
Simple static analysis techniques for Java
Using latent meaning to find security bugs

Edvard Kristoffer Karlsen

Master of Science in Informatics

Supervisor: Torbjørn Skramstad, IDI
Co-supervisor: Bjarte M. Østvold, Norsk Regnesentral

Department of Computer and Information Science

Submission date: September 2015

Norwegian University of Science and Technology

Problem description

The problem was given by Bjarte M. Østvold at the Norwegian Computing Center.

Software security is difficult. Every week there are reports of new and serious
vulnerabilities that affect our computers or phones. Many of these vulnerabilities
can be traced back to relatively simple and local causes in programs. Often the
cause is that developers are unfamiliar with APIs and use these in an unintended
way, leading to bugs.

Static program analysis dates back almost 40 years [17] and in theory such tools
can discover many of the bugs introduced by developers. However, some issues
with static program analysis remain. First, such analysis is often domain-neutral,
meaning that the analysis does not know about the domain that the program
under analysis is concerned with, for example, security. This means that either
bugs are not reported, or they are reported together with lots of domain-irrelevant
bugs, risking that the critical domain-related bugs escape developers’ attention.
Second, static program analysis theory is quite complex, making it harder to
extend and tailor it to a particular domain.

The task of the student is to find simple program analysis techniques that can be
used to find security bugs in Java programs, that is, techniques that are domain-
specific. Much previous work has focused on being clever: find all problems (in
some restricted class), find only real problems (no false positives). The goal of the
this work is instead to be pragmatic: is there a simple static program analysis that
can be used to find security bugs?

i

Abstract

Source code is rich with signs carrying meaning that is incomprehensible to a
compiler, but important to the human programmer. For instance, a compiler does
not understand that a variable named privateKey contains confidential data
and therefore must be treated with extra care, or that an array populated by a
cryptographically secure random number generator has properties that set it apart
from other arrays. I present two static analyses that explicitly model such latent
meaning, and use it to find bugs. Both analyses are simple; my aim is not to beat
the precision of state-of-the-art techniques, but rather to argue that much can be
done using simple techniques. To support this claim, I demonstrate the effective-
ness of both analyses on test cases from a well-known test suite and a selection
of other examples. Further, I argue that the analyses generalise to applications
beyond those I investigate. I have implemented the analyses in a proof-of-concept
tool, which I contribute as free and open source software.

iii

Sammendrag

Kildekode er fylt av tegn hvis mening er uforståelig for en kompilator, men es-
sensiell for mennesker som jobber med koden. En kompilator kan for eksempel
ikke forstå at en variabel kalt privatNøkkel inneholder konfidensiell data, og
derfor må behandles spesielt forsiktig, eller at en tabell fylt med verdier fra en
kryptografisk sikker slumptallsgenerator har egenskaper som skiller den fra an-
dre tabeller. I denne oppgaven presenterer jeg to statiske programanalyser som
eksplisitt modellerer slik latent mening, og bruker denne for å finne feil. Begge
analysene er enkle; målet mitt er ikke å overgå presisjonen til ledende teknikker fra
litteraturen, men å argumentere for at man kan komme langt med enkle teknikker.
For å støtte denne påstanden viser jeg at begge analysene er effektive på tester fra
et velkjent testsett og et utvalg av andre eksempler. Videre argumenterer jeg for
at analysene har anvendelser utenom de jeg undersøker. Jeg har implementert
analysene i en prototype, som jeg publiserer som fri og åpen programvare.

v

Acknowledgements

I’ll keep this short and free of additional cliché.

Torbjørn and Bjarte were always available for discussion and detailed feedback. It
is a rare privilege to have such positive, creative, and encouraging supervisors.
Thank you.

I’m grateful to my parents Kirsti andWilhelm, my sister Ingrid, and my aunt Gerd
Hilde for their love and support.

Lastly, I thank my closest friends, who have supported and encouraged me
throughout my work with this thesis. Your friendship is invaluable.

vii

Contents

1 Introduction 1
1.1 Research hypothesis . 3
1.2 Contributions . 4
1.3 Structure of the thesis . 4

2 Background 7
2.1 Core program analysis . 8
2.2 Combined techniques . 10
2.3 Terminology . 11

3 Type-centered analysis 15
3.1 Domain rules as typing problems 15
3.2 Signs and latent meaning . 18
3.3 Formalising the type-centered analysis 19
3.4 Latent meaning database . 24
3.5 Domain rules encoded for the type-centered analysis 30

4 Solving typing problems 35
4.1 Preliminaries . 36
4.2 Typing algorithm . 37
4.3 Correctness proof . 38
4.4 Translating from a typing problem to a problem instance 41

5 Flow-centered analysis 43
5.1 Introduction . 43
5.2 Computing with critical values . 45
5.3 Translating Java methods into the flow language 51
5.4 The analysis proper . 53

6 Implementation of the proof-of-concept tool 57
6.1 Overview of the system . 57
6.2 Re-running the experimental validation 58

7 Experimental validation 59

ix

Contents

7.1 Experimental validation strategy 59
7.2 Experimental validation for the type-centered analysis 61
7.3 Experimental validation for the flow-centered analysis 68

8 Related work 75
8.1 Bugs as deviant behaviour . 75
8.2 Pluggable type systems . 76
8.3 FindBugs . 77
8.4 Naming bugs . 78

9 Discussion and conclusion 79
9.1 Discussion of the type-centered analysis 79
9.2 Discussion of the flow-centered analysis 81
9.3 Relating the flow-centered analysis and the type-centered analysis 82
9.4 Ideas for improving the precision of the type-centered analysis . . 83
9.5 Ideas for future conceptual work 85
9.6 Threats to validity . 86
9.7 Conclusion . 87

References 89

x

CHAPTER 1
Introduction

To program is to tell a computer how to do a task. To accomplish this, programmers
translate information from a domain1 into another representation, programming
language. A typical program is rich with representations of concrete or abstract
entities belonging to domains existing outside of the computer.2

Domains have domain rules, which speak of what is correct within the scope of
a domain. These are examples of rules from different domains:

– In a zero-based budgeting system, the balances of all accounts must sum to
zero.

– The Java sparrow is neither mammal nor fish.
– The equation an + bn = cn has no solution for a, b, c in Z when n ≥ 3.

Some programming languages provide features that let us ‘encode’ certain types
of domain rules so that if we violate a rule in source code, a compiler will flag it
as an error. In a way, we can make it so that violations of the domain rule become
semantic errors in the programming language.

Let us consider an example of how domain rules can be encoded so they are
enforced by a compiler. Assumewe are designing an application where we need to
represent a taxonomy of animals. In Java, it is natural to encode such a taxonomy
as a class hierarchy:

1 Throughout the thesis, I use domain in the lenient sense given in the Collins English dictionary:
‘a field or scope of knowledge or activity’ [1].

2For an example of the distinction between a representation and thatwhich is represented, consider
the distinction between a class JetEngine in the source code of a flight simulator and an engine on
an actual jet plane.

1

1. Introduction

class Animal {}

class Bird extends Animal {}

...

class JavaSparrow extends Bird {}

class Mammal extends Animal {}

class Cat extends Mammal {}

class Dog extends Mammal {}

Using this representation, we have effectively encoded the domain rule that a Java
sparrow is a bird (and neither a mammal nor a fish), so that the compiler will alert
us if we violate it. For instance, if we try to compile the snippet

List<Mammal> mammals = new LinkedList<>();

mammals.add(new Cat());

mammals.add(new Dog());

mammals.add(new JavaSparrow());

the compiler returns an error message where the gist is that JavaSparrow
cannot be converted to Mammal.

This example above illustrates how a type system allows us to encode certain
kinds of domain rules about relations between types of entities and about how
types of entities may interact. Type systems are one example of a feature that allows
us to encode domain rules so they are enforced by a compiler. Sophisticated type
systems, such as the dependent type systems of Agda [42] and Idris [10], allow
programmers to encode very complex domain rules to be enforced by a compiler.
Another example of a feature for encoding domain rules to be enforced at compile
time is static asserts, as seen in modern C++ versions [33].

In common industry practice, however, few domain rules are encoded so that
they are enforced by the compiler. There are several reasons for this. First, rules
are often complicated, and it may be infeasible to specify them precisely. Second,
some types of rules are practically impossible or extremely cumbersome to encode
using the mechanism of a specific programming language.

Interestingly though, typical source code is rich with clues about domain rules
not enforced by a compiler—clues that show up in names, comments, and other
source code constructs. When human programmers read a snippet of source code
they can use their domain knowledge and look to these clues to infer

– what domain rules are relevant for the snippet, and
– whether these rules are obeyed.3

I will say that a programmer studying code like this is uncovering latent domain
rule violations.4

3There is nothing special about the process I describe here. This is essentially a careful way to
describe what a programmer does when she reviews a program, looking for bugs.

4Here, I mean by latent that the violation ‘lays latently’ (or hidden) in clues in the source code—
visible to a human expert but not to a compiler.

2

1.1. Research hypothesis

To better illustrate these ideas, let us look to an example. Consider the following
method:

boolean isCorrectPassword(String providedPasswordRaw) {

Account account = findAccount(this.username);
/* ... */

syslog.write("checking password for " + this.username +

". provided: " + providedPasswordRaw);

/* ... */

}

How could a programmer study this method to figure out which domain rules
are relevant for the method, and find potential latent domain rule violations of
these rules? One possible line of reasoning goes as follows:

1. From the identifier names and the method name, one may infer that the
method is security-critical.

2. In any security-related domain, the following domain rule must be obeyed:
confidential data must not be exposed. This is a latent domain rule in the
method, because it is not explicitly enforced by the compiler.

3. In particular, passwords are confidential. Therefore providedPassword-
Raw should not be exposed.

4. However, writing providedPasswordRaw to the system log is (almost
certainly) unwanted exposure. In conclusion, the method contains a latent
domain rule violation.

My goal in this thesis is to design simple static analysis techniques that (largely)
mimic this kind of reasoning.

1.1 Research hypothesis

A research project should be based around a falsifiable hypothesis. Further, the
hypothesis should be an interesting proposition to which ‘reasonable people can
disagree’.

I will argue for the following hypothesis:
Simple intraprocedural static analyses techniques are useful for find-
ing interesting and relevant latent domain rule violations.

Without further qualification, this hypothesis may appear obviously true. I add
two qualifications, however. First, by simple [techniques], I mean that the analysis
techniques should be simpler than related techniques in the literature. Second, by
[useful for finding] interesting and relevant [rules], I mean that the analysis techniques
should be able to find violations of a range of latent domain rule violations seen
in real-world code.

3

1. Introduction

1.2 Contributions

The contributions of this thesis are:
1. The type-centered analysis, a simple static analysis built around the idea that

checking whether a method violates a latent domain rule can be cast as a
typing problem. I develop this idea and describe this analysis in Chapter 3
and Chapter 4.

2. The flow-centered analysis, a simple static analysis designed to assert flow-
related latent domain rules, by finding disappearing critical values. I motivate
and describe this analysis in Chapter 5.

3. Descriptions of how to specialise the analyses to assert specific security-
relevant latent domain rules, such as asserting that no confidential informa-
tion leaks to an insecure output channel. The primary descriptions of these
specialisations are given in Section 3.5.1 and Section 3.5.2. I describe further
details in Chapter 7, the experimental validation chapter.

4. A proof-of-concept implementation of the analyses, written in Scala. I con-
tribute this implementation as free and open-source software under the MIT
license. In Chapter 6, I give an overview of this implementation.

5. A discussion of ideas for applying data mining techniques to automatically
learn relevant latent domain rules from a software corpus. I discuss these
ideas in Section 9.5.

1.3 Structure of the thesis

The thesis may be seen as comprising three parts. The first part, the exposition,
consists of this introductory chapter and Chapter 2. Here, I introduce the problem
at hand, state my research hypothesis, and survey background literature. The
second part, the description of the solution, consists of chapters 3 to 6. Here, I describe
two simple static analyses and a proof-of-concept implementation of these. The
third and final part, the evaluation, consists of chapters 7 to 9. Here, I begin with an
experimental validation of the analyses. Then, I compare the analyses to closely
related work. Further, I discuss the analyses, relate them to each other, and present
ideas for future work. Finally, I discuss threats to validity and give a concluding
argument.

Figure 1.1 provides another view of the thesis’ structure. This figure illustrates
the crucial subcomponents of the thesis (conceptual ideas, analysis techniques,
and validation efforts) and the most important dependencies between these. In
this figure, orange nodes () denote conceptual ideas, golden nodes () denote
analysis techniques, and green nodes () denote validation efforts.

Note that the three longest chapters (chapters 3, 5, and 7) end in a summary with
forward references, to further clarify the thesis’ structure.

4

1.3. Structure of the thesis

Type-centered analysisx

xxxFlow-centered analysisx

Evaluationxxxxxxxxxxxxxxxxxxxxxxxxxxx

Domain rules and
typing problems

(Chapter 3)

Analysis definition

(Chapter 3)

Solution details

(Chapter 4)

Experimental validation

(Chapter 7)

Domain rules concerning
critical values

(Chapter 5)

Analysis definition

(Chapter 5)

Qualitative discussion

(Chapter 9)

Conclusion on research hypothesis

(Chapter 9)

Related work

(Chapter 8)

Figure 1.1: Roadmap for the thesis.

5

CHAPTER 2
Background

What is the research context of this thesis? Broadly speaking, the answer is pro-
gram analysis, as I rely heavily on theory and tools developed by program analysis
researchers. I should qualify this answer, however, as the term program analysis
has strong connotations to specific formal techniques for statically optimising or
verifying properties of programs, and it would be imprecise to constrict myself
only to this interpretation. Rather, the relevant context is all rigorous1 analysis of
programs, aiming to answer interesting questions about programs, with the goal
of improving the quality of these programs, or in other ways benefit software en-
gineers. To better illustrate this context, I make a distinction between core program
analysis and combined techniques—which apply theory from core program analy-
sis in combination with techniques such as machine learning. I should caution,
though, that this distinction is somewhat artificial; there is no clear distinction
between core and combined techniques, and much research falls somewhere in
the middle.

One crucial aim in this text (the whole thesis) is to discuss my contributions
in context of related research. In this chapter, I lay the foundation of my effort
towards this goal. Concretely, in Section 2.1, I give an overview of important work
in the core program analysis field, and after that, in Section 2.2, I discuss some
of the combined techniques that have surfaced the last 20 years.2 However, this
chapter is only a foundation, and I delay discussing the works most relevant to
my thesis until Chapter 8. The rationale for this is that I want to be able to refer to
the details of the techniques I present, without resorting to forward references.

I have a secondary, minor goal with the present chapter: to introduce and
clarify some general program analysis terminology, which I use throughout the

1Here I mean by rigorous that analysis is or could be done mechanically.
2My aim with these two sections is not to lay the groundwork for a (bad) reference text, but to

show that I have a good overview of the most important work in the field.

7

2. Background

rest of the thesis. This is the topic of Section 2.3.

2.1 Core program analysis

Fundamentally, program analysis is about examining the dynamic behavior of
programs. In the traditional view, it concerns two main problems: First, program
optimisation, that is, how to rewrite programs so that they do the same task, but
perform better with respect to some metric. Second, program verification, which
is about checking whether programs satisfy certain properties, most commonly
whether a program behaves in accordance with a given specification.

Program analysis has a long history; engineers and scientists have been inter-
ested in optimising programs, verifying the correctness of programs, and system-
atically finding bugs, since the first programming languages were implemented.3
With that said, it concretised as a self-standing subfield in the late seventies, when
Cousot and Cousot and others formalised its principal problems and described
the first systematic techniques for attacking them [17, 18]. The theory developed
in this period are mainstays in the field today.4 In addition to the Cousots, one
should, at the least, mention the seminal contributions of Hoare [27], Floyd [22],
and Dijkstra [20].

In the next sections, I discuss program optimisation and verification, in turn, with
focus on recent research trends. Following that, I describe various representations
that are important in program analysis.

Program optimisation

Program optimisation concerns techniques for transforming programs into pro-
grams that have the same behavior but perform better with respect to some
relevant metric. The classic metric to optimise for is (reduced) runtime, but there
are other importantmetrics, such as executable size, memory footprint, and energy
consumption.

Much of the work in modern program analysis concerns how to do standard
optimisations techniques—such as dead code elimination, common subexpression
optimisation, constant propagation, and procedure inlining5—within increasingly
challenging contexts. Examples of techniques that allow more advanced optimisa-
tion in challenging contexts are alias analysis [13] and shape analysis [34].

Traditionally, research in program optimisation has been about purely imper-
ative programming languages, such as C, or about languages whose semantics
are largely similar to purely imperative languages, such as C++ and Java. Further,

3One example of early work on program optimisation, is the FORTRAN I compiler, developed at
IBM between 1954 and 1957 [45]. To the surprise of its authors and users, the compiler often output
programs that ran faster than hand-crafted assembly [45], and ‘in some cases, [. . .] produced code
which was so good that users thought it was wrong’ [3].

4This is evident in modern reference texts, such as Nielson et al.’s well-known monograph [41].
5These techniques are discussed in any reference text, such as the ‘Dragon book’ [2].

8

2.1. Core program analysis

it has typically focused on statically typed languages. In the last twenty years,
however, there has been substantial work done on optimisation for non-imperative
languages, such as Haskell and ML, and dynamically typed languages, such as
JavaScript, Python, and Scheme.

Functional programming languages present unique challenges for optimisa-
tion. For one thing, it is harder to do interprocedural control flow analysis—a
necessary first step for much aggressive optimisation—for these languages, be-
cause of the extensive use of function calls, and the blurred line between functions
anddata. Shivers presented the first powerful techniques for doing interprocedural
control flow analysis for higher-order languages, the CFA family of analyses [57].6
Because of the extensive use of function calls in functional programming, aggres-
sive and precise inlining is necessary for efficient execution. An example of an
advanced inliner is the one used in the Glasgow Haskell Compiler [48].

Much recent work in program optimisation has been about techniques for
optimising programs by exploiting opportunities for parallellisation. (This, of
course, echoes a general trend in computer science.) For example, Radoi et al.
‘present an approach for automatic translation of sequential, imperative code into
a parallel MapReduce framework’ [50].

Program verification

Program verification is about asserting the truth of certain properties of a pro-
gram.7 Some textbook examples of such properties are i) whether a concurrent
program may deadlock, and ii) whether a C program may crash with a segfault.
Key techniques in program verification are model checking [16, 65], abstract inter-
pretation [18], Hoare logic [27], and separation logic [53].

Many of the domain rules I study later in the thesis may be seen as security-
related verification problems. For instance, I look at one domain rule which,
fundamentally, concerns how to ‘correctly treat’ cryptographically secure ran-
dom numbers, and one domain rule which concerns how to protect confidential
information so that it does not ‘leak’. For the latter topic, relevant literature is
grouped under the umbrella term language-based information flow security, onwhich
Sabelfeld and Myers have written an extensive survey [55].

Representations

An essential aspect of attacking problems in program optimisation and verification
is developing useful custom languages for representing programs.

6These techniques were later refined by Might [40], under Shiver’s supervision, and are still being
improved. See, for instance, Prabhu et al.’s work on implementing CFA analyses on GPUs [49].

7Note that this is just one attempt at defining program verification. Researchers, unfortunately, use
different, non-compatible definitions of the term. For instance, Almeida et al. use a rather specific
definition: ‘program verification is the area of computer science that studies mathematical methods
for checking that a program conforms to its specification’ [4]. Boyer and Moore define it more broadly;
in their words ‘[program verification] is the use of formal, mathematical techniques to debug software
and software specifications’ [8].

