hypre/bcgsl 3.626 00 × 10−5 6.000 00 × 10−6

hypre/cg 1.518 00 × 10−5 3.100 00 × 10−6

hypre/gmres 4.080 40 × 10−4 1.000 00 × 10−4

ilu/bcgsl 2.772 52 × 10−3 3.000 00 × 10−4

ilu/cg 5.500 00 × 10−6 2.000 00 × 10−6

jacobi/bcgsl 3.321 43 × 10−2 3.900 00 × 10−3

jacobi/cg 0.000 00 0.000 00

This leads to several measurements of difference:

Sum s = ∑
cij

Max max(c), the maximum element in the difference matrix.

Average
∑

cij

6·30 , as the non-constant output of the upscaler is in the six
rightmost columns.

Median The median of all nonzero elements.

Relative r = cij

bij
, where ij is index of max(c).

Differences between PETSc driven runs are compiled in Table 5.2 and
Table 5.3, all which are sufficiently small (less than 1%) to consider the
upscaling correct. Jacobi preconditioning and the conjugate gradient method
has output identical to the reference output. All DUNE driven runs have
identical output.

5.3. COMPUTATION TIME 69

Table 5.3: Difference between PETSc driven solvers and the DUNE
ILU/BiCGStab base.

PC/KSP Average Median Relative
gamg/bcgsl 1.050 00 × 10−8 3.000 00 × 10−8 8.665 51 × 10−4

gamg/cg 5.723 33 × 10−7 1.000 00 × 10−7 7.032 35 × 10−4

gamg/gmres 2.349 44 × 10−7 7.000 00 × 10−7 1.038 96 × 10−4

hypre/bcgsl 2.014 44 × 10−7 1.000 00 × 10−6 6.448 15 × 10−3

hypre/cg 8.433 33 × 10−8 3.000 00 × 10−7 3.106 52 × 10−3

hypre/gmres 2.266 89 × 10−6 5.000 00 × 10−6 5.109 86 × 10−4

ilu/bcgsl 1.540 29 × 10−5 1.387 00 × 10−5 9.372 07 × 10−4

ilu/cg 3.055 56 × 10−8 2.000 00 × 10−7 1.734 61 × 10−3

jacobi/bcgsl 1.845 24 × 10−4 2.403 00 × 10−4 6.301 50 × 10−3

jacobi/cg 0.000 00 0.000 00 0.000 00

5.3 Computation time

The immediate observation from elapsed computation time is the massive
difference between algorithms, which by far has the most impact. In fact, some
combinations of preconditioner and algorithm did not finish in reasonable time,
which is the arbitrarily chosen cutoff at 900 minutes (15 hours) of execution
time. As seen in the tables and figures of this section, many configurations are
able to solve the problem in minutes, meaning 15 hours is simply unreasonable.

The timing measurements are simple executions of the upscale_relperm
program, driven by program B.3, which executes some configurations and
records the program output. The upscale_relperm reports the time it spends
on upscaling, which is dominated by the numerical engine. This is a macro
measurement, i.e. full program and not on a function- or component basis, so
execution times have been rounded to the closest second, and multiple identical
runs have not been done. This means numbers only indicate performance
differences, and are not comprehensive descriptions of performance differences
between algorithms and models. In fact, it measures the impact of change
numerical backend on total program execution time, not the isolated execution

70 5. RESULTS AND MEASUREMENTS

time of the solvers.

The processor in the testing system supports hyper threading, a pro-
prietary Intel technology for simultaneous multithreading, which maps two
logical cores per phyiscal core, which can improve execution time for some
workloads. The testing system has 6 physical cores, and to investigate the
effect of hyper threading, which also demonstrates some utilisation properties
of the code (memory stalls etc.), the programs were also run with twice
as many processes as cores. With DUNE’s AMG/CG feature using more
processes than cores actually slowed down the program, but this was only
observed in this case.

Wallclock The wallclock time is the elapsed in seconds from when tesse-
lation is done until the master node has received all computed values
from all processes.

Upscaling The upscaling TU is the accumulated average time Tp spent in
the upscalign phase by each process p, so that TU = 1

i

∑
Tp, where i is

the number of upscaling points (i = 30 in my runs).

MPI The number of MPI nodes used in the run.

As seen in the data, the combination of preconditioner and Krylov subspace
algorithm is paramount to program performance, regardless of backend. There
is some performance to gain from using more processes than phyiscal cores,
but this benefit is in no way linear. This is unsurprising since work is statically
distributed between processes, which means that the process that gets assigned
more saturation points (or just the slowest point in the case of one saturation
point per process) dominates execution time.

For reference numbers, I performed single-core runs of the fastest DUNE
configuration, the fastest PETSc configuration, as well as a single-core run
of the PETSc configuration with GPU acceleration. As seen in Table 5.6
there was for this problem no improvement in running the solver with GPU
acceleration.

5.3. COMPUTATION TIME 71

Table 5.4: Time elapsed for PETSc driven runs. Lower is better.

PC/KSP Wallclock (sec) Upscaling (sec) MPI nodes
hypre/gmres 374 188 12
hypre/cg 375 190 12
hypre/bcgsl 427 214 12
hypre/gmres 544 121 6
hypre/cg 582 118 6
hypre/bcgsl 638 129 6
ilu/cg 1592 752 12
ilu/cg 1756 381 6
gamg/cg 2063 1271 12
gamg/cg 2333 709 6
gamg/bcgsl 3031 1487 12
gamg/bcgsl 3280 753 6
jacobi/bcgsl 3635 1842 12
jacobi/cg 4011 2343 12
jacobi/bcgsl 4109 1002 6
jacobi/cg 4440 1272 6
gamg/gmres 4735 2351 12
ilu/bcgsl 4875 2316 12
ilu/bcgsl 5315 1113 6
gamg/gmres 5738 1215 6
ilu/gmres - - 12
ilu/gmres - - 6
jacobi/gmres - - 12
jacobi/gmres - - 6

72 5. RESULTS AND MEASUREMENTS

0 1,000 2,000 3,000 4,000 5,000 6,000

hypre/gmres

hypre/cg

hypre/bcgsl

ilu/cg

gamg/cg

gamg/bcgsl

jacobi/bcgsl

jacobi/cg

gamg/gmres

ilu/bcgsl

Wallclock time (seconds). Lower is better

12 MPI nodes
6 MPI nodes

Figure 5.2: Time elapsed for PETSc driven runs.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

FastAMG/CG

ILU/BiCGStab

AMG/CG

Wallclock time (seconds). Lower is better

12 MPI nodes
6 MPI nodes

Figure 5.3: Time elapsed for DUNE driven runs.

