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Abstract 

 

Impending global environmental- and resource related problems require a 

transformation of the socio-economic metabolism, the inputs, processing and 

outputs of materials and energy in society. The environmental impacts and 

resource requirements of metal cycles can be reduced significantly if they 

approach a steady state where in-use stocks are maintained through recycling 

rather than primary metal. In a steady state system, linkages between metal cycles, 

for example through alloys, impurities and by-products, will become increasingly 

important due to the high share of recycled post-consumer metal. The aluminium 

cycle is in this regard particularly important: It is responsible for large greenhouse 

gas emissions and energy use, highly sensitive to alloying elements and 

impurities, and has a strong linkage to gallium, which is a by-product of 

aluminium production. In this thesis, these linkages were studied in the context of 

in-use stock saturation and closed-loop material cycles, to better understand their 

importance, and to identify strategies that can facilitate a transition towards a 

steady-state socio-economic metabolism. 

It was found that higher recycling rates are increasingly difficult to achieve in 

closed-loop steady state systems, due to the accumulation of impurities. A model 

of aluminium beverage can recycling showed that stable metal impurity 

concentrations are reached after 5-15 recycling loops with recycling rates in the 

range of 45-75%. It is expected that similar results would apply for systems that 

are more complex. The increasing availability of automotive aluminium scrap 

represents a future challenge for recyclers due to the large variety of alloys and 

limited demand for mixed scrap. A global surplus of scrap may occur in the period 

2020-2030 unless measures are taken to restructure the recycling system. 

Allowing recycled material in safety-relevant components, together with an 
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improved sorting of alloys through dismantling or advanced sorting technologies, 

may delay the surplus with several decades. 

The global system of production, manufacturing, use and recycling of gallium, 

and gallium-containing products was described and quantified for 2011. Gallium 

use is currently driven by neodymium-iron-boron magnets containing gallium as 

an alloying element and semiconductor applications: integrated circuits, light-

emitting diodes and photovoltaic panels. Large material losses occur in the 

fabrication of intermediate products and devices. Currently, demand is far below 

the supply potential. Scenario analysis showed that a low stock saturation in the 

aluminium cycle might cause the supply potential of gallium to fall below future 

demand, given an increased market penetration of gallium-containing 

technologies. A number of measures was identified for improving the system-

wide material efficiency, among which the most effective are related to process 

yield improvements or collection of production scrap. 

The results showed that linkages between material cycles greatly complicate the 

transition to a steady-state socio-economic metabolism, and at the same time 

indicated priorities for measures that can be taken to facilitate this transition.  
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1. Introduction 

 

1.1. End to the growth era 

As the world population today approaches 8 billion people (United Nations, 

2015), humanity is facing unprecedented challenges related to pollution and 

resource availability. The most recognized example is global warming caused by 

anthropogenic greenhouse gas emissions (IPCC, 2014), but there are also other 

dramatic changes taking place, such as loss of forest cover (Hansen et al., 2013) 

and biodiversity (Barnosky et al., 2011). Furthermore, there are concerns about 

the future availability of mineral resources (Angerer et al., 2009; Graedel, 2011), 

especially those used in emerging technologies for climate change mitigation. 

While humans have always had to adapt to the limited resources and carrying 

capacity of their environment, it is only after industrialization, the succeeding 

population growth, and the emergence of international trade that these phenomena 

have appeared on a global level. It has been proposed that humanity should, in 

order to respect the limitations of a finite planet, move to a “spaceship economy” 

where we strive for high quality of stocks providing services to people while 

minimizing the throughput of energy and materials (Boulding, 1966). For material 

cycles, this implies a transition towards a steady state with closed loops and high 

recycling rates (Ayres, 1997). 

These ideas stand in sharp contrast to the theory of growth as the driver of 

increased well-being and the element that ensures socio-economic and political 

stability throughout the world. Since the industrial revolution, the world has been 

in a state of continuous population growth, economic growth and associated 

growing pollution and natural resource extraction. However, population growth is 

expected to slow down significantly before the end of this century, possibly 

reaching a stable population of around 11 billion people (UN Department of 

Economic and Social Affairs Population Division, 2015). Efforts to solve global 
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environmental- and natural resource related problems and decelerating population 

growth both point to a coming end to the growth era, which has been a defining 

characteristic of the modern world since the industrial revolution. 

 

1.2. Anthropogenic metal cycles, dynamics and 

linkages 

1.2.1. Metal cycles and dynamics 

Materials play a vital role in the socio-economic metabolism: The standard of 

living enjoyed in the industrialized world depends on large throughputs and stocks 

of materials for housing, transportation, communication, infrastructure, and 

energy distribution, to name a few (Gordon et al., 2006; Müller et al., 2013). 

Moreover, an increasing diversity of materials, to the point that almost every 

naturally occurring chemical element is being used, is a major ingredient in 

technological development (Graedel and Cao, 2010). The materials industry is a 

significant contributor to greenhouse gas (GHG) emissions, with more than 20% 

of global energy- and process related CO2 emissions, including indirect emissions 

(Allwood et al., 2010). At the same time, many of the proposed technological 

solutions to energy/emissions problems rely on specialty metals with potential 

restrictions in supply, both short term and long term (Graedel, 2011). 

The study of anthropogenic material cycles has emerged in an effort to understand 

the relationship between human activities and pollution, natural resource 

extraction, and energy use (Baccini and Bader, 1996). The approach is particularly 

useful for metals due to the importance of recycling as a measure for energy and 

resource conservation. There is now a large body of literature covering at least 30 

different chemical elements, most of them metals, but also including plant 

nutrients such as phosphorus and nitrogen (Chen and Graedel, 2012). These 

studies, which are performed on a city, country, regional, or global level, quantify 

the stocks and flows of the selected material, typically a chemical element, 
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through the most important industrial processes and human activities. The results 

are used to identify options for reducing emissions of the metal to the environment 

(e.g. for heavy metals), conserving geological resources, and reducing associated 

energy needs and greenhouse gas emissions. Lately, mathematical models have 

been used to analyse historical and future development of the material cycles 

(Müller et al., 2014), and geographical aspects of material use (Liu and Müller, 

2013; Pauliuk et al., 2013; Wang et al., 2007). Furthermore, dynamic models of 

metal cycles have been extended to include associated greenhouse gas emissions 

and energy requirements of processes throughout the cycle (Liu et al., 2012; 

Milford et al., 2013; Modaresi et al., 2014).  

Above all, these studies show the importance of in-use stock dynamics for 

recycling of metals: the availability of end-of-life scrap for recycling is 

determined by the lifetime of products and the historical use of the metal. When 

in-use stocks are growing rapidly, e.g. due to population growth, infrastructure 

development, or more widespread use of the material, the end-of-life flows are 

small compared to the production. Consequently, recycling is limited by the 

availability of scrap. When stocks are stable or growing slowly, the availability of 

end-of-life scrap is high, and a large share of demand may be covered with 

recycled material (secondary production). An example of an in-use stock 

development pattern and associated inflow, outflow and recycled content are 

shown in Figure 1. In the beginning, the stock of material in use grows 

exponentially, reflecting exponential growth of the inflow. Scrap availability 

(outflow) is approximately the inflow function delayed by a certain time interval, 

representing the average lifetime of products in use. At the end of this time 

interval, the exponential function of the inflow has grown to a given multiplier 

times the function value at the beginning of the time interval. As long as the 

exponential growth rate remains the same (e.g. 3% growth per year), this 

multiplier will be constant, meaning that the magnitude of the outflow will always 

be in the same proportion to the inflow, for example 30%. Consequently, the 
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maximum recycled content (outflow divided by inflow) remains constant during 

exponential growth. In the transition phase, growth slows down; leading the 

outflow to “catch up” with the inflow, and recycled content grows. Finally, after 

stock saturation, a steady state is reached where inflow and outflow are the same. 

In an idealized system with perfect scrap collection and no losses in the recycling 

process, recycled content will approach 100%, and primary production is 

completely replaced by secondary production. 

Global metal cycles are at different stages of development in the context of stock 

dynamics; however, most, if not all, have growing in-use stocks. Examples of 

metals with rapidly growing consumption and in-use stocks include aluminium, 

indium and the rare earth elements. World production of aluminium has, on 

average, grown about 5% per year since the year 2000, and end-of-life recycled 

content is stable slightly above 20 % (International Aluminium Institute, 2015). 

Iron, while still growing fast on a global level, has shown signs of stock saturation 

on a per capita level in some industrialized countries (Müller et al., 2011). 
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Figure 1 Example of a hypothetical in-use stock development pattern for a metal, with 

associated inflow, outflow and recycled content. In phase 1, the stock grows exponentially, 

causing exponential growth of inflow, and a constant, low recycled content. In phase 2, 

the stock growth slows down, more end-of-life scrap becomes available (outflow), and 

recycled content increases. In phase 3, the stock is stable, inflow and outflow are both 

high, and recycled content approaches 100% in an idealized system. 

The transition of metal cycles from rapidly growing to stable stocks makes it 

possible, through increased recycling and replacement of primary production, to 

save mineral resources and energy, and reduce related emissions (Liu et al., 2012; 

Milford et al., 2013). Such transitions are necessary, because of the need to limit 

global warming, and increasingly likely to happen, because of an expected 

stabilisation of world population. 

Most studies of anthropogenic metal cycles deal with only one chemical element. 

The approach of selecting one element has proven to be a powerful method, both 

for systems understanding and identifying options for improvement. One clear 

limitation however, is that linkages between the production and use of different 

metals are not taken into account. While all metal cycles are ultimately interwoven 
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in the global economy, the object of study here is linkages related to the material 

itself. Such linkages include at least the following: (i) common waste streams and 

associated mixing during recycling, (ii) alloys and compound materials, (iii) co-

production of several metals from the same geological resources. Figure 2 in 

chapter 1.4 (page 13) illustrates these three linkages for the case of aluminium, its 

alloying elements, and gallium. 

