
Masteroppgave i kryptografi

Gudrun Sigfusdottir

Master of Science in Physics and Mathematics

Supervisor: Kristian Gjøsteen, MATH

Department of Mathematical Sciences

Submission date: September 2015

Norwegian University of Science and Technology

How a Fully Homomorphic Encryption
Scheme is Created

Guðrún Sigfúsdóttir

Submission date: 17.09.15

Master of Science in Applied Mathematics
Department of Mathematical Sciences

Norwegian University of Science and Technology

Supervisor: Kristian Gjøsteen, IMF

A B S T R AC T S

abstract
In this paper we look at the use of bootstrapping and squashing
in order to make an encryption scheme fully homomorphic. The
focus will be on what this is and how it can be used. The main
focus will be on how this is applied in the paper [11] by van Dijk,
Gentry, Halevi and Vaikuntanathan.

sammendrag
I denne artikkelen ser vi på hvordan et ganske enkelt offentlig nøk-
kel kryptosystem kan gjøres fullstendig homomorft ved bruk av stø-
velstropping (bootstrapping) og sammenpressing (squashing). Vi
ser først på hva et fullstendig homomorft system er og hva det kan
være nyttig for. Hovedfokus vil være på systemet til van Dijk, Gen-
try, Halevi and Vaikuntanathan presentert i [11].

útdráttur
I þessari grein munum við skoða hvernig stígvélaþrenging (boot-
strapping) og kremjun (squashing) geta nýst til að gera dulkóðun-
arkerfi algerlega sammótunarlegt. Við byrjum á að skoða hvað það
þýðir að kerfi sé algerlega sammótunarlegt og í hvaða kringumstæð-
um slíkt kerfi er ganglegt. Aðaláhersla verðu lögð á kerfið sem van
Dijk, Gentry, Halevi and Vaikuntanathan birtu í [11].

II

AC K N OW L E D G E M E N T S

I would like to thank my supervisor Prof. Kristian Gjøsteen for his
guidance, valuable feedback, and especially his patience with me
during this process. I would also like to thank Mathilde Skylstad,
Kristin Solbakken, and Stine Brekke Vennemo for proof reading my
thesis. Finally, I would like to thank my mom for allways beeing
there during my studies.

III

C O N T E N T S

1 introduction 1
1.1 Homomorphic Encryption . 1

1.1.1 Somewhat Homomorphic Encryption 1
1.1.2 Fully Homomorphic Encryption 2

2 preliminaries 3
2.1 Polynomials . 3
2.2 Hash functions and

Hash families . 3
2.3 Boolean circuits . 5

2.3.1 The three-for-two trick . 5
2.4 The Approximate Greatest

Common Divisor Problem . 5
3 a somewhat homomorphic encryption scheme 7

3.1 Construction of van Dijk
et. al.’s scheme . 7

3.2 Correctness . 10
3.3 Reducing the Ciphertexts . 12

3.3.1 Reduction during Evaluate 12
3.3.2 Compression . 13

3.4 Security . 13
3.4.1 Reduction to the Approximate-GCD Problem 13

4 squashing 18
4.1 A Modified Encryption Scheme . 18

5 bootstrapping 21
5.1 What is Bootstrapping? . 21
5.2 A Fully Homomorphic Encryption Scheme 22
5.3 Security of the FHE Scheme . 25

6 conclusion 26

IV

A B B R E V I AT I O N S A N D N O TAT I O N S

abbreviations
Throughout this thesis, we use the abbreviations listed below to ensure a better
flow in the text.

FHE Fully homomorphic encryption

SHE Somewhat homomorphic encryption

PKS Public key encryption scheme

SSSP The sparse subset sum problem

gcd Greates common divisor

lsb Least significant bit

FFT Fast Fourier transform

notations
In the following paper, Greek letters will be used to denote parameters, while lower
case letters from the Latin alphabet will be used to denote integers and real numbers.
All logarithms are base-2, unless otherwise specified. Absolute value of a number is
represented by | · |. A dollar-sign, $ over an arrow, x $← S, is used to denote that
a value x is chosen at random from the set S. For a real number x, bxc denotes
the floor function of x, dxe denotes the ceiling function of x, and bxe denotes the
integer closest to x, with a tie broken upwards.
For two sets A and B, A \B denotes the set containing all elements in A that are
not in B. We use lower case boldface letters to denote a vector. For a set A, An
denotes a vector with parameters from A of length n.
And, just for clearance, a binary point is for binary numbers what the decimal point
is for decimal numbers.

V

1

I N T RO D U C T I O N

In this chapter we will introduce homomorphic encryption and the difference be-
tween somewhat homomorphic and fully homomorphic on an surface level. We will
also have a short discussion about squashing and bootstrapping, how these came
to be, and what these mean in the whole of things.

1.1 homomorphic encryption
Public key encryption is a tool for secure communication, where in principal, only
someone who possesses the decryption key can read an encrypted message. The
idea that operations can be made on encrypted data, without loosing information,
has been around since it was first posed by Rivest et al. [1]. Being able to operate
on encrypted data like this is called homomorphic encryption, and is of great sig-
nificance since it allows a receiver (for example a server) to perform operations on
encrypted data, without ever knowing the encryption key.

An encryption scheme that is homomorphic with regards to one particular opera-
tion, is called homomorphic with regards to that operation. For example, the well
known RSA system is homomorphic with regards to multiplication. That is, the
product of two messages can be computed without having to decrypt these mes-
sages. However, it is not homomorphic with regards to addition, due to the fact
that adding two encrypted messages will not necessarily give the same result as
adding the messages before the encryption.

1.1.1 Somewhat Homomorphic Encryption

Some systems are homomorphic with regards to both addition and multiplication
for a few iterations. For each iteration errors in the bit-string, also referred to as
noise, are added, and at a certain point, when there is too much noise, the system
looses its homomorphic abilities. These schemes are said to be somewhat homomor-
phic (SHE). Lots of public key encryption schemes (PKS) are what we call SHE
schemes, but the idea of a fully homomorphic encryption scheme (FHE) was an
open problem until Craig Gentry carried it out in [9]. Gentry’s scheme is highly

1

introduction

inefficient and since 2009 there have been developed several new schemes based on
Gentry’s method of bootstrapping the decryption circuit. One of these schemes is
the DGHV encryption scheme [11], which takes a simple integer-based encryption
scheme and makes it fully homomorphic by bootstrapping and squashing the de-
cryption circuit. We will get into what bootstrapping and squashing means in the
next Section.

1.1.2 Fully Homomorphic Encryption

An encryption scheme that is homomorphic with regards to both addition and mul-
tiplication is referred to as a FHE scheme. The most common way to represent these
schemes is as boolean functions that can make up any boolean circuit using only
AND and XOR gates. Running encrypted bits through the circuit will yield the
same result as running uncrypted bits through the circuit and then encrypting them.

