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ABSTRACT 

  New technologies produce liquids from synthesis gas in the gas to liquids technology 

(GTL). Dimethyl ether made from synthesis gas is one such possible process. DME is more 

or less claimed to be a renewable fuel that solves the issues concerning CO2 emissions and 

global warming. Nowadays, DME is commercially produced by dehydration of methanol using 

acidic porous catalysts; whereas direct synthesis from synthesis gas in large-scale plants might be 

more economical. A collection of bifunctional catalysts with different contents and additives has been 

studied for the direct DME synthesis. In the current study, a sample of CuO–ZnO–Al2O3 was prepared 

by co-precipitation method. After characterization by XRD, the catalyst was mixed with methanol 

dehydration catalyst (HZSM-5) with different mass ratios(1,2,4,6 and 8). The activity test for the 

catalysts was performed in the DME synthesis set-up. The experiment was carried out in a fixed-bed 

reactor and the temperature range of 235-275°C , the GHSV range of 4500 - 60000
$%&'()*+  and H2:CO 

ratios of 1,2 and 4 were applied. 

   According to the results; The bifunctional catalyst with mass ratio of 6 shows the better 

performance for different GHSVs. The relatively large surface area of the HZSM-5 catalyst 

provides proper utilization of methanol produced by methanol synthesis catalyst for the ratios 

up to 6. The bifunctional catalysts with mass ratios of 4, 6 and 8 show the same DME yields 

at temperature range of 235-255°C. At the higher temperatures, the bifunctional catalysts 

with mass ratios of 4 and 6 show higher CO conversions and DME yields. H2-rich feeds give 

better CO conversion and DME yield. The bifunctional catalyst with mass ratio of 6 shows 

higher CO conversion and by increasing the mass ratio, there will be no increase in CO 

conversion. According to the results the optimum �,�/./�/	0 �1  to  �.
� − 2 mass 

ratio could be between 4-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

NOMENCLATURE 

 Symbol Unit Description 

ΔH298 kJ/mol Standard enthalpy change of reaction 

Ki - Adsorption equilibrium constant for component i 

Kn - chemical reaction constant 

KP,n - Equilibrium constant for reaction n 

k kgmol/m
3
·h Rate constant 

k0 kgmol/m
3
·h.kpa Rate constant 

N m
3
/h Flow rate 

n4 mole The moles of component i 

P bar Pressure 

P4 atm The partial pressure of component i 

Q nml/min Volumetric flow 

Qi nml/min Volumetric flow of component i 

Si  Selectivity to component i 

T °C Temperature 

Xi  The conversion of component i 

W gr Weight 

Yi  The yield of component i 

α  Fraction of Cu-based catalyst in the catalyst mixture 
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1 INTRODUCTION 

 

According to the International Energy Outlook 2010, world energy consumption is expected 

to grow 49 percent from 2007 to 2035 (1). Oil powers cars, trucks, boats, ships, airplanes, etc. 

The rise in crude oil prices and fast decrease of oil reserves have cause an increase in demand 

for substitute energy sources such as natural gas, coal and biomass.   

  On the other hand, the fossil fuels are harmful to the environment and the major companies 

have seen the possibilities and advantages of more environmentally benign fuels. Recent 

energy legislation promotes research on capturing and storing greenhouse gas emissions and 

improving vehicle fuel efficiency, among other goals. 

 New technologies produce liquids from synthesis gas
1 in the gas to liquids technology 

(GTL). The GTL process is capable of producing products that could be blended into refinery 

stock as superior product with fewer pollutants. In addition, in the case of natural gas, the 

transportation and distribution of liquids, synthesized from natural gas, are cheaper than that 

for natural gas to the large markets. 

  Catalytic conversion of synthesis gas  to more useful chemicals and fuels is a challenge for 

the 21st century (2). Dimethyl ether made from synthesis gas is one such possible process. 

DME is more or less claimed to be a renewable fuel that solves the issues concerning CO2 

emissions and global warming. This is, however, as dependent of the source of the syngas 

(natural gas/coal/biomass) as for any other product of synthesis gas (Fischer-Tropsch diesel, 

methanol, ammonia, hydrogen). In all cases, the use of biomass for syngas generation is 

challenging in terms of cost and efficiency, whereas natural gas is favoured from this point.  

    Dimethyl ether (DME) is the simplest ether having the chemical formula: CH3OCH3. 

DME is a colourless and chemically stable gas. It is a volatile organic compound, but is non-

carcinogenic, non-teratogenic, non-mutagenic and non-toxic. DME burns with a visible blue 

flame (3). It has a boiling point of - 25.1oC and a vapour pressure of about 5.3 bars at ambient 

temperature, which makes DME easily liquefied. The physical properties of DME are very 

similar to those of LPG2, thus DME can be distributed and stored using LPG handling 

                                                           
1  Synthesis gas or Syngas is the name given to a gas mixture that contains varying amounts of carbon 
monoxide and hydrogen.                    
2 Liquefied petroleum gas 



 

 

1 INTRODUCTION                             

technology. Table 1.1 shows properties and combustion characteristics of DME and diesel 

fuel. Traditionally, DME has been used to produce intermediate chemicals such as dimethyl 

sulfate or oxygenated compounds (4). The beneficial properties of using DME as a substitute 

for LPG and LNG1 in power plants, and as a diesel substitute in vehicles makes DME a good 

candidate for high-quality fuel for the next generation.  

Table  1-1: Properties of DME and diesel fuel (5). 

Properties DME Diesel fuel 

Molar mass(g/mol) 46 170 

Liquid density(kg/m3) 667 831 

Cetane number >55 40-50 

Auto-ignition temperature(K) 508 523 

Boiling point at 1 atm(K) 248.1 450-643 

Enthalpy of vapourization(kJ/kg) 467.13 300 

Lower heating value(MJ/kg) 27.6 42.5 

Kinematic viscosity of liquid (cSt) <0.1 3 

Surface tension (at 298 K) (N/m) 0.012 0.027 

Vapour pressure (at 298 K) (kPa) 530 <<10 
 

     It is a clean fuel of high cetane number with excellent combustion characteristics. The 

diesel engines need only small changes to run on liquid DME. However the concept might 

need more time to grow. NOx emissions from DME-fuelled engines can meet future 

regulations (6). The substance does not contain sulphur or ash. The combustion of DME has 

lower CO2-emission and as DME does not contain sulfur or ash, generates no SOx or 

particulate matter (7). Therefore it has more environmentally attractive properties compare to 

the existing fuels. As petrochemical feedstock DME has potential. One example is the 

production of olefin from DME. 

    Synthesis gas and methanol are the main feedstocks for DME synthesis. Synthesis gas or 

syngas refers mostly to mixtures of hydrogen and carbon monoxide. It may contain carbon 

dioxide together with some nitrogen and other inert gases, depending from the production 

process and the application.2 Synthesis gas can be produced from almost any carbon source 

ranging from natural gas and oil products to coal and biomass via reforming or gasification 

processes. The most important applications of syngas are in methanol synthesis, the 

hydroformylation of alkenes to aldehydes and alcohols, and the synthesis of larger 

hydrocarbons (Fischer–Tropsch) (8).  

                                                           
1 Liquefied natural gas 
2 The mixture of nitrogen and hydrogen used for the synthesis of ammonia is also called synthesis gas. 
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     Methanol is the simplest alcohol and is a colorless, polar and flammable liquid. 

Traditionally, methanol is produced from natural gas today. The other feedstocks such as 

municipal waste, biomass, agricultural products can be used for methanol production. 

Methanol is used as a feedstock for many chemicals and products.  A relatively large amount 

of methanol is converted to formaldehyde, and from there into products such as plywood, 

paints and explosives. Methanol as a chemical feedstock, a fuel, or a fuel additive covers 

most present methanol consumption. Other uses of methanol can be classified into four areas: 

solvent, antifreeze, inhibitor and substrate (9). 

    There are many technically challenging opportunities for the improvement of the existing 

processes or development of modern processes for the present use of methanol and in 

developing new uses. For the case of current study, it is well known that DME can be 

produced from methanol dehydration over acid catalysts under relatively mild conditions (9). 

 

 

 

 

 



 
THEORIES 2 

 

 

 

 

 

2 THEORIES 

2.1 DME synthesis processes
 

     Until the late 1970s DME was produced as a by

methanol technology, based on a co

Nowadays, DME is commercially produced by dehydration of methanol using acidi

porous catalysts such as zeolites, silica

synthesis from synthesis gas in large

the indirect process synthesis gas is first converted to methanol and then further to 

DME. In the direct synthesis process, both the methanol formation reaction and the 

methanol dehydration reaction take place in the same reactor over a bifunctional 

catalyst.  

 

Figure  2-1: Combined synthesis of methanol and DME. Simplified process flow diagram 

 

DME synthesis processes 

Until the late 1970s DME was produced as a by-product of the high temperature 

methanol technology, based on a co-production of methanol and DME 

Nowadays, DME is commercially produced by dehydration of methanol using acidi

porous catalysts such as zeolites, silica–alumina, alumina, etc (11); whereas direct 

synthesis from synthesis gas in large-scale plants might be more economical 

process synthesis gas is first converted to methanol and then further to 

DME. In the direct synthesis process, both the methanol formation reaction and the 

methanol dehydration reaction take place in the same reactor over a bifunctional 

: Combined synthesis of methanol and DME. Simplified process flow diagram 

product of the high temperature 

production of methanol and DME (10). 

Nowadays, DME is commercially produced by dehydration of methanol using acidic 

whereas direct 

scale plants might be more economical (10). In 

process synthesis gas is first converted to methanol and then further to 

DME. In the direct synthesis process, both the methanol formation reaction and the 

methanol dehydration reaction take place in the same reactor over a bifunctional 

 

: Combined synthesis of methanol and DME. Simplified process flow diagram (12). 
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2.1.1 DME synthesis from Synthesis Gas  

2.1.1.1 Synthesis Gas production 

    Steam methane reforming (SMR) is the predominant commercial technology for 

syngas production, in which methane and steam are catalytically converted to 

hydrogen and carbon monoxide. Partial oxidation is a non-catalytic reaction of 

methane and oxygen to produce a syngas mixture. SMR and partial oxidation produce 

syngas with appreciably different compositions and particularly, SMR produces a 

syngas having a much higher H2:CO ratio (8). The main technologies for synthesis 

gas production from natural gas are summarized and compared on Table 2-1. 

  

Table  2-1: Comparison of syngas production technologies from natural gas (8). 

Technology Advantages disadvantages 

SMR 

• Most extensive industrial experience 
• H2:CO  ratio often higher than required 

when CO also is to be produced 

• Oxygen not required • Highest air emissions 

• Lowest process temperature requirement  

• Best H2:CO ratio for hydrogen production applications  

Heat 

exchange 

reforming 

• Compact overall size and “footprint “ • Limited commercial experience 

• Application flexibility offers additional options for  

providing incremental capacity 

• In some configurations, must be used in 

tandem with another syngas generation 

technology 

Two-step 

reforming 

• Size of SMR is reduced • Increased process complexity 

• Low methane slip favors high purity syngas applications  • Usually requires oxygen 

• Syngas methane content can be tailored by adjusting 

secondary reformer outlet temperature 
• Higher process temperature than SMR 

ATR 

• Natural H2:CO ratio often is favorable • Limited commercial experience 

• Lower process temperature requirement than POX • Usually requires oxygen 

• Low methane slip  

• Syngas methane content can be tailored by adjusting 

reformer outlet temperature  
 

POX 

• Feedstock desulfurization not required. 
• Low natural H2:CO  ratio is a disadvantage 

for applications requiring ratio > 2.0 

• Absence of catalyst permits carbon formation and 

therefore, operation without steam, significantly lowering 

syngas CO content 

• Very high process operating temperatures 

• Syngas methane content is inherently low 

and not easily modified to meet downstream 

processing requirements 

• Low methane slip • Usually requires oxygen 

• Low natural H2:CO ratio is an advantage for applications 

requiring ratio < 2.0 

• High temperature heat recovery and soot 

formation/handling adds process complexity 
 

   

The required properties of the syngas are different for the different uses. In general, 

synthesis gas ideally has the same stoichiometry as the final product. The synthesis 

gas composition for several processes is shown in Table 2-2.  
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The syngas composition can be manipulated by 

using additional process steps. Table 2

syngas H2:CO ratios. 

 

Table  2-2: Syngas composition for various processes 

     

Table  2-3: Techniques for adjusting 

The syngas composition can be manipulated by different process conditions and

steps. Table 2-3 shows the main techniques for adjusting the 

: Syngas composition for various processes (10; 13). 

 

: Techniques for adjusting the syngas H2:CO ratios (8). 

 

process conditions and/or by 

the main techniques for adjusting the 
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2.1.1.2 DME synthesis from Synthesis Gas

     The direct process produces DME 

features a bifunctional1 catalyst with activity for both the synthesis of methanol and 

the synthesis of DME.  

Figure 

 

For the direct method, four reactions take place in the syngas

(13):  

Methanol synthesis reactions :  

 

Methanol dehydration : 

Water gas shift (WGS) : 
 
   

   The number of independent reactions for the direct DME synthesis is three. Since 

the reactions are reversible and exothermic, 

control in order to maximize DME production.

favoured by low temperature. The methano

favoured by high pressures 

methanol dehydration reaction. When the 

place simultaneously, the syngas conversion increases. 

pressure range of about 220

                                                          
1 The catalyst mixture that contains both methanol synthesis and methanol dehydration catalysts.

DME synthesis from Synthesis Gas: reactions 

produces DME directly from synthesis gas. This 

catalyst with activity for both the synthesis of methanol and 

Figure  2-2: Direct Production of DME (14). 

four reactions take place in the syngas-to-DME reactor, namely 

CO + 2H2 ↔ CH3OH  ∆H298 = −90.4 kJ/mol

CO2 + 3H2 ↔ CH3OH + H2O ∆H298 = −49.4 kJ/mol

2CH3OH ↔ CH3OCH3 + H2O ∆H298 = −23.0 kJ/mol

CO + H2O ↔ H2 + CO2 ∆H298 = −41.0 kJ/mol            

number of independent reactions for the direct DME synthesis is three. Since 

the reactions are reversible and exothermic, there is a need for excellent temperature 

control in order to maximize DME production. The reactions are thermodynamically 

low temperature. The methanol synthesis reactions, (2-1) and 

 and they are more equilibrium-limited compare to the 

methanol dehydration reaction. When the dehydration reaction, reaction (2

y, the syngas conversion increases. The reactor temperature and 

pressure range of about 220-290°C and 3-10 MPa and 260°C, 50bar as a standard 

                   
The catalyst mixture that contains both methanol synthesis and methanol dehydration catalysts.

directly from synthesis gas. This process 

catalyst with activity for both the synthesis of methanol and 

 

DME reactor, namely 

90.4 kJ/mol (2-1) 

49.4 kJ/mol (2-2) 

kJ/mol (2-3) 

kJ/mol            (2-4) 

number of independent reactions for the direct DME synthesis is three. Since 

there is a need for excellent temperature 

modynamically 

1) and (2-2), are 

limited compare to the 

2-3), takes 

The reactor temperature and 

10 MPa and 260°C, 50bar as a standard 

The catalyst mixture that contains both methanol synthesis and methanol dehydration catalysts. 
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condition have been reported 

process requires a CO2 capture unit.