 

1.2.2. Linkage 1: Impurities 

Waste streams usually consist of more than one product, and a product usually 

consists of different materials joined together. Hence, any waste stream contains 

a collection of materials, which should ideally be separated and recycled on their 

own to recover as much material as possible. In practice, the processes used for 

liberation and subsequent separation of materials are not perfect: some foreign 

materials will always enter the recovery process (Reuter et al., 2006). Depending 

on the thermodynamics and kinetics of the remelting process, these may end up in 

the recovered metal as an impurity (Nakajima et al., 2010). This represents a subtle 

linkage between material cycles. A few studies have been dedicated to the effect 

of impurities on recycling of metals from vehicles, showing how particle size 

reduction and liberation affects the contamination between different metals, and 

thus defines boundaries for recycling rates of metals from vehicles (Reuter et al., 

2006; van Schaik et al., 2004). In addition, there has been some work on copper 

as an impurity in steel, and the implications for steel recycling (Ekvall et al., 2014; 

Hatayama et al., 2014; Nakamura et al., 2012). These studies conclude that better 

sorting or higher allowance of copper impurities in steel alloys can contribute to 

significant reductions of greenhouse gas emissions. However, they do not study 

the general phenomenon of impurity accumulation in itself, its dynamics and how 

it is affected by system characteristics such as the recycling rate. 
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1.2.3. Linkage 2: Alloys and compounds 

Metals are usually not used in pure form, but rather in alloys or compounds with 

other metallic and non-metallic elements. Steel, in terms of aggregate mass the 

most important metal, is an alloy of iron and carbon. Alloy steels, typically used 

in automotive applications, industrial tools, pipelines and food handling 

equipment, contain additional alloying elements such as chromium, nickel, 

vanadium, molybdenum, niobium, manganese, silicon and tungsten (Allwood et 

al., 2012). Aluminium is normally used in alloys with silicon, copper, magnesium, 

manganese, chromium, zinc, iron and/or vanadium (Altenpohl, 1998). Many, if 

not most, specialty metals are mainly used in compounds where they constitute 

less than 50% of the mass (Graedel et al., 2015). Examples include indium, used 

in indium tin oxide, gallium, used in gallium arsenide, and neodymium, used in 

neodymium iron boron (NdFeB) magnets (Graedel et al., 2015). Furthermore, 

many metals are mainly used as alloying elements in materials where they 

constitute less than 20% of the mass (Graedel et al., 2015). Examples of such 

elements include the steel alloying elements nickel, chromium, manganese, 

vanadium and niobium (Graedel et al., 2015). The linkage of metal cycles through 

their use in alloys and compounds has important consequences for recycling. More 

complex waste streams lead to higher material losses in recycling (Reuter et al., 

2013). The chemical elements constituting a single material will behave 

differently under a given recycling process. Hence, the more elements are present, 

the more difficult it becomes to optimize the recovery of all of them. In the 

remelting process, alloying elements will end up in the recovered metal, in the 

slag phase, or in the gas phase (Nakajima et al., 2010). If they are retained in the 

metal, alloying elements will limit the purity of recovered metal. With a large 

diversity of alloys in the waste stream, the recycled material will be a blend of 

different alloys with limited applicability compared to primary metal. If they end 

up in slags or in the gas phase, the alloying elements will be lost upon recycling, 

and will have to be replaced by primary metal. 
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The problem of alloying elements in metal cycles needs to be studied with a 

systems approach: decisions in one part of the system (alloys used in 

manufacturing) causes problems in a different part of the system (scrap quality 

issues in remelting) and solutions may lie in yet other parts of the system (better 

sorting of waste streams). Since the early 80’s, the “alloy problem” has been 

studied on a society level, including material production, manufacturing, the use 

phase and recycling in a wider systems approach. Van Linden and Hannula (1980) 

developed a substance flow model of magnesium, manganese, silicon and iron in 

aluminium beverage can recycling, to investigate the effect of different alloy 

combinations (a beverage can is produced with two different aluminium alloys) 

on maximum recycling rate in a steady state system. Constraints to aluminium 

recycling caused by alloying elements has been discussed extensively since then. 

The publications can be divided roughly into three groups: those that (i) provide 

qualitative discussions of the problem and forecasts of scrap generation and 

demand, without explicitly modelling the flows of alloying elements (Cochran et 

al., 1983; D’Astolfo and Bruggink, 1994; van Linden, 1994; Modaresi and Müller, 

2012; Tessieri and Ng, 1995; Zapp et al., 2003); (ii) focus on optimization of the 

recycling process considering different scrap types and alloy compositions, while 

maintaining a broader perspective (Gaustad et al., 2007; Kirchain and Cosquer, 

2007; Olivetti et al., 2011; van Schaik et al., 2002); (iii) model material flows 

including alloying elements in a wider system, including the use phase and in-use 

stock dynamics (Gaustad et al., 2011; Hatayama et al., 2007a, 2009, 2012; van 

Schaik et al., 2002). The work on aluminium is mainly concerned with alloying 

elements as a potential restriction to future recycling. There has also been some 

work on alloying elements in the steel cycle. In contrast to the work on the 

aluminium cycle, the focus has been on the value of alloying elements and how to 

achieve a higher recycling rate of alloying elements to save energy or mineral 

resources, and reduce emissions. The relevant literature here includes studies on 

the individual alloying elements (Johnson et al., 2006; Nakajima et al., 2008; Reck 

et al., 2008), and studies that involve simultaneous substance flow analysis of 
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several alloying elements (Daigo et al., 2010; Igarashi et al., 2007; Nakajima et 

al., 2013; Ohno et al., 2014). Past studies have mainly focused on identification 

and timing of the problem, and less on the evaluation of solution options and the 

development of strategies. 

 

1.2.4. Linkage 3: Co-product- and by-product metals 

The third linkage considered here is that of co-product and by-product metals. 

Most metals are mainly produced as by-products of economically more important 

metals (Graedel et al., 2015). These have been referred to as carrier metal and 

coelement (Verhoef et al., 2004), parent and daughter metal (Graedel, 2011), or 

attractor- and hitch-hiker metal (Talens Peiró et al., 2013). The linkage between a 

byproduct element and its carrier metal is important from a resource availability 

perspective, because the maximum possible supply of the byproduct metal is 

limited by the extraction of ore for production of the base metal. Due to the small 

content of the byproduct metal in the ore, its aggregate value is not high enough 

to justify mining. Hence, future use of these metals may be severely constrained 

by primary resource availability. Possible supply constraints of byproduct metals 

to the expansion of emerging technologies have been investigated in several 

publications (Fizaine, 2013; Fthenakis, 2009; Houari et al., 2014; Katrak and 

Agarwal, 1981; Long and Smith, 1980; Nakamura et al., 2008; Stamp et al., 2014; 

Verhoef et al., 2004). These works have focused on the effects of a single 

technological shift, such as mass deployment of photovoltaics or the introduction 

of lead-free solder. Moreover, long-term supply potential was modelled in a 

simplified way without considering the stock dynamics of the carrier metal. 

 

1.2.5. Dynamics and linkages 

The importance of linkages between material cycles is closely tied to stock 

dynamics. In the current system phase of rapidly growing stocks, recycling of base 
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metals is mainly limited by availability of scrap rather than material quality issues. 

Likewise, linkages do not seem to restrict the supply of byproduct metals currently 

(Houari et al., 2014; Stamp et al., 2014), although information is scarce on this 

topic. For most byproduct metals, no quantification has been made of the supply 

potential. As shown in Figure 1, stock saturation, or even a slow-down of growth, 

will lead to a higher availability of scrap, which may be used to replace primary 

production. While this represents an opportunity to reduce energy use and 

emissions dramatically, it will also intensify the issue of scrap quality, and 

possibly reduce the potential for byproduct metal extraction. More generally: the 

importance of linkages, or their impacts in anthropogenic metal cycles, is closely 

tied to the recycled content. Because the recycled content, or rather the maximum 

recycled content, depends on the growth rate of the stock, there is a strong 

connection between linkages and stock dynamics. A transition of the metal cycle 

from exponential growth to saturation puts the coupled systems of individual 

metal cycles in a radically new relationship, where linkages may become the 

limiting factor of recycling or byproduct metal production. 

 

1.3. The case of aluminium and gallium 

The aluminium cycle is a particularly interesting case for studying linkages 

between material cycles, due to the importance of alloying elements, scrap quality, 

and the close connection to the gallium system. 

The vast majority of aluminium is used in alloy form. There are two main types 

of alloys, cast and wrought, and within each type, there are eight different alloy 

series. An alloy belongs to a given series depending on its main alloying 

element(s) (or combinations thereof), which are silicon, copper, manganese, 

magnesium and zinc. There are more than 200 different individual alloys defined 

in industry standards (ASTM International, 2011; The Aluminum Association, 

2009). However, the real diversity is even larger, due to internal specifications 
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used by the metal producers. Aluminium scrap, in particular post-consumer scrap, 

naturally contains a mixture of alloys, which together with external impurities 

prevents a direct closed-loop recycling of aluminium alloys. Furthermore, the 

options for refining molten aluminium are extremely limited due to its high 

affinity for oxygen (Gaustad et al., 2012; Nakajima et al., 2010). Most alloying 

elements will remain dissolved in molten aluminium during remelting and 

refining. In addition, foreign impurities such as iron, copper and silicon have a 

tendency to be picked up from mixed scrap streams, dirt, or equipment used to 

handle scrap and melts. Today, aluminium recycling is not severely limited by the 

quality of secondary material. Recycled content (end-of-life scrap), is around 20% 

on average (International Aluminium Institute, 2015), which leaves plenty of 

room for dilution with pure primary metal. With future slow-down of stock 

growth, the availability of scrap will increase, and alloying elements and 

impurities may become real limitations to aluminium recycling  

Gallium, used in rapidly growing applications such as mobile phones, light-

emitting diodes and photovoltaics, is almost exclusively produced as a byproduct 

of aluminium (United States Geological Survey, 2014). It accumulates in the 

sodium hydroxide solution used to dissolve bauxite and precipitate alumina in the 

Bayer process, and can be extracted through a series of processing steps (Hudson, 

1965). Slow-down of stock growth in the aluminium cycle may lead to a 

replacement of primary production with recycling and reduce the potential for 

gallium extraction. Hence, the availability of gallium for emerging technologies 

depends on the development of the aluminium cycle.  

 

1.4. Research questions and thesis structure 

As has been argued above, linkages between metal cycles is potentially a limiting 

factor for recycling and production of by-product metals. The importance of 

linkages will increase dramatically with the slow-down of stock growth and 
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eventual saturation. These linkages should therefore be studied more in detail, to 

identify solutions to specific problems in the aluminium and gallium cycles, and 

to understand the effects of linkages in general. In this context, the following three 

research questions were formulated: 

(i) How can linkages between metal cycles, specifically those pertaining 

to alloying elements, impurities, and by-products, be modelled in a 

socio-economic metabolism framework? What are the strengths and 

limitations of different approaches? 

 

(ii) How do linkages, in the context of stock dynamics and transition to a 

steady-state social metabolism, influence metal cycles? What are 

consequences for recycling of aluminium and availability of primary 

gallium? 

 

(iii) How effective are different measures to solve problems related to 

linkages between material cycles, specifically in the coupled 

aluminium-gallium system? 

 

These questions were addressed in five papers. Figure 2 illustrates how the papers 

are related to the aluminium cycle and its linkages to other metals cycles. The 

papers are organized by linkage rather than by research question. Paper I deals 

with the impurity linkage, looking into the accumulation of a generic impurity 

element in an aluminium beverage can recycling system. Paper II and III address 

the issue of alloying elements, through a dynamic model of automotive aluminium 

recycling. In papers IV and V, the gallium cycle is quantified and modelled to 

investigate the byproduct linkage to the aluminium cycle. Question (i) is implicitly 

addressed in all papers through the demonstration of how material flow models 

can be used to examine linkages. Papers I and V have a stronger focus on new 
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methodological developments. Question (ii), regarding the nature and 

implications of linkages, is addressed in all papers. Question (iii), on solutions, is 

addressed in paper III for alloying elements, and in paper V for the byproduct 

linkage. 

The rest of the thesis is structured as follows: In Chapter 2, the most important 

methodological elements of the work are explained. In Chapter 3, the findings of 

each paper are summarised. In Chapter 4, the findings are discussed in light of the 

research questions. The five papers are appended at the end. 

 

Figure 2 Overview of linkages between the anthropogenic aluminium cycle and other 

element cycles, and how the appended papers relate to the different linkages. Alloying 

element cycles are shown here as separate from the base metal cycle for visualization 

purposes. Strictly speaking, the cycles of the alloying element and base metal overlap in 

the alloying, fabrication, use and waste management and recycling processes. 
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2. Methodology 

 

The methods are described in higher detail in the individual papers. In the 

following, some central elements are explained and commented on. 

