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Abstract 

Observing design activities can give insights that can be used to improve the activities and give 

feedback to participants. In the past the process of observing and analyzing design activities 

was done manually with video which is very resource demanding. With the launch of the 

Microsoft Kinect 3D depth sensor and later an improved version in 2014, automatically tracking 

human behavior became much easier. The thesis evaluates the suitability for the Kinect sensor 

to contribute to automating design observations and give real-time feedback to participants. A 

thorough analysis of the Kinect v1 and v2 sensors is conducted. A proof of concept for an 

observation setup and a sensing application is developed. The sensing application tracks 

participants from a ceiling mounted position and estimates real-time mechanical energy-use 

and creates heat maps of their movements. A prototype of a design experiment is developed to 

test the application and observation setup. The results show that, except for some challenges 

inherent to the depth sensing technology, the Kinect v2 sensor shows great potential for 

contributing to automating design observation setups. Finally, issues to be aware of when using 

Kinects specifically in design observation and Design Observatories are highlighted. Future 

work involves developing a permanent design observatory with Kinect sensors and exploring 

how the audio capabilities and gesture analysis software for the Kinect can be used in design 

observation. 
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Norwegian Abstract 

Observasjon av design aktiviteter kan gi innsikt som kan brukes til å både å forbedre selve 

aktiviteten og gi tilbakemelding til deltakere. Tidligere har observasjon og analyse av design 

aktiviteter blitt gjennomført manuelt ved hjelp av video, noe som er svært ressurskrevende. Da 

en oppgradert versjon av Microsofts Kinect 3D dybdesensor ble lansert i 2014, ble automatisk 

deteksjon og analyse av menneskers bevegelser mye enklere. Denne masteroppgaven vurderer 

hvor godt egnet Kinect sensoren er til å automatisere design observasjon og kunne gi sanntid 

tilbakemelding til deltakere. En grundig analyse av Kinect v1 og Kinect v2 ble gjennomført og 

et proof-of-concept for en observasjonsmetode og sensing-applikasjon ble utviklet. Sensing-

applikasjonen detekterer og analyserer deltakere fra en takmontert posisjon og estimerer sanntid 

mekanisk energibruk og lager varmekart over bevegelsene til deltakerne. En prototype av et 

design eksperiment ble utviklet til å teste applikasjonen og observasjons-oppsettet. Resultatene 

viser at Kinect v2 sensoren kan potensielt bidra til å betydelig automatisere design observasjon, 

til tross for at det er noen feilkilder knyttet til dybdemålingsteknologien. Avslutningsvis er 

mulige utfordringer ved bruk av Kinect sensorer spesifikt i rom for design observasjon 

diskutert. Videre arbeid innebærer å bygge et permanent rom for observasjon av design 

aktivititer med Kinect sensorer, i tillegg til å utforske hvordan dens egenskapene for 

stemmegjennkjenning og analyse av gester kan bli brukt i design observasjon.  
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1 Design Observation 

1.1 Background 

The term early-stage conceptual design describes the phase in a project where idea generation 

and exploring ideas are being done, for instance brainstorming and early prototyping.  

John Tang at the Center for Design Research at Stanford University pioneered in 1989 analysis 

of collaborative design activities. He wanted to better understand the collaborative workspace 

activities so the design process could be improved and also to support design of tools for 

improving workspace activities. A framework for analyzing workspace activity was proposed, 

which became a foundation for the Observe-Analyze-Intervene cycle later used in Design 

Observatories (J. C. Tang, 1989)(J. C. Tang & Leifer, 1988)(Törlind et al., 2009). In Tang & 

Leifer (1988) design activities in conceptual design phases were investigated. Sessions of teams 

of 3-4 were videotaped, from which transcripts with annotations were made.  

In Tang & Leifer (1991) the collaborative drawing activity of design teams was studied using 

video-based interaction analysis methods. Interaction analysis is a qualitative analysis method 

traditionally used in social sciences that integrates an ethnographic perspective with fine 

grained analysis of human interaction. A crucial element of the interaction analysis approach is 

that the participants should be observed in their natural environment without any intrusion from 

observers. Eight different sessions of teams of 3-4 people working on conceptual design tasks 

were observed and recorded. One camera was aimed at the workspace and one wide-angle 

camera captured the whole group. Later, the recordings were transcribed and analyzed. The 

study provided several new and useful insights into design activities, as well as showing some 

limitations to the approach of video-based analysis. The tedious work of creating transcripts 

and annotating video recordings limited the approach to only be able to analyze shorter time 

spans. In addition, an issue with how the findings should be generalized to be useful outside the 

context of the studies was highlighted.  

Minneman et al. (1995) continued the work of Tang (1989) and presented several tools, that he 

collectively called Coral, to capture and facilitate analysis of collaborative activities. The aim 

was to speed up the process of revising the recordings by methods of indexing recordings and 

retrieving the indexes. In 2002, the first permanent design bservatory was built at the Center 

for Design Research at Stanford University (Carrizosa, Eris, Milne, & Mabogunje, 2002). The 

design observatory built on the work of Tang (1989) and sought to make the process of 

analyzing design activities more efficient and consistent by storing data digitally, making 
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synchronous viewing of several camera views possible and eliminating the work of setting up 

and taking down equipment.  

Törlind et al. (2009) in “Lessons Learned and Future Challenges for Design Observatory 

Research” discussed previous research on environments designed specifically for design team 

observation. The paper argues several implications for future design observatories: While 

design observatories in the past focused on observation, real-time analysis will be possible in 

future observatories and thereby the possibility of intervening to improve the design activity. 

The coding schemes should be robust and automated by machines so capturing data for longer 

periods of time is possible. Design observatories should support an iterative research approach, 

in order to allow the researchers to iterate over the setup, questions and coding scheme. 

Recently, Dinar et al. (2015) reviewed empirical research of designer thinking from the last 

quarter century, and concluded that future studies may need to apply computer based data 

collection and automated analyses. As argued in Törlind et al. (2009) and Dinar et al. (2015), 

one of the main areas for potential improvement in empirical research of design activities is 

automating the collection and analysis of empirical data.  

Traditionally, normal RGB cameras have been used for capturing and analyzing design 

activities. Extensive research has been done the past decades in the field of traditional computer 

vision. Still, some major challenges in analysis of human behavior in RGB data remain 

unsolved due to the nature of the data (Santhanam, Sumathi, & Gomathi, 2012). The recent 

years, interesting advances in sensor technology have become accessible to researchers with 

the Microsoft Kinect sensor (Z. Zhang, 2012). One of the goals of this thesis is to explore how 

the Kinect v1 sensor and the new Kinect v2 sensor can contribute to automating data capture 

and analysis in design activities. 

 

1.2 Goals of Thesis 

1. Develop a thorough understanding of the advantages and disadvantages of the new 

Kinect v2 sensor compared to the old Kinect v1. 

Microsoft released a new and updated version of their Kinect sensor in July 2014. The 

old sensor has gained great popularity among researchers in several research fields. A 

goal with this thesis is to identify the advantages and possible disadvantages with the 

new sensor, with the perspective of sensing human behavior in design activities.  
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2. Explore how Kinect sensors can be used to non-intrusively automate data capture and 

analysis of design activities. 

Suggest a proof of concept on how the Kinect sensor can contribute to automating data 

capture and analysis in empirical research on design activities. In addition, point out 

possible pitfalls and opportunities of using the sensor. 

3. Explore how human activity can be quantified with the Kinect sensor. 

Recent research from Stanford University suggest that walking boosts creative ideation 

in real-time and shortly after, especially in the expression of associative memory and 

creative divergent thinking (Oppezzo & Schwartz, 2014). Further, physical activity in 

general has been shown to boost specific cognitive processes (Brisswalter, Collardeau, 

& René, 2012)(Tomporowski, 2003). A goal of this thesis is to explore how activity and 

energy can be quantified in design activities, as inspiration to further research on how 

energy-use and human activity influence design activities. 
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2 Non-Intrusive Sensing 

Topics such as sensing in smart spaces and meeting analysis overlap when it comes to detecting 

and tracking people non-intrusively in a natural context. In the following sections, some of the 

current literature on these topics are discussed.  

2.1 Smart Spaces 

The idea of smart spaces is to use data from sensors to interpret the behavior of humans in the 

space, such as location, identity and movement, and to allow the humans to interact with the 

space. Technology advancements are key to realizing smart spaces (D. Surie, Partonia, & 

Lindgren, 2013). A precondition for spaces to be smart is that people need to be detected and 

tracked in a non-intrusive way, which is in line with the goal of automating observation of 

participants in design activities. 

Surie et al. (2013) placed a Kinect v1 in a kitchen that was already part of an ongoing project 

on smart spaces called Kitchen As-A-Pal (Dipak Surie, Lindgren, & Qureshi, 2013). The Kinect 

was placed on the wall, facing the humans in the kitchen. The human tracker in the supplied 

Kinect software was used in combination with face recognition to track and recall participants. 

The system achieved good results (91.75% precision and 66% recall values) for single-occupant 

setting. Several challenges was identified with multi-occupant settings.  

Nakamura (2012) discusses approaches for human sensing in general. How to know what 

information that should be collected and technologies on how to acquire it. Technologies being 

highlighted for people detection and tracking are magnetics sensors, image sensors, data glove, 

beacon/RFID, GPS, gyro sensor. 

Teixeira et al. (2010) conducted a survey on the literature of human sensing, focusing on 

literature for sensing presence, count, location, tracking and identity. The capabilities and 

limitations of existing sensing solutions were discussed. A unified taxonomy was created and 

used to structure the solutions. The conclusion of the survey was that future human-sensing 

systems would most likely consist of massive numbers of binary sensors (usually motion 

sensors), smaller number of cameras placed at key locations and opportunistic use of sensors 

on mobile phones. 

2.2 Meeting Analysis 

Earlier research has done efforts to develop systems that automatically gather data from 

meetings, or a group setting, in order to analyze the behavior of the participants and how they 
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interact. A precondition for gathering data about participants are detecting, identifying and 

tracking them.  

Basu et al. (2001) fitted a conference room with sensors and actuators in order to observe and 

influence human behavior in conversational settings. Auditory and visual data from the room 

was obtained and analyzed to learn about how people influence each other in a conversational 

setting. An “influence model” was used to predict how much a person influences other people 

by evaluating how well the state of one person can contribute to predicting the next state of 

other people. Five cameras and seven microphones was used. The level of body language was 

estimated from motion energy in the specified area where the participants were required to sit. 

Future work consists of further developing the influence model to be able to predict the flow in 

the conversation. 

Stiefelhagen (2002) developed an approach to track the focus of attention of participants in 

meetings. The focus of attention was assumed to be closely related to their head orientation. A 

Bayesian approach was used with the head orientation to model at whom a person was looking 

at. Image data from a panoramic camera placed at the center of the meeting table was used with 

a neural network, pre-trained with sample images of the participants, to estimate head 

orientation. The approach identified 73% of the focus of attention correctly. Also other cues 

was evaluated for predicting focus of attention, such as predicting from who-is-talking. Using 

who-is-talking in the developed neural net resulted in a 63% accuracy. 

McCowan et al. (2005) investigated group actions in meetings by analyzing interactions 

between the individual participants. Hidden Markov model (HMM) based approaches were 

used to model the group actions from audiovisual cues of each participant. The audiovisual cues 

were obtained from a microphone array centered on the meeting table and three RGB cameras 

placed strategic locations. Combinations of sensing modalities and HMM approaches were 

tried. The best result was achieved with an audiovisual asynchronous HMM system. 
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3 Microsoft Kinect  

Microsoft launched the first version of the Kinect in November 2011. The Kinect v1 was the 

first sensor that made 3D sensing technology available at a low price. Computer vision with 

traditional RGB cameras had been trying for decades to create robust real-time tracking and 

interpretation of human movements, without success. With the Kinect v1, depth data greatly 

simplified the task (Z. Zhang, 2012). 

The Kinect v1 was initially an attempt from Microsoft to broaden their customer base beyond 

young adults playing first-person shooting games (“E3,” 2009). However, it was soon obvious 

that the impact of the Kinect Sensor would not only be limited to gaming applications, but also 

to custom projects and in numerous research fields. Zhang (2012) illustrated the fast impact of 

the Kinect v1 by investigating the development of Kinect online communities;  

“Kinect was launched on 4 November 2010. A month later there were already nine pages 

containing brief descriptions of approximately 90 projects, and the number of projects posted 

on KinectHacks.net has grown steadily. Based on my notes, there were 24 pages on 10 February 

2011, 55 pages on 2 August 2011, 63 pages on 12 January 2012, and 65 pages on 18 February 

while I was writing this article. This comment from KinectHacks.net nicely summarizes the 

enthusiasm about Kinect: ‘‘Every few hours new applications are emerging for the Kinect and 

creating new phenomenon that is nothing short of revolutionary.’’”  

3.1 Advantages of Tracking Humans in Depth Data 

The task of tracking humans from sensor information, such as camera images, is hard due to a 

range of factors. The human body has many degrees of freedom and can adopt a multitude of 

different poses. Further, the anthropometry of individual human bodies are highly variable as 

well as the bodies being covered with flexible layers of colored skin and clothes. Additionally, 

the appearance of the scene is variable, with variations in illumination, occlusions and clutter 

(Plagemann, Ganapathi, Koller, & Thrun, 2010)(Seer, Brändle, & Ratti, 2014). 

The depth data from the Kinect is calculated using infrared light that is unaffected by 

illumination changes and color. In addition, tracking humans in 3D depth data greatly simplifies 

the task of differentiating between background and foreground as well as allowing the tracking 

algorithms to use the naturally characteristic 3D shapes of humans in the calculations (Greff, 

2012). 
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3.2 Impact on Research 

As mentioned earlier, the Kinect has been widely used in research since its launch in 2011. If a 

search with the keyword “Kinect” is performed in Elsevier’s Scopus, a database for abstracts 

and citations, 3 844 results appear (“Scopus,” n.d.). The research communities within Computer 

Science have found most use of the Kinect sensor, but also other less apparent communities 

such as Materials Science, Biochemistry, Genetics and Molecular Biology, Social Sciences and 

Medicine has benefitted from the sensor (Figure 3.2).  

