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Abstract— We propose a generalized methodology to predict 

the deliverability of wells in fractional drainage areas. A 

fractional model is characterized by a single term power-law 

variation of the rock properties. Such a model may provide a 

more realistic alternative than the traditional homogeneous 

reservoir model.  For example, the traditional models may not be 

applicable for sparse fracture networks. We assume the validity 

of the fractional model and find that the homogeneous solution is 

included in the generalized model as a special case. Simultaneous 

solution of the reservoir- and vertical lift equation leads to an 

algebraic equation of second degree. Hence, the prediction of the 

flow rate delivered into a pipe-line at any pressure is easily 

available. We investigate the sensitivity of the flow rate to 

variations in wellbore head, reservoir and flow string properties. 

Keywords; Sparse fracture network; Fractional reservoirs; 

Deliverability;  

I.  INTRODUCTION 

The present study deals with an analytical model for the 
interaction of a confined aquifer and a well in a sparsely 
fractured rock. For such a network, the assumption of a 
homogeneous reservoir is problematic. A fractional model may 
be more attractive. We apply the method to predict the effect of 
centrifugal pumps and tubing size in fractional reservoirs. 

The flow space of a fracture network obviously does not fill 
the bulk volume (Euclidian space). Barker [1] proposed a 
generalized radial flow (GRF) well test model to account for 
the non-filling property, which was characterized by a 
fractional space dimension. The non-integer space dimension, 
which may be thought of as the result of embedding, shows up 
as a real number exponent in the spatial variable.  

 Doe [2] pointed out that the fractional model includes non-
fractured porous media. If the fracture network is self-similar 
and has some connectivity, then it is of fractal type (Chang and 
Yortsos [3]). Both descriptions lead to rock properties of single 
term power law expressions. The latter method is attractive 
since it provides a reasonably simple algorithm to construct 
random fracture networks based on reservoir statistics (Acuna 
and Yortsos [4]). In addition, the technique has a theoretical 
justification, (Acuna et al. [5]).   

A definition of fractal dimension is given in [6]  The most 
intuitive way to obtain  a measure of the fractal dimensions is 

by the box-counting method which is explained in the same 
reference. An application of the technique to obtain a measure 
of the fractal density for a sparse fracture network is discussed 
in [7]. 

The mass fracture density, fd , which is akin to fractal 

density, is a key variable. The connectivity index,  , which is 

related to the spectral density, [3], does not show up in the 

fractional model. 

  
Due to the simple structure, the deliverability equations 

may be obtained by straight forward integration. Many network 
configurations may give rise to the same fractional dimension. 
Hence, the result of the calculation may be regarded as the 
average or expected deliverability with a given fractional space 
dimension and connectivity. 

II. THEORY 

We consider an analytical model that depends on one 

spatial variable. Eucledian dimensions d 1 , 2 and 3 , 

corresponds to linear, sylindrical and spherical geometry, 
repectively. 

The theory depends on the following assumptions: 

i)   Single phase flow of water in a sparsely fractured 
reservoir with rock properties of power law trends. 

ii)  Constant production rate from a confined aquifer. 

iii) The fracture network is embedded in a Euclidian space 

of cylindrical shape, i.e. 2d  . The network may be 

characterized by a fractional dimension, fd . 

A. The aquifer equations: 

We use fractal nomenclature. The same calculation 
methodology may be used for any conceptual model that leads 
to rock properties in the form of a single power law term.     

Fractional mass density: .fd d

f r


 

      This study is restricted to Euclidian dimension 2d   

which corresponds to radial geometry. This choice leads to: 
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Porosity:   

                              
2fd

wn n r


 .                                 (1) 

Transmissibility: 

                            
2

.fd

wT T r
 

                                (2) 

 
Flow parameter:  

                             1fd    .                            (3) 

 
Inflow performance relationship:   

 

                            /w resH H Q PI   .                   (4) 

 
The above equation, eq.(4), shows up as a straight line on 

piezometric head vs. flow rate plot. This will also be the case 
for an aquifer with homogeneous rock properties. The  
difference is that the existence of a fracture network is 
accounted for in the fractional model. 

B. Flow Periods: 

We consider steady and pseudo steady flow. These flow 
periods are dominated by the external boundary conditions, 

constant head, eH , and a no flow boundary, 

 / 0,
e

H r    respectively. An actual case will fall 

somewhere in between the two ideal cases. For pseudo steady 

flow the time derivative, /H t  , is constant for all values of 

the spatial variable, r . Hence, the drawdown between two 
spatial positions becomes independent of time, which leads to a 
constant productivity index. The no flow boundaries may be 
due to physical boundaries or interference between production 
wells. 

Pseudo steady state, Jelmert [8]: 
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Steady state, Jelmert [9]:    
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Re s eH H  for steady state flow. Re sH H for pseudo-

steady flow. 

Observe that there is a discontinuity in the equation for 

1  . This case must be handled separately. The result is a 

logarithmic function rather than a power law function in the 
denominator. It may be shown that there is a continuous 
transition over the discontinuity, [10]. Hence, the homogeneous 
solution is included in the fractional one as a special case. 

                                                                                                 

C. Tubing equations: 

A shallow aquifer usually depends on pumps to bring water 
to the surface. We consider centrifugal pumps.  