As mentioned earlier, Craig Gentry made the first fully homomorphic encryption
scheme in 2009. His method was to take a fairly simple SHE scheme and bootstrap
it in order to make it fully homomorphic [9]. His idea was that a bootstrapping
algorithm which ensures that the size of the operands stays the same, would make
the system fully homomorphic. He created such an algorithm and by that created a
FHE scheme. That is, a scheme that is homomorphic with regards to both addition
and multiplication for a circuit of arbitrary size. Although his method works, it
is far too costly and is therefore not really suitable for implementation. However,
despite its limitations, Gentry’s scheme has been of great significance. Since its
introduction, there have been made several improvements on Gentry’s scheme and
it forms also the basis for all FHE schemes created since.

In the SHE scheme, ciphertexts will have some noise. First generation ciphertexts,
which corresponds to ciphertexts encrypted by the algorithm Encrypt defined in Sec-
tion 3.1, have little noise, but after a certain amount of operations, the noise will
increase to unsustainable levels and become undecryptable nonsense.

In Gentry’s PhD thesis, he describes bootstrapping and squashing with an example
for super suspicious Alice who runs a jewelry store, but does not trust her employees
[9]. She has a lot of faults in her security systems and has to find a solution to every
problem, which then leads to more problems and more solutions and so on. At the
moment, FHE is all about this kind of repetitive solutions trying to keep the noise
levels at bay. As far as we know, there is no straight forward way of constructing an
FHE scheme, but it can be done by repeating noise-removing algorithms between
the multiplication and addition operations.

2

2

P R E L I M I N A R I E S

As we now have introduced the different signature schemes, and will in this chapter
move on to the theory needed to understand the rest of this thesis, where a SHE
scheme will be made into a FHE scheme.

2.1 polynomials
Any symmetric polynomial can be expressed as a sum of elementary symmetric
polynomial and we define these as follows:

Definition 2.1 (Elementary symmetric polynomials).
An elementary symmetric polynomial in n variables, for a k ≥ 0, is defined as

ek(x1, . . . ,xn) =
∑

1≤i1<i2<...<ik≤n
xi1 · · ·xik .

2.2 hash functions and
hash families

Hash functions will be important in the security proof of the SHE scheme, since
these can provide assurance of data integrity. Therefore we will now present these
and the theory necessary to understand the security proof later on. Definitions 2.2
to 2.4 are necessary in order to fully grasp the definition of universal hash functions.

Definition 2.2 (Polynomial parameter [3]).
A parameter a is called a polynomial parameter if there exists a constant c1 > 0
such that

1
c1
≤ a ≤ c1n

c1

holds for all positive integers n.
If there also exists a constant c2, such that, for all n, a is computable in time at
most c2nc2, we say that a is a P-time polynomial parameter.

3

preliminaries

Definition 2.3 (Function ensemble [3]).
Let tn, ln be integer valued P-time polynomial parameters. Let f : {0, 1}tn →
{0, 1}ln be a function mapping from {0, 1}tn to {0, 1}ln with respect to n. Then we
say that f is a function ensemble.

Definition 2.4 (P-time function ensemble [3]).
We say f : {0, 1}tn × {0, 1}ln → {0, 1}lm is a Tn-time function ensemble if f is
a function ensemble such that for all x ∈ {0, 1}tn and all y ∈ {0, 1}ln, f(x, y)
is computable in time Tn. We say f is a P-time function ensemble if there is a
constant c such that, for all n, Tn ≤ cnc.

In reality, what a hash function actually does is to add a certain number of bits to
a bit-string, as an authentication tag. This process is defined as follows:

Definition 2.5 (Universal Hash Functions [3]).
Let h : {0, 1}ln × {0, 1}n → {0, 1}mn be a P-time function ensemble. For a fixed
y ∈ {0, 1}ln, we view y as describing a function h(·) that maps n bits to mn bits.
Then h is a (pairwise independent) universal hash function if, for all x ∈ {0, 1}n,
x′ ∈ {0, 1}n \ {x}, and for all a, a′ ∈ {0, 1}mn,

Pr
[
(hY (x) = a) and (hY (x

′) = a′)
]
=

1
2mn

,

where Y ∈ {0, 1}ln.

Hash functions are added to data as sort of a digital fingerprint. This means that if
the data is altered, the hash function will reveal it by having changed. This is key
in what we are discussing. In fact, if you store some data on a non-secure server
and the data has a hash function attached to it, you can easily verify its integrity
at any time by simply monitoring the hash function. Here is where hash families
come to play and its definition is as follows:

Definition 2.6 (A Hash Family [8]).
A hash family is a four-tuple (X ,Y ,K,H), defined as follows

X : a set of possible messages (these are usually bit-strings)
Y: a finite set of possible authentication tags
K: the keyspace (finite set of possible keys)

For each K ∈ K, there is a hash function hK ∈ H such that hK : X → Y.

As can be seen from the definition above for a hash family with many keys there
will be several hash functions. As we shall see in the following lemma, if a hash
family H has 2-universal functions, then the resulting functions are dependent on
the possible messages X and the possible authentication tags Y .

Lemma 2.1 (Leftover Hash Lemma [3]). Define X and Y as above and let H be
a family of 2-universal hash functions from X to Y. Choose h $← H and x $← X .
Then, (h,h(x)) is 1

2

√
|Y|/|X |-uniform over H×Y.

4

2.3 boolean circuits

2.3 boolean circuits
Some basic knowledge of boolean algebra is necessary to understand the bootstrap-
ping step, performed in Chapter 5. A boolean circuit is made up of gates, and in
our case only AND and XOR gates as shown in figure 1 will be used.

Figure 1: A XOR gate adds bits together and an AND gate multiplies them.

A subcircuit is, as the name implies, a smaller circuit contained within a greater
circuit. A circuits level is the number of connected gates a bit must go through
before it reaches the end of the circuit. [6]

2.3.1 The three-for-two trick

The three-for-two trick is a way of using constant-depht boolean circuits to compute
the sum ∑k

i−1 ri of k rational numbers to transform three numbers of arbitrary bit-
lenght into two numbers that are no more than 1 bit longer, where the sum of the
two output numbers will still be the same as the sum of the three input numbers.
This is explained in more detail in [2].

2.4 the approximate greatest
common divisor problem

The approximate greatest common divisor problem is the problem of finding an
approximate of some numbers gcd and is defined as follows:

Definition 2.7 (Approximate-gcd Problem [11]).
To output p, when given polynomially many samples from a distribution D, which is
dependant upon variables l,n, for a randomly chosen m-bit odd integer p, is called
the (l,m,n)approximate-gcd problem.

In Chapter 3 the security of a SHE scheme will be proven by reducing it to the
approximate-gcd problem and basing the systems security on the security proof for
approximate-gcd.