2.1. Dynamic material flow analysis 

The work presented in this thesis relies on the methodology of material flow 

analysis (MFA) or substance flow analysis (SFA), as developed by Baccini and 

Brunner (1991), and Baccini and Bader (1996). In addition, the method of discrete 

dynamic MFA was used in papers I, II, III and V. Papers II, III and V utilize stock-

driven lifetime-based approach to model future product flows from a defined 

development of the in-use stock (Müller, 2006). The following steps are 

conducted: 

 In-use stock, S, in year t is given as a time series, or calculated from time 

series of drivers such as population, P, and service level per capita (e.g 

automobiles in use per capita), H: 

 

t t tS PH     (2.1) 

 

 Stock change is calculated for year t: 

 

1t t tS S S            (2.2) 

 

 Outflow from the use phase, Z, is calculated from previous inflows, Xc, 

and a probability function for the lifetime, ft-c, by summing up the 

outflows from each individual cohort year c. The function ft-c gives the 

probability of a product to reach end-of-life at age t-c. In this work, a 

normal distribution was always used. 
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 Required inflow is calculated as stock change plus outflow: 

 

t t tX S Z                  (2.4) 

These calculations are performed numerically for each model year. Due to the use 

of probability distribution functions and the numerical input data, an analytical 

solution is not possible.  

The discrete dynamic model used in paper I to examine impurity accumulation 

assumes a fixed product lifetime of unspecified length, i.e. Zt = Xt-1, where t 

indicates the number of recycling loops performed, regardless of the time it takes. 

Because of the simple mathematical relationship between inflows and outflows, it 

is possible to solve the system analytically, i.e. express impurity concentration as 

a function of the model input parameters. 

 

2.2. Multi-element substance flow analysis and 

optimization 

Papers II and III use a layered MFA approach to track alloys and/or chemical 

elements throughout the system as embedded in alloys, components, and 

passenger vehicles. Simultaneous SFA of several chemical elements is for the 

most part mathematically straightforward: mass flows of individual elements are 

obtained by multiplication of the weight fraction in alloys and the mass of each 

alloy. On the material layer, the total mass of aluminium alloys in different 

products is tracked. On the chemical element layer, the mass of each chemical 

element constituting the aluminium alloys is tracked. The model used in paper III 

also includes a component layer and an alloy level, which are situated between the 
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material layer and the chemical element layer. Hence, on the most detailed level, 

the outflow from the use phase can be described as , , , ,t c g a eZ ,  representing the 

mass of chemical element e, in alloy a, in component group g, from cohort c, at 

time t. The approach is mathematically simple, but generates an enormous number 

of data points, which are difficult to visualize. The layered approach makes it 

possible to model the compositions of scrap flows, which are determined by the 

degree of separation of the different component groups at end-of-life and the 

alloys used in each component group. 

A difficulty arises when modelling the recycling process, as there are no data 

available on the recycling paths: which types of scrap are used in the production 

of which alloys, and in which amounts? Optimization by linear programming has 

been used to estimate likely recycling paths and maximum recycling rate (Gaustad 

et al., 2011; Hatayama et al., 2009; Kirchain and Cosquer, 2007), and was also 

used in paper III of this thesis. The linear program determines the maximum 

possible scrap utilization, given the amount and composition of different scrap 

types and the demand for a set of alloys with defined composition ranges. Let 

Y(r,a) be the mass of raw material r used to produce alloy a, Y(r,a,e) be the mass 

of element e in raw material r used to produce alloy a, h(r) be a hypothetical cost 

of raw material r, A(a) be the demand for alloy a, CAU(a,e) and CAL(a,e) be the 

upper and lower mass fraction limits of element e in alloy a, and U(r) be the 

available mass of raw material r. The problem can be formulated as minimization 

of a hypothetical total cost of raw materials, subject to five general conditions, 

which apply for all combinations of a, r and e: 
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 (2.5) 

The first condition is a mass balance of inputs and outputs from the production 

process of each individual alloy. The second and third conditions are that the mass 

fraction of each chemical element in each alloy is within the defined range. The 

fourth condition is that the use of each raw material must be less than or equal to 

the available mass, from primary sources or scrap. It was assumed that the 

availability of primary aluminium and alloying elements is essentially unlimited. 

The fifth condition is that the use of any raw material cannot be negative. By 

setting the cost of scrap equal to zero, the optimal point will be equivalent to a 

maximization of scrap use. The problem was written on the form of a linear 

program: 

min T

z
f z  s.t. 

eq eq

B z b

B z b

lb z ub

 


 
  

    (2.6) 

Here, z is a vector of the variables to be changed in the optimization, i.e. the mass 

of each raw material used to produce each alloy; f is a vector of coefficients 

describing the cost of each variable in z; lb and ub are the lower and upper bounds 

of each variable in z; B and Beq are matrices of coefficients describing the relations 

between the variables in z and the material compositions and production amounts; 

b and beq are vectors describing the compositional limits and the required 

production amounts. The linear program was solved with the Simplex algorithm 

in MATLAB (The MathWorks Inc., 2010). 
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2.3. Monte Carlo simulation for uncertainty 

propagation 

Monte Carlo simulation was used for propagating parameter uncertainties to the 

system variables calculated by a mathematical model in paper IV. Pseudorandom 

values of each model input parameter are drawn from a probability distribution, 

and the system variables are calculated by use of the mathematical model and the 

drawn parameter values (Joint Committee for Guides in Metrology, 2008). This 

procedure is repeated many times (e.g. 105). The result is a distribution of values 

for the system variables, which can be analysed by statistics, e.g. by calculating 

the standard deviations or confidence intervals. An estimate of the uncertainty in 

model outputs is obtained. 
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3. Summary of the papers 

 

3.1. Paper I 

In this paper, a model is presented for analysing the accumulation of an impurity 

element in an aluminium beverage can recycling system. This system is a rare 

example of a nearly closed-loop metal recycling system, where a single product is 

repeatedly recycled in large quantities back into the same product. Due to the short 

lifetime of beverage cans, impurities picked up in scrap handling and recycling 

processes may quickly accumulate to detrimental levels in the material. The 

simplicity of the system, i.e. short lifetime, two alloys, one scrap type, made it 

possible to develop a mathematical model for the impurity weight fraction in the 

material and solve it analytically. The solution gives the weight fraction of the 

impurity as a function of number of recycling loops performed, n, recycling rate, 

RR, and contamination rate, h: 

1

1 1

n

n

lid

h RR RR
c

w RR

 


 
    (3.1) 

where wlid is the mass of the lid as share of the entire beverage can. 

The impurity weight fraction in a steady state recycling system (n → ∞) is 

proportional to the inverse of one minus the recycling rate; in other words, higher 

recycling rate leads to disproportionately higher impurity level. Furthermore, it 

was shown that the composition of the material reaches steady state after about 5-

15 recycling loops with typical recycling rates (45-75%). Higher recycling rate 

leads to longer accumulation period and higher steady state impurity level. 
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3.2. Papers II and III 

In these papers, a model was developed for tracking aluminium alloys in the global 

passenger vehicle fleet, and for evaluating recycling strategies to deal with 

constraints imposed by alloying elements. A stock-driven dynamic material flow 

model was built in paper II to forecast future scrap flows and their content of 

different aluminium alloy families. The model takes as input world population, 

number of vehicles per capita in use, the average lifetime of vehicles, average 

aluminium content in 14 different vehicle component groups, and alloy families 

used to produce these component groups. The results were analysed qualitatively 

and alternative alloy recycling pathways were discussed based on a “source-sink” 

diagram showing the compatibility of different alloy compositions. In paper III, 

the model was developed further to break down the alloy families into individual 

alloys and their constituent chemical elements. Future composition of scrap flows 

was estimated, showing that silicon and copper content will decrease due to 

increased use of wrought alloys. Moreover, the model was coupled to an 

optimisation model (linear program), to determine the maximum recycled content 

in the system under different conditions of component dismantling and scrap 

sorting. Results from earlier studies were confirmed, showing that a scrap surplus 

may appear in the coming decade if current practice in recycling of automotive 

aluminium continues. Furthermore, it showed that a combination of measures is 

needed to avoid such surplus. Firstly, it is necessary to allow for use of recycled 

material in so-called “safety-relevant” components, e.g. wheels. Secondly, it is 

necessary to improve scrap quality through segregation of alloys, for example by 

dismantling selected components, or advanced post-shredder sorting. Notably, the 

latter measure will have limited effect unless the first measure is also 

implemented.  

 



23 

 

3.3. Papers IV and V 

In these papers, the linkage between the aluminium cycle and the gallium cycle 

was studied. Paper IV presents the first global material flow analysis of gallium. 

It provides an in-depth description of the whole system including primary 

production, refining, manufacturing of semi-finished products, fabrication of 

devices and recycling. The system was quantified through use of technical process 

parameters found in literature and provided by industry contacts. It revealed the 

main applications of gallium, the losses occurring throughout the system, and the 

relationship to the aluminium cycle. Specifically, it was found that use of gallium 

as a dopant in NdFeB magnets is the single largest driver for primary gallium 

consumption, which has not been acknowledged in earlier publications. The 

second and third most important applications are integrated circuits (mainly for 

mobile phones and wireless applications), and coloured light emitting diodes (in 

the red-green part of the spectrum) respectively. Only a small fraction of gallium 

enters use in semiconductor applications: most of the material is lost in the 

manufacturing processes. In paper V, this work is developed further in a dynamic 

model. This model was used to estimate future primary gallium demand based on 

various development paths for the five main applications. Furthermore, the 

gallium supply potential was estimated from extraction efficiencies, concentration 

in bauxite resources and future stock development patterns in the aluminium 

cycle. It was shown that both the future demand and supply potential of gallium 

are highly unpredictable. In a scenario where the in-use stock of aluminium grows 

slowly from 100 to 200 kg/cap globally and gallium-based technology penetrates 

in the photovoltaics and permanent magnet markets, the gallium supply from 

bauxite may be too low to meet demand. A sensitivity analysis on system-wide 

material efficiency measures showed that a shortage could be avoided even in this 

case by a combination of measures. The most effective measures for reducing 

primary demand today are related to recycling or avoiding scrap from GaAs 

crystal growth, substrate manufacturing, and fabrication of devices. In the future, 

depending on how the demand for individual applications develop, the most 
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important measures could be recovery of Ga from production- and end-of-life 

scrap of NdFeB magnets and copper indium gallium diselenide (CIGS) 

photovoltaics.  
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4. Discussion and conclusions 

 

4.1. Question (i) – methodological reflections 

4.1.1. Modelling alloying elements and impurity accumulation 

In the work presented in this thesis, material flow analysis was used to study the 

influence of alloying elements and impurities in the aluminium cycle. The 

problems related to alloying elements and impurities are directly related to the 

stocks and flows of chemical elements. Any analysis of these problems must 

necessarily consider these flows and their relative magnitudes; it is by definition 

a study of material flows and stocks, and they both need to be clearly defined in a 

system definition. A layered approach, which for example connects a product 

level, a component level, an alloy level, and a chemical element level, is useful: 

the demand for services is defined at the product level; decisions regarding 

manufacturing and end-of-life treatment take place on the component- or alloy 

level, while the chemical element layer defines the boundary conditions of the 

material production. The layered approach makes it possible to model how 

changes on one level, e.g. dismantling of components before end-of-life vehicle 

shredding, affects the conditions in material production. 

While for example input-output analysis has been used to investigate similar 

problems (Nakajima et al., 2013; Nakamura et al., 2012; Ohno et al., 2014), this 

is mainly an additional tool to enable quantification of flows; in the end, it is still 

a form of material flow analysis. Yet, it may be discussed whether the specific 

material flow models that have been used are adequate. The typical MFA model 

used is dynamic, data-intensive and calculates future scrap flows numerically, 

based on lifetime distribution functions (Gaustad et al., 2011; Hatayama et al., 

2007b, 2009, 2012). This is also the method used in paper III in this thesis. 