    The DME productivity and material utilization in a 

a strong function of the synthesis gas composition 

the effect of H2:CO ratio on the DME synthesis reaction. 

selectivity and productivity decrease with increasing the ratio. According to the 

results a H2:CO ratio of 1 is optimum for DME selectivity but the ratio of 

the optimum ratio for high productivity. However, high CO conversion can be 

obtained for the ratio of close to 2

not approached.  

Figure  2-3: Effect of H

 

 

 

 

 

 

 

 

condition have been reported (14; 13; 15). The main by-product of process is CO

capture unit. 

The DME productivity and material utilization in a direct syngas-to-DME reactor is 

a strong function of the synthesis gas composition (13).  F. Hayer et al. (13)

on the DME synthesis reaction. As Fig.2-4 shows the DME 

selectivity and productivity decrease with increasing the ratio. According to the 

:CO ratio of 1 is optimum for DME selectivity but the ratio of  1

the optimum ratio for high productivity. However, high CO conversion can be 

obtained for the ratio of close to 2 or higher as long as DME synthesis equilibrium is 

: Effect of H2:CO feed ratio on the DME synthesis reaction  (13). 

product of process is CO2 and 

DME reactor is 

(13) studied 

shows the DME 

selectivity and productivity decrease with increasing the ratio. According to the 

1–2 can be 

the optimum ratio for high productivity. However, high CO conversion can be 

or higher as long as DME synthesis equilibrium is 
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2.1.2 DME synthesis from Methanol 

      The indirect process, produces DME via the catalytic dehydration of methanol 

over an acidic catalyst (reaction 2-3). The reaction is mildly exothermic. This process 

has the advantages such as of enabling selection of the most optimum reactor type and 

operating conditions for each reaction steps. Due to less reaction heat compare to the 

direct process, reaction heat removal from the reactor is not a problem. Temperatures 

in the range 250-300°C and pressures up to 1.04 MPa have been reported (9). Various 

reaction mechanisms for methanol dehydration to DME have been reported. The 

proposed mechanism by S. J. Royaee et al. is described in appendix A.  

 

Figure  2-4: Indirect Production of DME (16). 
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2.1.3 Reactors for the DME synthesis processes 

   The main characteristics of DME synthesis process as a GTL process that must be 

considered in reactor design are (17):  

• Highly exothermic reactions. The reactor must realize efficient and rapid 

removal of the accompanying large heat of reaction and provide a uniform 

temperature profile. Compare to methanol synthesis, the higher equilibrium 

conversion of DME synthesis could give more reaction heat and hot spot in 

the reactor can damage the catalyst (18). 

• The process is operated at high temperature and pressure and the scale up must 

be easy. Developing a large scale production is critically important from the 

point view of the economy to produce low priced fuel.  

  The slurry bubble column, slurry airlift, fluidized-bed, fixed bed and microstructured 

reactors were used or studied for DME synthesis. The differences between these 

several reactor types are largely related to different approaches to temperature control 

and the choice of catalyst (17).  

2.1.3.1 Slurry phase reactor 

     There are three types of slurry reactors: the bubble column, airlift reactor, and 

spherical reactor. The spherical reactor has economical feasibility and great potential 

for large scale production in the fuel industry, since it has higher mechanical 

resistance to pressure than the cylindrical column, which decreases the wall thickness 

needed and the reactor cost (17). 

    The advantages of the slurry reactors for GTL processes are: simple construction, 

good heat transfer performance, online catalyst addition and withdrawal, and 

reasonable interphase mass transfer rates with low energy input. However, as a 

multiphase reactor has some remarkable scale-up effects (17). 

 Due to the presence of an additional liquid phase, gas-liquid mass transfer limitations 

in a gas-liquid-solid slurry system may cause a decrease in the reaction conversion, 

especially at high solid concentrations and superficial gas velocities. In order to 

development and design of high-performance slurry reactors for GTL processes 
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extensive studies are needed on the hydrodynamics, mass transfer, and liquid-solid 

separation(17). 

Catalyst deactivation in slurry reactor may retard the development of these reactors. It 

has been reported that methanol synthesis and dehydration catalysts are stable when 

used separately in a slurry reactor. However, when physical mixture of these catalysts 

applied in LPDME1 process, catalysts deactivate rapidly (19). 

2.1.3.2 Fluidized-bed reactor 

       The fluidized bed reactor is proposed as an ideal reactor for the DME synthesis. 

Compared with the slurry reactor, the gas-solid mass transfer resistance is so small in 

a fluidized bed reactor that it can be neglected. On the other hand, the vigorous 

mixing of catalyst particles in the bed makes excellent temperature control achievable. 

Almost all of the reactions occur in the liquid phase, which contains the catalyst 

particles, whereas the gas phase does not contribute significantly to the reaction (19). 

2.1.3.3 Fixed-bed reactor 

      Catalytic fixed-bed reactors are the most important type of reactor for the 

synthesis of large-scale basic chemicals and intermediates. In these reactors, the 

reaction takes place in the form of a heterogeneously catalyzed gas reaction on the 

surface of catalysts that are arranged as a so called fixed-bed in the reactor. In these 

reactors, poor temperature control and undesired thermal gradients may exist. 

Reactions with a large reaction heat as well as reactions with high temperature-

sensitivity are carried out in these reactors with indirect heat exchange via a 

circulating heat transfer medium integrated in the fixed-bed (20; 21) 

2.1.3.4 Microstructured reactors 

       A chemical reactor generally has to provide the necessary reaction time, 

introduce or remove the reaction heat and supply enough interface area between the 

phases in multiphase reaction systems. Microstructure reactors (MSR) possibly have 

these features (22). Chemical microstructured reactors (MSR) are devices containing 

open channels for fluids. The dimension of channels in MSR is about the sub-

                                                           
1 Liquid Phase DME 
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millimeter range. Often MSR have multiple parallel channels with diameters between 

10 and several hundred micrometers where the chemical transformation occur (23). 

High surface to volume ratio is the main feature of microstructured reactors, which is 

in the range of 10,000–50,000 
%9
%: . Usually MSR are operated under laminar flow 

conditions. The heat transfer coefficient values for liquids are about 10 kW
m2K , which is 

one order of magnitude higher than in the traditional heat exchangers.  

The high heat transfer allows to utilize the full potential of catalysts for highly 

endothermic or exothermic reactions and avoid hot-spots formation. Fast heating and 

cooling of reaction mixtures is possible in open reactor systems (23). 

 

Figure  2-5: The microstructured reactor used for methanol and DME synthesis 

Microstructured reactors with their small dimensions facilitate the use of distributed 

production units at the consumption place. This can eliminate the transport and 

storage of dangerous chemicals. The scale-up can be done easier when MSR units is 

used in parallel, without increasing the channel geometry (23). 
 

 

Table  2-4: Advantages and disadvantages of microstructured reactors (22; 23; 24) 

Advantages Disadvantages 

Compactness Scale-up (economy of scale-up) 

Operation at high pressure    

Good heat and mass transfer  

Inherent safety  

Thermal behavior (isothermal)  

Negligible pressure drop and diffusion limitations  

short residence times  
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In summary, microstructured reactors lead to (23): process intensification, inherent 

reactor safety, broader reaction conditions including up-to the explosion regime, 

distributed production, faster process development. These make MSR suitable for 

fast, highly exothermic or endothermic chemical reactions. 

 

2.2 Catalysts for DME synthesis  

2.2.1 Methanol synthesis catalysts 

   Several catalysts were used for methanol synthesis reaction. In 1923, BASF 

developed the first catalyst with ability to synthesis of large amounts of methanol. The 

process operated at high pressure and temperatures (300 bar&300–400°C) and over a 

Zn/Cr2O3 catalyst. In 1966, Zn/Cr2O3 catalyst replaced by a more active catalyst: Cu–

ZnO–Al2O3, developed by ICI, which made it possible to operate at much milder 

condition (60–80 bar and 250–280°C)(25). Industrially, Cu–ZnO-Support is the most 

common methanol synthesis catalyst. Al2O3 is the most common support and as a 

structural promoter. Zinc oxide has very low activity for methanol synthesis but 

enhances the activity of copper catalyst. Nakamura et al. suggested that Zn atoms also 

act as a chemical promoter (25). 

The supported Pd catalyst for synthesis of methanol has been studied extensively and 

showed a more stable activity compare to the Cu-based catalyst. Cu-based catalyst at 

high temperature and in the presence of H2O and CO2 deactivates quickly with time 

on stream (26). 

2.2.2 Methanol dehydration catalysts 

    The reaction (2-3) is catalyzed by the dehydration catalysts. The reaction is very 

selective and the formation of by-products is too low. The strength and type of the 

acid sites varies between the different suppliers or technologies. Both Brøndsted and 

Lewis acid sites are active. The key point for the catalyst is to have a sufficiently high 

acidity in order to have a high activity but without having coke formation to avoid 

rapid catalyst deactivation (12). 

    The kinetic models, mostly, are based on the Langmuir-Hinshelwood mechanism 

and the rate-limiting step is considered to be the reaction between the two adsorbed 

methanol molecules. Numerous catalysts have been suggested. The different acid 



 

 

THEORIES 2 

function were studied such as: promoted alumina, zeolite-based materials and a silico-

alumino-phosphates (SAPO). Industrially, the most important catalyst is based on 

aluminium oxide or aluminium silicates with or without promoters (12). 

A − 	0 �1 

γ − AlDOE with good thermal and mechanical stability has a porous amorphous 

structure. γ − AlDOE as a solid-acid catalyst that can be used for DME production, 

offers (25):  

• Acidity 

• High surface areas (50–300 m2 g–1) 

• Mesopores of between 5 and 15 nm 

• Pore volumes of about 0.6 cm3 g–1 

• High thermal stability  

• The ability to be shaped into mechanically stable extrudates and pellets.  

 

Zeolites  

Zeolites with their acid sites are catalytically active in the hydrocarbon reactions. The 

pore system affects the selectivity of reactions by excluding both the participation and 

formation of molecules that are too large for the pores. The zeolite contains channels 

and cages where cations, water and adsorbed molecules may reside and react. The 

specific absorption properties of zeolites such as their acidity makes them attractive 

catalysts (25).  

“Synthetic zeolites are usually named after the industry or university where they were 

developed, e.g. ZSM stands for Zeolite Socony Mobil. With over 600 currently 

known zeolites and new ones discovered every year, it is useful to have a general 

classification of structures endorsed by the IUPAC. In this system, each structure has 

three letters, for example MFI for ZSM-5” (25).  

Compensating Cations and Acidity: When Al3+ replaces Si4+ ions atoms in the 

tetrahedra, the units have a net charge of –1, and hence cations such as Na+ are needed 

to neutralize the charge. The number of cations present within in a zeolite structure 

equals the number of alumina tetrahedral in the framework. Thus, for the case of 

ZSM-5 its sodium compensated form is indicated as Na-ZSM-5 (Na-X). If the sodium 
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ions are replaced by protons wou

gigantic polyacid.  

Zeolites offer (25): 

• Cristallinity  

• Microporosity  

• Uniform pore systems 

• Pore channels or cages 

• High internal surface area 

• High thermal stability 

• Ion exchange capabilities 

• Acidity  

• Nontoxic  

• Environmentally safe 

2.2.3 Bifunctional catalysts

   In the current study, the term “

mixture that possesses two catalytic sites

synthesis and methanol dehydration 

catalyst is to exhibit synergistic effect

activity of the other. The direct process 

catalyst based on the methanol synthesis

collection of bifunctional catalysts with d

studied for the direct DME synthesis. In the following several catalysts and the effect 

of additives is summarized.  
 

Acid strength of solid acid catalyst 

   The methanol dehydration rate is dependent on the acid strength of the solid acid 

catalysts. J.H. Kim et al.(27)

HZSM-5 with the acid strength order of: 

HZSM-5(30) >HZSM-5(50) >HZSM

   The admixed catalysts with 

DME synthesis and the catalysts with Na

ions are replaced by protons would be as H-ZSM-5 (H-X), the zeolite becomes a 

niform pore systems  

ore channels or cages  

igh internal surface area  

igh thermal stability  

on exchange capabilities  

nvironmentally safe  Figure  2-6: The structure of a zeolite

 

Bifunctional catalysts 

In the current study, the term “bifunctional catalyst” is used to refer to a

that possesses two catalytic sites, which is capable of catalyzing 

synthesis and methanol dehydration reactions. A good characteristic of bifunctional 

synergistic effect in such a way each catalyst enhances the 

The direct process for synthesis of DME requires a bifunctional 

based on the methanol synthesis catalyst combined with an acid function

collection of bifunctional catalysts with different contents and additives has been 

studied for the direct DME synthesis. In the following several catalysts and the effect 

 

of solid acid catalyst  

The methanol dehydration rate is dependent on the acid strength of the solid acid 

(27) studied methanol dehydration over NaZSM

5 with the acid strength order of:  

5(50) >HZSM-5(100) ≈NaZSM-5(30) >NaZSM-5(50) >NaZSM

The admixed catalysts with HZSM-5(30) show the highest activity in the direct 

hesis and the catalysts with NaZSM-5(100) show no DME in the products. 

X), the zeolite becomes a 

 

structure of a zeolite 

to a catalysts 

is capable of catalyzing methanol 

A good characteristic of bifunctional 

in such a way each catalyst enhances the 

bifunctional 

combined with an acid function. A 

ifferent contents and additives has been 

studied for the direct DME synthesis. In the following several catalysts and the effect 

The methanol dehydration rate is dependent on the acid strength of the solid acid 

dration over NaZSM-5 and 

5(50) >NaZSM-5(100) 

show the highest activity in the direct 

ME in the products. 
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The CO conversion for the catalysts with NaZSM-5(50) is not so much different from 

that for NaZSM-5(30), but the DME yield of catalysts with NaZSM-5(30) is much 

higher than that for NaZSM-5(50).  