A few examples are hand-gesture recognition (Ren, Yuan, & Zhang, 2011), integrating pointing 

gestures in brainstorming (Kunz, Alavi, & Sinn, 2014), human-activity recognition (Li, Zhang, 

& Liu, 2010), body biometrics estimation (Velardo & Dugelay, 2011) and healthcare 

applications (Bauer, Wasza, Haase, Marosi, & Hornegger, 2011)(Galna et al., 2014)(Torres et 

al., 2015). 

 

 

Figure 3.1 Documents in Scopus that appear when the search term “Kinect” is used. Shown by year. 
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Figure 3.2 The distribution of research fields that has mentioned “Kinect” in publications. 
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3.3 Kinect v1 vs Kinect v2 

 

 

Figure 3.3 Kinect v1 on the left, Kinect v2 on the right. 

 

Microsoft launched in July 2014 a new and improved version of the Kinect. The new sensor 

featured a different depth sensing technology than the previous version, a wider field of view 

and higher resolution. Table 1 shows a comparison of the specifications of the two sensors.  

 

Component V1 V2 

Depth Sensing Technology Structured-light Time-of-flight 

Depth Sensor Sensing Range 1.8 to 4.0 m* 0.5 to 4.5 m 

IR Depth Image:   

- Resolution 320 x 240 512 x 424 

- Field of View Horizontally 57 degrees 70.6 degrees 

- Field of View Vertically 43 degrees 60 degrees 

RGB Image Resolution   

- Resolution 640 x 480 1920 x 1080 

- Field of View Horizontally 57 degrees 84.1 degrees 

- Field of View Vertically 43 degrees 53.8 degrees 
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Infrared Image 320 x 240** 512 x 424 

Audio Stream 16 kHz, 16-bit 48 kHz, 16-bit 

Field of View horizontally 57 degrees 70 degrees 

Field of View vertically 43 degrees 60 degrees 

Minimum Latency 102 ms 20-60 ms 

Table 1: The specifications for the Kinect v1 and v2. Source: (“Kinect for Windows,” n.d.). *Recommended sensing distance. 

Research has shown that max distance with valid data is 0.4 to 6 m(Gonzalez-Jorge et al., 2015). **Was made available first 

in the SDK 1.6 release. 

 

Since the launch, the two sensors have already been compared in a few studies. Amon & 

Fuhrman (2014) evaluated the spatial resolution and accuracy of the face tracking system and 

concluded the Kinect v2 sensor “features significant improvements to the previous model”. 

Lachat, Macher, Mittet, Landes & Grussenmeyer (2015) concluded that the accuracy and the 

resolution of the point clouds and the color reproduction has been improved. Further, they 

concluded that the change of depth sensing technology gives the Kinect v2 sensor greater 

possibilities to be used in outdoor applications with daylight and even on sunny days.  

While the resolution for all data streams and the field of view for the new sensor is improved, 

current research indicate that it is the change in depth sensing technology that is the most 

interesting improvement in the new sensor (Gonzalez-Jorge et al., 2015). The change in depth 

sensing technology was also a precondition for Microsoft to be able to increase the resolution 

of the depth stream in the Kinect. In the following sections, the two depth sensing technologies 

will be described and compared. 

3.3.1 Structured Light 

The Kinect v1 uses a depth sensing technique called structured light. The sensor has an infrared 

projector that emits an infrared laser. The infrared laser is passed through a diffraction grating 

which turns the laser-beam into a pattern of IR dots, as seen in Figure 3.4. The IR dots covers 

the scene and are detected by the infrared camera in the sensor. The sensor compares the pattern 

detected by the infrared camera with the default pattern, and from the distortion between the 

patterns the sensor is able to calculate the depth map of the scene (Z. Zhang, 2012). 
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Figure 3.4 The pattern of infrared dots emitted by the Kinect v1. Source: (“Kinect,” n.d.) 

  

One disadvantage with this technique is that the amount of depth information extracted from 

the scene is fixed, independent of the distance to the objects. In practice, this means that if the 

objects in the scene are far away, a smaller subset of IR dots would reflect back to the IR camera 

and give information about the depths of the object than if the objects were closer to the sensor. 

The consequences of this disadvantage are examined in Gonzalez et al. (2015) where it is 

concluded that the precision of the depth sensing in the Kinect v1 sensor decreases with distance 

following a second order polynomial. For the Kinect v2 sensor however, the precision is more 

stable as the distances increase.  

Another disadvantage of the structured light technique has been discovered in several projects 

where multiple Kinect v1 has been applied to the same scene. The Kinect v1s have no way of 

differencing between the IR dots that is projected by itself and the ones projected by other 

Kinects, which results in interference between the sensors. A workaround for the interference 

problem has been developed by the Microsoft Research team and involves making some of the 

sensors vibrate (Butler et al., 2012). However, this will not be discussed further in this thesis. 
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3.3.2 Indirect Time-of-Flight  

The Kinect v2 uses a depth sensing technique called indirect time-of-flight (ToF). This 

technique is based on calculating the distance to the objects in the scene from the time IR light 

photons use to travel between the sensor and the objects.  

Short infrared light bursts are sent out from three laser diodes (Figure 3.5), covering the scene 

with short pulses of infrared light. The infrared light is reflected off the objects in the scene and 

is captured by the infrared camera in the Kinect sensor.  

 

 

Figure 3.5 The three laser diodes (purple) in the Kinect v2. 

 

In most sensors using the indirect ToF technique, the phase shift between emitted and received 

signal is measured. The distance to the object from the sensor is then determined by equation 

(1)  

 
𝑑 =  

∆𝜑

4𝜋𝑓
∙ 𝑐 (1) 

where 𝑓 is the modulation frequency and 𝑐 is the speed of light (Kolb, 2009). 

However, the way the Kinect v2 measures ToF is different from the most common ToF sensors. 

The Kinect sensor divides each pixel in half and each half is turned on and off very fast. When 

the first half is turned on and absorbing photons, the second half is turned off and rejecting all 

photons. The three laser diodes are being pulsed with the same phase as the first pixel half, so 
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the sensor knows that if the first pixel half is on, the laser diodes are on. As the infrared light 

returns to the sensor, the sensor calculates the distance to the objects in the scene by measuring 

the proportion of light ending up in each pixel half. One issue with this method is that light 

being reflected off more distant objects in the scene could possibly end up in the next cycle. 

The sensor solves this by increasing the time the pixel halves are turned on and thereby giving 

the light more time to be reflected back. Still, increasing the cycle time would lose precision in 

the closer measurements. So the sensor takes two measurements, where the first measurements 

is a low resolution (longer cycles) measurement with no ambiguities in distance, and the second 

measurement is a high precision measurement, eliminating any ambiguities with the results 

from the first measurement (Butkiewicz, 2014)(Gonzalez-Jorge et al., 2015). 

A clear advantage to this technique compared to the structured light technique is that no matter 

how far the objects in the scene are from the sensor, each pixel in the Kinect v2 sensors gets a 

depth measurement. Whereas in the Kinect v1 sensor, the depth information retrieved from the 

possibly limited amount of IR dots has to be shared among pixels, resulting in a higher loss of 

precision with increasing distance. 

3.4 Other advantages with the Kinect v2 

Several papers have examined how suitable the Kinect v2 is for outdoors applications in 

daylight (Gonzalez-Jorge et al., 2015)(Butkiewicz, 2014)(Lachat, Macher, Mittet, Landes, & 

Grussenmeyer, 2015)(Dutta, 2012)(Jia, Yi, Saniie, & Oruklu, 2012)(González-Jorge, Zancajo, 

González-Aguilera, & Arias, 2015). While the Kinect v1 did not work very well with ambient 

lighting, the Kinect v2 is able to give an infrared image independent of ambient lighting. The 

Kinect v2 achieves this by enabling each pixel to detect if it is over-saturated with incoming 

ambient light, and if it is, the pixel is reset pixel in the middle of exposure. 

The higher resolution also gives interesting possibilities when detection of fine details are 

needed, such as hand gesture analysis, facial expressions and creating digital models of objects 

from the depth cloud (Lachat et al., 2015)(Butkiewicz, 2014)(Kunz et al., 2014). At the same 

time of the launch of the Kinect v2, Microsoft also released an updated version of their Software 

Development Kit (SDK). In the updated SDK, the facial tracker was greatly improved to take 

advantage of the possibilities provided by the higher resolution (Figure 3.7, Figure 3.8). 

Likewise, the Kinect Fusion software created by Microsoft for creating digital models from 3D 

scans became more accurate with the higher resolution (“Kinect for Windows,” n.d.).  
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Figure 3.6 Kinect Fusion. 3D models of a scene can be created and exported. 

 

 

Figure 3.7 Kinect Face Tracking. With the higher resolution, the face tracking has become more precise than before.  
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Figure 3.8 Kinect HD Face Mesh. Left: Playback of Kinect recording. Right: The Face API in the new SDK 2.0 allows 

access to over 1000 facial points in 3D space, which for instance can be used to create precise avatars(Vangos Pterneas, 
n.d.). 

 

3.5 Disadvantages with the Kinect v2 

While there are many advantages with the new Kinect, there are also some disadvantages 

compared to the old sensor that needs to be mentioned. 

According to Microsoft, as a result of the increased amount of data created from the higher 

resolution, also an increase in bandwidth of the connection to the computer is required. The 

required increase of bandwidth does that the sensor will only work when connected to a 

computer through an USB 3.0 Generation 2 connection. 

Further, with the Kinect v1, several projects utilized multiple sensors to get a more complete 

point cloud of the scene. However, as of this moment, the Kinect SDK does not support more 

than one sensor connected in the same instance of an application (“Kinect for Windows,” 

n.d.)(“Multiple Kinects,” 2014). In addition, due to the bandwidth requirements, each Kinect 

sensor needs to have its own USB 3.0 Gen 2 host controller to reserve the bandwidth. According 

to a discussion thread on GitHub in one of the most popular open-source projects for the Kinect 

called OpenKinect, running multiple Kinect v2s on the same computer has been accomplished 

using Linux and their open-source driver called libfreenect2(OpenKinect, 2014). Still, this 

feature seem yet not to be officially implemented in the driver. 
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Another workaround for the “multiple Kinect issue” has been implemented by both the Kinect 

community and by Microsoft Research. Each of the Multiple Kinect v2 sensors can be 

connected to a separate computer and then the data can be synced by streaming it over a local 

network(Wilson, 2015)(Brekelmans, 2014). Yang, Zhang, Dong, Alelaiwi & Saddik (2015) 

also used three Kinect v2s simultaneously in their research of further improving the accuracy 

of the Kinect sensors by trilateration1. 

Another initial disadvantage with the Kinect v2 compared the Kinect v1 is the obviously more 

limited availability of tutorials and resources online. Even though the SDK 2.0 is very well 

documented by Microsoft (Microsoft Team, n.d.-a), the Kinect v1 has been extensively 

discussed online during the past few years and substantial amounts of software and a few open-

source drivers has been developed for it. The open-source alternatives for the Kinects are 

discussed in the section “Open-Source Alternatives to Microsoft Kinect SDK”. 

Nevertheless, how the data streams are accessed in the Microsoft Kinect API for the two sensors 

isn’t very different. One should be able to port an application written with the Microsoft API 

for Kinect v1 to a Kinect v2 application in as little as a couple of hours depending on the 

application. 

3.6 Kinect Software Development Kits 

In February 2012, Microsoft launched the first Software Development Kit (SDK) for the Kinect 

(Z. Zhang, 2012). The SDK 1.0 gave the users a more robust and easier to use interface for 

accessing the data from the Kinect compared to the open-source alternatives. With the Kinect 

SDK the users could easily develop Kinect applications with Microsoft’s Visual Studio in any 

.NET language, as well as C++, with access to Microsoft’s body tracker and audio hardware. 

How the Microsoft Kinect body tracker works is described in a later section. The open-source 

alternatives only gave access to the raw data coming from the Kinect so to track bodies a body 

tracker needed to be implemented. In addition, the SDKs developed by Microsoft are better 

documented than the open-source alternatives.  

The evolution of the Kinect SDKs and Developer Toolkits are summarized in Table 2. Including 

and after version 1.5, samples and tools for development was put in a separate install called 

                                                 
1 Trilateration: Each depth measurement is considered as the center of a sphere. The intersection of all spheres 

with the minimum error is the improved measurement. 
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Kinect for Windows Developer Toolkit, while the drivers and API still remained in the SDK 

install.  

 

Date Kinect SDK and 

Developer Toolkit 

version 

Added features 

5/2/2012 1.0  Drivers for using Kinect sensor devices on a computer 

running Windows 7 or Windows 8 developer preview 

(desktop apps only) 

 Application Programming Interfaces (APIs) and device 

interfaces, along with technical documentation 

 Source Code samples 

 Support for up to four Kinect Sensors 

 Skeletal Tracking 

5/18/2012 1.5  Kinect Studio 

 Skeletal Tracking in Near Range 

 Seated Skeletal Tracking 

 Joint Orientation 

 Source Code samples 

 The Face Tracking SDK 

 New Supported Languages for Speech Recognition 

 New Samples 

10/4/2012 1.6  Windows 8 Support 

 Accelerometer Data APIs 

 Extended Depth Data Is Now Available 

 Color Camera Setting APIs 

 New Coordinate Space Conversion APIs 

 The Infrared Stream Is Now Exposed in the API 

 Support for Virtual Machines 

 New Samples 

3/12/2013 1.7  Kinect Fusion with Samples: scan 3D objects and 

create models 

 New Kinect Interactions(Press for Selection, Grip and 

Move for Scrolling) 
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 Engagement Model Enhancements 

 New Samples 

9/13/2013 1.8  Kinect Background Removal 

 Webserver for Kinect Data Streams 

 Color Capture and Camera Pose Finder for Kinect Fusion 

 Updated and New Samples 

10/21/2014 2.0  Kinect for Windows v2 Support 

 Windows Store Support 

 Unity Support (Platform for creating 2D and 3D games) 

 Audio: more precise speech recognition and direction of 

sounds 

 Face APIs 

 Kinect for Windows v2 Hand Pointer Gestures Support 

(greatly improved from v1) 

 Kinect Fusion: higher resolution and better camera 

tracking 

 Kinect Studio greatly improved 

 Visual Gesture Builder 

 New samples 

Table 2: The evolution of Kinect SDKs and Developer Toolkits. Features in bold has been highlighted in the text. Source: 

(“Kinect for Windows,” n.d.) 

