
Automatically Quantifying Human Activity
in Design Activities
With Microsoft Kinect Depth Sensors

Leif Erik Bjørkli

Master of Science in Engineering and ICT

Supervisor: Martin Steinert, IPM

Department of Engineering Design and Materials

Submission date: September 2015

Norwegian University of Science and Technology

I

Abstract

Observing design activities can give insights that can be used to improve the activities and give

feedback to participants. In the past the process of observing and analyzing design activities

was done manually with video which is very resource demanding. With the launch of the

Microsoft Kinect 3D depth sensor and later an improved version in 2014, automatically tracking

human behavior became much easier. The thesis evaluates the suitability for the Kinect sensor

to contribute to automating design observations and give real-time feedback to participants. A

thorough analysis of the Kinect v1 and v2 sensors is conducted. A proof of concept for an

observation setup and a sensing application is developed. The sensing application tracks

participants from a ceiling mounted position and estimates real-time mechanical energy-use

and creates heat maps of their movements. A prototype of a design experiment is developed to

test the application and observation setup. The results show that, except for some challenges

inherent to the depth sensing technology, the Kinect v2 sensor shows great potential for

contributing to automating design observation setups. Finally, issues to be aware of when using

Kinects specifically in design observation and Design Observatories are highlighted. Future

work involves developing a permanent design observatory with Kinect sensors and exploring

how the audio capabilities and gesture analysis software for the Kinect can be used in design

observation.

II

III

Norwegian Abstract

Observasjon av design aktiviteter kan gi innsikt som kan brukes til å både å forbedre selve

aktiviteten og gi tilbakemelding til deltakere. Tidligere har observasjon og analyse av design

aktiviteter blitt gjennomført manuelt ved hjelp av video, noe som er svært ressurskrevende. Da

en oppgradert versjon av Microsofts Kinect 3D dybdesensor ble lansert i 2014, ble automatisk

deteksjon og analyse av menneskers bevegelser mye enklere. Denne masteroppgaven vurderer

hvor godt egnet Kinect sensoren er til å automatisere design observasjon og kunne gi sanntid

tilbakemelding til deltakere. En grundig analyse av Kinect v1 og Kinect v2 ble gjennomført og

et proof-of-concept for en observasjonsmetode og sensing-applikasjon ble utviklet. Sensing-

applikasjonen detekterer og analyserer deltakere fra en takmontert posisjon og estimerer sanntid

mekanisk energibruk og lager varmekart over bevegelsene til deltakerne. En prototype av et

design eksperiment ble utviklet til å teste applikasjonen og observasjons-oppsettet. Resultatene

viser at Kinect v2 sensoren kan potensielt bidra til å betydelig automatisere design observasjon,

til tross for at det er noen feilkilder knyttet til dybdemålingsteknologien. Avslutningsvis er

mulige utfordringer ved bruk av Kinect sensorer spesifikt i rom for design observasjon

diskutert. Videre arbeid innebærer å bygge et permanent rom for observasjon av design

aktivititer med Kinect sensorer, i tillegg til å utforske hvordan dens egenskapene for

stemmegjennkjenning og analyse av gester kan bli brukt i design observasjon.

IV

V

Preface

This master project was conducted as part of the master program Engineering and ICT with a

specialization in Product Development and Material Science at the Norwegian University of

Science and Technology. The project was written in the spring/summer 2015.

I would like to thank Matti Hämäläinen at the Sino-Finnish Center at Tongji University

Shanghai for being a great facilitator and giving advice one the master thesis process. He

provided me with the equipment I needed for my thesis and gave me full access and freedom at

the Sino-Finnish Center from day one.

Finally, I would like to thank my supervisor Martin Steinert for inspiring guidance and great

ideas for the thesis.

VI

VII

Table of Contents

LIST OF FIGURES ... X

LIST OF TABLES ... XII

LIST OF ALGORITHMS .. XIII

ABBREVIATIONS .. XIV

1 DESIGN OBSERVATION .. 1

1.1 BACKGROUND ... 1

1.2 GOALS OF THESIS ... 2

2 NON-INTRUSIVE SENSING ... 5

2.1 SMART SPACES .. 5

2.2 MEETING ANALYSIS .. 5

3 MICROSOFT KINECT .. 7

3.1 ADVANTAGES OF TRACKING HUMANS IN DEPTH DATA .. 7

3.2 IMPACT ON RESEARCH .. 8

3.3 KINECT V1 VS KINECT V2 ... 10

3.3.1 Structured Light ... 11

3.3.2 Indirect Time-of-Flight ... 13

3.4 OTHER ADVANTAGES WITH THE KINECT V2 ... 14

3.5 DISADVANTAGES WITH THE KINECT V2 ... 16

3.6 KINECT SOFTWARE DEVELOPMENT KITS ... 17

3.7 MICROSOFT KINECT BODY TRACKER .. 21

3.7.1 Randomized Decision Forest Algorithm... 21

3.7.2 Leaf Node Prediction Models .. 23

3.7.3 Creating Training Data .. 24

3.8 OPEN-SOURCE ALTERNATIVES TO MICROSOFT KINECT SDK ... 24

4 PLACING THE KINECT SENSOR ... 27

4.1 POSSIBLE OBSERVATION SETUPS ... 29

4.1.1 Alternative 1: One Kinect v2 and Using the Microsoft Tracker ... 29

4.1.2 Alternative 2: Two Kinect v1 .. 30

4.1.3 Alternative 3: One Kinect v2 with Top-View .. 31

5 EXISTING RESEARCH: HUMAN TRACKING IN DEPTH DATA FROM TOP-VIEW ... 33

5.1 BACKGROUND SUBTRACTION IN DEPTH DATA ... 33

5.2 DETECTION AND TRACKING IN TOP-VIEW ... 35

VIII

6 OPEN-SOURCE COMPUTER VISION LIBRARIES ... 39

7 EXISTING RESEARCH: ENERGY FROM HUMAN MOVEMENT .. 41

8 PROOF OF CONCEPT: TRACKING IN DESIGN ACTIVITIES IN DEPTH DATA FROM TOP-VIEW 43

8.1 DETECTION PIPELINE .. 43

8.2 PREPROCESSING: SCALING ... 45

8.3 BACKGROUND SUBTRACTION: TEMPORAL MEDIAN IMAGE... 46

8.4 NOISE REMOVAL: MEDIAN FILTER ... 48

8.5 HEAD DETECTION .. 51

8.5.1 Haar-like Features ... 51

8.5.2 Integral Image ... 53

8.6 CLASSIFICATION ... 54

8.7 VALIDATION OF CANDIDATES ... 55

8.8 GEODESIC DISTANCE MAP ... 56

8.9 HAND DETECTION .. 58

8.10 TRACKING .. 59

8.11 MECHANICAL ENERGY ESTIMATION .. 60

8.12 HEAT MAP .. 61

9 VALIDATION AND TRACKING SUCCESS .. 65

9.1 ASSUMPTIONS... 65

9.2 ACCURACY AND PRECISION .. 65

9.2.1 Accuracy .. 65

9.2.2 Precision .. 66

9.3 GENERALLY CHALLENGING SCENARIOS ... 68

9.3.1 Materials and Color ... 68

9.3.2 Flying Pixels ... 68

9.3.3 Bodies Close to Each Other .. 69

9.3.4 Less Depth Information in Outer Regions .. 69

9.4 SPEED AND MEMORY PERFORMANCE .. 70

10 TRACKING APPLICATION IN REALISTIC DESIGN CONTEXT .. 75

10.1 EGG-DROP-CHALLENGE ... 75

10.2 ENERGY CALCULATIONS .. 78

10.3 HEAT MAPS ... 78

10.4 REFLECTIONS ON EXPERIMENT ... 78

11 GENERAL REFLECTIONS FROM KINECT IN CONTEXT .. 81

11.1 HEIGHT OF ROOMS ... 81

IX

11.2 RECORDING SESSIONS .. 82

11.3 HARDWARE REQUIREMENTS ... 83

11.4 USB 3.0 CABLE .. 83

11.5 CLUTTERED ROOMS ... 83

11.6 EASY TO GET STARTED WITH KINECT ... 84

12 FUTURE WORK .. 87

13 CONCLUSION ... 89

14 REFLECTIONS ON PROCESS .. 93

14.1 SINO-FINNISH CENTER ... 96

15 REFERENCES .. 99

16 APPENDIX ... 113

16.1 DROPBOX FOLDER ... 113

16.2 RECORDINGS .. 113

16.3 TRACKING APPLICATION ON GITHUB ... 113

X

List of Figures

Figure 3.1 Documents in Scopus that appear when the search term “Kinect” is used 8

Figure 3.2 The distribution of research fields that has mentioned “Kinect” in publications. 9

Figure 3.3 Kinect v1 on the left, Kinect v2 on the right. ... 10

Figure 3.4 The pattern of infrared dots emitted by the Kinect v1. ... 12

Figure 3.5 The three laser diodes (purple) in the Kinect v2. .. 13

Figure 3.6 Kinect Fusion. 3D models of a scene can be created and exported. 15

Figure 3.7 Kinect Face Tracking .. 15

Figure 3.8 Kinect HD Face Mesh ... 16

Figure 3.9 Kinect Studio .. 20

Figure 3.10 Test in leaf node .. 22

Figure 3.11 The pipeline of the Microsoft body tracker .. 23

Figure 3.12 libfreenect on GitHub ... 25

Figure 3.13 libfreenect2 on GitHub ... 25

Figure 4.1 Occlusion .. 27

Figure 4.2 Tracking success of the Microsoft Kinect tracker at different angles. 28

Figure 4.3 Microsoft Body Tracker .. 29

Figure 4.4 Setup with one Kinect v2 slanted down at the participants. 30

Figure 4.5 Setup with two Kinect v1s mounted high to minimize occlusion. 31

Figure 4.6 Setup with one Kinect v2 mounted in the ceiling. .. 32

Figure 8.1 Pipeline for the tracking approach. ... 44

Figure 8.2 Scaling .. 45

Figure 8.3 Temporal Background Model Image of a scene. .. 47

Figure 8.4 Background Subtraction ... 48

Figure 8.5 The square kernel is slid over the frame. .. 49

Figure 8.6 Index in sorted kernel ... 49

Figure 8.7 The foreground area in the frame before (left) and after (right) median filtering. . 51

XI

Figure 8.8 The Haar-like feature used to detect heads in the frame. .. 52

Figure 8.9 Haar-like window detection .. 52

Figure 8.10 Integral image ... 54

Figure 8.11 Head blob .. 56

Figure 8.12 The geodesic graph on the surface of a person. .. 57

Figure 8.13 Body regions ... 58

Figure 8.14 Hand detection with and without depth threshold .. 58

Figure 8.15 The display of the energy-use after a session ... 61

Figure 8.16 Heat map of a person that just entered the scene. ... 62

Figure 8.17 Heat map of a person sitting. .. 63

Figure 9.1 Accuracy throughout the field of view for Kinect v2 ... 66

Figure 9.2 Tracking results of head and torso showed in monitoring window. 67

Figure 9.3 The tracker has problems detecting the girl with black hair 68

Figure 9.4 Flying pixels can be seen along the edges of objects. .. 69

Figure 9.5 Outer regions of the scene contain less depth data. .. 70

Figure 9.6 The CPU usage of the tracking application. ... 71

Figure 9.7 The memory use of the application. .. 72

Figure 10.1 The results of participant one in the egg-drop-challenge. 76

Figure 10.2 The results of participant two in the egg-drop-challenge. 76

Figure 10.3 The results of participant three in the egg-drop-challenge. 77

Figure 10.4 Hand occlusion ... 78

Figure 11.1 Setups with different heights tried in the thesis. ... 81

Figure 11.2 Parallax effect ... 82

Figure 11.3 Environments for design activities are often cluttered. .. 84

Figure 11.4 Kinect SDK Browser v2.0 is a good place to start developing an application. 85

Figure 14.1 Some of the surveillance cameras mounted .. 95

Figure 14.2 The monitoring room with monitoring setup. ... 95

XII

List of Tables

Table 1: The specifications for the Kinect v1 and v2 .. 11

Table 2: The evolution of Kinect SDKs and Developer Toolkits .. 19

Table 3: The computational time of the median filter with and without optimization 50

Table 4: Assumed distribution of mass in the body. .. 61

Table 5: The time used by the feature in the application. .. 73

XIII

List of Algorithms

Algorithm 1: Scaling the frame .. 46

Algorithm 2: Calculating temporal median background model ... 47

Algorithm 3: Median filter with a 3x3 kernel .. 49

Algorithm 4: Sliding detection window with Haar-like feature ... 53

Algorithm 5: Create geodesic graph on the surface of the foreground objects. 57

Algorithm 6: Match the detected new candidate heads with bodies from previous frames. 59

XIV

Abbreviations

SDK

Software Development Kit

AdaBoost

Adaptive Boosting algorithm

RFR

Random Forest Regression algorithm

IR

Infrared

ToF

Time-of-flight

API Application Programming Interface

1

1 Design Observation

1.1 Background

The term early-stage conceptual design describes the phase in a project where idea generation

and exploring ideas are being done, for instance brainstorming and early prototyping.

John Tang at the Center for Design Research at Stanford University pioneered in 1989 analysis

of collaborative design activities. He wanted to better understand the collaborative workspace

activities so the design process could be improved and also to support design of tools for

improving workspace activities. A framework for analyzing workspace activity was proposed,

which became a foundation for the Observe-Analyze-Intervene cycle later used in Design

Observatories (J. C. Tang, 1989)(J. C. Tang & Leifer, 1988)(Törlind et al., 2009). In Tang &

Leifer (1988) design activities in conceptual design phases were investigated. Sessions of teams

of 3-4 were videotaped, from which transcripts with annotations were made.

In Tang & Leifer (1991) the collaborative drawing activity of design teams was studied using

video-based interaction analysis methods. Interaction analysis is a qualitative analysis method

traditionally used in social sciences that integrates an ethnographic perspective with fine

grained analysis of human interaction. A crucial element of the interaction analysis approach is

that the participants should be observed in their natural environment without any intrusion from

observers. Eight different sessions of teams of 3-4 people working on conceptual design tasks

were observed and recorded. One camera was aimed at the workspace and one wide-angle

camera captured the whole group. Later, the recordings were transcribed and analyzed. The

study provided several new and useful insights into design activities, as well as showing some

limitations to the approach of video-based analysis. The tedious work of creating transcripts

and annotating video recordings limited the approach to only be able to analyze shorter time

spans. In addition, an issue with how the findings should be generalized to be useful outside the

context of the studies was highlighted.

Minneman et al. (1995) continued the work of Tang (1989) and presented several tools, that he

collectively called Coral, to capture and facilitate analysis of collaborative activities. The aim

was to speed up the process of revising the recordings by methods of indexing recordings and

retrieving the indexes. In 2002, the first permanent design bservatory was built at the Center

for Design Research at Stanford University (Carrizosa, Eris, Milne, & Mabogunje, 2002). The

design observatory built on the work of Tang (1989) and sought to make the process of

analyzing design activities more efficient and consistent by storing data digitally, making

2

synchronous viewing of several camera views possible and eliminating the work of setting up

and taking down equipment.

Törlind et al. (2009) in “Lessons Learned and Future Challenges for Design Observatory

Research” discussed previous research on environments designed specifically for design team

observation. The paper argues several implications for future design observatories: While

design observatories in the past focused on observation, real-time analysis will be possible in

future observatories and thereby the possibility of intervening to improve the design activity.

The coding schemes should be robust and automated by machines so capturing data for longer

periods of time is possible. Design observatories should support an iterative research approach,

in order to allow the researchers to iterate over the setup, questions and coding scheme.

Recently, Dinar et al. (2015) reviewed empirical research of designer thinking from the last

quarter century, and concluded that future studies may need to apply computer based data

collection and automated analyses. As argued in Törlind et al. (2009) and Dinar et al. (2015),

one of the main areas for potential improvement in empirical research of design activities is

automating the collection and analysis of empirical data.

Traditionally, normal RGB cameras have been used for capturing and analyzing design

activities. Extensive research has been done the past decades in the field of traditional computer

vision. Still, some major challenges in analysis of human behavior in RGB data remain

unsolved due to the nature of the data (Santhanam, Sumathi, & Gomathi, 2012). The recent

years, interesting advances in sensor technology have become accessible to researchers with

the Microsoft Kinect sensor (Z. Zhang, 2012). One of the goals of this thesis is to explore how

the Kinect v1 sensor and the new Kinect v2 sensor can contribute to automating data capture

and analysis in design activities.

1.2 Goals of Thesis

1. Develop a thorough understanding of the advantages and disadvantages of the new

Kinect v2 sensor compared to the old Kinect v1.

Microsoft released a new and updated version of their Kinect sensor in July 2014. The

old sensor has gained great popularity among researchers in several research fields. A

goal with this thesis is to identify the advantages and possible disadvantages with the

new sensor, with the perspective of sensing human behavior in design activities.

3

2. Explore how Kinect sensors can be used to non-intrusively automate data capture and

analysis of design activities.

Suggest a proof of concept on how the Kinect sensor can contribute to automating data

capture and analysis in empirical research on design activities. In addition, point out

possible pitfalls and opportunities of using the sensor.

3. Explore how human activity can be quantified with the Kinect sensor.

Recent research from Stanford University suggest that walking boosts creative ideation

in real-time and shortly after, especially in the expression of associative memory and

creative divergent thinking (Oppezzo & Schwartz, 2014). Further, physical activity in

general has been shown to boost specific cognitive processes (Brisswalter, Collardeau,

& René, 2012)(Tomporowski, 2003). A goal of this thesis is to explore how activity and

energy can be quantified in design activities, as inspiration to further research on how

energy-use and human activity influence design activities.

4

5

2 Non-Intrusive Sensing

Topics such as sensing in smart spaces and meeting analysis overlap when it comes to detecting

and tracking people non-intrusively in a natural context. In the following sections, some of the

current literature on these topics are discussed.

2.1 Smart Spaces

The idea of smart spaces is to use data from sensors to interpret the behavior of humans in the

space, such as location, identity and movement, and to allow the humans to interact with the

space. Technology advancements are key to realizing smart spaces (D. Surie, Partonia, &

Lindgren, 2013). A precondition for spaces to be smart is that people need to be detected and

tracked in a non-intrusive way, which is in line with the goal of automating observation of

participants in design activities.