9

2. Background

When discussing such representations, it is helpful to distinguish between
properties of representations, and concrete representations designed to model
the essence of a specific programming language.

In the first category, I should mention two properties of representations: First,
Static Single Assignment (SSA) form, which is extensively used in modern in-
dustry compilers.8 When Cytron et al. introduced this representation [19], it
immediately made many classic optimisation techniques much easier to reason
about and implement. Second, continuation passing style (CPS) representations
are commonly used in compilers for functional programming languages [58], and
when reasoning about the semantics of such languages.

In the second category, I mention two representation languages especially
relevant to my thesis: First, Featherweight Java [32], which has made it much
easier to reason about intricate aspects of Java (which, among other things, has a
complex and fragile type system). Further, I mention Jimple [64], the intermediate
representation I use for implementing (parts of) the analyses I present in this
thesis. Jimple is custom-tailored to facilitate program analysis for Java, providing
an alternative to analysing the stack-based and largely untyped JVM byte code.9

2.2 Combined techniques

In the last two decades, researchers have started using theory from core program
analysis in tandem with techniques from other fields, to attack problems that are
largely unrelated to the classical problems of optimisation or verification.

One common idea is to use theory from core program analysis as a component
in empirical study of real-world programs. Typically, researchers study a large
corpus of programs, meant to be a representative sample of programs in the real
world.

Such corpus-based investigations often have a zoological nature; the aim is
to describe some aspects of programs, and to create a taxonomy or some other
descriptive model. One example is Høst and Østvold’s work on uncovering name
patterns in Java code [29], where they construct a mapping from common method
names (such as get, create, and toString) to so-called semantic profiles.10
For another example, Temporo et al. performed an empirical study of how pro-
grammers use inheritance in Java code [61].

Importantly, learning from a corpus is often only the first step towards a larger
goal, namely to say something about or relevant to single programs, or other
units of code, using knowledge learned from the corpus. Here, there are two
main approaches, which I term corpus-based bug detection and corpus-based advice
generation.

8SSA form is, for instance, used in gcc and in the LLVM backend, and in the compilers of HotSpot,
Dalvik, and Android ART, the primary Java virtual machines.

9If one wants to analyse raw JVM byte code, however, ASM [12] is excellent for the job.
10Note that I return to compare my work to Høst and Østvold’s in greater detail in Section 8.4.

10

2.3. Terminology

Corpus-based bug detection exploits the idea that statistically improbable code
is likely to be buggy. An example of corpus-based bug detection is Reiss’ work on
finding unusual code [52]. Reiss uses a two-step process along the lines I describe
here: First, he extracts common syntactic patterns from a corpus of software.
Second, he identifies code that contains syntactic patterns not common in the
corpus. Another example is Høst and Østvold’s work on naming bugs [30], where
they augment their phrase book [29] with a technique for identifying methods
with statistically improbable names. Høst and Østvold’s technique for identifying
naming bugs was implemented in a plug-in for the Eclipse IDE [35].

In corpus-based advice generation, the aim is not to identify bugs, but rather
to give a programmer suggestions on how to improve or finish a unit of code.
An impressive example is the JSNice ‘prediction engine’ [51], which can suggest
names and type annotations for variables in a JavaScript function. JSNice relies
on a conditional random field model [36], which the authors train using a corpus
sampled from GitHub. Many techniques for corpus-based bug detection extend
naturally to corpus-based advice generation; for instance, Høst and Østvold re-
purpose the metric they use to identify naming bugs to also suggest naming bug
fixes [30].

Researcher also use corpus-based techniques to validate or refine theories
about software. For instance, Gil and Maman present a catalogue of micro patterns
(cf. design patterns [25]) in Java code, and empirically investigate their catalogue
using a corpus [26].

2.3 Terminology

In this section, I make precise some program analysis terminology that will prove
useful in later chapters.

2.3.1 Static vs. dynamic analysis

A static analysis investigates a program by looking at its source or binary code. In
particular, it tries to determine its dynamic behavior, i.e. what it does at runtime,
without running it.

Conversely, a dynamic analysis investigates a program as it runs. Dynamic
analysis is especially important in just-in-time compilers such as HotSpot [46],
TraceMonkey [24], and pypy [7], which derive much of their impressive perfor-
mance from being able to aggressively optimise selected hot parts of programs,
using dynamic information about typing and path frequency.

2.3.2 Intraprocedural vs. interprocedural analysis

An intraprocedural analysis looks only at the body of one procedure (or method)
at a time. Conversely, an interprocedural analysis looks at the body of several

11

2. Background

procedures (or methods) at a time. In general, interprocedural analyses are much
more complex to specify and more computationally demanding.

The canonical example of interprocedural analysis is inlining, where one seeks
to strategically substitute select procedure (method) calls with the bodies of their
callees, so as to reduce the overhead inherent in procedure (method) calls.

Many optimisations that are typically thought of as intraprocedural analyses
can be extended to run interprocedurally. For instance, one can do interprocedural
dead code elimination or interprocedural constant propagation.

2.3.3 Soundness, completeness, and related terms

The convention in program verification is to say that a static analysis checks
whether some property θ holds for a program. From this starting point, one can
define what it means for a static analysis θ̂ to be sound and complete, and what it
means for it to return a true or false positive or negative. My goal with this section
is to make precise all these terms. However, I shall define them in context of static
analyses that aim to find sets of bugs in programs, rather than with respect to
single properties. Such analyses, I term bug-finding static analysis. The following
things can be said about virtually any such analysis:

1. The analysis is concerned with some set P of programs.
2. The analysis is concerned with some set B of bugs.
3. It is possible to think of a hypothetical function B : P → {B} that could

‘tell’ which bugs exist in a given program.
4. The analysis can seen as a function B̂ trying to approximate B.

From this, I define the terms mentioned in the start of the section as follows:

Soundness: All reported bugs are real. An analysis is sound if it never overapprox-
imates the set of bugs in any given program. That is, if B̂(p) ⊆ B(p), for any
program p. Conversely, if there exist a program p and a bug b such that b ∈ B̂(p)
but b /∈ B(p), then B̂ is unsound.

Completeness: All bugs are reported. An analysis is complete if it never underap-
proximates the set of bugs in any given program. That is, B(p) ⊆ B̂(p), for any
program p. Conversely, if there exist a program p and a bug b such that b ∈ B(p)
but b /∈ B̂(p), then B̂ is incomplete.

True positive: Given a program p, a bug b, and a static analysis B̂ approximating
B, b is a true positive if b ∈ B̂(p) and b ∈ B(p).

False positive: Given a program p, a bug b, and a static analysis B̂ approximating
B, b is a false positive if b ∈ B̂(p) but b /∈ B(p).

12

2.3. Terminology

Bug is real Bug is not real
Analysis reports bug True positive False positive

Analysis does not report bug False negative True negative

Table 2.1: Intuitive illustration of the terms true positive, false positive, true
negative, and false negative.

b ∈ B(p) b /∈ B(p)
b ∈ B̂(p) True positive False positive
b /∈ B̂(p) False negative True negative

Table 2.2: Illustration of the terms true positive, false positive, true
negative, and false negative using B and B̂.

True negative: Given a program p, a bug b, and a static analysis B̂ approximating
B, b is a true negative if b /∈ B̂(p) and b /∈ B(p).

False negative: Given a program p, a bug b, and a static analysis B̂ approximating
B, b is a false negative if b /∈ B̂(p) but b ∈ B(p).

Table 2.1 gives a colloquial illustration of the terms true positive, false positive,
true negative, and false negative. Table 2.2 illustrates these terms using B and B̂.

The ideal bug-finding static analysis would be sound and complete, in which case
one would have B̂(p) = B(p) for any program p, and no false negatives or false
positives. This is usually impossible, however, except for very special choices of P .
(First of all because of the halting problem, as first demonstrated by Turing [62].)

13

CHAPTER 3
Type-centered analysis

In this chapter, I describe the type-centered analysis, the first of the two analyses I
present in the thesis.

The chapter is structured as follows: First, in Section 3.1, I present the idea that
checking whether a method violates a domain rule can be cast as a typing problem,
and show examples of how to check whether a method violates a domain rule.
Second, in Section 3.2, I explain how source code can be seen as an assemblage
of signs, carrying latent meaning. Third, in Section 3.3, I formalise the analysis,
and give a more formal example of how to find a latent domain rule violation.
Fourth, in Section 3.4, I formalise latent meaning database, another component
of the analysis. Here, I also describe an intermediate representation. Finally, in
Section 3.5, I describe how to specialise the type-centered analysis to find violations
of two security-relevant domain rules.

3.1 Domain rules as typing problems

As stated in the thesis’ introduction, my goal is to design simple static analysis
techniques that can find latent domain rule violations in Java code. However, I do
not aim to discover every possible latent domain rule violation, as domain rules
can be extremely complex.1

Instead of aiming to design analyses capable of finding any latent domain rule
violation, I limit my scope to techniques covering a significant number of domain
rules that

1. are relevant to real-world code, and
2. are feasible to attack with automatic analysis techniques.
1Consider the domain rule: all software used in this system must halt in finite time. This rule, like

many others, is clearly impossible to assert for arbitrary Java code, no matter how clever you design a
static analysis [62].

15

3. Type-centered analysis

Within scope of the type-centered analysis, I focus only on domain rules that can
be asserted as typing problems. Within scope of the flow-centered analysis, which I
describe in Chapter 5, I focus on other types of domain rules.

Introductory examples

Tomake better sense of the idea that checkingwhether amethod violates a domain
rule can be cast as a typing problem, I now give two examples, meant to illustrate

– how a latent domain rule violation manifests as a typing error, and
– how, if a method does not contain a latent domain rule violation, there is no

typing error.
Consider the following method:

public String createSecureChallenge() {

java.util.Random rng = new java.util.Random();

int x = rng.nextInt();

return Integer.toHexString(x);

}

Let us assume we are to check whether the method obeys the domain rule:
rcs: Any secure challenge must stem from a cryptographically secure

random source.
First, before we attack this as a typing problem, observe that the rule is violated
in the snippet:

1. The name createSecureChallenge implies that the method’s return
variable is a cryptographically secure challenge, and therefore it should
stem from a cryptographically secure random source.

2. Yet, the method’s actual return value stems from an instance of java.-
util.Random, a random source that does not output cryptographically
secure random values.

Crucially, the evidence of the latent domain rule violation appears as a contradic-
tion: apparently, the return value has to be and not be cryptographically secure at
the same time.

Now, say we introduce what I term a type set consisting of two types: the type
of values and variables that are cryptographically secure challenges, and the type
of those that are not. Let us denote these cs and ¬cs, respectively. Further, assume
that these types are distinct, in the sense that a value or variable must be of type
cs or type ¬cs, but not of both. We may then rephrase the propositions above as
follows:

1. Themethod’s return value should have type cs. This is implied by themethod
name createSecureChallenge.

2. The method’s return value should have type ¬cs. This is because the return
value stems from an instance of java.util.Random, a random source
that does not output cryptographically secure random values.

16

3.1. Domain rules as typing problems

Let us call these propositions typing constraints. Further, let us say that these
constraints are satisfiable if we can associate with the return value either cs or ¬cs,
so that both constraints become true. This is, of course, impossible: By constraint
one, the return value must have type cs. Yet, by constraint two, the return value
must have type ¬cs. Here, the contradiction we reached above has become explicit
as an error in the typing problem. The typing problem is unsatisfiable.

Let us now look at an example where the same domain rule is not violated. In
this instance, the equivalent typing problem is satisfiable.

Consider the following method, which is equal to the preceding one save
for using java.security.SecureRandom, a cryptographically secure RNG,
instead of java.util.Random.

public String createSecureChallenge() {

java.security.SecureRandom rng =

new java.security.SecureRandom();

int x = rng.nextInt();

return Integer.toHexString(x);

}

With this method, I associate the following typing constraints:
1. Themethod’s return value should have type cs. This is implied by themethod

name, createSecureChallenge.
2. The method’s return value should (also) have type cs. This is because the

return value stems from SecureRandom, a random number generator that
does output cryptographically secure random values.

Here, there is no contradictory requirement to the return value. We can choose
type cs and satisfy both constraints. The typing problem is satisfiable, and the
method does not violate rcs.

Fundamental idea

The main idea I want to convey with these examples is:
Checking whether a method violates a latent domain rule violation
can (for certain domain rules) be done by checking whether a ‘corre-
sponding’ typing problem is satisfiable.

This idea is illustrated in Figure 3.1. Once again, I restrict the scope of the type-
centered analysis to domain rules that can be checked using this technique.

My aimwith the preceding examples is to illustrate the idea that checkingwhether
a method violates a domain rule can be cast as a typing problem. I continue by
discussing signs in source code, and specifically how signs can be seen as carrying
latent meaning, which can be used to generate typing constraints.

17

3. Type-centered analysis

Latent domain rule
is not violated ⇒ Typing problem is

satisfiable

Latent domain rule
is violated ⇒ Typing problem is

not satisfiable

Figure 3.1: Correspondence between latent domain rule violations and
typing problems.

3.2 Signs and latent meaning

Source code may, like any type of text, be seen as an ‘assemblage of signs’ [14]
forming a message.2

Some signs in source code carry more meaning than others. Among these are
common method names, such as toString; calls to well-known library routines,
such as Collections.sort; and stereotypical code segments. Researchers in
the psychology of programming call such signs beacons [11], and argue that they
are essential in the process of program comprehension.

Common method names are one type of beacon. For instance, Java program-
mers will see the names toString, hashCode, and equals as beacons. These
names refer to methods defined on the common superclass Object, and their
meanings are taught in every introductory Java course.

Calls to library methods that implement important, specific functionality, are
another type of beacon. For example, consider the snippet:

byte[] plaintext = ...;

cipher.update(plaintext, ciphertext);

Here, wemay see the call cipher.update as a beacon signifying that this code is
about encryption or decryption. Another beacon is the variable name plaintext.

A third type of beacon is stereotypical combinations of source code constructs,
such as loops and assignments sequences. One example is the standard for loop:

for (int i = 0; i < n; i++)

...;

This is a beacon in all statically typed curly-brace languages, signifying that the
code is about iteration.

Another example is a swap of two array elements:
2In the case of source code, we may see the sender(s) of the message as the human programmer(s)

or computer programswriting it, and the recipients of themessage as the compilers and other programs
that process source code, and, of course, the humans that maintain it.

18

3.3. Formalising the type-centered analysis

int temp = arr[a];

arr[a] = arr[b];

arr[b] = temp;

Programmers will see this as a sign that the code is about reordering the array in
some way. For instance, the code may be part of a sorting routine.

Latent meaning of a sign

I am interested only in those properties of a sign that can help determinewhether a
method contains a latent domain rule violation. This, I define as the latent meaning
of a sign.

Importantly, I always speak of the latent meaning of sign with respect to a
specific domain rule. Let me give an example to better illustrate this. Consider a
method with name createSecureChallenge. With respect to the domain rule
rcs, the latent meaning of this method name is that the method’s return value is a
cryptographically secure random challenge. On the other hand, with respect to
many other domain rules, this method name has no latent meaning. For instance,
it has no latent meaning with respect to, say, the domain rule: all user-provided
input must be checked against a white list before it is written to an output channel.

3.3 Formalising the type-centered analysis

In this section, I formalise most aspects of the type-centered analysis, and show
how it allows analysis of many different kinds of domain rules.

The structure of the upcoming sections is as follows: First, in Section 3.3.1, I ex-
plain a crucial distinction between the type-centered analysis per se and domain
rules encoded for the analysis. Second, in Section 3.3.2, I give a set of definitions,
which define the core of the type-centered analysis. Third, in Section 3.3.3, I give
an example meant to illustrate the definitions in Section 3.3.2. To simplify the
presentation, I delay formalising the details of what I term latent meaning databases
until Section 3.4.

3.3.1 The type-centered analysis is an abstract framework

First, a crucial distinction: The type-centered analysis per se is a framework. It is
not tied to a specific domain rule. Rather, it must be specialised to create analyses
for specific domain rules. Concretely, to specialise the analysis one must provide
an encoding for a specific domain rule.3 For example, to find latent domain rule
violations of rcs, one must specialise the analysis using an encoding for rcs.

The following analogy illustrates this distinction. The analysis framework is
like a bare multi-purpose food processor, while an encoding of a domain rule is

3I work out the details of how to encode domain rules in the next sections.

19

3. Type-centered analysis

like a selection of accessories for the food processor, such as a specific bowl paired
with a specific knife.

3.3.2 Formalisation of the type-centered analysis

In this section, I formally define the framework component of the type-centered
analysis. Here, I construct typing problems as a kind of constraint satisfaction
problem, using terminology such as constraint set, satisfiability, and solution.

When reading the text for the first time, it might be best to skip to the example in
Section 3.3.3, and refer back to these definitions, instead of starting by studying
them in detail.

Preliminaries

These definitions refer to some sets that I do not define explicitly. These are the
set of types, the set of variables, and the set of Java methods, which I denote method.

For our purposes, the set of typesmay be taken as some standard set of strings,
such as, say, all strings over the ASCII alphabet. The set of variables may be taken
as the set of valid Java identifiers. The set method may be taken as some represen-
tation of Java methods.

Constraints and constraint sets

I define the two kinds of typing constraints: equality constraints and ordering con-
straints.

Definition 3.1 (Equality constraint)
An equality constraint is denoted

x = t
where x is a variable and t is a type belonging to some type set (cf. Definition 3.4).

Definition 3.2 (Ordering constraint)
An ordering constraint is denoted

x ≤ y

where x and y are variables.

The next definition, that of constraint set, is somewhat lax. Here, I allow myself to
group two kinds of objects into the same set. However, I make sure that there is
no room for ambiguity when I use this definition.

Definition 3.3 (Constraint set)
A constraint set is a set that contains equality constraints and ordering constraints,
and nothing else. I use Γ to denote a constraint set.

20

3.3. Formalising the type-centered analysis

I further require that all constraints in any one constraint set refer to one specific
type set (T,≤). In other words, one cannot put constraints that refer to different
type sets into the same constraint set.

I sometimes write a constraint set on a shorthand form where I ‘collapse’ ordering
constraints and let equation constraints take the place of variables in ordering
constraints. For instance, I may write the constraint set

x = high, x ≤ y, y ≤ z, z = low

on the shorthand form
x = high ≤ y ≤ z = low

Encodings

Definition 3.4 (Type set)
A type set is a pair (T,≤), where

1. T is a set of types.
2. ≤ is a total ordering on T.

Definition 3.5 (Latent meaning database)
A latent meaning database is a function K that maps a Java method to a constraint
set.

The purpose of a latent meaning database is to generate typing constraints from
the latent meaning of the signs in a method. I give a full definition of latent
meaning database in Section 3.4.

Definition 3.6 (Domain rule encoding)
A domain rule encoding is a pair (T,K), where T is a type set and K is a latent
meaning database.

The purpose of a domain rule encoding is to specialise the type-centered analysis
for a specific domain rule.

Solution and satisfiability

I proceed with defining what it means to solve a typing problem.

Definition 3.7 (Solution)
Let Γ be a constraint set,where all constraints refer to the type set (T,≤). A function
s is a solution for Γ if the following conditions are true:

1. For all equation constraints x = t in Γ, it is the case that s(x) = t.
2. For all ordering constraints x ≤ y in Γ, it is the case that s(x) ≤ s(y).

21

3. Type-centered analysis

In other words, a solution must obey all constraints in their intuitive sense.

I may also refer to a solution as a typing.