5

preliminaries

The theory presented above should be a sufficient base to understand the creation
of the SHE scheme presented in the next chapter.

6

3

A S O M E W H AT H O M O M O R P H I C
E N C RY P T I O N S C H E M E

To create a FHE scheme, it is feasible to use a PKS that is as simple as possible.
In this chapter we will see how van Dijk et al. created such a scheme [11].

3.1 construction of van dijk
et. al.’s scheme

First we define a few necessary parameters,
γ : the bit-length of the integers in the public key
η : the bit-length of the secret key (which is the hidden approximate-gcd of all

the public-key integers)
ρ : the bit-length of the noise (i.e. the distance between the public key and the

nearest multiples of the secret key)
τ : the number of integers in the public key

A fairly simple PKS is defined as a four-tuple of algorithms E =(KeyGen, Encrypt,
Decrypt, Evaluate), where KeyGen, Encrypt, Decrypt, and Evaluate are as follows:

KeyGen: The key is an odd integer p chosen from the interval
[
2η−1, 2η

)
.

Encrypt(p,m): To encrypt a bit m ∈ {0, 1}, let the ciphertext be an integer
with residue modulo p with the same parity (number of 1’s)
as the plaintext. That is, set c = pq + 2r +m, r, q are inte-
gers chosen at random from another interval, such that |2r| is
smaller than |q/2|.

Decrypt(p, c): Outputs (c mod p) mod 2.
Evaluate(pk,C, c): Outputs a new ciphertext c.

This PKS will be the basis for our FHE scheme later on.

7

a somewhat homomorphic encryption scheme

We choose an efficiently sampleable distribution for a specific, η-bit odd positive
integer p over γ-bit integers as follows

Dγ,ρ(p) =

{
q

$← Z∩
[
0, 2γ
p

)
, r $← Z∩ (−2ρ, 2ρ) : x = pq+ r

}
.

We now define homomorphic decryption and homomorphic encryption. It is straight
forward, the decryption is correct, if using the decryption algorithm from above on
a correctly created ciphertext, results in the plaintext.

Definition 3.1 (Correct Homomorphic Decryption [11]).
Define E as the scheme E =(KeyGen, Encrypt, Decrypt, Evaluate). The secret and
public keys, sk and pk respectively, are randomly generated by KeyGen, KeyGen
r→ (sk,pk).
We say that E is correct for a circuit C that takes t bits as input, if for any plaintext
bits m1, . . . ,mt and any ciphertexts c = 〈c1, . . . , ct〉 with ci ←Encrypt(pk,mi), then

Decrypt(sk, Evaluate(pk,C, c)) = C(m1, . . . ,mt).

At this point it is feasible to introduce a security parameter, λ. The vastness of this
parameter is not important at this point.

Definition 3.2 (Homomorphic Encryption [11]).
The scheme E =(KeyGen, Encrypt, Decrypt, Evaluate) is homomorphic for a class CE
if E is correct for CE and DecryptE can be expressed as a circuit DE of size poly(λ).

Definition 3.3 (Compact Homomorphic Encryption [9]).
The scheme E =(KeyGen, Encrypt, Decrypt, Evaluate) is said to be compact, if for
every value of λ, there exists a polynomial h, such that E’s decryption algorithm can
be expressed as a circuit, DE , of size at most h(λ).

Definition 3.4 (Compactly Evaluates [9]).
The scheme E is said to compactly evaluate circuits in CE if E is compact and E is
correct for circuits in CE .

Some constraints on the parameters ρ, η, γ, τ and ρ′ are set by the security param-
eter λ as follows:

ρ = ω(log λ), to protect against brute-force attacks on the noise;
η ≥ ρ ·Θ(λ log2 λ), in order to support homomorphism for deep enough cir-

cuits to evaluate the "squashed decryption circuit";
γ = ω(η2 log λ), to thwart various lattice-based attacks on the underlying

approximate-gcd problem;
τ ≥ γ + ω(log λ), in order to use leftover hash lemma in the reduction to

approximate gcd;
ρ′ = ρ+ ω(log λ), a secondary noise parameter.

8

3.1 construction of van dijk et. al.’s scheme

In this section we go through the construction of Dijk et. al’s encryption scheme,
[11], and discuss it’s properties, which properties are most important and why.

The algorithms of the scheme E =(KeyGen, Encrypt, Decrypt, Evaluate) may be con-
structed as follows:

The schemes private and public keys are created in Algorithm 1, KeyGen(λ), where
λ is the systems security parameter.

Algorithm 1 KeyGen(λ)
1: procedure Choose a secret key (sk = p, an η-bit integer)
2: p

$← (2Z + 1) ∩
[
2η−1, 2η

)
3: procedure Choose a public key (pk =< x0,x1, . . . ,xτ >)
4: while true do
5: for i = 0..τ do
6: xi

$← Dγ,ρ (p)
7: if xi > x0 then
8: xi ↔ x0
9: if x0 is odd and rp(x0) is even then

10: break

Algorithm 2 takes the public keys and a message bit, m, as input and outputs the
encrypted bit, c.

Algorithm 2 Encrypt(pk,m ∈ {0, 1})
1: Choose a random subset S from {1, 2, . . . , τ}
2: r $← (−2ρ′ , 2ρ′)
3: Output c ← (m+ 2r+∑

i∈S xi) mod x0

Algorithm 3, Evaluate(pk,C, c1, . . . , st), takes the public keys, a circuit of AND and
XOR gates C, and t encrypted bits ci, i ∈ {1, . . . , t}. It runs the bits through the
circuit and outputs a string c.

Figure 2: C is a circuit consisting of a total number of t AND and XOR gates.

9

a somewhat homomorphic encryption scheme

Algorithm 3 Evaluate(pk,C, c1, . . . , ct)
1: Send the ciphertexts c1, . . . , ct through the circuit C % C is a circuit as in

Figure 2.
2: Output c % the output of C.

Finally, in order to decrypt the messages, there is an algorithm Decrypt(sk,c) as
defined in Algorithm 4.

Algorithm 4 Decrypt(sk,c)
1: Output m′ ← (c mod p) mod 2

3.2 correctness
It is very important to check that everything is correct and to see how much noise
is added in each iteration of the schemes algorithms. In order to check this, it is
necessary to define a permitted circuit for the scheme.

Definition 3.5 (Generalised Circuit).
A boolean circuit C made up of only AND and XOR gates has a corresponding
generalised circuit C ′ which consists of the corresponding Mult and Add gates, in
the same order, but operates over the integers.

Definition 3.6 (Permitted Circuit ([10])).
A circuit where for any α ≥ 1, any set of integers that all have absolute value less
than 2α(ρ′+2) is a permitted circuit if the generalised circuits output has absolute
value less than or equal to 2α(η−4).

We call a ciphertext created by Encrypt a first generation ciphertext and for every
iteration through Evaluate, the ciphertexts generation value increases by 1.