Furthermore, a numerical approach (linear programming) was used to solve the 

complex problem of maximizing recycling with a large number of scrap flows and 
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alloys. This method is the only feasible option solve such complex problems, and 

enables answering specific questions that cannot be addressed properly with an 

analytical model. For example, the model used in paper III can be used to estimate 

the upper limit to recycled content in aluminium in vehicles for a certain set of 

alloys and components, provided that input data are accurate. Furthermore, it can 

be used to estimate how scrap compositions change over time. However, due to 

the lack of analytical mathematical solutions, it has limited capacity for 

generalization. The approach used in paper I, while only addressing a very simple 

system, allows for conclusions that potentially reach much wider. It shows how 

the steady state impurity concentration is related to the recycling rate and other 

key parameters of the system. The difficulty of reaching high recycling rates is 

shown on a general basis: when recycling rates approach 100%, impurities 

accumulate to very high concentrations. The pattern is the same, regardless of the 

contamination rate and other system parameters. Hence, these results illustrate 

more directly how radically different the system becomes with high recycled 

content, which in general only occurs after stock saturation or substantial slow-

down of stock growth. 

The models that were used in this work to analyse problems related to alloying 

elements and impurities do not explicitly include the thermodynamics and process 

metallurgy of recycling processes, such as discussed for example by Xiao and 

Reuter (2002) and Meskers et al. (2008). In the model used in paper III, material 

losses due to oxidation in remelting are implicitly included in the remelting yield 

parameter. Similarly, a shredder yield parameter takes into account the losses due 

to incomplete liberation of aluminium from the other materials in the car. 

However, these losses were assumed to be constant, while in reality they depend 

on particle shape, coatings and the physical connections between components of 

different materials (Xiao and Reuter, 2002; Reuter et al., 2006). Moreover, 

external impurities other than iron were not included due to a lack of quantitative 

estimates. Such simplifications, along with the optimization procedure used, mean 
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that the model is inherently optimistic regarding the possible recycling routes. 

Hence, the simulated recycling rate should be regarded as a maximum, given that 

additional problems with scrap quality are resolved. Nevertheless, the results can 

indicate the restructuring of the recycling system that is needed to utilize future 

aluminium scrap flows, and thereby serve as a starting point for more detailed 

investigations. 

 

4.1.2. Modelling by-product demand 

The importance of the linkage between a byproduct metal and its carrier metal 

depends on the demand for the byproduct metal relative to the supply potential. 

The linkage will only be felt once demand approaches the supply potential, after 

which the price of the byproduct metal may increase dramatically (Katrak and 

Agarwal, 1981). The study of the byproduct linkage must necessarily involve a 

study of the demand for this metal and its drivers. Base metals such as iron and 

aluminium are used in very large quantities for construction, transportation, 

infrastructure and other applications fundamental to modern society; their demand 

can therefore be coupled to population growth, industrialisation and urbanisation 

as the main drivers. Minor metals on the other hand, are typically used in a few 

highly specialized applications. Demand for these metals can change by an order 

of magnitude in few years. Such rapid changes can be explained by technological 

shifts, for example a breakthrough enabling widespread use of an entirely new 

application. Moreover, the byproduct metal normally constitutes a tiny fraction of 

the product in which it is used, and the amount used is highly dependent on 

technical parameters such as the thickness of semiconductor devices. The 

importance of such technical parameters was demonstrated in papers IV and V: 

for example, the average amount of gallium in a mobile phone is now four to five 

times larger than in year 2000, due to an increasing number and size of GaAs 

power amplifiers. The dependence on such parameters makes forecasting of 

demand more challenging than for base metals. Studies that do not go in depth on 
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individual technologies, but rather try to cover a large range of products with a 

simplified approach and generalizations, for example through use of input-output 

tables (Nansai et al., 2014), risk overlooking the most important parameters. In 

the case of gallium, the three most important applications (integrated circuits, light 

emitting diodes, and NdFeB magnets) are responsible for more than 60% of 

demand. However, the demand from each of them is highly sensitive to specific 

parameters. An in-depth understanding of the fabrication processes for these three 

applications seems more important than including all possible applications of 

gallium. 

 

4.2. Question (ii) - the significance of linkages 

4.2.1. Alloying elements and impurities 

The results presented in papers I, II and III show the importance of alloying 

elements and impurities for recycling of aluminium: in the coming decade, 

aluminium scrap from passenger vehicles may exceed the amount that can be 

absorbed by the production of new vehicle components globally, due to the 

limitations to recycling imposed by alloying elements. While alloying elements 

already have a large influence on the recycling paths of aluminium, by restricting 

recycling to a few “recycling-friendly” alloys, e.g. for engine blocks, they do not 

currently limit the amount of aluminium recycled: there is still a high demand for 

the lowest quality scrap. This might change relatively soon, when scrap 

availability increases relative to demand. It was shown in paper III that a 

restructuring of the recycling system will be required to facilitate closed-loop 

recycling of alloys and ensure that all scrap is utilized. 

The term accumulation is sometimes used in the discussion of alloying elements 

and impurities as a constraint to metal recycling (Gaustad et al., 2011; Ohno et al., 

2014). This term signifies a build-up of alloying elements as impurities in alloys 

where they are not desirable or growing concentration of external impurities over 
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time due to repeated recycling. In a system of short-lived products such as the 

beverage can recycling system, this is actually the case. Even when all overall 

mass flows are constant, the concentration of an uncontrolled external impurity 

will increase until it reaches steady state, and end up at a level much higher than 

the impurity concentration after only one cycle. When it comes to alloying 

elements and external impurities in a large, diverse system with rapidly growing 

stocks, this accumulation effect is less important. The problem is in a way more 

direct: the concentrations of alloying elements intentionally used causes problems 

without the dynamic effect of accumulation. Already in the first recycling loop, 

the constraint due to external impurities and mixing of different alloys is severe. 

In the beverage can example, it was shown that accumulation occurs over a period 

over 5-15 recycling loops, for typical recycling rates. Considering the long 

lifetime and growing stocks of other aluminium-containing products, it is clear 

that the problem of accumulation as seen in beverage can recycling is something 

that would only emerge in the distant future in other sectors. 

 

4.2.2. By-product metals 

The results presented in papers IV and V show that future gallium demand and 

supply potential are both highly uncertain. Different technological developments 

may lead to completely different demand; different stock development patterns in 

the aluminium cycle will create completely different boundary conditions for 

gallium extraction. However, the demand for gallium is currently much lower than 

the supply potential, and there are plenty of options for improving the system-

wide material efficiency of gallium. Considering that there are also alternative 

routes for gallium extraction, it seems that no fundamental restriction to supply 

will be seen any time soon, although system improvements may be needed. 

The specific conclusions drawn for gallium are of course not automatically 

applicable to other byproduct metals, but some general observations can 
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nevertheless be made. Firstly, the future availability of byproduct metals is closely 

linked to the stock development pattern of the carrier metal. Secondly, as was 

discussed in paper V, the use of byproduct metals does not on its own cause 

depletion of geological resources, since mining is driven by extraction of the 

carrier metal. It could even be argued that byproduct metals should be extracted 

at higher rates, and possibly stockpiled: In the future, stock saturation in the carrier 

metal cycle may reduce the need for primary production and make byproduct 

extraction more expensive and/or costly in terms of energy use and emissions. Of 

course, this strategy involves high risk, since we cannot know with certainty that 

the byproduct metal will be needed in the future, or that alternative production 

routes will not be developed. 

 

4.2.3. In general about linkages 

Some connections exist between the three types of linkages examined here. The 

availability of gallium depends on the primary production of aluminium. With 

increased availability of aluminium scrap, the problem of alloying elements and 

impurities may become a limitation for aluminium recycling and associated 

reduction of primary production. Hence, solution of these problems may indirectly 

cause the supply potential for gallium to decrease. Moreover, gallium is a natural 

impurity in aluminium with detrimental effects on material properties (Senel et 

al., 2014). Due to the nature of the gallium extraction process (Hudson, 1965), 

more extraction of gallium can lead to lower concentration of gallium in primary 

aluminium, and thereby slightly improve material quality. 

The work presented in this thesis illustrate the importance of dynamics and long-

term developments in the context of linkages between material cycles. More 

specifically, these linkages emerge as problems when stock growth slows down. 

In an ideal system, recycling rates could approach 100% after the in-use stock 

saturates. In this extreme case, impurities would accumulate to very high 
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concentrations, alloys would have to be sorted perfectly, and the supply potential 

for gallium would be reduced to zero. While this is unrealistic, for example due to 

unavoidable losses in the collection, handling and remelting of metal scrap, it 

illustrates how these coupled systems depend on growth. The current functioning 

of the recycling system, related to the recycled content, persists only as long as 

there is exponential growth. When growth slows down, there will be an increasing 

availability of scrap until recycling is limited by insufficient collection, losses in 

the recycling processes, or material quality issues. This kind of growth addiction 

is similar to what has been described for the world economy (Jackson, 2011), and 

illustrates the wide-reaching challenges related to a transition to a steady-state 

socio-economic metabolism. 

 

4.3. Question (iii) - solutions to linkage-related 

problems 

In papers II and III, some strategies for increased recycling of automotive 

aluminium were studied. Specifically, it was found that use of recycled material 

in safety-relevant components should be introduced and combined with better 

scrap segregation, for example by dismantling of vehicle components or alloy 

sorting after shredding. The alloying element problem in the aluminium cycle is 

complex, and requires collaboration between different actors in the system: The 

aluminium industry, which has the highest incentive to increase recycling, may 

implement advanced scrap sorting technologies to enable production of a wider 

range of secondary alloys. However, the success of this strategy depends on an 

increased acceptance for secondary material among automotive manufacturers.  

Paper V considered measures to avoid a gallium shortage in the case that demand 

outstrips supply potential in the future. A number of measures were found to have 

a significant impact on primary gallium demand and supply potential. Among 

these are increased recycling of production scrap, reduced thickness of 
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photovoltaic cells and improved yield in primary production. These solutions are 

relatively simple, in the sense that they can be implemented separately by 

individual actors in the system. In the case of a shortage, increased prices may 

facilitate recycling of production scrap that was previously lost, and encourage 

primary producers to improve the extraction process. 

The alloy problem seems to be both more urgent and difficult to solve than a 

potential gallium shortage: A scrap surplus from the automotive sector is expected 

already between 2020 and 2030, while only the extreme combination of highest 

demand and lowest supply potential for gallium led to a shortage within the same 

period. Moreover, the lowest supply potential scenarios implicitly assume that the 

alloy problem is solved, in that they involve a very high end-of-life recycling rate 

of aluminium. 

 

4.4. Conclusions and outlook 

The work presented in this thesis has pointed out some potential problems and 

solutions related to linkages between the aluminium cycle, its alloying elements 

and the gallium cycle. It has been shown that linkages between material cycles 

make the transition to a steady-state social metabolism (circular economy) 

extremely difficult. Some specific solution strategies related to the aluminium and 

gallium cycles that may facilitate such a transition have been demonstrated. 

Naturally, many questions remain to be answered. The following three topics were 

identified as important areas of research in the future: 

 In paper I, it was shown how impurities accumulate over time in a simple 

closed-loop recycling system. Furthermore, it was shown that the steady-

state concentration is highly dependent on the recycling rate. It was 

suggested that similar conclusions would hold also for systems with a 

higher complexity. This should be investigated further by generalizations 
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of the analytical model to include a larger number of alloys, several scrap 

types, and growing stocks. 