Surie et al. (2013) placed a Kinect v1 in a kitchen that was already part of an ongoing project

on smart spaces called Kitchen As-A-Pal (Dipak Surie, Lindgren, & Qureshi, 2013). The Kinect

was placed on the wall, facing the humans in the kitchen. The human tracker in the supplied

Kinect software was used in combination with face recognition to track and recall participants.

The system achieved good results (91.75% precision and 66% recall values) for single-occupant

setting. Several challenges was identified with multi-occupant settings.

Nakamura (2012) discusses approaches for human sensing in general. How to know what

information that should be collected and technologies on how to acquire it. Technologies being

highlighted for people detection and tracking are magnetics sensors, image sensors, data glove,

beacon/RFID, GPS, gyro sensor.

Teixeira et al. (2010) conducted a survey on the literature of human sensing, focusing on

literature for sensing presence, count, location, tracking and identity. The capabilities and

limitations of existing sensing solutions were discussed. A unified taxonomy was created and

used to structure the solutions. The conclusion of the survey was that future human-sensing

systems would most likely consist of massive numbers of binary sensors (usually motion

sensors), smaller number of cameras placed at key locations and opportunistic use of sensors

on mobile phones.

2.2 Meeting Analysis

Earlier research has done efforts to develop systems that automatically gather data from

meetings, or a group setting, in order to analyze the behavior of the participants and how they

6

interact. A precondition for gathering data about participants are detecting, identifying and

tracking them.

Basu et al. (2001) fitted a conference room with sensors and actuators in order to observe and

influence human behavior in conversational settings. Auditory and visual data from the room

was obtained and analyzed to learn about how people influence each other in a conversational

setting. An “influence model” was used to predict how much a person influences other people

by evaluating how well the state of one person can contribute to predicting the next state of

other people. Five cameras and seven microphones was used. The level of body language was

estimated from motion energy in the specified area where the participants were required to sit.

Future work consists of further developing the influence model to be able to predict the flow in

the conversation.

Stiefelhagen (2002) developed an approach to track the focus of attention of participants in

meetings. The focus of attention was assumed to be closely related to their head orientation. A

Bayesian approach was used with the head orientation to model at whom a person was looking

at. Image data from a panoramic camera placed at the center of the meeting table was used with

a neural network, pre-trained with sample images of the participants, to estimate head

orientation. The approach identified 73% of the focus of attention correctly. Also other cues

was evaluated for predicting focus of attention, such as predicting from who-is-talking. Using

who-is-talking in the developed neural net resulted in a 63% accuracy.

McCowan et al. (2005) investigated group actions in meetings by analyzing interactions

between the individual participants. Hidden Markov model (HMM) based approaches were

used to model the group actions from audiovisual cues of each participant. The audiovisual cues

were obtained from a microphone array centered on the meeting table and three RGB cameras

placed strategic locations. Combinations of sensing modalities and HMM approaches were

tried. The best result was achieved with an audiovisual asynchronous HMM system.

7

3 Microsoft Kinect

Microsoft launched the first version of the Kinect in November 2011. The Kinect v1 was the

first sensor that made 3D sensing technology available at a low price. Computer vision with

traditional RGB cameras had been trying for decades to create robust real-time tracking and

interpretation of human movements, without success. With the Kinect v1, depth data greatly

simplified the task (Z. Zhang, 2012).

The Kinect v1 was initially an attempt from Microsoft to broaden their customer base beyond

young adults playing first-person shooting games (“E3,” 2009). However, it was soon obvious

that the impact of the Kinect Sensor would not only be limited to gaming applications, but also

to custom projects and in numerous research fields. Zhang (2012) illustrated the fast impact of

the Kinect v1 by investigating the development of Kinect online communities;

“Kinect was launched on 4 November 2010. A month later there were already nine pages

containing brief descriptions of approximately 90 projects, and the number of projects posted

on KinectHacks.net has grown steadily. Based on my notes, there were 24 pages on 10 February

2011, 55 pages on 2 August 2011, 63 pages on 12 January 2012, and 65 pages on 18 February

while I was writing this article. This comment from KinectHacks.net nicely summarizes the

enthusiasm about Kinect: ‘‘Every few hours new applications are emerging for the Kinect and

creating new phenomenon that is nothing short of revolutionary.’’”

3.1 Advantages of Tracking Humans in Depth Data

The task of tracking humans from sensor information, such as camera images, is hard due to a

range of factors. The human body has many degrees of freedom and can adopt a multitude of

different poses. Further, the anthropometry of individual human bodies are highly variable as

well as the bodies being covered with flexible layers of colored skin and clothes. Additionally,

the appearance of the scene is variable, with variations in illumination, occlusions and clutter

(Plagemann, Ganapathi, Koller, & Thrun, 2010)(Seer, Brändle, & Ratti, 2014).

The depth data from the Kinect is calculated using infrared light that is unaffected by

illumination changes and color. In addition, tracking humans in 3D depth data greatly simplifies

the task of differentiating between background and foreground as well as allowing the tracking

algorithms to use the naturally characteristic 3D shapes of humans in the calculations (Greff,

2012).

8

3.2 Impact on Research

As mentioned earlier, the Kinect has been widely used in research since its launch in 2011. If a

search with the keyword “Kinect” is performed in Elsevier’s Scopus, a database for abstracts

and citations, 3 844 results appear (“Scopus,” n.d.). The research communities within Computer

Science have found most use of the Kinect sensor, but also other less apparent communities

such as Materials Science, Biochemistry, Genetics and Molecular Biology, Social Sciences and

Medicine has benefitted from the sensor (Figure 3.2).

A few examples are hand-gesture recognition (Ren, Yuan, & Zhang, 2011), integrating pointing

gestures in brainstorming (Kunz, Alavi, & Sinn, 2014), human-activity recognition (Li, Zhang,

& Liu, 2010), body biometrics estimation (Velardo & Dugelay, 2011) and healthcare

applications (Bauer, Wasza, Haase, Marosi, & Hornegger, 2011)(Galna et al., 2014)(Torres et

al., 2015).

Figure 3.1 Documents in Scopus that appear when the search term “Kinect” is used. Shown by year.

9

Figure 3.2 The distribution of research fields that has mentioned “Kinect” in publications.

10

3.3 Kinect v1 vs Kinect v2

Figure 3.3 Kinect v1 on the left, Kinect v2 on the right.

Microsoft launched in July 2014 a new and improved version of the Kinect. The new sensor

featured a different depth sensing technology than the previous version, a wider field of view

and higher resolution. Table 1 shows a comparison of the specifications of the two sensors.

Component V1 V2

Depth Sensing Technology Structured-light Time-of-flight

Depth Sensor Sensing Range 1.8 to 4.0 m* 0.5 to 4.5 m

IR Depth Image:

- Resolution 320 x 240 512 x 424

- Field of View Horizontally 57 degrees 70.6 degrees

- Field of View Vertically 43 degrees 60 degrees

RGB Image Resolution

- Resolution 640 x 480 1920 x 1080

- Field of View Horizontally 57 degrees 84.1 degrees

- Field of View Vertically 43 degrees 53.8 degrees

11

Infrared Image 320 x 240** 512 x 424

Audio Stream 16 kHz, 16-bit 48 kHz, 16-bit

Field of View horizontally 57 degrees 70 degrees

Field of View vertically 43 degrees 60 degrees

Minimum Latency 102 ms 20-60 ms

Table 1: The specifications for the Kinect v1 and v2. Source: (“Kinect for Windows,” n.d.). *Recommended sensing distance.

Research has shown that max distance with valid data is 0.4 to 6 m(Gonzalez-Jorge et al., 2015). **Was made available first

in the SDK 1.6 release.

Since the launch, the two sensors have already been compared in a few studies. Amon &

Fuhrman (2014) evaluated the spatial resolution and accuracy of the face tracking system and

concluded the Kinect v2 sensor “features significant improvements to the previous model”.

Lachat, Macher, Mittet, Landes & Grussenmeyer (2015) concluded that the accuracy and the

resolution of the point clouds and the color reproduction has been improved. Further, they

concluded that the change of depth sensing technology gives the Kinect v2 sensor greater

possibilities to be used in outdoor applications with daylight and even on sunny days.

While the resolution for all data streams and the field of view for the new sensor is improved,

current research indicate that it is the change in depth sensing technology that is the most

interesting improvement in the new sensor (Gonzalez-Jorge et al., 2015). The change in depth

sensing technology was also a precondition for Microsoft to be able to increase the resolution

of the depth stream in the Kinect. In the following sections, the two depth sensing technologies

will be described and compared.

3.3.1 Structured Light

The Kinect v1 uses a depth sensing technique called structured light. The sensor has an infrared

projector that emits an infrared laser. The infrared laser is passed through a diffraction grating

which turns the laser-beam into a pattern of IR dots, as seen in Figure 3.4. The IR dots covers

the scene and are detected by the infrared camera in the sensor. The sensor compares the pattern

detected by the infrared camera with the default pattern, and from the distortion between the

patterns the sensor is able to calculate the depth map of the scene (Z. Zhang, 2012).

12

Figure 3.4 The pattern of infrared dots emitted by the Kinect v1. Source: (“Kinect,” n.d.)

One disadvantage with this technique is that the amount of depth information extracted from

the scene is fixed, independent of the distance to the objects. In practice, this means that if the

objects in the scene are far away, a smaller subset of IR dots would reflect back to the IR camera

and give information about the depths of the object than if the objects were closer to the sensor.

The consequences of this disadvantage are examined in Gonzalez et al. (2015) where it is

concluded that the precision of the depth sensing in the Kinect v1 sensor decreases with distance

following a second order polynomial. For the Kinect v2 sensor however, the precision is more

stable as the distances increase.

Another disadvantage of the structured light technique has been discovered in several projects

where multiple Kinect v1 has been applied to the same scene. The Kinect v1s have no way of

differencing between the IR dots that is projected by itself and the ones projected by other

Kinects, which results in interference between the sensors. A workaround for the interference

problem has been developed by the Microsoft Research team and involves making some of the

sensors vibrate (Butler et al., 2012). However, this will not be discussed further in this thesis.

13

3.3.2 Indirect Time-of-Flight

The Kinect v2 uses a depth sensing technique called indirect time-of-flight (ToF). This

technique is based on calculating the distance to the objects in the scene from the time IR light

photons use to travel between the sensor and the objects.

Short infrared light bursts are sent out from three laser diodes (Figure 3.5), covering the scene

with short pulses of infrared light. The infrared light is reflected off the objects in the scene and

is captured by the infrared camera in the Kinect sensor.

Figure 3.5 The three laser diodes (purple) in the Kinect v2.

In most sensors using the indirect ToF technique, the phase shift between emitted and received

signal is measured. The distance to the object from the sensor is then determined by equation

(1)

𝑑 =

∆𝜑

4𝜋𝑓
∙ 𝑐 (1)

where 𝑓 is the modulation frequency and 𝑐 is the speed of light (Kolb, 2009).

However, the way the Kinect v2 measures ToF is different from the most common ToF sensors.

The Kinect sensor divides each pixel in half and each half is turned on and off very fast. When

the first half is turned on and absorbing photons, the second half is turned off and rejecting all

photons. The three laser diodes are being pulsed with the same phase as the first pixel half, so

14

the sensor knows that if the first pixel half is on, the laser diodes are on. As the infrared light

returns to the sensor, the sensor calculates the distance to the objects in the scene by measuring

the proportion of light ending up in each pixel half. One issue with this method is that light

being reflected off more distant objects in the scene could possibly end up in the next cycle.

The sensor solves this by increasing the time the pixel halves are turned on and thereby giving

the light more time to be reflected back. Still, increasing the cycle time would lose precision in

the closer measurements. So the sensor takes two measurements, where the first measurements

is a low resolution (longer cycles) measurement with no ambiguities in distance, and the second

measurement is a high precision measurement, eliminating any ambiguities with the results

from the first measurement (Butkiewicz, 2014)(Gonzalez-Jorge et al., 2015).

A clear advantage to this technique compared to the structured light technique is that no matter

how far the objects in the scene are from the sensor, each pixel in the Kinect v2 sensors gets a

depth measurement. Whereas in the Kinect v1 sensor, the depth information retrieved from the

possibly limited amount of IR dots has to be shared among pixels, resulting in a higher loss of

precision with increasing distance.

3.4 Other advantages with the Kinect v2

Several papers have examined how suitable the Kinect v2 is for outdoors applications in

daylight (Gonzalez-Jorge et al., 2015)(Butkiewicz, 2014)(Lachat, Macher, Mittet, Landes, &

Grussenmeyer, 2015)(Dutta, 2012)(Jia, Yi, Saniie, & Oruklu, 2012)(González-Jorge, Zancajo,

González-Aguilera, & Arias, 2015). While the Kinect v1 did not work very well with ambient

lighting, the Kinect v2 is able to give an infrared image independent of ambient lighting. The

Kinect v2 achieves this by enabling each pixel to detect if it is over-saturated with incoming

ambient light, and if it is, the pixel is reset pixel in the middle of exposure.

The higher resolution also gives interesting possibilities when detection of fine details are

needed, such as hand gesture analysis, facial expressions and creating digital models of objects

from the depth cloud (Lachat et al., 2015)(Butkiewicz, 2014)(Kunz et al., 2014). At the same

time of the launch of the Kinect v2, Microsoft also released an updated version of their Software

Development Kit (SDK). In the updated SDK, the facial tracker was greatly improved to take

advantage of the possibilities provided by the higher resolution (Figure 3.7, Figure 3.8).

Likewise, the Kinect Fusion software created by Microsoft for creating digital models from 3D

scans became more accurate with the higher resolution (“Kinect for Windows,” n.d.).

15

Figure 3.6 Kinect Fusion. 3D models of a scene can be created and exported.

Figure 3.7 Kinect Face Tracking. With the higher resolution, the face tracking has become more precise than before.

16

Figure 3.8 Kinect HD Face Mesh. Left: Playback of Kinect recording. Right: The Face API in the new SDK 2.0 allows

access to over 1000 facial points in 3D space, which for instance can be used to create precise avatars(Vangos Pterneas,
n.d.).

3.5 Disadvantages with the Kinect v2

While there are many advantages with the new Kinect, there are also some disadvantages

compared to the old sensor that needs to be mentioned.

According to Microsoft, as a result of the increased amount of data created from the higher

resolution, also an increase in bandwidth of the connection to the computer is required. The

required increase of bandwidth does that the sensor will only work when connected to a

computer through an USB 3.0 Generation 2 connection.

Further, with the Kinect v1, several projects utilized multiple sensors to get a more complete

point cloud of the scene. However, as of this moment, the Kinect SDK does not support more

than one sensor connected in the same instance of an application (“Kinect for Windows,”

n.d.)(“Multiple Kinects,” 2014). In addition, due to the bandwidth requirements, each Kinect

sensor needs to have its own USB 3.0 Gen 2 host controller to reserve the bandwidth. According

to a discussion thread on GitHub in one of the most popular open-source projects for the Kinect

called OpenKinect, running multiple Kinect v2s on the same computer has been accomplished

using Linux and their open-source driver called libfreenect2(OpenKinect, 2014). Still, this

feature seem yet not to be officially implemented in the driver.

17

Another workaround for the “multiple Kinect issue” has been implemented by both the Kinect

community and by Microsoft Research. Each of the Multiple Kinect v2 sensors can be

connected to a separate computer and then the data can be synced by streaming it over a local

network(Wilson, 2015)(Brekelmans, 2014). Yang, Zhang, Dong, Alelaiwi & Saddik (2015)

also used three Kinect v2s simultaneously in their research of further improving the accuracy

of the Kinect sensors by trilateration1.

Another initial disadvantage with the Kinect v2 compared the Kinect v1 is the obviously more

limited availability of tutorials and resources online. Even though the SDK 2.0 is very well

documented by Microsoft (Microsoft Team, n.d.-a), the Kinect v1 has been extensively

discussed online during the past few years and substantial amounts of software and a few open-

source drivers has been developed for it. The open-source alternatives for the Kinects are

discussed in the section “Open-Source Alternatives to Microsoft Kinect SDK”.

Nevertheless, how the data streams are accessed in the Microsoft Kinect API for the two sensors

isn’t very different. One should be able to port an application written with the Microsoft API

for Kinect v1 to a Kinect v2 application in as little as a couple of hours depending on the

application.

3.6 Kinect Software Development Kits

In February 2012, Microsoft launched the first Software Development Kit (SDK) for the Kinect

(Z. Zhang, 2012). The SDK 1.0 gave the users a more robust and easier to use interface for

accessing the data from the Kinect compared to the open-source alternatives. With the Kinect

SDK the users could easily develop Kinect applications with Microsoft’s Visual Studio in any

.NET language, as well as C++, with access to Microsoft’s body tracker and audio hardware.

How the Microsoft Kinect body tracker works is described in a later section. The open-source

alternatives only gave access to the raw data coming from the Kinect so to track bodies a body

tracker needed to be implemented. In addition, the SDKs developed by Microsoft are better

documented than the open-source alternatives.

The evolution of the Kinect SDKs and Developer Toolkits are summarized in Table 2. Including

and after version 1.5, samples and tools for development was put in a separate install called

1 Trilateration: Each depth measurement is considered as the center of a sphere. The intersection of all spheres

with the minimum error is the improved measurement.

18

Kinect for Windows Developer Toolkit, while the drivers and API still remained in the SDK

install.

Date Kinect SDK and

Developer Toolkit

version

Added features

5/2/2012 1.0 Drivers for using Kinect sensor devices on a computer

running Windows 7 or Windows 8 developer preview

(desktop apps only)

 Application Programming Interfaces (APIs) and device

interfaces, along with technical documentation

 Source Code samples

 Support for up to four Kinect Sensors

 Skeletal Tracking

5/18/2012 1.5 Kinect Studio

 Skeletal Tracking in Near Range

 Seated Skeletal Tracking

 Joint Orientation

 Source Code samples

 The Face Tracking SDK

 New Supported Languages for Speech Recognition

 New Samples

10/4/2012 1.6 Windows 8 Support

 Accelerometer Data APIs

 Extended Depth Data Is Now Available

 Color Camera Setting APIs

 New Coordinate Space Conversion APIs

 The Infrared Stream Is Now Exposed in the API

 Support for Virtual Machines

 New Samples

3/12/2013 1.7 Kinect Fusion with Samples: scan 3D objects and

create models

 New Kinect Interactions(Press for Selection, Grip and

Move for Scrolling)

19

 Engagement Model Enhancements

 New Samples

9/13/2013 1.8 Kinect Background Removal

 Webserver for Kinect Data Streams

 Color Capture and Camera Pose Finder for Kinect Fusion

 Updated and New Samples

10/21/2014 2.0 Kinect for Windows v2 Support

 Windows Store Support

 Unity Support (Platform for creating 2D and 3D games)

 Audio: more precise speech recognition and direction of

sounds

 Face APIs

 Kinect for Windows v2 Hand Pointer Gestures Support

(greatly improved from v1)

 Kinect Fusion: higher resolution and better camera

tracking

 Kinect Studio greatly improved

 Visual Gesture Builder

 New samples

Table 2: The evolution of Kinect SDKs and Developer Toolkits. Features in bold has been highlighted in the text. Source:

(“Kinect for Windows,” n.d.)