5.3. COMPUTATION TIME 73

Table 5.5: Time elapsed for DUNE driven runs. Lower is better.

PC/KSP Wallclock (sec) Upscaling (sec) MPI nodes
FastAMG/CG 603 313 12
FastAMG/CG 806 170 6
ILU/BiCGStab 3706 1807 12
ILU/BiCGStab 3958 921 6
AMG/CG 5162 2028 6
AMG/CG 6732 3320 12
KAMG/CG - - 12
KAMG/CG - - 6

Table 5.6: Time elapsed for single process runs. Lower is better.

PC/KSP Wallclock (sec) Upscaling (sec)
FastAMG/CG 3019 101
hypre/gmres (CPU) 2275 76
hypre/gmres (GPU) 2390 80

As a final remark, considering scalability in the fastest case (hypre/gmres),
we can see an approximate 6x speedup with 12 processes and an approximate
4.1x speedup with 6 processes compared to the single process run. The
processor still only had 6 phyiscal cores, but with the aid of hyper threading
it was able to achieve linear speedup due to the highly parallel nature of the
problem given a model of this size.

Chapter6Conclusions and Future Work

The work for this thesis has been very practical in nature, with some clear
contributions to the OPM project. This final Chapter briefly concludes and
reflects upon the contributions and results, and suggestions for future work.

6.1 Contributions

The contributions of this thesis are:

• Free-licenced code that enables OPM to support a vast array of al-
gorithms and data structures with a safe and easy-to-use interface to
enhance and further develop reservoir simulator tools.

• A proposal for the design of a generalised interface of linear algebra and
numerical methods, including access to vectors, matrices and solvers,
which can abstract several underlying implementations.

• A demonstration of achievable performance with PETSc on a real-world
data set on a regular workstation system.

• Experimental support for GPU accelerated numerical solvers through
the PETSc library and its plugins.

75

76 6. CONCLUSIONS AND FUTURE WORK

6.2 Conclusions

By using BoomerAMG we managed to calculate the relative permeability of
the model approximately 48% faster than the upstream program that uses
DUNE, with a much simpler code. While the solution is simple, it relies
on an extensive support library that retwrites parts of PETSc’s interface.
However, some of the complexity of the linear solver library is now moved
from application code into a library, which means that development and
porting of applications is easier and faster.

Additionally, the integration of PETSc with OPM includes many debugging
and profiling utilities, which could be used to further enhance, improve and
develop new solutions, solvers and simulators.

Our results demonstrates that there are multiple benefits to have several
solvers available, as their performance and correctness vary between problems.
It indicates that Hypre’s BoomerAMG is well suited for the upscale programs,
producing results within reasonable difference from the reference DUNE
driven solver in less time. The experiments also show that for the upscale
programs, GPU accelerated linear solvers are unlikely to provide any speedup
for upscaling.

6.3 Future Work

This section briefly presents some suggestions for future work on the PETSc
integration with OPM and for generalised OPM numerics:

Strict container types Introduce more and stronger vector types that en-
code assumptions into data structures. Like std::vector is templated
on an inner type, Vector can be transformed to Vector<double> etc.
Additionally, this can be used to enforce certain properties regarding
sparsity patterns which algorithms can exploit.

Builders Develop and refine more builders, both for matrices and vectors.

Higher order functions Develop support for higher order functions on all
containers, as well as support option types.

6.3. FUTURE WORK 77

MPI/parallel aware interfaces Refine or define interfaces that support
parallel aware code, such as first class support for internally paral-
lel containers and an elegent interface for distribution population of
containers.

Flow simulator Port the flow simulator and other OPM applications to use
the new backend.

GPU experiments Perform more experiments with GPU accelerated nu-
merics, using different data sets and different algorithms.

References

[1] Alexandrescu, A. Modern C++ Design: Generic Programming and
Design Patterns Applied. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[2] Amdahl, G. M. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference (New York, NY, USA, 1967), AFIPS
’67 (Spring), ACM, pp. 483–485.

[3] Arnoldi, W. E. The principle of minimized iterations in the solution of
the matrix eigenvalue problem. Q. Appl. Math 9, 17 (1951), 17–29.

[4] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune,
P., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D.,
Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F., and
Zhang, H. PETSc Web page. http://www.mcs.anl.gov/petsc, 2014.

[5] Blatt, M., and Bastian, P. The iterative solver template library.
In Applied Parallel Computing. State of the Art in Scientific Computing
(2007), B. Kågström, E. Elmroth, J. Dongarra, and J. Waśniewski, Eds.,
vol. 4699 of Lecture Notes in Computer Science, Springer, pp. 666–675.

[6] Brown, J., and Knepley, M. G. PETSc tutorial at
SUNY Buffalo. http://www.mcs.anl.gov/petsc/documentation/tutorials/
BuffaloTutorial.pdf, 2014.

[7] Butenko, S., and Pardalos, P. M. Numerical methods and optimiza-
tion. An introduction. Chapman & Hall/CRC Numerical Analysis and
Scientific Computing Series. Boca Raton, FL, 2014.

79

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc/documentation/tutorials/BuffaloTutorial.pdf
http://www.mcs.anl.gov/petsc/documentation/tutorials/BuffaloTutorial.pdf

80 REFERENCES

[8] Byun, J.-H., Lin, R., Yelick, K. A., and Demmel, J. Autotuning
sparse matrix-vector multiplication for multicore. Tech. Rep. UCB/EECS-
2012-215, EECS Department, University of California, Berkeley, Nov
2012.

[9] Falgout, R. D. An introduction to algebraic multigrid. Computing in
Science and Engg. 8, 6 (Nov. 2006), 24–33.

[10] Falgout, R. D., and Yang, U. M. hypre: a library of high performance
preconditioners. In Preconditioners,” Lecture Notes in Computer Science
(2002), pp. 632–641.