Definition 3.8 (Satisfiability)
Let Γ be a constraint set. I say that Γ is satisfiable if there exists a function that is a
solution for Γ.

Framework summary

Finally, I define the analysis function, which makes precise what it means to spe-
cialise the analysis framework and how the resulting analysis operates.

Definition 3.9 (Analysis function)
Let e = ((T,≤),K) be a domain rule encoding. The analysis function Ae : method→
boolean is defined as the following algorithm:

Input:
– A Java method m.

Output:
– Boolean.

Algorithm:
1. Using K, generate a constraint set Γ from m.
2. If Γ is satisfiable, output false. Otherwise, output true.

The algorithm defined here is rather abstract. To make it concrete, I must work
out the details of its sub-steps. I address step 1 in Section 3.4, when I describe the
details of a latent meaning database. However, I delay developing the details of
step 2 until Chapter 4, where I present an algorithm that can find a solution for
any satisfiable constraint set.

3.3.3 Example of asserting a domain rule

In this section, I give another example of how to check whether a method violates
a domain rule. This time, I use the definitions in Section 3.3.2. My primary aim
here is to illustrate these definitions. I also want to illustrate, intuitively, what a
latent meaning database does.

The domain rule
Assumewework in a security-critical context, where there is a distinction between
confidential and non-confidential data: Confidential data is data that an adversary
must not learn; non-confidential data is data that an adversary is allowed to learn.

Further, assume there exist some output streams that may be observed by an
adversary. For example, this may be a stream writing to a publicly readable log
file, or a stream writing to an unencrypted TCP connection that is sent over the
Internet. In this context, a relevant domain rule is

22

3.3. Formalising the type-centered analysis

rconf: An adversary must not be able to learn any confidential data
through observing a public output stream.

Encoding: Type set
To model this domain rule, I use two types. I let low denote the type of non-
confidential data and high denote the type of confidential data. I group and order
these into the type set:

tconf = {{low, high}, low ≤ high}

Encoding: Latent meaning database
To complete the encoding, I need a latent meaning database Kconf to pair with
tconf. But, I have not yet formalised latent meaning database. For this example I
therefore treat Kconf as a black-box. I state which typing constraints it outputs,
and the rationale for each typing constraint, but do not provide the full details. 4

The method
In light of the assumptions stated above, consider the following snippet:

int x = getSecret();

y = x;

network.send(y);

Assume also here that getSecret returns some confidential datum and that
network.send writes its argument to a stream that does not preserve confiden-
tiality. That is, assume this is a latent domain rule violation of rconf.

The typing constraints
I nowdescribewhich typing constraintsKconf outputs for each statement. Precisely,
Kconf specifies how the types of the variables in a statement must be constrained
to ensure that the statement is not involved in a latent domain rule violation. Alter-
natively, Kconf says: if the constraints output for this statement do not contradict
any constraints output for another statement5, then this statement is not involved
in a latent domain rule violation.

For the statement

int x = getSecret();

the latent meaning database Kconf outputs the equality constraint x = high. The
rationale for this is that getSecret returns confidential data.

Further, for the statement
4I formalise rconf andKconf in Section 3.5.2. The example I give here agrees with this formalisation.
5To be precise, the constraints could also be self-contradictory.

23

3. Type-centered analysis

network.send(y);

the latent meaning database Kconf outputs the equality constraint y = low. The
rationale for this is the assumption that network.send writes its argument to a
stream that does not preserve confidentiality,

However, for the second statement:

y = x;

the latent meaning database Kconf does not output an equality constraint, but
rather outputs the ordering constraint

x ≤ y

Here, the rationale is that for this statement to not be involved in a latent domain
rule violation of rconf, xmust not have type high while y has type low. In that case,
we would have

[non-confidential] = [confidential];

However, all the other possible typings (the typing x 7→ high,y 7→ high, the typing
x 7→ low,y 7→ high, and the typing x 7→ low,y 7→ low) are acceptable.

Solution

Finally, let us investigate whether the typing problem has a solution. There are
three typing constraints:

1. x = high
2. x ≤ y

3. y = low
Assume there existed a solution s. Any such solution would need s(x) = high and
s(y) = low to satisfy constraints one and three. But, then the second constraint,
x ≤ y, would not be satisfied, because x would not be ordered less-than-or-equal
to y with respect to the order defined in tconf. In conclusion, this typing problem
is unsatisfiable. We may conclude, as we would expect, that the snippet contains
a latent domain rule violation of rconf.

3.4 Latent meaning database

The preceding sections use the abstract definition of latent meaning database given
in Section 3.3.2. To make this definition concrete, I must answer two questions:
First, which sign types does a latent meaning database support? Second, how does
a latent meaning database map from the latent meaning of a sign to a constraint
set? Answering these questions is my goal with this section, which I structure as
follows: In Section 3.4.1, I explain which sign types a latent meaning database sup-
ports. In Section 3.4.2, I explain Simplified Jimple, an intermediate representation

24

3.4. Latent meaning database

that I use when outputting typing constraints with a latent meaning database. In
sections 3.4.3 to 3.4.5, I discuss the details of each supported sign type.

3.4.1 Deciding which sign types to support

Deciding which sign types a latent meaning database should support is a nontriv-
ial puzzle. Some sign types to consider for inclusion are control flow constructs,
such as if, for, while, and switch; method calls; operators and assignments;
and the names of types, methods, variables, parameters, and fields. My decision
is to support the following sign types:

1. Calls to library methods.
2. Names of local variables and parameters.
3. A few other signs, such as assignments, return statements, and operator

applications.
The first two sign types are included because they are especially strong bearers of
latent meaning. Calls to library methods often tell much about the latent meaning
of standard Java types, such as String objects and byte[] arrays. For instance,
when a byte[] array is used as the input argument to an encryption method,
this suggests that the array contains confidential data. Names are one of the
fundamental ways humans communicate in code, yet they are not understood
by the compiler. Hence, names carry significant latent meaning, and many latent
domain rule violations concern names.

My decision to restrict the analysis to these sign types is also influenced by
my research hypothesis; I want to keep the analysis simple, and see how far one
can go with a restricted set of sign types.

In sections 3.4.3 to 3.4.5, I describe each supported sign type in detail. Before that,
however, I take a detour: In the preceding text, I use the full Java language in all
examples. However, defining a latent meaning database that operates directly on
the full Java language would be extremely laborious. Therefore, I define a latent
meaning database as operating on an intermediate representation that is similar
to Java code in many aspects, but much simpler.

3.4.2 Simplified Jimple

In this section, I describe the important details6 of an intermediate representation
that I call Simplified Jimple. A latent meaning database operates on Simplified
Jimple when outputting typing constraints for a Java method.

Note that I also use Simplified Java for the flow-centered analysis, which I
describe in Chapter 5. The two analyses look at different things in a Java program,
and therefore there are some constructs in Simplified Jimple that are relevant

6I do not describe all details of Simplified Jimple in full depth. Rather, I describe it in sufficient
detail to avoid ambiguity in the rest of the text.

25

3. Type-centered analysis

only to one of the analyses. Note also that the grammar described here is slightly
different from the one implemented in the proof-of-concept tool. Most importantly,
the grammar used in the proof-of-concept tool is more compact. With that said, it
can be ‘rolled out’ into the grammar I give in Table 3.1.

Abstract syntax
The abstract syntax of Simplified Jimple is given in Table 3.1. Here, x, y, z, x0,
and x1 denote variables. Further, t denotes a (primitive or reference) type, and i
denotes the number of a statement. Further, O denotes a Java operator. Note here
that Simplified Jimple does not discern between operators, and that one therefore
can not distinguish, say, z=x+y from z=x*y after translation into Simplified
Jimple.

Incidentally, observe that the sign types I listed in the start of Section 3.4 ‘cut
across’ the statement types in Simplified Jimple. For instance, names show up in
almost all statement types.

Translation overview
To translate a Java method into Simplified Jimple, I do as follows: First, I convert
the JVM byte code of the method into the Jimple intermediate language [64], using
the Soot framework [63]. Then, I use the Soot framework to convert the Jimple
representation of the method into SSA form (cf. Section 2.1). Finally, I simplify the
SSA form representation into the abstract syntax given in Table 3.1.

Translation details
The translation process has a few details that influence the analysis results, and
should be described in greater depth.

First, Soot’s Jimple translation adds synthetic variables to represent inter-
mediate values in a Java method. So, a Java statement that includes a complex
expression, such as

int y = (int) round(sqrt(f.asDouble()));

results in a sequence of Simplified Jimple statements, with several synthesised
variables.

Second, I add synthesised variables to represent constants. And, I add syn-
thesised variables to represent ignored return variables. Thus, a sequence of
statements such as

int y = 42;

f(y);

where f is a method that returns a value, translates to

y = $const0;

$ignored0 = f(y);

26

3.4. Latent meaning database

y = x assignment
y = O x unary operator application

z = x O y binary operator application
y = (t) x cast

y = f(x0, x1, ...) method call
f(x0, x1, ...) method call (void return)

jump i unconditional jump
condjump (x0, x1, ...) i conditional jump

return x return (non-void)
return return void

Table 3.1: Abstract syntax of Simplified Jimple.

Third, in the simplification step several Jimple statements disappear. Among
these are the Jimple statement equivalent of the new operator.

Fourth, in the simplification step all method calls are rewritten on a unified
form where also the receiver of a non-static method call is explicitly included in
the argument list. For example, the statement

myList.add(xs);

translates to

add(myList, xs);

SSA transformation
I should also comment on why I include SSA transformation in the translation
process. There are two reasons, bothmake the type-centered analysis more precise.

The first reason concerns Soot’s JVM-to-Jimple translator [64], which I use in
the first step of translation. This translator often reuses synthesised variables to
represent different intermediate values. Due to this, cases may appear where we
legitimately want to type one intermediate value as high and one as low, but where
this is impossible because they are both represented by the same variable. With
SSA transformation, any variable can hold at most one intermediate value, and
such cases can not arise.

The second reason is that SSA transformation allows the type-centered analysis
to understand certain cases where a variable holds a value of one type (such as cs)
at one time, and then is assigned a value of another type (such as ¬cs) at a later
time. SSA transformation can prevent false negatives in these cases. I discuss the
importance of the SSA transformation in further depth in Section 9.1.

27

3. Type-centered analysis

I now return to the main thread and describe in detail the sign types that a latent
meaning database supports.

3.4.3 Names

A latent meaning database can generate typing constraints from two kinds of
names: local variable names, and method names. Specifically, a latent meaning
database includes two mappings: a mapping Nv, describing the latent meaning
of local variable names, and a mapping Nm, describing the latent meaning of
method names. Formally, each such mapping is a partial function from identifiers
to a type set.

Constraint generation

Assume that m is a method, t = (T,≤) is a type set, and thatK is a latent meaning
database with name sign mappings Nv and Nm. Constraint generation for the
name signs in m proceeds as follows:

1. For each local variable x in m, and each entry n 7→ w in Nv, if n is a substring
of x, K outputs the equality constraint x = w.

2. For each entry n 7→ w in Nm, if n is a substring of the name of m, K outputs
an equality constraint x = w, for each variable x that is a return variable
in m.

Example

Let K be a latent meaning database for a type set ({a, b}, a ≤ b}), with name sign
mappings:

Nv: {x 7→ a}
Nm: {foo 7→ b}
Assume that a method named foobar with the following Simplified Jimple
representation:

x = y;

return y;

is input to K. The latent meaning database K would then output the typing con-
straints x = a and y = b.

3.4.4 Library method calls

Constraint generation for library calls works slightly different depending on
whether the callee returns void or not.

28

3.4. Latent meaning database

For a method call to a void-returning library method, such as

f(x1, x2, x3);

a latent meaning database may output any typing constraints over the argument
variables (in this case x1, x2, and x3).

For a method call to a value-returning library method, such as

y = f(x1, x2, x3);

a latent meaning database may output any typing constraints over the argument
variables (in this case x1, x2, and x3) and the return variable (in this case y).

3.4.5 Other signs

In addition to names and library method calls, a latent meaning database may
specify how to generate constraints for:

– assignment statements,
– operator application statements,
– synthesised variables that represent constant values (cf. Section 3.4.2),
– the this variable, and
– calls to methods not recognised as library methods.

Assignment and operator application statements
For assignment statements and operator application statements, a latent meaning
database may specify any typing constraints for the variables involved in the
statement.

Variables holding constants
For each synthesised variable representing a constant value, a latent meaning
database may specify an equality constraint. In the current version of the proof-
of-concept tool, the latent meaning database must map all constants to the same
type.

The this variable
A latent meaning database may specify an equality constraint for the this vari-
able.

Calls to methods not recognised as library methods
Finally, a latent meaning database may output typing constraints for the variables
appearing as arguments to a method not recognised as a library method. Here, K
must specify one general rule that only depends on the number of arguments to
the method not recognised as a library method.

29

3. Type-centered analysis

3.5 Domain rules encoded for the type-centered analysis

In this section I describe the details of how I encode the domain rules rcs and
rconf for the type-centered analysis. That is, I describe their type sets and their
latent meaning databases in full detail. Although I use, and partially define, these
domain rules in preceding section in the chapter, the definitions I give in this
section are authoritative.

Before I get to the details, let me state two preliminaries: First, for simplicity, I
specify both these domain rules using a two-element type set. Hence, each type
set can be written on the general form

t = ({α, β}, α ≤ β)

for some α and β. Second, the latent meaning databases I use here are designed
using the same principle I described in Section 3.3.3: For a given statement, a latent
meaning database outputs constraints that are such that if they do not contradict
any constraints output for another statement (or they are self-contradictory) then
this statement is not involved in a latent domain rule violation.

3.5.1 Domain rule I: rcs

Any secure challenge must stem from a cryptographically secure random source.

Elaboration

This domain rule concerns values that are secure challenges. For my purposes, I
define a secure challenge as a value that is generated with purpose to be used for
authentication and is generated by a cryptographically secure random number
generator.7

Type set

I use the type set
tcs = {{cs,¬cs}, cs ≤ ¬cs}

where cs stands for cryptographically secure, and ¬cs stands for not cryptographically
secure, as in the example in Section 3.1.

In the next paragraphs, I describe Kcs, the latent meaning database for rcs.

Latent meaning of names
I define two minimal mappings. In particular I include challenge 7→ cs in the
method name mapping.

7I do not define cryptographically secure random generator precisely.

30

3.5. Domain rules encoded for the type-centered analysis

Latent meaning of library method calls
I add to Kcs information about the secure random number generator java.-
security.SecureRandom. I also add information about certain standard li-
brary methods that can preserve cryptographically secure random challenges. An
example of such a method is Long.toString: if a Long is a cryptographically
secure challenge, then so is its String representation. I comment on Kcs in more
detail in Section 7.2 of the validation chapter, in context of relevant examples.

Latent meaning of assignments, operators, and casts
For an assignment statement, such as

y = x;

I letKcs output the ordering constraint x ≤ y. That is, I disallow any typing where
y has type cs, but x has type ¬cs.

For an operator application statement, such as

z = x O y;

I err on the safe side and let Kcs output an equality constraint z = ¬cs. I use a
similar rule for casts.

Latent meaning of constants
As constants are hardcoded into the program text, I assume that any variable
holding a constant value is not cryptographically secure. Therefore, I letKcs output
an equality constraint $constx = ¬cs for any synthesised variable $constx
holding a constant value.

Latent meaning of this
For the this variable, I let Kcs output the equality constraint this = ¬cs. Also
here, I err on the safe side, as theremay be cases where this is a cryptographically
secure challenge.

Latent meaning of non-library method calls
Erring on the safe safe, I let Kcs output an equality constraint x = ¬cs for any
variable mentioned in an unknown method call.

3.5.2 Domain rule II: rconf

An adversary must not be able to learn any confidential data through observing a
public output stream.

31

3. Type-centered analysis

Elaboration

The definition of rconf rests on the same assumptions I described in Section 3.3.3.
There is a distinction between confidential and non-confidential data: Confidential
data is data that an adversary must not be able to learn, while non-confidential
data is data that an adversary is allowed to learn.

Type set

I use the type set
tconf = {{low, high}, low ≤ high}

where low denotes the type of non-confidential data and high denotes the type of
confidential data.

In the next paragraphs, I describe Kconf, the latent meaning database for rconf.

Latent meaning of names
I define two minimal mappings for name signs. In particular, I map variable
names such as plaintext to high, but variable names such as ciphertext and
encrypted to low.

Latent meaning of library method calls
I add to Kconf information about the library call System.getEnv. Further, I add
information about the PrintStream output stream, assuming that it does not
preserve confidentiality. Finally, I add information about certain standard library
methods such as StringBuilder.append, which are like assignments in that
if the ‘input’ is high, then so must the ‘output’ be high. I comment onKconf in more
detail in Section 7.2 of the validation chapter, in context of relevant examples.

Latent meaning of assignments, operators, and casts
For an assignment statement sign, such as

y = x;

I let Kconf output the ordering constraint x ≤ y. That is, I disallow any typing
where x is high but y is low, in which case confidential data would leak from x

to y.

For an unary operator application statement, such as

y = (f) x;

I also let Kconf output the ordering constraint x ≤ y. Also here, the crux is to
disallow any typing where x is high but y is low. I use a similar rule for binary
operator applications and casts.

32

3.5. Domain rules encoded for the type-centered analysis

Latent meaning of constants
As constants are hardcoded into the program text, I assume that any variable hold-
ing a constant value is not confidential. Therefore, I let Kconf output an equality
constraint $constx = low for any variable $constx holding a constant value.

Latent meaning of this
For the this variable, I let Kcs output the equality constraint this = low. This is
imprecise, as there may be cases where the this variable is confidential.

Latent meaning of non-library method calls
Erring on the safe safe, I let Kconf output an equality constraint x = low for any
variable mentioned in an unknown method call. This is because I cannot know
how an unknown method will treat any confidential arguments.

Chapter summary and continuation

In this chapter, I introduced the type-centered analysis, the first of the two analyses
I present in the thesis. First, I developed the idea that checking whether a method
violates a domain rule can be cast as a typing problem. Following that, I defined
the notion of latent meaning, and described a formal technique for constructing
and solving typing problems using a latent meaning database. I also described
Simplified Jimple, an intermediate representation that I use for both analyses.
Finally, I described how to specialise the type-centered analysis to enforce two
domain rules, rcs and rconf.

In the next chapter, I expand on one detail, how to find solutions that satisfy a
constraint set (cf. Section 3.3.2). In Section 7.2 of Chapter 7, the validation chapter,
I do experimental validation of the type-centered analysis. First, in Section 7.2.1, I
use the type-centered analysis specialised for rcs to identify a latent domain rule
violation in the source code of an electronic voting system. Second, in Section 7.2.2,
I use the type-centered analysis specialised for rconf to identify latent domain rule
violations in test cases from a third-party test suite. Further, in Chapter 8, I compare
the type-centered analysis to closely related work. Finally, in Chapter 9, I discuss
the type-centered analysis, compare it to the flow-centered analysis, and present
ideas for future work.

33

CHAPTER 4
Solving typing problems

In this chapter, I pick up the thread from Section 3.3 and present and prove correct
an algorithm that can find a solution for any satisfiable constraint set. My goal
with this chapter is to demonstrate that I have developed a robust technique for
solving typing problems. Readers interested only in the essence of the thesis may
skip the chapter, with no risk of losing sight of the larger picture.