The tubing intake head is: 

             in whout Frict PumpH H H H   .                     (7)                 
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Tubing intake head:      
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L Q
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
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D. Determination of deliverability: 

Deliverability is the flowrate which can be fed into a 
pipeline at a specified pressure or head. The flowrate may be 

obtained from the condition that the tubing intake, inH , and 

wellbore head,  wH , is the same. Then: 
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This is an algebraic equation of second degree. The solution is: 
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 (12) 

The solution may also be obtained graphically as the intersect 
between the reservoir and tubing curves (broken line curves) as 
shown in Fig. 1 and Fig. 2. 
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III. APPLICATION OF THE PROPOSED MODEL 

 As an example application, we consider a hypothetical well  

with data as shown in Table 1. 

 

TABLE I.  WELL AND RESERVOIR DATA 

 
            

    Flow depends on artificial lift since the length of the tubing 
is 75 m while the reservoir head is 74 m only.  

The flow rate depends on the interaction between the flow 
string (tubing and pump) and the reservoir. The effect of the 
flow string is shown as a broken line curves. Flow rates are 
given by cross-points of the flow string and reservoir curves. 

Then, the tubing intake, inH , and wellbore head,  wH , are the 

same.  

      Observe that the flow rate increases with decreasing 

distance to the outer boundary. This is because resevoir 

drawdown is applied to a shorter distance. The flow rate 

increases with increasing lift capacity of the pumps.     

 

 

Figure 1.  Effect of exterior radius, Steady state flow 

 

 

                               Figure  2.  Effect of the flow parameter,    

      Figure 2 shows the effect of the low parameter,  . The blue 

line, 1   and 0  , corresponds to radial flow in a 

homogeneous reservoir. From eq.(3) we obtain 2
f

d   which 

is the same as the Eucledian dimension, 2d  . Hence, the 

fracture network fills the Eucledian space. From eq.(1) and 

eq.(2), this condition leads to homogeneous porosity and 

transmissibilty. 

 

    The green line, 1  , is rare but possible. From eq.(3) 

obtain fractal dimension: 2.2
f

d  . This case falls in between 

Eucledian dimensions 2d   and 3 , which corresponds to 

radial and spherical flow, respectively. 

 
In all cases we have assumed: Atmospheric pressure at the 

top of the well. Length of tubing: 75 m. Inner diameter 0.2 m. 
Friction factor: 0.001. Head at top: 75 m. Reservoir head: 74 
m. Reservoir thickness: 50 m. Wellbore permeability: 1.5 D. 
Wellbore porosity: 0.2. 

The sensitivity of the fractal model to various reservoir 
variables  has been discussed in [10]. 

IV. DISCUSSION 

The fractional model is an attractive alternative to the 
homogeneous radial one since the effect of sharp 
heterogeneities is accounted for in an approximate way. The 
result is an average  value or expected value.  Deterministic 
computations require detailed information which may be 
impossible to achieve. If a natural fracture network is self-
similar and has some connectivity, the fractal model becomes 
plausible. The method is attractive since it provides a 
reasonably simple algorithm to construct random fracture 
networks based on reservoir statistics. In addition the technique 
has a theoretical justification (Acuna et al. [5]).  A realization 
may be used for detailed local simulations by the finite element 
method. Many realizations may be used for analysis by 
geostatistics.  This technique is time consuming and may 
involve more work than one normally is willing to spend. An 
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analytical model will quickly predict the expected behavior in 
an approximate way. We recommend use of the approximate 
solution, especially for initial investigations. 

A computer generated realization may be used for 
visualization of a possible fracture network. The opposite is 
also possible. One may observe physical realizations directly if 
the formation has an outcrop.  Observations from outcrop 
studies and well testing may be integrated into the model or 
used to improve its credibility. 

V. CONCLUSIONS 

The methodology may be of interest in ground water 
hydrology, petroleum and geothermal engineering. 

The deliverability of this class of sparsely fractured 
networks may be described by simple analytical solutions.  

They are easy to program on a spread sheet. Generalized 
inflow equations based on the assumption of power law trends 
has been proposed.   

The productivity may be improved by stimulation and 
densification of wells (decrease in external radius).  

The generalized model may highlight problems that could 
go undetected by the homogeneous model.  

We believe use of the generalized model may improve 
production forecasting and design of wells in sparsely fractured 
reservoirs, fractal or not.  

The homogeneous model is included in the fractional 
model as a special case. 

VI. NOMENCLATURE 

itA :     Inner diameter of tubing, m 

fd :     Euclidian dimension, Dimensionless 

f :       Friction factor, Dimensionless 

H :      Piezometric head, m 

Re sH : Piezometric head of reservoir, m  

H :      Volumetric average reservoir head, m 

h :        Reservoir thickness, m 

L :       Length of tubing, m 

n :        Porosity, Dimensionless 

wn :      Porosity in vicinity of wellbore, Dimensionless 

Q :       Flowrate, m3/s 

r :        Radial distance, m 

Dr :       Dimensionless distance, Dimensionless 

er   :   External radius, m 

S   :   Skin, Dimensionless 

t     :  Time, s 

T   :  Transmisciblity,  

v    :  Velocity, m/s 

 

Greek letters 

   :  Change 

   :   Flow parameter, Dimensionless 

   :   Density, kg/m3 

f  :   Fractal mass density 

    :   Conductivity index, Dimensionless 

Subscripts 

in    :  Tubing intake 

it     :   Inner tubing 

out  :   Outflow 

w     :  Well 
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