[11] Gustafson, J. L. Reevaluating Amdahl’s Law. Communications of the
ACM 31 (1988), 532–533.

[12] Hestenes, M. R., and Stiefel, E. Methods of Conjugate Gradients
for Solving Linear Systems. Journal of Research of the National Bureau
of Standards 49, 6 (Dec. 1952), 409–436.

[13] Hill, M. D., and Marty, M. R. Amdahl’s law in the multicore era.
IEEE COMPUTER (2008).

[14] ISO/EIC JTC1/SC22/WG21. C++11 standard. http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf, May 2014. [Online;
accessed 08-May-2015].

[15] Kreyszig, E. Advanced engineering mathematics. John Wiley, Dec. 2006.

[16] Lawson, C. L., Hanson, R. J., Krogh, F. T., and Kincaid, D. R.
Basic linear algebra subprograms for fortran usage. ACM Trans. Math.
Softw. 5, 3 (Sept. 1979), 324–325.

[17] Liskov, B. H., and Wing, J. M. A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems 16 (1994),
1811–1841.

[18] Message Passing Interface Forum. Mpi: A message-passing interface
standard. Specification, Message Passing Interface Forum, Knoxville, TN,
USA, 1994.

[19] Message Passing Interface Forum. Mpi: A message-passing interface
standard, version 2.2. Specification, Message Passing Interface Forum,
Sept. 2009.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf

REFERENCES 81

[20] Meyer, J. C. Performance Modeling of Heterogeneous Systems. PhD
thesis, Norwegian University of Science and Technology, Trondheim, Nov.
2012.

[21] Netlib. Netlib LAPACK Web page. http://www.netlib.org/lapack/.

[22] NVIDIA. Accelerating ANSYS Fluent 15.0 using NVIDIA GPUs.
NVIDIA, June 2014.

[23] Press, W. H., Teukolsky, S. A., and Vett, W. T. Numerical Recipes
3rd Edition: The Art of Scientific Computing. Cambridge University Press,
2007.

[24] Saad, Y., and Schultz, M. H. Gmres: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput. 7, 3 (July 1986), 856–869.

[25] Shewchuk, J. R. An introduction to the conjugate gradient method with-
out the agonizing pain. Tech. rep., Carnegie Mellon University, Pittsburgh,
PA, USA, 1994.

[26] Skolmedal, A. B. Profiling, optimization and parallelization of seismic
inversion code. Master’s thesis, Norwegian University of Science and
Technology, Department of Computer and Information Science, 2011.

[27] Stinessen, B. O. Profiling, optimization and parallelization of seismic
inversion code. Master’s thesis, Norwegian University of Science and
Technology, Department of Computer and Information Science, 2011.

[28] Stroustrup, B. C++ faq. http://web.archive.org/web/20080617183013/
http://www.research.att.com/~bs/bs_faq.html#C-is-subset, Feb. 2008.
[Online; accessed 08-May-2015].

[29] Stroustrup, B. The C++ Programming Language, 4th ed. Addison-
Wesley Professional, 2013.

[30] Stroustrup, B. Call syntax: x.f(y) vs. f(x,y). https://isocpp.org/files/
papers/N4174.pdf, Oct. 2014.

[31] Stroustrup, B. Programming: Principles and Practice Using C++ (2nd
Edition), 2nd ed. Addison-Wesley Professional, 2014.

[32] Sun, X.-H., and Chen, Y. Reevaluating Amdahl’s Law in the Multicore
Era. J. Parallel Distrib. Comput. 70, 2 (Feb. 2010), 183–188.

http://www.netlib.org/lapack/
http://web.archive.org/web/20080617183013/http://www.research.att.com/~bs/bs_faq.html#C-is-subset
http://web.archive.org/web/20080617183013/http://www.research.att.com/~bs/bs_faq.html#C-is-subset
https://isocpp.org/files/papers/N4174.pdf
https://isocpp.org/files/papers/N4174.pdf

82 REFERENCES

[33] Sutter, H. Unified call syntax. https://isocpp.org/files/papers/N4165.
pdf, Oct. 2014.

[34] Veldhuizen, T. L. C++ templates are turing complete. Tech. rep.,
Indiana University, 2003.

[35] Yang, U. M. Parallel algebraic multigrid methods—high performance
preconditioners. In Numerical Solution of Partial Differential Equations
on Parallel Computers. Springer, 2006, pp. 209–236.

[36] Young, D. M. Iterative Solution of Large Linear Systems. Dover Books
on Mathematics Series. Dover Publications, 2003.

[37] Zhang, F. The Schur Complement and Its Applications, vol. 4 of Numer-
ical Methods and Algorithms. Springer, 2005.

https://isocpp.org/files/papers/N4165.pdf
https://isocpp.org/files/papers/N4165.pdf

AppendixACode snippets

This appendix contains various relevant code snippets from the library or
the port of upscale_relperm. Full source code for the PETSc integration or
upscale_relperm is either bundled with this thesis or can be found via my
forks and pull requests at https://github.com/jorgekva.

Listing A.1 Definition of the uptr resource manager.
1 template < typename T >
2 class uptr < T* > :
3 private std :: unique_ptr < T, deleter < T > > {
4

5 private :
6 typedef T* pointer ;
7 typedef std :: unique_ptr < T, deleter < T > > base;
8

9 public :
10 uptr < T* >(uptr < T* >&&);
11 uptr < T* >(T*);
12

13 operator pointer () const;
14

15 protected :
16 inline pointer ptr () const;
17

18 void swap(uptr &);
19 };

83

https://github.com/jorgekva

84 A. CODE SNIPPETS

Listing A.2 Vector object used as Vec handle in a PETSc function.
1 Vector v = get_vector ();
2 /* some operations */
3 VecConjugate (v);
4 /* v is now conjugated */

Listing A.3 Creating a managed resource from a PETSc handle.
1 // uptr < T* >
2 class Vector : public uptr < Vec > {};
3 // uptr < T >
4 class Vector : public uptr < _p_Vec > {};

Listing A.4 Deleter for a managed resource.
1 template <>
2 struct deleter < _p_Vec >
3 { void operator ()(Vec x) { VecDestroy (&x); } };