     K.S. Yoo et al.(28) was studied the role of solid acid catalyst for methanol 

dehydration and direct DME production from synthesis gas. In the methanol 

dehydration, the strength of acid sites affected significantly catalytic performance due 

to the formation of solid carbon (coke) leading to the catalytic deactivation.  

The superiority of ferrierite over the other zeolites 

    P.S. Sai Prasad et al. (29) was studied four different physical mixture of catalysts 

containing Cu–ZnO–Al2O3 (common methanol synthesis catalyst) and ferrierite, 

ZSM-5, NaY or HY, as the solid acid component in direct synthesis of DME.  

  The results show that Cu–ZnO–Al2O3/ferrierite gives higher CO conversion and 

DME selectivity because of facile reducibility of the metal component, suitable 

topology, proper acidic strength and resistance towards catalyst deactivation. Table 2-

5 shows that dehydration activity of ZSM-5 and NaY supported catalysts, is lower 

than the other two catalysts. The Y supported bifunctional catalyst shows very high 

selectivity (57.2%) towards carbon dioxide. 

Table  2-5: Conversion and products distribution on bifunctional catalysts (29). 

Catalyst CO conv. (%) 
Selectivity (mol%) 

DME Methanol HC CO2 

CZA-FER 30.2 28.7 42.8 0.7 27.8 

CZA-ZSM-5 13.9 14.4 64.1 0.6 20.9 

CZA-NaY 14.6 12.5 71.7 0.6 15.2 

CZA-Y 22.7 29.7 12.5 0.6 57.2 

a The averaged values for CO conversion and selectivity are taken in the range of 12–15 h on stream. 

Reaction conditions: T = 250 °C, P = 4 MPa, CO/CO2/H2 =41/21/38 (vol.%), GHSV = 5500 mL h−1 gcat
-1 

 
 

 

The effect of  ZrO2  

       A series of CuO/ZnO/ZrO2/HZSM-5 with different ZrO2 contents were evaluated 

by K. Sun et al. (30). The bifunctional catalysts were prepared by coprecipitation 

sedimentation method. The addition of ZrO2 exhibited a strong effect on the CO 

conversion and DME yield. The optimum amount of 8% wt. of ZrO2 was obtained. 
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The optimized catalyst (Table 2-6) showed a good catalytic activity with high DME 

selectivity (83.12%) and good CO conversion (72.79%).  

Table  2-6: Effect of ZrO2 contents on the catalytic performance for direct synthesis of DME (30). 

Catalyst CO conversion (%) DME selectivity (C-mol %) DME yield (C-mol %) 

CZZ/H-0 42.81 45.70 19.56 

CZZ/H-2 57.63 74.99 43.22 

CZZ/H-4 67.25 79.07 53.17 

CZZ/H-8 72.79 83.12 60.50 

CZZ/H-10 71.57 82.50 59.04 

CZZ/H-14 69.56 82.69 57.52 

Reaction conditions: T = 250 °C, P = 3 MPa, H2:CO:CO2 = 67:30:3 (vol.%), GHSV = 1500 mL h−1 gcat
-1 

 
The effect of Sb2O3  

       D. Mao et al. (31) studied the effect of Sb2O3 on catalytic performance of 

bifunctional catalysts (Prepared by physical mixing). As indicated in Table 2-7, after 

Sb2O3 modification of HZSM-5, the hydrocarbon by-products and CO2 was 

significantly decreased. The Sb2O3 contents of more than 5 wt% did not improve the 

performance of the catalyst remarkably. On the other hand, the modification of 

HZSM-5 with Sb2O3 did not affect the CO conversion. 

Table  2-7: Effect of Sb2O3 content on catalytic performance of the admixed catalyst of CuO–

ZnO–Al2O3 and antimony oxide modified HZSM-5 zeolite (31). 

Sb2O3 (%) CO conversion (%) 
Selectivity (%) 

DME yield (%) 
DME Methanol HC CO2 

- 95.2 55 3.3 9.3 32.4 52.4 

5 95 67.6 3.3 1.2 27.9 64.2 

10 95 68.2 3.3 0.96 27.5 64.8 

20 95 69 3.2 0.58 27.2 65.6 

30 95.1 68.7 3.2 0.67 27.4 65.3 

Reaction conditions: T = 260 °C, P = 4 MPa, H2:CO:CO2:N2 = 61.4:28.5:2.8:7.3 (vol.%), GHSV = 1500 mL h−1 gcat
-1. 
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2.2.4 Preparation methods of bifunctional catalysts 

     Q. Ge et al. (32) investigated the effects of preparation methods on catalytic 

performance and the structures of bifunctional catalysts.1 The bifunctional catalysts is 

containing CuO/ZnO/A12O3 and γ − AlDOE  catalysts that prepared by seven different 

methods. 

I. Coprecipitation method:  “A solution of Cu(NO3)2.3H2O, Zn(NO3)2.6H2O and 

Al(NO3)3.9H2O and a solution of Na2CO3 were coprecipitated when added to H2O 

simultaneously and dropwise over a period of 30 min at 70°C, pH=7 under continuous 

stirring. The precipitates formed were further aged for an hour under stirring at the 

same temperature. The precipitates were then filtered out, washed and dried at 120°C 

for 4 h, then calcined in N2 at 350°C for 6 h “. 

II. Slurry mixing method: “A solution of Cu(NO3)2.3H2O, Zn(NO3)2.6H2O and a 

solution of Al(NO3)3.9H2O were coprecipitated separately with a solution of Na2CO3 

when added to H2O simultaneously and dropwise over a period of 30 min at 70°C 

under continuous stirring. Both the precipitates formed were aged for an additional 

hour under stirring at the same temperature. Then both precipitates were filtered, 

washed and mixed with each other when added to H2O. Mixed precipitates were 

continuously stirred for 30 rains and then filtered, dried and calcined” .  

IlL Impregnation method: “The CuO/ZnO/Al2O3 catalysts were prepared by 

impregnation of γ − AlDOE   with a comparable volume of copper and zinc nitrate 

solution. The soaked paste was dried at 12°C, ground and fired in N2 at 350°C for 6 

h”. 

IV. Coprecipitating impregnation method: “Copper, zinc and aluminium nitrate 

solution and sodium carbonate solution were coprecipitated when added γ−
AlDOE  and H2O suspended liquid simultaneously and dropwise “. 

V.  Coprecipitating sedimentation method: “Copper, zinc and aluminium nitrate 

solution and sodium carbonate solution were coprecipitated when added to H2O 

simultaneously and dropwise over a period of 30 rain at 70°C, pH=7 under continuous 

stirring. The precipitates which formed were aged for an additional hour under stirring 

                                                           
1 A fixed-bed microreactor is used to evaluate catalytic synthesis of DME from synthesis gas at a 
pressure of 4.0 MPa and a GHSV of 1500 h−1. 
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at the same temperature. The precipitates were then filtered, washed and added to the 

suspended liquid including dehydration component and water. The mixtures were 

stirred, filtered, dried, and calcined “. 

VI. Wet mixing method:  “Dried coprecipitates and γ − AlDOE  were mixed in water, 

stirred, filtered, dried, calcined”. 

VII. Dry mixing method: “Calcined coprecipitates and γ− AlDOE  were mixed and 

ground “[28].  

    The contact separation of the two kinds of active sites in bifunctional catalysts 

becomes shorter step by step from methods VII to I. According to their result 

coprecipitate sedimentation method is better preparation method among the other 

methods for direct conversion of synthesis gas to DME.  

Table  2-8: Effect of preparation methods on traditional methanol synthesis catalyst (32). 

     To prepare catalysts with good catalytic activities, Q. Ge et al. recommended the 

following suggestion:  1) The two kinds of active centres, should have a close contact 

and exhibit 'synergistic effect'.  2) One kind of active centres should not cover another 

active centre. 3) In order to avoid the formation of new inactive chemical species, 

each component should not react with any other components. 

 

 

 
 

Preparation method CO conv. (%) 
Selectivity (mol%) DME/organic 

products(mol%) DME MeOH HC CO2 

I 3.1 39.1 26.4 23.5 16.1 46.6 

II 3.1 26.8 44.6 9.2 19.3 33.2 

III 15.9 67.1 15.9 2 15 78.9 

IV 58.6 77.8 8.2 1.8 12.2 90.7 

V 82.2 85 0.7 1.3 13 96.4 

VI 70.3 84.1 2.5 .8 12.7 96.3 

VII 63.1 81.4 5.1 0.5 13.1 93.6 

Reaction conditions: T = 290 °C, P = 4 MPa, H2:CO=2 and 5% CO2 , GHSV = 1500 mL h−1 gcat
-1. 
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2.3 Catalyst deactivation 
 

     Under normal operating conditions, and using traditional methanol catalyst as a 

methanol synthesis function, the catalyst has a relatively long lifetime of a few years. 

However, the catalyst is very sensitive to sulfur poisoning and the ZnO component in 

the catalyst is reacting with it to form Zn sulfide and sulfate, thus desulfurization for 

the feeds with significant sulfur content is necessary (33).   

     Sintering of the catalyst at high temperatures is another deactivation mechanism, 

especially at above 300°C because of the growth of the Cu crystallites and the 

resulting loss of catalytically active area (33).  

    K.S. Yoo et al.(28) reported that in the methanol dehydration, the strength of acid 

sites affected catalytic performance by coke formation leading to the catalytic 

deactivation. The mild acid sites are responsible mainly for simple dehydration 

process and do not allow the formation of solid carbon. Moreover, the pore structure 

of the catalyst is an important factor to maintain the catalytic stability. For example, 

SAPO-34 and -18, with unfavorable pore structure and acidity, were deactivated by 

accumulating carbonaceous material inside their supercages. But SAPO-11 and -5 due 

to the lack of pore expansions prevented to some extent the formation of large 

carbonaceous materials.  

 
Figure  2-7: SEM image of various SAPO catalysts: (a) SAPO-5; (b) SAPO-11; (c) SAPO-18; (d) 

SAPO-34 (28). 
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    D. Wang et al. (17) was studied the effect of H2O on bifunctional catalyst in direct 

slurry phase DME synthesis. A commercial methanol synthesis catalyst and a γ-Al2O3 

under reaction conditions of 260 °C and 5.0 Mpa were tested. It was found that the 

Cu-based catalyst was less stable compare to under methanol synthesis conditions. 

The results indicated that H2O, which is formed in DME synthesis, caused high 

deactivation rate of the Cu-based catalyst. Crystallite size growth of Cu, metal loss of 

Zn and Al, formation of Cu2(OH)2CO3 and Zn5(OH)6(CO3)2 and carbon deposition 

were the possible reasons for the high deactivation rate of the Cu-based catalyst. 

 

2.4 Catalyst characterization 

The different analytical activities are used to find a detailed chemical and structural 

picture of the catalysts. The information obtained can be used to develop a better 

understanding of the function of a catalyst, which it seems to be necessary for the 

improvement of existing catalysts and the formulation of new ones (34). 

2.4.1 Nitrogen physisorption 

Physisorption, also called physical adsorption, is a process in which the electronic 

structure of the atom or molecule is barely perturbed upon adsorption. Measurements 

of gas adsorption isotherms are widely used for determining the surface area and pore 

size distribution of catalysts. Non-specific Brunauer-Emmett-Teller (BET) method is 

a standard procedure to measure surface areas. The use of nitrogen as the adsorptive 

gas is recommended if the surface areas are higher than 5 m2/g (35). Nitrogen 

adsorption at 77 K is widely used for the determination of the surface area and pore 

size distribution of various porous materials. The Brunauer, Emmett and Teller (BET) 

adsorption isotherm equation(36): 

1GHI JK0K − 1LM = O − 1HPO × KK0 + 1HPO (2-5) 

Where: 

K: is partial vapour pressure of adsorbate gas in equilibrium with the surface, [KI] K0: is saturated pressure of adsorbate gas, [KI] 

HI: is volume of gas adsorbed at standard temperature and pressure (STP) , [PS] HP: is volume of gas adsorbed at STP to produce an apparent monolayer on the surface, [PS] O: is dimensionless constant that is related to the enthalpy of adsorption of the adsorbate gas  
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 Then the BET value (
TGUVJWXW YTLM) is plotted against 

ZZX. This plot should yield a straight 

line usually in the approximate relative pressure range 0.05 to 0.3. From the resulting 

linear plot, the slope, which is equal to 
[YTU\[ , and the intercept, which is equal to 

TU\[ 

are evaluated by linear regression analysis. From these values, H]can be calculated 

easily. Following equation gives the specific surface area(36): 

 

Where: 

^_: 
is specific surface area, [

]9
` ] P: is the mass of test powder, [P] I: is effective cross-sectional area of one adsorbate molecule, [aP] 

b: is Avogadro constant (6.022 × 10DE PcdYT) 

 

In addition, Pore size distribution of catalysts can be calculated according to the 

Barrett-Joyner-Halenda (BJH) method. 

 

2.4.2 X-ray diffraction (XRD) 

X-ray dif-fraction (XRD) is one of the oldest and most frequently applied techniques 

in catalyst characterization. X-rays have wavelengths in the Angstrom range, and they 

have sufficient energy to penetrate solids and to probe their internal structure. Each 

crystallographic phase has a unique diffracted pattern. In catalyst characterization, 

diffraction patterns are used to identify the crystallographic phases that are present in 

the catalyst and to obtain an indication of particle size. A conventional X-ray source 

consists of a target that is bombarded with high-energy electrons. The emitted X-rays 

arise from two processes. Electrons slowed down by the target emit a continuous 

background spectrum of Bremsstrahlung(37). 

  X-ray diffraction is the elastic scattering of X-ray photons by atoms in a periodic 

lattice. Fig.2-8 illustrates how diffraction of X-rays by crystal planes allows one to 

derive lattice spacings by using the Bragg relationship(37): 

^f = HP. b. IP × 22400 (2-6) 

If the adsorbate is nitrogen :       ^_ = 4.35 H] (2-7) 
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aj = 2k. lman;      a = 1, 2, 3, … (2-8) 
 

Where: 

j is the wavelength of the X-rays; a is the integer called the order of the reflection. k is the distance between two lattice planes; n is the angle between the incoming X-rays and the normal to the reflecting lattice plane; 

 

Figure  2-8: X-rays scattered by atoms in an ordered lattice interfere constructively in directions 

given by Bragg’s law. (37) 

A stationary X-ray source (usually Cu Kr) with a movable detector, which scans the 

intensity of the diffracted radiation as a function of the angle 2n between the 

incoming and the diffracted beams, can measure the XRD pattern of a powdered 

sample. Rotating powders during measurement enhances the fraction of particles that 

contributes to the diffraction pattern. 