The structure of the chapter is as follows: First, in Section 4.1, I state a number of
definitions, which match those given in Section 3.3, but are more rigorous. I also
state and prove some lemmas. Then, in Section 4.2, I define the typing algorithm.
Further, in Section 4.3, I prove that this algorithm finds a solution to any satisfiable
typing problem. Finally, in Section 4.4, I make clear the connection between the
definitions I work out in this chapter, and those I gave in Section 3.3. To manage
complexity, I heed the advice of Lamport [37, 38] and use a structured proof system
for some proofs. Following convention, I use the plural we to mean the author and
the reader.

Note that, to further build confidence in the correctness of the typing algorithm,
the proof-of-concept tool i) cross-checks the output of every run of the typing
algorithm with the output of a fully independent solution algorithm1, and ii)
explicitly asserts the correctness of each solution.

1I have derived an alternative solution algorithm, which essentially is an augmenta-
tion of Tarjan’s strongly connected components algorithm [59]. I do not describe or analyse
this algorithm in the thesis, but interested readers may look at its implementation in the
file analysis/src/main/java/analysis/AlternativeConstraintSolver.java, in the
source code of the proof-of-concept tool.

35

4. Solving typing problems

4.1 Preliminaries

Definition 4.1 (Problem instance)
A problem instance is a four-tuple (V, C, E, R), where

– V is the set of integers from 1 to n, for some n.
– C is the set of integers from 1 to m, for some m.
– E ⊆ V× C is a binary relation.
– R ⊆ V×V is a binary relation.

I refer to
– V as the variables,
– C as the value domain,
– E as the equality constraints, and
– R as the ordering constraints.

I let R′ denote the transitive closure of R, and call a member of R′ a transitive
ordering constraint.

An example of a problem instance is

({1, 2, 3}, {1, 2, 3}, {(1, 1), (2, 3)}, ∅)

where we have the equality constraints 1E1 and 2E3, and no ordering constraints.

Definition 4.2 (Solution)
Let p = (V, C, E, R) be a problem instance. A function f is a solution for p if the
following three conditions are true:

P1: f is defined for all v ∈ V.
P2: ∀(v, c) ∈ E. f (v) = c.
P3: ∀(v, v′) ∈ R. f (v) ≤ f (v′).

Intuitively:
1. The function f must have an assignment for every variable.
2. For all equality constraints vEc, f must map v to c.
3. For all ordering constraints vRv′, the value f assigns to v must be less than

or equal to the value it assigns to v′.
This definition matches Definition 3.7 in Chapter 3. (The definition in Chapter 3 is
less rigorous, though, as it does not include the first requirement.)

Definition 4.3 (Satisfiability)
A problem instance p is satisfiable if there exists a function that is a solution for p.
Otherwise, if no such function exists, the problem instance is unsatisfiable.

This definition matches Definition 3.8 in Chapter 3.

36

4.2. Typing algorithm

Lemma 4.1 (Satisfiable problems obey transitive ordering constraints)
Let p = (V, C, E, R) be a problem instance. If f is a solution to p and (v, v′) is any
element in R′ then f (v) ≤ f (v′).

Proof. Assume that f is a solution to p, and let (v, v′) be any element in R′. Because
vR′v′ and from the definition of transitive closure, there exists a sequence of
variables v1, v2, . . . , vn−1, vn where v1 = v and vn = v′, and each adjacent pair
(vi, vi+1) is an element of R. Because f is a solution to p, f (vi) ≤ f (vi+1) for each
such pair. Therefore, f (v) = f (v1) ≤ f (v2) . . . f (vn−1) ≤ f (vn) = f (v′), and, in
particular, f (v) ≤ f (v′).

Lemma 4.2 (A problem with conflicting equality constraints is unsatisfiable)
Any problem instance p = (V, C, E, R) is unsatisfiable if there exists elements
(v, c) and (v, c′) in E, when c 6= c′.

Proof. Immediate. No function can yield different output values for the same
input value, which would be required to satisfy any two such constraints.

Corollary 4.1 A satisfiable problem has no conflicting equality constraints.

Proof. Contrapositive of Lemma 4.2.

4.2 Typing algorithm

Definition 4.4 (Typing algorithm)
Given a problem instance p = (V, C, E, R), I define the typing algorithm tp and the
utility functions qp, mp, and ap as follows:

tp(v) =


⊥ if qp(v) 6= ⊥∧ qp(v) > mp(v)

mp(v) if qp(v) = ⊥
qp(v) otherwise

qp(v) =

{
c if ∃!c ∈ C. vEc

⊥ otherwise

mp(v) =

{
min ap(v) if ap(v) 6= ∅

max C otherwise

ap(v) = {qp(v′) | ∀v′ ∈ V. vR′v′ ∧ qp(v′) 6= ⊥}

The intuition behind the utility functions is as follows:
– qp(v) yields the value of the equality constraint for v, if such a constraint

exists and no conflicting equality constraint exists, or otherwise ⊥.
– ap(v) yields the set of values qp(v′), for all variables v′ that must be no less

than v and has qp(v′) 6= ⊥.
– mp(v) yields the value of theminimumelement of ap(v), if ap(v) is nonempty,

or otherwise max C.

37

4. Solving typing problems

4.3 Correctness proof

In the rest of the chapter, my focus is proving that the typing function tp yields
solutions for any satisfiable problem. I first introduce two lemmas.

Lemma 4.3
Let p = (V, C, E, R), be a problem instance, and let v be any element of V. If p is
satisfiable and qp(v) 6= ⊥ then qp(v) ≤ mp(v).

Proof. Let
A: p is satisfiable
B: qp(v) 6= ⊥
C: qp(v) ≤ mp(v)

where v is some element of V. We need to demonstrate A ∧ B =⇒ C. This is
equivalent to showing that A ∧ B ∧ ¬C is a contradiction.

A ∧ B ∧ ¬C =⇒ false
1. Assume A ∧ B ∧ ¬C. Observe that
¬C: qp(v) > mp(v)

2. Let f be any solution to p. (By A, we may assume that a solution exists.)
3. false

a) ∃!c ∈ C. vEc, qp(v) = c
proof: Using B and the definition of qp.

b) ∃(v′, c′) ∈ E. vR′v′ ∧ c > c′

i. mp(v) < max C
proof: Because, by ¬C, qp(v) is strictly larger than mp(v), and
qp(v) can not be larger than max C.

ii. ap(v) 6= ∅
proof: From mp(v) < max C and the definition of mp.

iii. mp(v) = min ap(v) = qp(v′), for some v′

proof: From the definition of mp and ap, using mp(v) < max C
and ap(v) 6= ∅, there must be some v′ which makes for the
smallest value of qp in ap(v). (Note that there may well be
several such v′s.)

iv. vR′v′

proof: From the definition of ap, using the previous step.
v. ∃(v′, c′) ∈ E. qp(v′) = c′

proof: From the definition of ap and qp, using step iii. (If this
was not the case, qp(v′) would not be in ap(v).)

vi. mp(v) = min ap(v) = qp(v′) = c′

proof: From the definition of mp, using steps iii and v.
vii. c = qp(v) > mp(v) = min ap(v) = qp(v′) = c′

38

4.3. Correctness proof

proof: Using ¬C, step a, and step vi.
viii. c > c′

proof: Using step vii.
c) f (v) = c, f (v′) = c′

proof: Since f is a solution to p, it must obey the equality con-
straints (v, c) ∈ E and (v′, c′) ∈ E.

d) f (v) ≤ f (v′)
proof: Since f is a solution to p, it must obey the transitive ordering
constraints vR′v′. (By Lemma 4.1.)

e) false
proof: Given the requirement c > c′, no function f can satisfy
f (v) = c ≤ f (v′) = c′. By Definition 4.3 this implies that p is
unsatisfiable, that is ¬A. Hence, we reach the contradiction A ∧
¬A.

Lemma 4.4
Let p = (V, C, E, R) be a problem instance. If (v, v′) is any element of R then
mp(v) ≤ mp(v′).

Proof. Let (v, v′) be any element in R. First, note that if ap(v′) = ∅ then mp(v′) =
max C, in which case the implication holds trivially, because mp can never output
anything larger than max C. Now, assume instead ap(v′) 6= ∅. Note that from the
assumption vRv′ and the definition of transitivity, it follows that for any v′′ such
that v′R′v′′, we also have vR′v′′. From the definition of ap it therefore follows that
ap(v) ⊇ ap(v′). Finally, recall that mp(x), always picks the minimum element of
ap(x) if ap(x) is non-empty. Therefore, from ap(v) ⊇ ap(v′) 6= ∅, mp(v) ≤ mp(v′)
follows.

I now prove that if p is any satisfiable problem instance, then tp is a solution for p.
I do this by proving that tp satisfies each of the three requirements to a solution,
in turn.2

Lemma 4.5
If p is satisfiable, then tp is defined for all v ∈ V.

Proof. Let
A: p is satisfiable
B: tp is defined for all v ∈ V

A =⇒ B:
1. Assume A.
2Note though, that there are cases where p is not satisfiable, but where tp still suggests ‘solutions’.

This is not important however, as it is straightforward to check whether a proposed solution is actually
a solution, using Definition 4.2.

39

4. Solving typing problems

2. Let v be any member of V.
3. B

a) q(v) 6= ⊥ =⇒ tp(v) 6= ⊥
i. qp(v) ≤ mp(v)

proof: By Lemma 4.3, using A and qp(v) 6= ⊥.
ii. tp(v) = qp(v) 6= ⊥

proof: By the definition of tp, using qp(v) 6= ⊥ and qp(v) ≤
mp(v).

b) q(v) = ⊥ =⇒ tp(v) 6= ⊥
i. tp(v) = mp(v)

proof: By the definition of tp, using qp(v) = ⊥.
ii. tp(v) 6= ⊥

proof: Using tp(v) = mp(v), and mp being a total function
c) Either q(v) is defined, or it is not defined. I have shown that in either

case tp(v) 6= ⊥ follows. Since v is a generic particular, this implies B.

Lemma 4.6
If p is satisfiable, then ∀(v, c) ∈ E. tp(v) = c.

Proof. Let
A: p is satisfiable
B: ∀(v, c) ∈ E. tp(v) = c

A =⇒ B:
1. Assume A.
2. Let (v, c) be any member of E.
3. B

a) qp(v) = c
proof: From the definition of qp, using vEc, and Corollary 4.1.

b) qp(v) ≤ mp(v)
proof: By Lemma 4.3, using A and qp(v) 6= ⊥.

c) tp(v) = qp(v)
proof: By the definition of tp, using qp(v) 6= c and qp(v) ≤ mp(v).

d) tp(v) = c

Lemma 4.7
If p is satisfiable, then ∀(v, v′) ∈ R. tp(v) ≤ tp(v′).

Proof. Let
A: p is satisfiable

40

4.4. Translating from a typing problem to a problem instance

B: ∀(v, v′) ∈ R. tp(v) ≤ tp(v′)
we need to demonstrate A =⇒ B.

A =⇒ B
1. Let (v, v′) be any element of R.
2. tp(v) ≤ mp(v)

proof: By Lemma 4.5 and the definition of tp, using A.
3. tp(v′) ≤ mp(v′)

proof: Similar.
4. mp(v) ≤ mp(v′)

proof: Using Lemma 4.4 and vRv′.
5. tp(v) ≤ tp(v′)

a) qp(v′) = ⊥ =⇒ tp(v) ≤ tp(v′)
i. tp(v′) = mp(v′)

proof: By the definition of tp, using qp(v) = ⊥.
ii. tp(v) ≤ mp(v) ≤ mp(v′) = tp(v′)

proof: Using tp(v) ≤ mp(v), tp(v′) = mp(v′), and mp(v) ≤
mp(v′).

iii. tp(v) ≤ tp(v′)
b) qp(v′) 6= ⊥ =⇒ tp(v) ≤ tp(v′)

i. qp(v′) ≤ tp(v′)
proof: By the definition of tp, using qp(v′) 6= ⊥.

ii. mp(v) ≤ qp(v′)
proof: By the definition of mp and ap, using vRv′, and qp(v′) 6=
⊥. (Since v and v′ are related by R, qp(v′) is in ap(v).)

iii. tp(v) ≤ mp(v) ≤ qp(v′)
proof: Using tp(v) ≤ mp(v) and mp(v) ≤ qp(v′).

iv. tp(v) ≤ tp(v′)
proof: Using qp(v′) ≤ tp(v′) and tp(v) ≤ mp(v) ≤ qp(v′).

Theorem 4.1 (Typing algorithm gives a solution for all satisfiable problems)
Let p = (V, C, E, R) be a problem instance. If p is satisfiable, then tp is a solution
for p.

Proof. By lemmas 4.5, 4.6, and 4.7 we know that tp satisfies all requirements to a
solution for any satisfiable problem p.

4.4 Translating from a typing problem to a problem instance

I now clarify how to translate between the definitions in Section 3.3 and those I
develop in this chapter.

41

4. Solving typing problems

In this section, let t = (T,≤) be a type set (Definition 3.4) and Γ a constraint set
where each equality constraint x = t is such that t ∈ T.

Variable mapping
To map between a set of variables as defined in Chapter 3 and a set of variables
as defined in this chapter, choose any function q that is a one-to-one mapping
between all the variables seen in Γ and the set of integers from 1 to m, where m is
the number of distinct variables seen in Γ. For instance, if

Γ = {x = cs,y = cs,x ≤ y}

then one choice of q is such that q(x) = 1 and q(y) = 2.

Type mapping
To map from T and a value set as defined in this chapter, use the function w : T→
Z, defined as follows:

1. If t ≤ t′ for all t′ ∈ T. w(t) = 1

2. If t > t′ for all t′ ∈ T. w(t) = |T|
3. If t ≤ t′ then w(t) ≤ w(t′)

In other words, w is such that if

t = {{a, b, c}, a ≤ b ≤ c}

then w(a) = 1, w(b) = 2, and w(c) = 3.

Mapping summary
The mapping from t and Γ into a problem instance (V, C, E, R) is defined as
follows:

V = {q(x) for all variables x seen in Γ}
C = {w(t) for all types t ∈ T}
E = {(q(x), w(t)) for all equation constraints x = t ∈ Γ}
R = {(q(x), q(y)) for all ordering constraints x ≤ y ∈ Γ}

If a typing problem is satisfiable, we may map back from the output of tp to a
solution f (as specified in Definition 4.2 in Chapter 3) as follows:

f (x) = w−1(tp(q(x)))

where w−1 denotes the inverse of w.3

3Note that, by the definition of tp, and using that the typing problem is satisfiable, any argument
given w−1 in this mapping will be in its domain.

42

CHAPTER 5
Flow-centered analysis

In this chapter, I describe the flow-centered analysis, the second of the two analyses
I present in the thesis.

I start with an introductory section, to motivate the analysis and to introduce its
main ideas.

5.1 Introduction

Both the domain rules rcs (Section 3.5.1) and rconf (Section 3.5.2) essentially concern
flow-related flaws. For rcs, we want to assert that certain variables have a value
that has flowed from a cryptographically secure random source. For rconf, we want
to assert that there is no flow of confidential information into insecure locations,
such as a public log file. However, while the type-centered analysis can find flow-
related flaws that are violations of these domain rules, there are many flow-related
flaws it can not identify.1 For example, consider the snippet:

void sendNext() {

byte[] msgBytes = msgQueue.poll();

network.write(msgBytes);

}

Assume here that network.writewrites to an underlying socket that may be
in a blocked state, and that network.write may signal this by immediately
returning -1, without sending any data. Using the type-centered analysis, there
is no way to assert that the return value of network.write is checked, so that
should the underlying socket be blocked, the code can detect this and take some

1I treat the issue of which flow-related flaws each analysis can and can not find with more rigour
in sections 9.1 to 9.3, where I discuss and compare the analyses.

43

5. Flow-centered analysis

appropriate action.2 The purpose of the flow-centered analysis is to identify flaws
like the one seen in this example.

5.1.1 Critical values

As a first step in developing the flow-centered analysis, I shall say that there are
certain data values that are critical in the sense that ‘using them in a satisfactory
way’ is crucial to a program’s correctness. To illustrate this, consider an interactive
banking application where there are some values that represent account balances,
and some values that specify which colour scheme to use for a GUI. Clearly, the
values in the first group are relatively more important to treat correctly than those
in the second. If the colour schemes are mixed up, it is a nuisance; if the balances
are corrupted, it is a business-critical flaw.

Which values are critical, andwhat itmeans for them to be used in a satisfactory
way, depends on context. For the network.write example, we may say that its
return value numSent is used in a satisfactory way if it ends up in an if statement
where it is compared to -1, and if, then, some appropriate action is taken if the
underlying network channel is blocked.

Precisely, what it means for a critical value to be used in a satisfactory way
depends on its domain type, that is, the type that the value is meant to repre-
sent.3 Let me illustrate this. Java programmers often use the implementation
type java.lang.String to represent the domain type password. But, to assert
whether a value of such a type is used in a satisfactory way, we need to use our
domain knowledge of what it means to be a password.

5.1.2 Satisfactory use of critical values as a domain rule

I consider failing to use a critical value in a satisfactory way a violation of a rule
that shows up in different (probably all) domains:

rcrit: A critical value must be used in a way that is satisfactory with
respect to its domain type.

The domain rule rcrit is a general rule that one must instantiate for concrete domain
types. For example, rcrit can be instantiated for the domain type cryptographically
secure random challenge.

In Section 5.3 and Section 5.4, I describe how the flow-centered analysis must
be specialised to do analysis of specific instances of rcrit. This is conceptually similar
to how the type-centered analysis must be specialised to do analysis of specific
domain rules, using a latent meaning database.

2I presume here that it is not appropriate to just drop a message.
3Let me repeat the example from Chapter 1: To see the distinction between an implementation

type and the domain type it is meant to represent, consider the distinction between a class JetEngine
in a flight simulator and an engine on an actual jet plane.

44

5.2. Computing with critical values

5.1.3 Disappearing critical values

It is hard, if not impossible, to formalise a general notion of used in a satisfactory way.
Therefore, I design the flow-centered analysis around another notion, disappearing
critical values, which (I claim) approximates used in a satisfactory way in many
interesting cases.

In Section 5.2, I make precise what I mean by disappear. For now, an analogy
is that a critical value that does not disappear is like a message passed along
carefully from its initial sender to a ‘worthy recipient’ through a chain of trusted
intermediates. Conversely, a critical value that does disappear is like a message that
is forgotten or tampered with at some point in the chain between its sender and
recipient. In the network.write example, wemay see numSent as disappearing
because it does not end up with a worthy recipient, an if statement dealing with
the possible error condition.

Structure of the remainder of the chapter
I now start formalising the flow-centered analysis. The formalisation spreads
across several sections, where I describe different subcomponents of the analysis.
First, in Section 5.2, I describe the flow language and a semantics for this language,
the disappearing criticals function. My goal with this section is to specify what
it means for a critical value to disappear in a flow program (a program in the
flow language). Second, in Section 5.3, I describe how to translate Java methods
to the flow language, and how to specialise this translation process to analyse
instantiations of rcrit. Third, in Section 5.4 I define the flow-centered analysis
proper, and describe how to use it to enforce instantiations of rcrit, and how to
apply it to another use case.

5.2 Computing with critical values

This section is divided into two. In Section 5.2.1, I describe the flow language; in
Section 5.2.2, I describe the disappearing criticals function. The purpose of the
section is to describe a formal way to compute with critical values.

5.2.1 The flow language

The flow language is designed for modeling the aspects of a Java method relevant
for finding disappearing critical values. The language’s abstract syntax is given in
Figure 5.1. In this grammar, i and t denote statement position indices. (Below, I only
use t to refer to a jump target.) Further, x denotes a single variable. In general, v
denotes a list of vs. For example, x denotes a list of variables. In the abstract syntax,
I omit separator characters such as commas or semicolons. However, when I use
flow language syntax, I include some ad-hoc separators for clarity.