We see from Definition 3.6 that a first generation ciphertext’s noise is at most 2ρ′+2,
and thus the noise of a second generation ciphertext is at most 2η−4 < p

8 .

Lemma 3.1 (Lemma 3.3 in [11]).
The scheme E is correct for CE , where CE is the set of permitted circuits.

Proof. We fist show that for c $←Encrypt(pk, m), wherem is a bit and (pk is created
using KeyGen(λ), it always holds that c = ap+ 2b+m for some integers a, b where
|2b+m| ≤ τ2ρ+3, presented graphically in Figure 3.

By definition, c ← m+ 2r +∑
i∈S xi(mod x0), where r is a random integer and

|r| ≤ 2ρ and S is a random subset of {1, 2, . . . , τ}. Thus

c = m+ 2r+
∑
i∈S

xi + k · x0, where |k| ≤ τ .

10

3.2 correctness

Figure 3: Encryption process for a bit m.

Due to the way the xi’s are constructed, there exist integers qi’s and ri’s, such that
xi = pqi + 2ri and |ri| ≤ 2ρ. It now follows that

c = m+ 2r+
∑
i∈S

(pqi + 2ri) + k(q0p+ 2r0)

= p

kq0 +
∑
i∈S

qi

+m+ 2r+ 2kr0 + 2
∑
i∈S

ri.

Then a = (kq0 +
∑
i∈S qi) and b = 2r+ 2kr0 + 2∑i∈S ri and

|m+ 2r+ 2kr0 +
∑
i∈S

ri| ≤ (4τ + 3)2ρ

≤ τ2ρ+3.

We now show that when repeating this process for t different bitsmi, (i ∈ {1, 2, . . . , t}),
and then evaluating the corresponding ci’s over a circuit C ∈ CE , it holds that the
resulting c←Evaluate(pk,C, c1, . . . , ct) is equal to ap+ 2b+m, for some integers a
and b, such that |2b+m| < p

8 . This process is graphically demonstrated in Figure 4.

Figure 4: The encryption of a t-bit message m made up of the bits m1,m2, . . . ,mt,
using Evaluate(pk,C, c1, . . . , ct), where the ci’s are encryptions of the cor-
responding mi’s, for i ∈ {1, 2, . . . , t}, and C ∈ CE .

11

a somewhat homomorphic encryption scheme

If C ′ is the generalised circuit operating over the integers that corresponds to
C then C ′(c1, c2, . . . , ct) = C ′(2b′1 +m1, 2b′2 +m2, . . . , 2b′t +mt) + pZ. This im-
plies that C ′(2b′1 + m1, 2b′2 + m2, . . . , 2b′t + mt) mod p has the same parity as
m = C(m1,m2, . . . ,mt). We have already proved that |2bi +mi| ≤ τ2ρ+ 3 and
from this it follows that |C ′(2b′1 +m1, 2b′2 +m2, . . . , 2b′t +mt)| ≤ 2η

16 ≤
p
8 by the

restrictions on the parameters and the definition of p. From this, it follows directly
that c = 2b+m mod p and thus m = (c mod 2) mod p. E is hence correct for
CE .
Lemma 3.2 (Lemma 3.5 in [11]).
Let C be a boolean circuit with t inputs. Let C ′ be its corresponding generalised
circuit and f(x1, . . . ,xt) be the multivariate polynomial with degree d computed by
C ′. Then C ∈ CE , where CE is the set of permitted circuits, if the length of f is at
most 2η−4

2d(ρ′+2) .

Definition 3.7 (Permitted polynomials [11]).
It follows directly from Lemma 3.2 that

d ≤ η− 4− log |f |
ρ′ + 2 . (1)

A polynomial for which this holds is referred to as a permitted polynomial. The set
of permitted polynomials is called PE and the circuits that compute these are called
C(PE).

3.3 reducing the ciphertexts

3.3.1 Reduction during Evaluate

Remark 3.1. Adding two integers will result in an integer with length of at most
one larger than the original integers. However, multiplying two integers will result
in an integer with length up to double the length of the original integers. Thus, it
is obvious that the Mult gates are the bottlenecks of the permitted circuits.
Due to the multiplication that occurs in Evaluate, the ciphertexts produced by this
will mostly be too large for a simple reduction (like the reduction modulo x0 in
Encrypt). A way of modular reduction in Evaluate is to create more public key
elements as follows:
for i = 0..γ do

r′i
$← Z∩ (−2ρ, 2ρ)

q′i
$← Z∩

[
2γ+i−1

p , 2γ+i
p

)
x′i ← 2(q′i · p+ r′i)

and when a ciphertext c surpasses 2γ in length in Evaluate, it is reduced as follows:

c =
((
c mod x′γ

)
mod x′γ−1

)
. . . mod x′0,

which will result in the new c having a length less than or equal to γ.

12

3.4 security

3.3.2 Compression

van Djik et. al. suggest the parameter set

ρ = λ, ρ′ = 2λ, η = Õ(λ2), γ = Õ(λ5), and τ = γ + λ

for the SHE scheme. However, this set of parameters results in ciphertexts of length
θ̃(λ5). There is a way to compress the ciphertexts to more manageable lengths, but
these can not be bootstrapped. Therefore, the compression must take place on the
last generation of ciphertexts before deciphering. That is, the ciphertexts cannot
go through Evaluate after they have been compressed. This compression reduces
the ciphertext to (asymptotically) the size of an RSA modulus.

3.4 security

3.4.1 Reduction to the Approximate-GCD Problem

For the security proof of the above SHE scheme, we reduce it to the Approximate-
GCD Problem, in Theorem 3.5. In order to prove Theorem 3.5, we first need to
introduce a couple of lemmas.

Lemma 3.3.
For M ,T ∈ Z ,
x1,x2, . . . ,xT

$← ZM ,
s $← {0, 1}T , and
xT+1 ←

∑T
i=1 si · xi mod M .

Then, (x1,x2, . . . ,xT ,xT+1) is 1
2

√
M
2T -uniform over ZT+1

M .

Proof. We define a hash family, (X ,Y ,K,H), where X is the set of bit-strings of
length T , and Y is {ZM} such that the hashes are (h1,h2, . . . ,hT) ∈ ZT

M .
We choose an s ∈ X and see that h(s) =

∑T
i=1 sii ∈ ZM , which implies that the

hash family is 2-universal, and the leftover hash lemma (Lemma 2.1) then gives us
that (h,h(x)) is 1

2 ·
√
M/2T -uniform over ZT+1

M .

Lemma 3.4.
For the parameters (ρ, ρ′, η, γ, τ) from above, sk = p, and pk= 〈x0,x1, . . . ,xτ 〉
chosen at random in Keygen, then any integer x∗ ∈ [0, 2γ], at most 2ρ away from a
multiplum of p, consider the following distribution:

Cpk(x
∗) =

S ⊆$ {1, . . . , τ} , r $← (−2ρ
′
, 2ρ
′
) : output c′ ← x∗ + 2r+

∑
i∈S

xi mod x0

 .