Listing A.5 Deleter for a managed resource with C++11 decltype.
1 template <>
2 struct deleter < decltype (* Vec) >
3 { void operator ()(Vec x) { VecDestroy (&x); } };

Listing A.6 Value oriented dot
1 Vector :: scalar dot(const Vector & lhs , const Vector & rhs)
2 {
3 Vector :: scalar x;
4 VecDot (lhs , rhs , &x);
5 return x;
6 }

Listing A.7 Variadic arguments to solve
1 /* no explicit configuration */
2 auto x = solve(A, b);
3

4 /* argument order (after b) does not matter */
5 auto y = solve(A, b, Ksp_type ("cg"), Pc_type ("ilu"));
6 auto z = solve(A, b, Pc_type ("ilu"), Ksp_type ("cg"));
7

85

8 /* using object handle */
9 Solver s;

10 s .set(Ksp_type ("cg"))
11 .set(Pc_type ("ilu"));
12 auto v = s(A, b);

Listing A.8 Solving with DUNE. Algorithm setup (approx. 300 lines) are
omitted.

1 {
2 assembleDynamic (r, sat , bc , src);
3 switch (linsolver_type) {
4 case 0: // ILU0 preconditioned CG
5 solveLinearSystem (residual_tolerance ,

linsolver_verbosity , linsolver_maxit);
6 break;
7 case 1: // AMG preconditioned CG
8 solveLinearSystemAMG (residual_tolerance ,

linsolver_verbosity ,
9 linsolver_maxit , prolongate_factor , same_matrix ,

smooth_steps);
10 break;
11

12 case 2: // KAMG preconditioned CG
13 solveLinearSystemKAMG (residual_tolerance ,

linsolver_verbosity ,
14 linsolver_maxit , prolongate_factor ,

same_matrix , smooth_steps);
15 break;
16 case 3: // CG preconditioned with AMG that uses less

memory badwidth
17 #if defined (HAS_DUNE_FAST_AMG) ||

DUNE_VERSION_NEWER (DUNE_ISTL , 2, 3)
18 solveLinearSystemFastAMG (residual_tolerance ,

linsolver_verbosity ,
19 linsolver_maxit , prolongate_factor ,

same_matrix , smooth_steps);
20 #else
21 if(linsolver_verbosity)
22 std ::cerr <<"Fast AMG is not available ; falling back

to CG preconditioned with the normal
one."<<std :: endl;

86 A. CODE SNIPPETS

23 solveLinearSystemAMG (residual_tolerance ,
linsolver_verbosity , linsolver_maxit ,

24 prolongate_factor , same_matrix , smooth_steps);
25 #endif
26 break;
27 default :
28 std :: cerr << " Unknown linsolver_type : " <<

linsolver_type << ’\n’;
29 throw std :: runtime_error (" Unknown linsolver_type ");
30 computePressureAndFluxes (r, sat);
31 }

Listing A.9 Solving with PETSc.
1

2 {
3 auto A = assembleDynamic (r, sat , bc , src);
4

5 Petsc :: Solver :: Linear_tolerance ltol;
6 ltol. relative_tolerance = residual_tolerance ;
7 ltol. absolute_tolerance = 1e -05;
8 ltol. maximum_iterations = linsolver_maxit > 0 ?

linsolver_maxit : A.rows ();
9

10

11 Petsc :: Vector b(this ->rhs_);
12

13 auto x = Petsc :: solve(A, b, ltol);
14

15 /*
16 * computePressureAndFluxes expects a std :: vector , not a
17 * Petsc :: Vector
18 */
19 Petsc :: Vector :: scalar * raw_arr ;
20 VecGetArray (x, & raw_arr);
21 soln_. resize (x.size ());
22 soln_. insert (soln_.begin (), raw_arr , raw_arr + x.size ());
23 VecRestoreArray (x, & raw_arr);
24

25 computePressureAndFluxes (r, sat);
26 }

87

Listing A.10 Solving a linear system with OPM-PETSc
1 using namespace Opm :: Petsc;
2

3 Matrix create_matrix () {
4 Matrix :: Builder :: Bnserter builder (2, 2);
5 builder . insert (0, 0, 2);
6 builder . insert (1, 1, 2);
7 return commit (builder);
8 }
9 Vector create_vector () {

10 std :: vector < Vector :: scalar > vec (2);
11 vec[0] = 2; vec[1] = 1;
12 return vec; // implicit conversion to Petsc :: Vector
13 }
14 void solve () {
15 auto A = create_matrix ();
16 auto b = create_vector ();
17 // [2, 0] [x1] = [2]
18 // [0, 2] [x2] = [1]
19 auto x = solve(A, b);
20 }

Listing A.11 Solving a linear system with PETSc.
1 Mat create_matrix () {
2 Mat mat;
3 MatCreate (PETSC_COMM_WORLD , &mat);
4 MatSetFromOptions (mat);
5

6 MatSetSizes (mat , PETSC_DECIDE , PETSC_DECIDE , 2, 2);
7 MatSetUp (mat);
8

9 MatSetValues (Mat , 1, { 0 }, 1, { 0 }, { 2 },
INSERT_VALUES);

10 MatSetValues (Mat , 1, { 1 }, 1, { 1 }, { 2 },
INSERT_VALUES);

11 MatAssemblyBegin (mat , MAT_FINAL_ASSEMBLY);
12 MatAssemblyEnd (mat , MAT_FINAL_ASSEMBLY);
13

14 return mat;
15 }

88 A. CODE SNIPPETS

16 Vec create_vector () {
17 Vec vec;
18 VecCreate (PETSC_COMM_WORLD , &vec);
19 VecSetFromOptions (vec);
20

21 VecSetSizes (vec , PETSC_DECIDE , 2);
22 VecSetValues (vec , 2, { 0, 1 }, { 2, 1 },

INSERT_VALUES);
23 VecAssemblyBegin (vec);
24 VecAssemblyEnd (vec);
25

26 return vec;
27 }
28 void solve () {
29 Mat A = create_matrix ();
30 Vec b = create_matrix ();
31