 The work presented here has illustrated the importance of stock dynamics 

for linkage-related problems. Saturation of the in-use stock, or slow-down 

of growth, can push the material cycle into a completely different state. 

The timing of these emerging phenomena is closely tied to the temporal 

development of the in-use stocks. Hence, the results presented here point 

back to in-use stocks, their growth patterns, and their drivers as an 

important topic for future research. 

 The problems investigated here lie in the future. Modelling of these 

problems requires many assumptions regarding the future technological 

system and is inherently very uncertain. As was shown for gallium, the 

range of possible developments for demand is huge. Efforts should be 

made to understand how technologies develop over time with regard to 

material use, for example by looking into specific technologies and the 

historic development of material intensity and diversity to find common 

patterns. 
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Abstract

Recycling of aluminum is beneficial due to reduced energy 
inputs, greenhouse gas emissions and raw material costs. 
Beverage cans are currently the second largest source of old 
scrap, and could become even larger with improved collection. 
However, impurities such as iron, titanium or lead may impede 
end-of-life recycling at higher levels, especially in closed-loop 
systems where they can accumulate over time. A generic 
material flow model for impurity accumulation in a simple 
recycling system is presented here. Sensitivity analysis was used 
to investigate the effect of key parameters on dynamics of 
accumulation and concentration at steady state. It was found that 
it takes longer to reach steady state at high collection rates, and 
that the steady state concentration is disproportionally higher.  
Increasing the U.S. beverage can collection rate from today’s 
54% to the goal of 75% may cause more than a doubling of 
impurity concentrations unless better scrap treatment and 
remelting are developed in parallel or the scrap is used in other 
applications. 

Introduction 

Primary production of aluminum is energy intensive and causes 
large emissions of greenhouse gases (GHG). Ingot production 
from secondary sources can cut the energy input by more than
90% [1], and process related GHG emissions are essentially 
eliminated. Considering the limited potential for energy and 
emission improvements in the primary production chain [2], it is 
clear that increased recycling is the most important measure for
a more sustainable aluminum industry. Beverage cans represent 
one of the largest end uses, and due to the short lifetime it is the 
second largest source of end-of-life aluminum scrap globally 
[3]. However, the recycling rate is low in many countries, 
especially for those without a deposit scheme for collection. The 
collection rate is above 80% in several European countries [4],
but only about 50% in the U.S. [5], the largest consumer of this 
product.  Hence, there is a large potential for increased recycled
content if better systems for scrap collection are developed.

Like any type of end-of-life scrap, used beverage cans (UBC)
come with impurities such as other metals or glass from 
commingled collection systems, dirt, or titanium dioxide 
particles from the lacquer used for decoration [6, 7]. Due to the 
repeated recycling of the material, these impurities may 
accumulate over time in the system if not properly controlled in 
the scrap beneficiation processes. The concentration of 
impurities in remelted material is adjusted by diluting with 
primary aluminum or higher quality scrap. With a higher 
recycled content, the possibility for dilution is smaller, and 
impurities that are unproblematic today may become constraints
to recycling in the future.

Previous material flow models of aluminum recycling that 
include quality differences have mainly focused on complex 

systems, such as automotive aluminum, with long lifetimes, a 
large number of alloys and several scrap streams [8-13]. In all of 
these works, optimization models were used to determine 
maximum scrap utilization, given the demand for various alloys, 
supply of scrap of different types, and the composition of these.
The results are calculated numerically year by year. This is a 
powerful way to assess recyclability in complex systems, but
because of the numerical methods the models depend on 
quantified parameters and have a limited capacity to explain the 
underlying drivers for accumulation. None of these studies 
include real measurements of scrap compositions, and most 
ignore external contaminants (e.g. free iron particles) entirely. 
Only one study considered the accumulation of impurities or 
alloying elements over time due to repeated recycling of the 
same material [9]. It was assumed there that the concentration of 
each alloying element in remelted material increases by a certain 
fraction, the “accumulation ratio”, for each loop. This approach 
overestimates the accumulation effect, since it assumes that the 
flow of impurities into the system is proportional to the 
concentration of impurities already there.

An analytical model of accumulation can lead to better 
understanding of the mechanisms causing it and inform about 
possible future developments without knowing the real level of 
scrap contaminations. This is more easily done with a simple 
system such as beverage can recycling where there is only one 
type of scrap and the lifetime is short. We therefore developed 
an analytical, dynamic substance flow model for a generic 
impurity in a simple UBC recycling system, and performed a 
sensitivity analysis to investigate the effect of collection and 
contamination rates on steady state impurity concentration and
the time it takes to reach it.

Methods

System definition

The system of interest for this work is defined as shown in 
Figure 1. It is a simplified representation of a closed system of 
aluminum beverage can production, use and recycling. No 
statistics exist that specify the destination of scrap, but it has 
been claimed that 95% of collected UBC scrap in the U.S. is 
used for production of new cans [14]. This is largely consistent 
with the Aluminum Association’s estimate of recycled content 
in beverage cans [15], after adjusting for production scrap.

The beverage cans are manufactured from two parts, the lid and 
the body, which have different material compositions. The body 
is made from an alloy (AA3104) with around 1% manganese 
and 1% magnesium, while the lid is made from one or two 
alloys from the 5xxx-series with higher magnesium content [16]. 
During use and collection, the cans may pick up impurities such 
as steel, glass and dirt. These impurities and compounds from 
the lacquer may contaminate the aluminum metal upon 
remelting (X01). Some of the material is lost due to incomplete 
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collection of UBCs, or because of remelting losses (X30). The 
recycled material is used in the production of new bodies (X32) 
[17] after a delay equal to the average time spent from 
production of the can material until it arrives at the remelting 
facility as used scrap. Primary aluminum and alloying elements 
are added for lid production (X01) and for adjusting the 
composition and mass of the body (X02). It is assumed that the 
impurity may also be an alloying element in the lid, and that it is 
not closely controlled in the production of the body material, i.e.
it is allowed to accumulate.

Figure 1. System definition for aluminum beverage can 
production and recycling, with impurity accumulation. Xij are 
material flows. The can consists of two parts, the body and the 
lid, where only the body material is produced from end-of-life 
scrap. 

Mathematical model description and parameter estimation

The goal of the model is to investigate how the collection rate 
and contamination rate affect the accumulation of an impurity in 
the body material when the overall mass flows are constant, i.e. 
to find the concentration in X23 after n recycling loops and in 
steady state. For simplicity, the impurity inflow, X01, is defined 
as impurities ending up in the recycled material X23; i.e. 
contaminations that appear in UBCs which are removed before 
or during remelting are not considered. Model parameters are 
summarized and defined in Table 1. The concentration of the 
impurity in flow Xij is expressed as cij. 

The lid’s average share of the total can weight is reported from 
18 to 22% [18-20]; 20% was used as a representative value. The 
end-of-life (EOL) recycling rate, as defined here, depends on the 
collection rate, the yield during scrap pre-processing 
(shredding), and the yield during remelting. These are 
respectively estimated as 54.2% (USA 2011) [5], 99% [19] and 
95% [19], giving an overall EOL recycling rate (RR) of 51%. 
Note that the collection rate is here defined as the amount of 
cans entering recycling divided by the amount of cans sold (i.e. 
it takes into account import unfilled of cans), as suggested by the 
Container Recycling Institute.

It was recently estimated that typical titanium content from 
lacquer in UBCs is 0.4% of the can weight [6]. As a 
conservative estimate it was assumed that one quarter of this 
ends up as an impurity in the remelted aluminum.

Table 1. Model parameters and definitions.
Symbol Description Definition Value 
wlid Mass share of 

the lid 13

13 23

lidw
X

X X

0.20
[18-20]

RR End-of-life 
recycling rate 32 01

23 13

X X
RR

X X

51%
(USA 2011)
[5, 19] 

h Rate of impurity 
contamination 01

32 01

X
h

X X

assumed
= 0.1%
[6]

clid Conc. in lid 
material 13lidc c assumed 

= 0
c0body Initial conc. in 

body material
0

230 n
bodyc c assumed 

= 0

Assuming that the inflow of impurities is small compared to the 
aluminum flows (X01 << X32), the concentration in the body 
material after n loops can be expressed as a function of the 
concentration after n – 1 loops:

1
23 23
n nc RR c    (1) 

where 

( )
1 lid lid

lid

RR
w c h

w
   (2) 

This gives:

1
23 0n

bodyc RR c    (3.a) 

2 2
23 (1 ) 0n

bodyc RR RR c  (3.b) 

etc. After n loops, the concentration can be expressed as:

1
23

1

0

10
1

n
n n i

body
i

n
n

body

c RR c RR

RRRR c
RR

  (4) 

The steady state concentration is found by letting n

23
1

1
ssc

RR
   (5) 

Note that the results are only valid as long as the amount of 
recycled material is less than or equal to amount required for 
body production, i.e. in this case RR 0.80. For higher recycling 
rates, the material will either have to be used in lid production or 
in other applications.
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A sensitivity analysis was performed on the concentration over 
time by quantifying the system for different recycling rates and 
assuming a constant value for the contamination rate, h = 0.1%. 
The steady state concentration was calculated as a function of 
recycling rate, and a sensitivity analysis with respect to 
contamination rate was carried out.

Results

Steady state concentration of impurities

The steady state concentration in the body material as a function 
of end-of-life recycling rate is shown in Figure 2 for different
values of the contamination rate. As the recycling rate grows 
toward 100%, the concentrations are approaching infinity, as can
be seen in (5), where the denominator goes to zero. However, as 
long as only the body material absorbs scrap, it is not possible to 
go beyond 80%. For a given recycling rate, the steady state 
concentration is directly proportional to the contamination rate, 
h. The curve shape is thus independent of this parameter.

Figure 2. Steady-state concentration of an accumulating 
impurity in the can body, as a function of end-of-life recycling 
rate, shown for different values of the contamination rate, h. 

Dynamics of impurity accumulation

The concentration in the body material as it develops over time 
is shown in Figure 3 for different values of the recycling rate.
For recycling rates less than ~55%, the concentration will 
stabilize relatively fast: After 5 loops through use and recycling, 
the material has already reached its steady state composition, as 
can be seen by the plateau. At higher recycling rates the 
accumulation takes longer, and the steady state level increases 
disproportionally. It takes about 15 loops before steady state is 
reached with a 75% recycling rate.

Figure 3. Concentration of an accumulating impurity in the can 
body material as a function of the number of recycling loops, 
shown for different values of the end-of-life recycling rate, RR.
Accumulation lasts longer for high recycling rates, and reaches 
progressively higher steady-state levels.

Discussion and conclusions

Model limitations

The model presented here is a highly simplified representation 
of real recycling systems, and was used to demonstrate some 
fundamental properties of impurity accumulation. It is therefore 
useful to ask whether the same conclusions would hold in reality.

Production scrap was not included in the model. The effect of 
this simplification depends on whether the impurity enters the 
system in the production chain or in the use/end-of-life 
management stage. For example, an impurity contained in the 
lacquer may already be present in some of the manufacturing 
scrap, although most of the production scrap is generated before 
this stage. Similarly, iron contamination may originate from 
equipment used for remelting and scrap handling. In such cases, 
the accumulation will be intensified by the generation and 
recycling of new scrap. If on the other hand the impurity only 
enters the system in the use phase or during collection, the 
recycling of new scrap does not significantly influence the 
steady state concentration, as long as the collection and 
recycling of it is close to 100% and done in a closed-loop
fashion (recycling into the same alloy).