XRD can also determine the crystallite size. Scherrer equation can give the mean size 

of the ordered (crystallite) domain: 

< S > = stu.vwxy                                                     (2-9)  
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Where: 

 < S > is a measure for the dimension of the particle in the direction perpendicular to the 

reflecting plane; 

j is the wavelength of the X-rays; z Is a constant (Often taken as 1). { is the peak width; n is the angle between the incoming X-rays and the normal to the reflecting lattice plane; 
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3 EXPERIMENTAL 
 

3.1 Catalyst preparation 

CuO–ZnO–Al2O3 was prepared (38) by co-precipitation of the metal nitrates with 

sodium carbonate at pH=7.  

3.1.1 Materials  

The chemicals used for synthesis of methanol catalyst were cupric nitrate pentahydrate1 

[Cu(NO3)2·2
TDH2O], zinc nitrate hexahydrate1 [Zn(NO3)2·6H2O], and aluminium nitrate 

nonahydrate1 [Al(NO3)3·9H2O], sodium carbonate1 [Na2CO3] and sodium acetate1 

[CH3COONa].  

3.1.2 Procedure 

The catalyst was prepared according to the following scheme (38):  

- Three solutions were prepared:  

� Metal solution: 15.95g Cu(NO3)2·2
12H2O + 29.62g Zn(NO3)2·6H2O + 21.43g 

Al(NO3)3·9H2O dissolved in 100 mL deionized water. 

� Sodium carbonate solution: 27.03g Na2CO3 dissolved in 200 mL deionized 

water. 

� Sodium acetate solution: 4.1g CH3COONa dissolved in 50 mL deionized water. 

� The sodium acetate solution was heated using overhead stirrer in large bucket 

to 50ºC. Metals and sodium carbonate solution were added dropped wise and 

simultaneously, using two peristaltic pumps, to the sodium acetate solution with 

continous stirring and keeping the temperature at 50 ºC and pH=7.0 over about 2 

hours. After completing the addition, stirring was continued for 1 hour. 

                                                           
1 provided from Sigma-Aldrich Fluka 
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� Stirring was stopped and precipitate allowed to settle. The precipitate 

separated by filtration using a 

is washed with numerous portions of deionized 

remove sodium.        

Figure  3-1: Schematic of catalyst coprecipitation process.

� The precipitate was placed on a ceramic tray and dried in a forced air oven at 

110ºC for 16 hours. A portion of the dried sample was 

calcination reactor under flowing

based on catalyst weight. Table 3

 

Table  3-

1

2

3
 

HZSM− 5 was used as methanol dehydration catalyst

80 µm size fractions and then mixed 

Table 3-2.  
 

Table 

 
Methanol synthesis catalyst (gr)

CuO/ZnO

Commercial 

Ratio =1 - 

Ratio =2 - 

Ratio =4 - 

Ratio =6 - 

Ratio =8 - 

stopped and precipitate allowed to settle. The precipitate 

separated by filtration using a medium Buchner funnel with vacuum.The precipitate 

is washed with numerous portions of deionized water at room temperature to 

: Schematic of catalyst coprecipitation process. 
 

placed on a ceramic tray and dried in a forced air oven at 

6 hours. A portion of the dried sample was calcined in a 

under flowing of certain flow rate of air, which was calculated 

based on catalyst weight. Table 3-1 shows the applied temperature program.

-1: The temperature program for calcination 

1. 25 º C to 400 º C over 2 hours 

2. Hold at 400 º C for 2 hours 

3. Cool to 25 º C over about 2 hours 

methanol dehydration catalyst. The catalysts were sieved to

tions and then mixed with different mass ratios, which are shown in 

Table  3-2: The catalysts composition 

Methanol synthesis catalyst (gr) Methanol dehydration catalyst (gr)
 ZnO/AlDOE 

Homemade γ � AlDOE HZSM � 5 

0.5 - 0.5 

0.666 - 0.334 

0.8 - 0.2 

0.857 - 0.143 

0.889 - 0.111 

stopped and precipitate allowed to settle. The precipitate was 

The precipitate 

water at room temperature to 

 

placed on a ceramic tray and dried in a forced air oven at 

calcined in a glassy 

of certain flow rate of air, which was calculated 

1 shows the applied temperature program. 

were sieved to 50–

different mass ratios, which are shown in 

Methanol dehydration catalyst (gr) 
Total 

weight (gr) 

1 

1 

1 

1 

1 
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3.2 Catalyst characterization 
 

In the current study, Nitrogen physisorption and X-ray diffraction were used for 

catalyst characterization.   

3.2.1 N2 physisorption 

The  pore  size  distribution  based  on  BJH  (Barrett-Joyner-Halenda)  calculations,  

the  micropore  fraction  (t-plot  analysis) and  the  BET  (Brunauer-Emmett-Teller) 

surface  area  of  the  catalysts  were  measured  by  physisorption  measurements  of  

nitrogen at -196 ºC using a Micrometrics Tristar 3000 instrument. Prior to BET 

analysis the samples were placed into the sample tubes and outgassed at 200ºC for 8 

hours. 

3.2.2 X-ray diffraction 

  D8 Focus apparatus from Bruker AXS with CuKα radiation was used. The D8 Focus 

was equipped with a theta/theta Goniometer and a LynxEye detector. The powder 

samples were scanned in the 2θ-range from 20º to 70º with a step size of 0.02º and a 

step time of 1s.  

3.3 DME synthesis set-up 

3.3.1 Set-up Description 

The catalytic reactions were performed in the DME synthesis set-up. This setup is 

designed for conversion of synthesis gas into liquids (DME). All equipments are 

designed for pressures up to 100 bars and temperatures up to o350 C . The test unit is 

equipped with three common gas feeding lines and two reactor lines: Microstructured 

reactor and Fixed-bed reactor. The microstructured reactor manufactured by the 

Institute for Micro Process Engineering (IMVT) at Karlsruhe Institute of Technology 

in Germany. The microstructured reactor is heated with heat transfer oil (temperatures 

up to o350 C ), passing through the heat exchanger channels in the microchanneled 

reactor unit. For higher temperatures the microchanneled reactor is heated by 

electrical heating bands. The reactor and oil tubing were insulated to reduce any heat 

loss to the external sections. The temperature gradient between inlet and outlet of 

reactor is less than 1 K. The fixed-bed reactor is clamped inside an aluminum block 

and heated by a Kanthal oven. The product leaving the reactor is condensed in either a 
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hot or a cold pot below the reactors. Several Bronkhorst mass flow controllers were 

controlled the mass flow rates and a Bronkhorst backpressure controller was regulated 

the pressure. A side stream is provided for online gas chromatography analysis of the 

dry product gas. After depressurizing the gases are vented.  

 

Figure  3-2: The DME synthesis set-up. 
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Figure Figure  3-3: Flow diagram of DME synthesis laboratory set-up 
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3.3.2 Gas Chromatograph 

The rig is equipped with a GC1 for online analysis of product gas and offline analysis of 

liquid products.  The GC is an Agilent 7890A. To avoid any condensation of products, the 

outlet gas lines were heated (180 °C) until entering the GC. Liquefaction of DME, methanol 

and water occurs at minimum partial pressure 129, 30 and 10 bars respectively at 180 °C. All 

products are thus present in the gas phase under the operating condition applied, and liquids 

were also not observed (13). 

The GC equipped with a thermal conductivity detector (TCD) and a flame ionization detector 

(FID). It was adopted to analyze the feed and product gases. The TCD was applied to analyze 

H2, CO, CO2, N2 and CH4. On the other hand, FID was used to analyze hydrocarbons, 

alcohols and oxygenates C1-C6.  

The GC was calibrated for the all main components present in the feed and products. N2 for 

TCD and CH4 for FID were used as internal standards for the analysis. CO and CO2 

conversions, DME and methanol yields are based on a total carbon balance and the equations 

for calculations as follow: 

�[� = �[�,�� − �[�,w��
�[�,�� × 100 (  3-1) 

�[�9 = �[�9,�� − �[�9,w��
�[�9,��

× 100 (  3-2) 

���� = 2������[�,�� + �[�9,���
× 100 (  3-3) 

����� = �������[�,�� + �[�9,���
× 100 (  3-4) 

 

 

Where:  
 �[�, �[�9 : CO and CO2 conversion ���� ,����� : DME and methanol yields 

�[�,�� , �[�9,�� ∶ The molar flow rate of CO and CO2 in the feed gas, 
]w�
x  

�[�,w�� ∶  The molar flow rate of CO in the product gas, 
]w�
x  

����  , ����� ∶ The molar flow rate of DME and Methanol in the product gas, 
]w�
x  

                                                           
1 Gas Chromatograph 
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The peak areas from GC analysis could be converted into flow rates by starting the 

calculation from standard analysis gases. Since N2 as an inert gas is not converted, thus: 

��w�,��. ��9,��. ��9,�[� = ��w�,w��. ��9,w��. ��9,�[� (  3-5) 

��w�,w�� = ��w�,��.
��9,��
��9,w��

 (  3-6) 

�[�,w�� = ��w�,w��. (�[�,w��. �[�,�[�) (  3-7) 

�[�9 ,w�� = ��w�,w��. (�[�9 ,w��. �[�9 ,�[�) (  3-8) 

�[�� ,w�� = ��w�,w��. (�[�� ,w��. �[�� ,�[�) (  3-9) 

Where:  
 

�[� ,�[� , �[�9 ,�[� , �[�� ,�[� : The response factor for CO, CO2 and CH4 

�[� ,w��, �[�9 ,w��, �[�� ,w�� : The peak area for CO, CO2 and CH4 in the product gas analysis. 

Methane is a common component in both TCD and FID detectors, and could connect the 

calculation in TCD to FID. 

(��w�,w��. �[��,w��. �[��)�[� = (��w�,w��. �[��,w��. �′[��)��� (  3-10) 

(��w�,w��)��� = (��w�,��.
��9,��
��9,w��

. �[��,w��. �[��)�[� (  3-11) 

����,w�� = (��w�,w��)���(����,w��. ����)���  (  3-12) 

�����,w�� = (��w�,w��)���(�����,w��. �����)���  (  3-13) 

The procedure for the operation of the GC is explained in appendix B. 
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3.3.3 Gas feed system 

The gas feed system has three high

(He or N2) and H2. Other gases, i.e. CO or CO

composition. The gas feed lines are equipped with manometers, reduction valves, traps, 

filters, manual open/close valves and valves to ventilation.

 The gas flows to the reactor and controlled by 

(DMFC) specified and calibrated for the given gases, pressures and gas flow ranges. Gas flow 

is adjusted by either PC or power supply/readout unit for the controllers.(The flow controller 

software is explained in appendix C)

3.3.4 Catalytic reaction 

The experimental set-up of the high

synthesis of DME from three different feed gases. Table 3

gases. A fixed amount of the catalyst was loaded in the

Figure  3-4: Shematic of the fixed

 

Table 

 
FEED H2:CO

1 1

2 2

3 4

 

 

The gas feed system has three high-pressure gas lines for syngas (H2, CO, CO2, N

. Other gases, i.e. CO or CO2 are also possible for adjusting Syngas 

composition. The gas feed lines are equipped with manometers, reduction valves, traps, 

filters, manual open/close valves and valves to ventilation. 

The gas flows to the reactor and controlled by Bronkhorst digital mass flow controllers 

(DMFC) specified and calibrated for the given gases, pressures and gas flow ranges. Gas flow 

is adjusted by either PC or power supply/readout unit for the controllers.(The flow controller 

software is explained in appendix C). 

up of the high-pressure fixed-bed reactor (Fig.3-4) system used for the 

three different feed gases. Table 3-3 shows the composition of feed 

A fixed amount of the catalyst was loaded in the stainless steel tube reactor. 

Shematic of the fixed-bed reactor used for the DME synthesis 

Table  3-3: The Syngas composition 

Mol (%) 

:CO H2 N2 CO CH4 CO2 

1 42 5 42 6 5 

2 56 5 28 6 5 

4 67.2 5 16.8 6 5 

, N2), inert gas 

are also possible for adjusting Syngas 

composition. The gas feed lines are equipped with manometers, reduction valves, traps, 

ass flow controllers 

(DMFC) specified and calibrated for the given gases, pressures and gas flow ranges. Gas flow 

is adjusted by either PC or power supply/readout unit for the controllers.(The flow controller 

system used for the 

3 shows the composition of feed 

stainless steel tube reactor.  
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3.3.4.1 Leak test 

It is very important be ensured that there is no leak at any point of the lines. Not only for 

safety reasons, it is also very important receive representative data of the system to get 

coherent conclusions of the process. Leak test procedure could be as following steps: 

� Load the catalyst into the reactor. 

� Fix the reactor in setup   

� Close the valve to the GC. 

� Increase the pressure up to 10 bars (Channel nr. 4: setpoint=10%) by introducing 

nitrogen (Channel nr. 1: setpoint=100 %).  

� As pressure controller shows steady amount of 10 bars, stop the nitrogen flow 

(Channel nr. 1: setpoint=0 %). 

� Check the pressure drop. If pressure drop is significant (for example after 5 minutes       

P ≤ 9.90 bars), introduce hydrogen (Channel nr. 3: setpoint=100%).   

� Check the connections and find the leak(s) by using hydrogen detector. Tighten the 

related connections more, but carefully, to remove the leak(s). 

� Increase the pressure up to 25 bars (Channel nr. 4: setpoint=25%) by introducing 

nitrogen (Channel nr. 1: setpoint=100 %). 

� As pressure controller shows steady amount of 25 bars, stop the nitrogen flow 

(Channel nr. 1: setpoint=0 %). 

� Check the pressure drop. If pressure drop is significant (for example after 5 minutes       

P ≤ 24.90 bars), introduce hydrogen (Channel nr. 3: setpoint=100%).   

� Check the connections and find the leak(s) by using hydrogen detector. Tighten the 

related connections more, but carefully, to remove the leak(s). 

� Increase the pressure up to 40 bars (Channel nr. 4: setpoint=40%) by introducing 

nitrogen (Channel nr. 1: setpoint=100 %) and hydrogen (Channel nr. 3: 

setpoint=10%).   

� As pressure controller shows steady amount of 40 bars, stop the nitrogen and 

hydrogen flows.  

� Check the pressure drop and check the connections by using hydrogen detector. If 

there is any leak(s), tighten the connections more, but carefully, to remove the leak(s). 
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� Increase the pressure to 50 bars (Channel nr. 4: setpoint=50%) by introducing 

nitrogen (Channel nr. 1: setpoint=100 %) and hydrogen (Channel nr. 3: 

setpoint=10%).   

� As pressure measure shows steady amount of 50 bars, stop the nitrogen and hydrogen 

flows.  