45

5. Flow-centered analysis

Flow program
A flow program p is a sequence of statements, of which there are three kinds:

1. (so-called) flow statements (flow),
2. unconditional jumps (jump), and
3. conditional jumps (condjump).

Flow programs may be seen as lists: If p is a flow program, pi denotes the ith state-
ment (zero-indexed) in p. Hence, the start of p is p0. I let the symbol end denote
the end of a flow program. One may think of end as similar to the constructor nil
in an abstract data type for lists.

I now describe each kind of statement and their intuitive meanings. Note though
that the only formal meaning of these statements is given by the disappearing
criticals function D, and that my informal description does not precisely describe
what D does.4

The most important notions I describe here are to output and to consume a critical
value.

Flow statement
A flow statement models flow of critical values into and out of variables, when
a Java statement is executed. It is denoted flow (w), where w is a list of flow
parameters.

A flow parameter d x is a pairing of a flow direction and a variable. It describes
flow behaviour with respect to one variable. There are four flow directions: in,
out, inout, and none:

– A flow parameter in x indicates that a critical value is consumed from x.
The intuition is that when the flow statement containing the flow parameter
‘executes’, any critical value in x (there will be one or none) is used in a
satisfactory way; that critical value has been dealt with correctly, and is no
longer a concern. An in-parameter can be used to model, say, the input
parameter for writing to a stream.

– A flow parameter out x indicates that a critical value is output to x. The
intuition is that when the flow statement containing the flow parameter
‘executes’, a critical value is put into x. An out-parameter can be used to
model, say, an output parameter of an encryption method.

– A flow parameter inout x has the meaning that first a critical value is
consumed from x, and then another is output to x. An inout-parameter
can be used to model, say, an encryption method that takes as input an array
of ciphertext and writes more ciphertext to the array.

4For one thing, D only considers one variable at a time.

46

5.2. Computing with critical values

f → s flow program
s→ flow (w) flow statement
→ jump t unconditional jump statement
→ condjump (x) t conditional jump statement

w→ d x flow parameter
d→ in | out | inout | none flow direction

Table 5.1: Abstract syntax of the flow language.

– A flow parameter none x is ignored by the analysis. I include none only to
simplify the implementation of the proof-of-concept tool.5

Jump statement
The intuitive meaning of a jump statement jump t is: continue execution at pt. Any
jump statement in a flow program will correspond to a jump in the Java method
that the flow program models.

Conditional jump statement
The intuitive meaning of a conditional jump statement condjump x t is: condi-
tioned on the variables x, either jump to pt, or continue execution at the next
statement. We will see, however, that D is path-insensitive and does not depend
on the variables x in a conditional jump statement.

Any conditional jump statement in a flow program will correspond to a condi-
tional jump in the Java method that the flow program models. For instance, a Java
if statement such as

if (x < y)

/* body */

translates to
condjump {x,y} φ

where φ is some statement position index corresponding to the start of/*body */.

5.2.2 Disappearing criticals function

Having introduced the flow language, I now make clear what I mean by disappear-
ing critical value. After that, I describe the disappearing criticals function, D.

5 In principle, none-parameters could be factored out of any flow program without changing the
meaning of the program with respect to the disappearing criticals function.

47

5. Flow-centered analysis

D⊥x JendK = ∅

Dd
xJendK = {d}

Dd
xJjumpi tK = Dd

xJptK

Dd
xJcondjumpi x tK = Dd′

x Jpi+1K∪Dd′
x JptK

where d′ = ⊥ if x ∈ x else d

Dd
xJflowi wK = X ∪Dd′

x Jpi+1K

where X, d′ = T(i, d, R(w,x), W(w,x))

Table 5.2: Definition of the disappearing criticals function. The definitions
of R and W are given in the text. The definition of T is given in Table 5.3.

Disappearing critical value
A disappearing critical value is a value that may be output from an out- or
an inout-parameter in some flow statement, but that is not guaranteed to be
consumed in a subsequent flow or condjump statement.

Intuition behind the disappearing criticals function
Now, let me describe the intuition of what the disappearing criticals function does.
Here, let p be a flow program.

First,D⊥x JpiK yields the set of statement position indices in p where a disappearing
critical value may be output to x. Hence, if D⊥x Jp10K = {12, 15}, it means that
when ‘executing’ from p10, a disappearing critical value may be output to x in p12
and p15. That is, both p12 and p15 are flow statements with x as an out- or inout-
parameter, and there are paths out of p12 and p15 with no in- or inout-parameter
to consume these critical values.

The alternative Dd
xJpiK, where d 6= ⊥, means the same as above, save for

allowing an incoming definition d, referring to the position of a prior statement in p
where a critical value was output to x. Hence, if d = 9 and Dd

xJp10K = {9, 11}, it
means that when ‘executing’ from p10, a disappearing critical value may be output
to x in p11, and a critical value that was output to x in p9 may also disappear.

Recall that the first statement of p is p0. Therefore, D⊥x Jp0K yields all statement
positions in the flow program p where a disappearing critical valuemay bewritten
to x.

48

5.2. Computing with critical values

5.2.3 Definition of D

The definition of D is given in Figure 5.2. In the definition, a subscript i on a
statement denotes the statement position index of that statement in the flow
program. Below, I explain the details of each case in the definition.

The case D⊥x JendK:
If there is no incoming definition for x, and D has reached the end of the flow
program, then D returns ∅.

The case Dd
xJendK:

On the other hand, if there is an incoming definition d for x, and D has reached
the end of the flow program, then it means that a critical value was output to x in
the statement with statement position index d, and that this value has not been
consumed. In this case, D returns {d}.

The case Dd
xJjumpi tK:

When D reaches a unconditional jump, it continues at the jump target pt, passing
along any incoming definition position, or ⊥, if there is no incoming definition
position.

The case Dd
xJcondjumpi x tK:

When D reaches a conditional jump, two things happen. First, if there is an
incoming critical value in x, and x is mentioned in x, then D consumes the
incoming definition. (As ifD had reached a flow statementwherexwasmentioned
in an in- or inout-parameter). Second, it branches to both jump targets and
merges the results of analysis down both branches.

The case Dd
xJflowi wK:

Flow statements are the most complicated case. Here, D uses three auxiliary
functions: The predicate functions R and W, and the mapping table T, which is
defined in Table 5.3.

The function R tells whether a variable is consumed, given a parameter list. The
function W tells whether a variable is output, given a parameter list. They are
defined as follows:

R(w,x) = ∃(d,x) ∈ w. d ∈ {in,inout}
W(w,x) = ∃(d,x) ∈ w. d ∈ {out,inout}

Here, I use ∃ as an existential quantifier for program syntax.

49

5. Flow-centered analysis

d R W X, d′

⊥ true true ∅, i
⊥ true false ∅, ⊥
⊥ false true ∅, i
⊥ false false ∅, ⊥
d true true ∅, i
d true false ∅, ⊥
d false true {d}, i
d false false ∅, ⊥

Table 5.3: The mapping table T. Here, d denotes an incoming definition
position, and i denotes the statement position index of the active flow

statement, when T is queried.

To illustrate R and W, consider the parameter list w = (in a,inout b). Here, it
is the case that R(w,a), because a appears in an in-parameter. Further, it is the
case that R(w,b) and W(w,b), since b appears in an inout-parameter. However,
it is not the case that W(w,a), because a only appears in an in-parameter, and
not in an out- or inout-parameter.

Intuitively, the mapping table T defines what happens, with respect to critical
values in x, whenD processes a flow statement. Let me illustrate the operation of
T with two examples. First, considerD⊥x Jflow2 (out v)K. Here, we have W(w,v),
but not R(w,v). In this case the third row in T applies: no critical value disappear
from x (X = ∅), but a new critical value is output to x (d′ = 2). This case would
correspond to the second statement in:

byte[] xs = new byte[256];
writeCriticalValue(xs);

Second, consider Dd
xJflow3 (out v)K, with an incoming definition d = 2. Here,

we also haveW(w,v) and not R(w,v). But, because there is an incoming definition,
the seventh row in T applies: a critical values does disappear here (X = {2}), and
a new critical value is output (d′ = 3). In other words, the incoming critical value
in x is overwritten. This case would correspond to the third statement in:

byte[] xs = new byte[256];
writeCriticalValue(xs);

writeCriticalValue(xs);

50

5.3. Translating Java methods into the flow language

Guaranteeing termination
As it stands, it is possible to input flowprograms toD so that it neverwill terminate.
For instance, the program jump 0 will loop forever. Rather than attempting to
address this with fix-point techniques [41], I step around the issue by positing the
following requirement:

For any flow language program input to D, the target of any (condi-
tional or unconditional) jump statementmust be a subsequent statement,
that is a statement in the flow program that has a larger statement
position index than the jump statement.6

With this requirement, any evaluation of D has a definite, non-divergent value;
for any evaluation of a statement pi, we know that any recursive evaluations of
D will be for statements with larger statement position indices than i, and that
eventually endwill be reached.

5.3 Translating Java methods into the flow language

Having described the flow language and the disappearing criticals function, and
made precise what it means for a critical value to disappear, I now explain how to
translate Java methods into the flow language.

5.3.1 Overview

The first steps of translation are equivalent to the translation steps used by the
type-centered analysis, as described in Section 3.4.2: The JVM byte code of the
method to be analysed is converted into Jimple, translated into SSA form, and
finally converted into Simplified Jimple.

After these steps, the Simplified Jimple representation is translated into the
flow language using a case-by-case mapping, which is defined below. This map-
ping must be specialised by what I term a flow-analysis encoding, with purpose to to
specialise the translation for a specific instantiation of rcrit. This is conceptually
similar to how the type-centered analysis must be specialised with a specific latent
meaning database.

5.3.2 Translation rules

I now describe the rules for translating from the Simplified Jimple representation
of a method (Section 3.4.2) into the flow language. Here, I also describe in which
way a flow-analysis encoding specialises the translation process. Note that all
the Simplified Jimple statement types not mentioned here are ignored in the
translation.

6In particular, this requirement disallows backwards and same-statement jumps. It also disallows
jumps ‘off the end’ of a program.

51

5. Flow-centered analysis

Return
A non-void return statement, such as

return x;

translates to
flow (d x)

jump φ

where d is a flow direction given by the flow-analysis encoding, and φ stands for
the eventual length of the full translation. (In other words, it becomes a jump to
end.)

A void return statement, such as

return;

translates to
jump φ

where φ is as for non-void return statements.

Unconditional jump
An unconditional jump statement, such as

jump i;

translates to
jump φ

where φ is an integer that stands for the eventual statement position matching the
jump target position i.

Conditional jump
A conditional jump statement, such as

condjump (x0, x1, ...) i;

translates to
condjump (x0, x1,...) φ

where φ stands for the eventual statement position matching the jump target
position i.

Method calls
A method call, such as, say,

52

5.4. The analysis proper

f(z, x1, x2, x3);

or

y = f(z, x1, x2, x3);

translates to a flow statement where each flow parameter is determined by the
flow-analysis encoding. Precisely, a flow-analysis encoding includes i) a mapping
from known library method calls to lists of flow parameters, and ii) a rule for
mapping unknown method calls to a flow statement. In the current implementa-
tion of the proof-of-concept tool, all unknown method calls are mapped to a flow
statement with only none-parameters.

5.4 The analysis proper

I now formalise how the flow-centered analysis, as a whole, operates.

Definition 5.1 (Flow-centered analysis)
Let e be a flow-analysis encoding. The flow analysis function Fe is defined by the
following algorithm:
Input:

– A Java method m.
Output:

– Amap from each variable x in m to a set giving the statement positions in p
(the flow program corresponding to m) where a disappearing critical value
may be output to x.

Algorithm:
1. Using the translation rules described in Section 5.3, specialised with the

flow-analysis encoding e, translate m into a flow program p.
2. Output { v 7→ D⊥x Jp0K, for each variable x in m }

5.4.1 Using the flow-centered analysis

While the flow-centered analysis is designed to find latent domain rule violations
of rcrit, as motivated in Section 5.1, it turns out that is another interesting way
to use the analysis: several runs of the flow-centered analysis can be used to
(approximately) enforce an API contract.7 I first describe how to use the standard
technique, before I comment on the alternative technique, which goes beyond rcrit.

Standard technique: Enforcing an instantiation of rcrit

The main technique for using the flow-centered analysis is to use one flow-analysis
encoding e, designed to specialise the analysis for one instantiation of rcrit. This

7I did not realise this before I started experimenting with the analysis.

53

5. Flow-centered analysis

All critical values
are used in a

satisfactory way
⇒ Fe(m)(x) = ∅ for

all variables x.

Some critical value
is not used in a
satisfactory way

⇒ Fe(m)(x) 6= ∅ for
some variable x.

Figure 5.1: Correspondence between use of critical values (Section 5.1.2)
and the output of the flow-centered analysis. Assume here that m is a Java
method and that e is a flow-analysis encoding corresponding to some

instantiation of rcrit.

technique can be used to find the flaw in the network.send example that I
discussed in Section 5.1. I demonstrate this technique in Section 7.3.1, where I
analyse the network.send example, and in Section 7.3.3 where I demonstrate
analysis of a similar flaw in a third-party test suite.

The standard technique is illustrated in Figure 5.1, where I use the notion of
‘used in a satisfactory way’ that I introduced in the start of the chapter.

Alternative technique: Asserting an API contract

Several instances of the flow-centered analysis can be run in sequence to assert
that certain types of requirements to clients of an API are obeyed. For example, to
assert that any call to a method lock is followed by a call to a method unlock. I
demonstrate this technique in Section 7.3.2.

Chapter summary and continuation

In this chapter, I described the flow-centered analysis, the second of the two
analyses I present in the thesis. First, I motivated the analysis by showing examples
of flaws that the type-centered analysis can not identify. Then, I introduced the
notion of critical values, and, further, that of disappearing critical values. I then
described a technique for finding disappearing critical values using a custom
language, the flow language, paired with a custom semantics, the disappearing
criticals function. Further, I described how to translate Javamethods fromSimplified
Jimple (cf. Section 3.4.2) into the flow language, using a flow-analysis encoding.
Finally, I explained how to use the flow-centered analysis to enforce instantiations
of rcrit (the main use case of the analysis), and noted that it also can be applied to
assert that clients of an object-oriented API obey certain types of requirements.

In Section 7.3 of Chapter 7, the validation chapter, I perform an experimental
validation of the flow-centered analysis. First, in Section 7.3.1, I demonstrate how

54

5.4. The analysis proper

to use the flow-centered analysis to check the network.send example given in
Section 5.1. Second, in Section 7.3.2, I demonstrate how to use the flow-centered
analysis to enforce certain types of requirements to clients of an object-oriented
API. Third, in Section 7.3.3, I use the flow-centered analysis to identify violations
of rcrit in test cases from a third-party test suite. Further, in Chapter 8, I compare
the flow-centered analysis to closely related work. Finally, in Chapter 9, I discuss
the flow-centered analysis, compare it to the type-centered analysis, and present
ideas for future work.

55

CHAPTER 6
Implementation of the
proof-of-concept tool

In this (very short) chapter, I give a high-level overview of the implementation
of the proof-of-concept tool, and describe how to run the system to replicate the
results in Chapter 7.

6.1 Overview of the system

The proof-of-concept tool, or, hereafter, the system, is implemented in Scala [43].
The core of the system comprises about 1500 lines of Scala code; in addition, there
are about 500 lines of experiment-specific Scala code. The system is split into sev-
eral packages. The important packages are named:sootfacade,typeanalysis,
and flowanalysis. In addition to these packages there is a top-level (main) pack-
age, which contains code for configuring the system and running the experiments
seen in Chapter 7, and a package named util, containing various utility meth-
ods. Further, there is a Java implementation of the alternative constraint solver,
AlternativeConstraintSolver, and a collection of unit tests. In the follow-
ing sections I give an overview of the packages sootfacade, typeanalysis,
and flowanalysis. I do not discuss other parts of the system in depth.

The sootfacade package

The sootfacade package consists of two files. The file types.scala contains
the implementation of the Simplified Jimple intermediate representation (Sec-
tion 3.4.2). As noted in Section 3.4.2, the grammar used in the implementation is
somewhat more compact than the one listed in the thesis. There are also other
minor differences, such as that the condjump statement is called IfStmt in

57

6. Implementation of the proof-of-concept tool

the implementation. The file JimpleSimplifier.scala contains one class,
JimpleSimplifier, which performs translation from Jimple into Simplified
Jimple, as described in Section 3.4.2.

The typeanalysis package

The package typeanalysis implements the core parts of the type-centered
analysis. Most importantly, the class TypingAlgorithm implements the typing
algorithm, as described in Section 4.2. The file types.scala contains classes
such as EqConstraint and LeqConstraint, representing typing constraints.
The domain rules rcs and rconf are specified in domain_rules.scala. The file
latent_meaning_repr.scala contains classes for representing parts of a
latent meaning database: ConstLatentMeaningDb, APILatentMeaningDb,
and NamingLatentMeaningDb.

The proof-of-concept implementation of the type-centered analysis is restricted
in two ways, with respect to the description given in Chapter 3. First, parts of
the implementation only support domain rules with two-element type sets, such
as rcs and rconf (Section 3.5). Second, latent meaning databases must be written
using an (internal) domain specific language that slightly limits the flexibility in
outputting constraints, with respect to the description in Section 3.4. Both these
restrictions are relatively simple to lift.

The flowanalysis package

The package flowanalysis implements the core parts of the flow-centered anal-
ysis. Most importantly, the class FlowAnalyser implements the disappearing
criticals function. (Specifically, D is implemented by the private method find-

DisappearingForVar.) The class FlowModelTranslator performs transla-
tion from Simplified Jimple to flow programs, as described in Section 5.3. The file
flow_ana_encodings.scala contains a class FlowAnaEncoding for repre-
senting flow-analysis encodings. Note that some of the flow-analysis encodings
used for the experiments inChapter 7 are defined in the filedemo_experiments.-
scala in the top-level (main) package.

6.2 Re-running the experimental validation

With a recent Scala version and the proof-of-concept tool installed, one can re-run
the experiments in Chapter 7 by issuing

$ sbt run

from the folder analysis. The proof-of-concept tools will then output experi-
mental results to analysis/experiment/out/.

58

CHAPTER 7
Experimental validation

In this chapter, I aim to build support towards my research hypothesis through
a practical demonstration of the analyses. To further support the hypothesis, I
follow the experimental validation with qualitative arguments in Chapter 8 and
Chapter 9.

The structure of the chapter is as follows: First, in Section 7.1, I comment on my
experimental validation strategy. Second, in Section 7.2, I report on the experi-
mental validation of the type-centered analysis. Third, in Section 7.3, I report on
the experimental validation of the flow-centered analysis.

7.1 Experimental validation strategy

To lend support to the research hypothesis I posited in Section 1.1, I must demon-
strate that the analysis techniques I present are useful for finding violations of a
variety of interesting domain rules.

One persuasive strategywould be to demonstrate that the analyses can identify
latent domain rule violations in a representative software corpus (cf. Section 2.2).
While I, ideally, would have performed such corpus-based validation, time con-
straints forced me to look to an alternative validation strategy. This is a potential
weakness of my work, which I return to discuss in Section 9.6.