 

Kinect Studio, first introduced in SDK 1.5 and later improved, is a very useful tool that has been 

used extensively in this thesis. It allows the sensing sessions to be recorded and replayed at any 

given time, which is valuable when developing applications. The data streams are replayed 

exactly the same way as if there was a live sensing session being carried out.  
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Figure 3.9 Kinect Studio 

 

With the launch of the Microsoft Kinect v2, Microsoft also greatly improved the SDK in SDK 

2.0. The higher resolution in the data streams allowed for higher precision in the tracking and 

tracking of more bodies than the previous SDKs. While the Kinect v1 only was able to track 

the movement of two bodies, the Kinect v2 can keep track of up to six. 

Further, the Visual Gesture Builder was introduced, giving the users a graphical user interface 

for tagging gestures that are used to train machine learning algorithms and create a database of 

the gestures. The gesture database can then be accessed during runtime to decide if the tracked 

bodies are performing the gestures. Microsoft provides two different machine learning 

algorithms, depending of the type of gesture that is to be detected.  

If the gesture is a discrete gesture, meaning that the user is interested to know the occurrence 

of a gesture, for example knowing the answer to “is the body currently throwing a punch”, then 

an Adaptive Boosting (AdaBoost) machine learning algorithm is used. The AdaBoost algorithm 

is given frames tagged as either positive or negative to the occurrence of the gesture, which it 

then uses to train several weak classifiers (Freund & Schapire, 1997). A weak classifier only 

classifies the input slightly better than pure random, but when many weak classifiers are 

combined, the results converge towards being well-correlated with true classification. The 

AdaBoost algorithm learns the optimal weighting of each of these weak classifiers and the 

combined sum results in a discrete value saying if the gesture is occurring or not.  
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If the developer wants its application to detect a continuous gesture, for example the position 

of an arm at a certain point in a golf swing, a Random Forest Regression (RFR) machine 

learning algorithm is used. The developer then tags clips instead of single frames where the 

gesture is being performed, which are used in the training of the RFR. Random Forests are also 

used in Microsoft Body tracker for the detection of bodies, and is explained in the following 

section. 

3.7 Microsoft Kinect Body Tracker 

This section aims at describing the principles of the body tracker developed by the Microsoft 

Research group. For an even more detailed description, the reader is referred to (J. Shotton et 

al., 2013), (Kohli & Shotton, 2013) and (Jamie Shotton et al., 2013). Much research of body 

tracking in depth data from a frontal view has been done throughout the thesis. Summaries of 

this research are not included in the final thesis, but the research shows that it is the body tracker 

developed by Microsoft that is currently the state-of-the-art. It is the most precise, robust and 

fastest body tracker. 

Shotton et el. at Microsoft Research published in 2011 the first paper describing the body 

tracking algorithms used in the Kinect. Since then, the research group has made several 

improvements to the body tracking model. The main requirements of the body tracker in the 

Kinect is speed, robustness and flexibility. The Kinect body tracker is required to run several 

hours without crashing while being able to track users with a great variation in body type. To 

achieve these requirements, a machine learning algorithm called Randomized Decision Forest 

was chosen, because this algorithm is efficient and can be parallelized and implemented on a 

GPU.  

3.7.1 Randomized Decision Forest Algorithm 

The Randomized Decision Forest algorithm creates several decision trees (Breiman, 2001). A 

decision tree is a tree where each non-leaf node in the tree contains a simple test that decides 

the next direction down the tree, for example “is this pixel brighter than the neighborhood 

pixel”. What test the node should contain is decided using a greedy algorithm that finds the test 

that creates the best separation between the samples. Each pixel in an image is sent through 

each decision tree and when the pixel reaches a leaf node, the pixel is attributed with a 

probability distribution of the possible classifications already stored in the leaf node. The 

previous training of the decision tree decides the probability distribution stored in the leaf nodes 
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by using the training samples to calculate a probability distribution of a pixel with a certain 

classification reaching that exact leaf node.  

As the possible tests at each node and the number of training samples become large, building 

an optimal tree becomes too computationally demanding. Therefore, multiple randomized trees 

are created. Each tree is trained with a limited amount of randomly chosen samples and a limited 

amount of possible tests at the nodes (Lepetit, Lagger, & Fua, 2005). After the pixel has 

traversed through all decision trees in the decision forest, the probability distributions attributed 

to the pixel from all the decisions trees are averaged together and creates the hypothesis for the 

classification. 

The Microsoft Kinect body tracker uses comparison of depths of pixels instead of comparing 

pixel intensities (J. Shotton et al., 2013). At each non-leaf node the depth of the current pixel is 

compared to the depth of a pixel with a certain offset from the current pixel. The node tests at 

a given pixel u for the Microsoft body tracker can be described as  

 

 
𝑓(𝐮|𝜑) = 𝑧 (𝐮 +

𝜹1

𝑧(𝐮)
) − 𝑧 (𝐮 +

𝜹2

𝑧(𝐮)
) (2) 

 

where 𝜑(𝜹1, 𝜹2) describe the 2D pixel offset and function 𝑧(𝐮) looks up the depth at pixel 𝐮. 

Each body part will have different distributions of the probability of what depth their 

surrounding pixels will have. For example, a pixel where there is a big difference in depth 

between the current pixel and the pixel above the current pixel would get a higher positive 

response to being a head pixel than for instance a torso pixel. 

 

 

Figure 3.10 Test in leaf node. The depths of the current pixel and pixels at predefined offsets are compared as tests in the 

decision tree. Source: Budiu, Shotton, Murray & Finocchio (2011).  
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3.7.2 Leaf Node Prediction Models 

When the first Kinect was shipped, a Body Part Classification (BPC) algorithm was used to 

predict to what body part the pixel should be assigned. In BPC, a histogram representing the 

probability distribution over the body part labels that the pixel should be assigned was learned 

at each leaf node. The histograms from all the pixels were then clustered together to give reliable 

hypotheses for the location of each joint. One big downside of the BPC algorithm was that no 

information could be obtained about the joints when the surrounding body parts were occluded. 

To meet the challenge of occlusion, the Microsoft research group developed an offset joint 

regression approach (OJR) that was implemented in the leaf nodes (Girshick, Shotton, Kohli, 

Criminisi, & Fitzgibbon, n.d.). In the OJR, each leaf node contains a distribution of the relative 

3D offset from the projected pixel in camera space coordinates to each body joint. These 

distributions are matched with 3D relative vote vectors that are created from the offsets of the 

clustered pixels from training the algorithm. 

 

 

Figure 3.11 The pipeline of the Microsoft body tracker. Source: Kohli & Shotton (2013). 

 

Even though this approach worked well, there was still no utilization of prior knowledge of the 

bodies tracked, and in addition, all joints were detected independently so the model did not take 

into account any information about the relative position between joints. These potential areas 

of improvement was addressed in Min Sun, Kohli & Shotton (2012) where a latent variable was 

introduced in the model to encode some global property of the image, for example the height 

of the tracked body. 

A further potential area of improvement was to include information about the kinematic 

constraints such as limb length into the model. In Sharp (2012) the work of the Microsoft 

research group of fitting an articulated skeleton model to the observed data is described. In 3D 
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space, the translation between the joints are fixed, representing fixed limb lengths, while the 

rotation in the joints are parameterized.  

3.7.3 Creating Training Data 

One of the challenges with choosing a machine learning approach is that for the tracking to be 

robust, the algorithms need to be trained with training sets containing large varieties of poses. 

Unfortunately, possible human poses grow exponentially with the number of articulated joints.  

Sufficient training sets did not exist, especially not with depth data, so Microsoft had to create 

their own (J. Shotton et al., 2013). The Microsoft Research team created a large training set 

with human poses by using marker-based motion capture of real human actors. 500 000 frames 

was recorded in a few hundred sequences of their core entertainment scenarios (dancing, 

kicking, navigating menus etc). From this set, a subset of 100 000 of the most dissimilar frames 

was selected. To take the great variations in human shape and appearance into account, 15 3D 

models of varied base characters in terms of gender, age, height and weight were created. These 

3D models were randomly paired with a pose from the recorded frames, as well as randomly 

assigned a rotation & translation, mesh models of hair & clothing, further variation in weight 

& height, camera position & orientation and camera noise to make the final rendered training 

set as realistic as possible. Training the Randomized Decision Forest also required a lot of 

resources. According to Shotton et al. (2013), training 3 trees to depth 20 from 1 million images 

takes about a day on a 1000 core cluster. 

3.8 Open-Source Alternatives to Microsoft Kinect SDK 

The only real current alternative to the Microsoft Kinect SDK, for both Kinect v1 and v2, is the 

libfreenect and libfreenect2 drivers developed by the open community OpenKinect. The 

community boasts having over 2000 members contributing to the project, although it seems the 

activity has been decreasing the last years (Figure 3.12, Figure 3.13). The main advantage by 

using the libfreenect software for the Kinect v1 sensor is support for Linux and OS X as well 

as bindings and extensions for additional languages such as Java and Python. Also, work is 

under development for exposing the API to MatLab, LabView and more (“OpenKinect 

Project,” n.d.).  

For the Kinect v2 sensor, the libfreenect2 driver is an alternative, although it is far from as 

developed as the driver for the Kinect v1 sensor. The only advantage of the libfreenect2 

software is the possibility of accessing the Kinect v2s data streams in Linux and OS X. 

Additionally, the libfreenect2 driver only supports the RGB, IR and depth data streams. Audio 
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and firmware updates are not available. Both drivers, libfreenect2 and libfreenect, only gives 

access to the data streams and don’t include any tracking whatsoever or support for Kinect 

tools, such as Kinect Fusion and Visual Gesture Builder. 

Previously, another alternative for the Kinect v1 sensor called OpenNI (Open Natural 

Interaction) existed. The OpenNI framework and the middleware for body tracking called NITE 

was developed by PrimeSense, the same company that developed the depth camera technology 

in the first Kinect (“PrimeSense Supplies 3-D-Sensing Technology to ‘Project Natal’ for Xbox 

360,” 2010). Unfortunately, after the company was acquired by Apple in April 2014, the 

company stopped maintaining and developing the software. 

 

 

Figure 3.12 libfreenect on GitHub. Contributions to the master-branch on GitHub for the libfreenect driver for Kinect v1. 

 

Figure 3.13 libfreenect2 on GitHub. Contributions to the master-branch on GitHub for the libfreenect2 driver for Kinect v2. 
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4 Placing the Kinect sensor 

The Kinect sensor, and the state-of-the-art body tracking software developed by Microsoft, are 

meant to be used with the human bodies standing up straight directly in front of the sensor. 

Also, so far, Microsoft does not support more than one of the Kinect v2 being utilized in the 

same application. Due to these limitations, the placement of the sensor needed to be done with 

great care.  

Occlusion is the main challenge for body tracking in depth data. Occlusion is described as two 

types: normal occlusion and self-occlusion (Asteriadis, Chatzitofis, Zarpalas, Alexiadis, & 

Daras, 2013). Normal occlusion is when a body or parts of the body are being hidden from the 

sensor by either an object or another body, as the image on the left in Figure 4.1. Self-occlusion 

is the case when a body is oriented in a way relative to the camera so parts of body is hidden 

behind other parts of the body, as in the image on the right in Figure 4.1. Intuitively, a way of 

avoiding this problem is by placing the sensor high up with a clear view of the bodies. There 

are rarely cases where objects or other bodies are positioned on top of the body that we want to 

track. 

 

 

Figure 4.1 Occlusion: Left: Normal occlusion. Right: Self-occlusion. The tracking results of Microsoft Body tracker has 

challenges matching the ground truth. 
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The Microsoft body tracker are also inferring body landmarks, joints, that aren’t directly 

detected. To evaluate the performance of the Microsoft tracker at different heights, a diagnostics 

tool was developed to calculate the amount of tracked and inferred joints during a sensing 

session.  The sensor was positioned at 10, -30 and -60 degree angle with the floor and a 

rehearsed routine was performed to minimize the differences in the scene between the angles. 

The routine started with standing up straight facing the sensor, then the hands were lifted 

straight out so the body formed a T-shape and down again. After the hands returned to their 

neutral straight position, a 90 degree turn to the right was performed so the sensor only could 

see the body in profile. The 90 degree turn was performed until the body returned to its starting 

position, facing the sensor. The tracking success for each sensor-position was averaged over 

three sessions for each position. The sensing sessions, 9 in total, lasted 12.01 ± 2.10 seconds. 

 

 

Figure 4.2 Tracking success of the Microsoft Kinect tracker at different angles. 

 

At first sight the results from the tracking with the Microsoft tracker seem very impressive. 

However, a more thorough inspection of the sensing sessions shows that even though a joint is 

reported as tracked or inferred it still may vary a lot from the ground truth. Figure 4.3 shows 

examples of this. In addition, at an angle of -60 degrees it was difficult for the Microsoft tracker 

to find the body in the frame. To initiate the tracking the test person needed to lean backwards 

to make the angle between the body and the tracker closer to the normal facing angle. At angles 

below -60 degrees the tracker wasn’t able to recognize a body in the frame, which means that 
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no information about the body is available through the API (joint positions, audio tracking, face 

tracking etc). 

 

 

Figure 4.3 Microsoft Body Tracker. Even though the Microsoft Body tracker achieves a tracking result, the tracking may be 

far from the ground truth. Left: Tracking at -30 degrees. Middle and Right: Tracking at -60 degrees 

 

4.1 Possible Observation Setups 

In a real life work setting, you cannot rely on that all people in the sensing area are facing the 

sensor at all times. An important requirement for the sensing approach for design contexts are 

that the people should be allowed to work as freely and natural as possible. The sensing should 

not be noticeable by the subjects. To achieve this, a customized sensing approach needed to be 

developed. Three main approaches were considered. 

4.1.1 Alternative 1: One Kinect v2 and Using the Microsoft Tracker 

The Microsoft body tracker available through the Kinect SDK 2.0 is the state-of-the-art in non-

intrusive people tracking. The disadvantage is that the sensor needs an unobstructed frontal 

view of the bodies in the scene. One alternative was to place a Kinect v2 sensor high up on a 

wall slanting down facing the people. If the sensor wasn’t placed too high Microsoft body 

tracker could be used Figure 4.4. 

The major disadvantage with this setup is that the activities and the work setup for the 

participants in the scene need to be carefully controlled, so the participants always are facing 

the sensor and aren’t occluded.  
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Figure 4.4 Setup with one Kinect v2 slanted down at the participants. 