� Check the pressure drop and check the connections by using hydrogen detector. If 

there is any leak(s), tighten the connections more, but carefully, to remove the leak(s). 

� Decrease the pressure to atmospheric pressure and prepare the system for the 

reduction. 
 

Note 

This procedure is based on following assumptions: 

                                       - Channel nr. 1 is connected to the Nitrogen bottle. 

                                       - Channel nr. 2 is connected to the Syngas bottle. 

                                       - Channel nr. 3 is connected to the Hydrogen bottle. 

                                       - Channel nr. 4 is connected to the pressure controller. 

3.3.4.2 Reduction of the catalyst 

Prior to the reaction, the bifunctional catalyst has to be reduced in the reactor; with flow of 

5% hydrogen diluted with nitrogen and with temperature programmed heating (Fig.3-5).  

 

Figure  3-5: Temperature program for the reduction 
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The reduction can be done according the following steps: 

STEP 1 

Calculate total volumetric flow rate: 

 �w� = 350 × ¡v¢� × r 

 �w�:  Total volumetric ¬low ,nmlmin 

¡v¢�:  Weight of the catalyst , gr 
r:  Fraction of Cu − based catalyst in the catalyst mixture 

·¸IP¹d�:    ºCuO/ZnO/AlDOEγ − AlDOE »             Ratio:  2: 1 →  α = DE                Ratio:  1: 1 →  α = TD 

STEP 2 

Calculate nitrogen and hydrogen volumetric flow rates:  �9 = 0.95 ×  �w� 

 �9 = 0.05 ×  �w� 

 �9:  Nitrogen volumetric ¬low ,nmlmin 

 �9:  Hydrogen volumetric ¬low ,nmlmin 

STEP 3 

Calculate nitrogen and hydrogen setpoints for Flow Controller from the calibration curves:  �9 → K�9                                                                         
 �9 → K�9                                                          

STEP 4 

Introduce nitrogen and hydrogen according to the set points.  

STEP 5 

In case of fixed-bed reactor as for my experiments 

Use Eurotherm to apply the temperature program (See appendix D). 

With 7 steps:  

� Increase to 160°C in 2.2 hours.  

� Increase to 200°C in 4 hours. 

� Keep at 200°C for 1 hour. 

� Increase to 220°C in 2 hours. 

� Keep at 220°C for 1 hour. 

� Increase to 250°C in 4 hours. 

� Keep at 250°C for long time (for example 99 hours). 
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In case of microstructured reactor  

Use High temperature circulator to apply the temperature program (See appendix E). 
 

3.3.4.3 Start the experiment 

� Open the valve to the GC 

� Connect all electric bans 

� Start introducing Syngas (Increase the pressure up to the experiment pressure, for example 

50 bars, gradually) 

� Calculate feed (syngas) volumetric flow rate. 

� Calculate feed setpoint for Flow Controller from the calibration curves. 

�  Set the temperature  

� If Microstructured reactor is used:  according to the procedure for using High 

temperature circulator. 

� If Fixed-bed reactor is used: according to the Eurotherm’s manual. 

� Run GC according to the Procedure for using GC 

 

3.4 HES 

As indicated in the NTNU goals of Health, Environment and Safety, the work and learning 

environment must support and promote its users’ capacity to work and learn, safeguard their 

health and well-being, and protect them against work-related illnesses and accidents.              

HES-related problems should be solved consecutively at the lowest possible level, in order to 

prevent employees or students from developing work-related illnesses or suffering work-

related accidents, and to prevent the activities from having a negative impact on the 

environment.  

Risk assessment is an important tool for a chemical process operation which is the 

determination of quantitative or qualitative value of risk related to a concrete situation and a 

recognized hazard. A risk assessment must be carried out prior to the commencement of a 

specified chemical process and again when the process is modified. This risk assessment is 

done to remove or control the risk factors during the operational period of the chemical 

process.  

The activities associated with several HES issues on the DME synthesis set-up are: 

• Transport and mounting of the gas bottle  
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• Modification and maintained of experimental set-up  

• Leak testing and reactor installing 

• Reaction experiment  

• Experiment shutdown and uninstalling of reactor  

• Cleaning the reactor 

• Catalyst synthesis 

• Handling of the catalyst  

For existing risk assessments, safety measures, rules and procedures are as follows: 

• In the DME synthesis set-up, a well established toxic and flammable gas alarm system 

is exist. So in the case of leak, the gas alarm system will able to inform and necessary 

action concerning the HES can be taken according to rules and procedure.  

• For personal protection, safety goggle is very important in the VTL lab and it is 

mandatory for everyone who is working inside the lab. 

• Leak test is an important procedure for decreasing the risks related to the toxic and 

combustible gases. 

The HES assessment identification process, risk assessment and HES action plane for DME 

synthesis set-up are shown in appendices H and I. 

The main risk concerning with toxic and combustible gases  

Risk concerning with carbon monoxide (See appendix J): Carbon monoxide is a colorless 

and odorless gas, it comes as synthesis gas component for DME synthesis. The chemical 

company YARA PRAXAIR is supplier of synthesis gas in our lab. Carbon monoxide is 

extremely flammable and toxic. It may cause harm to the unborn child and danger of serious 

damage to health by prolonged exposure through inhalation. This gas should be keeping away 

from the source of ignition and should be store in safe area as the condition of flammable gas 

storage. It needs to use in well ventilated area and in case of fire, this gas should be allowed 

to burn if flow cannot be shut off immediately and need to immediate contact responsible 

person. It has not any significant effect or critical hazards environmentally. This gas should 

be disposed as hazardous waste. 

Risk concerning with Hydrogen (See appendix J): Hydrogen is a colorless and odorless 

gas and extremely flammable gas, stable under recommended storage and condition. 

Inhalation of vapor may cause dizziness, an irregular heartbeat, narcosis, nausea or 

asphyxiation. If anyone inhaled, remove to fresh air. This substance classified with a health 
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or environmental hazard. This gas should be disposed as hazardous waste. This gas should be 

keeping away from the source of ignition. Personal protection is necessary like goggles, 

apron, vent hood and protective gloves in used area and it needs to use in well ventilated area. 

Risk concerning with Methanol (See appendix J): Methanol is very dangerous poison and 

its vapor also harmful to human. it may causes blindness if swallowed and harmful if inhaled 

or absorbed through skin. It may causes irritation to skin, Eyes and respiratory tract. It also 

affects central nervous system and liver. The liquid and vapor of methanol is flammable. 

Personal protection is necessary like goggles, apron, vent hood and protective gloves in used 

area. This liquid is slightly toxic for aquatic life and it causes degradation in soil and air. This 

gas should be disposed as hazardous waste. This gas/liquid should be keeping away from the 

source of ignition and should be store in safe area as the condition of flammable gas/liquid 

storage. It needs to use in well ventilated area. More information about detailed material 

safety data sheets are shown in appendix K. 

 

3.4.1 Gas Warning System 

Gas warning system protects lives and health by monitoring the atmosphere inside the rig and 

triggering an optical and acoustic alarm, as soon as the concentration of the gas (Hydrogen 

and Carbon monoxide) that is being monitored exceeds the preset threshold level. 

  

Figure  3-6: Overview of the Gas warning system (External and Internal views) 

When alarm starts, first of all we have to turn off the alarm. Secondly, solve the problem 

(Sometimes experiment has to be stopped).  
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Procedure for stopping the Gas warning system:      

STEP 1 

Shift the button to the right (As shown in Fig 3-22) and wait for the point (for example point 2- Fig 

3-23). 

 

 

 

Figure  3-7: Gas alarm system monitor 

Figure  3-8: Shift the button to the right  

STEP 2 

Press [SEL] and then press [INH].  

           

                          

                 Figure  3-9: Press SEL 

 

                                                                                                        Figure  3-10: Press INH 
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4 RESULTS AND DISCUSSION 

4.1 Catalyst characterization 

4.1.1 N2 physisorption 

Table 4-1 shows the BET surface area of some of the catalysts. The result shows high surface 

area for HZSM-5. According to this fact, it will be possible to have a good catalyst mixture 

with high ratio of CuO-ZnO-Al2O3:HZSM-5. More result of the N2 physisorption can be 

found in the appendix F. 

Table  4-1: BET surface area of the catalysts 

Catalyst BET surface area (¿ À⁄ ) 

CuO-ZnO-Al2O3(Homemade) 56 

HZSM-5 344 

CuO-ZnO-Al2O3: HZSM-5=1 192 

CuO-ZnO-Al2O3: HZSM-5=2 149 

CuO-ZnO-Al2O3: HZSM-5=4 109 

4.1.2 X-ray diffraction 

   Fig.4-1 shows the XRD pattern of CuO-ZnO-Al2O3:HZSM-5=2 catalyst. It can be 

concluded that ZnO is the major component in crystal form. CuO and Cu are the other 

components. The diffraction patterns confirm that during reduction and reaction the most of 

CuO disappeared and probably reduced to form Cu.  
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Figure  4-1: XRD results for CuO-ZnO-Al2O3: HZSM-5 =2 (fresh and after reaction) 
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4-2 Comparison of different catalyst ratios 

4-2-1 The effect of GHSV 

Fig. 4-2&4-3 show the effect of gas hourly space velocity (GHSV) on CO conversion and 

DME yield.  

 

Figure  4-2: Effect of gas hourly space velocity (GHSV) on CO conversion.(Conditions: Fixed-bed reactor, 255 

°C, 50 bar and H2:CO = 2) 

 

Figure  4-3: Effect of gas hourly space velocity (GHSV) on DME yield. (Conditions: Fixed-bed reactor, 255 °C, 

50 bar and       H2:CO = 2) 

It is obvious that CO conversion and DME yield are decreased with the increase of the gas 

GHSV for the different CuO/ZnO/AlDOE  to HZSM � 5 mass ratios. With the increase of 

GHSV, the residence time becomes shortened, and thus CO conversion and DME yield are 

decreased. The bifunctional catalyst with mass ratio of 6 shows the better performance. The 
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relatively large surface area of the HZSM-5 catalyst provides proper utilization of methanol 

produced by methanol synthesis catalyst (MSC) for the ratios up to 6. 

The catalyst with mass ratio of 8 is going to be under methanol synthesis equilibrium 

limitation because methanol synthesis catalyst (MDC) is not enough to convert the methanol 

synthesized by MSC and will be affected by methanol synthesis equilibrium limitation.  

 

Figure  4-4: Effect of gas hourly space velocity (GHSV) on the rate of total methanol formation. (Conditions: 

Fixed-bed reactor, 255 °C, 50 bar, H2:CO = 2 and the rate of total methanol formation is calculated based on the 

amount of methanol synthesis catalyst (MSC)) 

 

Figure  4-5: Effect of gas hourly space velocity (GHSV) on the rate of DME formation. (Conditions: Fixed-bed 

reactor, 255 °C, 50 bar, H2:CO = 2 and the rate of DME formation is calculated based on the amount of 

methanol dehydration catalyst (MDC)). 

As Fig.4-4&4-5 show, the rate of total methanol formation (rMeOH,total) and DME formation 

(rDME) increase by increasing CuO/ZnO/AlDOE  to HZSM � 5 mass ratio for different GHSVs 
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(except rMeOH,total for the catalyst with mass ratio of 8). Fig.4-5 demonstrates that rDME, based on 

the amount of MDC used, increases with GHSV for the catalysts with mass ratios of 4, 6&8, 

and the lower GHSVs (4500-30000 Nml/(gcat.h)), while for the higher GHSVs, rDME slightly 

decreases. Increase in GHSV (for low GHSVs) enhances rMeOH,total that increases rDME. The 

shorter residence time at higher GHSVs suppresses further reaction to form DME. At higher 

rMeOH,total larger amount of water produced by methanol synthesis reaction, possibly suppresses 

DME synthesis reaction, too. The catalysts with mass ratios of 1 and 2 give almost the same 

rDME for all GHSVs. Existence of high enough MDC to utilize methanol produced by MSC, 

could be the reason.  

At the higher GHSVs that reactions are far from DME synthesis equilibrium, rMeOH,total for the 

catalyst with mass ratio of 8 is less than that for the catalysts with ratios of 4 and 6. The lack 

of enough MDC to convert methanol produced by MSC could be the reason that makes the 

reactions under control of methanol synthesis equilibrium. 

4-2-2 The effect of Temperature 

Fig. 4-6&4-7 indicate that higher temperatures give faster kinetic and higher CO conversions 

and DME yields as long as DME synthesis equilibrium is not approached. The optimum 

temperatures could be exist. As Fig.4-6 shows, it is clear that the CO conversion exceeds 

methanol synthesis equilibrium limitation.  

 

Figure  4-6: Effect of reaction temperature on CO conversion. (Conditions: Fixed-bed reactor, 50 bar, H2:CO = 2  

and GHSV = 4500 Nml/(gcat.hr)) 
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Figure  4-7: Effect of reaction temperature on DME yield. (Conditions: Fixed-bed reactor,  50 bar, H2:CO = 2  

and GHSV = 4500 Nml/(gcat.hr)) 

The bifunctional catalysts with mass ratios of 4, 6 and 8 show the same DME yields at 

temperature range of 235-255°C. But for the higher temperatures, as the catalyst with mass 

ratio of 6 that has less MDC, with the same CO conversion compare to the catalyst with mass 

ratio of 4 gives less DME yield because the reaction is approaching DME synthesis 

equilibrium and its limitation lowers the DME yield. The catalyst with mass ratios of 4 shows 

better performance for all temperatures among the all ratios.  

 

Figure  4-8: Effect of reaction temperature on the rate of total methanol formation. (Conditions: Fixed-bed reactor, 50 

bar,     H2:CO = 2, GHSV = 4500 Nml/(gcat.hr) and the rate of total methanol formation is calculated based on the 

amount of methanol synthesis catalyst (MSC)) 
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Figure  4-9: Effect of reaction temperature on the rate of DME formation. (Conditions: Fixed-bed reactor, 50 

bar, H2:CO = 2 , GHSV = 4500 Nml/(gcat.hr) and the rate of DME formation is calculated based on the amount 

of methanol dehydration catalyst (MDC)). 

As temperature increases rMeOH,total and rDME will increase for the all catalysts with different 

mass ratios that are shown in the Fig.4-8&4-9. The catalyst mixture with the mass ratio of 4 
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present, thus for catalysts with higher ratios can go under control of methanol synthesis 

equilibrium limitation. 

At the low temperatures that reactions are far from equilibrium limitations, the rMeOH,total , based 
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catalyst with ratio of 4. This area is controlled by kinetics. Possible small experimental errors 

can also be a reason for these difference.  
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The reactions are not in the kinetic regime and they are affected by equilibrium limitations. 