Then, every distribution Cpk is statistically close to the distribution Encrypt(pk,m =
[x∗]2) (up to a negligible statistical distance).

13

a somewhat homomorphic encryption scheme

Proof. Writing c′ = q′p+ 2r′ +m, we would like to prove that both q′ and r′ are
distributed as in the scheme.

We start by proving that q′ is distributed by the scheme. The quotient qp(c) of the
ciphertext is uniform in

(
−q0

2 , q0
2

]
by the leftover hash lemma (2.1). From the fact

that c′ is created the same way as in Encrypt, and Lemma 3.3 it follows that q′ is
also uniform in

(
−q0

2 , q0
2

]
.

Now we look at r′, and from the way the scheme is created, we have additional noise
for the ciphertext in both the scheme and the reduction. Due to the magnitude of
the distribution being significantly larger than the noise of the public-key elements,
the added noise statistically drowns the possible differences caused by the public-key
elements and the integer x∗, in the noise distribution.

Theorem 3.5 (Theorem 4.2 in [11]).
Define (ρ, ρ′, η, γ, τ) as above. Then any attack A with advantage ε on the scheme
can be converted into an algorithm B that solves the (ρ, η, γ)-approximate-gcd prob-
lem with success probability at least ε/2. The running time of B is polynomial in
the running time of A, in λ, and in 1/ε.

Proof. Let z = qp(z) · p+ rp(z) where, per usual, qp(z) is the quotient, and rp(z)
is the remainder of z with regards to p. A is an attacker against the scheme. A
graphic representation of A’s attack strategy is shown in Figure 5

Figure 5: A’s attack finds the message m, using pk and the encrypted message c,
with probability 1/2 + ε

First off, we use A to construct B. B is a solver for approximate-gcd with parame-
ters ρ, η, and γ.

For a randomly chosen η-bit odd integer p, the solver B has access to as many
samples from Dγ,ρ(p) as it needs, and the goal is to find p.

In Lemma 3.4 it was shown that for all but a negligible fraction of the public keys
generated by the scheme, the ciphertext cj is distributed almost identically to a
valid encryption of the bit [rp(z)]2⊕ parity(z). It follows that if A has a noticeable
advantage in guessing the encrypted bit under pk, then Learn-LSB(z,pk) will return
qp(z) mod 2 with overwhelming probability.

Since A is now an oracle for the lsb of qp(z) we can recover p in the following way:

14

3.4 security

Algorithm 5 B
1: procedure Creating a public key(pk = 〈x0,x1, . . . ,xτ 〉)
2: while true do
3: for i = 0..τ do
4: xi

$← Dγ,ρ (p)
5: if xi > x0 then
6: xi ↔ x0
7: if x0 is odd then
8: break
9: Output pk = 〈x0,x1, . . . ,xτ 〉

10: procedure Learn-LSB(z,pk)
11: Input: z ∈ [0, 2γ) with |rp(p)| < 2ρ, a public key pk = 〈x0,x1, . . . ,xτ 〉
12: for j = 1..poly(λ)

ε do % ε is the overall advantage of A.
13: rj

$← (−2ρ′ , 2ρ′)
14: xj

$← {0, 1}
15: Sj ⊆ {1, . . . , τ}
16: cj ← (z +mj + 2rj + 2 ∑

k∈Sj
xk) mod x0

17: aj ← A(pk, cj)
18: bj ← aj⊕ parity(z)⊕mj % bj should be the parity of qp(z).
19: Output: The majority vote among the b′js % This is the

least-significant-bit of qp(z).

Given two integers, z1 = qp(z1) · p+ rp(z1) and z1 = qp(z1) · p+ rp(z1), where
rp(zi)� p, i = 1, 2.

Algorithm 6 Finding p
Repeat the following process:
if z1 < z2 then

a = z2
z2 = z1
z1 = a

for i = 1, 2 do
bi = qp(zi) mod 2 found using A

if qp(z1) is odd AND qp(z2) is odd then
z1 = z1 − z2
b1 = 0

for i = 1, 2 do
if bi = 0 then zi = (zi− parity(zi))/2 % Note that zi− parity(zi) is even, so

the new zi is an integer.

By the Algorithm 6 we observe that when p� rp(zi), changing the parity-bit will
not effect the quotient. It follows that in this instance, qp(z′i − parity(zi)) = qp(zi).

15

a somewhat homomorphic encryption scheme

Plugging this into the last line of Algorithm 6, we get:

z′i =
zi − parity(zi)

2

⇒ qp(z
′
i)p+ rp(z

′
i) =

qp(zi − parity(zi))p+ rp(zi − parity(zi))
2

⇒ qp(z
′
i) =

qp(zi − parity(zi))
2

and rp(z′i) =
rp(zi − parity(zi))

2 (2)

And since the parity of qp(zi) is even (by the nature of Algorithm 6), qp(z′i) =
qp(zi)/2. From the Equation 2, it follows directly that |rp(z′i)| ≤ (|rp(zi)|+ 1)/2 ≤
|rp(zi)|. After another iteration of the algorithm, we set z′1 = z1 − z2 and get that
z′′1 = (z′1 − parity(z′1))/2, and thus

rp(z
′′
1) =

rp(z′1)− parity(z′1))
2

=
rp(z1)− rp(z2)− parity(z1)

2 ,

which further implies that |rp(z′′1)| ≤ max {|rp(z1)|, |rp(z2)|} that is, the rp(zi)’s
will never grow beyond the first rp(zi), which confirms that p� rp(zi).

This proves that Algorithm 6 finds the binary gcd of two integers and it takes the
algorithm O(γ) operations to find integers z′1 and z′2, with z′2 as the odd part of
gcd(qp(z1), qp(z2)).

We now move on to recovering p. B is used to draws two elements z∗1 , z∗2
$← Dγ,ρ(p).

Then, p is found using Algorithm 6 on z∗1 , z∗2 . The probability of the gcd(z∗1 , z∗2) = 1
is 1/ζ(2), where ζ(2) is the Riemann zeta function with s = 2 [5]. Since ζ(2) =
π2/6 and thus the probability that the odd part of gcd(qp(z∗1), qp(z∗2)) equals 1 is
π2/6. From this, we have that the final z is ź = 1 · p+ r with probability |r| ≤ 2ρ.
B will draw again and again until ź = 1 · p+ r. Now, set z1 = z∗1 and z2 = ź in
Algorithm 6, and B recovers p =∗1 /qp(z∗1)e. This proves that given an oracle for
computing qp(z) mod 2, the algorithm B, converted from A, can find p.