To guide my design of a sound experimental validation within my constraints,
I looked to Shaw’s well-known text ‘Writing Good Software Engineering Research
Papers’ [56], where she discusses the merits of different validation strategies. From
analyses of the relative acceptance ratios for the strategies used in submissions
to ICSE 20021, Shaw reports that ‘[the] most successful kinds of validation were
based on analysis and real-world experience’, but that ’[well-chosen] examples

1International Conference on Software Engineering.

59

7. Experimental validation

Juliet test suite

CWE-specific suite

Thematic group

Variation

Flawed method Fixed method

Variation

Thematic group

CWE-specific suite

Figure 7.1: Structure of the Juliet test suite. Gray nodes and edges
represent parts of the hierarchy not drawn.

were also successful’. Heeding this advice, I chose a primarily example-based
validation strategy.

In addition to using examples, I include another, primarily quantitative vali-
dation strategy; I run the analyses on a subset of cases from the Juliet test suite [6],
which was designed by a group of NSA researchers as a means to evaluate static
analyses. I describe the Juliet test suite below.

7.1.1 The Juliet test suite

Juliet is a test suite developed at NSA’s Center for Assured Software with purpose
to ‘[assess] the effectiveness of static analyzers and other software-assurance
tools’ [6].

The test suite has a hierarchical structure, illustrated in Figure 7.1. Topmost,
it divides into 112 smaller suites, each specific to a Common Weakness Enumer-
ation (CWE) entry.2 Further, each CWE-specific suite divides into a number of
thematic groups (my term), each pertaining to one way a weakness may manifest.
For instance, within the suite corresponding to CWE-78: OS Command Injec-
tion, one thematic group concerns OS command injection specifically through
java.io.File objects. Further again, within each thematic group, there are
numerous variations (my term). Each variation maps to one or two class files,
containing several methods—at least one method where the weakness is present
and at least onemethodwhere theweakness has been fixed. I term these flawed and

2The CWE database is maintained by the MITRE Corporation (an American non-profit) and
accessible at https://cwe.mitre.org/.

60

https://cwe.mitre.org/

7.2. Experimental validation for the type-centered analysis

fixed methods. Including both flawed and fixed methods is valuable; it allows tool
developers to check that they correctly identify flawed methods (true positives),
but also to ensure that they do not mark non-flawed methods as flawed (false
positives).

The Juliet test cases are predominantly machine-generated from a templates
and have a fairly regular structure. As such, Juliet is not a corpus of ‘fully indepen-
dent’ test cases; the variations are fairly similar, both between and within thematic
groups.

Listings
To simplify the presentation, I have reformatted and simplified the Juliet source
code listings seen in this chapter. In particular, I have removed some tangential
comments, and removed superfluous syntax, such as brackets around single-line
if-statement bodies. The listings are semantically equivalent to those input to
the analyses.

7.2 Experimental validation for the type-centered analysis

7.2.1 Slice-of-life example: E-vote 2011

In this section, I demonstrate how the type-centered analysis can identify a latent
domain rule violation of rcs, taken from the source code of an electronic voting
system.

Background

Before the Norwegian municipal elections of 2011, the Norwegian government
published the source code repository of an electronic voting system that would be
evaluated during the elections [44].3 By granting the public access to the source
code, the government aimed to build trust in the security and correctness of the
system as a whole, and to allow interested parties to review the system’s source
code for bugs or other issues.

Example for analysis

The following method4 is found in the source code repository published be-
fore the elections. The method is defined on class Request, in the package
com.scytl.evote.auditing.tpm.bizz.

3Note though, that the source code actually used in the elections, was a later version, and that the
source code of the later version was not made public until after the elections.

4The method is not listed verbatim, but is semantically equivalent to the one in the software
repository. I have reformatted the code, and I use the full name of java.security.SecureRandom.

61

7. Experimental validation

private String createChallenge() {

java.security.SecureRandom sr =

new java.security.SecureRandom();

return new Long(Math.round(sr.nextLong())).toString();

}

Without scrutiny, the method may appear to be a fairly innocent challenge creator.
However, due to subtleties related to Java’s numeric coercion rules, the method
is no more random than a coin toss [44]. Indeed, it virtually always returns the
string representation of either Integer.MIN_VALUE or Integer.MAX_VALUE.
In other words, this methods contains a latent domain rule violation of rcs.

I now demonstrate that the type-centered analysis can find this latent domain
rule violation.

Analysis setup

To configure and run the type-centered analysis on this method, I add annota-
tions for the method’s library calls to Kcs. In particular, I add annotations for
SecureRandom, for the constructor of Long, and for the toString method
defined on Long.

Results

Table 7.1 shows the Simplified Jimple representation of the method, all constraints
output by Kcs, the output of the typing algorithm, and the judgement of the
type-centered analysis as a whole. As seen, the typing algorithm is unable to find
a typing, and the type-centered analysis (correctly) concludes that the method
contains a latent domain rule violation of rcs.

Discussion

To understand how the type-centered analysis processes this method, one must
first look at the Simplified Jimple representation of the method’s byte code (listed
in the top of Table 7.1). First, the fairly complex statement

return new Long(Math.round(sr.nextLong())).toString();

translates to seven Simplified Jimple statements. Second, there are synthesised
variables (cf. Section 3.4.2) such as $l0 and $f0, which represent intermediate
values.

I now work through the constraints generated for the method, and illustrate why
the type-centered analysis concludes that themethod contains a latent domain rule

62

7.2. Experimental validation for the type-centered analysis

SIMPLIFIED JIMPLE

this = $this
<java.security.SecureRandom: void <init>()>($r0)
sr = $r0
$l0 = <java.security.SecureRandom: long nextLong()>(sr)
$f0 = (float) $l0
$i1 = <java.lang.Math: int round(float)>($f0)
$l0_1 = (long) $i1
<java.lang.Long: void <init>(long)>($r1, $l0_1)
$r2 = <java.lang.Long: java.lang.String toString()>($r1)
return $r2

METHOD CALL, ASSIGNMENT, OPERATOR, AND CAST SIGNS
this = $this $this ≤ this
<java.security.SecureRandom: void <init>()>($r0) $r0 = ¬cs
sr = $r0 $r0 ≤ sr
$l0 = <java.security.SecureRandom: long nextLong()>(sr) $l0 = cs
$f0 = (float) $l0 $f0 = ¬cs
$i1 = <java.lang.Math: int round(float)>($f0) $i1 = ¬cs, $f0 = ¬cs
$l0_1 = (long) $i1 $l0_1 = ¬cs
<java.lang.Long: void <init>(long)>($r1, $l0_1) $l0_1 ≤ $r1
$r2 = <java.lang.Long: java.lang.String toString()>($r1) $r1 ≤ $r2

NAME SIGNS OTHER SIGNS
$r2 = cs this = ¬cs

TYPING JUDGEMENT
(typing error) Violated

Table 7.1: Type-centered analysis overview for the E-vote secure challenge
creator.

violation. To simplify the presentation, I ignore constraints that are not relevant
for identifying the violation.5

First, Kcs recognises

$l0 = <java.security.SecureRandom: long nextLong()>(sr)

as a library method call and outputs the equality constraint $l0 = cs.

Second, for the cast

$f0 = (float) $l0

Kcs outputs the equality constraint $f0 = ¬cs, requiring that $f0 can not be a
cryptographically secure challenge.

5 These include the constraints on $this, this, and sr.

63

7. Experimental validation

Third, Kcs does not recognise the method call

$i1 = <java.lang.Math: int round(float)>($f0)

For this reason, it outputs cautious constraints for all the variables involved,
requiring both $i1 and $f0 to have type ¬cs.6

Fourth, for the cast

$l0_1 = (long) $i1

Kcs outputs the equality constraint $l0_1 = ¬cs, requiring that $l0_1 can not
be a cryptographically secure challenge.7

Fifth, Kcs recognises

<java.lang.Long: void <init>(long)>($r1, $l0_1)

as a library method call. In this case it outputs the (precise) ordering constraint
$l0_1 ≤ $r1. In other words, it only disallows a typing where the new Long

object $r1 is typed as cs, but its value is taken from an long primitive typed as
¬cs.

Sixth, Kcs also recognises

$r2 = <java.lang.Long: java.lang.String toString()>($r1)

as a library method call. Here, it outputs a similar constraint as for the statement
discussed in step five. Together, these constraints say that $r2, the String repre-
sentation of the Long object $l0_1, may be typed as cs only if $l0_1 is typed
as cs.

Finally, Kcs recognises the substring challenge in the method name, and there-
fore outputs the equality constraint $r2 = cs, for the return variable $r2.

To see that there is no typing for this method, it sufficies to consider the constraints
generated for the fourth, fifth, and sixth statements I discussed above, and the
constraint generated for the method name. Together these form the constraint set

$l0_1 = ¬cs ≤ $r1 ≤ $r2 = cs
6This is overly stringent, of course. It would have been sufficient to require only $i1 to be ¬cs,

and not output any constraint for $f0, as the primitive value $f0 can not be modified in the call to
Math.round. The analysis is not precise enough to discern between primitive and reference types,
though.

7This is also overly stringent. If the analysis knew more about Java types, it could have output a
more optimistic ordering constraint here, as for an assignment statement.

64

7.2. Experimental validation for the type-centered analysis

The crux is that it is not possible to assign type ¬cs to $l0_1 and type cs to $r2,
when the type assigned to $l0_1 is required to be ordered less than the type
assigned to $r2, by the ordering defined in tconf (cf. Section 3.5.1). Hence, the
type-centered analysis concludes that the method contains a latent domain rule
violation of rcs.

Discussion
The reader may object that the type-centered analysis does not really ‘get at’ the
core issue here, since the first element in the set of constraints that prohibits a
typing is a int-to-long cast statement that Kcs constrains too stringently. For the
sake of argument, assume that an improved version of the analysis was able to
output the more precise constraint

$l0_1 ≤ $i1

for the int-to-long cast statement. Then, the set of constraints prohibiting a typ-
ing would extend back to $i1, the return variable of the Math.round statement:

$i1 = ¬cs ≤ $l0_1 ≤ $r1 ≤ $r2 = cs

and we would have the same problem to find a typing.

Analysis of a corrected version

In a later source code release, published after the 2011 elections, the faulty method
had been corrected. The corrected method reads as follows:

private String createChallenge() {

java.security.SecureRandom sr =

new java.security.SecureRandom();

return new Long(sr.nextLong()).toString();

}

Table 7.2 shows the analysis overview for the corrected method. In this case,
the typing algorithm finds a solution satisfying all constraints, and the analysis
concludes (correctly) that the method does not contain a latent domain rule
violation of rcs.

Regarding the constraints and the typing, note that there is a ‘chain’ of con-
straints running from the synthesised variable representing the output value of
SecureRandom.nextInt to the return variable $r2:

$l0 = cs ≤ $r1 ≤ $r2 = cs

and that all the variables in this ‘chain’ are typed as cs.

65

7. Experimental validation

SIMPLIFIED JIMPLE

this = $this
<java.security.SecureRandom: void <init>()>($r0)
sr = $r0
$l0 = <java.security.SecureRandom: long nextLong()>(sr)
<java.lang.Long: void <init>(long)>($r1, $l0)
$r2 = <java.lang.Long: java.lang.String toString()>($r1)
return $r2

METHOD CALL, ASSIGNMENT, OPERATOR, AND CAST SIGNS
this = $this $this ≤ this
<java.security.SecureRandom: void <init>()>($r0) $r0 = ¬cs
sr = $r0 $r0 ≤ sr
$l0 = <java.security.SecureRandom: long nextLong()>(sr) $l0 = cs
<java.lang.Long: void <init>(long)>($r1, $l0) $l0 ≤ $r1
$r2 = <java.lang.Long: java.lang.String toString()>($r1) $r1 ≤ $r2

NAME SIGNS OTHER SIGNS
$r2 = cs this = ¬cs

TYPING JUDGEMENT
$l0 7→ cs $r0 7→ ¬cs $r1 7→ cs $r2 7→ cs $this 7→ ¬cs sr 7→ ¬cs
this 7→ ¬cs

Not violated

Table 7.2: Type-centered analysis overview for the corrected version of the
E-vote secure challenge creator.

66

7.2. Experimental validation for the type-centered analysis

7.2.2 Juliet experiment for rconf

Introduction

In this experiment, I analyse the Juliet suite specific to CWE-526: Info Exposure
Environment Variables 8, which is a special case of rconf.

The theme of CWE-526 is that an environment variable, assumed to be confi-
dential, is exposed to an output channel, assumed not to preserve confidentiality.
As an example, one of the simplest flawed methods in the Juliet sub-suite corre-
sponding to this vulnerability reads as follows:

public void bad(HttpServletRequest request,

HttpServletResponse response)

throws Throwable {

/* FLAW: environment variable exposed */

response.getWriter().println(

"Not in path: " + System.getenv("PATH"));

}

The Juliet suite corresponding to CWE-526 comprises two thematic groups. The
first thematic group is Servlet-specific, and uses HttpServletResponse ob-
jects for output. In the second group, output is written to IO, a Juliet-specific class
which is used to model standard input and output. Within each thematic group
there are 17 variations: four variations contain one flawed and one fixed method;
the remaining 13 contain one flawed and two fixed methods.

Analysis setup

First, I add annotations for the relevant library methods to the latent meaning
database for rconf. Concretely, I add selected annotations for System.getEnv,
HttpServletResponse, and the class IO. I then input all 34 variations, for a
total of 94 methods, to the type-centered analysis.

Results and discussion

The result matrix for this experiment reads as follows:

True False
Positives 34 0
Negatives 60 0

As evident, the type-centered analysis correctly identifies all cases in the test set.
This is not surprising; while there is variance in flow patterns among the test
cases, the type-centered analysis ignores these9, and outputs (largely) similar
constraint sets for all cases.

8This is the name used in the Juliet test suite. In the CWE database it is named Information
Exposure Through Environmental Variables.

9I return to this point in Section 9.1.

67

7. Experimental validation

7.3 Experimental validation for the flow-centered analysis

7.3.1 Checking the network.send example

I nowdemonstrate how to use the flow-centered analysis to check thenetwork.send
example given in Section 5.1.

Method
I use the following source code, where Network is a mock implementation.

import java.util.*;

class test {

private Queue<byte[]> msgQueue = new ArrayDeque<>();

private Network network = new Network();

void sendNext() {

byte[] msgBytes = msgQueue.poll();

network.write(msgBytes);

}

/* mock implementation */

static class Network {

int write(byte[] data) { return -1; }

}

}

Flow-analysis encoding
What we want to assert here is that the return value of network.send is checked.
We may see this as an instantiation of rcrit where the critical data is the return
value of network.send. To specialise the flow-centered analysis for finding this
violation, I create a flow-analysis encoding where a method call such as

z = network.send(xs);

translates to
flow (out z, none network, none xs)

Recall from Section 3.4.2 that in the translation process from JVM byte code to
Simplified Jimple, synthesised variables are added for all ignored return values.
Hence, a call to network.sendwhere the return value is ignored, such as

network.send(xs);

translates to

$ignoredK = network.send(xs);

68

7.3. Experimental validation for the flow-centered analysis

where K is some integer. It is into this synthesised variable that the flow-centered
analysis will track the disappearing critical value.

Simplified Jimple representation
The method translates to the following Simplified Jimple representation:

this = $this

$r0 = #msgQueue

$r1 = <java.util.Queue: java.lang.Object poll()>($r0)

msgBytes = (byte[]) $r1

$r2 = #network

$ignored0 = <test$Network: int write(byte[])>($r2, msgBytes)

return

As seen, although the return value of network.send is ignored in the Java-level
code, it is explicitly modeled in the synthesised variable $ignored0.

Flow program
Using the flow-analysis encoding described above, the Simplified Jimple repre-
sentation further translates10 into the following flow program.

2: flow (none $r1, none $r0)

5: flow (out $ignored0, none $r2, none msgBytes)

6: jump 7

Disappearing critical values
The analysis output is as follows:

5: $ignored0

The flow-centered analysis reports that there is one disappearing critical value,
which is output to $ignored0 in the flow program statement with statement
position index 5. This disappearing critical value corresponds to the ignored
return value of network.send.

10Note, incidentally, that most of the Simplified Jimple statements are ignored in the translation.

69

7. Experimental validation

7.3.2 Asserting correct usage of an object-oriented API

In addition to asserting instances of rcrit, the flow-centered analysis can approxi-
mately assert certain domain rules that are about how to correctly use an object-
oriented API. In this section I demonstrate this use case.

Consider a resource class such as the following:

class Resource {

void lock() { /* ... */ }

void process() { /* ... */ }

void unlock() { /* ... */ }

}

Assume this class requires client code to obey the following requirements:
– Any call to lockmust be paired with a call to unlock.
– Any call to lockmust be followed by a call to process. (After a client has

locked a resource, they must process it.)
– Any call to process must be wrapped inside a matching pair of calls to
lock and unlock.

The flow-centered analysis can fully enforce requirements 1 and 2, and partially
enforce requirement 3 (I will explain where it falls short).

Themain idea when enforcing such requirements (on any class) is to use several
flow-analysis encodings where a critical value is output to the call target of each
API call; that is, the this variable, with respect to the API class.

Concretely, to enforce the client-code requirements for Resource we need
to define two flow-analysis encodings: First, a flow-analysis encoding where we
specify that lock outputs a critical value to the this variable, and that process
is the only method that consumes a critical value from the this variable. Second,
a flow-analysis encoding where we specify that process outputs a critical value
to the this variable, and that unlock is the only method that consumes a crit-
ical value from the this variable. Call these flow-analysis encodings e1 and e2,
respectively. Then, to approximately assert that the requirements are followed, we
can run the flow-centered analysis two times, once specialised with e1 and once
specialised with e2.

Analysis of a method that violates the requirements
Let me demonstrate how to use the flow-centered analysis, specialised with the
flow-analysis encodings e1 and e2 described above, to identify a method that does
not obey the requirements to clients of Resource.

70

7.3. Experimental validation for the flow-centered analysis

Consider the following method:

static void useResource(Resource res, boolean flag) {

res.lock();

if (flag) {

res.process();

/* more code, without res.unlock() */

return;
}

/* more code */

res.process();

res.unlock();

}

Note here that if flag is set, the method may return without calling unlock on
res, and thus violate the first requirement to clients of Resource.

Analysis details
First, I input the method to the flow-centered analysis specialised with e1, which
enforces that any call to lock must be followed by a call to process. In this
run, the flow-centered analysis finds no disappearing critical values. This is as
expected; whether flag is set or not, the method always calls process after the
call to lock.

Second, I input the method to the flow-centered analysis specialised with e2,
which enforces that any call to processmust be followed by a call to unlock. In
this run, the flow-centered analysis does find a disappearing critical values, as we
would expect.

Let me illustrate what happens in the second run. First, using e2, the method
translates (cf. Section 5.3) into the following flow program:

2: flow (none res)

3: condjump (flag, $const0) 6

4: flow (out res)

5: jump 9

6: flow (out res)

7: flow (in res)

8: jump 9

In this flow program, the flow statement with statement position index 4 cor-
responds to res.process() inside the if block in the method, and the jump
statement with statement position index 5 corresponds to the return statement
inside the same block. (Recall that a return statement translates into a jump to
end.) Crucially, on the path 2 7→ 3 7→ 4 7→ 5 7→ end the critical value output to
res in statement 4 disappears. It is this disappearing critical value that indicates
that there is a call to process not necessarily followed by a call to unlock in the

71

7. Experimental validation

method. The output of the flow-centered analysis is as follows:

4: res

That is, it reports that there is a disappearing critical value output to res in
statement four.