Kinect Studio, first introduced in SDK 1.5 and later improved, is a very useful tool that has been

used extensively in this thesis. It allows the sensing sessions to be recorded and replayed at any

given time, which is valuable when developing applications. The data streams are replayed

exactly the same way as if there was a live sensing session being carried out.

20

Figure 3.9 Kinect Studio

With the launch of the Microsoft Kinect v2, Microsoft also greatly improved the SDK in SDK

2.0. The higher resolution in the data streams allowed for higher precision in the tracking and

tracking of more bodies than the previous SDKs. While the Kinect v1 only was able to track

the movement of two bodies, the Kinect v2 can keep track of up to six.

Further, the Visual Gesture Builder was introduced, giving the users a graphical user interface

for tagging gestures that are used to train machine learning algorithms and create a database of

the gestures. The gesture database can then be accessed during runtime to decide if the tracked

bodies are performing the gestures. Microsoft provides two different machine learning

algorithms, depending of the type of gesture that is to be detected.

If the gesture is a discrete gesture, meaning that the user is interested to know the occurrence

of a gesture, for example knowing the answer to “is the body currently throwing a punch”, then

an Adaptive Boosting (AdaBoost) machine learning algorithm is used. The AdaBoost algorithm

is given frames tagged as either positive or negative to the occurrence of the gesture, which it

then uses to train several weak classifiers (Freund & Schapire, 1997). A weak classifier only

classifies the input slightly better than pure random, but when many weak classifiers are

combined, the results converge towards being well-correlated with true classification. The

AdaBoost algorithm learns the optimal weighting of each of these weak classifiers and the

combined sum results in a discrete value saying if the gesture is occurring or not.

21

If the developer wants its application to detect a continuous gesture, for example the position

of an arm at a certain point in a golf swing, a Random Forest Regression (RFR) machine

learning algorithm is used. The developer then tags clips instead of single frames where the

gesture is being performed, which are used in the training of the RFR. Random Forests are also

used in Microsoft Body tracker for the detection of bodies, and is explained in the following

section.

3.7 Microsoft Kinect Body Tracker

This section aims at describing the principles of the body tracker developed by the Microsoft

Research group. For an even more detailed description, the reader is referred to (J. Shotton et

al., 2013), (Kohli & Shotton, 2013) and (Jamie Shotton et al., 2013). Much research of body

tracking in depth data from a frontal view has been done throughout the thesis. Summaries of

this research are not included in the final thesis, but the research shows that it is the body tracker

developed by Microsoft that is currently the state-of-the-art. It is the most precise, robust and

fastest body tracker.

Shotton et el. at Microsoft Research published in 2011 the first paper describing the body

tracking algorithms used in the Kinect. Since then, the research group has made several

improvements to the body tracking model. The main requirements of the body tracker in the

Kinect is speed, robustness and flexibility. The Kinect body tracker is required to run several

hours without crashing while being able to track users with a great variation in body type. To

achieve these requirements, a machine learning algorithm called Randomized Decision Forest

was chosen, because this algorithm is efficient and can be parallelized and implemented on a

GPU.

3.7.1 Randomized Decision Forest Algorithm

The Randomized Decision Forest algorithm creates several decision trees (Breiman, 2001). A

decision tree is a tree where each non-leaf node in the tree contains a simple test that decides

the next direction down the tree, for example “is this pixel brighter than the neighborhood

pixel”. What test the node should contain is decided using a greedy algorithm that finds the test

that creates the best separation between the samples. Each pixel in an image is sent through

each decision tree and when the pixel reaches a leaf node, the pixel is attributed with a

probability distribution of the possible classifications already stored in the leaf node. The

previous training of the decision tree decides the probability distribution stored in the leaf nodes

22

by using the training samples to calculate a probability distribution of a pixel with a certain

classification reaching that exact leaf node.

As the possible tests at each node and the number of training samples become large, building

an optimal tree becomes too computationally demanding. Therefore, multiple randomized trees

are created. Each tree is trained with a limited amount of randomly chosen samples and a limited

amount of possible tests at the nodes (Lepetit, Lagger, & Fua, 2005). After the pixel has

traversed through all decision trees in the decision forest, the probability distributions attributed

to the pixel from all the decisions trees are averaged together and creates the hypothesis for the

classification.

The Microsoft Kinect body tracker uses comparison of depths of pixels instead of comparing

pixel intensities (J. Shotton et al., 2013). At each non-leaf node the depth of the current pixel is

compared to the depth of a pixel with a certain offset from the current pixel. The node tests at

a given pixel u for the Microsoft body tracker can be described as

𝑓(𝐮|𝜑) = 𝑧 (𝐮 +

𝜹1

𝑧(𝐮)
) − 𝑧 (𝐮 +

𝜹2

𝑧(𝐮)
) (2)

where 𝜑(𝜹1, 𝜹2) describe the 2D pixel offset and function 𝑧(𝐮) looks up the depth at pixel 𝐮.

Each body part will have different distributions of the probability of what depth their

surrounding pixels will have. For example, a pixel where there is a big difference in depth

between the current pixel and the pixel above the current pixel would get a higher positive

response to being a head pixel than for instance a torso pixel.

Figure 3.10 Test in leaf node. The depths of the current pixel and pixels at predefined offsets are compared as tests in the

decision tree. Source: Budiu, Shotton, Murray & Finocchio (2011).

23

3.7.2 Leaf Node Prediction Models

When the first Kinect was shipped, a Body Part Classification (BPC) algorithm was used to

predict to what body part the pixel should be assigned. In BPC, a histogram representing the

probability distribution over the body part labels that the pixel should be assigned was learned

at each leaf node. The histograms from all the pixels were then clustered together to give reliable

hypotheses for the location of each joint. One big downside of the BPC algorithm was that no

information could be obtained about the joints when the surrounding body parts were occluded.

To meet the challenge of occlusion, the Microsoft research group developed an offset joint

regression approach (OJR) that was implemented in the leaf nodes (Girshick, Shotton, Kohli,

Criminisi, & Fitzgibbon, n.d.). In the OJR, each leaf node contains a distribution of the relative

3D offset from the projected pixel in camera space coordinates to each body joint. These

distributions are matched with 3D relative vote vectors that are created from the offsets of the

clustered pixels from training the algorithm.

Figure 3.11 The pipeline of the Microsoft body tracker. Source: Kohli & Shotton (2013).

Even though this approach worked well, there was still no utilization of prior knowledge of the

bodies tracked, and in addition, all joints were detected independently so the model did not take

into account any information about the relative position between joints. These potential areas

of improvement was addressed in Min Sun, Kohli & Shotton (2012) where a latent variable was

introduced in the model to encode some global property of the image, for example the height

of the tracked body.

A further potential area of improvement was to include information about the kinematic

constraints such as limb length into the model. In Sharp (2012) the work of the Microsoft

research group of fitting an articulated skeleton model to the observed data is described. In 3D

24

space, the translation between the joints are fixed, representing fixed limb lengths, while the

rotation in the joints are parameterized.

3.7.3 Creating Training Data

One of the challenges with choosing a machine learning approach is that for the tracking to be

robust, the algorithms need to be trained with training sets containing large varieties of poses.

Unfortunately, possible human poses grow exponentially with the number of articulated joints.

Sufficient training sets did not exist, especially not with depth data, so Microsoft had to create

their own (J. Shotton et al., 2013). The Microsoft Research team created a large training set

with human poses by using marker-based motion capture of real human actors. 500 000 frames

was recorded in a few hundred sequences of their core entertainment scenarios (dancing,

kicking, navigating menus etc). From this set, a subset of 100 000 of the most dissimilar frames

was selected. To take the great variations in human shape and appearance into account, 15 3D

models of varied base characters in terms of gender, age, height and weight were created. These

3D models were randomly paired with a pose from the recorded frames, as well as randomly

assigned a rotation & translation, mesh models of hair & clothing, further variation in weight

& height, camera position & orientation and camera noise to make the final rendered training

set as realistic as possible. Training the Randomized Decision Forest also required a lot of

resources. According to Shotton et al. (2013), training 3 trees to depth 20 from 1 million images

takes about a day on a 1000 core cluster.

3.8 Open-Source Alternatives to Microsoft Kinect SDK

The only real current alternative to the Microsoft Kinect SDK, for both Kinect v1 and v2, is the

libfreenect and libfreenect2 drivers developed by the open community OpenKinect. The

community boasts having over 2000 members contributing to the project, although it seems the

activity has been decreasing the last years (Figure 3.12, Figure 3.13). The main advantage by

using the libfreenect software for the Kinect v1 sensor is support for Linux and OS X as well

as bindings and extensions for additional languages such as Java and Python. Also, work is

under development for exposing the API to MatLab, LabView and more (“OpenKinect

Project,” n.d.).

For the Kinect v2 sensor, the libfreenect2 driver is an alternative, although it is far from as

developed as the driver for the Kinect v1 sensor. The only advantage of the libfreenect2

software is the possibility of accessing the Kinect v2s data streams in Linux and OS X.

Additionally, the libfreenect2 driver only supports the RGB, IR and depth data streams. Audio

25

and firmware updates are not available. Both drivers, libfreenect2 and libfreenect, only gives

access to the data streams and don’t include any tracking whatsoever or support for Kinect

tools, such as Kinect Fusion and Visual Gesture Builder.

Previously, another alternative for the Kinect v1 sensor called OpenNI (Open Natural

Interaction) existed. The OpenNI framework and the middleware for body tracking called NITE

was developed by PrimeSense, the same company that developed the depth camera technology

in the first Kinect (“PrimeSense Supplies 3-D-Sensing Technology to ‘Project Natal’ for Xbox

360,” 2010). Unfortunately, after the company was acquired by Apple in April 2014, the

company stopped maintaining and developing the software.

Figure 3.12 libfreenect on GitHub. Contributions to the master-branch on GitHub for the libfreenect driver for Kinect v1.

Figure 3.13 libfreenect2 on GitHub. Contributions to the master-branch on GitHub for the libfreenect2 driver for Kinect v2.

26

27

4 Placing the Kinect sensor

The Kinect sensor, and the state-of-the-art body tracking software developed by Microsoft, are

meant to be used with the human bodies standing up straight directly in front of the sensor.

Also, so far, Microsoft does not support more than one of the Kinect v2 being utilized in the

same application. Due to these limitations, the placement of the sensor needed to be done with

great care.

Occlusion is the main challenge for body tracking in depth data. Occlusion is described as two

types: normal occlusion and self-occlusion (Asteriadis, Chatzitofis, Zarpalas, Alexiadis, &

Daras, 2013). Normal occlusion is when a body or parts of the body are being hidden from the

sensor by either an object or another body, as the image on the left in Figure 4.1. Self-occlusion

is the case when a body is oriented in a way relative to the camera so parts of body is hidden

behind other parts of the body, as in the image on the right in Figure 4.1. Intuitively, a way of

avoiding this problem is by placing the sensor high up with a clear view of the bodies. There

are rarely cases where objects or other bodies are positioned on top of the body that we want to

track.

Figure 4.1 Occlusion: Left: Normal occlusion. Right: Self-occlusion. The tracking results of Microsoft Body tracker has

challenges matching the ground truth.

28

The Microsoft body tracker are also inferring body landmarks, joints, that aren’t directly

detected. To evaluate the performance of the Microsoft tracker at different heights, a diagnostics

tool was developed to calculate the amount of tracked and inferred joints during a sensing

session. The sensor was positioned at 10, -30 and -60 degree angle with the floor and a

rehearsed routine was performed to minimize the differences in the scene between the angles.

The routine started with standing up straight facing the sensor, then the hands were lifted

straight out so the body formed a T-shape and down again. After the hands returned to their

neutral straight position, a 90 degree turn to the right was performed so the sensor only could

see the body in profile. The 90 degree turn was performed until the body returned to its starting

position, facing the sensor. The tracking success for each sensor-position was averaged over

three sessions for each position. The sensing sessions, 9 in total, lasted 12.01 ± 2.10 seconds.

Figure 4.2 Tracking success of the Microsoft Kinect tracker at different angles.

At first sight the results from the tracking with the Microsoft tracker seem very impressive.

However, a more thorough inspection of the sensing sessions shows that even though a joint is

reported as tracked or inferred it still may vary a lot from the ground truth. Figure 4.3 shows

examples of this. In addition, at an angle of -60 degrees it was difficult for the Microsoft tracker

to find the body in the frame. To initiate the tracking the test person needed to lean backwards

to make the angle between the body and the tracker closer to the normal facing angle. At angles

below -60 degrees the tracker wasn’t able to recognize a body in the frame, which means that

10
degrees

-30
degrees

-60
degrees

< -60
degrees

DirectlyTrackedJoints 88.45 85.67 71.99 0

InferredJoints 11.55 14.33 28.01 0

0
10
20
30
40
50
60
70
80
90

100

Percent of joints

Orientation relative to floor

Tracking success Microsoft Kinect tracker

29

no information about the body is available through the API (joint positions, audio tracking, face

tracking etc).

Figure 4.3 Microsoft Body Tracker. Even though the Microsoft Body tracker achieves a tracking result, the tracking may be

far from the ground truth. Left: Tracking at -30 degrees. Middle and Right: Tracking at -60 degrees

4.1 Possible Observation Setups

In a real life work setting, you cannot rely on that all people in the sensing area are facing the

sensor at all times. An important requirement for the sensing approach for design contexts are

that the people should be allowed to work as freely and natural as possible. The sensing should

not be noticeable by the subjects. To achieve this, a customized sensing approach needed to be

developed. Three main approaches were considered.

4.1.1 Alternative 1: One Kinect v2 and Using the Microsoft Tracker

The Microsoft body tracker available through the Kinect SDK 2.0 is the state-of-the-art in non-

intrusive people tracking. The disadvantage is that the sensor needs an unobstructed frontal

view of the bodies in the scene. One alternative was to place a Kinect v2 sensor high up on a

wall slanting down facing the people. If the sensor wasn’t placed too high Microsoft body

tracker could be used Figure 4.4.

The major disadvantage with this setup is that the activities and the work setup for the

participants in the scene need to be carefully controlled, so the participants always are facing

the sensor and aren’t occluded.

30

Figure 4.4 Setup with one Kinect v2 slanted down at the participants.

4.1.2 Alternative 2: Two Kinect v1

While using several Kinect v2 in the same application isn’t supported, using several Kinect v1

is. By using two Kinect 1 sensors placed as in Figure 4.5, the sensing area would be more

versatile than in alternative 1 because it wouldn’t be as sensitive to occlusion.

On the other hand, the Kinect v1 has worse resolution and a narrower field of view than the

Kinect v2. Further, the depth measurements from the Kinect v1 are less accurate than the Kinect

v2, as will be thoroughly discussed in a later section. If this setup was chosen, the body tracking

approach would have been to combine the joint-locations from the old Kinect SDKs, which is

not as precise as the SDK 2.0. Also, only information about two bodies per frame is available

with the old SDK. An alternative would be to use open-source projects to merge the depth

clouds and then develop a tracking approach in the merged cloud. The extra work of calibrating

and merging depth clouds, together with the fact that the old Kinects weren’t accessible to the

project before late, made this alternative not a good option.

31

Figure 4.5 Setup with two Kinect v1s mounted high to minimize occlusion.

4.1.3 Alternative 3: One Kinect v2 with Top-View

The approach that was chosen was to position a Kinect v2 high up, facing the floor

perpendicularly. The wider field of view and the higher resolution in the Kinect v2 made it

possible to place the sensor high above the floor and still get a usable sensing area and accuracy

in the depth measurements. With a top-view approach, many of the challenges with occlusion

was also naturally solved.

Disadvantages with this alternative are that the Microsoft body tracker could not be used. It is

not trained with training images from a top-view position and cannot detect bodies from this

position. A body-tracker had to be written totally from scratch, or partially with the help of

existing open-source libraries. Another challenge is to be able to position the sensor high

enough. The setup is depending on the ceilings being high enough and the ceiling being

accessible for mounting.

Alternative 3 was chosen because it was considered to be the setup with most potential and it

was the alternative where the newest technology would be used.

32

Figure 4.6 Setup with one Kinect v2 mounted in the ceiling.

33

5 Existing Research: Human Tracking in Depth Data from Top-

View

A precondition for automating design observation and the task of interpreting human behavior

is to track the humans in the scene. The following sections will describe existing research on

how this can be done for the chosen top-view setup in depth data. The chapter will start by

describing approaches for background subtraction, then detection and tracking approaches.

Strengths and weaknesses will be discussed. Finally, the most relevant open-source computer

vision libraries are discussed.

5.1 Background Subtraction in Depth Data

Background subtraction is a crucial step for detecting humans in an image frame. It is usually

one of the earliest stages in the pipeline, and if done successfully, greatly simplifies the rest of

the detection and tracking process. As indicated by the name, background subtraction is the

process of differentiating between the objects you want to track, in most cases humans, and the

rest of the scene. Depth data gives several advantages for background subtraction. Subtraction

with traditional RGB camera relied on detecting differences between the color intensities of the

foreground and background pixels. An approach that is very sensitive to illumination changes

and that has to handle great varieties in color and texture in the scene. With the depth data

available, background subtraction can rely on the more naturally stable 3D difference between

objects and background, which has shown itself to be more reliable (Fernandez-Sanchez, Diaz,

& Ros, 2013). Still, color data from RGB cameras don’t contain as much noise as the depth

measurements, typically at object boundaries, and lacking depth data due to cast shadows or

badly reflecting materials such as mirrors and pitch black textures. In this section, some of the

state of the art background subtraction approaches are presented. Some algorithms are

traditionally used in RGB images but adapted for depth data, some are purely developed for

depth data and some use both RGB and depth data.