 

4.1.2 Alternative 2: Two Kinect v1  

While using several Kinect v2 in the same application isn’t supported, using several Kinect v1 

is. By using two Kinect 1 sensors placed as in Figure 4.5, the sensing area would be more 

versatile than in alternative 1 because it wouldn’t be as sensitive to occlusion. 

On the other hand, the Kinect v1 has worse resolution and a narrower field of view than the 

Kinect v2. Further, the depth measurements from the Kinect v1 are less accurate than the Kinect 

v2, as will be thoroughly discussed in a later section. If this setup was chosen, the body tracking 

approach would have been to combine the joint-locations from the old Kinect SDKs, which is 

not as precise as the SDK 2.0. Also, only information about two bodies per frame is available 

with the old SDK. An alternative would be to use open-source projects to merge the depth 

clouds and then develop a tracking approach in the merged cloud. The extra work of calibrating 

and merging depth clouds, together with the fact that the old Kinects weren’t accessible to the 

project before late, made this alternative not a good option. 
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Figure 4.5 Setup with two Kinect v1s mounted high to minimize occlusion. 

 

4.1.3 Alternative 3: One Kinect v2 with Top-View 

The approach that was chosen was to position a Kinect v2 high up, facing the floor 

perpendicularly. The wider field of view and the higher resolution in the Kinect v2 made it 

possible to place the sensor high above the floor and still get a usable sensing area and accuracy 

in the depth measurements. With a top-view approach, many of the challenges with occlusion 

was also naturally solved.  

Disadvantages with this alternative are that the Microsoft body tracker could not be used. It is 

not trained with training images from a top-view position and cannot detect bodies from this 

position. A body-tracker had to be written totally from scratch, or partially with the help of 

existing open-source libraries. Another challenge is to be able to position the sensor high 

enough. The setup is depending on the ceilings being high enough and the ceiling being 

accessible for mounting.  

Alternative 3 was chosen because it was considered to be the setup with most potential and it 

was the alternative where the newest technology would be used. 
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Figure 4.6 Setup with one Kinect v2 mounted in the ceiling. 
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5 Existing Research: Human Tracking in Depth Data from Top-

View 

A precondition for automating design observation and the task of interpreting human behavior 

is to track the humans in the scene. The following sections will describe existing research on 

how this can be done for the chosen top-view setup in depth data. The chapter will start by 

describing approaches for background subtraction, then detection and tracking approaches. 

Strengths and weaknesses will be discussed. Finally, the most relevant open-source computer 

vision libraries are discussed. 

5.1 Background Subtraction in Depth Data 

Background subtraction is a crucial step for detecting humans in an image frame. It is usually 

one of the earliest stages in the pipeline, and if done successfully, greatly simplifies the rest of 

the detection and tracking process. As indicated by the name, background subtraction is the 

process of differentiating between the objects you want to track, in most cases humans, and the 

rest of the scene. Depth data gives several advantages for background subtraction. Subtraction 

with traditional RGB camera relied on detecting differences between the color intensities of the 

foreground and background pixels. An approach that is very sensitive to illumination changes 

and that has to handle great varieties in color and texture in the scene. With the depth data 

available, background subtraction can rely on the more naturally stable 3D difference between 

objects and background, which has shown itself to be more reliable (Fernandez-Sanchez, Diaz, 

& Ros, 2013). Still, color data from RGB cameras don’t contain as much noise as the depth 

measurements, typically at object boundaries, and lacking depth data due to cast shadows or 

badly reflecting materials such as mirrors and pitch black textures. In this section, some of the 

state of the art background subtraction approaches are presented. Some algorithms are 

traditionally used in RGB images but adapted for depth data, some are purely developed for 

depth data and some use both RGB and depth data.  

Stone et al. (2011) modelled the depth map of the background in a training phase before the 

actual detection phase. The approach is called minimal background. After the training phase, 

all depths that was shallower than the background was considered foreground pixels. This 

approach works well when all of the objects that should be detected always appear in front of a 

static background. However, for dynamic backgrounds the subtraction will become noisy or 

depth camouflage might happen. Depth camouflage is the case when an object in the scene is 

modelled as background and then moved further away from the sensor. If then a person, that 
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should be detected, moves to the previous position of the background object, the person will be 

subtracted from the depth map. Zhou & Aggerwal (2001) and Kepski & Kwolek (2004) also 

did a similar approach, but created the background model from median filtered depth maps and 

updated the background model throughout the detection session. 

Tseng et al. (2014) performed graph-based-segmentation to subtract the background from the 

foreground. In graph-based-segmentation the depth map is divided into candidate regions by 

merging pixels that are close to each other in Euclidean distance. Further, iterations are done so 

regions that are closer to each other than the internal distance between the pixels inside the 

respective regions are merged. Graph-based segmentation is an approach adapted from 

background subtraction in RGB data. The approach is in general computationally intensive and 

the candidate regions still needs to be validated for the foreground to be established.  

Greff (2012) compared several approaches for background subtraction in depth data. It was 

concluded that the best performing approaches was the already mentioned minimal background 

approach and an approach called the codebook model. The codebook model is an algorithm 

previously developed for RGB images but adapted to also take advantage of depth data 

(Fernandez-Sanchez et al., 2013). In the codebook model algorithm, each pixel is given a 

codebook with code-words (Kim, Chalidabhongse, Harwood, & Davis, 2005). A code-word is 

a data structure that contains information about the pixel, such as intensity, frequency of use 

and depth. After a training phase, each pixel in the new frames are compared to its respective 

pixel in the codebook from the training phase. If the difference in intensity, depth and so on is 

big enough, the pixel is classified as a foreground pixel. The codebook approach works better 

than the minimal background approach when there is a periodic dynamic background. Its 

disadvantages are higher computational costs and higher complexity. 

Nguyen et al. (2015) proposed an approach using both depth and color data. Two classifiers 

were used, one based on depth and one on color data. The weighting between the classifiers 

was adapted for each pixel, depending on if it was close to an edge and the color gradient at its 

location. Near the edges of an object, the color based classifier had greater influence. This was 

an attempt to reduce the error from noisy depth measurements at the borders of an object. Where 

the gradients in the area surrounding the pixel was low, the depth classifier was emphasized. 

The method handles challenging situations with inaccurate depth measurements well. Still, at a 

computational cost. 



35 

 

5.2 Detection and Tracking in Top-View  

As explained earlier, choosing a detection approach where the sensor is placed at a position 

high above ground and facing down at the participants has several advantages. Some of the 

most obvious application areas for a top-view detection approach has been surveillance and 

crowd analysis (Tseng, Liu, Hsiao, Huang, & Fu, 2014). This section will map out the state of 

the art for detection approaches with a top-view placement of depth sensors. 

Tseng et al. (2014) mounted several Asus Xtion Pro2 cameras with a 3.5m height and stitched 

the depth data together. A graph-based-segmentation approach was used to subtract the humans 

from the background. The subtracted blobs were compared to a hemi ellipsoidal model of the 

human head. If the error between the hemi ellipsoidal model and the blob is below a certain 

threshold the blob is considered a candidate head. The candidate head was further verified by 

creating a geodesic distance map from the center point of the head (explained in section 

“Geodesic Distance Map”). The geodesic distance map was used with a detector based on 

Histogram of Oriented Gradients – Comparison of Granules, trained to detect the shoulders 

(Dalal & Triggs, 2005). To increase the precision of the tracking and avoid tracking drift, 3D 

diffusion distance was used to characterize each detection and compare the detections between 

frames. The 3D diffusion distance algorithm characterizes a detection by dividing the area 

around the center of the head into bins in a histogram. The similarity between the histograms 

in consecutive frames are compared. The algorithm outperformed several other state-of-the-art 

methods. A challenge with this detection approach is missing data in the raw depth image, 

making the blobs from the graph-based-segmentation fragmented. Further, when creating 

geodesic distance maps from a top-view, the minimum threshold between the data points in the 

map needs to be high for the map to be able to continue over the sudden changes in depth around 

the contours of the head. A high threshold will lead to the geodesic map bleeding over into 

surrounding objects, if they are close enough to the head and not subtracted away in the pre-

processing phase. Lastly, the detection approach of Tseng et al. (2014) is only suitable for 

detecting humans when walking or standing up straight, not when doing movements such as 

leaning forward or bending down. 

Oosterhout et al. (2011) used connected component3 to separate the subtracted foreground into 

blobs. The size of the blobs were evaluated and the blobs with an inappropriate size were 

                                                 
2 https://www.asus.com/us/Multimedia/Xtion_PRO_LIVE/ 

3 Wu, Otoo & Suzuki (2008) 

https://www.asus.com/us/Multimedia/Xtion_PRO_LIVE/
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discarded. The remaining blobs were then searched using a template matching approach. The 

template consisted of two spheres with the same center point and different radius. To be 

considered a head, the candidate depth points needed to fit between the boundaries of the two 

spheres. The size of the spheres were adjusted to anatomically plausible values. After detection 

was performed, the heads were tracked using Kalman filters on the projection of the heads in 

the 2D plane (Kalman, 1960). The method of Oosterhout et al. works well even for crowded 

situations compared to other state-of-the-art approaches. 

Tian et al. (2013) chose to subtract the background by a simple depth threshold – all data below 

a certain height were discarded. The remaining data was normalized with gray values between 

0 and 255 and used with a Histogram of Oriented Gradients (HOG) feature descriptor. The 

HOG feature descriptor counts the orientation of the gradients in localized portions of the 

image. The distribution of the gradients is the descriptor of the respective local region (Dalal & 

Triggs, 2005). Further, the features were classified by linear Support Vector Machine (SVM). 

The linear SVM was trained with images of positive and negative samples and a model that 

assign new input to one of two categories were built.  

Zhu & Wong (2013) developed a sliding window approach based on Haar-like features 

(explained in section “Haar-like Features”). The Haar-like features of Zhu & Wong was based 

on assumptions about the area around the head of a human – empty space in front and behind 

the head, a certain height difference on the sides down to the shoulders and empty space besides 

the shoulders. The Haar-like features were used in the AdaBoost algorithm (explained earlier) 

with their own training set. After detection of the human, the tracking was made more precise 

and stable using Kalman filters. Challenges with this approach occurs when the assumptions 

about the area around the head is disrupted. This happens when the person is leaning forward 

or is standing close to something. Another issue with this approach is that the detection window 

with the Haar-like feature that was used wasn’t rotationally invariant, therefore, with the setup 

presented by Zhu & Wang the detection will become imprecise when a person isn’t facing 

exactly in the Y- or X-direction. 

Seer (2014) mounted multiple Kinect v1s in the ceiling of a busy corridor at MIT. The aim of 

the setup was to track pedestrian behavior. Foreground subtraction was performed partly the 

same way as Zhu & Wong, with a heuristic cutoff at a certain height. Agglomerative clustering 

was then performed to form groups of points belonging to individual people (Duda, Hart, & 

Stork, 2000). A straight forward approach was chosen to identify the heads of the people – by 
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deciding the head location to be the location of the point with the 95th percentile height of the 

cluster. The detection rate was reported to be high (94-96%).  

Zhang et al. (2012) assumed the head to always be the highest point on the body, so detecting 

the heads of the people in the frame equaled finding the suitable local minimum regions. To 

explain the algorithm, an analogy of “raindrops” flowing to the local minimum regions was 

used. Uniformly distributed raindrops were generated over the frame. The raindrops would then 

land and flow to the shallowest point. A measurement function was created to filter out the 

holes that weren’t deep enough or that didn’t contain enough water. The remaining holes were 

considered to be heads. The algorithm was reported to perform well compared to other state-

of-the-art algorithms, with a 99% accuracy on the created dataset. Still, in situations where the 

background subtraction is imprecise or when there are objects in the frame that is located higher 

than the heads, challenges will occur in the detection. 
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6 Open-source Computer Vision Libraries 

Using open-source computer vision libraries might reduce the time needed to develop a custom 

top-view body tracker. Several were considered throughout the process. None of the libraries 

that was found had any modules that could directly be used to detect humans from a top-view. 

Many libraries had implementations for more commonly requested functionalities, such as face 

detection, blob detection and image filters. Importantly, the libraries should be available in C++ 

or C# as the API and the examples for the Kinect v2 are only available in these languages. 

OpenCV4 is one of the most popular open-source libraries, and is the most comprehensive and 

fastest library I considered. The core of OpenCV is written in C++ and has wrappers for Python 

and Java. The library did not out of the box provide any useful functionality. The modules for 

processing of depth data are limited. The depth data could have been represented as for instance 

grayscale values and processed with traditional computer vision techniques, but this didn’t seem 

like a good approach. Additionally, I did not have any experience with C++ before the thesis 

and wanted to avoid the overhead from learning that. One possible reason for choosing C++ 

would be because of performance benefits. However, research showed that C# matches the 

speed of C++ (Qwertie, n.d.).  

AForge.NET is a computer vision framework in C#. The framework has classes to directly 

access the depth data from the Kinect v1. Unfortunately, no support exists for Kinect v2, and 

the examples provided by Microsoft do the same thing. In addition, no further functionality for 

processing depth data seems to exist. 

Other open-source libraries considered was MATLAB Image Acquisition Toolbox and Point 

Cloud Library5. MATLAB has support for the Kinect v1, but not the Kinect v2. The Point Cloud 

Library may have had some useful noise removal methods, but is written in C++ and wasn’t 

used for the same reasons as OpenCV. 

  

                                                 
4 http://www.opencv.org/ 

5 http://www.pointclouds.org/ 

http://www.opencv.org/
http://www.pointclouds.org/
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7 Existing Research: Energy from Human Movement 

Energy expenditure is traditionally estimated through heart-rate monitors, accelerometers or 

metabolic approaches where the O2-consumption is measured and from which the energy 

expenditure is derived (Nathan, Huynh, Rubenson, & Rosenberg, 2015). All of these methods 

are intrusive. In addition, the metabolic methods and using heart-rate data are unable to give 

real-time responsiveness to the energy expenditure, so locating the source of the change in 

energy expenditure is difficult. Estimating energy expenditure from movement using an 

external sensor, such as the Kinect, has the potential of giving real-time responsiveness at the 

same time as not being intrusive (Nathan et al., 2015).  

Still, some unavoidable limitations exist when energy expenditure is estimated with an external 

sensor. The external sensor can only measure mechanical energy expenditure, not internal 

expenditure such as thermoregulation, digestion and energy expenditure from maintaining basic 

body functions(Van de Walle et al., 2012). Further, isometric contractions, co-contractions or 

work against gravity cannot be accounted for(Williams, 1985). The mechanical energy 

expenditure is the aggregated kinetic and potential energy spent by the human body. 