The bifunctional catalyst with mass ratio of 6 shows higher CO conversion and by increasing 

the mass ratio, there will be no increase in CO conversion. The catalyst with mass ratio of 8 

does not have enough MDC to convert the methanol synthesized by MSC and will be 

affected by methanol synthesis equilibrium limitation. High H2:CO feed ratio influences 

water-gas-shift reaction and reverse water-gas-shift can occur, that could be the case for 
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catalyst with ratio of 4 and at H2-rich feeds. For the H2:CO feed ratios of 1 and 2, the catalyst 

with mass ratio of 4 gives the highest DME yield and for the H2-rich feeds, the catalyst with 

mass ratio of 6 shows better performance. The reverse water-gas-shift reaction can lowers the 

DME yield of the catalyst with mass ratio of 4. As it is producing H2O and suppressing the 

methanol dehydration reaction.  

 

Figure  4-10: Effect of H2:CO feed ratio on CO conversion. (Conditions: Fixed-bed reactor, 255 °C, 50 bar and 

GHSV = 4500 Nml/(gcat.hr)) 

 

Figure  4-11: Effect of H2:CO feed ratio on DME yield. (Conditions: Fixed-bed reactor, 255 °C, 50 bar and 

GHSV = 4500 Nml/(gcat.hr)) 
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synthesis equilibrium limitation. The catalyst with mass ratio of 4 gives the highest rDME . The 

reactions affected by equilibrium limitations for the catalyst with higher ratios.                  

 

Figure  4-12: Effect of H2:CO feed ratio on the rate of DME formation. (Conditions: Fixed-bed reactor, 255 °C, 

50 bar, GHSV = 4500 Nml/(gcat.hr) and the rate of DME formation is calculated based on the amount of 

methanol dehydration catalyst (MDC)). 

 

Figure  4-13: Effect of H2:CO feed ratio on the rate of total methanol formation. (Conditions: Fixed-bed reactor, 

255 °C, 50 bar, GHSV = 4500 Nml/(gcat.hr) and the rate of total methanol formation is calculated based on the 

amount of methanol synthesis catalyst (MSC)) 

The bifunctional catalyst with mass ratio of 8 gives the lowest rMeOH,total . According to the CO 

conversion result for this catalyst, methanol synthesis equilibrium is controlling the reaction. 

Also this is the case for catalyst with ratio of 6.      
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5 CONCLUSION AND FUTURE WORK 

5.1 Conclusions 

    

   The effect of GHSV: The bifunctional catalyst with mass ratio of 6 shows better 

performance for different GHSVs. The relatively large surface area of the HZSM-5 catalyst 

provides proper utilization of methanol produced by methanol synthesis catalyst (MSC) for 

the ratios up to 6. The catalyst with mass ratio of 8 is going to be under methanol synthesis 

equilibrium limitation because methanol synthesis catalyst (MDC) is not enough to convert 

the methanol synthesized by MSC and will be affected by methanol synthesis equilibrium 

limitation. The catalysts with mass ratios of 1 and 2 give almost the same rate of DME 

formation for all GHSVs. Existence of high enough MDC to utilize methanol produced by 

MSC, could be the reason.  

The effect of temperature: The bifunctional catalysts with mass ratios of 4, 6 and 8 show 

the same DME yields at temperature range of 235-255°C. At the higher temperatures, the 

bifunctional catalysts with mass ratios of 4 and 6 show higher CO conversions and DME 

yields. At the higher temperatures the reaction is approaching DME synthesis equilibrium 

and its limitation lowers the conversion and DME yield. The catalyst with mass ratios of 4 

shows better performance for all temperatures among the all ratios.  

The effect of H2:CO feed ratio: H2-rich feeds give better CO conversion and DME yield. 

The bifunctional catalyst with mass ratio of 6 shows higher CO conversion and by increasing 

the mass ratio, there will be no increase in CO conversion. High H2:CO feed ratio influences 

water-gas-shift reaction and reverse water-gas-shift can occur, that could be the case for 

catalyst with ratio of 4. For the H2:CO feed ratios of 1 and 2, the catalyst with mass ratio of 4 

gives the highest DME yield and for the H2-rich feeds, the catalyst with mass ratio of 6 

shows better performance. As the reverse water-gas-shift is producing H2O and suppresses 

the methanol dehydration reaction. According to the results by increasing the H2:CO feed 

ratio, the rate of methanol and DME formation will decrease for the all catalysts with 

different mass ratios. The catalyst with mass ratio of 4 gives the highest rate of DME. The 

reactions affected by equilibrium limitations for the catalyst with higher ratios.    

And finally, 

According to the results the optimum �,�/./�/	0 �1  to  �.
� − 2 mass ratio could be 

between 4-6. 
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5.2 Future works 

Future work can be:  

• Synthesis of new catalyst by good catalyst preparation methods that give synergetic 

effect to the catalyst mixture. 

• Examine of suitable additives. 

•  Study of different and newly synthesized zeolites for the indirect process and then 

test in the direct process. 
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A REACTION MECHANISMS  

A.1 Methanol dehydration mechanism 
The proposed reaction mechanism by S.J. Royaee et al. (39) is as follows: M(') + S ↔ M. S∗ (A-1) 

M. S∗ + mM ↔ M%(M. S) (A-2) 

M. S∗ + nW ↔ W$(M. S) (A-3) 

W + S ↔ WS (A-4) 

2M. S∗ ↔ D(') + WS + S (A-5) 

Where:                  

M(') : MeOH in gas phase 

M. S∗ : An active intermediate involving bonding between the unique zeolite 

surface species and adsorbed MeOH Mm(M. S) and Wn(M. S) ∶ ‘inactive’ intermediate species (m and n are integer number equal or 

larger than 1) W ∶ Water 

D(g):  DME in the gas phase 

WS ∶ Adsorbed water on free catalyst acidic sites 

Considering reaction (A-5) (which leads to the release of the chemisorbed DME from 

the acidic sites to the gas phase) as the controlling step, the resulting rate equation 

may be derived as follows: 

-rÅ = 
KrÆÇ9ÈÇ9YKr′ÆÉÈÊÈÉ

�TËÆÇÈÇËÆÉÈÉËÆÌÆÇÈÇÍÎÏËÆÌÌÆÇÈÇÈÉÐ�9  
(A-6) 

Where:              KÑ and KÑ′ : The forward and backward reaction rate constants of reaction (A-5) 

KÅ : The adsorption equilibrium constant of reaction (A-1) KÒ ∶ The adsorption equilibrium constant of reaction (A-2)  KÓ ∶ The adsorption equilibrium constant of reaction (A-4) KÒÒ ∶ The adsorption equilibrium constant of reaction (A-3)  PÔ ∶ The partial pressure of DME (atm) PÓ ∶ The partial pressure of water (atm) 

PÅ ∶ The partial pressure of MeOH (atm) 
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Eq. (A-6) may be simplified to the following final form: 

 

-rÅ = 
KrÆÇ9ÈÇ9

JTËÆÇÈÇËÆÌÆÇÈÇ�ËÆÌÌÆÇÈÇÈÉ L9 (A-7) 

A.2 Synthesis gas to DME mechanism 

The proposed reaction mechanism (based on Cu–ZnO–Al2O3/HZSM-5 and CO2 

hydrogenation to methanol and water gas shift reaction)  by W.Zh. Lu et al. (11) is as 

follows: 

2CuD+HD ↔ 2CuDH (A-8) 

CoD + CuD ↔  (A-9) 

+ 2CuDH ↔ 2CuDCHDO + CuDO + CuD (A-10) 

CuDCHDO + CuDH ↔ CuDCHEO + CuD (A-11) 

CuDCHEO + CuDH ↔ CuDCHEOH + CuD (A-12) 

CuDCHEOH ↔ CHEOH(a) + CuD (A-13) 

CuDO + 2CuDH ↔ 2CuD + CuDHDO (A-14) 

CuDHDO ↔ CuD + HDO(a) (A-15) 

HDO(a) + CuD ↔ CuDO + HD (A-16) 

CO + CuDO ↔ CuD + COD (A-17) 

 

Reaction (A-10) and (A-16) are assumed to be the rate determining steps individually. 

The reaction mechanism for the formation of DME is as follows: 

CHEOH(a) +  HX ↔ HXCHEOH (A-18) 

HXCHEOH ↔ CHEËXY  +  HDO(a) (A-19) 

CHEËXY + HXCHEOH ↔  
(A-20) 
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(A-21) 

↔ HXCHE − O − CHE + HË 
(A-22) 

HXCHE − O − CHE ↔ CHE − O − CHE + HX (A-23) 

HË + XY ↔ HX (A-24) 

Here reaction (A-20) is assumed to be the rate determining step. Based on these 

kinetics one could obtain the following rate expressions:  

rD = KD ÖPM2PW − PDKP,2× 
(1+KMPM+KWPw)2                                       (W: water  , M: methanol)              (A-25) 

The reaction rate for the methanol formation reaction is: 

rT = KT
ØPCO2PH2− PWPMKP,1PH22Ù

Ö1+KCO2PCO2+KCOPCO+ÚKH2PH2×3                (W: water  , M: methanol)          (A-26) 

The reaction rate for the methanol dehydration reaction is: 

rD = KD ÛPM2
PW − PDKP,2Ü                                                  (D:  DME)                             (A-27) 

The reaction rate for the water gas shift reaction is: 

rE = KE 

ÛÈÉYÝÞß9Ýà9áÝ,:ÝÞß Ü
�TËÆÞß9ÈÞß9ËÆÞßÈÞßËâÆà9Èà9�

                                                                   (A-28) 

The constants K1, K2, K3 (kinetic parameters), KCO2, KCO, KH2 (adsorption constants), 

KP,1, KP,2 and KP,3 (equilibrium constants) are defined as: 

KT = 35.45exp (−1.7069 × 10æRT ) 
 

KD = 8.2894 × 10æexp (−5.294 × 10æRT ) 
 

KE = 7.3976exp (−2.0436 × 10æRT ) 
 

Kè9 = 0.249exp  (YE.æEéæ×Tê�
ëì )  
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Kíî9 = 1.02 × 10Yïexp (6.74 × 10æRT )  

Kíî = 7.99 × 10Yïexp  (ð.ñT×Tê�
ëì )  

lnKÈ,T = 4213T − 5.752 lnT − 1.707 × 10YET + 2.682 × 10YòTD − 7.232× 10YTêTE  − 26.64 

 

lnKÈ,D = 4019T + 3.707 lnT − 2.783 × 10YET + 3.8 × 10YïTD − 6.651 × 10æTE− 26.64 

 

lnKÈ,E = 2167T − 0.5194 lnT − 1.037 × 10YET − 2.331 × 10YïTD − 1.2777  
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B GC PROCEDURE 

The procedure for the GC operation could be as following steps: 

STEP 1 

Set the gas source pressures and check for leaks. GC needs 3 chromatographic- grade 

gases. These gases are: helium as carrier gas, hydrogen and air. Table D-1 shows the 

recommended and maximum pressures of the gases. 

Table  B-1: Recommended and maximum gas pressures for the GC 

Gas Recommended Maximum 

Helium 4 bar 6,9 bar 

Hydrogen 4 bar 6,9 bar 

Air 5,5 bar 6,9 bar 
 

STEP 2 

Set the gaseous product pressure to the GC according to the following steps: 

� Press [Time] (Fig. D-1)                                                                

� Set the pressure of gaseous product to the GC (Fig. D-2) that has to be about 1 bar. 

�  Inject a little water to the bubble flow meter and generate a bubble (Fig. D-4). When it 

passed the first line in the bubble flow meter, press [Enter] and wait until the bubble passes 

the second line to press [Enter] again.  

� If 1/t is not between 20 and 35 (Fig D-3), press [Clear], change the pressure and repeat 

step 3.    

 

Figure  B-1: Keypad for the 7890A GC 

 

Figure  B-2: The pressure of the gaseous product 
 

 

 

 

Figure  B-3: GC monitor  

Figure  B-4: GC and the bubble flow meter 
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STEP 3 

Use the software (Agilent ChemStation

show how we can run the GC by 

� Open Instrument 1(online) (Fig 

� Select the Sequence parameter

(Fig D-6&7) 

� Select the Sequence table in 

� Select the Run sequence in Run

 

Figure  B-5: Agilent ChemStation – Before Run

Figure  B-7: Agilent ChemStation – Definition of 

Subdirectory 

APPENDIX B: GC PROCEDURE 

Agilent ChemStation) to run the GC automatically. The following figures 

show how we can run the GC by Agilent ChemStation: 

(online) (Fig D-5) 

equence parameter in Sequence menu and define the Subdirectory

in Sequence menu and define the Method (Fig D-8&9

in Run control menu to start the run (Fig D-10) 

 

Before Run 

 

Figure  B-6: Agilent ChemStation –Sequence Parameters

Definition of 

 

 

Figure  B-8: Agilent ChemStation –Sequence Table

Define the subdirectory 

) to run the GC automatically. The following figures 

ubdirectory              

9) 

 

Sequence Parameters 

 

Sequence Table 
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Figure  B-9: Agilent ChemStation – Definition of Method 

 

Figure  B-10: Agilent ChemStation – Run Sequence 

 

Define the method 
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C FLOW CONTROLLER 

The following figures show the procedure for using the flow controller. 

 
Figure  C-1: FlowDDE-2nd V4.58 

 
Figure  C-2: FlowDDE-2nd V4.58 – Open communication 

 

             Figure  C-3: FlowDDE-2nd V4.58 – Ready for any client 

 

Figure  C-4: Flow View V1.15



 

 

APPENDIX D: EUROTHERM MODEL 2416 

D EUROTHERM MODEL 2416

The fixed-bed reactor is clamped inside an a

oven. The temperature is controlled by an Eurotherm model 2416.

Figure 
 

D.1 Basic operation 

Switch on the power to the controller.  It runs through a self

three seconds and then shows the temperature, or process value, in the upper readout 

and the setpoint in the lower readout.  This is called t

that you will use most often. 

On this display you can adjust the setpoint by pressing the

seconds after releasing either button, the display blinks to show that the controller has 

accepted the new value.  

APPENDIX D: EUROTHERM MODEL 2416 

EUROTHERM MODEL 2416 

bed reactor is clamped inside an aluminum block and heated by a K

The temperature is controlled by an Eurotherm model 2416. 