It was assumed here that collected cans are recycled into new 
cans in the same region. In reality, UBC scrap is also used in 
other products, and may be exported to other regions, thereby 
redirecting the impurities associated with it as well. Industry 
associations and other institutions that publish recycling rates do 
not distinguish between different uses of the scrap, and this 
information is generally not available in statistics. It is therefore 
possible that the recycling rate of UBCs, as it is normally 
defined, increases without any effect on impurity levels in cans. 
Hence, the conclusions from this work apply to closed-loop 
systems. While this may be a good approximation for beverage 
can recycling in the U.S. today, most aluminum alloys are 
recycled in an open-loop fashion, with cast alloys for automotive 
applications being the main scrap absorbers [21, 22]. However, 
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increased scrap supply from products with long lifetimes may 
necessitate a higher degree of closed-loop recycling in the future 
[23]. 

In the quantification of the system all parameters were set as
constant over time. The validity of this assumption may be 
assessed by looking at Figure 3. It can be seen that accumulation, 
at current U.S. recycling rates, happens over a relatively short 
period of time. The Aluminum Association claims that each 
recycling loop may take as little as 60 days [24]. Even assuming 
an average of twice this time, the steady state concentration is 
reached within less than two years, while the consumption of 
aluminum beverage cans in the U.S. has been stable over a 
period of 10 years [25]. In regions with rapidly growing 
consumption, additional primary material is needed to account 
for the growth that occurs between one recycling loop and the 
next, leading to a somewhat lower impurity concentration until 
consumption stabilizes. This is also the reason why the results 
here cannot be directly extrapolated to other markets such as 
building or transport, where lifetimes are much longer and 
consumption growth higher.

The example calculations included only a rough estimate of the 
contamination rate, h, for one element (titanium). The inflow of 
impurities, X01, is not directly observed in reality, but may be 
estimated by mass balance. This would require knowledge of the 
average composition of can lid and body materials that are used 
in the given region, and measurements of the composition of 
remelted material. Individual producers routinely check the 
composition of their material, but such information is not 
publicly available. At the moment it is therefore difficult to draw 
conclusions about specific impurity elements and their current 
and future levels. Because scrap compositions are determined by 
the practices of all producers in the system, a higher level of 
knowledge requires a coordinated effort by the whole industry.

Conclusions 

Despite the aforementioned limitations, the model can provide 
some fundamental insights into the accumulation of impurities 
in a closed-loop recycling system. Most importantly, the steady 
state concentration will increase more rapidly than the recycling 
rate. As an example, consider the goal of the Aluminum 
Association of reaching 75% recycling for UBCs [26]. This 
corresponds to a 71% end-of-life recycling rate, RR, as it is 
defined here. From today’s level of 51%, the resulting change in 
steady state impurity concentration can be calculated with 
Equation 5, or observed in Figure 2. Such increase in recycling 
rate will lead to a steady state impurity concentration which is 
2.35 times today’s level. A single producer may be able to 
produce with this level of recycled content today, but if the 
whole industry did so, the quality of scrap would be affected by 
accumulation. This implies that better control of impurities in 
scrap handling, preprocessing and remelting must be developed 
in parallel with increased collection, unless significantly higher 
concentrations can be tolerated.

The results also indicated a time frame for reaching steady state 
concentrations in impurity accumulating recycling systems. At 
current U.S. recycling rates, this occurs within approximately 5 
recycling loops. Considering the relatively slow rate of change 
of parameters in the system, it is likely that impurity levels are 
presently in steady state, i.e. not accumulating over time. Rapid 

changes in collection rate, contamination, or the introduction of 
new alloying elements in the lid may be followed by a transition 
period to a new steady state concentration. The time needed 
depends on the collection rate, but will in general be less than 15 
recycling loops, or assuming that each loop takes 120 days, less 
than 6 years.
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Previous studies indicated that the availability of mixed shredded aluminum
scrap from end-of-life vehicles (ELV) is likely to surpass the capacity of sec-
ondary castings to absorb this type of scrap, which could lead to a scrap sur-
plus unless suitable interventions can be identified and implemented.
However, there is a lack of studies analyzing potential solutions to this
problem, among others, because of a lack of component- and alloy-specific
information in the models. In this study, we developed a dynamic model of
aluminum in the global vehicle stock (distinguishing 5 car segments, 14
components, and 7 alloy groups). The forecasts made up to the year 2050 for
the demand for vehicle components and alloy groups, for the scrap supply from
discarded vehicles, and for the effects of different ELV management options.
Furthermore, we used a source-sink diagram to identify alloys that could
potentially serve as alternative sinks for the growing scrap supply. Disman-
tling the relevant components could remove up to two-thirds of the aluminum
from the ELV stream. However, the use of these components for alloy-specific
recycling is currently limited because of the complex composition of compo-
nents (mixed material design and applied joining techniques), as well as
provisions that practically prevent the production of safety-relevant cast parts
from scrap. In addition, dismantling is more difficult for components that are
currently penetrating rapidly. Therefore, advanced alloy sorting seems to be a
crucial step that needs to be developed over the coming years to avoid a future
scrap surplus and prevent negative energy use and emission consequences.

INTRODUCTION

Aluminum is used in the form of many different
alloys with variable concentrations of alloying ele-
ments, such as copper, manganese, magnesium,
silicon, iron, and zinc. The high and increasing
complexity of alloys presents recycling challenges,
particularly because these alloying elements, with
the exception of magnesium,1 cannot be removed
cost effectively through refining due to thermody-
namic constraints.2–4 Thus, the aluminum scrap
that is recovered as mixed fractions (e.g., shredded
products that contain various alloys and other
materials) typically cannot be used to produce alloys
contained in these products. Thus far, the alumi-
num industry has been able to recycle a wide variety
of alloys primarily by increasing the alloying ele-

ment levels of the material to create foundry cast
alloys, which have a higher tolerance for impurities
but often require either additional alloying elements
or the dilution of scrap with clean primary material
to attain the necessary material qualities.1,4,5

However, there are clear indications that blending
and dilution are becoming less effective as the
amount of the old scrap supply is increasing faster
than demand for secondary casting applications
that can absorb mixed scrap, resulting in a potential
surplus of low-quality scrap.6–10

To make use of all the aluminum scrap in the
future and thus benefit from the potential energy
and emission savings, it is therefore of utmost
importance to identify alternative recycling strate-
gies that are better suited to address the growing
complexity of aluminum products. Of particular
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relevance is the recycling of automotive applications
because (I) they account for a broad range of dif-
ferent alloys, (II) they represent already today the
largest market for secondary aluminum castings,
and (III) they are responsible for a very strong
increase in wrought aluminum demand. According
to our previous study,8 a scrap surplus can be
avoided only by separating the wrought and cast
aluminum fractions and using wrought scrap as raw
material for rolling and extrusion alloys. The model
used in that study allows for robust identification of
the problem; however, its high aggregation level
limits the evaluation of practical solutions because
of the multitude of aluminum-containing compo-
nents in automobiles and their highly complex
alloys. Another group has developed a dynamic
optimization model for end-of-life vehicles (ELV)
recycling and demonstrated that product design by
particle size reduction and liberation of material
during shredding plays an important role in the
composition and quality of recycling streams,11,12

whereas others have investigated designs for recy-
cling and optimization of refining and recycling
processes,1,2,13,14 Because automotive aluminum
usage is expected to grow more rapidly in compo-
nents consisting of wrought aluminum,9,13,15–18 it is
important to identify components with wrought
alloys or develop new ‘‘recycling friendly’’ alloys for
these applications that could serve as intermediate
reservoirs (sink alloys); such small-scale recycling
practices have already begun. For example, Nissan
collects and recycles aluminum wheels to construct
suspension part and has developed pilot technology
for bumper-to-bumper recycling.19

Although all the aforementioned models provide
important insights into the effectiveness of strate-
gies both technically and economically, they cannot
forecast simultaneously scrap supply and aluminum
demand both on a component and alloy basis, which
is necessary to test whether the separated scrap
fractions could be used in new vehicles. Conse-
quently, the models cannot identify alternative
strategies by which to avoid or delay filling the
bottom reservoir of secondary cast alloys, such as
closing-alloy cycles or recycling toward intermediate
reservoirs that may have the capacity to use dif-
ferent types of wrought alloy scrap. The source-sink
diagram (Fig. 1) illustrates the potential for the
typical automobile alloys to act as scrap sinks from
several source alloys using the maximum recycled
content as an indicator. As indicated by the white
diagonal in the figure, all alloy scrap can be recycled
to their original alloy (‘‘closed-alloy cycle’’) with
minimal need for the dilution or addition of alloying
elements, but potential sink alloys are limited.

In this study, we developed a component-alloy
model of the global vehicle stock. The component-
alloy model is used to forecast the demand for sink
alloys and the supply of source alloys within a
vehicle system, and the source-sink alloy diagram
(Fig. 1) is used to identify potential sink alloys that

could serve as intermediate reservoirs. Further-
more, the model is used to assess the influence of
different ELV strategies (dismantling versus alloy
sorting) on scrap composition. This study is an ini-
tiation and development based on a European pro-
ject for estimating aluminum alloys and components
in ELVs for European Aluminium Association
(EAA) and International Aluminium Institute (IAI).

We address the following questions: How is the
changing use of aluminum in cars components
expected to influence alloy demand and scrap com-
position in the next decades on a global scale? What
are the most promising intermediate reservoirs
(sink alloys), and which alloys are most suitable as
raw material sources? In which components can
these source alloys be found, and what are the
prospects of obtaining these source alloys through
dismantling? What changes can be made from the
system perspective with respect to ELV manage-
ment practices to increase recycling in the future?

METHODOLOGY

System Definition

Figure 2 illustrates the global aluminum cycle
related to passenger cars. The system includes
passenger car production, use, and ELV manage-
ment. Passenger cars are broken down into 5 car
segments (S1–S5), 14 car components (C1–C14),
and 7 alloy groups (A1–A7). Cars enter the use
phase and provide services to society during their
lifetime. After the use phase, the cars collected for

Fig. 1. Options and constraints for recycling paths of typical auto-
motive aluminum alloys due to alloying elements. The different colors
indicate the percentage of a source alloy (scrap) that could be used
in the production of a sink alloy. There is a clear potential in recycling
wrought alloys (4-digit names) into cast alloys, such as alloys 319
and A380, shown by the lighter shades to the right. Another potential
sink alloy is alloy 6082, which could absorb a mixture of typical
wrought alloys. The limiting element is shown inside each square.
Magnesium is not considered because it can be removed by chlori-
nation. Calculations are based on compositional limits from industry
standards.20,21
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recycling enter the ELV management process, in
which some components are dismantled and kept
separate from the shredding process, while the
remaining components are usually shredded and
sorted by air knife, magnetic sorting, sink float, or
eddy current, which results in one mixed aluminum
scrap fraction. Further alloy sorting may be intro-
duced, for example, based on laser-induced break-
down spectroscopy (LIBS) or hand sorting. The
overall loss of aluminum from shredding and sorting
processes is shown as a flow leaving the system (L).
Flow M is the ELV scrap that is recycled to produce
alloys in combination with a flow J consisting of
dross, turnings, new and old scrap from other
applications, and primary aluminum and alloying
elements.

Model Formulation

Determining the Vehicle Stock and Flow

At the core of the model is a global dynamic
material flow analysis (MFA) model for the vehicle
stock in use, which determines the number of cars
that flow to the use phase (A) annually based on
population, car ownership, and assumed vehicle
lifetimes (normal distribution function). The prin-
ciple of the model is described in a previous study,6

and the Supplementary Information (SI) explains
the specific aspects to this application.