Van de Walle et al. (2012) compared three approaches of measuring energy expenditure from 

mechanical movement in walking, and compared with control measurements from a metabolic 

approach. The three approaches were: 

1. Center of mass (CoM): analysis of changes in center of mass for the whole body and 

changes in body segments relative to CoM. 

2. Sum of segmental energies (SSE): analysis of energy changes of moving body 

segments. SSE was calculated by determining total energy per segment and summing 

them. 

3. Integrated joint power: integration of power around all joints as obtained from the 

VICON Plug-in-gait model. 

The aim of the study was to evaluate the usefulness of estimating energy expenditure from 

mechanical movement, to be able to discriminate between pathological and typical gait as 

indications of cerebral palsy. In order to achieve this, high sensitivity in the measurement 

approaches was sought for. A VICON camera system6 with markers on the body was used to 

capture the mechanical movement and two embedded force plates was used to capture forces. 

                                                 
6 http://www.vicon.com/ 

http://www.vicon.com/
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The conclusion of the study was that approach 1 underestimated the total energy expenditure 

and showed low correlation to O2-cost, because negative work done by the muscles isn’t 

considered in this approach. Approach 2 and 3 showed low to moderate correlation, but higher 

correlation wasn’t expected since mechanical approaches cannot account for all sources of 

energy expenditure. Approach 3 is the recommended approach if collection of bilateral kinetics 

is possible, if not approach 2 is a valuable alternative. 

Nathan et al. (2015) demonstrated that energy expenditure during exercise, using the Kinect v1 

sensor as a motion capture system, can be estimated from segmental mechanical work. The 

motion data from the Microsoft SDK of two Kinect v1 sensors was combined to capture the 

mechanical work in several steady-state exercises. As in the CoM-approach in Van der Walle 

et al. (2012), they defined an energy model including both external work (work that moves the 

CoM of the whole body) and internal work (work that moves body segments relative to CoM). 

In addition, they improved the estimations of body segment properties, such as segment mass, 

length and CoM-position, by using the Zatsiorsky-Seluyanov’s equations of de Leva(de Leva, 

1996). The variables from the mechanical work model were used as feature vectors in several 

predictive models to predict metabolic energy cost, where a Gaussian Process Regression model 

gave the best results. The conducted experiments consisted of steady-state arm swings, standing 

jumps, body-weight squats and jumping jacks. The exercises was repeated for a minimum of 

four minutes with a resting period in between. The energy expenditure was control-measured 

with a metabolic system. The study concluded that the energy expenditure can be predicted 

with the presented model from mechanical work.  

Liu et al. (2012) estimated energy consumption by calculating external work of body parts 

relative to the environment from movement, also using a Kinect v1 sensor. An average human 

model was defined with 175 cm height and 65 kg weight. The mass of each body part was 

estimated to a certain percentage of the total body weight. For instance, the head was considered 

to consist of 23.1% of the total body weight. From a frontal view, the participants were tracked 

while dancing. The total energy consumption was estimated by calculating change in kinetic 

and potential energy for each body part between consecutive frames.  
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8 Proof of Concept: Tracking in Design Activities in Depth Data 

from Top-View 

From research, it turned out that no tracking software was readily available for tracking people 

in depth data from top-view. Further, of the open-source computer vision libraries that was 

tested, most were either slow or would lead to unnecessary extra work from adapting the 

libraries to the specific context. Extra work that wouldn’t justify the advantage of features 

already being implemented.  

A few requirements of the tracking approach should be: 

1. Should be non-intrusive 

2. Be able to instantly detect all bodies in the frame, independent of the bodies’ orientation 

or pose. 

3. Detection of the whole body is necessary, so a precise heat map of movement can be 

calculated. 

4. Center of Mass of body parts should be estimated from which mechanical energy-use 

can be derived. 

As the setup with a Kinect v2 position with top-view was chosen, ideas for the customized 

tracking application were obtained from existing research on top-view people detection and 

detection in depth data in general, but also from traditional computer vision approaches for 

RGB images. 

8.1 Detection Pipeline 

The overall detection pipeline of the tracking application is shown in Figure 8.1. The following 

sections will thoroughly explain each step. 
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Figure 8.1 Pipeline for the tracking approach. 
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8.2 Preprocessing: Scaling 

Each depth frame from the Kinect sensor is scaled from 512x424 pixels to 256x212 pixels to 

reduce computational load. A scaling-algorithm was developed and customized to the depth 

data from the Kinect sensor. Because depth data contains a lot of noise, the algorithm always 

tries to preserve as much valid data as possible during scaling. More precisely, the algorithm 

extracts depth information from a region of four pixels into one scaled pixels. The average X-, 

Y- and Z-coordinates of the four pixels is calculated and used in the resulting pixel. If a pixel 

in the region does not contain valid depth information, the pixel is excluded from the 

calculations. The algorithm is shown in Algorithm 1.  

 

 

Figure 8.2 Scaling. The depth frame before (left) and after (right) scaling. The grayscale gradient to illustrate the depth is 

also reversed. 
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Algorithm 1: Scaling the frame 

8.3 Background Subtraction: Temporal Median Image 

A model of the background is constructed during an initial phase of the sensing session, before 

any people enter the sensing area. The approach is called Temporal Median Image Subtraction 

and is also mentioned in the section “Background Subtraction in Depth Data”. Temporal 

Median Image Subtraction was chosen because it is a simple and well-performing background 

subtraction approach that fits the contexts this body tracker is used in. The algorithm for 

constructing the temporal median image is shown in Algorithm 2. Initially, the first frames 

captured by the Kinect sensor are consecutively stored. Experiments showed that including the 

first 30 frames was sufficient. After the 30th frame has been stored, the corresponding pixels in 

the stored frames are collected in the same array and sorted. The shallowest pixel depth in the 

array is selected to be used in the background model frame. Finally, the noise in the background 

model frame is smoothed with a median filter. 
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Algorithm 2: Calculating temporal median background model 

After the initial phase, the background model frame is subtracted from all new arriving frames. 

The subtraction is a computationally very light process. Each pixel in the arriving frame does 

only need to be looked up once and compared to its respective pixel in the background model. 

If the pixel in the new frame is lower than the respective pixel in the background model, the 

pixel depth is set to the maximum sensing depth (classified as background pixel). 

If an object in the scene, that is not a person, is permanently moved during the sensing session, 

the earlier constructed background model becomes inaccurate. Fortunately, so far during test 

sessions this hasn’t disrupted the later detection of people in the frame. 

 

 

Figure 8.3 Temporal Background Model Image of a scene. 
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Figure 8.4 Background Subtraction. Left: the original depth frame. Right: The scene with the background subtracted. 

 

8.4 Noise Removal: Median Filter 

A depth frame is prone to have missing data points and the missing data points should be 

smoothed away before further processing. Median filtering is a frequently used filtering method 

in classic computer vision with RGB data, and its principle is easily adopted to depth data. A 

square kernel, also called a convolution matrix, is slid over each pixel of the input frame. The 

pixels in the kernel are sorted and as the name suggests, the median value in the kernel is usually 

selected. In my implementation, the best filtering performance was shown when an even smaller 

element, the element at index 2 (the indexing starts at 0), in the sorted kernel was chosen. The 

reason for this is that the missing data points are also included in the kernel, with depth values 

set to maximum sensing depth. Which means that by picking an index earlier in the sorted list 

(sorted ascending), the chances of picking a valid depth value are increased. However, if an 

index too early in the list is chosen, the output image will contain unnecessary amounts of 

spikes. The kernel can have different sizes, and for my implementation a kernel size of 3x3 

showed itself to be the best tradeoff between computational load and filtering performance. The 

median filter algorithm is shown in Algorithm 2.  
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Figure 8.5 The square kernel is slid over the frame. 

 

 

Algorithm 3: Median filter with a 3x3 kernel 

 

 

Figure 8.6 Index in sorted kernel. The filtered results from choosing different indexes in the sorted kernel. Left: Index 2. 

Middle: Index 4. Right: Index 8. The person in the frame has shiny black hair and we see that if a high index is chosen depth 

data will be lost. 
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Median filtering an image is a computationally heavy task. For each pixel in the frame, the eight 

surrounding neighbor pixels and the pixel itself need to be added to an array and sorted. The 

average case performance when using quicksort as a sorting algorithm is  

 𝑂(𝑚 ∗ (𝑛 ∗ 𝑙𝑜𝑔(𝑛))) (3) 

where m is the number of pixels in the image and n is the total kernel size. As can be seen from 

equation 3, it is the sorting that creates the computational load. To increase performance, an 

optimization feature was created. Because the background is already subtracted from the input 

frame, the frame will contain substantial areas of background pixels without useful depth 

information. To reduce computational load, a helper method was created to check if the kernel 

contains valid pixel. If the kernel does not contain valid pixels, it moves on to the next pixel 

without sorting. The performance gain from the optimization was measured with the Stopwatch 

class which is a class included in the .NET framework that accurately measures elapsed time. 

The performance gain is showed in Table 3. Also, other faster implementations of the median 

filter was considered (Huang, Yang, & Tang, 1979)(Perreault & Hébert, 2007), but adaptation 

to depth values was not straight forward and wasn’t prioritized in this thesis. 

 

 
With 

optimization 

Without 

optimization 

MedianFilter (milliseconds) 9.6 15.11 

Total application 

(milliseconds) 

44.85 47.07 

Amount of total 

computational time 

21.40% 32.10% 

Table 3:  The computational time of the median filter with and without optimization. The time is the average for all frames in 

a 5 min sensing session. 
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Figure 8.7 The foreground area in the frame before (left) and after (right) median filtering. 

 

8.5 Head Detection 

8.5.1 Haar-like Features 

The concept of Haar-like features was first presented by Viola & Jones (2001) and has since 

been extensively used in several object recognition tasks, especially face recognition. The first 

real-time face detector was based on Haar-like features(Viola & Jones, 2001). A Haar-like 

feature is a detection window that consists of subsections of adjacent rectangular regions. The 

average pixel intensity in each region is calculated and compared across regions. The 

characteristics of the differences in pixel intensities is used in classification of the areas in the 

input image. The composition of subsections in the Haar-like features can vary, depending on 

the object feature that is to be detected.  

Even though Haar-like features traditionally have been used for detection in RGB-images, the 

principle can easily be adapted to depth data. Inspired by the “center-surround” Haar-like 

feature presented by Lienhart et al. (2002), a Haar-like feature was developed for depth data 

that takes advantage of the characteristic strong depth gradients that usually exists around a 

person’s head. As shown in Figure 8.8, the difference between the average depth in the outer 

rectangle and the inner rectangle is compared to a threshold. If the difference is above the 

threshold, the region inside the inner rectangle is considered to be a candidate head region and 

passed on to further validation. Also other Haar-like features was tried, for instance features 

with a round inner detection window. Yet, it was the detection window shown in Figure 8.8 

that gave the best overall performance. The algorithm for the sliding detection window with the 

Haar-like feature is shown in Algorithm 4. 
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In other object recognition tasks, several passes are performed with different sizes of the 

detection window. For the current sensing setup, the heads do not vary much in size so only 

one pass with a fixed calculated size of the detection window is necessary. The size of the inner 

detection window is determined as the projected size into camera pixels of the average head 

diameter of 17.5 cm at a height of 170 cm (Algazi, Avendano, & Duda, 2001).  

 

 

Figure 8.8 The Haar-like feature used to detect heads in the frame. 

 

 

Figure 8.9 Haar-like window detection. The detection windows exceeding the threshold as they pass over a head in the 

frame. 
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Algorithm 4: Sliding detection window with Haar-like feature 

8.5.2 Integral Image 

The Haar-like features becomes a powerful approach when they are used in combination with 

integral images, also called summed area tables. Integral images are two dimensional lookup 

matrices that enables the area of a rectangular area in an image to be calculated very quickly 

and efficiently. The integral image has the same size as the input frame and each element in the 

integral image contains the sum of the pixels located on the up-left region of the input frame. 

Thereby reducing the procedure of computing the sum of an area to only four lookups in the 

integral image: 

 𝑆𝑢𝑚 = 𝐶 − 𝐵 − 𝐷 + 𝐴 (4) 

 

The integral image only needs to be calculated once for each frame, before the detection 

window with the Haar-like feature is passed over the frame.  
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Figure 8.10 Integral image. The sum of the pixels in the gray area can be calculated quickly by  C – B – D + A in the integral 

table. 

 

8.6 Classification 

As the detection window is passed over the frame and the candidate head regions are located, 

the highest point in the regions are used to represent the regions in further processing. The 

highest point is chosen because it has a higher probability of being closer to an actual head, 

considering there are rarely cases where there is an object in the scene that is that close to the 

actual head, but still not a head. Further, if the center point of the inner detection window or a 

random point was chosen, there would be a risk that a pixel without valid depth information is 

chosen.  

The next step in the detection pipeline is grouping the candidate head points together. All 

candidates that are within a certain Euclidean distance from each other in the XY-plane are 

grouped together. The grouping is implemented using a disjoint-set data structure, and it is the 

pixel with the shallowest depth (highest point) that is used as the set representative. After the 

grouping, only the representatives from the groups that are bigger than a certain threshold are 

kept. 

At this stage in the pipeline, it is a good chance that the candidate points are very close to the 

actual heads in the frame. Still, experiments show that when the head region is challenging, 

such as  

 shiny black hair 
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 the region is located at the edges of the sensing area where the accuracy of the sensing 

is worse 

 when several heads are located very close to each other 

 when the person in the frame is leaning forward so the upper back almost is located at 

the same height as the head 

the candidate points may be inaccurate. To improve the accuracy, the advantages of the depth 

information is used. Each of the candidate points are passed to a function that finds the local 

maximum height by recursively searching through the neighborhood pixels for depths that is 

higher up than the candidate point. To avoid being stuck in a very small local maximum that 

could occur due to noise, the function gets the 5x5 neighborhood area in each recursive call.  

8.7 Validation of Candidates 

After all the highest points connected to the candidate head points are determined, the possible 

heads resulting from those highest points needs to be validated. As described in section 

“Detection and Tracking in Top-View”, several other approaches have been used to validate a 

3D head shape candidate. In the current implementation several of those validators, and 

combinations of several, were tried. Creating a hemi ellipsoidal model like Tseng et al. (2014) 

and measuring the error between the head candidate and model, showed itself to be inaccurate 

when the head shape became inaccurate, which could happen when a person in the frame is 

tilting its head or when having a special hairstyle. The same was experienced with the template 

matching approach of Oosterhout et al. (2011). Evaluating movement in the candidate head 

regions across frames builds on the assumption that the head always has a certain movement. 