Stone et al. (2011) modelled the depth map of the background in a training phase before the

actual detection phase. The approach is called minimal background. After the training phase,

all depths that was shallower than the background was considered foreground pixels. This

approach works well when all of the objects that should be detected always appear in front of a

static background. However, for dynamic backgrounds the subtraction will become noisy or

depth camouflage might happen. Depth camouflage is the case when an object in the scene is

modelled as background and then moved further away from the sensor. If then a person, that

34

should be detected, moves to the previous position of the background object, the person will be

subtracted from the depth map. Zhou & Aggerwal (2001) and Kepski & Kwolek (2004) also

did a similar approach, but created the background model from median filtered depth maps and

updated the background model throughout the detection session.

Tseng et al. (2014) performed graph-based-segmentation to subtract the background from the

foreground. In graph-based-segmentation the depth map is divided into candidate regions by

merging pixels that are close to each other in Euclidean distance. Further, iterations are done so

regions that are closer to each other than the internal distance between the pixels inside the

respective regions are merged. Graph-based segmentation is an approach adapted from

background subtraction in RGB data. The approach is in general computationally intensive and

the candidate regions still needs to be validated for the foreground to be established.

Greff (2012) compared several approaches for background subtraction in depth data. It was

concluded that the best performing approaches was the already mentioned minimal background

approach and an approach called the codebook model. The codebook model is an algorithm

previously developed for RGB images but adapted to also take advantage of depth data

(Fernandez-Sanchez et al., 2013). In the codebook model algorithm, each pixel is given a

codebook with code-words (Kim, Chalidabhongse, Harwood, & Davis, 2005). A code-word is

a data structure that contains information about the pixel, such as intensity, frequency of use

and depth. After a training phase, each pixel in the new frames are compared to its respective

pixel in the codebook from the training phase. If the difference in intensity, depth and so on is

big enough, the pixel is classified as a foreground pixel. The codebook approach works better

than the minimal background approach when there is a periodic dynamic background. Its

disadvantages are higher computational costs and higher complexity.

Nguyen et al. (2015) proposed an approach using both depth and color data. Two classifiers

were used, one based on depth and one on color data. The weighting between the classifiers

was adapted for each pixel, depending on if it was close to an edge and the color gradient at its

location. Near the edges of an object, the color based classifier had greater influence. This was

an attempt to reduce the error from noisy depth measurements at the borders of an object. Where

the gradients in the area surrounding the pixel was low, the depth classifier was emphasized.

The method handles challenging situations with inaccurate depth measurements well. Still, at a

computational cost.

35

5.2 Detection and Tracking in Top-View

As explained earlier, choosing a detection approach where the sensor is placed at a position

high above ground and facing down at the participants has several advantages. Some of the

most obvious application areas for a top-view detection approach has been surveillance and

crowd analysis (Tseng, Liu, Hsiao, Huang, & Fu, 2014). This section will map out the state of

the art for detection approaches with a top-view placement of depth sensors.

Tseng et al. (2014) mounted several Asus Xtion Pro2 cameras with a 3.5m height and stitched

the depth data together. A graph-based-segmentation approach was used to subtract the humans

from the background. The subtracted blobs were compared to a hemi ellipsoidal model of the

human head. If the error between the hemi ellipsoidal model and the blob is below a certain

threshold the blob is considered a candidate head. The candidate head was further verified by

creating a geodesic distance map from the center point of the head (explained in section

“Geodesic Distance Map”). The geodesic distance map was used with a detector based on

Histogram of Oriented Gradients – Comparison of Granules, trained to detect the shoulders

(Dalal & Triggs, 2005). To increase the precision of the tracking and avoid tracking drift, 3D

diffusion distance was used to characterize each detection and compare the detections between

frames. The 3D diffusion distance algorithm characterizes a detection by dividing the area

around the center of the head into bins in a histogram. The similarity between the histograms

in consecutive frames are compared. The algorithm outperformed several other state-of-the-art

methods. A challenge with this detection approach is missing data in the raw depth image,

making the blobs from the graph-based-segmentation fragmented. Further, when creating

geodesic distance maps from a top-view, the minimum threshold between the data points in the

map needs to be high for the map to be able to continue over the sudden changes in depth around

the contours of the head. A high threshold will lead to the geodesic map bleeding over into

surrounding objects, if they are close enough to the head and not subtracted away in the pre-

processing phase. Lastly, the detection approach of Tseng et al. (2014) is only suitable for

detecting humans when walking or standing up straight, not when doing movements such as

leaning forward or bending down.

Oosterhout et al. (2011) used connected component3 to separate the subtracted foreground into

blobs. The size of the blobs were evaluated and the blobs with an inappropriate size were

2 https://www.asus.com/us/Multimedia/Xtion_PRO_LIVE/

3 Wu, Otoo & Suzuki (2008)

https://www.asus.com/us/Multimedia/Xtion_PRO_LIVE/

36

discarded. The remaining blobs were then searched using a template matching approach. The

template consisted of two spheres with the same center point and different radius. To be

considered a head, the candidate depth points needed to fit between the boundaries of the two

spheres. The size of the spheres were adjusted to anatomically plausible values. After detection

was performed, the heads were tracked using Kalman filters on the projection of the heads in

the 2D plane (Kalman, 1960). The method of Oosterhout et al. works well even for crowded

situations compared to other state-of-the-art approaches.

Tian et al. (2013) chose to subtract the background by a simple depth threshold – all data below

a certain height were discarded. The remaining data was normalized with gray values between

0 and 255 and used with a Histogram of Oriented Gradients (HOG) feature descriptor. The

HOG feature descriptor counts the orientation of the gradients in localized portions of the

image. The distribution of the gradients is the descriptor of the respective local region (Dalal &

Triggs, 2005). Further, the features were classified by linear Support Vector Machine (SVM).

The linear SVM was trained with images of positive and negative samples and a model that

assign new input to one of two categories were built.

Zhu & Wong (2013) developed a sliding window approach based on Haar-like features

(explained in section “Haar-like Features”). The Haar-like features of Zhu & Wong was based

on assumptions about the area around the head of a human – empty space in front and behind

the head, a certain height difference on the sides down to the shoulders and empty space besides

the shoulders. The Haar-like features were used in the AdaBoost algorithm (explained earlier)

with their own training set. After detection of the human, the tracking was made more precise

and stable using Kalman filters. Challenges with this approach occurs when the assumptions

about the area around the head is disrupted. This happens when the person is leaning forward

or is standing close to something. Another issue with this approach is that the detection window

with the Haar-like feature that was used wasn’t rotationally invariant, therefore, with the setup

presented by Zhu & Wang the detection will become imprecise when a person isn’t facing

exactly in the Y- or X-direction.

Seer (2014) mounted multiple Kinect v1s in the ceiling of a busy corridor at MIT. The aim of

the setup was to track pedestrian behavior. Foreground subtraction was performed partly the

same way as Zhu & Wong, with a heuristic cutoff at a certain height. Agglomerative clustering

was then performed to form groups of points belonging to individual people (Duda, Hart, &

Stork, 2000). A straight forward approach was chosen to identify the heads of the people – by

37

deciding the head location to be the location of the point with the 95th percentile height of the

cluster. The detection rate was reported to be high (94-96%).

Zhang et al. (2012) assumed the head to always be the highest point on the body, so detecting

the heads of the people in the frame equaled finding the suitable local minimum regions. To

explain the algorithm, an analogy of “raindrops” flowing to the local minimum regions was

used. Uniformly distributed raindrops were generated over the frame. The raindrops would then

land and flow to the shallowest point. A measurement function was created to filter out the

holes that weren’t deep enough or that didn’t contain enough water. The remaining holes were

considered to be heads. The algorithm was reported to perform well compared to other state-

of-the-art algorithms, with a 99% accuracy on the created dataset. Still, in situations where the

background subtraction is imprecise or when there are objects in the frame that is located higher

than the heads, challenges will occur in the detection.

38

39

6 Open-source Computer Vision Libraries

Using open-source computer vision libraries might reduce the time needed to develop a custom

top-view body tracker. Several were considered throughout the process. None of the libraries

that was found had any modules that could directly be used to detect humans from a top-view.

Many libraries had implementations for more commonly requested functionalities, such as face

detection, blob detection and image filters. Importantly, the libraries should be available in C++

or C# as the API and the examples for the Kinect v2 are only available in these languages.

OpenCV4 is one of the most popular open-source libraries, and is the most comprehensive and

fastest library I considered. The core of OpenCV is written in C++ and has wrappers for Python

and Java. The library did not out of the box provide any useful functionality. The modules for

processing of depth data are limited. The depth data could have been represented as for instance

grayscale values and processed with traditional computer vision techniques, but this didn’t seem

like a good approach. Additionally, I did not have any experience with C++ before the thesis

and wanted to avoid the overhead from learning that. One possible reason for choosing C++

would be because of performance benefits. However, research showed that C# matches the

speed of C++ (Qwertie, n.d.).

AForge.NET is a computer vision framework in C#. The framework has classes to directly

access the depth data from the Kinect v1. Unfortunately, no support exists for Kinect v2, and

the examples provided by Microsoft do the same thing. In addition, no further functionality for

processing depth data seems to exist.

Other open-source libraries considered was MATLAB Image Acquisition Toolbox and Point

Cloud Library5. MATLAB has support for the Kinect v1, but not the Kinect v2. The Point Cloud

Library may have had some useful noise removal methods, but is written in C++ and wasn’t

used for the same reasons as OpenCV.

4 http://www.opencv.org/

5 http://www.pointclouds.org/

http://www.opencv.org/
http://www.pointclouds.org/

40

41

7 Existing Research: Energy from Human Movement

Energy expenditure is traditionally estimated through heart-rate monitors, accelerometers or

metabolic approaches where the O2-consumption is measured and from which the energy

expenditure is derived (Nathan, Huynh, Rubenson, & Rosenberg, 2015). All of these methods

are intrusive. In addition, the metabolic methods and using heart-rate data are unable to give

real-time responsiveness to the energy expenditure, so locating the source of the change in

energy expenditure is difficult. Estimating energy expenditure from movement using an

external sensor, such as the Kinect, has the potential of giving real-time responsiveness at the

same time as not being intrusive (Nathan et al., 2015).

Still, some unavoidable limitations exist when energy expenditure is estimated with an external

sensor. The external sensor can only measure mechanical energy expenditure, not internal

expenditure such as thermoregulation, digestion and energy expenditure from maintaining basic

body functions(Van de Walle et al., 2012). Further, isometric contractions, co-contractions or

work against gravity cannot be accounted for(Williams, 1985). The mechanical energy

expenditure is the aggregated kinetic and potential energy spent by the human body.

Van de Walle et al. (2012) compared three approaches of measuring energy expenditure from

mechanical movement in walking, and compared with control measurements from a metabolic

approach. The three approaches were:

1. Center of mass (CoM): analysis of changes in center of mass for the whole body and

changes in body segments relative to CoM.

2. Sum of segmental energies (SSE): analysis of energy changes of moving body

segments. SSE was calculated by determining total energy per segment and summing

them.

3. Integrated joint power: integration of power around all joints as obtained from the

VICON Plug-in-gait model.

The aim of the study was to evaluate the usefulness of estimating energy expenditure from

mechanical movement, to be able to discriminate between pathological and typical gait as

indications of cerebral palsy. In order to achieve this, high sensitivity in the measurement

approaches was sought for. A VICON camera system6 with markers on the body was used to

capture the mechanical movement and two embedded force plates was used to capture forces.

6 http://www.vicon.com/

http://www.vicon.com/

42

The conclusion of the study was that approach 1 underestimated the total energy expenditure

and showed low correlation to O2-cost, because negative work done by the muscles isn’t

considered in this approach. Approach 2 and 3 showed low to moderate correlation, but higher

correlation wasn’t expected since mechanical approaches cannot account for all sources of

energy expenditure. Approach 3 is the recommended approach if collection of bilateral kinetics

is possible, if not approach 2 is a valuable alternative.

Nathan et al. (2015) demonstrated that energy expenditure during exercise, using the Kinect v1

sensor as a motion capture system, can be estimated from segmental mechanical work. The

motion data from the Microsoft SDK of two Kinect v1 sensors was combined to capture the

mechanical work in several steady-state exercises. As in the CoM-approach in Van der Walle

et al. (2012), they defined an energy model including both external work (work that moves the

CoM of the whole body) and internal work (work that moves body segments relative to CoM).

In addition, they improved the estimations of body segment properties, such as segment mass,

length and CoM-position, by using the Zatsiorsky-Seluyanov’s equations of de Leva(de Leva,

1996). The variables from the mechanical work model were used as feature vectors in several

predictive models to predict metabolic energy cost, where a Gaussian Process Regression model

gave the best results. The conducted experiments consisted of steady-state arm swings, standing

jumps, body-weight squats and jumping jacks. The exercises was repeated for a minimum of

four minutes with a resting period in between. The energy expenditure was control-measured

with a metabolic system. The study concluded that the energy expenditure can be predicted

with the presented model from mechanical work.

Liu et al. (2012) estimated energy consumption by calculating external work of body parts

relative to the environment from movement, also using a Kinect v1 sensor. An average human

model was defined with 175 cm height and 65 kg weight. The mass of each body part was

estimated to a certain percentage of the total body weight. For instance, the head was considered

to consist of 23.1% of the total body weight. From a frontal view, the participants were tracked

while dancing. The total energy consumption was estimated by calculating change in kinetic

and potential energy for each body part between consecutive frames.

43

8 Proof of Concept: Tracking in Design Activities in Depth Data

from Top-View

From research, it turned out that no tracking software was readily available for tracking people

in depth data from top-view. Further, of the open-source computer vision libraries that was

tested, most were either slow or would lead to unnecessary extra work from adapting the

libraries to the specific context. Extra work that wouldn’t justify the advantage of features

already being implemented.

A few requirements of the tracking approach should be:

1. Should be non-intrusive

2. Be able to instantly detect all bodies in the frame, independent of the bodies’ orientation

or pose.

3. Detection of the whole body is necessary, so a precise heat map of movement can be

calculated.

4. Center of Mass of body parts should be estimated from which mechanical energy-use

can be derived.

As the setup with a Kinect v2 position with top-view was chosen, ideas for the customized

tracking application were obtained from existing research on top-view people detection and

detection in depth data in general, but also from traditional computer vision approaches for

RGB images.

8.1 Detection Pipeline

The overall detection pipeline of the tracking application is shown in Figure 8.1. The following

sections will thoroughly explain each step.

44

Figure 8.1 Pipeline for the tracking approach.

45

8.2 Preprocessing: Scaling

Each depth frame from the Kinect sensor is scaled from 512x424 pixels to 256x212 pixels to

reduce computational load. A scaling-algorithm was developed and customized to the depth

data from the Kinect sensor. Because depth data contains a lot of noise, the algorithm always

tries to preserve as much valid data as possible during scaling. More precisely, the algorithm

extracts depth information from a region of four pixels into one scaled pixels. The average X-,

Y- and Z-coordinates of the four pixels is calculated and used in the resulting pixel. If a pixel

in the region does not contain valid depth information, the pixel is excluded from the

calculations. The algorithm is shown in Algorithm 1.

Figure 8.2 Scaling. The depth frame before (left) and after (right) scaling. The grayscale gradient to illustrate the depth is

also reversed.

46

Algorithm 1: Scaling the frame

8.3 Background Subtraction: Temporal Median Image

A model of the background is constructed during an initial phase of the sensing session, before

any people enter the sensing area. The approach is called Temporal Median Image Subtraction

and is also mentioned in the section “Background Subtraction in Depth Data”. Temporal

Median Image Subtraction was chosen because it is a simple and well-performing background

subtraction approach that fits the contexts this body tracker is used in. The algorithm for

constructing the temporal median image is shown in Algorithm 2. Initially, the first frames

captured by the Kinect sensor are consecutively stored. Experiments showed that including the

first 30 frames was sufficient. After the 30th frame has been stored, the corresponding pixels in

the stored frames are collected in the same array and sorted. The shallowest pixel depth in the

array is selected to be used in the background model frame. Finally, the noise in the background

model frame is smoothed with a median filter.

47

Algorithm 2: Calculating temporal median background model

After the initial phase, the background model frame is subtracted from all new arriving frames.

The subtraction is a computationally very light process. Each pixel in the arriving frame does

only need to be looked up once and compared to its respective pixel in the background model.

If the pixel in the new frame is lower than the respective pixel in the background model, the

pixel depth is set to the maximum sensing depth (classified as background pixel).

If an object in the scene, that is not a person, is permanently moved during the sensing session,

the earlier constructed background model becomes inaccurate. Fortunately, so far during test

sessions this hasn’t disrupted the later detection of people in the frame.

Figure 8.3 Temporal Background Model Image of a scene.

48

Figure 8.4 Background Subtraction. Left: the original depth frame. Right: The scene with the background subtracted.

8.4 Noise Removal: Median Filter

A depth frame is prone to have missing data points and the missing data points should be

smoothed away before further processing. Median filtering is a frequently used filtering method

in classic computer vision with RGB data, and its principle is easily adopted to depth data. A

square kernel, also called a convolution matrix, is slid over each pixel of the input frame. The

pixels in the kernel are sorted and as the name suggests, the median value in the kernel is usually

selected. In my implementation, the best filtering performance was shown when an even smaller

element, the element at index 2 (the indexing starts at 0), in the sorted kernel was chosen. The

reason for this is that the missing data points are also included in the kernel, with depth values

set to maximum sensing depth. Which means that by picking an index earlier in the sorted list

(sorted ascending), the chances of picking a valid depth value are increased. However, if an

index too early in the list is chosen, the output image will contain unnecessary amounts of

spikes. The kernel can have different sizes, and for my implementation a kernel size of 3x3

showed itself to be the best tradeoff between computational load and filtering performance. The

median filter algorithm is shown in Algorithm 2.

49

Figure 8.5 The square kernel is slid over the frame.

Algorithm 3: Median filter with a 3x3 kernel

Figure 8.6 Index in sorted kernel. The filtered results from choosing different indexes in the sorted kernel. Left: Index 2.

Middle: Index 4. Right: Index 8. The person in the frame has shiny black hair and we see that if a high index is chosen depth

data will be lost.