It is now time to prove that B’s success probability is at least ε/2. Lemma 3.4 states
that for every secret key p and the respective public keys pk, created by Keygen
(Algorithm 1). We let P be the set of odd integers in [2η−1, 2η) for which A has
more than ε/2 advantage. We denote this advantage by advantage(A)= ε/2, and
define

P =
{
p ∈ [2η−1, 2η) : advantage(A)conditioned on p is at least ε/2

}

16

3.4 security

By double counting, we see that there must be at least ε/2 elements in P , and it
follows that advantage(A) ≥ ε/4 for each public key pk.

If we now run B once, where it has access to Dγ,ρ(p) for some p ∈ P . The prob-
ability of the public key being produced by B being negligibly close to the right
distribution is 0.5 by the definition of our scheme. Thus, B produces the correct pk
with probability ε′ ≥ ε/4−negl (negl denotes a negligible amount). From this and
Lemma 3.4 we can further deduce that ai = A(pk, cj) in Algorithm 5 is correct
with probability ε/4−negl. Due to the size of the for-loop in the LEARN -LSB, it
will return the right answer with overwhelming probability, and B will recover the
approcimate-gcd p.

It finally follows that when p ∈ P , the probabilitiy of B recovering it in just one
run of the algorithm is greater than or equal to 0.5 · (ε/4− negl). Then, running
the algorithm (8/ε) · ω(log λ) times will return the correct p with overwhelming
probability. This implies that the success probability of B is at least the density of
P , which is ε/2.

17

4

S Q U A S H I N G

In this section we will explain the act of squashing the decryption circuit in detail.
We will start by introducing some sum problems and then go into detail on how
these can be applied to the squashing algorithm.

In all existing schemes, the squashing technique induces an additional assumption:
that the sparse subset sum problem (SSSP) is hard.

The subset sum problem is finding a non-empty subset of a given integer set, whose
sum is zero. The SSSP hardness assumption is that if for a sufficiently large set
of integers and a target sum, not necessarily 0, it is assumed hard to find a sparse
subset sum that hits the target.

Definition 4.1 (The Sparse subset sum problem, [7]).
We let A be of positive integers a1, a2, . . . , an and construct a linear combination
s =

∑n
i=1miai where mi ∈ Z for all i and r =

∑n
i=1m

2
i is small. The sparse

subset sum problem (SSSP) is to recover the mi’s.

4.1 a modified encryption scheme
For simpler notation, three more parameters are now introduced as functions of λ.
These are κ = γη/ρ′, θ = λ, and Θ = ω(κ · log λ). To make the scheme bootstrap-
pable, it needs to be tweaked. Therefore the scheme from Section 3.1 will now be
referred to as E∗ and all variables created using that original scheme will get the
same treatment of having a star, (*), added to them.

The new scheme E consists of Algorithms 7-9.

Since all 0 < ui < 2κ+1 and yi = ui/2κ, then 0 < yi < 2 with κ bits of precision
after the binary point and [

∑
i∈S yi]2 = 1

p − ∆p for some |∆p| < 1
2κ .

18

4.1 a modified encryption scheme

Algorithm 7 KeyGen(λ)
1: Produce sk*,pk* as in Algorithm 1
2: xp ← b2κ/pe
3: s = 〈s1, . . . , sΘ〉 % s is a Θ-bit vector, chosen at random and with Hamming

weight θ.
4: S = {i : si = 1}
5: while true do
6: for i = 1..Θ do
7: ui

$← Z∩ [0, 2κ+1)

8: if ∑i∈S ui = xp mod 2κ+1 then
9: break

10: for i = 1..Θ do
11: yi = ui/2κ

12: y = {y1, . . . , yΘ}
13: Output (sk,pk)= (s, (pk*, y))

Algorithm 8 Encrypt and Evaluate
1: Choose a random subset S from {1, 2, . . . , τ}
2: r $← (−2ρ′ , 2ρ′)
3: c∗ ← [m+ 2r+∑

i∈S xi]x0
4: for i = 1..Θ do
5: zi ← [c∗ · yi]2 % with only n = dlog θe+ 3 bits of precision after binary

point
6: z = 〈z1, . . . , zΘ〉
7: Output (c∗, z)

Algorithm 9 Decrypt(sk,c)
1: Output m′ ← [c∗ − b∑i sizie]2

Lemma 4.1 (Lemma 6.1 in [11]).
The scheme E is correct for C(PE)

Proof. Create a private and a public key as in Algorithm 7. Let {yi}Θ
i=1 denote the

rational numbers in the public key and let {si}Θ
i=1 denote the secret key.

Determine a permitted polynomial P (x1,x2, . . . ,xt) = PE , an arithmetic circuit
C which calculates P , and t ciphertexts {ci}ti=1 that encrypts C’s input. Then let

c∗ = Evaluate(pk,C, c1, . . . , ct)

We must establish that ⌊
c∗

p

⌉
=

⌊∑
i

sizi

⌉
mod 2

19

squashing

where for every i, zi = c∗yi mod 2 with only dlog θe+ 3 bit precision after the
binary point. Using that the yis were created in a way such that ∑i siyi mod 2 =
1
p − ∆p where |∆p| ≤ 2−κ. Thus c∗yi mod 2 = zi − ∆i with |∆i| ≤ 1

16θ and we now
see that

(
c∗

p
−
∑

sizi

)
mod 2 =

(
c∗

p
−
∑

si(c
∗yi mod 2) +

∑
si∆i

)
mod 2

=

(
c∗

p
−
∑

c∗(siyi mod 2) +
∑

si∆i

)
mod 2

=

(
c∗

p
− c∗

(
1
p
− ∆p

)
+
∑

si∆i

)
mod 2

=
(
c∗∆p +

∑
si∆i

)
mod 2.

We observe that |∑ si∆i| ≤ θ · 1
16θ = 1

16 . Since c∗ is created by evaluating the
polynomial P over the ciphertext inputs ci. Per definition, P ’s input magnitude
is less than or equal to 2α(ρ′+2) for every α ≥ 1, and given that an input has
magnitude, the outputs magnitude is less than or equal to 2α(η−4). ,When P ’s
input is of first generation (and thus its magnitude is at most 2γ), the ciphertext c∗
has magnitude less than or equal to 2γ(η−4)/(ρ′+2) < 2κ−4. Thus |c∗ · ∆p| < 1

16 and
|c∗ · ∆p +

∑
si∆i| < 1

8 . Since c∗ is per definition a valid output from a permitted
polynomial, c

∗

p is within a distance 1
8 from an integer and together, these prove the

Lemma.

20

5

B O O T S T R A P P I N G

In this chapter we learn what bootstrapping is and how it can be used to make the
encryption scheme fully homomorphic. Where does it come from and what are the
uses.