Caveats
Still, as I noted in the introduction of the section, the flow-centered analysis can
not fully enforce requirement three. In particular, it can not understand that a
method missing a lock, such as

static void useResource(Resource res) {

res.process();

res.unlock();

}

is incorrect. However, there is an relatively simple way to fix this: adapting the
flow-centered analysis so it can run backwards as well as forwards. I return to
this point in Section 9.3.

7.3.3 Juliet experiment for rcrit

Introduction

For this experiment, I analyse the Juliet suite specific to CWE-252: Unchecked
Return Value .

As the name suggests, CWE-252 concerns flaws where a return value is critical,
and must be checked. One of the simplest flawed methods in the Juliet sub-suite
corresponding to CWE-252 reads as follows:

public void bad() throws Throwable {

FileInputStream streamFileInput = null;

try {

int bytesToRead = 1024;

byte[] byteArray = new byte[bytesToRead];

streamFileInput = new FileInputStream("c:\\file.txt");

streamFileInput.read(byteArray);

/* FLAW: Do not check the return value of read() */

IO.writeLine(new String(byteArray, "UTF-8"));

} ...

}

The flaw is that the return value of streamFileInput.read is not explicitly
checked. In the fixed cases a test like the following has been added:

72

7.3. Experimental validation for the flow-centered analysis

if (numberOfBytesRead < bytesToRead) {

IO.writeLine("Could not read " + bytesToRead + " bytes.");

}

The Juliet suite corresponding to CWE-252 comprises one thematic group, specific
to FileInputStream objects. In this thematic group four variations contain one
flawed method and one fixed method, while the remaining 13 contain one flawed
and two fixed methods.

Analysis setup

First, I add annotations for the relevant librarymethods to a flow-analysis encoding
specialised for asserting that the return value of FileInputStream is checked.
In this case, it is only necessary to annotate library calls to FileInputStream,
and the flow-analysis encoding is very compact. I then input all 17 variations, for
a total of 47 methods, to the flow-centered analysis.

Results and discussion

The result matrix for this experiment reads as follows:

True False
Positives 17 1
Negatives 29 0

As evident, the flow-centered analysis correctly identifies all but one case. Recall
from Section 5.2.3 that the flow-centered analysis does not support analysis of
methods with backwards jumps. In the current implementation of the proof-of-
concept tool, methods with such jumps are automatically marked as buggy.11

Chapter summary and continuation

In this chapter, I performed an experimental evaluation of the type-centered
analysis and the flow-centered analysis. I evaluated both analyses on test cases
from the Juliet test suite, and on a selection of other examples. In particular, I
showed that the type-centered analysis can identify a latent domain rule violation
in the source code of an electronic voting system.

In the next chapter, I compare the analyses to closely related work. Further, in
Chapter 9, I discuss the analyses and relate them to each other.

11It would have been more precise to include an analysis error result type in the proof-of-concept
tool.

73

CHAPTER 8
Related work

In this chapter, I pick up the thread from Chapter 2 and discuss research relating
directly to the analyses I present. Note that my aim here is not to argue that my
techniques are more precise than related works. Rather, I aim to discuss i) ideas
in my work that are comparable to ideas seen in related work, ii) ideas I include
that are not in related work, and iii) ways in which the techniques I present are
simpler than techniques described in related work.

The chapter is structured as follows: First, in Section 8.1, I discuss Engler et al.’s
work on bugs as deviant behaviour, which shares similarities with the analyses I
present. Second, in Section 8.2, I discuss work on pluggable type systems. Third, in
Section 8.3, I discuss the FindBugs tool, which, like both the analysis I present,
uses simple intraprocedural techniques. Finally, in Section 8.4, I discuss Høst and
Østvold’s work on naming bugs.

8.1 Bugs as deviant behaviour

Engler et al. [21] present a two-step technique for finding bugs, based on first
extracting so-called ‘beliefs’ from source code, and then checking whether any of
these beliefs contradict each other. As examples of the first step, ‘a dereference of a
pointer p, implies a belief that p is non-null’ [21], whereas a conditional statement
checking whether a pointer p is null would imply a belief that p could be null.
If these example beliefs arose together, Engler et al.’s technique would identify
them as contradicting each other.

This technique is largely comparable to the type-centered analysis. First, what
Engler et al. term beliefs is comparable to what I call latent meaning, and the
process of extracting beliefs from source code is similar to the process I describe
for extracting latent meaning from various signs in source code. Second, the idea

75

8. Related work

of gathering beliefs and trying to find contradictions among these is conceptually
similar to how the type-centered analysis first generates typing constraints from
latent meaning, and then tries to find a typing which satisfies these.

While there are conceptual similarities, Engler et al. use static analysis tech-
niques than aremuchmore advanced than the ones I use, and their analysis would
outperform the ones I present if put to a head-to-head test. On the other hand, the
internals of their techniques are therefore more complex than the ones I present.
They use a custom version of the GNU g++ compiler, which is augmented with
path-dependent static analysis.1

One difference from the type-centered analysis, is that, as far as I understand,
Engler et al. use no comparable notion to the ordering I apply to type sets (cf.
Definition 3.4). Using such an ordering is essential for checking domain rules such
as rconf, where it is acceptable to treat one type of data as another (e.g. to treat
non-confidential data as confidential), but unacceptable to treat the second kind
of data as the first (e.g. to treat confidential data as non-confidential).

Importantly, Engler et al. use machine learning techniques to automatically
infer rules2 to be checked. This significantly reduces the amount of manual labour
needed for large-scale analysis. Using machine learning to uncover domain rules
is an interesting avenue for future work, which I discuss in Section 9.5.

8.2 Pluggable type systems

The purpose of pluggable type systems is to ‘[allow] multiple type systems to be
used simultaneously and/or sequentially for various semantic analyses’ [9]. A
pluggable type system operates independently of a programming language’s
built-in type system, so that variables (or values) that have the same type in a
programming language’s own type system can have different types in a pluggable
type system, and vice versa.

To use a pluggable type system one annotates code using syntax that does not
influence the main semantics of a program. For example, to add ‘pluggable types’
to Java variables, one may use comments, such as in

/*#NonNull*/ List<Integer> = ...;

or one may use Java annotations, such as in

@NonNull String str;

The type-centered analysis is essentially a pluggable type system. For example,
when we use the type-centered analysis to assert rconf (Section 3.5.2) for some
method, what we are doing is to ‘plug’ the types high and low into the method,

1Although this custom compiler is rather complex, the checkers, which are input to this compiler,
are expressed in a very elegant domain specific language, which Engler et al. metal [15].

2What they term rules is comparable to what I call domain rules.

76

8.3. FindBugs

and see if the method has a valid typing in the type system defined by the type-
centered analysis (Section 3.3).

The most comprehensive implementation of pluggable type systems is the
Checker Framework [47]. Checker uses relatively sophisticated static analysis
techniques, and integrates tightly with the Java compilation tool chain. One dis-
tinction between the techniques I present and Checker is that Checker, as far as I
understand, does not exploit information found in names.3

8.3 FindBugs

FindBugs [5] is a widely used free and open source bug checker for Java. It is com-
parable to the techniques I present in that it uses simple, unsound and incomplete
analysis techniques, with aim to catch ‘low-hanging fruit’.

FindBugs uses so-called bug detectors to find instances of various bug patterns.
To add support for a new bug pattern, one must write code that examines JVM
byte code for evidence of a bug. This can be a laborious process, and requires users
to have a good grasp of JVM byte code. I hypothesise that some of FindBugs’s bug
detectors would be simpler to implement with the analysis framework I present,
which operates on a a higher level of abstraction. For instance, I hypothesise that
the flow-centered analysis can assert a similar rule to FindBugs’ bug detector OS:
Method may fail to close stream4, by using the ideas for enforcing API contracts
that I described in Section 7.3.2.

FindBugs includes some convenient abstractions for simplifying the writing
of detectors. Still, it is inherently coupled to JVM byte code, a low-level, stack-
based language with about 150 different instructions [39]. The analyses I present
work on a higher level of abstraction; for one thing, they are defined on top of
Jimple [64] (and further, on top of Simplified Jimple), which abstracts away many
of the intricacies of JVM byte code. In this sense, my analyses are simpler than
FindBugs.

Importantly, FindBugs does not actively use information about names when
it looks for bugs. (It has, however, a few bug detectors that are name-specific,
such as Nm: Class names shouldn’t shadow simple name of implemented interface.)
I hypothesise that the analyses I present could find several bugs that FindBugs
misses, precisely because they also use information about names.

Further, FindBugs does not use the idea of seeing all bugs (or latent domain
rule violations) as contradictions, as the type-centered analysis does, and as Engler
et al.’s technique does. Rather, each FindBugs bug detector determines whether
there is a bug or not using ad-hoc decision criteria. In my view, the idea of seeing

3Incidentally, I believe augmenting Checker with techniques for automatically inserting annota-
tions based on names, would be an interesting idea to explore.

4The FindBugs bug detectors I mention are described at http://findbugs.sourceforge.
net/bugDescriptions.html.

77

http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html

8. Related work

violations of latent domain rule violations as contradictions is an elegant aspect
of the type-centered analysis.5

8.4 Naming bugs

My work relates to Høst and Østvold’s research into naming bugs [28, 29, 30, 31].
While Høst and Østvold’s techniques are, in themselves, more sophisticated than
the ones I develop, I touch on some interesting ideas that they do not explore. First,
the type-centered analysis looks at both method and variable names, whereas
Høst and Østvold’s analysis only concerns method names. Second, Høst and
Østvold always start analysis by assuming either that a method’s implementation,
as a whole, is correct, or, that its name is correct. The type-centered analysis makes
no such assumptions; it considers names as just one among many sign types that
carry latent meaning. Hence, it is also capable of finding bugs that manifest as
contradictions solely among names used in one method, something that Høst and
Østvold’s analysis can not do. Finally, unlike Høst and Østvold, I explore the idea
that a name can mean different things with different contexts (domains). As one
example, the name key has different latent meaning inside a method that does
encryption, than in a method accessing a key-value store.

5I do realise that Engler et al. discovered this idea about 15 years before me.

78

CHAPTER 9
Discussion and conclusion

I have three goals in this final chapter of the thesis. First, I want to discuss the
merits of the two analyses I have presented, and relate the analyses to each other.
Second, I want to build up a persuasive argument for the research hypothesis I
stated in Section 1.1. Third, I want to present ideas for future conceptual work. To
discuss suggestions for how to ‘engineer’ the analyses for better precision is not a
primary goal.

The chapter is structured as follows: In sections 9.1 and 9.2, I discuss the type-
centered analysis and the flow-centered analysis, respectively. In these sections, I
argue that both analyses have properties that support my research hypothesis. In
Section 9.3, I compare the two analyses. Sections 9.2 and 9.3 also include ideas for
future work following from the discussion. In Section 9.4, I discuss some ideas to
improve the precision of the type-centered analysis. In Section 9.5, I discuss ideas
for future work not specific to either analysis. In Section 9.6, I comment on threats
to validity. Finally, in Section 9.7, I conclude the thesis.

9.1 Discussion of the type-centered analysis

In this section, I argue that the type-centered analysis satisfies the requirements
to an analysis that I stated in Section 1.1. I begin by arguing that the analysis
generalises; it can assert many relevant domain rules. After that, I argue that the
analysis is simple, by pointing to various aspects of its design. Following this
argument, I discuss the importance of the SSA transformation for making the
analysis precise, and I suggest ideas for future work. I introduce a notion that I
term flow requirements, to help me characterise and compare the analyses.

79

9. Discussion and conclusion

Generalisability

Although the domain rules rcs (Section 3.5.1) and rconf (Section 3.5.2) are rather
specific, each can be seen as a member of a larger group of domain rules, where
the common denominator within each group is a flow requirement. The group to
which rcs belongs is characterised by a must-flow requirement, and the group to
which rconf belongs is characterised by a must-not-flow requirement.

For amust-flow requirement,whatwewant to assert is that certain variables are
guaranteed to hold a value stemming from some approved source(s). For example, in
the case of rcs wewant to assert that any variable that should be a cryptographically
secure challenge (where should be is implied by latent meaning) is guaranteed to
contain a value that stems from a cryptographically secure random source.

For a must-not-flow requirement, what we want to assert is that certain values
do not flow into specific locations, such as specific variables or parameter positions.
For instance, in the case of rconf we want to assert that confidential values do not
leak into output channels that do not preserve confidentiality. Colloquially, a
must-not-flow requirement is about enforcing a border around specific values.

Importantly, these flow requirements are general; many specific domain rules
can be seen as a must-flow or must-not-flow requirement. For example, consider
the following domain rule, concerning cross-site-scripting [23]:

rxss: All client-provided data in an HTTP request must be sanitised
before it is output in an HTTP response.

This domain rule, which the type-centered analysis can assert, is essentially a
must-not-flow requirement, where the part that must not flow is non-sanitised
user input.1 Recall also from Section 7.2.2 that rconf corresponds to CWE-200:
Information Exposure, one of the largest entries in the CWE database, with many
specialised weakness types.

Simplicity

Considering that the these requirements concern the flow of values, one might,
prima facia, assume that enforcing themwould require an analysis that i) computes
with values and ii) simulates program execution, for example by using abstract
interpretation [18]. In other words, one might assume that an analysis with an
explicit concept of state and time is required.2 However, with the type-centered
analysis I demonstrate how to approximately enforce these flow requirements
with a significantly simpler approach. Firstly, the type-centered analysis fully ab-
stracts away values, and operates only with variables. Secondly, the type-centered
analysis is not concerned with order of execution and does no simulation. It can
approximately enforce these flow requirements using a simple technique that

1Note also in this the case of rxss, that which must not flow is in a sense the ‘bad’ data, while in
the case of rconf, that which must not flow is the ‘good’ data, and that the type-centered analysis can
be used to check both cases.

2This is what I assumed when I started work on this project.

80

9.2. Discussion of the flow-centered analysis

does not explicitly model state or time. By virtue of these properties, the analysis
supports the research hypothesis I stated in Section 1.1.

Comment

My argument above neglects one detail, which I should comment on. It is true that
the core of the type-centered analysis—the fundamental definitions, the latent
meaning database, and the typing algorithm—is not concerned with order of
execution and uses no simulation. However, the SSA transformation step used in
the translation from JVM byte code into Simplified Jimple (Section 3.4.2) brings
an element of time into the analysis, and improves precision in certain cases. For
instance, with the SSA transformation, the type-centered analysis can distinguish
between the snippet

x = f();

x = null;
y = x;

where the value of f() does not flow to y, and the snippet

x = null;
x = f();

y = x;

where the value of f() does flow to y.3 In a sense, the SSA transformation makes
it so that the core of the analysis implicitly considers time and execution order, to
some degree.

Future work

The value of the SSA transformation suggests two avenues for future work:
1. Are there other standard transformation techniques that can be applied

during the translation process to improve the precision of the type-centered
analysis?

2. Are there ad-hoc techniques that can be used during the translation process
to make the type-centered analysis more precise? In particular, are there
interesting ways to ‘split’ variables as an SSA transformation does, to ‘inject’
more information into a Simplified Jimple program?

9.2 Discussion of the flow-centered analysis

I continue by arguing that the flow-centered analysis also satisfies the requirements
to an analysis that I stated in the research hypothesis.

3Precisely, constraint generation for the first snippet works from the Simplified Jimple representa-
tion x1 = f(); x2 = null; y = x2; while constraint generation for the second snippet works
from the Simplified Jimple representation x1 = null; x2 = f(); y = x2;.

81

9. Discussion and conclusion

Generalisability

The noteworthy feature of the flow-centered analysis is that it is inherently com-
positional. The analysis can be specialised to assert many different kinds of latent
domain rule violations by using simple compositions of one building block, the
disappearing criticals function, D:

1. To assert that all critical values of one domain type are used in a satisfactory
way within a method (cf. rcrit, as described in Chapter 5), we can do one
independent evaluation of D for each variable in the method. I demonstrate
this in Section 7.3.1 and Section 7.3.3 of the validation chapter.

2. Several instances of the flow-centered analysis can be run in sequence to
assert that certain types of API contract requirements are obeyed. I demon-
strate this in Section 7.3.2 of the validation chapter.

Simplicity of the disappearing criticals function

Importantly, the disappearing criticals functionD is also relatively simple. First,D
considers only one variable at a time. Second, in one run of D the whole ‘environ-
ment’ is a single integer (or the value ⊥). Finally, D has no notion of types; the
only thing that matters is where critical values of the one type that is analysed are
output or consumed.4

In sum, with the flow-centered analysis I show that a simple, single-variable
analysis primitive (the disappearing criticals function D) can be used as a build-
ing block to create specialised analyses that can assert many different types of
latent domain rule violations. By virtue of being simple and generalisable, the
flow-centered analysis further supports the validity of the hypothesis stated in
Section 1.1.

9.3 Relating the flow-centered analysis and the type-centered
analysis

I now compare the flow-centered analysis with the type-centered analysis, using
the notion of flow requirements that I introduced in Section 9.1. Also, I suggest
some ideas for future work on the flow-centered analysis. In this section, I ignore
minor details in the differences between the analyses.

In Section 9.1, I defined the must-flow requirement as demanding that certain
variables are guaranteed to hold a value stemming from some approved source(s).
However, it does not demand that all values output from an approved source
must end up in one of these variables. The flow-centered analysis enforces a flow
requirement similar to that demand.

4Of course, when we compose several runs of D to do a larger analysis, several domain types are
often used. My point is that each run of D deals with only one type at a time.

82

9.4. Ideas for improving the precision of the type-centered analysis

Recall from Chapter 5 that I described the flow-centered analysis as identifying
disappearing critical values. Using the notion of flow requirements, identifying
disappearing critical values can be seen as a requirement that any value output
from one among a set of sources—such as the return value of some method—must
flow to one among a set of approved sinks—such as a return value or an output
stream method. An important property of the flow-centered analysis is that it can
enforce this flow requirement, while the type-centered analysis can not.

Importantly, though, the flow-centered analysis can not enforce the must-flow
requirement, which, using the notion of sinks and sources, would be that any sink
is guaranteed to consume a value output from some source. (The flow-centered
analysis can leave some sinks empty.)

Future work

An intriguing question for future work is whether the flow-centered analysis can
be adapted to enforce the must-flow requirement, the must-not-flow requirement,
and possibly other kinds of flow requirements.

First, there might be a simple solution for enforcing the must-flow require-
ment: running the analysis backwards.5 This can be done either by modifying
the definition of D, or by ‘reversing’ programs and then inputting them to D.
Incidentally, running D backwards in addition to forwards should also make the
flow-centered analysis better able to enforce API contracts.

How to adapt the flow-centered analysis to enforce the must-not-flow require-
ment is a puzzling question. I speculate that it can be done using the following
technique: First, let all flow parameters that consume data (in parameters) corre-
spond to ‘bad’ locations, where values should not flow. Second, modify D so it
answers: are there values that may be consumed, instead of: are there values that
may not be consumed, as it currently does. Exploring this technique for running
the flow-centered analysis in ‘negative mode’ is another idea for future work.

9.4 Ideas for improving the precision of the type-centered
analysis

In this section, I discuss some issues that limit the precision of the type-centered
analysis, and discuss ideas for how to address these in future work. Here, I step
away from the requirement that the analysis techniques must be simple, and
rather ask: if the main objective is to increase precision, how can this be done?

9.4.1 Interprocedural analysis

That the type-centered analysis is intraprocedural makes it simple and compu-
tationally efficient, but also reduces its precision. Consider, in context of rconf
(Section 3.5.2) a method such as

5Here, I can apply theory from standard reference texts, such as Nielson et al’s monograph [41].