50

Median filtering an image is a computationally heavy task. For each pixel in the frame, the eight

surrounding neighbor pixels and the pixel itself need to be added to an array and sorted. The

average case performance when using quicksort as a sorting algorithm is

 𝑂(𝑚 ∗ (𝑛 ∗ 𝑙𝑜𝑔(𝑛))) (3)

where m is the number of pixels in the image and n is the total kernel size. As can be seen from

equation 3, it is the sorting that creates the computational load. To increase performance, an

optimization feature was created. Because the background is already subtracted from the input

frame, the frame will contain substantial areas of background pixels without useful depth

information. To reduce computational load, a helper method was created to check if the kernel

contains valid pixel. If the kernel does not contain valid pixels, it moves on to the next pixel

without sorting. The performance gain from the optimization was measured with the Stopwatch

class which is a class included in the .NET framework that accurately measures elapsed time.

The performance gain is showed in Table 3. Also, other faster implementations of the median

filter was considered (Huang, Yang, & Tang, 1979)(Perreault & Hébert, 2007), but adaptation

to depth values was not straight forward and wasn’t prioritized in this thesis.

With

optimization

Without

optimization

MedianFilter (milliseconds) 9.6 15.11

Total application

(milliseconds)

44.85 47.07

Amount of total

computational time

21.40% 32.10%

Table 3: The computational time of the median filter with and without optimization. The time is the average for all frames in

a 5 min sensing session.

51

Figure 8.7 The foreground area in the frame before (left) and after (right) median filtering.

8.5 Head Detection

8.5.1 Haar-like Features

The concept of Haar-like features was first presented by Viola & Jones (2001) and has since

been extensively used in several object recognition tasks, especially face recognition. The first

real-time face detector was based on Haar-like features(Viola & Jones, 2001). A Haar-like

feature is a detection window that consists of subsections of adjacent rectangular regions. The

average pixel intensity in each region is calculated and compared across regions. The

characteristics of the differences in pixel intensities is used in classification of the areas in the

input image. The composition of subsections in the Haar-like features can vary, depending on

the object feature that is to be detected.

Even though Haar-like features traditionally have been used for detection in RGB-images, the

principle can easily be adapted to depth data. Inspired by the “center-surround” Haar-like

feature presented by Lienhart et al. (2002), a Haar-like feature was developed for depth data

that takes advantage of the characteristic strong depth gradients that usually exists around a

person’s head. As shown in Figure 8.8, the difference between the average depth in the outer

rectangle and the inner rectangle is compared to a threshold. If the difference is above the

threshold, the region inside the inner rectangle is considered to be a candidate head region and

passed on to further validation. Also other Haar-like features was tried, for instance features

with a round inner detection window. Yet, it was the detection window shown in Figure 8.8

that gave the best overall performance. The algorithm for the sliding detection window with the

Haar-like feature is shown in Algorithm 4.

52

In other object recognition tasks, several passes are performed with different sizes of the

detection window. For the current sensing setup, the heads do not vary much in size so only

one pass with a fixed calculated size of the detection window is necessary. The size of the inner

detection window is determined as the projected size into camera pixels of the average head

diameter of 17.5 cm at a height of 170 cm (Algazi, Avendano, & Duda, 2001).

Figure 8.8 The Haar-like feature used to detect heads in the frame.

Figure 8.9 Haar-like window detection. The detection windows exceeding the threshold as they pass over a head in the

frame.

53

Algorithm 4: Sliding detection window with Haar-like feature

8.5.2 Integral Image

The Haar-like features becomes a powerful approach when they are used in combination with

integral images, also called summed area tables. Integral images are two dimensional lookup

matrices that enables the area of a rectangular area in an image to be calculated very quickly

and efficiently. The integral image has the same size as the input frame and each element in the

integral image contains the sum of the pixels located on the up-left region of the input frame.

Thereby reducing the procedure of computing the sum of an area to only four lookups in the

integral image:

 𝑆𝑢𝑚 = 𝐶 − 𝐵 − 𝐷 + 𝐴 (4)

The integral image only needs to be calculated once for each frame, before the detection

window with the Haar-like feature is passed over the frame.

54

Figure 8.10 Integral image. The sum of the pixels in the gray area can be calculated quickly by C – B – D + A in the integral

table.

8.6 Classification

As the detection window is passed over the frame and the candidate head regions are located,

the highest point in the regions are used to represent the regions in further processing. The

highest point is chosen because it has a higher probability of being closer to an actual head,

considering there are rarely cases where there is an object in the scene that is that close to the

actual head, but still not a head. Further, if the center point of the inner detection window or a

random point was chosen, there would be a risk that a pixel without valid depth information is

chosen.

The next step in the detection pipeline is grouping the candidate head points together. All

candidates that are within a certain Euclidean distance from each other in the XY-plane are

grouped together. The grouping is implemented using a disjoint-set data structure, and it is the

pixel with the shallowest depth (highest point) that is used as the set representative. After the

grouping, only the representatives from the groups that are bigger than a certain threshold are

kept.

At this stage in the pipeline, it is a good chance that the candidate points are very close to the

actual heads in the frame. Still, experiments show that when the head region is challenging,

such as

 shiny black hair

55

 the region is located at the edges of the sensing area where the accuracy of the sensing

is worse

 when several heads are located very close to each other

 when the person in the frame is leaning forward so the upper back almost is located at

the same height as the head

the candidate points may be inaccurate. To improve the accuracy, the advantages of the depth

information is used. Each of the candidate points are passed to a function that finds the local

maximum height by recursively searching through the neighborhood pixels for depths that is

higher up than the candidate point. To avoid being stuck in a very small local maximum that

could occur due to noise, the function gets the 5x5 neighborhood area in each recursive call.

8.7 Validation of Candidates

After all the highest points connected to the candidate head points are determined, the possible

heads resulting from those highest points needs to be validated. As described in section

“Detection and Tracking in Top-View”, several other approaches have been used to validate a

3D head shape candidate. In the current implementation several of those validators, and

combinations of several, were tried. Creating a hemi ellipsoidal model like Tseng et al. (2014)

and measuring the error between the head candidate and model, showed itself to be inaccurate

when the head shape became inaccurate, which could happen when a person in the frame is

tilting its head or when having a special hairstyle. The same was experienced with the template

matching approach of Oosterhout et al. (2011). Evaluating movement in the candidate head

regions across frames builds on the assumption that the head always has a certain movement.

The approach became inaccurate when persons in the frame kept their head still, and created

false positives when other objects were moved.

The validation approach that gave the best performance was simply evaluating the size of the

head blob. The candidate head blob was found by implementing an iterative connected-

component algorithm that uses a breadth first search to search all pixels connected to the starting

point (Dillencourt, Samet, & Tamminen, 1992). The starting point is the highest point located

in the previous stage, and to decide if the neighbor pixel should be included in the head blob or

not, the height difference between the pixels are compared to a threshold. The threshold is set

to 5 cm and the search depth is limited to 110 pixels to make sure the search stops at the edges

of the head. Both an iterative and recursive implementation of the connected-component

algorithm was tried, and the iterative had the best performance.

56

Figure 8.11 Head blob. A head blob after growing region with the connected-component algorithm and validation.

8.8 Geodesic Distance Map

After the heads of the people in the scene are detected, we also want to track more of the bodies.

To successfully include further functionality of precise heat maps and energy calculations,

tracking of the whole body is necessary.

Tracking a human body in natural environments is a very complex problem. A human body has

about 244 degrees of freedom and can adopt a range of different poses (Vladimir Zatsiorsky &

Boris Prilutsky, n.d.). A great variety of approaches of tracking in depth data has been presented

in literature since the arrival of the first Kinect. The most successful approaches rely on using

machine learning techniques on large datasets of human poses (Jamie Shotton et al., 2013).

Still, training a machine learning algorithm for human poses, can be very resource demanding.

From a top-view perspective the amount of poses a human can adopt are more limited than from

a side, back or front view. The challenge of tracking a body-pose basically reduces itself to

track hand-motions and leaning-motions. To achieve this, a geodesic distance graph is created

on the surface of the body. An approach that was also used in Plagemann et al. (2010) and

Tseng et al. (2014).

A geodesic distance graph is created by using the depth data to calculate the Euclidean distance

in 3D space between neighboring pixels. If the distance between the pixels are small enough,

they are connected in the geodesic graph. The graph becomes a mesh of connected points on

the surfaces of the foreground objects in the scene. We only want the geodesic graph of the

bodies in the scene, so in case the background subtraction cannot completely remove all

57

background pixels, an optimization is implemented where only points closer than 1 meter in

Euclidean distance from the closest validated head point are considered.

Algorithm 5: Create geodesic graph on the surface of the foreground objects.

Figure 8.12 The geodesic graph on the surface of a person.

Because the geodesic distances along the surface mesh between the body regions are nearly

constant independent of pose, the body regions can be identified by finding the shortest paths

from the highest point on the validated head to the other parts of the body. The shortest path

search is performed using the classic well-performing Dijkstra shortest-path search algorithm.

58

Figure 8.13 Body regions. The body regions are found by finding the shortest path from the head to the rest of the body. The

distance to the body regions were found heuristically.

8.9 Hand detection

The hand locations can also be estimated once the geodesic distance graph is established. The

detection approach for locating hands show reasonable performance when the persons in the

scene are located by a table, and a depth threshold can be set at the height of the table. If there

is no depth threshold to exclude the lower parts of the body from the waist down, the hand

regions are confused with the areas just below the waist that has the same geodesic distance to

the top of the head as the hands (see Figure 8.14).

Figure 8.14 Hand detection with and without depth threshold. The defined “hand-region” in dark gray. Without depth

threshold (up) and with depth threshold (down.)

59

The hand detection could be improved by including the RGB data from the Kinect sensor and

using hand color in the region validation. Another approach would be separating the hand

candidate regions extracted from the geodesic graph, then performing a region growing

algorithm on the candidates and finally performing a shape analysis of the grown regions as

validation. Yet, in the thesis, other features needed to be prioritized over hand detection.

8.10 Tracking

The location of the bodies are detected in each frame, therefore no dedicated tracking algorithm

is used. When bodies are detected in a new frame, their head locations are compared to the

average head locations over the last five frames of previously identified bodies. The average

values are used to get a more stable tracking of the bodies. Experiments showed that if only the

location from the last frame was used, the tracking would be erratic and imprecise.

The new bodies are given the Id of the previous body that is closest to their location, as long as

the previous body isn’t closer to any other new body. The algorithm is shown in Algorithm 6.

This approach assumes that the bodies stay in the frame for the period of the sensing for correct

identification of new bodies. Still, the case of bodies leaving the frame could be included with

simple modifications.

Algorithm 6: Match the detected new candidate heads with bodies from previous frames.

60

8.11 Mechanical Energy Estimation

Estimating mechanical energy could not be done with traditional RGB cameras. With depth

cameras, the movement in the 3D space of the tracked person can be directly measured.

According to previous research, the most promising approach that would be possible with a

Kinect is considered to be calculating the energy change in each body segment separately before

adding each to a total (Van de Walle et al., 2012). This is also the approach that is used in the

thesis.

The same assumptions is made about the mass distribution for the segments in the human body

as Liu et al. (2012) and are shown in Table 4. The weight of the person is either set to an average

value of 65 kg or defined before the tracking session to match the body weight of the person

that will be tracked. The change in mechanical energy is then estimated real-time between

consecutive frames. The displacements 𝑑𝑖𝑠𝑝 of the average center points of the head, torso and

hands are calculated for each XYZ-direction from one frame to the next. Timestamps are

collected from the Kinect API to calculate the ∆𝑡 between the frames. For each body segment

(𝑠𝑒𝑔), the total mechanical energy change is then calculated by the equations for kinetic energy

(5,6) and potential energy (7) and summed together.

𝐸𝑇𝑜𝑡𝑎𝑙𝑋 =

1

2
𝑚𝑠𝑒𝑔 (

𝑑𝑖𝑠𝑝𝑥

∆𝑡
)

2

 (5)

𝐸𝑇𝑜𝑡𝑎𝑙𝑌 =

1

2
𝑚𝑠𝑒𝑔 (

𝑑𝑖𝑠𝑝𝑦

∆𝑡
)

2

 (6)

 𝐸𝑇𝑜𝑡𝑎𝑙𝑍 = 𝑚𝑠𝑒𝑔𝐺 ∗ 𝑑𝑖𝑠𝑝𝑧 (7)

 𝐸𝑇𝑜𝑡𝑎𝑙 = 𝐸𝑇𝑜𝑡𝑎𝑙𝑋 ∗ 𝐸𝑇𝑜𝑡𝑎𝑙𝑌 ∗ 𝐸𝑇𝑜𝑡𝑎𝑙𝑍 (8)

At the end of the tracking session, the already stored energy changes during the session

(Joule/frame) are filtered through a one-dimensional median filter to remove spikes from

tracking instabilities before the energy is plotted against time. Also, the average change in

61

mechanical energy per second (Joule/s) throughout the whole session is calculated and

displayed (Figure 8.15).

Body Segment Head Forearm Upper arm Thigh Shank Torso

Amount of

Total

23.1% 1.8% 3.5% 9.4% 4.2% 58%

Table 4: Assumed distribution of mass in the body.

Figure 8.15 The display of the energy-use after a session. The X-axis is green when the tracking of a person was successful in

the respective frame.

Some challenges with the approach has been experienced and should be mentioned. Because

the placement of the sensor is top-view, very little data about the lower part of the body is

visible to the sensor and contributes to the estimates for the energy expenditure to be

incomplete. Also, the average center points used for each body segment in the energy

calculations will tend to be a bit closer to the sensor than the actual center of mass. The reason

is that the center points are calculated from the pixels of the body segment visible to the sensor,

which are the pixels on the upper side of the body segments. Moreover, the transfer of energy

between adjacent body segments are not taken into account, resulting in an estimate higher than

the real value (Van de Walle et al., 2012). Finally, an important aspect is that the negative

energy changes, for instance when the potential energy of a body segment is lowered, are also

included in the calculations. If compared to methods trying to estimate only positive energy

exerted by the bodies, the results will differ.

8.12 Heat Map

Heat maps are graphical representations of data from a 2D matrix. The areas in the matrix where

the interesting variable occurs are normally visualized with a color resembling varying

62

intensities of heat depending on the value of the variable. Usually with red as the color

representing the areas with most heat. Typical uses of heat maps are eye-tracking, mouse-

tracking on webpages, world maps with different variables and many more. With heat maps,

data can be visualized in a very intuitive and clear way.

Since a geodesic graph is created on the whole surface of each person, an accurate heat map of

the movements of the person can be created. For each new frame, the results from the detection

are saved and the global heat map is updated. Each body id is assigned a unique color, and at

the end of the tracking session the accumulated values in the heat map are normalized so the

variation in heat is visualized by variation in intensity of the color.

Figure 8.16 Heat map of a person that just entered the scene.

63

Figure 8.17 Heat map of a person sitting.

64

65

9 Validation and Tracking Success

9.1 Assumptions

These are the assumptions made in the tracking approach:

1. Sensor has a clear view of the people’s heads: No objects should disrupt the sensors

view of the people in the scene.

2. The background is relatively static: For the chosen background subtraction algorithm,

Temporal Median Background, to work efficiently the background needs to be

relatively static. If changes in the background occur during the sensing session, the

tracking of people should not be affected, but the foreground will be more complex and

may lead to marginally slower processing of the frames. Experiment show that the

slower processing isn’t noticeable to the human eye.

3. Average human head size: In the Haar-like feature that is used to detect the initial

location of the head region, the size of its detection window is adapted to the hardcoded

average size of the head of a human, which is 17.5 cm diameter (Algazi et al., 2001).

Experiments show that using the average head size works well for several different

people. Regardless of the imprecisions caused by assumptions in head size, for the initial

head detection many other factors such as incomplete heads due to missing data points

and variations in posture are also sources of imprecision.

4. Mass distribution of body segments: For the energy calculations, the application

assumes the body to have an ideal distribution of mass.

9.2 Accuracy and Precision

9.2.1 Accuracy

The accuracy of the raw data arriving from the Kinect v2 has been evaluated in several research

papers. Lachat et al. (2015) evaluated its usefulness for close range 3D modelling. Error sources

such as pre-heating time, outdoor efficiency and influence of materials and colors were

investigated, as well as deviations between measured and true distances. The conclusion was

that the sensor measurements deviated ±5 mm in the recommended sensing range of 1.5-4.5 m,

and that the achieved results looked promising. Butkiewicz (2014) measured the standard

deviation of the depth measurements to increase linearly from 1 mm at 1.5 m to 3.5 mm at 4.5

m. Yang, Zhang, Dong, Alelaiwi, & Saddik (2015) evaluated accuracy distribution, depth

66

resolution, depth entropy, edge noise and structural noise in the Kinect v2. A cone model of the

accuracy at certain distances was obtained (Figure 9.1). The green and yellow zones show good

accuracy while the red zones have a depth accuracy error that exceeds 4 mm. In the mentioned

papers, the imagined applications demand high accuracy from the sensor. For the application

in the thesis, body tracking and estimating mechanical energy, the accuracy is considered to be

satisfactory in the complete field of view of the sensor.

Figure 9.1 Accuracy throughout the field of view for Kinect v2. Source: Yang et. Al (2015)

9.2.2 Precision

To assess the precision of the tracking, a Logger class was developed that projects the results

of the tracking in real-time on the monitoring window where also the point cloud of the depth

data is projected onto. From visual inspection, the tracking of the head and torso show stable

precision when tracking is present. Further, a TrackingDiagnostics class was implemented that

calculates the total amount of the frames where bodies were detected successfully. In total, the

application was tested on 5 different people, both male and female and weights ranging from

50 to 85 kg.

67

Figure 9.2 Tracking results of head and torso showed in monitoring window.

The tracking of the hands show more variable results. It is apparent that using geodesic

distances alone is not sufficient to get stable and reliable hand tracking. The two main issues

that occur is that the hand regions get confused with the region around the waist of the person

and that areas on the body on the geodesic path connecting the hands to the head may become

occluded. In these cases the geodesic distance to the hands change to be outside the defined

distance or the hands don’t get included in the geodesic map at all.

68

9.3 Generally Challenging Scenarios

Some scenarios are more challenging in general for the tracking application and the Kinect than

others. They may result in inaccuracy in the depth measurements, or most of the time missing

depth data points. Approaches have been researched to meet these challenges and consist

mainly of median filtering, morphological operations and more complex methods such as

building noise models from the scene (V.-T. Nguyen, Vu, & Tran, 2015). Still, some issues are

necessary to be aware of.