5.1 what is bootstrapping?
In [10], the idea is to take a SHE scheme and make it fully homomorphic by creating
a scheme that is bootstrappable. Bootstrapping is the act of removing noise in the
ciphertext. Bootstrapping is in essentials taking a homomorphic encryption scheme
that can compactly evaluate its own decryption circuit and making it capable of en-
cryption for circuits of arbitrary depth. For a scheme to be bootstrappable, it needs
to be capable of evaluating slightly augmented versions of its decryption circuit, in
addition to of course being able to evaluate the circuit itself. This capability is nec-
essary when noise comes into play and allows for nontrivial operations on plaintexts
and continuous progress throughout the circuit.

Definition 5.1 (Augemented Decryption Circuits [11]).
Let the scheme E =(KeyGen, Encrypt, Decrypt, Evaluate) be such that for a fixed
value of λ (the security parameter), the size of the secret key must be fixed and the
cipertexts must be the same length. Then the set of augmented decryption circuits,
DE contains two circuits,

C+(sk, c1, c2)→ m1 +m2 mod 2 and
C·(sk, c1, c2)→ m1 ·m2 mod 2 ,

where c1 and c2 are two distinct ciphertexts and m1 and m2 are their corresponding
decryptions.

21

bootstrapping

Definition 5.2 (Bootstrappable Encryption [11]).
A homomorphic encryption scheme E is bootstrappable if

DE(λ) ⊆ CE(λ)

holds for every λ and CE (λ) is the corresponding set of circuits for which the set of
decryption circuits DE will return the correct plaintexts.

Theorem 5.1 (Theorem 2.7 in [11]). For a bootstrappable encryption scheme E and
a parameter d, there is an efficient transformation which outputs a description of
another encryption scheme E (d) such that

E (d) is compact and the Decrypt circuit in E (d) and D are identical, and
E (d) is homomorphic for all circuits of depth up to d.

Theorem 5.2 (Theorem 4 in [10]). E (d) is semantically secure if any attack with
advantage ε on E (d) can be converted into an attack on E with advantage at least ε

ld ,
where l is the length of the secret key in E.

Definition 5.3 (Fully Homomorphic Encryption [10]).
The scheme E =(KeyGen, Encrypt, Decrypt, Evaluate) is fully homomorphic if it is
homomorphic for all circuits.

We now apply the the theory presented above to the scheme, in order to make it
an FHE scheme.

5.2 a fully homomorphic encryption
scheme

Lemma 5.3 (Lemma 6.3 in [11]).
Let % = %1, %2, . . . , %t be a binary vector, let W = W (%) denote the number of
non-zero coordinates in %, and let WnWn−1 . . .W0, where all Wi’s are bits and
W =

∑n
i=0 2iWi, denote the binary representation of W .

Then for every i ≤ n, the bitWi(%) can be expressed as a binary polynomial of degree
exactly 2i in the variables %1, %2, . . . , %t. Moreover, there is an arithmetic circuit of
size 2i · t that simultaneously computes all the polynomials for W0, . . . ,Wi.

Proof. Set ek(·) to be the k’th elementary symmetric polynomial. We use that the
i’th bit in the binary representation of the Hamming weight (number of elements
that are non-zero) of % = e2i(%) mod 2 [4]. Thus,

Wi(%) = e2i(%) mod 2 =

 ∑
|S|=2i

∏
j∈S

%j

 mod 2.

22

5.2 a fully homomorphic encryption scheme

and it follows directly that the degree of e2i(%) is 2i.

The coefficients of the polynomial P%(z) =
∏t
i=1(z−%i) are the elementary symmet-

ric polynomials in the %i’s, where ek(%) is the coefficient of zt−k. The lower-order
terms in P%(z) are negligible and we can ignore the zj ’s for j < t− 2i, for the first
i+ 1 Wl’s (l = 0, · · · , i).

One way of finding these polynomials is expressed in Algorithm 10.

Algorithm 10
1: Input: bits %1, . . . , %t
2: P0,0 = 1
3: for j = 1..2i do
4: Pj,0 = 0
5: for k = 1..t do
6: for j = 2i, 2i−1, ..1 do
7: Pj,k = %k × Pj−1,k−1 + Pj,k−1

8: Output: P1,t,P2,t,P4,t, . . . ,P2i,t

Multiplying the polynomials using FFT [12], we can find the entire polynomial
P%(z) with complexity t · polylog(t).

Theorem 5.4 (Theorem 6.2 in [11]).
Let DE denote the set of decryption circuits for the scheme E. Then, DE ⊂ C(PE).

To make the scheme fully homomorphic, bootstrapping needs to be applied to the
squashed scheme from Chapter 4. For this to be true, Theorem 5.4 must hold. The
proof of this theorem is largely based on the three-for-two trick from Section 2.3.

Proof. To show that DE ⊂ C(PE) is the same as showing that Es decryption circuit,
m′ → (c∗− b∑i sizie) mod 2, is a permitted polynomial and then show that there
exists a circuit of polynomial size that can solve this polynomial.

Since c∗ ∈ Z, all si ∈ {0, 1}, and all zi ∈ Q∩ [0, 2) in binary with n = dlog θe+ 3
bits of precision after the binary point, we know that∑ sizi is within 1

4 of an integer
and that only θ of the bits s1, · · · , sΘ are non-zero.

First, for i ∈ {1, 2, . . . , Θ}, set ai → sizi ∀i ∈ Q, then ai ∈ Q∩ [0, 2). From this it
is clear that ai = zi when si = 1 and ai = 0 otherwise.

23

bootstrapping

Now, using the ai’s we create n+ 1 other rational numbers {wj}nj=0 that all have
precision of less than n bits, such that ∑j wj =

∑
i ai mod 2. We use the three-for-

two trick at most dlog3/2 ke+ 2 times, resulting in two numbers s1 and s2 such that
s1 + s2 =

∑k
i−1 ri. This implies that it takes a circuit of depth d′ ≤ 2dlog3/2 ke+2 <

8k1/ log(3/2) < 8k1.71 to reduce k numbers into only two numbers .

In general, circuits need to be of a level that is logarithmic to the bit-length of
their input numbers in order to compute the final sum of those numbers. However,
since it is given that s1 + s2 are within 1

4 of an integer and we are only interested
in bs1 + s2e mod 2, all we need to compute is a multivariate polynomial of degree
4. From this we deduce that in order to compute

⌊∑k
i=1 ri

⌉
mod 2, the circuit’s

corresponding polynomial, whose coefficient vectors l1-norm is at most 27d, is of
degree d ≤ 32k1/ log(3/2). When k = Θ, this polynomial degree is still a very large,
and therefore we use the following technique (from [9]):

Denote the bit representation of each number ai by ai,0ai,−1ai,−n, where ai =∑n
j=0 2−jai,−j .