Figure  D-1: Front panel layout 

Switch on the power to the controller.  It runs through a self-test sequence for about 

three seconds and then shows the temperature, or process value, in the upper readout 

setpoint in the lower readout.  This is called the Home display.  It is the one 

 

 

Figure  D-2: Home display 

On this display you can adjust the setpoint by pressing the or  buttons.  Two 

seconds after releasing either button, the display blinks to show that the controller has 

luminum block and heated by a Kanthal 

 

test sequence for about 

three seconds and then shows the temperature, or process value, in the upper readout 

he Home display.  It is the one 

buttons.  Two 

seconds after releasing either button, the display blinks to show that the controller has 
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Note: You can get back to the Home display at any time by pressing

together. Alternatively you will always be returned

pressed for 45 seconds, or whenever the power is turned on. If, however, a flashing 

alarm message is present the controller reverts to the Home display after 10 seconds.

Table 

APPENDIX D: EUROTHERM MODEL 2416 

Note: You can get back to the Home display at any time by pressing  

together. Alternatively you will always be returned to the Home display if no button is 

pressed for 45 seconds, or whenever the power is turned on. If, however, a flashing 

alarm message is present the controller reverts to the Home display after 10 seconds.

Table  D-1: Controller buttons and indicators 

 

 and    

to the Home display if no button is 

pressed for 45 seconds, or whenever the power is turned on. If, however, a flashing 

alarm message is present the controller reverts to the Home display after 10 seconds. 
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D.2 Operating modes 

The controller has two basic modes of operation:  

• Automatic mode in which the output power is automatically adjusted to maintain 

the temperature or process value at the setpoint.  

• Manual mode in which you can adjust the output power independently of the 

setpoint.  

You toggle between the modes by pressing the AUTO/MAN button. Two other modes are 

also available:  

• Remote Setpoint mode in which the setpoint is generated from an external 

source. In this mode the REM light will be on.  

• Programmer mode  
 

 

 

More information is available here: 

http://www.etherm.cz/eurotherm_regulatory/teplotni_a_procesni_regulatory/2416/2416_man_en.pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

APPENDIX E: HIGH TEMPERATURE CIRCULATOR OIL 

E HIGH TEMPERATURE CIRCULATOR OIL

The microstructured reactor unit is heated by a 

circulator with working temperature 

with working temperatures 50 

    

Figure 

Example                                         

Change the temperature from 250 
 

Figure  E-2: Change the temperature from 

 

APPENDIX E: HIGH TEMPERATURE CIRCULATOR OIL 

HIGH TEMPERATURE CIRCULATOR OIL 

The microstructured reactor unit is heated by a Julabo HT30-M1 High temperature 

circulator with working temperature o70 400 C−  and Thermal H350 Heat Transfer Oil 

50 °C to 350 °C.      

 
 

Figure  E-1: High temperature circulator oil 

 

                                                                                             

250 °C to 235 °C 

hange the temperature from 250 °C to 235 °C 
 

High temperature 

and Thermal H350 Heat Transfer Oil 
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F ADDITIONAL N2 

F.1 Isotherm linear plots
 

Figure  F-1

Figure  F-2: Isotherm linear plot for CuO

APPENDIX F : ADDITIONAL N2 PHYSISORPTION RESULTS 

 PHYSISORPTION RESULTS 

Isotherm linear plots 

1: Isotherm linear plot for CuO-ZnO-Al2O3  

Isotherm linear plot for CuO-ZnO-Al2O3 : HZSM-5=1 
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Figure  F-3: Isotherm linear plot for CuO

 

 

Figure  F-4: Isotherm linear plot for 

 

APPENDIX F : ADDITIONAL N2 PHYSISORPTION RESULTS 

Isotherm linear plot for CuO-ZnO-Al2O3 : HZSM-5=2 

Isotherm linear plot for CuO-ZnO-Al2O3 : HZSM-5=4 
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Figure  F-5: Isotherm linear plot for CuO

F.2 BET surface area plots

Figure  F-6: 

APPENDIX F : ADDITIONAL N2 PHYSISORPTION RESULTS 

Isotherm linear plot for CuO-ZnO-Al2O3 : (50%HZSM-5+50%ó- Al2O

 

plots 
 

: BET surface area plot for CuO-ZnO-Al2O3 

 

O3)=2 
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Figure  F-7: BET surface area plot for CuO

 

Figure  F-8: BET surface area plot for CuO

 

 

APPENDIX F : ADDITIONAL N2 PHYSISORPTION RESULTS 

BET surface area plot for CuO-ZnO-Al2O3 : HZSM-5=1 

BET surface area plot for CuO-ZnO-Al2O3 : HZSM-5=2 
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Figure  F-9: BET surface area plot for CuO

 

Figure  F-10: BET surface area plot for CuO

 

 

APPENDIX F : ADDITIONAL N2 PHYSISORPTION RESULTS 

BET surface area plot for CuO-ZnO-Al2O3 : HZSM-5=4 

BET surface area plot for CuO-ZnO-Al2O3 : (50%HZSM-5+50%ó- Al2

 

 

2O3)=2 



 

 

APPENDIX F : ADDITIONAL N 

F.3 BET isotherm plots
 

Figure  F-11

 

Figure  F-12: BET isotherm plot for CuO

APPENDIX F : ADDITIONAL N2 PHYSISORPTION RESULTS 

plots 

11: BET isotherm plot for CuO-ZnO-Al2O3  

BET isotherm plot for CuO-ZnO-Al2O3 : HZSM-5=1 
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Figure  F-13: BET isotherm plot for CuO

 

Figure  F-14: BET isotherm plot for CuO

 

 

APPENDIX F : ADDITIONAL N2 PHYSISORPTION RESULTS 

BET isotherm plot for CuO-ZnO-Al2O3 : HZSM-5=2 

BET isotherm plot for CuO-ZnO-Al2O3 : HZSM-5=4 
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Figure  F-15: BET isotherm plot for CuO

 

APPENDIX F : ADDITIONAL N2 PHYSISORPTION RESULTS 

BET isotherm plot for CuO-ZnO-Al2O3 : (50%HZSM-5+50%ó- Al2O

 

 

O3)=2 
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G GC DATA  

G.1 Mole fractions of the product gases  

RATIO = 1 
Mol (%) 

FEED Q T H2 N2 CO CH4 CO2 CH4 DME MeOH 

2 150 255 61.25 5.51 23.69 6.37 5.4 6 1.82 0.24797 

2 500 255 62.12 5.15 25.984 5.96 4.779 5.603 0.5286 0.12482 

2 1000 255 62.156 5.044 26.428 5.868 4.901 5.46 0.24215 0.074223 

2 250 255 61.33 5.206 25.034 6.032 5.581 5.713 0.9462 0.17277 

2 75 255 58.87 5.74 20.75 6.61 8.1 6.32 3.08 0.339 

2 150 255 60.55 5.364 23.887 6.19 6.276 5.863 1.5149 0.236 

2 75 275 55.63 6.336 15.24 7.453 11.842 7.815 5.176 0.56156 

2 75 235 60.706 5.272 24.413 6.113 5.904 5.747 1.289 0.18767 

 
 

RATIO = 2 Mol (%) 

FEED Q T H2 N2 CO CH4 CO2 CH4 DME MeOH 

2 150 255 60.264 5.737 21.648 6.634 5.919 6.144 2.8747 0.455778 

2 500 255 61.36 5.217 25.299 6.027 5.131 5.5422 0.8049 0.2748 

2 75 255 56.511 6.172 17.26 7.14 10.087 6.563 4.995 0.615789 

2 1000 255 61.676 5.086 26.0928 5.905 5.0586 5.4468 0.36853 0.19967 

2 250 255 60.196 5.334 23.846 6.202 6.302 5.7276 1.5433 0.3918 

1 75 255 37.494 6.6477 33.385 6.70156 10.06932 6.2549 5.5019 0.52626 

3 75 255 75.7656 5.7428 7.603 6.28298 6.53487 5.8602 3.99176 0.713015 

2 150 255 60.248 5.597 21.61429 6.38773 5.97435 5.91163 2.6419 0.580264 

2 75 275 53.92477 6.849 11.539 7.96874 12.12524 7.61554 8.0164 1.00062 

2 75 235 60.19485 5.45347 22.44983 6.3425 6.15864 6.07869 2.31856 0.591424 

 
 

RATIO = 4 Mol (%) 

FEED Q T H2 N2 CO CH4 CO2 CH4 DME MeOH 

2 150 255 58.77 6.03 18.31 6.92 7.66 6.42 4.36 0.65 

2 500 255 60.96 5.26 24.13 5.98 5.55 5.68 1.27 0.47 

2 75 255 54.85 6.48 13.83 7.49 11.79 6.9 6.56 0.848 

2 1000 255 61.6 5.07 25.54 5.75 5.1 5.51 0.514 0.323 

2 250 255 59.4 5.46 22.12 6.33 7.078 5.87 2.25 0.588 

2 150 255 58.215 5.748 19.516 6.639 8.492 6.1386 3.5592 0.686444 

1 75 255 31.64 6.96 31.21 7.85 12.85 7.4 7.61 0.762 

3 75 255 76.14 5.68 5.59 5.76 7.49 5.48 4.78 0.831 

2 75 275 57.14 7.15 6.9 7.22 12.32 6.9 9.87 1.19 

2 75 235 59.77 5.65 20.98 6.6 6.24 6.31 3.08 0.651 
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RATIO = 6 Mol (%) 

FEED Q T H2 N2 CO CH4 CO2 CH4 DME MeOH 

2 75 255 54.585 7.468 13.383 8.451 10.664 8.07 8.189 0.5267 

2 75 275 49.325 8.007 8.798 9.539 14.766 9.745 10.363 0.8714 

2 75 235 57.171 5.983 23.421 7.07 7.4677 6.669 2.95959 0.293698 

2 75 255 51.392 7.1 14.503 8.4365 13.34 7.9284 7.35 0.530794 

1 75 255 32.547 7.369 27.301 7.948 15.785 8.199 7.9959 0.56697 

3 75 255 76.736 6.265 4.86 7.383 7.327 7.113 5.5023 0.639434 

2 75 255 55.21 7.155 12.164 7.527 11.951 7.268 7.978 0.705966 

2 150 255 55.415 6.532 18.917 7.713 9.345 7.531 5.242 0.57084 

2 250 255 56.646 5.923 22.282 7.008 8.389 6.91 3.261 0.41945 

2 500 255 58.258 5.552 25.0739 6.43 6.66989 6.3455 1.678 0.286062 

2 1000 255 59.443 5.324 26.782 6.281 5.538 6.046 0.748819 0.16918 

2 75 255 51.666 6.954 14.184 8.21 13.4756 7.969 7.4568 0.482044 

 
 
 
 

 
 
 

RATIO = 8 Mol (%) 

FEED Q T H2 N2 CO CH4 CO2 CH4 DME MeOH 

2 75 255 53.135 7.174 13.962 8.383 11.457 8.197 7.92 0.52917 

2 75 275 50.255 7.6259 10.371 9.081 14.359 9.304 9.18 0.712259 

2 75 235 57.2166 5.9157 22.5448 6.9777 7.67 6.681 3.1913 0.32628 

2 75 255 51.742 6.912 14.127 8.14989 12.825 7.90478 7.44582 0.621776 

1 75 255 31.24 7.355 28.352 8.245 14.556 8.73 8.342 0.552859 

3 75 255 78.222 6.0744 4.679 6.634 6.75 6.655 5.374 0.645791 

3 250 255 76.896 5.301 11.344 6.335 5.5228 6.153 2.169 0.421636 

3 1000 255 77.125 4.883 14.516 5.803 4.8387 5.643 0.571588 0.17539 

1 1000 255 42.763 5.39 40.534 6.198 5.23077 6.0899 0.863793 0.130157 

1 250 255 38.071 5.968 36.694 6.898 9.36684 7.0769 3.19253 0.309288 

2 75 255 53.55 7.194 13.09157 8.05888 11.92934 7.74 8.07219 0.645453 

2 150 255 55.781 6.3447 19.584 7.5105 8.83886 7.261 4.82668 0.511152 

2 250 255 57.196 5.817 22.901 6.88097 7.66659 6.6552 2.87881 0.377431 

2 500 255 58.8727 5.48784 25.56655 6.34416 6.22087 6.1806 1.43384 0.231038 

2 1000 255 59.8 5.3063 26.921 6.12259 5.49181 5.964 0.67707 0.137886 

2 75 255 5165676 6.91277 14.40415 8.15655 13.19694 7.78928 7.34869 0.652511 

 

 

 

 

 



 

 

         APPENDIX G: GC DATA  

 

 

 

 

 

 

G.2 Mass balances 

 

FEED ANALYSIS mMol/min 
   

FEED Q H2 N2 CO CH4 CO2 
   

1 75 1.43538 0.17245 1.39502 0.20071 0.14466 

2 75 2.01293 0.15774 0.84681 0.17993 0.15081 

3 75 2.38886 0.14922 0.48843 0.17944 0.14226 

Ratio 1-1 mMol/min mMol/min 
 

Carbon 
Balance 

FEED Q H2 N2 CO CH4 CO2 CH4 DME MeOH Carbon OUT Carbon IN Error % 

2 150 3.50692 0.31548 1.35639 0.36472 0.30918 0.36472 0.11063 0.01507 31.57618332 28.261142 11.73003179 

2 500 12.6845 1.0516 5.30578 1.217 0.97584 1.217 0.11481 0.02711 107.6682232 94.203808 14.29285684 

2 1000 25.9172 2.1032 11.0197 2.44678 2.04357 2.44678 0.10851 0.03326 218.4853809 188.40762 15.96419827 

2 250 6.19425 0.5258 2.5284 0.60922 0.56367 0.60922 0.1009 0.01842 54.36902463 47.101904 15.42850741 

2 75 1.6178 0.15774 0.57023 0.18165 0.22259 0.18165 0.08852 0.00974 16.11492802 14.130571 14.04300526 

2 150 3.5612 0.31548 1.4049 0.36406 0.36912 0.36406 0.09407 0.01465 32.45908301 28.261142 14.85410825 

2 75 1.38495 0.15774 0.37941 0.18555 0.29482 0.18555 0.12289 0.01333 15.65329999 14.130571 10.7761307 

2 75 1.81634 0.15774 0.73044 0.1829 0.17665 0.1829 0.04102 0.00597 16.3310309 14.130571 15.57233398 

Ratio 2-1 H2 N2 CO CH4 CO2 CH4 DME MeOH Carbon OUT Carbon IN Error % 

2 150 3.31394 0.31548 1.19043 0.36481 0.32549 0.36481 0.17069 0.02706 31.36764049 28.261142 10.99211814 

2 500 12.3684 1.0516 5.09956 1.21487 1.03426 1.21487 0.17644 0.06024 107.7201553 94.203808 14.34798425 