9.3.1 Materials and Color

Reflective and very light absorbing materials weaken the intensity of the infrared rays more

than other materials, resulting in the sensor calculating a larger distance than reality or won’t

be able to give a depth measurement at all (Lachat et al., 2015). Examples of such materials are

shiny black hair or objects covered with carbon black materials. This issue was especially

visible in my thesis because most of my testing was performed with Chinese. No other hair

color or style than vey shiny black hair seemed to be an issue.

Figure 9.3 The tracker has problems detecting the girl with black hair. The raw depth image on the left shoes that a large

portion of the head of the girl lacks data points.

9.3.2 Flying Pixels

Flying pixels is a known problem in depth sensors using time-of-flight depth measurement

technology. Flying pixels occur when a single pixel is covering the depth data of an edge where

69

both the light reflected from the object closer to the sensor and the object further from the sensor

contribute to the same depth measurement. The pixel then gets a depth measurement somewhere

in between the two objects (Butkiewicz, 2014).

Figure 9.4 Flying pixels can be seen along the edges of objects.

9.3.3 Bodies Close to Each Other

When two or more bodies are located close to each other in the scene, most tracking algorithms

meet challenges of classifying what features belong to what body. For the tracking approach

developed in this thesis, several bodies close to each other may result in only one of the heads

being recognized as a head, or if the bodies are in contact, the geodesic graphs may be confused

between the bodies.

9.3.4 Less Depth Information in Outer Regions

The actual distance the infrared rays need to travel to give depth information in the outer regions

of the frame are further than in the center. Thereby resulting in more missing depth data and

inaccuracies in those regions than at equivalent depths in the center of the sensing area.

70

Figure 9.5 Outer regions of the scene contain less depth data.

9.4 Speed and Memory Performance

The tracking application needs to be able to process the frames fast enough to keep up with the

data rate from the sensor and Kinect Studio. If the frames aren’t processed at framerates close

to the framerate arriving from the sensor, the application will lose information from the frames

missed. The framerate arriving from the sensor is 30 FPS. The measured average processing

framerate of the application is ≈ 26 𝐹𝑃𝑆 without the monitoring window and ≈ 22 𝐹𝑃𝑆 with.

This framerate is perceived as real-time and sufficient.

The application was implemented in C# and all testing has been performed with the following

computer specifications:

o 2.7 GHz dual-core Intel Core i5 processor (Turbo Boost up to 3.1GHz) with 3MB shared

L3 cache

o 8GB of 1866MHz LPDDR3 onboard memory

o Intel Iris Graphics 6100

71

The main bottlenecks for the processing speed are identified by using the performance and

diagnostic tools (Figure 9.6) in Microsoft Visual Studio 2013:

o Searching through the geodesic map with the Dijkstra shortest path algorithm.

o Sliding the Haar-like detection window over the image.

o Median filtering the frame.

Figure 9.6 The CPU usage of the tracking application.

72

The memory use is also analyzed to make sure the application isn’t leaking any memory and

doesn’t have a memory footprint that is too big. The average memory use is just below 120 MB

as shown in Figure 9.7.

Figure 9.7 The memory use of the application.

A Logger class was developed early to be able to continuously and easily measure the

processing time of added features in the application. Clean and readable code was emphasized

through the whole project, although some sacrifices had to be made in favor of speed, such as

using arrays with predefined size instead of dynamic lists when collecting neighbor pixels. The

time in milliseconds for the most important features are shown in Table 5.

Feature Time(milliseconds)

Down-scaling frame ≈ 5

Median filtering ≈ 10

Sliding detection window with Haar-like

feature

≈ 9

Create geodesic graph ≈ 4

73

Add body regions ≈ 8

Other ≈ 7

Total ≈ 𝟒3

Table 5: The time used by the feature in the application.

74

75

10 Tracking Application in Realistic Design Context

10.1 Egg-Drop-Challenge

To evaluate the developed sensing application in a realistic design context a prototype of an

experiment was developed. The experiment was chosen to be a version of the well-known egg-

drop-challenge. In the egg-drop-challenge the participants were asked to design a way, with the

provided materials, to protect a raw chicken egg from breaking as it would be dropped from

increasing heights onto a concrete floor. The egg-drop-challenge was chosen because it

provides a realistic scenario of early prototyping in early-stage-design, as well as being simple,

fun for the participants and doesn’t take up too much of the participants’ time. Because the

experiment was conducted at the end of the semester, there were very few possible participants

at the university location.

The participants performed the experiment one by one and were given the exact same

instructions. All participants were aware that they were recorded and that the recording would

be analyzed and used in this thesis. None of the participants were familiar with the egg-drop-

challenge before the experiment.

Each of the participants was given 10 min to perform the

challenge, and would be informed about remaining time

every minute and when there was 30 seconds left. The

materials that was provided were:

 5 sheets of normal paper

 1 30x30 cm poster board

 1 75x15 cm Styrofoam sheet

 8 rubber bands

 6 Q-tip

 1 m string

 6 wooden sticks

 30 cm tape

 Scissors, ruler, glue and a pencil

76

Four individuals participated in the experiment. Unfortunately, one of the participants had very

long shiny black hair that created too many missing data points for the tracking to be precise

enough. The results from the other three sessions are shown in Figure 48, 49, 50.

Figure 10.1 The results of participant one in the egg-drop-challenge.

Figure 10.2 The results of participant two in the egg-drop-challenge.

77

Figure 10.3 The results of participant three in the egg-drop-challenge.

Visual inspection while running the application showed that the tracking of the head and the

torso worked well in all three sessions. Tracking of the hands were to imprecise and was

excluded from the energy calculations. The main reason for the imprecisions was that the hands

were occluded by the upper body and head most of the time (Figure 10.4). Even though

participants one and three both had shiny black hair, similar to the excluded participant, the

hair-styles were shorter and not as straight, resulting in the tracking showing stable behavior.

Still, participant number two had brown hair and got a more complete depth cloud as well as

more precise tracking, as can be seen by both the measurement of the tracking success and the

green bar in the energy graph indicating if tracking is present or not.

78

Figure 10.4 Hand occlusion. From the top-view the hands were often occluded during the egg-drop-challenge.

10.2 Energy Calculations

Participant one did not move as much as participant three while working, however, because of

much higher body weight of 81 kg compared to 55 kg the estimated average mechanical energy

used was almost the same. Participant two was also very stationary, but has a body weight of

50 kg, resulting in a much lower estimate for mechanical energy use. The energy graphs show

a very small constant base noise that probably influenced the average calculations a bit. The

noise is a result of the small differences in the depth cloud of the persons because of sensor

imprecisions, which results in the average head and torso points moving a bit between frames.

The noise is still almost non-existent in the graph of participant two with brown hair and a more

stable tracking

10.3 Heat Maps

The heat maps show the locations and positions each participant was working in most.

Participant one had a relatively stationary working location indicated by one red silhouette.

Participant two had two main working locations during the experiment, one was used more than

the other as seen in the difference in color intensity. While participant three was the most mobile

and working at several locations by the designated tables.

10.4 Reflections on Experiment

The experiment was tested beforehand by the author, who felt there was substantial time

pressure with only 10 min. In the real experiment on the other hand, three of the participants

implied they were finished before the experiment was over. They were also asked if they felt

79

any time pressure during the experiment whereupon participant three answered “yes, in the

beginning”, while the three others did not feel any time pressure. The fact that participant three

felt time pressure may have contributed to the increased energy use.

The experiment was successful in replicating an early-stage design context, although many

other experiments or variations of the egg-drop-challenge could have highlighted the possible

uses of the application better. In the chosen experiment, the work locations of the participants

were very stationary. An interesting variation could have been to let the participants use all the

tools available within the sensing area in the workshop, and then use the heat map to analyze

the strategies of the participants. Further, reducing the available time could have facilitated

more activity and energy-use. Finally, a drawback of the chosen experiment is that the

participants worked in positions that resulted in occluded hands so hand tracking became

difficult.

Other experiments were considered:

 Comparing different brainstorming activities

 How group size influence activity in brainstorming and how the energy of the

individuals are influenced.

 How energy correlate with outcome in brainstorming

 Comparing prototyping methods. What method facilitate most energy-use

 When ideas are created in brainstorming, can there also be seen a peak in energy-use?

Before or after?

Unfortunately, due to lack of participants and time, these experiments must be included in future

work.

80

81

11 General Reflections from Kinect in Context

During planning and experimenting with different sensing setups in early-stage design contexts,

a few challenges occurred that will be discussed in this section.

11.1 Height of Rooms

Most rooms in the university where the thesis was written have a ceiling height of up to 3 m.

Even though the field of view has been increased in the Kinect v2 to 70 x 60 degrees, the

available sensing area soon becomes a limitation. For ceilings at 3 m height, this equals a 4.2 x

3.5 m sensing area at floor level. At the head level of a person 180 cm tall, this equals a sensing

area of only 1.7 x 1.4 m. If possible, the sensor can be placed at the same height as the max

recommended sensing depth by Microsoft of 4.5 m and have a floor sensing area of 6.3 x 5.2

m, but this isn’t always possible due to practical reasons. Unfortunately, in many early-stage

design contexts, such as prototyping, people often tend to be very mobile as they work and the

sensing area may be insufficient. As discussed earlier, several Kinects could be used to expand

the sensing area, but do involve a substantial overhead from merging several frames.

Figure 11.1 Setups with different heights tried in the thesis.

82

Heights ranging from 2.9 m to 4.4 m was tried throughout the thesis. At higher positions, each

body is represented with less pixels so less information is acquired about the body. At lower

positions a parallax effect is experienced. Parallax effect describes the phenomenon when the

position of an object seen, in this case in the frame, is different depending on the position of the

camera. Figure 11.2 shows a parallax effect for this particular case. The persons in the frame

are standing up straight and only the profile from above should ideally be visible in the frame

plane, still their bodies are covering larger areas of the frame because of the position of the

camera.

Figure 11.2 Parallax effect

The amount of parallax could be calculated from the sensor parameters and the height of the

sensor. This was done in Tseng et al. (2014) and also in the thesis. However, because the

resulting frame resulted in too many missing data pixels from the warping of the image, the

feature was removed. It also didn’t seem to affect the performance of the tracking.

11.2 Recording Sessions

The normal workflow when analyzing work sessions is to record and store the sensing sessions

with Kinect Studio for further analysis or tweaking of the parameters in the tracking application.

With standard surveillance equipment it is normally possible to leave the cameras on for long

periods of time or let the monitoring be triggered from detection of motion. With the Kinect,

this is not straight forward. Recording all the data channels, including depth, IR, audio and color

for a 1 min session means storing roughly 10 GB of data, which will quickly have most hard

drives running out of free space. To be able to store longer recordings and to keep up with the

high data rate coming from the sensor, a thunderbolt drive with transfer speeds of up to 136

83

MB / sec was used together with a MacBook Pro 13” 2015, but still the CPU didn’t manage to

store the data fast enough. Finally, to be able to store the sessions, only the channels for IR and

depth data was used. Resulting in about 88 GB for a one hour session and the transfer speed of

the thunderbolt to be able to transfer the data fast enough.

11.3 Hardware Requirements

As mentioned when comparing the Kinect v1 and v2, the hardware requirements of the Kinect

v2 has increased substantially and may lead to issues, at least for some more time. The

requirement of the computer having an USB 3.0 port was unexpected, as well as the

recommended requirement of processing power higher than Intel I7 3.1 GHz.

11.4 USB 3.0 Cable

The supplied USB 3.0 cable and extension cable in the Kinect 2 for Windows kit are 5 m in

total. The limited cable length became an issue for several setups, especially when mounting in

ceilings. This issue has been extensively addressed and discussed in forums online. The official

answer from Microsoft is that it is only the included cable that is supported. Still, some people

have successfully used USB 3.0 cables that actively strengthens the signal throughout the cable

(Microsoft Team, n.d.-b). Nevertheless, the impression from reading online is, for now, that the

chances of a third-party USB 3.0 extension cable working with the Kinect 2 is relatively small.

Further, the active USB 3.0 cables that could work with the Kinect 2 seems to be expensive (I

don’t want to give an example before testing the cables).

11.5 Cluttered Rooms

In most locations where early-stage design is being done, the areas tend to be cluttered. Also

considering limited sensing areas at low ceiling, it became early clear that a better approach

than start sensing in areas already being used for early-stage design was to customize an area

for sensing. In this way the interaction between people and equipment or materials can be more

precisely analyzed. Further, the people tracking could be customized to the specific setup and

be more precise. People detection and tracking is a very challenging task, and no approaches so

far are robust enough to work in all environments.

84

Figure 11.3 Environments for design activities are often cluttered.

11.6 Easy to Get Started with Kinect

The Kinect SDK 2.0 provides examples covering pretty much all of the features of the Kinect

v2, in both C# and C++. Very limited programming experience is needed to install an example

and access the information about the bodies tracked in the Kinect SDK, such as joint-location,

joint-orientation, lean vector of body, hand-states and more.

85

Figure 11.4 Kinect SDK Browser v2.0 is a good place to start developing an application.

86

87

12 Future Work

Future work specific for the developed body tracker could be stabilizing the tracking with

Kalman filters to get more robust and consistent energy calculations. The hand tracking needs

improvements, which could be done by including color data and traditional hand tracking.

The energy calculations can be smarter. For instance, the estimation of center of mass should

be improved and the weight of a person could be estimated from height and size of blob of

whole body. The energy estimations need to be control measured. Another heat map could also

be calculated, showing not heat of locations but where in the frame energy was used.

Further, data from several Kinect v2 sensors can be combined, using more hardware and

computational power. A design observatory setup can be multiple Kinects positioned high in

up in a room with a clear view of the participants it is supposed to track. The number of Kinects

needed is dependent on the requirements of minimizing occlusion and thereby get more stable

tracking. The tracking results from the Microsoft Body Tracker, which can track 6 people very

precisely, could be streamed over a network and fused together, or a tracker for the specific

context can be written. In addition, object detection and tagging of locations and objects can be

included to detect amount of interaction with tools and machines.

With consistent tracking of bodies and body parts, interactions between people can possibly be

automatically captured and analyzed. Head orientation combined with the very capable audio

recognition in the Microsoft API could tell who is talking when and to whom. By using the

Kinect Gesture Builder or defining a gesture database with machine learning, interaction

gestures such as pointing at someone, giving something, leaning in concentrated, leaning back

relaxed, moving head confused, moving impatiently, arms crossed passively, rhythmic

movements and more could be detected and possibly automatically analyzed. Energy estimates

can be combined with the gestures and real-time energy estimates can be used to explore how

the occurrences of creativity relate to energy use, and what type of energy use.

The audio capabilities of the Kinect v2 was not thoroughly tested in this thesis. Still, the

research done indicate that speech recognition in combination with the ability to locate the

source of the voice can greatly automate the cumbersome process of transcribing design

sessions, or at least tag locations in the session where specific words are said. Future work

involves exploring these capabilities.

Many research questions for future work that an automated design observatory could provide

contributions to occurred throughout the thesis:

88

 How do the amount of energy used relate to the quantity and quality of the outcome of

creative sessions?

 How do the timing of ideas relate to energy-use?

 What design activities facilitate more movement?

 How can the interior of a room influence energy-use?

 How do group sizes affect individual energy-use?

 At what group-sizes does subgrouping start to happen?

 How does activity and energy-use evolve with length of sessions?

 How does time pressure influence energy-use?

 From gaze, speech patterns, gestures and pose – how much do participants pay

attention when other participants are talking?

 What prototyping methods facilitate interaction?

 How is the group dynamic influenced participants are given real-time feedback on how

much they are talking compared to rest of the group

89

13 Conclusion

The goals of this thesis were to evaluate the Kinect v1 and Kinect v2 sensors, their potential

contribution to the future of design observation and how their 3D sensing capabilities can be

used to quantify human activity in design activities.

The thesis started out with reviewing current literature on design observation and non-intrusive

sensing. Further, a thorough review of the Kinect v1 and v2 followed – the two sensors where

compared and possibilities and limitations from a design observation perspective were

highlighted. Possible observation setups with the Kinects were considered, and a setup using a

Kinect v2 with a top-view of the participants was chosen. Literature relevant to achieving

successful observation for the chosen approach was reviewed – existing research on human

tracking in depth data from top-view as well as research on calculating energy-use from human

movement. A proof-of-concept tracking application was developed for the setup. The

application tracks participants, estimates mechanical energy-use real-time and creates heat

maps from their movements. The tracking application was tested in a prototype of a design

experiment of a realistic early-stage design context. Further, generally challenging scenarios

for sensing with the Kinect were discussed, as well as issues to be aware of when using the

Kinect v2 for design observation. Finally, ideas for future work were presented.

Interpreting human behavior with software can automate design observation, and using depth

data to achieve this solves many of the limitations from traditional RGB data. The depth data

from the Kinect is unaffected by illumination changes and color. In addition, 3D depth data

greatly simplifies the task of differentiating between background and foreground as well as

allowing the tracking algorithms to use the naturally characteristic 3D shapes of humans in the

calculations.

In the new Kinect v2, a different depth sensing technology is used than in the old Kinect v1.

The depth sensing technology called Indirect Time of Flight gives the Kinect v2 sensor more

accurate depth measurements than in the predecessor. As the error in the depth measurements

increases quadratic with increasing distance in the old sensor, the error in the new sensor

increases linearly. Indirect Time of Flight also enables the Kinect v2 to provide a higher

resolution in the depth data. The higher resolution and increased accuracy makes the Kinect v2

an interesting sensor for sensing more subtle movements, such as facial expressions and hand

gestures. The Software Development Kit (SDK) provided with the Kinect v2 is also very much

improved. The main disadvantages with the new Kinect v2 are the challenges met when trying

90

to combine data from several sensors. While the old SDKs supported multiple Kinect v1

sensors, only one Kinect v2 is supported in the new. Even though the Kinect v2 has a wider

field of view, this may limit its use. Still, there are ways to utilize multiple Kinects, but so far

more hardware and tweaks are necessary.

The human tracking software developed for the Kinect v2 by Microsoft has also been improved

in the SDK 2.0. This body tracker is the current state-of-the-art for tracking humans from a

frontal view. Even though the Microsoft body tracker is very capable, it was not used in the

proof of concept application. I wanted the proof of concept application to be as non-intrusive

as possible, without putting any constraints on the working position of the people in the scene.