32 KSP ksp;
33 KSPCreate (PETSC_COMM_WORLD , &ksp);
34 KSPSetFromOptions (ksp);
35 KSPSetOperators (ksp , A, A);
36

37 Vec x;
38 VecDuplicate (vec , &x);
39 KSPSolve (ksp , b, x); // solution is now in x
40

41 KSPDestroy (& ksp);
42 MatDestroy (& mat);
43 VecDestroy (&b);
44 VecDestroy (&x);
45 }

Listing A.12 DUNE code removed from upscale_relperm
1386 // --
1387 void solveLinearSystem (double residual_tolerance , int

verbosity_level , int maxit)
1388 // --
1389 {
1390 // Adapted from DuMux ...
1391 Scalar residTol = residual_tolerance ;
1392

89

1393 typedef Dune :: BCRSMatrix <MatrixBlockType >
Matrix ;

1394 typedef Dune :: BlockVector < VectorBlockType >
Vector ;

1395 typedef Dune :: MatrixAdapter <Matrix ,Vector ,Vector >
Adapter ;

1396

1397 // Regularize the matrix (only for pure Neumann
problems ...)

1398 if (do_regularization_) {
1399 S_ [0][0] *= 2;
1400 }
1401 Adapter opS(S_);
1402

1403 // Construct preconditioner .
1404 Dune :: SeqILU0 <Matrix ,Vector ,Vector > precond (S_ , 1.0);
1405

1406 // Construct solver for system of linear equations .
1407 Dune :: CGSolver <Vector > linsolve (opS , precond ,

residTol ,
1408 (maxit >0)?maxit:S_.N(),

verbosity_level);
1409

1410 Dune :: InverseOperatorResult result ;
1411 soln_ = 0.0;
1412

1413 // Solve system of linear equations to recover
1414 // face/ contact pressure values (soln_).
1415 linsolve .apply(soln_ , rhs_ , result);
1416 if (! result . converged) {
1417 OPM_THROW (std :: runtime_error , " Linear solver

failed to converge in " << result . iterations
<< " iterations .\n"

1418 << " Residual reduction achieved is " <<
result . reduction << ’\n’);

1419 }
1420 }
1421

1422

1423

1424 // ------------------ AMG typedefs --------------------

90 A. CODE SNIPPETS

1425

1426 // Representation types for linear system .
1427 typedef Dune :: BCRSMatrix <MatrixBlockType > Matrix ;
1428 typedef Dune :: BlockVector < VectorBlockType > Vector ;
1429 typedef Dune :: MatrixAdapter <Matrix ,Vector ,Vector >

Operator ;
1430

1431 // AMG specific types.
1432 // Old: FIRST_DIAGONAL 1, SYMMETRIC 1, SMOOTHER_ILU 1,

ANISOTROPIC_3D 0
1433 // SPE10: FIRST_DIAGONAL 0, SYMMETRIC 1, SMOOTHER_ILU 0,

ANISOTROPIC_3D 1
1434 # ifndef FIRST_DIAGONAL
1435 # define FIRST_DIAGONAL 1
1436 #endif
1437 # ifndef SYMMETRIC
1438 # define SYMMETRIC 1
1439 #endif
1440 # ifndef SMOOTHER_ILU
1441 # define SMOOTHER_ILU 1
1442 #endif
1443 # ifndef SMOOTHER_BGS
1444 # define SMOOTHER_BGS 0
1445 #endif
1446 # ifndef ANISOTROPIC_3D
1447 # define ANISOTROPIC_3D 0
1448 #endif
1449

1450 #if FIRST_DIAGONAL
1451 typedef Dune :: Amg :: FirstDiagonal CouplingMetric ;
1452 #else
1453 typedef Dune :: Amg :: RowSum CouplingMetric ;
1454 #endif
1455

1456 #if SYMMETRIC
1457 typedef Dune :: Amg :: SymmetricCriterion < Matrix ,

CouplingMetric > CriterionBase ;
1458 #else
1459 typedef Dune :: Amg :: UnSymmetricCriterion < Matrix ,

CouplingMetric > CriterionBase ;
1460 #endif

91

1461

1462 #if SMOOTHER_BGS
1463 typedef Dune :: SeqOverlappingSchwarz <Matrix , Vector ,

Dune :: MultiplicativeSchwarzMode > Smoother ;
1464 #else
1465 #if SMOOTHER_ILU
1466 typedef Dune :: SeqILU0 <Matrix ,Vector ,Vector >

Smoother ;
1467 #else
1468 typedef Dune :: SeqSSOR <Matrix ,Vector ,Vector >

Smoother ;
1469 #endif
1470 #endif
1471 typedef Dune :: Amg :: CoarsenCriterion < CriterionBase >

Criterion ;
1472

1473

1474 // --------- storing the AMG operator and preconditioner

1475 boost :: scoped_ptr <Operator > opS_;
1476 typedef Dune :: Preconditioner < Vector , Vector >

PrecondBase ;
1477 boost :: scoped_ptr < PrecondBase > precond_ ;
1478

1479

1480 // --
1481 void solveLinearSystemAMG (double residual_tolerance , int

verbosity_level ,
1482 int maxit , double

prolong_factor , bool
same_matrix , int
smooth_steps)

1483 // --
1484 {
1485 typedef Dune :: Amg ::AMG < Operator , Vector , Smoother ,

Dune :: Amg :: SequentialInformation >
1486 Precond ;
1487

1488 // Adapted from upscaling .cc by Arne Rekdal , 2009
1489 Scalar residTol = residual_tolerance ;
1490

92 A. CODE SNIPPETS

1491 if (! same_matrix) {
1492 // Regularize the matrix (only for pure Neumann

problems ...)
1493 if (do_regularization_) {
1494 S_ [0][0] *= 2;
1495 }
1496 opS_.reset(new Operator (S_));
1497

1498 // Construct preconditioner .
1499 double relax = 1;
1500 typename Precond :: SmootherArgs smootherArgs ;
1501 smootherArgs . relaxationFactor = relax;
1502 #if SMOOTHER_BGS
1503 smootherArgs . overlap =