The approach became inaccurate when persons in the frame kept their head still, and created 

false positives when other objects were moved.  

The validation approach that gave the best performance was simply evaluating the size of the 

head blob. The candidate head blob was found by implementing an iterative connected-

component algorithm that uses a breadth first search to search all pixels connected to the starting 

point (Dillencourt, Samet, & Tamminen, 1992). The starting point is the highest point located 

in the previous stage, and to decide if the neighbor pixel should be included in the head blob or 

not, the height difference between the pixels are compared to a threshold. The threshold is set 

to 5 cm and the search depth is limited to 110 pixels to make sure the search stops at the edges 

of the head. Both an iterative and recursive implementation of the connected-component 

algorithm was tried, and the iterative had the best performance. 



56 

 

 

Figure 8.11 Head blob. A head blob after growing region with the connected-component algorithm and validation. 

 

8.8 Geodesic Distance Map 

After the heads of the people in the scene are detected, we also want to track more of the bodies. 

To successfully include further functionality of precise heat maps and energy calculations, 

tracking of the whole body is necessary.  

Tracking a human body in natural environments is a very complex problem. A human body has 

about 244 degrees of freedom and can adopt a range of different poses (Vladimir Zatsiorsky & 

Boris Prilutsky, n.d.). A great variety of approaches of tracking in depth data has been presented 

in literature since the arrival of the first Kinect. The most successful approaches rely on using 

machine learning techniques on large datasets of human poses (Jamie Shotton et al., 2013). 

Still, training a machine learning algorithm for human poses, can be very resource demanding.  

From a top-view perspective the amount of poses a human can adopt are more limited than from 

a side, back or front view. The challenge of tracking a body-pose basically reduces itself to 

track hand-motions and leaning-motions. To achieve this, a geodesic distance graph is created 

on the surface of the body. An approach that was also used in Plagemann et al. (2010) and 

Tseng et al. (2014).  

A geodesic distance graph is created by using the depth data to calculate the Euclidean distance 

in 3D space between neighboring pixels. If the distance between the pixels are small enough, 

they are connected in the geodesic graph. The graph becomes a mesh of connected points on 

the surfaces of the foreground objects in the scene. We only want the geodesic graph of the 

bodies in the scene, so in case the background subtraction cannot completely remove all 
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background pixels, an optimization is implemented where only points closer than 1 meter in 

Euclidean distance from the closest validated head point are considered.  

 

Algorithm 5: Create geodesic graph on the surface of the foreground objects. 

 

Figure 8.12 The geodesic graph on the surface of a person. 

 

Because the geodesic distances along the surface mesh between the body regions are nearly 

constant independent of pose, the body regions can be identified by finding the shortest paths 

from the highest point on the validated head to the other parts of the body. The shortest path 

search is performed using the classic well-performing Dijkstra shortest-path search algorithm.  



58 

 

 

Figure 8.13 Body regions. The body regions are found by finding the shortest path from the head to the rest of the body. The 

distance to the body regions were found heuristically. 

 

8.9 Hand detection 

The hand locations can also be estimated once the geodesic distance graph is established. The 

detection approach for locating hands show reasonable performance when the persons in the 

scene are located by a table, and a depth threshold can be set at the height of the table. If there 

is no depth threshold to exclude the lower parts of the body from the waist down, the hand 

regions are confused with the areas just below the waist that has the same geodesic distance to 

the top of the head as the hands (see Figure 8.14). 

 

 

Figure 8.14 Hand detection with and without depth threshold. The defined “hand-region” in dark gray. Without depth 

threshold (up) and with depth threshold (down.) 
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The hand detection could be improved by including the RGB data from the Kinect sensor and 

using hand color in the region validation. Another approach would be separating the hand 

candidate regions extracted from the geodesic graph, then performing a region growing 

algorithm on the candidates and finally performing a shape analysis of the grown regions as 

validation. Yet, in the thesis, other features needed to be prioritized over hand detection. 

8.10 Tracking 

The location of the bodies are detected in each frame, therefore no dedicated tracking algorithm 

is used. When bodies are detected in a new frame, their head locations are compared to the 

average head locations over the last five frames of previously identified bodies. The average 

values are used to get a more stable tracking of the bodies. Experiments showed that if only the 

location from the last frame was used, the tracking would be erratic and imprecise. 

The new bodies are given the Id of the previous body that is closest to their location, as long as 

the previous body isn’t closer to any other new body. The algorithm is shown in Algorithm 6. 

This approach assumes that the bodies stay in the frame for the period of the sensing for correct 

identification of new bodies. Still, the case of bodies leaving the frame could be included with 

simple modifications. 

 

Algorithm 6: Match the detected new candidate heads with bodies from previous frames. 
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8.11 Mechanical Energy Estimation 

Estimating mechanical energy could not be done with traditional RGB cameras. With depth 

cameras, the movement in the 3D space of the tracked person can be directly measured. 

According to previous research, the most promising approach that would be possible with a 

Kinect is considered to be calculating the energy change in each body segment separately before 

adding each to a total (Van de Walle et al., 2012). This is also the approach that is used in the 

thesis. 

The same assumptions is made about the mass distribution for the segments in the human body 

as Liu et al. (2012) and are shown in Table 4. The weight of the person is either set to an average 

value of 65 kg or defined before the tracking session to match the body weight of the person 

that will be tracked. The change in mechanical energy is then estimated real-time between 

consecutive frames. The displacements 𝑑𝑖𝑠𝑝 of the average center points of the head, torso and 

hands are calculated for each XYZ-direction from one frame to the next. Timestamps are 

collected from the Kinect API to calculate the ∆𝑡 between the frames. For each body segment 

(𝑠𝑒𝑔), the total mechanical energy change is then calculated by the equations for kinetic energy 

(5,6) and potential energy (7) and summed together. 

 
𝐸𝑇𝑜𝑡𝑎𝑙𝑋 =

1

2
𝑚𝑠𝑒𝑔 (

𝑑𝑖𝑠𝑝𝑥

∆𝑡
)

2

 (5) 

   

 
𝐸𝑇𝑜𝑡𝑎𝑙𝑌 =

1

2
𝑚𝑠𝑒𝑔 (

𝑑𝑖𝑠𝑝𝑦

∆𝑡
)

2

 (6) 

 

 𝐸𝑇𝑜𝑡𝑎𝑙𝑍 = 𝑚𝑠𝑒𝑔𝐺 ∗ 𝑑𝑖𝑠𝑝𝑧 (7) 

 

 𝐸𝑇𝑜𝑡𝑎𝑙 = 𝐸𝑇𝑜𝑡𝑎𝑙𝑋 ∗ 𝐸𝑇𝑜𝑡𝑎𝑙𝑌 ∗ 𝐸𝑇𝑜𝑡𝑎𝑙𝑍 (8) 

 

At the end of the tracking session, the already stored energy changes during the session 

(Joule/frame) are filtered through a one-dimensional median filter to remove spikes from 

tracking instabilities before the energy is plotted against time. Also, the average change in 
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mechanical energy per second (Joule/s) throughout the whole session is calculated and 

displayed (Figure 8.15). 

 

Body Segment Head Forearm Upper arm Thigh Shank Torso 

Amount of 

Total 

23.1% 1.8% 3.5% 9.4% 4.2% 58% 

Table 4: Assumed distribution of mass in the body. 

 

 

Figure 8.15 The display of the energy-use after a session. The X-axis is green when the tracking of a person was successful in 

the respective frame. 

 

Some challenges with the approach has been experienced and should be mentioned. Because 

the placement of the sensor is top-view, very little data about the lower part of the body is 

visible to the sensor and contributes to the estimates for the energy expenditure to be 

incomplete. Also, the average center points used for each body segment in the energy 

calculations will tend to be a bit closer to the sensor than the actual center of mass. The reason 

is that the center points are calculated from the pixels of the body segment visible to the sensor, 

which are the pixels on the upper side of the body segments. Moreover, the transfer of energy 

between adjacent body segments are not taken into account, resulting in an estimate higher than 

the real value (Van de Walle et al., 2012). Finally, an important aspect is that the negative 

energy changes, for instance when the potential energy of a body segment is lowered, are also 

included in the calculations. If compared to methods trying to estimate only positive energy 

exerted by the bodies, the results will differ.  

8.12 Heat Map 

Heat maps are graphical representations of data from a 2D matrix. The areas in the matrix where 

the interesting variable occurs are normally visualized with a color resembling varying 
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intensities of heat depending on the value of the variable. Usually with red as the color 

representing the areas with most heat. Typical uses of heat maps are eye-tracking, mouse-

tracking on webpages, world maps with different variables and many more. With heat maps, 

data can be visualized in a very intuitive and clear way. 

Since a geodesic graph is created on the whole surface of each person, an accurate heat map of 

the movements of the person can be created. For each new frame, the results from the detection 

are saved and the global heat map is updated. Each body id is assigned a unique color, and at 

the end of the tracking session the accumulated values in the heat map are normalized so the 

variation in heat is visualized by variation in intensity of the color. 

 

 

Figure 8.16 Heat map of a person that just entered the scene. 
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Figure 8.17 Heat map of a person sitting. 
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9 Validation and Tracking Success 

9.1 Assumptions 

These are the assumptions made in the tracking approach: 

1. Sensor has a clear view of the people’s heads: No objects should disrupt the sensors 

view of the people in the scene. 

2. The background is relatively static: For the chosen background subtraction algorithm, 

Temporal Median Background, to work efficiently the background needs to be 

relatively static. If changes in the background occur during the sensing session, the 

tracking of people should not be affected, but the foreground will be more complex and 

may lead to marginally slower processing of the frames. Experiment show that the 

slower processing isn’t noticeable to the human eye. 

3. Average human head size: In the Haar-like feature that is used to detect the initial 

location of the head region, the size of its detection window is adapted to the hardcoded 

average size of the head of a human, which is 17.5 cm diameter (Algazi et al., 2001). 

Experiments show that using the average head size works well for several different 

people. Regardless of the imprecisions caused by assumptions in head size, for the initial 

head detection many other factors such as incomplete heads due to missing data points 

and variations in posture are also sources of imprecision.  

4. Mass distribution of body segments: For the energy calculations, the application 

assumes the body to have an ideal distribution of mass.  

 

9.2 Accuracy and Precision 

9.2.1 Accuracy 

The accuracy of the raw data arriving from the Kinect v2 has been evaluated in several research 

papers. Lachat et al. (2015) evaluated its usefulness for close range 3D modelling. Error sources 

such as pre-heating time, outdoor efficiency and influence of materials and colors were 

investigated, as well as deviations between measured and true distances. The conclusion was 

that the sensor measurements deviated ±5 mm in the recommended sensing range of 1.5-4.5 m, 

and that the achieved results looked promising. Butkiewicz (2014) measured the standard 

deviation of the depth measurements to increase linearly from 1 mm at 1.5 m to 3.5 mm at 4.5 

m. Yang, Zhang, Dong, Alelaiwi, & Saddik (2015) evaluated accuracy distribution, depth 
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resolution, depth entropy, edge noise and structural noise in the Kinect v2. A cone model of the 

accuracy at certain distances was obtained (Figure 9.1). The green and yellow zones show good 

accuracy while the red zones have a depth accuracy error that exceeds 4 mm. In the mentioned 

papers, the imagined applications demand high accuracy from the sensor. For the application 

in the thesis, body tracking and estimating mechanical energy, the accuracy is considered to be 

satisfactory in the complete field of view of the sensor. 

 

 

Figure 9.1 Accuracy throughout the field of view for Kinect v2. Source: Yang et. Al (2015) 

 

9.2.2 Precision 

To assess the precision of the tracking, a Logger class was developed that projects the results 

of the tracking in real-time on the monitoring window where also the point cloud of the depth 

data is projected onto. From visual inspection, the tracking of the head and torso show stable 

precision when tracking is present. Further, a TrackingDiagnostics class was implemented that 

calculates the total amount of the frames where bodies were detected successfully. In total, the 

application was tested on 5 different people, both male and female and weights ranging from 

50 to 85 kg.  
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Figure 9.2 Tracking results of head and torso showed in monitoring window. 

 

The tracking of the hands show more variable results. It is apparent that using geodesic 

distances alone is not sufficient to get stable and reliable hand tracking. The two main issues 

that occur is that the hand regions get confused with the region around the waist of the person 

and that areas on the body on the geodesic path connecting the hands to the head may become 

occluded. In these cases the geodesic distance to the hands change to be outside the defined 

distance or the hands don’t get included in the geodesic map at all.  
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9.3 Generally Challenging Scenarios 

Some scenarios are more challenging in general for the tracking application and the Kinect than 

others. They may result in inaccuracy in the depth measurements, or most of the time missing 

depth data points. Approaches have been researched to meet these challenges and consist 

mainly of median filtering, morphological operations and more complex methods such as 

building noise models from the scene (V.-T. Nguyen, Vu, & Tran, 2015). Still, some issues are 

necessary to be aware of.  

9.3.1 Materials and Color 

Reflective and very light absorbing materials weaken the intensity of the infrared rays more 

than other materials, resulting in the sensor calculating a larger distance than reality or won’t 

be able to give a depth measurement at all (Lachat et al., 2015). Examples of such materials are 

shiny black hair or objects covered with carbon black materials. This issue was especially 

visible in my thesis because most of my testing was performed with Chinese. No other hair 

color or style than vey shiny black hair seemed to be an issue. 

 

 

Figure 9.3 The tracker has problems detecting the girl with black hair. The raw depth image on the left shoes that a large 

portion of the head of the girl lacks data points. 

 

9.3.2 Flying Pixels 

Flying pixels is a known problem in depth sensors using time-of-flight depth measurement 

technology. Flying pixels occur when a single pixel is covering the depth data of an edge where 
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both the light reflected from the object closer to the sensor and the object further from the sensor 

contribute to the same depth measurement. The pixel then gets a depth measurement somewhere 

in between the two objects (Butkiewicz, 2014). 

 

 

Figure 9.4 Flying pixels can be seen along the edges of objects. 