I also wanted the application to be able to capture all movements in the sensing area. For this

to be achieved, occlusion needed to be minimized. Therefore a setup with one Kinect v2

mounted in the ceiling facing straight down was chosen. The option of using multiple Kinects

was considered, however, for the scope of the thesis, it was not feasible to acquire hardware for

two Kinect v2s. Two Kinect v1s could have been used, but the higher specifications and

performance of the new Kinect v2s made it the most desirable choice.

A prototype of an experiment was developed to test the developed application and the

observation setup. The prototype is a variation of the egg-drop-challenge where the participants

are supposed to build a way to protect their egg from braking with the materials provided when

dropped from increasing heights. The results showed that the application was able to track the

participants real-time and calculate precise heat maps of their movements. The mechanical

energy used by the participants was also estimated real-time, although with a few sources of

error. While working, the participants often leaned over the table, which resulted in occluded

hands that could not be tracked and had to be excluded from the energy calculations. Further,

the energy calculations makes some assumptions about the distribution of mass in a person’s

body that leads to inaccuracies. Still, research indicate that with precise tracking of body

segments, the calculated mechanical energy-use of each body segment is sufficient to estimate

total energy-use.

Some especially challenging scenarios and sources of error for the Kinect sensors became

evident throughout the thesis. Reflective and very light absorbing materials may result in the

sensor not being able to calculate a depth measurement correctly or not at all. The depth

measurements around the edges of an object usually become inaccurate due to a phenomenon

called “flying pixels”. Human trackers in general, struggles with separating humans that are

positioned very close to each other. Lastly, the outer regions of the sensing area contain less

91

valid and more inaccurate depth measurements than the center region. This is because the

infrared beams that are used to calculate the depths have to travel further in the outer regions.

For the more specific application of using Kinect v2s in a design observatory, some issues are

worth being aware of. The sensing area and the sensing depths of the Kinects are limited.

Careful placement and much space is necessary if bigger areas are to be covered. It is sometimes

desired that sensing sessions are recorded for later analysis. The data rate produced by the

Kinect sensor could potentially be enormous depending on how many of the data streams that

are used. The requirement of having one USB 3.0 host controller for each sensor is final. The

host controller needs to reserve the high bandwidth of the sensor. The cable shipped with the

Kinect v2 for windows is 5 m. As of now, not that many extension cables seem to work. Apart

from these issues, the software available from Microsoft contains loads of examples and the

API is very well documented. Very little time and effort is needed to start sensing and

prototyping setups with the new Kinect sensor.

Future work involves combining several Kinect v2s in a permanent design observatory. With

careful placement of the sensors to minimize occlusion and the necessary hardware, very

precise tracking of participants in design activities is possible. More sophisticated energy

estimates can be made from the tracking of individual body segments. How a database of

gestures specific for design contexts can be defined and automatically detected and analyzed

should be explored. Tools can easily be tagged and the interaction with the participants can be

measured. Finally, the directional audio and speech recognition capabilities of the Kinect v2

sensor should be explored and potentially be used to automatically transcribe design sessions

or be combined with gestures to start automatically analyzing basic interaction between

participants.

92

93

14 Reflections on Process

The start of the thesis semester was a bit hectic. The startup had been postponed until March

because of an intense pre-master project at CERN, which also meant that the pre-master was

about another topic than the thesis and could not be used as foundation. Looking back, I would

have prioritized spending more time before the startup of my thesis narrowing down the scope.

Much time was spent in the beginning of the thesis speculating in what was most interesting to

sense and if it was feasible to accomplish in the thesis. I eventually realized many of the

questions I had been trying to find an answer to could only be answered by starting developing

the sensing.

The thesis was written at the Sino-Finnish Center (SFC) at Tongji University in Shanghai. The

SFC is a joint effort of Tongji University and Aalto University in Finland, and is part of the

Design Factory Network originating from the Aalto University. The ambition of the SFC is to

bring students, companies and researchers from different disciplines and cultures together. I

learned a lot during my stay at the SFC. Aside from learning a great deal about the research

areas relevant to my thesis and getting experience in planning and executing a long-time project,

I got first-hand experience with a culture very different from the Norwegian.

Everything takes more time in China, and the six extra weeks we get when doing our thesis

abroad was very welcome. Things that needed to be taken care of in the beginning of the stay,

such as medical examinations, registration at school and police office, residence permit,

opening bank accounts and getting sim-card, all made the first month of the thesis more hectic.

In China, you never know what you get and there is most of the time a problem with something.

In addition to dealing with China when taking care of all the required start up hassle, hardware

for the thesis eventually needed to be purchased – the Kinects, a computer that could run the

Kinect v2 and thunder-drive storage. Purchases such as these are trivial in Norway, yet in China,

90% of what you buy online are fake and you never know what. Websites are in Chinese, with

almost unusable translator tools, and very few speak English in stores. By default, all internet

access are restricted. A VPN service can be used, for instance for all Google services, but the

continuous battle between the Chinese firewalls and the VPN services makes the VPN slow and

unpredictable. Through NTNU, we are provided with access to publications in several useful

research databases such as Scopus, ScienceDirect and IEEE. Unfortunately, from the middle of

April until June, the VPN to NTNU was blocked. Most of the time the publications could be

94

found by using another VPN and Google, but the process of finding research was significantly

slowed down.

A project plan was created at the beginning of the thesis. The plan was to first do an explorative

phase where early-stage design activities would be observed, to get a sense of what activities

and parameters would be interesting to measure. The SFC had started thinking about setting up

a group work room for monitoring before I arrived, and it seemed natural for me to contribute

to that. Six surveillance cameras were mounted, wired to a close-by monitoring room and

hooked up to a screen (Figure 52, 53). In retrospect, I realize that too much time was used on

this. The goal of the monitoring setup was to observe early-stage design activities, which

showed itself challenging. Barely any design activities were happening at the SFC throughout

the semester, and even less in the observed room. The room had originally been dedicated to

one of the project courses at the SFC. However, due to the SFC being located far from the main

campus and lacking supervision in the course, the projects in the course had ceased activity.

Getting more people to use the observed room was tried by hanging up posters and notes. Still,

in the beginning of May it could be seen from motion detected recordings that the room only

had been used 3 hours in total during the whole April. A much more efficient way of exploring

design activities would have been to just use a handheld camera and go to the places where

early-stage design was happening, perhaps at other locations on campus.

95

Figure 14.1 Some of the surveillance cameras mounted. The one up to the right could be remote controlled.

Figure 14.2 The monitoring room with monitoring setup.

96

It was planned to do more experiments with the Kinect earlier. Nevertheless, as many have

experienced before me, estimating how much time implementation of software takes is a

challenging task. Process-wise it would have been interesting to try to adopt ideas from agile

software development methodology such as SCRUM and Minimum Viable Product, and

through that have been able to have tracking software with basic functionalities ready earlier

which could shorten the iteration time for developing the sensing setup.

14.1 Sino-Finnish Center

There were very few design projects happening at the SFC, and in general very low activity.

The few students that were there outside lectures, where mostly doing homework in other

courses. A couple companies had their offices there, but creative sessions or prototyping was

very rarely done. A contribution to the low student activity was the fact that most of the rooms

for group activities at the SFC was locked. The students could ask the staff to open the rooms,

but it was rarely done, probably because they didn’t know they could. Further, the university

policy said that a responsible person needed to be present at the SFC at all opening hours,

resulting in the place closing every evening at 21.00 and in weekends 17.00-18.00, which

limited the flexibility of the students’ work hours.

The SFC has great potential as a platform for intercultural interaction. Unfortunately, they

haven’t been very successful yet, and during my stay there some pain points have become clear.

Everything is very unpredictable at the SFC. It’s not clear whether courses will take place until

far into the semester, there were incidences of classes being cancelled only hours before

scheduled time, presentations change day the same morning as the day they were scheduled

without all participants being informed, and student projects not being followed up by the

supervisors and left to themselves. Also, the SFC’s goal of being a facilitator for interaction

between cultures has much potential for improvement. One example is that the official language

of the SFC is English, still, many classes and workshops are held in Chinese which do not give

a welcoming and international impression for foreigners.

There are many very capable people connected to the SFC that could have easily made the place

more successful in very short time. However, that will not happen when the relevant people

continue to be dishonest towards themselves and outwards to others about the reality and the

real challenges. Which is also an observation about Shanghai in general, albeit from my limited

time there (5 months). The obvious focus on façade over quality and integrity of the main

activities in the SFC is a challenge. I spent most of my days working at the SFC, and during my

97

stay there I got the feeling there were more guided sightseeing tours showing of the creative

interior and bragging about how successful the place was than actual students learning and

interacting there. If you hold too many guided tours and tell all visitors that everything is

perfect, you eventually start believing it.

My advice is to further focus and spread the strategy and core values of the SFC. Especially

among the staff and lecturers. It should be clear to the students that it is a place for them, a place

where they are welcome and belong. A Design Factory should contain a self-run student

community and this is only possible if the students are given more freedom and trust. Also,

procedures for including new students, both international and Chinese, in the routines and

activities at the SFC should be developed.

The culture difference between Scandinavia and China is major. The SFC is so far no exception.

98

99

15 References

Algazi, V. R., Avendano, C., & Duda, R. O. (2001). Estimation of a Spherical-Head Model

from Anthropometry. Journal of the Audio Engineering Society, 49(6), 472–479.

Amon, C., & Fuhrman, F. (2014). Evaluation of the Spatial Resolution Accuracy of the Face

Tracking System for Kinect for Windows v1 and v2. Presented at the 6th Congress of

Alps-Adria Acoustics Assosiation.

Asteriadis, S., Chatzitofis, A., Zarpalas, D., Alexiadis, D. S., & Daras, P. (2013). Estimating

Human Motion from Multiple Kinect Sensors. In Proceedings of the 6th International

Conference on Computer Vision / Computer Graphics Collaboration Techniques and

Applications (pp. 3:1–3:6). New York, NY, USA: ACM.

http://doi.org/10.1145/2466715.2466727

Basu, S., Choudhury, T., Clarkson, B., & Pentl, A. (2001). Towards measuring human

interactions in conversational settings. In in IEEE Int’l Workshop on Cues in

Communication (CUES 2001.

Bauer, S., Wasza, J., Haase, S., Marosi, N., & Hornegger, J. (2011). Multi-modal surface

registration for markerless initial patient setup in radiation therapy using microsoft’s

Kinect sensor. In 2011 IEEE International Conference on Computer Vision Workshops

(ICCV Workshops) (pp. 1175–1181). http://doi.org/10.1109/ICCVW.2011.6130383

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

http://doi.org/10.1023/A:1010933404324

Brekelmans, J. (2014, September 7). Multi Kinect v2. Retrieved from

http://brekel.com/multikinectv2/

100

Brisswalter, J., Collardeau, M., & René, A. (2012). Effects of Acute Physical Exercise

Characteristics on Cognitive Performance. Sports Medicine, 32(9), 555–566.

http://doi.org/10.2165/00007256-200232090-00002

Budiu, M., Shotton, J., Murray, D. G., & Finocchio, M. (2011). Parallelizing the training of the

Kinect body parts labeling algorithm. Big Learning: Algorithms, Systems and Tools for

Learning at Scale, 1–6.

Butkiewicz, T. (2014). Low-cost coastal mapping using Kinect v2 time-of-flight cameras. In

Oceans - St. John’s, 2014 (pp. 1–9). http://doi.org/10.1109/OCEANS.2014.7003084

Butler, D. A., Izadi, S., Hilliges, O., Molyneaux, D., Hodges, S., & Kim, D. (2012).

Shake’n’sense: reducing interference for overlapping structured light depth cameras. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.

1933–1936). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2208335

Carrizosa, K., Eris, Ö., Milne, A., & Mabogunje, A. (2002). Building the Design Observatory:

a Core Instrument for Design Research. DS 30: Proceedings of DESIGN 2002, the 7th

International Design Conference, Dubrovnik.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2005.

CVPR 2005 (Vol. 1, pp. 886–893 vol. 1). http://doi.org/10.1109/CVPR.2005.177

del-Blanco, C. R., Mantecón, T., Camplani, M., Jaureguizar, F., Salgado, L., & García, N.

(2014). Foreground Segmentation in Depth Imagery Using Depth and Spatial Dynamic

Models for Video Surveillance Applications. Sensors (Basel, Switzerland), 14(2), 1961–

1987. http://doi.org/10.3390/s140201961

de Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. Journal

of Biomechanics, 29(9), 1223–1230.

101

Dillencourt, M. B., Samet, H., & Tamminen, M. (1992). A General Approach to Connected-

component Labeling for Arbitrary Image Representations. J. ACM, 39(2), 253–280.

http://doi.org/10.1145/128749.128750

Dinar, M., Shah, J. J., Cagan, J., Leifer, L., Linsey, J., Smith, S. M., & Hernandez, N. V. (2015).

Empirical Studies of Designer Thinking: Past, Present, and Future. Journal of

Mechanical Design, 137(2), 021101–021101. http://doi.org/10.1115/1.4029025

Dutta, T. (2012). Evaluation of the KinectTM sensor for 3-D kinematic measurement in the

workplace. Applied Ergonomics, 43(4), 645–649.

http://doi.org/10.1016/j.apergo.2011.09.011

E3: Microsoft shows off gesture control technology for Xbox 360. (2009, June 1). Retrieved

from http://latimesblogs.latimes.com/technology/2009/06/microsofte3.html

Fernandez-Sanchez, E., Diaz, J., & Ros, E. (2013). Background Subtraction Based on Color

and Depth Using Active Sensors. Sensors, 13(7), 8895–8915.

http://doi.org/10.3390/s130708895

Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting. Journal of Computer and System Sciences,

55(1), 119–139. http://doi.org/10.1006/jcss.1997.1504

Galna, B., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., & Rochester, L. (2014). Accuracy

of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s

disease. Gait & Posture, 39(4), 1062–1068.

http://doi.org/10.1016/j.gaitpost.2014.01.008

Girshick, R., Shotton, J., Kohli, P., Criminisi, A., & Fitzgibbon, A. (n.d.). Efficient Regression

of General-Activity Human Poses from Depth Images.

102

Gonzalez-Jorge, H., Rodríguez-Gonzálvez, P., Martínez-Sánchez, J., González-Aguilera, D.,

Arias, P., Gesto, M., & Díaz-Vilariño, L. (2015). Metrological comparison between

Kinect I and Kinect II sensors. Measurement, 70, 21–26.

http://doi.org/10.1016/j.measurement.2015.03.042

González-Jorge, H., Zancajo, S., González-Aguilera, D., & Arias, P. (2015). Application of

Kinect Gaming Sensor in Forensic Science. Journal of Forensic Sciences, 60(1), 206–

211. http://doi.org/10.1111/1556-4029.12565

Gordon, G., Darrell, T., Harville, M., & Woodfill, J. (1999). Background estimation and

removal based on range and color. In Computer Vision and Pattern Recognition, 1999.

IEEE Computer Society Conference on. (Vol. 2). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=784721

Greff, K. (2012). A COMPARISON BETWEEN BACKGROUND SUBTRACTION

ALGORITHMS USING A CONSUMER DEPTH CAMERA. In VISAPP (pp. 431–

436). SciTePress - Science and and Technology Publications.

http://doi.org/10.5220/0003849104310436

Huang, T. S., Yang, G. J., & Tang, G. Y. (1979). A fast two-dimensional median filtering

algorithm. Acoustics, Speech and Signal Processing, IEEE Transactions on, 27(1), 13–

18.

Jia, W., Yi, W.-J., Saniie, J., & Oruklu, E. (2012). 3D image reconstruction and human body

tracking using stereo vision and Kinect technology. In 2012 IEEE International

Conference on Electro/Information Technology (EIT) (pp. 1–4).

http://doi.org/10.1109/EIT.2012.6220732

Kalman, R. (1960). A New Approach to Linear Filtering and Prediction Problems. Transactions

of the ASME – Journal of Basic Engineering, (82 (Series D)), 35–45.

103

Kępski, M., & Kwolek, B. (2014). Person Detection and Head Tracking to Detect Falls in Depth

Maps. In Computer Vision and Graphics (pp. 324–331). Springer. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-319-11331-9_39

Kim, K., Chalidabhongse, T. H., Harwood, D., & Davis, L. (2005). Real-time Foreground-

background Segmentation Using Codebook Model. Real-Time Imaging, 11(3), 172–

185. http://doi.org/10.1016/j.rti.2004.12.004

Kinect. (n.d.). Retrieved August 30, 2015, from https://en.wikipedia.org/wiki/Kinect

Kinect for Windows. (n.d.). Retrieved May 19, 2015, from https://www.microsoft.com/en-

us/kinectforwindows/

Kohli, P., & Shotton, J. (2013). Key developments in human pose estimation for kinect. In

Consumer Depth Cameras for Computer Vision (pp. 63–70). Springer. Retrieved from

http://link.springer.com/chapter/10.1007/978-1-4471-4640-7_4

Kolb, A. (2009). Dynamic 3D Imaging: DAGM 2009 Workshop, Dyn3D 2009, Jena, Germany,

September 9, 2009, Proceedings. Springer Science & Business Media.

Kunz, A., Alavi, A., & Sinn, P. (2014). Integrating Pointing Gesture Detection for Enhancing

Brainstorming Meetings Using Kinect and PixelSense. Procedia CIRP, 25, 205–212.

http://doi.org/10.1016/j.procir.2014.10.031

Lachat, E., Macher, H., Mittet, M.-A., Landes, T., & Grussenmeyer, P. (2015). FIRST

EXPERIENCES WITH KINECT V2 SENSOR FOR CLOSE RANGE 3D

MODELLING. ISPRS - International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, XL-5/W4, 93–100.

http://doi.org/10.5194/isprsarchives-XL-5-W4-93-2015

104

Lepetit, V., Lagger, P., & Fua, P. (2005). Randomized trees for real-time keypoint recognition.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

2005. CVPR 2005 (Vol. 2, pp. 775–781 vol. 2). http://doi.org/10.1109/CVPR.2005.288

Lienhart, R., Kuranov, A., & Pisarevsky, V. (2003). Empirical Analysis of Detection Cascades

of Boosted Classifiers for Rapid Object Detection. In B. Michaelis & G. Krell (Eds.),

Pattern Recognition (pp. 297–304). Springer Berlin Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-540-45243-0_39

Liu, Z., Tang, S., Qin, H., & Bu, S. (2012). Evaluating User’s Energy Consumption Using

Kinect Based Skeleton Tracking. In Proceedings of the 20th ACM International

Conference on Multimedia (pp. 1373–1374). New York, NY, USA: ACM.

http://doi.org/10.1145/2393347.2396491

Li, W., Zhang, Z., & Liu, Z. (2010). Action recognition based on a bag of 3d points. In

Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer

Society Conference on (pp. 9–14). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5543273

McCowan, I., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M., & Zhang, D. (2005).