Precond :: SmootherArgs :: none;
1504 smootherArgs . onthefly = false;
1505 #endif
1506 Criterion criterion ;
1507 criterion . setDebugLevel (verbosity_level);
1508 #if ANISOTROPIC_3D
1509 criterion . setDefaultValuesAnisotropic (3, 2);
1510 #endif
1511 criterion . setProlongationDampingFactor (prolong_factor);
1512 criterion . setBeta (1e -10);
1513 precond_ .reset(new Precond (*opS_ , criterion ,

smootherArgs ,
1514 1, smooth_steps , smooth_steps));
1515 }
1516 // Construct solver for system of linear equations .
1517 Dune :: CGSolver <Vector > linsolve (*opS_ ,

dynamic_cast < Precond &>(* precond_), residTol ,
(maxit >0)?maxit:S_.N(), verbosity_level);

1518

1519 Dune :: InverseOperatorResult result ;
1520 soln_ = 0.0;
1521 // Adapt initial guess such Dirichlet boundary

conditions are
1522 // represented , i.e. soln_i =A_{ii}^-1 rhs_i
1523 typedef typename Dune :: BCRSMatrix

<MatrixBlockType >:: ConstRowIterator RowIter ;

93

1524 typedef typename Dune :: BCRSMatrix
<MatrixBlockType >:: ConstColIterator ColIter ;

1525 for(RowIter ri=S_.begin (); ri!=S_.end (); ++ri){
1526 bool isDirichlet =true;
1527 for(ColIter ci=ri ->begin (); ci!=ri ->end (); ++ci)
1528 if(ci. index ()!=ri.index () && *ci !=0.0)
1529 isDirichlet =false;
1530 if(isDirichlet)
1531 soln_[ri.index ()] = rhs_[ri.index ()] /

S_[ri.index ()][ri.index ()];
1532 }
1533 // Solve system of linear equations to recover
1534 // face/ contact pressure values (soln_).
1535 linsolve .apply(soln_ , rhs_ , result);
1536 if (! result . converged) {
1537 OPM_THROW (std :: runtime_error , " Linear solver

failed to converge in " << result . iterations
<< " iterations .\n"

1538 << " Residual reduction achieved is " <<
result . reduction << ’\n’);

1539 }
1540

1541 }
1542

1543 #if defined (HAS_DUNE_FAST_AMG) ||
DUNE_VERSION_NEWER (DUNE_ISTL , 2, 3)

1544

1545 // --
1546 void solveLinearSystemFastAMG (double residual_tolerance ,

int verbosity_level ,
1547 int maxit , double

prolong_factor , bool
same_matrix , int
smooth_steps)

1548 // --
1549 {
1550 typedef Dune :: Amg :: FastAMG <Operator , Vector > Precond ;
1551

1552 // Adapted from upscaling .cc by Arne Rekdal , 2009
1553 Scalar residTol = residual_tolerance ;
1554

94 A. CODE SNIPPETS

1555 if (! same_matrix) {
1556 // Regularize the matrix (only for pure Neumann

problems ...)
1557 if (do_regularization_) {
1558 S_ [0][0] *= 2;
1559 }
1560 opS_.reset(new Operator (S_));
1561

1562 // Construct preconditioner .
1563 typedef Dune :: Amg :: AggregationCriterion <

Dune :: Amg :: SymmetricMatrixDependency < Matrix ,
CouplingMetric > > CriterionBase ;

1564

1565 typedef Dune :: Amg :: CoarsenCriterion <
CriterionBase > Criterion ;

1566 Criterion criterion ;
1567 criterion . setDebugLevel (verbosity_level);
1568 #if ANISOTROPIC_3D
1569 criterion . setDefaultValuesAnisotropic (3, 2);
1570 #endif
1571 criterion . setProlongationDampingFactor (prolong_factor);
1572 criterion . setBeta (1e -10);
1573 Dune :: Amg :: Parameters parms;
1574 parms. setDebugLevel (verbosity_level);
1575 parms. setNoPreSmoothSteps (smooth_steps);
1576 parms. setNoPostSmoothSteps (smooth_steps);
1577 precond_ .reset(new Precond (*opS_ , criterion ,

parms));
1578 }
1579 // Construct solver for system of linear equations .
1580 Dune :: GeneralizedPCGSolver <Vector > linsolve (*opS_ ,

dynamic_cast < Precond &>(* precond_), residTol ,
(maxit >0)?maxit:S_.N(), verbosity_level);

1581

1582 Dune :: InverseOperatorResult result ;
1583 soln_ = 0.0;
1584

1585 // Adapt initial guess such Dirichlet boundary
conditions are

1586 // represented , i.e. soln_i =A_{ii}^-1 rhs_i

95

1587 typedef typename Dune :: BCRSMatrix
<MatrixBlockType >:: ConstRowIterator RowIter ;

1588 typedef typename Dune :: BCRSMatrix
<MatrixBlockType >:: ConstColIterator ColIter ;

1589 for(RowIter ri=S_.begin (); ri!=S_.end (); ++ri){
1590 bool isDirichlet =true;
1591 for(ColIter ci=ri ->begin (); ci!=ri ->end (); ++ci)
1592 if(ci. index ()!=ri.index () && *ci !=0.0)
1593 isDirichlet =false;
1594 if(isDirichlet)
1595 soln_[ri.index ()] = rhs_[ri.index ()] /

S_[ri.index ()][ri.index ()];
1596 }
1597 // Solve system of linear equations to recover
1598 // face/ contact pressure values (soln_).
1599 linsolve .apply(soln_ , rhs_ , result);
1600 if (! result . converged) {
1601 OPM_THROW (std :: runtime_error , " Linear solver

failed to converge in " << result . iterations
<< " iterations .\n"

1602 << " Residual reduction achieved is " <<
result . reduction << ’\n’);

1603 }
1604

1605 }
1606 #endif
1607

1608 // --
1609 void solveLinearSystemKAMG (double residual_tolerance ,

int verbosity_level ,
1610 int maxit , double

prolong_factor , bool
same_matrix , int
smooth_steps)

1611 // --
1612 {
1613

1614 typedef Dune :: Amg ::KAMG < Operator ,Vector , Smoother ,
Dune :: Amg :: SequentialInformation ,