 

9.3.3 Bodies Close to Each Other 

When two or more bodies are located close to each other in the scene, most tracking algorithms 

meet challenges of classifying what features belong to what body. For the tracking approach 

developed in this thesis, several bodies close to each other may result in only one of the heads 

being recognized as a head, or if the bodies are in contact, the geodesic graphs may be confused 

between the bodies.  

9.3.4 Less Depth Information in Outer Regions 

The actual distance the infrared rays need to travel to give depth information in the outer regions 

of the frame are further than in the center. Thereby resulting in more missing depth data and 

inaccuracies in those regions than at equivalent depths in the center of the sensing area. 
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Figure 9.5 Outer regions of the scene contain less depth data. 

 

9.4 Speed and Memory Performance 

The tracking application needs to be able to process the frames fast enough to keep up with the 

data rate from the sensor and Kinect Studio. If the frames aren’t processed at framerates close 

to the framerate arriving from the sensor, the application will lose information from the frames 

missed. The framerate arriving from the sensor is 30 FPS. The measured average processing 

framerate of the application is ≈ 26 𝐹𝑃𝑆 without the monitoring window and ≈ 22 𝐹𝑃𝑆  with. 

This framerate is perceived as real-time and sufficient. 

The application was implemented in C# and all testing has been performed with the following 

computer specifications: 

o 2.7 GHz dual-core Intel Core i5 processor (Turbo Boost up to 3.1GHz) with 3MB shared 

L3 cache 

o 8GB of 1866MHz LPDDR3 onboard memory 

o Intel Iris Graphics 6100 
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The main bottlenecks for the processing speed are identified by using the performance and 

diagnostic tools (Figure 9.6) in Microsoft Visual Studio 2013: 

o Searching through the geodesic map with the Dijkstra shortest path algorithm. 

o Sliding the Haar-like detection window over the image. 

o Median filtering the frame. 

 

 

Figure 9.6 The CPU usage of the tracking application. 
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The memory use is also analyzed to make sure the application isn’t leaking any memory and 

doesn’t have a memory footprint that is too big. The average memory use is just below 120 MB 

as shown in Figure 9.7. 

 

 

Figure 9.7 The memory use of the application. 

 

A Logger class was developed early to be able to continuously and easily measure the 

processing time of added features in the application. Clean and readable code was emphasized 

through the whole project, although some sacrifices had to be made in favor of speed, such as 

using arrays with predefined size instead of dynamic lists when collecting neighbor pixels. The 

time in milliseconds for the most important features are shown in Table 5. 

 

Feature Time(milliseconds) 

Down-scaling frame ≈ 5 

Median filtering ≈ 10 

Sliding detection window with Haar-like 

feature 

≈ 9 

Create geodesic graph ≈ 4 
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Add body regions ≈ 8 

Other ≈ 7 

Total ≈ 𝟒3 

Table 5: The time used by the feature in the application. 
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10 Tracking Application in Realistic Design Context 

10.1 Egg-Drop-Challenge 

To evaluate the developed sensing application in a realistic design context a prototype of an 

experiment was developed. The experiment was chosen to be a version of the well-known egg-

drop-challenge. In the egg-drop-challenge the participants were asked to design a way, with the 

provided materials, to protect a raw chicken egg from breaking as it would be dropped from 

increasing heights onto a concrete floor. The egg-drop-challenge was chosen because it 

provides a realistic scenario of early prototyping in early-stage-design, as well as being simple, 

fun for the participants and doesn’t take up too much of the participants’ time. Because the 

experiment was conducted at the end of the semester, there were very few possible participants 

at the university location. 

The participants performed the experiment one by one and were given the exact same 

instructions. All participants were aware that they were recorded and that the recording would 

be analyzed and used in this thesis. None of the participants were familiar with the egg-drop-

challenge before the experiment. 

Each of the participants was given 10 min to perform the 

challenge, and would be informed about remaining time 

every minute and when there was 30 seconds left. The 

materials that was provided were: 

 5 sheets of normal paper 

 1 30x30 cm poster board 

 1 75x15 cm Styrofoam sheet  

 8 rubber bands 

 6 Q-tip 

 1 m string 

 6 wooden sticks 

 30 cm tape 

 Scissors, ruler, glue and a pencil 
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Four individuals participated in the experiment. Unfortunately, one of the participants had very 

long shiny black hair that created too many missing data points for the tracking to be precise 

enough. The results from the other three sessions are shown in Figure 48, 49, 50.   

 

Figure 10.1 The results of participant one in the egg-drop-challenge. 

 

 

Figure 10.2 The results of participant two in the egg-drop-challenge. 
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Figure 10.3 The results of participant three in the egg-drop-challenge. 

 

Visual inspection while running the application showed that the tracking of the head and the 

torso worked well in all three sessions. Tracking of the hands were to imprecise and was 

excluded from the energy calculations. The main reason for the imprecisions was that the hands 

were occluded by the upper body and head most of the time (Figure 10.4). Even though 

participants one and three both had shiny black hair, similar to the excluded participant, the 

hair-styles were shorter and not as straight, resulting in the tracking showing stable behavior. 

Still, participant number two had brown hair and got a more complete depth cloud as well as 

more precise tracking, as can be seen by both the measurement of the tracking success and the 

green bar in the energy graph indicating if tracking is present or not.  
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Figure 10.4 Hand occlusion. From the top-view the hands were often occluded during the egg-drop-challenge. 

 

10.2 Energy Calculations 

Participant one did not move as much as participant three while working, however, because of 

much higher body weight of 81 kg compared to 55 kg the estimated average mechanical energy 

used was almost the same. Participant two was also very stationary, but has a body weight of 

50 kg, resulting in a much lower estimate for mechanical energy use. The energy graphs show 

a very small constant base noise that probably influenced the average calculations a bit. The 

noise is a result of the small differences in the depth cloud of the persons because of sensor 

imprecisions, which results in the average head and torso points moving a bit between frames. 

The noise is still almost non-existent in the graph of participant two with brown hair and a more 

stable tracking  

10.3 Heat Maps 

The heat maps show the locations and positions each participant was working in most. 

Participant one had a relatively stationary working location indicated by one red silhouette. 

Participant two had two main working locations during the experiment, one was used more than 

the other as seen in the difference in color intensity. While participant three was the most mobile 

and working at several locations by the designated tables. 

10.4 Reflections on Experiment 

The experiment was tested beforehand by the author, who felt there was substantial time 

pressure with only 10 min. In the real experiment on the other hand, three of the participants 

implied they were finished before the experiment was over. They were also asked if they felt 
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any time pressure during the experiment whereupon participant three answered “yes, in the 

beginning”, while the three others did not feel any time pressure. The fact that participant three 

felt time pressure may have contributed to the increased energy use.  

The experiment was successful in replicating an early-stage design context, although many 

other experiments or variations of the egg-drop-challenge could have highlighted the possible 

uses of the application better. In the chosen experiment, the work locations of the participants 

were very stationary. An interesting variation could have been to let the participants use all the 

tools available within the sensing area in the workshop, and then use the heat map to analyze 

the strategies of the participants. Further, reducing the available time could have facilitated 

more activity and energy-use. Finally, a drawback of the chosen experiment is that the 

participants worked in positions that resulted in occluded hands so hand tracking became 

difficult. 

Other experiments were considered: 

 Comparing different brainstorming activities 

 How group size influence activity in brainstorming and how the energy of the 

individuals are influenced. 

 How energy correlate with outcome in brainstorming 

 Comparing prototyping methods. What method facilitate most energy-use 

 When ideas are created in brainstorming, can there also be seen a peak in energy-use? 

Before or after? 

Unfortunately, due to lack of participants and time, these experiments must be included in future 

work. 
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11 General Reflections from Kinect in Context 

During planning and experimenting with different sensing setups in early-stage design contexts, 

a few challenges occurred that will be discussed in this section. 

11.1 Height of Rooms 

Most rooms in the university where the thesis was written have a ceiling height of up to 3 m. 

Even though the field of view has been increased in the Kinect v2 to 70 x 60 degrees, the 

available sensing area soon becomes a limitation. For ceilings at 3 m height, this equals a 4.2 x 

3.5 m sensing area at floor level. At the head level of a person 180 cm tall, this equals a sensing 

area of only 1.7 x 1.4 m. If possible, the sensor can be placed at the same height as the max 

recommended sensing depth by Microsoft of 4.5 m and have a floor sensing area of 6.3 x 5.2 

m, but this isn’t always possible due to practical reasons. Unfortunately, in many early-stage 

design contexts, such as prototyping, people often tend to be very mobile as they work and the 

sensing area may be insufficient. As discussed earlier, several Kinects could be used to expand 

the sensing area, but do involve a substantial overhead from merging several frames. 

 

 

Figure 11.1 Setups with different heights tried in the thesis. 
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Heights ranging from 2.9 m to 4.4 m was tried throughout the thesis. At higher positions, each 

body is represented with less pixels so less information is acquired about the body. At lower 

positions a parallax effect is experienced. Parallax effect describes the phenomenon when the 

position of an object seen, in this case in the frame, is different depending on the position of the 

camera. Figure 11.2 shows a parallax effect for this particular case. The persons in the frame 

are standing up straight and only the profile from above should ideally be visible in the frame 

plane, still their bodies are covering larger areas of the frame because of the position of the 

camera.  

 

Figure 11.2 Parallax effect 

The amount of parallax could be calculated from the sensor parameters and the height of the 

sensor. This was done in Tseng et al. (2014) and also in the thesis. However, because the 

resulting frame resulted in too many missing data pixels from the warping of the image, the 

feature was removed. It also didn’t seem to affect the performance of the tracking. 

11.2 Recording Sessions 

The normal workflow when analyzing work sessions is to record and store the sensing sessions 

with Kinect Studio for further analysis or tweaking of the parameters in the tracking application. 

With standard surveillance equipment it is normally possible to leave the cameras on for long 

periods of time or let the monitoring be triggered from detection of motion. With the Kinect, 

this is not straight forward. Recording all the data channels, including depth, IR, audio and color 

for a 1 min session means storing roughly 10 GB of data, which will quickly have most hard 

drives running out of free space. To be able to store longer recordings and to keep up with the 

high data rate coming from the sensor, a thunderbolt drive with transfer speeds of up to 136 
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MB / sec was used together with a MacBook Pro 13” 2015, but still the CPU didn’t manage to 

store the data fast enough. Finally, to be able to store the sessions, only the channels for IR and 

depth data was used. Resulting in about 88 GB for a one hour session and the transfer speed of 

the thunderbolt to be able to transfer the data fast enough. 

11.3 Hardware Requirements 

As mentioned when comparing the Kinect v1 and v2, the hardware requirements of the Kinect 

v2 has increased substantially and may lead to issues, at least for some more time. The 

requirement of the computer having an USB 3.0 port was unexpected, as well as the 

recommended requirement of processing power higher than Intel I7 3.1 GHz.  

11.4 USB 3.0 Cable  

The supplied USB 3.0 cable and extension cable in the Kinect 2 for Windows kit are 5 m in 

total. The limited cable length became an issue for several setups, especially when mounting in 

ceilings. This issue has been extensively addressed and discussed in forums online. The official 

answer from Microsoft is that it is only the included cable that is supported. Still, some people 

have successfully used USB 3.0 cables that actively strengthens the signal throughout the cable 

(Microsoft Team, n.d.-b). Nevertheless, the impression from reading online is, for now, that the 

chances of a third-party USB 3.0 extension cable working with the Kinect 2 is relatively small. 

Further, the active USB 3.0 cables that could work with the Kinect 2 seems to be expensive (I 

don’t want to give an example before testing the cables). 

11.5 Cluttered Rooms 

In most locations where early-stage design is being done, the areas tend to be cluttered. Also 

considering limited sensing areas at low ceiling, it became early clear that a better approach 

than start sensing in areas already being used for early-stage design was to customize an area 

for sensing. In this way the interaction between people and equipment or materials can be more 

precisely analyzed. Further, the people tracking could be customized to the specific setup and 

be more precise. People detection and tracking is a very challenging task, and no approaches so 

far are robust enough to work in all environments. 
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Figure 11.3 Environments for design activities are often cluttered. 

 

11.6 Easy to Get Started with Kinect 

The Kinect SDK 2.0 provides examples covering pretty much all of the features of the Kinect 

v2, in both C# and C++. Very limited programming experience is needed to install an example 

and access the information about the bodies tracked in the Kinect SDK, such as joint-location, 

joint-orientation, lean vector of body, hand-states and more.  
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Figure 11.4 Kinect SDK Browser v2.0 is a good place to start developing an application. 
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12 Future Work 

Future work specific for the developed body tracker could be stabilizing the tracking with 

Kalman filters to get more robust and consistent energy calculations. The hand tracking needs 

improvements, which could be done by including color data and traditional hand tracking.  

The energy calculations can be smarter. For instance, the estimation of center of mass should 

be improved and the weight of a person could be estimated from height and size of blob of 

whole body. The energy estimations need to be control measured. Another heat map could also 

be calculated, showing not heat of locations but where in the frame energy was used. 

Further, data from several Kinect v2 sensors can be combined, using more hardware and 

computational power. A design observatory setup can be multiple Kinects positioned high in 

up in a room with a clear view of the participants it is supposed to track. The number of Kinects 

needed is dependent on the requirements of minimizing occlusion and thereby get more stable 

tracking. The tracking results from the Microsoft Body Tracker, which can track 6 people very 

precisely, could be streamed over a network and fused together, or a tracker for the specific 

context can be written. In addition, object detection and tagging of locations and objects can be 

included to detect amount of interaction with tools and machines. 

With consistent tracking of bodies and body parts, interactions between people can possibly be 

automatically captured and analyzed. Head orientation combined with the very capable audio 

recognition in the Microsoft API could tell who is talking when and to whom. By using the 

Kinect Gesture Builder or defining a gesture database with machine learning, interaction 

gestures such as pointing at someone, giving something, leaning in concentrated, leaning back 

relaxed, moving head confused, moving impatiently, arms crossed passively, rhythmic 

movements and more could be detected and possibly automatically analyzed. Energy estimates 

can be combined with the gestures and real-time energy estimates can be used to explore how 

the occurrences of creativity relate to energy use, and what type of energy use.   

The audio capabilities of the Kinect v2 was not thoroughly tested in this thesis. Still, the 

research done indicate that speech recognition in combination with the ability to locate the 

source of the voice can greatly automate the cumbersome process of transcribing design 

sessions, or at least tag locations in the session where specific words are said. Future work 

involves exploring these capabilities. 