83

9. Discussion and conclusion

void g(String xs) { secureChannel.write(xs); }

void f() {

String secret = getSecret();

g(secret);

}

Assume here that getSecret returns a high datum, that secureChannel takes
as input a high datum, and that g is not known in Kconf, the latent meaning
database for rconf. If we input f to the analysis, it will err and output a false
positive. When it does not recognise

g(secret);

as a library call, it outputs the overly pessimistic constraint secret = low, which
will be in conflict with the constraint secret = high generated from the known
method call to getSecret. In this case, it would be better if the analysis could
‘peek inside’ g, so it could understand that the more precise constraint secret =

high is possible, and flag the method as bug-free.
For cases like the example above—where there is only one call target for an

unknown method call—one could simply inline all calls to unknown methods.6
After inlining, the example method would read as follows:

String secret = getSecret();

secureChannel.write(secret);

and another run of the analysis (as it is today) would flag the method as bug-free.
However, this inlining technique is probably too naïve to be useful in real-

world cases. (For one thing, I am targeting Java, a language where liberal use of
polymorphism is standard practice.) A more intriguing alternative is to extend
the analysis so that whenever it saw an unrecognised method call it would i) run
itself recursively for all possible call targets and ii) merge the information learnt
in the recursive runs to generate typing constraints for the variables mentioned in
the method call.

Let me illustrate the above idea. Say we run the type-centered analysis on a
method and encounter an unrecognised method call

x.m(a, b);

Assume this is a polymorphic site call that may resolve to two different methods
f1 and f2. We could then run the type-centered analysis on f1 and f2 in turn,
and merge the resulting constraints on a, b from each sub-analysis. For instance,
say the domain rule we are analysis is rconf and that analysis of f1 results in a
typing where a 7→ high and b 7→ high, but analysis of f2 results in a typing where
a 7→ low and b 7→ high. We could then output the constraints a = low,b = high

6While remembering to rewrite variable names to avoid collisions.

84

9.5. Ideas for future conceptual work

for the unrecognised method call. I believe a technique like this could greatly
improve the precision of the analysis.

9.4.2 Context-dependent latent meaning

Another issue with the type-centered analysis is that it cannot discern library
method calls that have different latent meaning depending on context. For exam-
ple, consider the Java standard library method

java.security.Cipher byte[] update(byte[] input)

which ‘continues a multiple-part encryption or decryption operation (depending
on how this cipher was initialized), [and processes] another data part’.7 If we
want to add this method to the latent meaning database for rconf, we are forced to
describe the method as doing only encryption, or as doing only decryption.

One idea for addressing this issue is to extend the features of a latent meaning
database so that one may specify more than one constraint generation rule for a
library method call. For this to be computationally feasible, I believe one must add
some intelligence to the constraint generation and typing stages of the analysis;
the analysis must understand that 10 update calls on the same Cipher are either
all decryption operations or all encryption operations, instead of considering 210

possibilities.

9.4.3 Supporting more sign types

It is fairly obvious that the precision of the type-centered analysis can be improved
by adding support for more sign types, and considering more details of the
sign types already supported. The simplest improvement is to add support for
distinguishing between types of operators and distinguishing between narrowing
and widening casts. If this is done, the type-centered analysis specialised for, say,
rcs, can understand that in the snippet

int x = secureRandom.nextInt();

long y = (long) -x;

the variable y can be typed as rcs.

9.5 Ideas for future conceptual work

In this section, I propose ideas for future conceptual work not specific to either
analysis. A common aspect of these ideas is that they concern automatically
learning domain rules from code examples.

7This description is taken from the Java standard library documentation at http://docs.
oracle.com/javase/7/docs/.

85

http://docs.oracle.com/javase/7/docs/
http://docs.oracle.com/javase/7/docs/

9. Discussion and conclusion

Corpus-based bug detection
In my view, the most interesting avenue for future work not specific to either anal-
ysis is to develop a technique for automatically learning domain rules and domain
rules specifications. This means to i) identify domain rules and ii) automatically
generate latent meaning databases for the type-centered analysis, or flow-analysis
encodings for the flow-centered analysis. With such a technique, one can build a
corpus-based bug detection system (Section 2.2) around the analyses. Learning
domain rules automatically has several benefits; most importantly, it removes the
need for costly manual labour.

It is not clear, however, which domain rules can be learned automatically,
and which are so ‘hidden’ that they are impossible to uncover. For instance, I
assume that subtle instantiations of rcrit (Section 5.1.2) can be challenging to find.
For certain domain rules it may be possible to use a semi-supervised learning
technique. For example, one can first let a domain expert specify i) a set of types and
method calls with important latent meaning, and ii) one of the flow requirements
discussed in Section 9.1 and Section 9.3, and then use this information to guide a
learning algorithm.

Other possibilities with learning domain rules automatically
Learning domain rules automatically from a corpus opens other possibilities
outside of improved bug detection. Firstly, it has value as a purely zoological
project. For instance, one could build a ‘domain rule catalogue’, comparable to
Høst and Østvold’s method name phrase book [29]. Secondly, one could create a
domain rule-based search engine, which took as input, say, a snippet of code or a
type name, and output relevant domain rules paired with use case examples from
the corpus.8 With theory for indexing code based on domain rules, one could also
build a domain rule-based code browser. Such a tool would, for example, allow a
reviewer to search for all code relevant to the domain rule rconf (Section 3.5.2) in a
code repository.

9.6 Threats to validity

A primary goal of this chapter is to structure an argument in support of the
hypothesis I posited in Section 1.1. The argument is not invulnerable to criticism,
however, and in this section, I address what I regard the most powerful objections.

Volume of persuasion in the experimental validation
In my view, the critical objection to my argument is that the experimental valida-
tion in Chapter 7 does not lend sufficient support to the claim that the analyses
I present can find interesting latent domain rule violations in real-world code.

I can not decisively rebuke this objection without conducting large-scale em-
pirical validation of the analyses; hence, this is a critical objective for future work.

8This would be a corpus-based advise generation system, as discussed in Section 2.2.

86

9.7. Conclusion

Concretely, I plan to do large-scale validation using the Qualitas corpus [60],
which is a curated collection of 112 well-known Java projects, such as JBoss and
the Eclipse SDK.

Precision of the type-centered analysis on large and complex methods
A large-scale empirical validation will almost certainly show that the analyses
must be modified slightly for acceptable precision on complex, real-world code.
As long as the validation does not uncover fundamental flaws inherent in the
analyses’ design, I do not consider this a substantial problem.

One thing I suspect is that the type-centered analysis may produce too many
false positives when run on large methods with hundreds or thousands of Sim-
plified Jimple variables. To address this issue, one option is to add heuristics or
fuzziness to the type-centered analysis framework. A specific idea is to add a
distinction between ‘decisive’ and ‘probable’ constraints to the constraint gener-
ation and solving process, and augment the typing algorithm with ideas from
fuzzy constraint satisfaction [54]. Of course, this raises the issue whether introduc-
ing heuristics or fuzziness will add so much complexity that the type-centered
analysis can no longer be considered simple—in which case its support of the
research hypothesis fails for lack of simplicity. To still support the hypothesis, it
must be possible to add heuristics or fuzziness without dramatically increasing
complexity.

9.7 Conclusion

In Section 1.1, I posited the hypothesis:
Simple intraprocedural static analyses techniques are useful for finding
interesting and relevant latent domain rule violations.

To support this hypothesis, one must show how to design an analysis that satisfies
two criteria: it must be simple and it must find interesting latent domain rule
violations of different kinds.

I contribute two static analysis that largely satisfy both criteria.

On the first criteria, I argued for the simplicity of the analyses by comparing them
to related work (Chapter 8), and by illustrating simple elements of each analysis’
design (Section 9.1 and Section 9.2). On the second criteria, I performed an experi-
mental validation (Chapter 7), and argued that both analyses can approximately
enforce various flow requirements that generalise across domain rules (Section 9.1
and Section 9.3).

I have also written a proof-of-concept implementation of the analyses, which I
contribute as free and open source software.

87

References

[1] Collins English Dictionary – Complete & Unabridged 10th Edition. Aug
2015.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1986.

[3] F. E. Allen. A Technological Review of the FORTRAN I Compiler. In Pro-
ceedings of the June 7-10, 1982, National Computer Conference, AFIPS ’82, pages
805–809, New York, NY, USA, 1982. ACM.

[4] J. B. Almeida et al. Rigorous software development: an introduction to program
verification. Undergraduate topics in computer science. Springer, London,
2011.

[5] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh. Using
Static Analysis to Find Bugs. IEEE Software, 25(5):22–29, 2008.

[6] T. Boland and P. E. Black. Juliet 1.1 C/C++ and Java Test Suite. Computer,
45(10):88–90, Oct. 2012.

[7] C. F. Bolz, A. Cuni,M. Fijalkowski, andA. Rigo. Tracing theMeta-level: PyPy’s
Tracing JIT Compiler. In Proceedings of the 4th Workshop on the Implementa-
tion, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, ICOOOLPS ’09, pages 18–25, New York, NY, USA, 2009. ACM.

[8] R. S. Boyer and J. S. Moore. Program Verification. J. Autom. Reasoning, 1(1):17–
23, 1985.

[9] G. Bracha. Pluggable type systems. In OOPSLA’04 Workshop on Revival of
Dynamic Languages, 2004.

[10] E. Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming, 23:552–593,
2013.

[11] R. Brooks. Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18(6):543 – 554, 1983.

89

References

[12] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool to
implement adaptable systems. In Adaptable and extensible component systems,
2002.

[13] M. Burke, P. Carini, J.-D. Choi, and M. Hind. Flow-insensitive interproce-
dural alias analysis in the presence of pointers. In K. Pingali, U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Compilers for
Parallel Computing, volume 892 of Lecture Notes in Computer Science, pages
234–250. Springer Berlin Heidelberg, 1995.

[14] D. Chandler. Semiotics for beginners, 2005.

[15] B. Chelf, D. Engler, and S. Hallem. How to Write System-specific, Static
Checkers in Metal. SIGSOFT Softw. Eng. Notes, 28(1):51–60, Nov. 2002.

[16] E. M. Clarke. The Birth of Model Checking. In O. Grumberg and H. Veith,
editors, 25 Years of Model Checking, volume 5000 of Lecture Notes in Computer
Science, pages 1–26. Springer, 2008.

[17] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proceedings of the Second International Symposium on Programming,
pages 106–130. Dunod, Paris, France, 1976.

[18] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 238–252, Los Angeles, California,
1977. ACM Press, New York, NY.

[19] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Effi-
ciently Computing Static Single Assignment Form and the Control Depen-
dence Graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, Oct. 1991.

[20] E. W. Dijkstra. Formal Techniques and Sizeable Programs. In Proceedings of
the Proceedings of the 1st European Cooperation in Informatics on ECI Conference
1976, pages 225–235, London, UK, UK, 1976. Springer-Verlag.

[21] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs As Deviant
Behavior: A General Approach to Inferring Errors in Systems Code. SIGOPS
Oper. Syst. Rev., 35(5):57–72, Oct. 2001.

[22] R. W. Floyd. Assigning Meanings to Programs. Proceedings of Symposium on
Applied Mathematics, 19:19–32, 1967.

[23] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. D. Petkov. XSS Attacks:
Cross Site Scripting Exploits and Defense. Syngress Publishing, 2007.

[24] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz. Trace-based Just-in-time

90

References

Type Specialization for Dynamic Languages. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’09, pages 465–478, New York, NY, USA, 2009. ACM.

[25] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design Patterns:
Abstraction and Reuse of Object-Oriented Design. In Proceedings of the 7th
European Conference on Object-Oriented Programming, ECOOP ’93, pages 406–
431, London, UK, UK, 1993. Springer-Verlag.

[26] J. Gil and I. Maman. Micro patterns in Java code. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2005), October 16-20, 2005, San Diego,
CA, USA, pages 97–116. ACM, 2005.

[27] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun.
ACM, 12(10):576–580, Oct. 1969.

[28] E. W. Høst. Understanding programmer language. In R. P. Gabriel, D. F.
Bacon, C. V. Lopes, and G. L. S. Jr., editors, OOPSLA Companion, pages 943–
944. ACM, 2007.

[29] E. W. Høst and B. M. Østvold. The Java programmer’s phrase book. In
D. Gasevic, R. Lammel, and E. V. Wyk, editors, SLE, volume 5452 of Lecture
Notes in Computer Science, pages 322–341. Springer, 2008.

[30] E. W. Høst and B. M. Østvold. Debugging Method Names. In Proc. of the
23rd European Conf. on Object-Oriented Programming, pages 294–317. Springer-
Verlag, 2009.

[31] E. W. Høst and B. M. Østvold. Canonical method names for Java: using
implementation semantics to identify synonymous verbs. In Proceedings of the
Third international conference on Software language engineering, SLE’10, pages
226–245, Berlin, Heidelberg, 2011. Springer-Verlag.

[32] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A Minimal Core
Calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, May
2001.

[33] ISO. ISO/IEC 14882:2011 Information technology — Programming languages —
C++. International Organization for Standardization, Geneva, Switzerland,
Feb. 2012.

[34] N. D. Jones and S. S. Muchnick. A Flexible Approach to Interprocedural Data
Flow Analysis and Programs with Recursive Data Structures. In Proceedings
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’82, pages 66–74, New York, NY, USA, 1982. ACM.

[35] Karlsen, Edvard K. and Høst, Einar W. and Østvold, Bjarte M. Finding and
Fixing JavaNamingBugswith the Lancelot Eclipse Plugin. InProceedings of the
ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation,
PEPM ’12, pages 35–38, New York, NY, USA, 2012. ACM.

91

References

[36] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.
In Proceedings of the Eighteenth International Conference on Machine Learning,
ICML ’01, pages 282–289, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[37] L. Lamport. How to write a proof. The American Mathematical Monthly,
102(7):600–608, 1995.

[38] L. Lamport. How to write a 21st century proof. Journal of Fixed Point Theory
and Applications, 11(1):43–63, 2012.

[39] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine
Specification, Java SE 7 Edition. Addison-Wesley Professional, 1st edition, 2013.

[40] M.Might. EnvironmentAnalysis of Higher-Order Languages. PhD thesis, Georgia
Institute of Technology, June 2007.

[41] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[42] U. Norell. Dependently Typed Programming in Agda. In Proceedings of the 6th
International Conference on Advanced Functional Programming, AFP’08, pages
230–266, Berlin, Heidelberg, 2009. Springer-Verlag.

[43] M. Odersky et al. An Overview of the Scala Programming Language. Tech-
nical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[44] B. M. Østvold and E. K. Karlsen. Public Review of E-Voting Source Code:
Lessons learnt from E-Vote 2011. In Norsk informatikkonferanse, 2012.

[45] D. Padua. The Fortran I Compiler. Computing in Science and Engg., 2(1):70–75,
Jan. 2000.

[46] M. Paleczny, C. Vick, and C. Click. The Java HotSpot (TM) Server Compiler.
In Proceedings of the 2001 Symposium on JavaTM Virtual Machine Research and
Technology Symposium - Volume 1, JVM’01, pages 1–1, Berkeley, CA, USA, 2001.
USENIX Association.

[47] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and M. D. Ernst. Practical
Pluggable Types for Java. In Proceedings of the 2008 International Symposium on
Software Testing and Analysis, ISSTA ’08, pages 201–212, New York, NY, USA,
2008. ACM.

[48] S. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell Compiler
Inliner. J. Funct. Program., 12(5):393–434, July 2002.

[49] T. Prabhu, S. Ramalingam, M. Might, and M. Hall. EigenCFA: Accelerating
Flow Analysis with GPUs. SIGPLAN Not., 46(1):511–522, Jan. 2011.

92

References

[50] C. Radoi, S. J. Fink, R. Rabbah, and M. Sridharan. Translating Imperative
Code toMapReduce. In Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA
’14, pages 909–927, New York, NY, USA, 2014. ACM.

[51] V. Raychev, M. Vechev, and A. Krause. Predicting Program Properties from
"Big Code". SIGPLAN Not., 50(1):111–124, Jan. 2015.

[52] S. P. Reiss. Finding unusual code. In Proceedings of the 23rd IEEE International
Conference on Software Maintenance (ICSM 2007), pages 34–43. IEEE Computer
Society, 2007.

[53] J. C. Reynolds. Separation Logic: A Logic for SharedMutable Data Structures.
In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
LICS ’02, pages 55–74, Washington, DC, USA, 2002. IEEE Computer Society.

[54] Z. Ruttkay. Fuzzy Constraint Satisfaction. In In Proc. 3rd IEEE International
Conference on Fuzzy Systems, pages 1263–1268, 1994.

[55] A. Sabelfeld and A. C. Myers. Language-based Information-flow Security.
IEEE J.Sel. A. Commun., 21(1):5–19, Sept. 2006.

[56] M. Shaw. Writing Good Software Engineering Research Papers: Minitutorial.
In Proceedings of the 25th International Conference on Software Engineering, ICSE
’03, pages 726–736, Washington, DC, USA, 2003. IEEE Computer Society.

[57] O. G. Shivers. Control-flow Analysis of Higher-order Languages or Taming Lambda.
PhD thesis, Pittsburgh, PA, USA, 1991. UMI Order No. GAX91-26964.

[58] G. J. Sussman and J. Steele, GuyL. Scheme: A interpreter for extended lambda
calculus. Higher-Order and Symbolic Computation, 11(4):405–439, 1998.

[59] R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on
Computing, 1972.

[60] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and
J. Noble. Qualitas Corpus: A Curated Collection of Java Code for Empirical
Studies. In 2010 Asia Pacific Software Engineering Conference (APSEC2010),
pages 336–345, Dec. 2010.

[61] E. Tempero, H. Yang, and J. Noble. What Programmers Do with Inheritance
in Java. In G. Castagna, editor, ECOOP 2013 – Object-Oriented Programming,
volume 7920 of Lecture Notes in Computer Science, pages 577–601. Springer
Berlin Heidelberg, 2013.

[62] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265,
1936.

[63] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot
– a Java bytecode optimization framework. In Proceedings of the 1999 conference

93

References

of the Centre for Advanced Studies on Collaborative research, CASCON ’99, pages
13–. IBM Press, 1999.

[64] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying Java Bytecode for Anal-
yses and Transformations, 1998.

[65] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking
Programs. Journal of Automated Software Engineering, 10(2):203–232, Apr. 2003.

94

	Introduction
	Research hypothesis
	Contributions
	Structure of the thesis

	Background
	Core program analysis
	Combined techniques
	Terminology

	Type-centered analysis
	Domain rules as typing problems
	Signs and latent meaning
	Formalising the type-centered analysis
	Latent meaning database
	Domain rules encoded for the type-centered analysis

	Solving typing problems
	Preliminaries
	Typing algorithm
	Correctness proof
	Translating from a typing problem to a problem instance

	Flow-centered analysis
	Introduction
	Computing with critical values
	Translating Java methods into the flow language
	The analysis proper

	Implementation of the proof-of-concept tool
	Overview of the system
	Re-running the experimental validation

	Experimental validation
	Experimental validation strategy
	Experimental validation for the type-centered analysis
	Experimental validation for the flow-centered analysis

	Related work
	Bugs as deviant behaviour
	Pluggable type systems
	FindBugs
	Naming bugs

	Discussion and conclusion
	Discussion of the type-centered analysis
	Discussion of the flow-centered analysis
	Relating the flow-centered analysis and the type-centered analysis
	Ideas for improving the precision of the type-centered analysis
	Ideas for future conceptual work
	Threats to validity
	Conclusion

	References