Differentiating Vehicle Segments, Components,
and Alloys

For a specific year t, the flow of aluminum in
specific car segments and components in new vehi-
cles (N

S;Cð Þ
Al ðtÞ) is determined by the number of

vehicles inflow in each segment (N(S) (t)), and the
average aluminum mass of the component in that

specific segment (mAl
(S,C)(t)). The aluminum flows

that enter use in vehicle segment S and component
C are determined by the following equation:

N
S;Cð Þ

Al tð Þ ¼ N Sð Þ tð Þ �m
S;Cð Þ

Al ðtÞ (1)

For each of these 14 component groups, the content
of various alloy classes (1xxx, 3xxx, 5xxx, 6xxx,
2xxx/7xxx/6xxx with Cu content >1%, 4xxx + low-
impurity cast alloys, and cast high-Si alloys (high-
impurity cast alloys) are defined, and based on the
experts’ opinion, it is assumed that the alloy content
is constant for the entire period of time. The outflow
from the use phase, with the same resolution of
alloys, groups, and segments, is calculated based on
a normal lifetime distribution function.

ELV Management

For each component group (C1–14) reaching the
ELV management, three ELV indexes are defined.
According to the experts’ view on technical and
economical viability of part dismantling, these three
distinctions are as follows: (I) One fraction that is
dismantled under the current practice, (II) another
that has potential for dismantling, (III) and the
remaining share that will be shredded under all
circumstances. For the dismantling strategy, we
assumed that the first two fractions of each compo-
nent are dismantled.

Parameter Estimation

Detailed documentation on parameter estimation,
such as population (Pop), vehicle ownership (Vp),
and lifetime (L), is available in the Supplementary
Information section. A summary of all the parame-
ter estimation is shown in Fig. 3.

Fig. 2. System definition for the global automotive aluminum cycle.
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Segments Splits (N(S) (t))

We learned from our previous study6 that drive
technology does not have a major effect because of a
late penetration in the market. Therefore, the pas-
senger car fleet is divided into five segments. S1 is
A/B segment mini/small cars, S2 is C segment
medium cars (small family cars), S3 is D segment
large cars (large family cars), S4 is E segment
executive cars (executive cars), and S5 includes the
rest of the vehicle types (F segment luxury cars + S
segment sport coupes). Market share data for dif-
ferent segments are available from 2000 to 2012,
and a projection for 2017 on the global scale.22 For
the years prior to 2000, the segment share of the
year 2000 is assumed, and the future segmentation
share is assumed unchanged after 2017.

Aluminum Content for Vehicle
Components (m

Cð Þ
Alð ÞðtÞ)

The 14 components in this study are shown in
Table I.

Data for the European aluminum content in 14
component groups and 5 segments between 1980 and
2020 are provided by the EAA and the Ducker stud-
ies.23,24 The European aluminum amounts are used
as the global assumption because European passen-
ger car production corresponds to one-third of the
global production.15 Moreover, European cars use
less aluminum than North American cars but more
than Japanese and Asian cars.16 Figure 3 shows the
weighted average aluminum content in 14 compo-
nents over time for the base scenario and a low-alu-
minum content scenario. Expert predictions and
different studies have confirmed that aluminum
growth will most likely be in BIW, closures, bumpers
and crash boxes, and suspension frames.16,17,23,24

The base scenario is based on experts’ assumptions
until 2020. After 2020, the aluminum content is
assumed to remain constant except for component
groups C1, C2, C3, and C7, which are assumed to
increase. BIW (C1) and closures (C2) have the highest
potential to grow, and it is suggested by experts to
assume that the average aluminum content will be

Fig. 3. Input parameters for the dynamic model.
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2.5 times greater in 2050 than in 2020. Subsequently,
growth potential for bumpers and crash boxes (C3),
and suspension frames (C7) are assumed two times
greater in 2050 compared to 2020. In contrast to the
base scenario, which is optimistic in aluminum use
and governed by the ongoing light weighting trend,
the low-aluminum scenario assumes that there will
be no change in aluminum content after 2012.

Alloy Composition for Vehicle Groups

For the production of each of the 14 component
groups, different alloy categories can be used (Fig. 3).
It was suggested by experts to assume that the type of
alloys used for a given component does not change
over time because of lack of such detailed data. The
following are the alloy categories: 1xxx, 3xxx, 5xxx,
6xxx, 2xxx/7xxx/6xxx with Cu >1%, 4xxx + cast al-
loys (AlSi, AlMg) with low alloying/impurity content
(<0.5% each), and cast alloys with high silicon con-
tent and higher alloying/impurity contents. Cast al-
loys with a low impurity content are primarily used
in wheels, brake and steering components, structural
body castings, and some of the engine parts and
suspension frames, which in current practice are
generally made from primary aluminum or wrought
alloy fabrication scrap because of mandated proper-
ties and high cost for new alloy specifications and
product design. Cast alloys with a high tolerance for
impurities are primarily used in engine blocks and
cylinder heads, transmissions and drivelines, and
several steering subcomponents, and they have a
high potential to accept scrap in their production.

Alloys Selection

The alloys selected from the typical alloys in
automobiles for the source-sink diagram and are

explained briefly in this section. More information is
available in the Supplementary Information.

1070A This alloy has intermediate impurity levels
between 1050 and 1100. The capacity to absorb
scrap is close to zero for 1xxx series; however, they
could be used as source material for any of the other
alloys shown.

3103 The 3xxx-series alloys might be important
from a recycling perspective because manganese,
the main alloying element, is undesirable in many
other alloys. Its main applications are fins and tubes
in heat exchangers because of their high formability
and corrosion resistance and medium strength.18

Typical alloys are 3003 and 3103.25

5182 and 5754 Alloy 5754 is a typical choice when
temperatures could exceed 80�C; in other cases,
alloy 5182 may be used when increased strength is
needed.26–28

6061 and 6082 Alloys 6061 and 6082 are typical
selections when a higher strength is required, for
example, in bumpers, suspension arms or
wheels.27–29 Alloy 6061 is more common in the
United States, and alloy 6082 is more common in
Europe.5,28

A356, 301, 319, and A380 The 3xx-series are the
most widely used of all cast alloys. Silicon levels
may reach up to 20%, and there is often a high
concentration of other alloying elements.20 Alloy
A356 was chosen as an example of a primary cast
alloy; it is widely used in wheels and other
structural components, such as suspension frames
or BIW.5,28,30 Alloy A301 is used in pistons, con-
tains approximately 1% Ni, and is included in the
figure primarily to illustrate how the use of less
common alloying elements can influence recycling.
Alloys A319 and A380 are primarily used in cyl-
inder heads and engine blocks5,28 are the
most important secondary alloys in terms of pro-
duction volume,31 and currently the main sinks for
scrap.

ELV Index

ELV indexes are based on expert assumptions
that consider economical feasibilities with currently
available technology (Fig. 3).

ELV Collection Rate

In the United States, more than 95% of retired
cars enter a comprehensive recycling system.32 No
definite global statistics are available regarding the
number of ELVs that ends up in recycling plants,
and therefore, the U.S. collection rate is used in the
model.

Table I. Relevant component groups for aluminum
used in passenger cars

Component Manufactured Vehicle Part(s)

C1 Full body in white (BIW) and partial BIW
C2 Closures
C3 Bumpers and crash boxes
C4 Heat shields
C5 Heat exchangers
C6 Engine block and cylinder heads
C7 Suspension frames
C8 Suspension and steering arms
C9 Wheels
C10 Transmission and driveline
C11 Brake components
C12 All other engine components

(pistons, housing for starter/dynamo,
housing for water/oil, pump, oil pan,

fuel injection system,
cylinder head cover, support plates, etc.)

C13 All other steering components
C14 All other interior and exterior components
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ELV Management Efficiency

In ELV management, several losses may occur.
There is aluminum loss during the shredding pro-
cess to other systems, where several undesirable
metals that cause contamination in the recycling
system, such as Fe, Cu, Mg, and Zn, can enter the
stream. In the system definition, there is a flow
leaving ELV management, which represents the
overall scrap loss during the ELV processes (L). In
this study, the shredder yield is assumed to be
90%.33 Scrap remelting losses are also considered in
the ELV management process and are assumed to
be 8%.33 The resulting overall yield from ELV
management is 83%. Flow M leaves the ELV man-
agement system to be recycled into new alloys for
use in passenger cars.

RESULTS AND DISCUSSION

Figure 4 illustrates the aggregate simulation
results for the alloy groups entering use in the form
of vehicles (flow A) and the alloy groups recovered
from ELV management in the form of scrap (flow
M). Three alloy classes dominate automotive alu-
minum use, which is reflected in both new vehicles
and scrap: cast alloys with high impurity tolerance
(‘‘cast high Si’’), cast alloys with low impurity con-
tent (‘‘4xxx + cast alloys’’), and 6xxx alloys. For the
base scenario, the demand for 6xxx alloys is
expected to grow by a factor of three between 2010
and 2030, from 2.3 to 6.5 million metric tons (MMT),

and the total demand for cast alloys is estimated to
increase in the same period by a factor of two, from
5.4 to 11.5 MMT. Figure 4 also confirms many other
previous studies that the total scrap supply is
expected to surpass the demand for high-impurity
cast alloys in the next few years. Because the cast
high-Si alloys currently are the only relevant sink
alloy class, this graph highlights the importance
and urgency of identifying alternative sink alloys
for automotive aluminum scrap that can act as
intermediate reservoirs. In addition, the figure
shows the need for effective strategies by which to
separate alloys sufficiently to reach the required
qualities of these sink alloys. Figure 5 illustrates
flows of components (area of circles) and their alloy
composition (colors) in new vehicles entering use
(flow A) and in scrap recovered from ELV manage-
ment (flow M) in 2030. Flow M is determined for
component dismantling before shredding and alloy
sorting to assess the effectiveness of dismantling
and alloy sorting in the changing context. The
overall scrap supply is expected to grow to 9.3 MMT
in 2030. In addition, the share of wrought alloys in
ELV scrap increases from 35% in 2010 to 43% in
2030. This mixed scrap from shredders can be used
only for cast high-Si content alloy demand, which is
expected to grow to 5.1 MMT in 2030, and it is sig-
nificantly less than the expected ELV scrap in 2030.
Therefore, without sorting or dismantling and un-
der the assumption that no dilution is required for
the production of cast, high-Si content alloys, there

Fig. 4. Global passenger cars alloy demand and scrap supply for the base scenario and the low-Al content scenario. The graphs on the left show
the alloys demand (flow A) and the total scrap supply (brown lines). The graphs on the right show the scrap supply (flow M) of different alloys and
cast high-Si alloy demand (black lines).

Component- and Alloy-Specific Modeling for Evaluating Aluminum Recycling Strategies for Vehicles 2267



will be a scrap surplus of approximately 4.2 MMT in
2030.

An ambitious dismantling strategy prior to
shredding would reduce the shredded scrap bulk by
approximately 67% in 2030 (from 9.3 to 3.1 MMT).
Even with the high dismantling option, in the ab-
sence of component-to-component recycling, avail-
able scrap that can only be used to produce cast
high-Si alloys would increase the demand and cre-
ate a surplus in 2030 (including the cast high Si
alloys in dismantled components). By introducing
alloy sorting after shredding, there would be a
greater possibility to use scrap in intermediate
reservoirs, although the scrap streams would still be
mixtures of different alloys within each series. The
proposed alloy sorting requires high-tech facilities
such as LIBS to minimize the impurities. A cost-
benefit analysis is needed because the facilities are
expensive.