1615 Dune :: CGSolver <Vector > > Precond ;
1616 // Adapted from upscaling .cc by Arne Rekdal , 2009

96 A. CODE SNIPPETS

1617 Scalar residTol = residual_tolerance ;
1618 if (! same_matrix) {
1619 // Regularize the matrix (only for pure Neumann

problems ...)
1620 if (do_regularization_) {
1621 S_ [0][0] *= 2;
1622 }
1623 opS_.reset(new Operator (S_));
1624

1625 // Construct preconditioner .
1626 double relax = 1;
1627 typename Precond :: SmootherArgs smootherArgs ;
1628 smootherArgs . relaxationFactor = relax;
1629 #if SMOOTHER_BGS
1630 smootherArgs . overlap =

Precond :: SmootherArgs :: none;
1631 smootherArgs . onthefly = false;
1632 #endif
1633 Criterion criterion ;
1634 criterion . setDebugLevel (verbosity_level);
1635 #if ANISOTROPIC_3D
1636 criterion . setDefaultValuesAnisotropic (3, 2);
1637 #endif
1638 criterion . setProlongationDampingFactor (prolong_factor);
1639 criterion . setBeta (1e -10);
1640 precond_ .reset(new Precond (*opS_ , criterion ,

smootherArgs , 2, smooth_steps , smooth_steps));
1641 }
1642 // Construct solver for system of linear equations .
1643 Dune :: CGSolver <Vector > linsolve (*opS_ ,

dynamic_cast < Precond &>(* precond_), residTol ,
(maxit >0)?maxit:S_.N(), verbosity_level);

1644

1645 Dune :: InverseOperatorResult result ;
1646 soln_ = 0.0;
1647 // Adapt initial guess such Dirichlet boundary

conditions are
1648 // represented , i.e. soln_i =A_{ii}^-1 rhs_i
1649 typedef typename Dune :: BCRSMatrix

<MatrixBlockType >:: ConstRowIterator RowIter ;

97

1650 typedef typename Dune :: BCRSMatrix
<MatrixBlockType >:: ConstColIterator ColIter ;

1651 for(RowIter ri=S_.begin (); ri!=S_.end (); ++ri){
1652 bool isDirichlet =true;
1653 for(ColIter ci=ri ->begin (); ci!=ri ->end (); ++ci)
1654 if(ci. index ()!=ri.index () && *ci !=0.0)
1655 isDirichlet =false;
1656 if(isDirichlet)
1657 soln_[ri.index ()] = rhs_[ri.index ()] /

S_[ri.index ()][ri.index ()];
1658 }
1659 // Solve system of linear equations to recover
1660 // face/ contact pressure values (soln_).
1661 linsolve .apply(soln_ , rhs_ , result);
1662 if (! result . converged) {
1663 OPM_THROW (std :: runtime_error , " Linear solver

failed to converge in " << result . iterations
<< " iterations .\n"

1664 << " Residual reduction achieved is " <<
result . reduction << ’\n’);

1665 }
1666

1667 }

AppendixBPrograms

This section includes some small utility programs used to compile reports,
extract data and preprocess data for this thesis.

99

100 B. PROGRAMS

Listing B.1 matrix-diff.hs: output differences of upscale_relperm runs.
1 import Numeric . LinearAlgebra
2 import Control .Monad (replicateM)
3 import Data.Maybe
4 import Data.List (sort)
5 import Text.Read (readMaybe)
6 import Text. Printf
7
8 merge :: [a] -> [a] -> [a]
9 merge xs ys = concatMap (\(x,y) -> [x,y]) $ zip xs ys

10
11 mkmatrix :: IO (Matrix Double)
12 mkmatrix = fmap fromLists . replicateM 30 $ fmap

lineToDouble getLine
13 where lineToDouble = mapMaybe (readMaybe .

fixDouble) . words
14 fixDouble (’. ’:[]) = ".0"
15 fixDouble (x:xs) = x : fixDouble xs
16 fixDouble [] = []
17 -- upscale_relperm does not output a

trailing zero , this must be
18 -- added for readMaybe to not discard the

entry
19
20 main :: IO ()
21 main = do
22 mtx1 <- mkmatrix
23 mtx2 <- mkmatrix
24
25 let diffmtx = cmap abs $ mtx1 - mtx2
26 let nonzeros = 0 : (filter (> 0) . sort . concat $

toLists diffmtx)
27
28 let maxdiff = maximum nonzeros
29 let reldiff = maxdiff / (atIndex mtx2 $ maxIndex

diffmtx)
30 let sumdiff = sum nonzeros
31 let avgdiff = sumdiff / (6 * 30)
32 let median = head $ drop (div (length nonzeros) 2)

nonzeros
33
34 let rounded = map (printf "%.5e") [sumdiff , maxdiff ,

avgdiff , median , reldiff]
35 putStrLn . concat $ merge ("" : (repeat ",")) rounded

101

Listing B.2 make-result-tables.sh: compile timing tables.
1 #! /bin/bash
2
3 if [$# -lt 1]; then
4 echo "Need argument ’dune ’ or ’petsc ’"; exit;
5 fi
6
7 basefile =data/baseline -ILU -BiCGStab -out.txt
8 backend =$1
9

10 diffpath =figs/diff -$backend -data.csv
11 diffdata ="Alg ,Sum ,Max ,Average ,Median , Relative "
12
13 timepath =figs/time -$backend -data.csv
14 timefull =figs/time -$backend -full.csv
15 timedata ="Alg ,Wallclock ,Upscaling ,MPI"
16
17 for node in 6 12; do
18 for f in data/$backend -*-$node -out.txt; do
19 if [! -e $f]; then continue ; fi
20 # extract name of pc and ksp
21 farray =(${f//-/ })
22 pc=${ farray [1]}
23 ksp=${ farray [2]}
24
25 ddata=$(cat <(tail -n 30 $basefile) <(tail -n 30

$f) | ./ matrix)
26 tdata=$(tail -n 51 $f | head -n 3 |

./ extract - timing .pl)
27 diffdata =" $diffdata \n$pc/$ksp , $ddata "
28 timedata =" $timedata \n$pc/ ksptdata "
29 done
30 done
31
32 echo -e $diffdata | sort | uniq | tee $diffpath
33 echo -e $timedata | sort -g -t, -k2 | tee $timepath