Compute integers W−j , j = 0, 1, . . . ,n, where W−j is the number of non-zero ele-
ments of the "column" of bits (a1,−j , a2,−j , . . . , aΘ,−j), as represented below

a1,0 a1,−1 a1,−2 a1,−n
a2,0 a2,−1 a2,−2 a2,−n
a3,0 a3,−1 a3,−2 a3,−n

· · ·
aΘ,0 aΘ,−1 aΘ,−2 aΘ,−n

W0 W−1 W−2 W−n

By our parameter settings, we know that at most θ of the ai’s are non-zero, and
thus the W−j ’s are smaller than or equal to θ, which implies that the W−j ’s can
be represented by dlog(θ+ 1)e < n bits, and Lemma 5.3 says that each of the bits
in w−j can be expressed as a polynomial of degree at most θ. Moreover, all of
these polynomials can be computed simultaneously by an arithmetic circuit of size
O(θ · θ).

ai =
n∑
j=0

2−jai,−j ⇒
∑
i

ai =
∑
j

2−jW−j ,

We now define wj = (2−j ·W−j) mod 2, for all j ∈ {0,n} so the wj ’s are rational
numbers with dlog(θ + 1)e < n, and using the three-for-two trick we obtain the
sum of the ai’s mod 2.

24

5.3 security of the fhe scheme

This means that the degree of the polynomials in the first step is two, the degree of
the polynomials in the second step is at most θ, and the degree of the polynomials
in the third step is at most

32(n+ 1)1/ log(3/2) < 32dlog θ+ 4e1.71 < 32 log2 θ.

The total degree of the decryption circuit is therefore bounded by 2 · θ · 32 log2 θ =
640 log2 θ. In this case θ = λ, and thus the degree is at most 64λ log2 λ.

It follows that the augmented decryption circuits DE can be expressed as poly-
nomials of degree at most 128λ log2 λ in the Θ variables si. Since the logarithm
of the l1-norm of this polynomial is relatively small compared to η, and Θ =
ηγ
ρ · ω(log λ) < λ7. Plugging these values into 1, we can deduce that it is sufficient
to set η = ρ′ ·Θ(λ log2 λ), which in return indicates that we can get DE ⊂ C(PE),
making the scheme bootsrappable, by setting η = ρ ·Θ(λ log2 λ)).

Note that our first circuit implementation of the procedure from above is not "shal-
low". Still, since it computes only low degree polynomials (up to degree 2i), then
by Lemma 3.2 it is a permitted circuit.

5.3 security of the fhe scheme
As mentioned in Chapter 4, the new scheme relies on the additional assumption
that the SSSP (Definition 4.1 is hard. Based on the hardness assumptions, the
scheme can be made secure by choosing θ hard enough too withstand brute-force
attacks and Θ larger than ω(log λ), which follows quite literally from the parameter
definitions.

25

6

C O N C L U S I O N

In conclusion, what has been done above is that the meaning of a scheme being
fully homomorphic and how that can be achieved was discussed. The FHE scheme
created by van Dijk et. Al. was presented in full detail and the security of this
scheme was taken into consideration.

For further work, it would be interesting to look closer at this scheme’s time con-
sumption. An even bigger undertaking would be to try and envision a new way of
creating a FHE scheme, which would not need to be repeatedly bootstrapped.

26

B I B L I O G R A P H Y

[1] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining
Digital Signatures and Public-key Cryptosystems”. In: Commun. ACM 21.2
(Feb. 1978), pp. 120–126. issn: 0001-0782. doi: 10.1145/359340.359342
(cit. on p. 1).

[2] Richard M. Karp. A Survey of Parallel Algorithms for Shared-Memory
Machines. Tech. rep. Berkeley, CA, USA, 1988 (cit. on p. 5).

[3] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. “A Pseudorandom Generator from any One-way Function”. In: SIAM
J. COMPUT. 28.4 (1999), pp. 1364–1396 (cit. on pp. 3, 4).

[4] Joan Boyar, René Peralta, and Denis Pochuev. “On the multiplicative
complexity of Boolean functions over the basis (,,1)”. In: Theoretical Computer
Science 235.1 (2000), pp. 43–57. issn: 0304-3975. doi: http://dx.doi.org/
10.1016/S0304-3975(99)00182-6 (cit. on p. 22).

[5] Harold M Edwards. Riemann’s zeta function. Vol. 58. Courier Corpora-
tion, 2001 (cit. on p. 16).

[6] Jón Hafsteinn Jónsson, Níels Karlsson, and Stefán G. Jónsson.
STÆ 513. Tölvunot ehf, 2003 (cit. on p. 5).

[7] PhongQ. Nguyn and Jacques Stern. “Adapting Density Attacks to Low-
Weight Knapsacks”. English. In: Advances in Cryptology - ASIACRYPT 2005.
Ed. by Bimal Roy. Vol. 3788. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2005, pp. 41–58. isbn: 978-3-540-30684-9. doi: 10.1007/
11593447_3 (cit. on p. 18).

[8] Douglas R. Stinson. Cryptography, theory and pactice. Third edition. 6000
Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: Chap-
man & Hall/CRC, an imprint of Taylor and Francis Group, 2006 (cit. on
p. 4).

[9] Craig Gentry. “A fully homomorphic encryption scheme”. crypto .
stanford.edu/craig. PhD thesis. Stanford University, 2009 (cit. on pp. 1,
2, 8, 24).

[10] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In:
Stoc ’09. ACM, 2009, pp. 169–178 (cit. on pp. 10, 21, 22).

[11] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. “Fully homomorphic encryption over the integers”. In: Advances
in cryptology–EUROCRYPT 2010. Springer, 2010, pp. 24–43 (cit. on pp. II,
2, 5, 7–10, 12, 14, 19, 21–23).

27

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/http://dx.doi.org/10.1016/S0304-3975(99)00182-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0304-3975(99)00182-6
http://dx.doi.org/10.1007/11593447_3
http://dx.doi.org/10.1007/11593447_3
crypto.stanford.edu/craig
crypto.stanford.edu/craig

Bibliography

[12] Yan-Bin Jia. “Polynomial Multiplication and Fast Fourier Transform”. In:
(2014) (cit. on p. 23).

28

	Acknowledgements
	Contents
	Acronyms
	Introduction
	Homomorphic Encryption
	Somewhat Homomorphic Encryption
	Fully Homomorphic Encryption

	Preliminaries
	Polynomials
	Hash functions and Hash families
	Boolean circuits
	The three-for-two trick

	The Approximate Greatest Common Divisor Problem

	A Somewhat Homomorphic Encryption Scheme
	Construction of van Dijk et. al.'s scheme
	Correctness
	Reducing the Ciphertexts
	Reduction during Evaluate
	Compression

	Security
	Reduction to the Approximate-GCD Problem

	Squashing
	A Modified Encryption Scheme

	Bootstrapping
	What is Bootstrapping?
	A Fully Homomorphic Encryption Scheme
	Security of the FHE Scheme

	Conclusion