Automatic analysis of multimodal group actions in meetings. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 27(3), 305–317.

http://doi.org/10.1109/TPAMI.2005.49

Microsoft Team. (n.d.-a). Kinect for Windows SDK 2.0. Retrieved from

https://msdn.microsoft.com/nb-no/library/dn799271.aspx

Microsoft Team. (n.d.-b). Which USB 3 extenders are Kinect v2 compatible? Retrieved from

https://social.msdn.microsoft.com/Forums/en-US/17f76f3c-810e-4b4f-a94f-

2c706f5a6c49/which-usb-3-extenders-are-kinect-v2-compatible?forum=kinectv2sdk

105

Minneman, S., Harrison, S., Janssen, B., Kurtenbach, G., Moran, T., Smith, I., & van Melle, B.

(1995). A Confederation of Tools for Capturing and Accessing Collaborative Activity.

In Proceedings of the Third ACM International Conference on Multimedia (pp. 523–

534). New York, NY, USA: ACM. http://doi.org/10.1145/217279.215316

Min Sun, Kohli, P., & Shotton, J. (2012). Conditional regression forests for human pose

estimation (pp. 3394–3401). IEEE. http://doi.org/10.1109/CVPR.2012.6248079

Nakamura, Y. (2012). Human Sensing. In T. Ishida (Ed.), Field Informatics (pp. 39–53).

Springer Berlin Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-642-29006-0_3

Nathan, D., Huynh, D. Q., Rubenson, J., & Rosenberg, M. (2015). Estimating Physical Activity

Energy Expenditure with the Kinect Sensor in an Exergaming Environment. PLoS ONE,

10(5). http://doi.org/10.1371/journal.pone.0127113

Nguyen, D. T., Li, W., & Ogunbona, P. (2009). A part-based template matching method for

multi-view human detection. In Image and Vision Computing New Zealand, 2009.

IVCNZ ’09. 24th International Conference (pp. 357–362).

http://doi.org/10.1109/IVCNZ.2009.5378380

Nguyen, V.-T., Vu, H., & Tran, T.-H. (2015). An Efficient Combination of RGB and Depth for

Background Subtraction. In Q. A. Dang, X. H. Nguyen, H. B. Le, V. H. Nguyen, & V.

N. Q. Bao (Eds.), Some Current Advanced Researches on Information and Computer

Science in Vietnam (Vol. 341, pp. 49–63). Cham: Springer International Publishing.

Retrieved from http://link.springer.com/10.1007/978-3-319-14633-1_4

Oosterhout, T. (n.d.). HEAD DETECTION IN STEREO DATA FOR PEOPLE COUNTING

AND SEGMENTATION.

106

OpenKinect. (2014, June). Multiple kinects V2 tested. Retrieved from

https://github.com/christiankerl/libfreenect2/issues/7#issuecomment-47422005

OpenKinect.org. (n.d.). Retrieved June 7, 2015, from http://openkinect.org/wiki/Main_Page

Oppezzo, M., & Schwartz, D. L. (2014). Give your ideas some legs: The positive effect of

walking on creative thinking. Journal of Experimental Psychology: Learning, Memory,

and Cognition, 40(4), 1142–1152. http://doi.org/10.1037/a0036577

Perreault, S., & Hébert, P. (2007). Median filtering in constant time. Image Processing, IEEE

Transactions on, 16(9), 2389–2394.

Plagemann, C., Ganapathi, V., Koller, D., & Thrun, S. (2010). Real-time identification and

localization of body parts from depth images. In 2010 IEEE International Conference

on Robotics and Automation (ICRA) (pp. 3108–3113).

http://doi.org/10.1109/ROBOT.2010.5509559

PrimeSense Supplies 3-D-Sensing Technology to “Project Natal” for Xbox 360. (2010, April

31). Retrieved from http://news.microsoft.com/2010/03/31/primesense-supplies-3-d-

sensing-technology-to-project-natal-for-xbox-360/

Qwertie. (n.d.). Head-to-head benchmark: C++ vs .NET. Retrieved from

http://www.codeproject.com/Articles/212856/Head-to-head-benchmark-Csharp-vs-

NET

Rainer Stiefelhagen. (2002, May 6). Tracking and Modeling Focus of Attention in Meetings.

Universitat Karlsruhe.

Ren, Z., Yuan, J., & Zhang, Z. (2011). Robust Hand Gesture Recognition Based on Finger-

earth Mover’s Distance with a Commodity Depth Camera. In Proceedings of the 19th

ACM International Conference on Multimedia (pp. 1093–1096). New York, NY, USA:

ACM. http://doi.org/10.1145/2072298.2071946

107

Santhanam, T., Sumathi, C. P., & Gomathi, S. (2012). A Survey of Techniques for Human

Detection in Static Images. In Proceedings of the Second International Conference on

Computational Science, Engineering and Information Technology (pp. 328–336). New

York, NY, USA: ACM. http://doi.org/10.1145/2393216.2393272

Scopus. (n.d.). Retrieved June 8, 2015, from http://www.scopus.com/

Seer, S., Brändle, N., & Ratti, C. (2014a). Kinects and human kinetics: A new approach for

studying pedestrian behavior. Transportation Research Part C: Emerging

Technologies, 48, 212–228. http://doi.org/10.1016/j.trc.2014.08.012

Seer, S., Brändle, N., & Ratti, C. (2014b). Kinects and human kinetics: A new approach for

studying pedestrian behavior. Transportation Research Part C: Emerging

Technologies, 48, 212–228. http://doi.org/10.1016/j.trc.2014.08.012

Sharp, T. (2012). The Vitruvian Manifold: Inferring Dense Correspondences for One-shot

Human Pose Estimation. In Proceedings of the 2012 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (pp. 103–110). Washington, DC, USA: IEEE

Computer Society. Retrieved from http://dl.acm.org/citation.cfm?id=2354409.2354668

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., … Blake, A. (2013).

Real-Time Human Pose Recognition in Parts from Single Depth Images. In R. Cipolla,

S. Battiato, & G. M. Farinella (Eds.), Machine Learning for Computer Vision (pp. 119–

135). Springer Berlin Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-642-28661-2_5

Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M., … Blake, A.

(2013). Efficient Human Pose Estimation from Single Depth Images. In A. Criminisi &

J. Shotton (Eds.), Decision Forests for Computer Vision and Medical Image Analysis

108

(pp. 175–192). Springer London. Retrieved from

http://link.springer.com/chapter/10.1007/978-1-4471-4929-3_13

Stone, E. E., & Skubic, M. (2011). Evaluation of an inexpensive depth camera for passive in-

home fall risk assessment. In 2011 5th International Conference on Pervasive

Computing Technologies for Healthcare (PervasiveHealth) (pp. 71–77).

Surie, D., Lindgren, H., & Qureshi, A. (2013). Kitchen AS-A-PAL: Exploring Smart Objects

as Containers, Surfaces and Actuators. In A. van Berlo, K. Hallenborg, J. M. C.

Rodríguez, D. I. Tapia, & P. Novais (Eds.), Ambient Intelligence - Software and

Applications (pp. 171–178). Springer International Publishing. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-319-00566-9_22

Surie, D., Partonia, S., & Lindgren, H. (2013). Human Sensing Using Computer Vision for

Personalized Smart Spaces. In Ubiquitous Intelligence and Computing, 2013 IEEE 10th

International Conference on and 10th International Conference on Autonomic and

Trusted Computing (UIC/ATC) (pp. 487–494). http://doi.org/10.1109/UIC-

ATC.2013.24

Tang, A., Lu, K., Wang, Y., Huang, J., & Li, H. (2015). A Real-Time Hand Posture Recognition

System Using Deep Neural Networks. ACM Trans. Intell. Syst. Technol., 6(2), 21:1–

21:23. http://doi.org/10.1145/2735952

Tang, J. C. (1989). Listing, Drawing and Gesturing in Design: A Study of the Use of Shared

Workspaces by Design Teams. Retrieved August 29, 2015, from

http://cumincad.scix.net/cgi-bin/works/Show?1b88

Tang, J. C., & Leifer, L. J. (1988). A framework for understanding the workspace activity of

design teams. In Proceedings of the 1988 ACM conference on Computer-supported

109

cooperative work (pp. 244–249). ACM. Retrieved from

http://dl.acm.org/citation.cfm?id=62285

Tang, J. C., & Leifer, L. J. (1991). An observational methodology for studying group design

activity. Research in Engineering Design, 2(4), 209–219.

http://doi.org/10.1007/BF01579218

TEIXEIRA, T., DUBLON, G., & SAVVIDES, A. (2010). A Survey of Human-Sensing:

Methods for Detecting Presence, Count, Location, Track, and Identity. ENALAB

Technical Report. Retrieved from

http://thiagot.com/papers/teixeira_techrep10_survey_of_human_sensing.pdf

Tian, Q., Zhou, B., Zhao, W., Wei, Y., & Fei, W. (2013). Human Detection using HOG Features

of Head and Shoulder Based on Depth Map. Journal of Software, 8(9).

http://doi.org/10.4304/jsw.8.9.2223-2230

Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica,

112(3), 297–324. http://doi.org/10.1016/S0001-6918(02)00134-8

Törlind, P., Sonalkar, N., Bergström, M., Blanco, E., Hicks, B., & McAlpine, H. (2009).

Lessons Learned and Future Challenges for Design Observatory Research. DS 58-2:

Proceedings of ICED 09, the 17th International Conference on Engineering Design,

Vol. 2, Design Theory and Research Methodology, Palo Alto, CA, USA, 24.-27.08.2009.

Torres, R., Huerta, M., Clotet, R., González, R., Sánchez, L. E., Rivas, D., & Erazo, M. (2015).

A kinect based approach to assist in the diagnosis and quantification of parkinson’s

disease (Vol. 49, pp. 461–464). Presented at the IFMBE Proceedings.

http://doi.org/10.1007/978-3-319-13117-7_118

Tseng, T.-E., Liu, A.-S., Hsiao, P.-H., Huang, C.-M., & Fu, L.-C. (2014). Real-time people

detection and tracking for indoor surveillance using multiple top-view depth cameras.

110

In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

2014) (pp. 4077–4082). http://doi.org/10.1109/IROS.2014.6943136

Van de Walle, P., Hallemans, A., Schwartz, M., Truijen, S., Gosselink, R., & Desloovere, K.

(2012). Mechanical energy estimation during walking: Validity and sensitivity in typical

gait and in children with cerebral palsy. Gait & Posture, 35(2), 231–237.

http://doi.org/10.1016/j.gaitpost.2011.09.012

Vangos Pterneas. (n.d.). How to use Kinect HD Face. Retrieved from

http://www.codeproject.com/Articles/998379/How-to-use-Kinect-HD-Face

Velardo, C., & Dugelay, J.-L. (2011). Real time extraction of body soft biometric from 3D

videos (p. 781). ACM Press. http://doi.org/10.1145/2072298.2072454

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple

features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2001. CVPR 2001 (Vol. 1, pp. I–511–I–518 vol.1).

http://doi.org/10.1109/CVPR.2001.990517

Vladimir Zatsiorsky, & Boris Prilutsky. (n.d.). Biomechanics of Skeletal Muscles. Human

Kinetics.

When will the driver support multiple Kinect 2’s per computer? (2014, September 20).

Retrieved from https://social.msdn.microsoft.com/Forums/en-US/294c89ca-c947-

4e5c-8f00-af66417ea12e/when-will-the-driver-support-multiple-kinect-2s-per-

computer?forum=kinectv2sdk

Williams, K. R. (1985). The relationship between mechanical and physiological energy

estimates. Medicine and Science in Sports and Exercise, 17(3), 317–325.

Wilson, A. (2015). RoomAlive Toolkit. Microsoft. Retrieved from

http://research.microsoft.com/en-us/projects/roomalivetoolkit/

111

Yang, K., Wei, B., Wang, Q., Ren, X., Xu, Y., & Liu, H. (2014). A 3-D Depth Information

Based Human Motion Pose Tracking Algorithms. Sensors & Transducers (1726-5479),

174(7). Retrieved from

http://www.sensorsportal.com/HTML/DIGEST/july_2014/Vol_174/P_2208.pdf

Yang, L., Zhang, L., Dong, H., Alelaiwi, A., & Saddik, A. E. (2015). Evaluating and improving

the depth accuracy of Kinect for Windows v2. IEEE Sensors Journal, 15(8), 4275–

4285. http://doi.org/10.1109/JSEN.2015.2416651

Zhang, X., Yan, J., Feng, S., Lei, Z., Yi, D., & Li, S. Z. (2012). Water Filling: Unsupervised

People Counting via Vertical Kinect Sensor. In 2012 IEEE Ninth International

Conference on Advanced Video and Signal-Based Surveillance (AVSS) (pp. 215–220).

http://doi.org/10.1109/AVSS.2012.82

Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE MultiMedia, 19(2), 4–10.

http://doi.org/10.1109/MMUL.2012.24

Zhou, Q., & Aggarwal, J. K. (2001). Tracking and classifying moving objects from video. In

Proceedings of IEEE Workshop on Performance Evaluation of Tracking and

Surveillance (pp. 46–54). Hawaii, USA.

Zhu, L., & Wong, K.-H. (2013). Human Tracking and Counting Using the KINECT Range

Sensor Based on Adaboost and Kalman Filter. In G. Bebis, R. Boyle, B. Parvin, D.

Koracin, B. Li, F. Porikli, … D. Gotz (Eds.), Advances in Visual Computing (pp. 582–

591). Springer Berlin Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-642-41939-3_57

112

113

16 Appendix

16.1 Dropbox folder

URL:

https://www.dropbox.com/sh/zmmljibbnk1ycx4/AAC5nwlxHsAM2ICH3GzRSgY_a?dl=0

Content Explanation

BugRoomPosters

[subfolder]

 Posters made to recruit and inform people about the

observation room.

Diagnostics [subfolder] Raw .xlsx files from various diagnostics.

Photos [subfolder] Photos taken throughout the thesis.

FourMetersSitting1.xef Kinect recording of a person walking into the frame and

sitting by a table with the Kinect mounted at 4 meters height.

LeifErikBjoerkliA3.pdf Mandatory A3 poster made in the beginning of the project

describing the thesis.

RiskAssessment.pdf Mandatory risk assessment form.

ThesisContract.pdf The thesis contract with supervisor.

16.2 Recordings

Due to the size of the recordings, ranging from 2-90 GB and about 200GB in total, the

recordings where copied to an external hard-drive and given to my supervisor Martin Steinert.

One recording is available in the Dropbox folder.

16.3 Tracking application on GitHub

The tracking application can be cloned from the following GitHub repository:

https://github.com/leiferikbjorkli/Kinect2TrackingTopView.git

https://www.dropbox.com/sh/zmmljibbnk1ycx4/AAC5nwlxHsAM2ICH3GzRSgY_a?dl=0

	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	1 Design Observation
	1.1 Background
	1.2 Goals of Thesis

	2 Non-Intrusive Sensing
	2.1 Smart Spaces
	2.2 Meeting Analysis

	3 Microsoft Kinect
	3.1 Advantages of Tracking Humans in Depth Data
	3.2 Impact on Research
	3.3 Kinect v1 vs Kinect v2
	3.3.1 Structured Light
	3.3.2 Indirect Time-of-Flight

	3.4 Other advantages with the Kinect v2
	3.5 Disadvantages with the Kinect v2
	3.6 Kinect Software Development Kits
	3.7 Microsoft Kinect Body Tracker
	3.7.1 Randomized Decision Forest Algorithm
	3.7.2 Leaf Node Prediction Models
	3.7.3 Creating Training Data

	3.8 Open-Source Alternatives to Microsoft Kinect SDK

	4 Placing the Kinect sensor
	4.1 Possible Observation Setups
	4.1.1 Alternative 1: One Kinect v2 and Using the Microsoft Tracker
	4.1.2 Alternative 2: Two Kinect v1
	4.1.3 Alternative 3: One Kinect v2 with Top-View

	5 Existing Research: Human Tracking in Depth Data from Top-View
	5.1 Background Subtraction in Depth Data
	5.2 Detection and Tracking in Top-View

	6 Open-source Computer Vision Libraries
	7 Existing Research: Energy from Human Movement
	8 Proof of Concept: Tracking in Design Activities in Depth Data from Top-View
	8.1 Detection Pipeline
	8.2 Preprocessing: Scaling
	8.3 Background Subtraction: Temporal Median Image
	8.4 Noise Removal: Median Filter
	8.5 Head Detection
	8.5.1 Haar-like Features
	8.5.2 Integral Image

	8.6 Classification
	8.7 Validation of Candidates
	8.8 Geodesic Distance Map
	8.9 Hand detection
	8.10 Tracking
	8.11 Mechanical Energy Estimation
	8.12 Heat Map

	9 Validation and Tracking Success
	9.1 Assumptions
	9.2 Accuracy and Precision
	9.2.1 Accuracy
	9.2.2 Precision

	9.3 Generally Challenging Scenarios
	9.3.1 Materials and Color
	9.3.2 Flying Pixels
	9.3.3 Bodies Close to Each Other
	9.3.4 Less Depth Information in Outer Regions

	9.4 Speed and Memory Performance

	10 Tracking Application in Realistic Design Context
	10.1 Egg-Drop-Challenge
	10.2 Energy Calculations
	10.3 Heat Maps
	10.4 Reflections on Experiment

	11 General Reflections from Kinect in Context
	11.1 Height of Rooms
	11.2 Recording Sessions
	11.3 Hardware Requirements
	11.4 USB 3.0 Cable
	11.5 Cluttered Rooms
	11.6 Easy to Get Started with Kinect

	12 Future Work
	13 Conclusion
	14 Reflections on Process
	14.1 Sino-Finnish Center

	15 References
	16 Appendix
	16.1 Dropbox folder
	16.2 Recordings
	16.3 Tracking application on GitHub