$timefull
34 grep "[MPI |12]$" $timepath | tee

figs/time -$backend -12- data.csv
35 grep "[MPI |6]$" $timepath | tee

figs/time -$backend -6- data.csv
36
37 for f in data/$backend -*- incomplete .txt; do
38 farray =(${f//-/ })
39 pc=${ farray [1]}
40 ksp=${ farray [2]}
41 nodes=${ farray [3]}
42 echo "$pc/$ksp , -, -, $nodes " | tee -a $timefull
43 done

102 B. PROGRAMS

Listing B.3 opm-bench.sh: orchestrate timings.
1 #! /bin/bash
2
3 outdir =/ home/ jorgekva /bench -out
4 runs="6 12"
5 bin =/ usr/local/bin/ upscale_relperm
6
7 model =/ home/ jorgekva /Files/model. grdecl
8 for ext in ‘seq 1 4‘; do model=" $model

/home/ jorgekva /Files/rock"$ext".txt"; done
9

10 linsolvertypes =‘seq 0 3‘
11 dunealgs =("ILU. BiCGStab " "AMG.CG" "KAMG.CG" " FastAMG .CG")
12
13 if [$# -lt 1]
14 then
15 echo "Error: no arguments given"
16 echo " Options are: baseline , dune , compile , petsc"
17 exit
18 fi
19
20 if [$1 = " baseline "]
21 then
22 for solver in $linsolvertypes ; do
23 $bin -linsolver_type $solver $model \
24 | tee $outdir /baseline -${ dunealgs [$solver]}- out.txt
25 done
26 fi
27
28 if [$1 = "dune"]
29 then
30 for run in $runs; do
31 for solver in $linsolvertypes ; do
32 mpirun -np $run $bin \
33 -linsolver_type $solver $model \
34 | tee

$outdir /dune -${ dunealgs [$solver]}-$run -out.txt
35 done
36 done
37 fi
38
39 if [$1 = "petsc"]

103

Listing B.4 opm-bench.sh: orchestrate timings.
39 if [$1 = "petsc"]
40 then
41 #run petsc
42 preconditioners ="hypre gamg jacobi ilu"
43 kspalgs ="cg gmres bcgsl"
44
45 for run in $runs; do
46 for pc in $preconditioners ; do
47 for kspalg in $kspalgs ; do
48 mpirun -np $run $bin \
49 -pc_type $pc -ksp_type $kspalg $model \
50 | tee $outdir /petsc -$pc -$kspalg -$run -out.txt
51 done
52 done
53 done
54 fi
55
56 if [$1 = " mkpetsc "]
57 then
58 for srcdir in core porsol upscaling ; do
59 cd /home/ jorgekva /opm -petsc/opm - $srcdir /build
60 make -j6
61 make install
62 done
63 fi
64
65 if [$1 = " mkdune "]
66 then
67 for srcdir in core porsol upscaling ; do
68 cd /home/ jorgekva /opm - $srcdir /build
69 make -j6
70 make install
71 done
72 fi

104 B. PROGRAMS

Listing B.5 extract-timing.pl:
1 #! /usr/bin/env perl
2
3 use strict ;
4 use warnings ;
5
6 # assumes to only get the relevant timing lines , i.e.

tail 51 | head 3
7 while(<>) {
8 $_ =~ /(\d+(.\d+)?)/;
9 print "," . int($1 + 0.5);

10 }

AppendixCTables & figures

Table C.1: Workstation HW config.

System
CPU Intel Core i7 950 (Bloomfield)
Frequency 3.07 GHz
Cores 4 (8 with HT)
Memory 12 GB
Instruction set x86_64
GPU Nvidia GeForce GTX980
Video driver nvidia-346.47
OS Ubuntu 14.04
GCC 4.8.2

105

106 C. TABLES & FIGURES

0 1,000 2,000 3,000 4,000 5,000 6,000

hypre/gmres

hypre/cg

hypre/bcgsl

ilu/cg

gamg/cg

gamg/bcgsl

jacobi/bcgsl

jacobi/cg

gamg/gmres

ilu/bcgsl

Wallclock time (seconds). Lower is better

12 MPI nodes
6 MPI nodes

Figure C.1: Time elapsed for PETSc driven runs. Lower is better.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

FastAMG/CG

ILU/BiCGStab

AMG/CG

Wallclock time (seconds). Lower is better

12 MPI nodes
6 MPI nodes

Figure C.2: Time elapsed for DUNE driven runs.

107

Figure C.3: Output from upscale_relperm with 12 MPI processes driven by
PETSc.

108 C. TABLES & FIGURES

Table C.2: Testing system hardware configuration.

System
CPU Intel Core i7 3930K (Sandy Bridge)
Frequency 3.20 GHz
Cores 6 (12 with HT)
Memory 32 GB
Instruction set x86_64
GPU AMD Radeon HD 7950 (Tahiti)
Video driver fglrx-15.2
OS Ubuntu 14.04
GCC 4.8.2

	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Project goals
	Outline

	Background
	Numerical methods
	Linear algebra
	System of linear equations
	Numerical solvers
	Direct methods
	Iterative methods
	Conjugent Gradient
	Generalised Minimal Residual
	Algebraic Multigrid Method

	High-performance computing
	Amdahl's Law
	Gustafson's Law
	Amdahl's Law and Gustafson's Law for multicore systems
	MPI

	Numerical software
	BLAS and LAPACK
	DUNE
	Hypre
	Fluent

	PETSc
	C++
	Complex objects
	Constructor and destructor
	The this pointer
	Inheritance
	Overloading
	Template programming
	Move semantics
	Resource Acquisition is Initialisation

	Further reading

	Upscaling
	Reservoir engineering, permeability and Darcy's Law
	Grid
	Basics of upscaling
	Program design
	Scalability

	Integrating PETSc with OPM
	On development
	Motivation for a library
	Types and containers
	High-level interface
	Common and mixins
	Vector
	Matrix
	Solver
	Porting upscale_relperm to use PETSc
	Bugs

	Results and Measurements
	Configuration
	Differences
	Computation time

	Conclusions and Future Work
	Contributions
	Conclusions
	Future Work

	References
	Code snippets
	Programs
	Tables & figures