2 75 1.44427 0.15774 0.44112 0.18248 0.2578 0.18248 0.13888 0.01712 16.30513423 14.130571 15.389067 

2 1000 25.5047 2.1032 10.7901 2.44188 2.09187 2.44188 0.16522 0.08951 218.2277517 188.40762 15.82745796 

2 250 5.93383 0.5258 2.35062 0.61136 0.62122 0.61136 0.16473 0.04182 54.7902091 47.101904 16.32270582 

1 75 0.97264 0.17245 0.86605 0.17385 0.26121 0.17385 0.15292 0.01463 21.5450527 20.884586 3.162460784 

3 75 1.9687 0.14922 0.19756 0.16326 0.1698 0.16326 0.11121 0.01986 11.23379552 9.7215593 15.55548999 

2 150 3.39593 0.31548 1.21831 0.36005 0.33675 0.36005 0.16091 0.03534 31.58772032 28.261142 11.77085464 

2 75 1.24195 0.15774 0.26576 0.18353 0.27926 0.18353 0.19319 0.02411 15.87075218 14.130571 12.31500832 

2 75 1.74112 0.15774 0.64935 0.18345 0.17814 0.18345 0.06997 0.01785 16.22637161 14.130571 14.83167533 
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Ratio 4-1 mMol/min mMol/min 
 

Carbon 
Balance 

FEED Q H2 N2 CO CH4 CO2 CH4 DME MeOH Carbon OUT Carbon IN Error % 

2 150 3.07475 0.31548 0.95795 0.36204 0.40076 0.36204 0.24587 0.03666 31.33435582 28.261142 10.87434276 

2 500 12.1874 1.0516 4.82416 1.19554 1.10958 1.19554 0.26731 0.09893 107.5005608 94.203808 14.11487853 

2 75 1.33519 0.15774 0.33666 0.18233 0.287 0.18233 0.17334 0.02241 16.28879159 14.130571 15.27341249 

2 1000 25.5536 2.1032 10.5948 2.38528 2.11564 2.38528 0.22251 0.13983 216.7904187 188.40762 15.06457321 

2 250 5.72024 0.5258 2.13016 0.60958 0.68161 0.60958 0.23366 0.06106 54.71171533 47.101904 16.15605911 

2 150 3.19514 0.31548 1.07114 0.36438 0.46608 0.36438 0.21127 0.04075 32.75131958 28.261142 15.88816614 

1 75 0.78395 0.17245 0.7733 0.1945 0.31839 0.1945 0.20002 0.02003 22.80916806 20.884586 9.215323746 

3 75 2.0003 0.14922 0.14686 0.15132 0.19677 0.15132 0.13199 0.02295 11.19852959 9.7215593 15.19272994 

2 75 1.2606 0.15774 0.15222 0.15928 0.2718 0.15928 0.22785 0.02747 14.70903199 14.130571 4.093683198 

2 75 1.66869 0.15774 0.58573 0.18426 0.17421 0.18426 0.08994 0.01901 15.92832788 14.130571 12.7224632 

Ratio 6-1 H2 N2 CO CH4 CO2 CH4 DME MeOH Carbon OUT Carbon IN Error % 

2 75 1.18997 0.1628 0.29175 0.18423 0.23248 0.18423 0.18695 0.01202 15.34350158 14.130571 8.583732361 

2 75 1.00291 0.1628 0.17889 0.19395 0.30023 0.19395 0.20625 0.01734 15.56257753 14.130571 10.13410104 

2 75 1.55569 0.1628 0.63731 0.19238 0.2032 0.19238 0.08538 0.00847 16.85410253 14.130571 19.27403589 

2 75 1.17843 0.1628 0.33256 0.19345 0.30589 0.19345 0.17934 0.01295 16.76368422 14.130571 18.63415864 

1 75 0.76167 0.17245 0.6389 0.186 0.3694 0.186 0.18139 0.01286 21.07140087 20.884586 0.894511425 

3 75 1.82772 0.14922 0.11576 0.17585 0.17452 0.17585 0.13603 0.01581 11.15811206 9.7215593 14.77697841 

2 75 1.25624 0.1628 0.27678 0.17127 0.27193 0.17127 0.188 0.01664 15.40661561 14.130571 9.0303812 

2 150 2.76234 0.32561 0.94298 0.38448 0.46583 0.38448 0.26762 0.02914 32.90583292 28.261142 16.43490038 

2 250 5.19006 0.54268 2.04154 0.64209 0.76862 0.64209 0.30302 0.03898 56.87230838 47.101904 20.74312008 

2 500 11.3889 1.08536 4.90171 1.257 1.3039 1.257 0.3324 0.05667 113.2929924 94.203808 20.26370811 

2 1000 24.2364 2.17073 10.9197 2.56092 2.25798 2.56092 0.31718 0.07166 228.0661369 188.40762 21.04931972 

2 75 1.20958 0.1628 0.33207 0.19221 0.31549 0.19221 0.17986 0.01163 16.83974759 14.130571 19.17244808 

Ratio 8-1 H2 N2 CO CH4 CO2 CH4 DME MeOH Carbon OUT Carbon IN Error % 

2 75 1.20583 0.1628 0.31685 0.19024 0.26 0.19024 0.18381 0.01228 16.04686187 14.130571 13.56131103 

2 75 1.07289 0.1628 0.22141 0.19387 0.30655 0.19387 0.19129 0.01484 15.7572996 14.130571 11.5121209 

2 75 1.57464 0.1628 0.62045 0.19203 0.21108 0.19203 0.09173 0.00938 16.90115019 14.130571 19.60698535 

2 75 1.21872 0.1628 0.33275 0.19196 0.30208 0.19196 0.18082 0.0151 16.74574367 14.130571 18.50719604 

1 75 
0.7324 

7 
0.17245 0.66476 0.19332 0.34129 0.19332 0.18473 0.01224 21.29253859 

20.884586 
1.953367557 

3 75 1.92157 0.14922 0.11494 0.16297 0.16582 0.16297 0.1316 0.01581 10.62852448 9.7215593 9.329420523 

3 250 7.21533 0.49741 1.06443 0.59443 0.51822 0.59443 0.20954 0.04073 38.77589817 32.405198 19.65950166 

3 1000 31.4253 1.98962 5.91467 2.36448 1.97157 2.36448 0.2395 0.07349 158.0124101 129.62079 21.90359951 

1 1000 18.2424 2.29933 17.2915 2.64402 2.23141 2.64402 0.37503 0.05651 307.4103594 278.46114 10.39614148 

1 250 3.66697 0.57483 3.53434 0.66441 0.90221 0.66441 0.29973 0.02904 76.72638536 69.615286 10.21485299 

2 75 1.21187 0.1628 0.29627 0.18238 0.26997 0.18238 0.1902 0.01521 15.919319 14.130571 12.65870865 

2 150 2.86267 0.32561 1.00505 0.38544 0.45361 0.38544 0.25622 0.02713 33.22915418 28.261142 17.57894916 

2 250 5.33595 0.54268 2.13649 0.64194 0.71523 0.64194 0.27768 0.03641 56.72848683 47.101904 20.43777881 

2 500 11.6436 1.08536 5.05645 1.25472 1.23034 1.25472 0.29108 0.0469 113.1036215 94.203808 20.06268556 

2 1000 24.4633 2.17073 11.013 2.50466 2.24661 2.50466 0.28434 0.05791 226.7458862 188.40762 20.34857801 

2 75 121658 0.1628 0.33924 0.1921 0.3108 0.1921 0.18123 0.01609 16.9534674 14.130571 19.97722665 
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Hei, 

Det bekreftes herved at følgende studenter har gjennomgått IKPs HMS-introduksjonskurs. 

Dette omfatter sikkerhetskurset og opplæring i bruk av gass og flaskeregulatorer. Varighet ca 

2 timer. 

 
 

mvh 

Berit 

 

HSE-Security course 6. sept. 

 

   
Master: 1-Sep 2-Sep 6-Sep 

Aina Elin Karlsen x x x 

Juan Bautista Freire Lopez x x x 

Claire Barilleau x x x 

Katrine Plûnnecke x x   

Huu Nguyen Loc x x x 

Dimitri Viatkin       

Mario Jimenez Ortega x x x 

Ida Lien Bjørnstad x x   

Vegar Evenrud x x x 

Damien Vannies x x x 

Kimete Osmani x x   

Mahmud Alam x x x 

Ayob Esmael Pour x x x  

Phd and post doc: 
  

  

Nicla Vicinanza x x   

Charita Udani x x   

Georg Voss x x x 

Javi Fermoso Domigues x x x 

Andrey Volynkin x x x 

Fengiliu Lou x     

Sulalit Bandyopadhyay x x x 

Karen N. Seglem     x 
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Det bekreftes at følgende studenter ( se vedlagt liste) har 
fått utdelt og er gjort kjent med: 
 
 

Arbeidsforhold og arbeidsavtaler. 
Hvem gjør hva 
HMS-håndbok 
HMS-opplæring 
Branninstruks 
Opplæring/ godkjenning i bruk av utstyr 

 
De er kjent med regler og retningslinjer i forhold til 
eksperimentell virksomhet i NTNU/ Sintef og PFI´s 
lokaler, og vil handle i henhold til disse. De skal før 
oppstart gjennomgå opplæring/godkjenning av ansvarlig 
for laboratorier hvor dette er et krav. 

 
6.september 2010 for gruppe Katalyse/ H. Venvik 

___________              Berit Borthen 
 Dato                         Underskrift 

Denne bekreftelsen gjelder: 
 
Institutt for kjemisk prosessteknologi - NTNU  
 
Adresse: Sem Sælandsv.4 
 
Postnr./-sted: 7491 
Trondheim.  

Egenerklæring HMS 
 
Egenerklæring om helse, miljø og sikkerhet 
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NTNU 

Risk assessment 

Prepared by Number Date 

 
 

HSE section HMSRV-26/03 01.12.2006 

Approved by Page Replaces 

HSE/KS The Rector 38 out of 1 15.12.2003 

 

 

Unit:  DME Synthesis Set-up            Date:  10.12.2010 

Line manager:  

Participants in the risk assessment (including their function): 

Activity from the identification 
process form 

Potential 
undesirable 

incident/strain 

LIKELIHOOD CONSEQUENCE 
Risk 
value 

Comments/status 
Suggested measures Likelihood 

(1-4) 
Human 

(1-4) 
Environment 

(1-4) 

Economy/ 
materiel 

(1-4) 
 

Inert gases 
Gases under pressure 

 

Pressure release 
Depletion 

1 3 1 1  
See Hazardous Activity 
Identification Process 

 

Toxic gases (CO) 
 

Inhalation 1 4 1 1  
See Hazardous Activity 
Identification Process 

 

Combustable gases 
(H2,CO,CH4) 

 

Explosion 
Fire 

1 3-4 1 3  
See Hazardous Activity 
Identification Process 

 

Mechanical work 
Parts falling 

 

Blow 2-3 1-2 1 1  
See Hazardous Activity 
Identification Process 
Fence( was installed) 

 

Handeling and sythesis of Catalyst 
 
 

 

Chemical exposure 
Toxicity/Sensitizing 

 

2-3 1-2 1 1  
See Hazardous Activity 
Identification Process 

Activities around the rig at VTL 
Explosion 

Fire 
1 3-4 1 3  

See Hazardous Activity 
Identification Process 

 
Cleaning 

 
Chemical exposure 1 1-2 1 1  

See Hazardous Activity 
Identification Process 

 

Likelihood, e.g.: Consequence, e.g.: Risk value (each one to be estimated separately): 
1. Minimal 
2. Low 
3. High 
4. Very high 

1. Relatively safe  
2. Dangerous  
3. Critical  
4. Very critical 

Human = Likelihood  x Human Consequence  
Environmental = Likelihood  x Environmental consequence 
Financial/material = Likelihood  x Consequence for Economy/materiel 



NTNU 

Hazardous Activity Identification Process 

Prepared by Number Date 

 
 

The HSE 
section 

HMSRV-
12/24 

01.12.2006 

Approved by Page Replaces 

HSE The Rector 39 of 168 20.08.1999 

 

 

Unit:   DME Synthesis Set-up         Date: 10.12.2010   

Participants in the identification process (including their function): Ayob Esmaelpour 

Short description of the main activity/main process: Direct DME synthesis 

Activity/process 
Responsible 

person 
Laws, regulations etc. 

Existing 

documentation 

Existing safety 

measures 
Comment 

 
Transport and mounting of gas 

bottles 
 

Erik langørgen NTNU HES Handbook Safety data sheets 
Gas alams, Transport 
vehicle,safety goggles 

Pressure(200 bars) 
Toxic gases 

Combustable gases 

Modification and maintenance of 
exprimental set-up 

Rune Myrstad 
(SINTEF) 

NTNU HES Handbook, 
Arbeidsmiljøloven 

Safety data sheets, Risk 
assesment of set-up 

Goggles 

Pressure(70 bars) 
Toxic gases 

Combustable gases, 
Mechanical work 

 
Leak testing and reactor installing 

 
Fatemeh Hayer 

NTNU HES Handbook, 
Arbeidsmiljøloven 

Safety data sheets, 
DME set-up manual 

Gas alams, goggles, 
Ventilation, Emergency 

stop device 

Pressure(70 bars) 
Combustable gases, 
Mechanical work 

Reaction experiment Fatemeh Hayer 
NTNU HES Handbook, 

Arbeidsmiljøloven 
Safety data sheets 

Gas alams, goggles, 
Ventilation 

Pressure, Temperature 
and sample collection 

Experiment shutdown and 
uninstalling of reactor 

 
Fatemeh Hayer 

NTNU HES Handbook, 
Arbeidsmiljøloven 

 
Gas alams, goggles, 

Ventilation 
 

Cleaning of reactor 
 

Ayob Esmaelpour  Safety data sheet Goggles, gloves  

Handing of catalyst 
 

Ayob Esmaelpour  Safety data sheet Goggles, gloves  

 
Catalyst Synthesis 

 
Karin Dragster  Safety data sheet 

Goggles, gloves, 
Ventilation 

 

 
Working at VTL 

 
Morten Grønli   

Noise protection, 
activity monitoring, 

information, New fence 

Risk of parts falling, 
other Exp. in VTL 

  



NTNU 

HSE action plan 

Prepared by Number Date 

 
 

The HSE 
section 

HMSRV-
12/24 

01.12.2006 

Approved by Page Replaces 

HSE The Rector 1 of 168 20.08.1999 

 

 

Unit:    DME Synthesis Set-up  

 

What Measure Unit responsible Priority Cost Current status 

 
A fence was installed beside the DME synthesis set-up 

 

To prevent the tools and 
materials from falling  

Fatemeh Hayer    
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