Many research questions for future work that an automated design observatory could provide 

contributions to occurred throughout the thesis: 
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 How do the amount of energy used relate to the quantity and quality of the outcome of 

creative sessions?  

 How do the timing of ideas relate to energy-use? 

 What design activities facilitate more movement? 

 How can the interior of a room influence energy-use?   

 How do group sizes affect individual energy-use? 

 At what group-sizes does subgrouping start to happen? 

 How does activity and energy-use evolve with length of sessions? 

 How does time pressure influence energy-use? 

 From gaze, speech patterns, gestures and pose – how much do participants pay 

attention when other participants are talking? 

 What prototyping methods facilitate interaction? 

 How is the group dynamic influenced participants are given real-time feedback on how 

much they are talking compared to rest of the group 
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13 Conclusion 

The goals of this thesis were to evaluate the Kinect v1 and Kinect v2 sensors, their potential 

contribution to the future of design observation and how their 3D sensing capabilities can be 

used to quantify human activity in design activities. 

The thesis started out with reviewing current literature on design observation and non-intrusive 

sensing. Further, a thorough review of the Kinect v1 and v2 followed – the two sensors where 

compared and possibilities and limitations from a design observation perspective were 

highlighted. Possible observation setups with the Kinects were considered, and a setup using a 

Kinect v2 with a top-view of the participants was chosen. Literature relevant to achieving 

successful observation for the chosen approach was reviewed – existing research on human 

tracking in depth data from top-view as well as research on calculating energy-use from human 

movement. A proof-of-concept tracking application was developed for the setup. The 

application tracks participants, estimates mechanical energy-use real-time and creates heat 

maps from their movements. The tracking application was tested in a prototype of a design 

experiment of a realistic early-stage design context. Further, generally challenging scenarios 

for sensing with the Kinect were discussed, as well as issues to be aware of when using the 

Kinect v2 for design observation. Finally, ideas for future work were presented. 

Interpreting human behavior with software can automate design observation, and using depth 

data to achieve this solves many of the limitations from traditional RGB data. The depth data 

from the Kinect is unaffected by illumination changes and color. In addition, 3D depth data 

greatly simplifies the task of differentiating between background and foreground as well as 

allowing the tracking algorithms to use the naturally characteristic 3D shapes of humans in the 

calculations. 

In the new Kinect v2, a different depth sensing technology is used than in the old Kinect v1. 

The depth sensing technology called Indirect Time of Flight gives the Kinect v2 sensor more 

accurate depth measurements than in the predecessor. As the error in the depth measurements 

increases quadratic with increasing distance in the old sensor, the error in the new sensor 

increases linearly. Indirect Time of Flight also enables the Kinect v2 to provide a higher 

resolution in the depth data. The higher resolution and increased accuracy makes the Kinect v2 

an interesting sensor for sensing more subtle movements, such as facial expressions and hand 

gestures. The Software Development Kit (SDK) provided with the Kinect v2 is also very much 

improved. The main disadvantages with the new Kinect v2 are the challenges met when trying 
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to combine data from several sensors. While the old SDKs supported multiple Kinect v1 

sensors, only one Kinect v2 is supported in the new. Even though the Kinect v2 has a wider 

field of view, this may limit its use. Still, there are ways to utilize multiple Kinects, but so far 

more hardware and tweaks are necessary.  

The human tracking software developed for the Kinect v2 by Microsoft has also been improved 

in the SDK 2.0. This body tracker is the current state-of-the-art for tracking humans from a 

frontal view. Even though the Microsoft body tracker is very capable, it was not used in the 

proof of concept application. I wanted the proof of concept application to be as non-intrusive 

as possible, without putting any constraints on the working position of the people in the scene. 

I also wanted the application to be able to capture all movements in the sensing area. For this 

to be achieved, occlusion needed to be minimized. Therefore a setup with one Kinect v2 

mounted in the ceiling facing straight down was chosen. The option of using multiple Kinects 

was considered, however, for the scope of the thesis, it was not feasible to acquire hardware for 

two Kinect v2s. Two Kinect v1s could have been used, but the higher specifications and 

performance of the new Kinect v2s made it the most desirable choice.  

A prototype of an experiment was developed to test the developed application and the 

observation setup. The prototype is a variation of the egg-drop-challenge where the participants 

are supposed to build a way to protect their egg from braking with the materials provided when 

dropped from increasing heights. The results showed that the application was able to track the 

participants real-time and calculate precise heat maps of their movements. The mechanical 

energy used by the participants was also estimated real-time, although with a few sources of 

error. While working, the participants often leaned over the table, which resulted in occluded 

hands that could not be tracked and had to be excluded from the energy calculations. Further, 

the energy calculations makes some assumptions about the distribution of mass in a person’s 

body that leads to inaccuracies. Still, research indicate that with precise tracking of body 

segments, the calculated mechanical energy-use of each body segment is sufficient to estimate 

total energy-use. 

Some especially challenging scenarios and sources of error for the Kinect sensors became 

evident throughout the thesis. Reflective and very light absorbing materials may result in the 

sensor not being able to calculate a depth measurement correctly or not at all. The depth 

measurements around the edges of an object usually become inaccurate due to a phenomenon 

called “flying pixels”. Human trackers in general, struggles with separating humans that are 

positioned very close to each other. Lastly, the outer regions of the sensing area contain less 
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valid and more inaccurate depth measurements than the center region. This is because the 

infrared beams that are used to calculate the depths have to travel further in the outer regions. 

For the more specific application of using Kinect v2s in a design observatory, some issues are 

worth being aware of. The sensing area and the sensing depths of the Kinects are limited. 

Careful placement and much space is necessary if bigger areas are to be covered. It is sometimes 

desired that sensing sessions are recorded for later analysis. The data rate produced by the 

Kinect sensor could potentially be enormous depending on how many of the data streams that 

are used. The requirement of having one USB 3.0 host controller for each sensor is final. The 

host controller needs to reserve the high bandwidth of the sensor. The cable shipped with the 

Kinect v2 for windows is 5 m. As of now, not that many extension cables seem to work. Apart 

from these issues, the software available from Microsoft contains loads of examples and the 

API is very well documented. Very little time and effort is needed to start sensing and 

prototyping setups with the new Kinect sensor. 

Future work involves combining several Kinect v2s in a permanent design observatory. With 

careful placement of the sensors to minimize occlusion and the necessary hardware, very 

precise tracking of participants in design activities is possible. More sophisticated energy 

estimates can be made from the tracking of individual body segments. How a database of 

gestures specific for design contexts can be defined and automatically detected and analyzed 

should be explored. Tools can easily be tagged and the interaction with the participants can be 

measured. Finally, the directional audio and speech recognition capabilities of the Kinect v2 

sensor should be explored and potentially be used to automatically transcribe design sessions 

or be combined with gestures to start automatically analyzing basic interaction between 

participants. 
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14 Reflections on Process 

The start of the thesis semester was a bit hectic. The startup had been postponed until March 

because of an intense pre-master project at CERN, which also meant that the pre-master was 

about another topic than the thesis and could not be used as foundation. Looking back, I would 

have prioritized spending more time before the startup of my thesis narrowing down the scope. 

Much time was spent in the beginning of the thesis speculating in what was most interesting to 

sense and if it was feasible to accomplish in the thesis. I eventually realized many of the 

questions I had been trying to find an answer to could only be answered by starting developing 

the sensing. 

The thesis was written at the Sino-Finnish Center (SFC) at Tongji University in Shanghai. The 

SFC is a joint effort of Tongji University and Aalto University in Finland, and is part of the 

Design Factory Network originating from the Aalto University. The ambition of the SFC is to 

bring students, companies and researchers from different disciplines and cultures together. I 

learned a lot during my stay at the SFC. Aside from learning a great deal about the research 

areas relevant to my thesis and getting experience in planning and executing a long-time project, 

I got first-hand experience with a culture very different from the Norwegian. 

Everything takes more time in China, and the six extra weeks we get when doing our thesis 

abroad was very welcome. Things that needed to be taken care of in the beginning of the stay, 

such as medical examinations, registration at school and police office, residence permit, 

opening bank accounts and getting sim-card, all made the first month of the thesis more hectic. 

In China, you never know what you get and there is most of the time a problem with something. 

In addition to dealing with China when taking care of all the required start up hassle, hardware 

for the thesis eventually needed to be purchased – the Kinects, a computer that could run the 

Kinect v2 and thunder-drive storage. Purchases such as these are trivial in Norway, yet in China, 

90% of what you buy online are fake and you never know what. Websites are in Chinese, with 

almost unusable translator tools, and very few speak English in stores. By default, all internet 

access are restricted. A VPN service can be used, for instance for all Google services, but the 

continuous battle between the Chinese firewalls and the VPN services makes the VPN slow and 

unpredictable. Through NTNU, we are provided with access to publications in several useful 

research databases such as Scopus, ScienceDirect and IEEE. Unfortunately, from the middle of 

April until June, the VPN to NTNU was blocked. Most of the time the publications could be 
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found by using another VPN and Google, but the process of finding research was significantly 

slowed down. 

A project plan was created at the beginning of the thesis. The plan was to first do an explorative 

phase where early-stage design activities would be observed, to get a sense of what activities 

and parameters would be interesting to measure. The SFC had started thinking about setting up 

a group work room for monitoring before I arrived, and it seemed natural for me to contribute 

to that. Six surveillance cameras were mounted, wired to a close-by monitoring room and 

hooked up to a screen (Figure 52, 53). In retrospect, I realize that too much time was used on 

this. The goal of the monitoring setup was to observe early-stage design activities, which 

showed itself challenging. Barely any design activities were happening at the SFC throughout 

the semester, and even less in the observed room. The room had originally been dedicated to 

one of the project courses at the SFC. However, due to the SFC being located far from the main 

campus and lacking supervision in the course, the projects in the course had ceased activity. 

Getting more people to use the observed room was tried by hanging up posters and notes. Still, 

in the beginning of May it could be seen from motion detected recordings that the room only 

had been used 3 hours in total during the whole April. A much more efficient way of exploring 

design activities would have been to just use a handheld camera and go to the places where 

early-stage design was happening, perhaps at other locations on campus.  
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Figure 14.1 Some of the surveillance cameras mounted. The one up to the right could be remote controlled. 

 

 

Figure 14.2 The monitoring room with monitoring setup. 
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It was planned to do more experiments with the Kinect earlier. Nevertheless, as many have 

experienced before me, estimating how much time implementation of software takes is a 

challenging task. Process-wise it would have been interesting to try to adopt ideas from agile 

software development methodology such as SCRUM and Minimum Viable Product, and 

through that have been able to have tracking software with basic functionalities ready earlier 

which could shorten the iteration time for developing the sensing setup. 

14.1 Sino-Finnish Center 

There were very few design projects happening at the SFC, and in general very low activity. 

The few students that were there outside lectures, where mostly doing homework in other 

courses. A couple companies had their offices there, but creative sessions or prototyping was 

very rarely done. A contribution to the low student activity was the fact that most of the rooms 

for group activities at the SFC was locked. The students could ask the staff to open the rooms, 

but it was rarely done, probably because they didn’t know they could. Further, the university 

policy said that a responsible person needed to be present at the SFC at all opening hours, 

resulting in the place closing every evening at 21.00 and in weekends 17.00-18.00, which 

limited the flexibility of the students’ work hours. 

The SFC has great potential as a platform for intercultural interaction. Unfortunately, they 

haven’t been very successful yet, and during my stay there some pain points have become clear. 

Everything is very unpredictable at the SFC. It’s not clear whether courses will take place until 

far into the semester, there were incidences of classes being cancelled only hours before 

scheduled time, presentations change day the same morning as the day they were scheduled 

without all participants being informed, and student projects not being followed up by the 

supervisors and left to themselves. Also, the SFC’s goal of being a facilitator for interaction 

between cultures has much potential for improvement. One example is that the official language 

of the SFC is English, still, many classes and workshops are held in Chinese which do not give 

a welcoming and international impression for foreigners.  

There are many very capable people connected to the SFC that could have easily made the place 

more successful in very short time. However, that will not happen when the relevant people 

continue to be dishonest towards themselves and outwards to others about the reality and the 

real challenges. Which is also an observation about Shanghai in general, albeit from my limited 

time there (5 months). The obvious focus on façade over quality and integrity of the main 

activities in the SFC is a challenge. I spent most of my days working at the SFC, and during my 
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stay there I got the feeling there were more guided sightseeing tours showing of the creative 

interior and bragging about how successful the place was than actual students learning and 

interacting there. If you hold too many guided tours and tell all visitors that everything is 

perfect, you eventually start believing it. 

My advice is to further focus and spread the strategy and core values of the SFC. Especially 

among the staff and lecturers. It should be clear to the students that it is a place for them, a place 

where they are welcome and belong. A Design Factory should contain a self-run student 

community and this is only possible if the students are given more freedom and trust. Also, 

procedures for including new students, both international and Chinese, in the routines and 

activities at the SFC should be developed.  

The culture difference between Scandinavia and China is major. The SFC is so far no exception. 
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16 Appendix 

16.1 Dropbox folder 

URL: 

https://www.dropbox.com/sh/zmmljibbnk1ycx4/AAC5nwlxHsAM2ICH3GzRSgY_a?dl=0 

 

Content  Explanation 

BugRoomPosters 

[subfolder] 

 Posters made to recruit and inform people about the 

observation room. 

Diagnostics [subfolder]  Raw .xlsx files from various diagnostics. 

Photos [subfolder]  Photos taken throughout the thesis. 

FourMetersSitting1.xef  Kinect recording of a person walking into the frame and 

sitting by a table with the Kinect mounted at 4 meters height. 

LeifErikBjoerkliA3.pdf  Mandatory A3 poster made in the beginning of the project 

describing the thesis. 

RiskAssessment.pdf  Mandatory risk assessment form. 

ThesisContract.pdf  The thesis contract with supervisor. 

 

16.2 Recordings 

Due to the size of the recordings, ranging from 2-90 GB and about 200GB in total, the 

recordings where copied to an external hard-drive and given to my supervisor Martin Steinert. 

One recording is available in the Dropbox folder. 

 

16.3 Tracking application on GitHub 

The tracking application can be cloned from the following GitHub repository: 

https://github.com/leiferikbjorkli/Kinect2TrackingTopView.git 

 

https://www.dropbox.com/sh/zmmljibbnk1ycx4/AAC5nwlxHsAM2ICH3GzRSgY_a?dl=0
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