To recover and recycle all the aluminum from
ELVs within the automotive sector, an analysis of the
alloy flows on a component-by-component level is
required (Fig. 6). Cast alloys with a high impurity
tolerance, the most attractive sink alloys, are pri-
marily used in engine blocks and cylinder heads,
other engine parts, transmissions, and drivelines. All

of these components are suitable candidates for
component-to-component recycling, but their future
as an important sink alloy is in danger due to the
downsizing of internal combustion engines and the
introduction of alternative powertrains. In contrast,
aluminum wheels have the largest, yet unused
potential for component-to-component recycling.
They are the largest component group, they are easy
to dismantle, and they use homogenous alloys.
Nonetheless, obsolete wheels are currently used
mainly as a source of scrap for cast high-Si compo-
nents. Wheel-to-wheel recycling is impeded by the
fact that automobile producers’ practice requires
safety-relevant components to be made from primary
material only. Changing the specifications for wheels
to allow for component-to-component recycling
would be expensive for the automobile manufactur-
ers because it would require the development of im-
proved casting processes, investments in new
equipment, and costly technical tests, where the ur-
gency for such a change would likely come from the
aluminum recycling industry. Using wheels scrap to
produce suspension arms is technically possible,19

even though the demand for suspension arms is not
high enough to absorb a large amount of wheels
scrap. Bumpers and crash boxes have changed their

Fig. 5. The figure shows a snapshot for the year 2030: (a) total aluminum scraps (flow M); (b) ELV strategies considering (1) current dismantling
strategy, (2) intensive dismantling strategy, and (3) alloy sorting; and (c) aluminum demand for car components (flow A).
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composition. Although they used to be made of zinc-
containing 7xxx alloys, they consist today mainly of
6xxx alloys. Although bumper-to-bumper recycling is
technically possible with some of the existing prac-
tices in recycling plants,19 it is practically limited to
bumpers made of 6xxx alloys because bumpers made
from 7xxx are no longer produced and 6xxx alloys are
very ineffective in absorbing 7xxx alloys because of
their high zinc content. Such shifts in alloy use to-
ward higher purity within a component group can
pose severe limits to recycling. The model used here
cannot treat such changes in component composition
and may thus produce too optimistic results; how-
ever, these changes resulting from the component
composition are deemed less important than the

changes from increased penetration of aluminum
components in general and should not affect the
main conclusions.

CONCLUSION

Drastic changes in ELV management practices
are necessary to make use of the growing potential
for recycling and to avoid an unusable surplus of
aluminum scrap. The main solution options recog-
nized in this study are as follows:

1. Further dismantling and efficient component-to-
component recycling may require new standards
for the production of safety-related components
made from scrap. Enhanced dismantling as long

Fig. 6. Global alloy demand for 14 major car components versus the overall scrap (flow M) for the base scenario from components.
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as the dismantled parts are keeping separate
from the mixed shredded scrap could be a very
effective strategy. Wheels, closures, suspension
frames, heat exchangers, bumpers, and crash
boxes are recognized as the best candidates for
component-to-component recycling. Wheels are a
key scrap flow that needs to be redirected and
can make a very large contribution to mitigating
scrap surplus if recycled into an intermediate
reservoir.

2. Alloy sorting of mixed shredded scrap for com-
ponents that are too expensive to dismantle.
Additional alloy sorting requires further ad-
vanced technology development (such as LIBS)
and high penetration of such technologies in the
market to avoid impurities in the scrap stream.

3. New recycling-friendly alloys are being devel-
oped for both wrought and cast applications,
which are functioning as ‘‘intermediate reser-
voirs.’’ Although intermediate reservoirs may not
be the final solution to the alloy problem, they
could be important in a transition phase by
delaying the problem while more advanced sep-
aration techniques are developed.

It is important to look for alternative sink alloys.
The most versatile sinks are cast alloys, such as 301,
319 and A380; however, these alloys have high
alloying element content, making them the least
flexible source alloys because they can only be
recycled into similar alloys. Other than these cast
alloys, there are few other alloys that can absorb
mixed scrap. One option could be to use alloy 6082
as a sink for a mixture of wrought alloys.
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ABSTRACT: Aluminum recycling currently occurs in a cascading fashion, where
some alloys, used in a limited number of applications, absorb most of the end-of-
life scrap. An expected increase in scrap supply in coming decades necessitates
restructuring of the aluminum cycle to open up new recycling paths for alloys and
avoid a potential scrap surplus. This paper explores various interventions in end-
of-life management and recycling of automotive aluminum, using a dynamic
substance flow analysis model of aluminum and its alloying elements with
resolution on component and alloy level (vehicle-component-alloy-element model).
It was found that increased component dismantling before vehicle shredding can
be an effective, so far underestimated, intervention in the medium term, especially
if combined with development of safety-relevant components such as wheels from
secondary material. In the long term, automatic alloy sorting technologies are
most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the
primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to
ensure continued recycling of automotive aluminum and its alloying elements.

1. INTRODUCTION

Aluminum production is energy intensive and causes significant
greenhouse gas emissions, recently estimated to 1.1% of world
total (CO2 eq.).

1 Material flow models have shown that scrap
availability will increase, enabling industry to meet demand with
a higher share of postconsumer scrap than today’s ∼20%.1−3 An
increased share of secondary production can significantly
reduce energy use and emissions, but poses a challenge for
the industry with regard to material quality because of the large
diversity of aluminum alloys and the limited number of
applications that can currently absorb end-of-life scrap.4,5

Dynamic material flow models are ideal for investigating such
problems because they can be used to forecast future availability
and demand of different types of scrap as well as qualitative
changes within each type. Early models with a focus on scrap
quality, developed for the European market, indicated that
scrap supply would increase faster than the demand for
traditional secondary alloys, thus pointing at a potential
problem with scrap utilization.6,7

Hatayama and colleagues8 applied a regional model of
aluminum use and recycling to China, Europe, Japan, and the
United States, making assumptions about the alloys used in the
relevant sectors (sector-alloy-element model) to find the
chemical composition of scrap flows. They connected this to
an optimization procedure for blending of different raw
materials that determines the maximum scrap utilization, and
concluded that a regional scrap surplus in the United States and
Europe may be absorbed in Japan and China through trade of
scrap today, whereas in 2050 the four regions together will be a

net exporter of scrap. In a follow-up study,9 a similar model was
used to show that introduction of electric and hybrid-electric
vehicles can intensify the regional scrap surplus by lowering the
demand for secondary cast alloys.
Gaustad and colleagues developed a dynamic material flow

model with chemical element resolution and an optimization
procedure,10 and use this to demonstrate the importance of
scrap segregation for a case of aluminum recycling from three
sectors (beverage cans, buildings and automotive) in the
United States. However, this study uses a simplified
representation of aluminum use by including only selected
components. For example, automobiles are represented as three
parts (castings, bumpers and body sheet), with no attempt to
quantify the relative share of these, and assuming a single alloy
used for each of them. Although indicating a problem, the
conclusions from these models6−10 regarding scrap surplus are
limited by the regional system boundaries: rapidly developing
regions such as India, South-East Asia, or Latin America, could
absorb the surplus scrap and thereby delay the problem. To
make statements about the timing, it is necessary to use a global
system boundary.
Modaresi and Müller11 developed a dynamic model of

aluminum in automobiles worldwide, distinguishing between
wrought, primary cast, and secondary cast aluminum. Maximum
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scrap use was estimated by assuming that up to 56% of the
mass of cast alloys is scrap (70% of cast alloys are secondary,
and they contain up to 80% old scrap). They found that
without any intervention, aluminum scrap supply from
automobiles is likely to exceed demand in the same sector
between 2014 and 2023, where the variation in timing is due to
different assumptions for the model drivers and key parameters
such as population, vehicle ownership or scrap dilution rate.
This indicates a strong need to restructure recycling paths,
since automotive castings function as the bottom reservoir in a
recycling cascade that includes all aluminum products.
However, the model lacks the component level resolution
which is needed to simulate alternative strategies, as well as the
chemical element resolution necessary to quantify the capacity
for scrap use in other applications than the traditional
secondary castings.
These previous material flow studies were mostly concerned

with problem identification, which is reflected in the
architecture of the models. Automotive aluminum was
represented in a simplified way: as a collection of alloys,6,8,9

as example components made of single alloys,10 or as cast/
wrought material.7,11 In reality, aluminum is used in a very wide
range of components.12 The choice of alloy for a given
application depends on material property requirements, which
in the case of automotive components leads to an extreme
diversity in chemical composition. Under the assumption that

all automotive aluminum enters the same scrap stream through
shredding of the vehicle hulk, the component level becomes
irrelevant since it has no influence on the average composition
of the scrap. However, dismantling of selected components
before shredding enables segregation of scrap streams with
different compositions, determined by the alloys used in these
components. To be able to assess interventions in end-of-life
vehicle management, it is therefore necessary to include a
component level in the model. Moreover, some component
groups have a much larger growth potential than others: By
relating the alloy use to components, it is possible to create a
more realistic forecast of future alloy demand and scrap quality.
These issues were recently addressed with a model for

forecasting global scrap availability from vehicles in 14 different
component groups and 7 alloy types (vehicle-component-alloy
model), as well as the demand for these in new vehicles.13

Although giving a detailed understanding of future alloy
demand and scrap supply from automobiles, the model still
lacks chemical element resolution and a procedure to quantify
possible scrap surplus, and cannot fully assess the effect of
interventions, or identify alternative recycling paths.
The chemical element resolution is needed because the

possibility of utilizing scrap ultimately depends on its chemical
composition, and due to thermodynamic limitations there is a
lack of viable refining options for all alloying elements except
magnesium.14,15 Magnesium is often removed from molten

Figure 1. System definition of the global use, production and recycling of aluminum and its alloying elements in automobiles. A layered model tracks
aluminum and the most common alloying elements through the use and recycling of alloys and components in vehicles. Detailed flows, for example,
which alloys are used in specific components, are not shown, but included in the model.
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aluminum to achieve the low levels required in the most
common secondary cast alloys, typically by injecting a mixture
of an inert gas and chlorine gas into the melt.16 Because of the
high value of magnesium, costs associated with the process, and
chlorine emissions17 it is desirable to reduce the extent of this
practice.
In the present work we attempt to overcome the

aforementioned limitations with a newly developed model
that integrates: (1) a global dynamic material flow model of
aluminum in automobiles; (2) component-level resolution; (3)
alloy resolution; (4) chemical element resolution of alloys and
scrap, combined with optimization procedure to quantify the
scrap surplus and recycling paths under maximum scrap
utilization. We focus on the automotive subsystem, because it
has been identified as the most critical sector,4,8,11 being both
the main scrap sink in the system and largest source of it. The
architecture of the model (vehicle-component-alloy-element)
allows for a more realistic representation of interventions
based on component characteristics, whereas the optimization
procedure determines the quantitative impact of them and can
point out new recycling paths for the industry by indicating
alloys and components that could function as intermediate
reservoirs in the cascade. By analyzing model simulations for
different conditions and interventions in end-of-life treatment
and recycling, we address the following questions: (1) What
recycling paths of alloys and components are likely under
current practice in ELV management and auto manufacturing?
(2) Which interventions or combinations of interventions can
most effectively open up new recycling paths and thus mitigate
scrap surplus in the long term?

2. MATERIALS AND METHODS

We used a layered material flow analysis framework to evaluate
the future recycling potential and pathways of aluminum scrap
within the automotive subsystem. An implicit assumption is
that other sectors of use, such as buildings or consumer
durables, can absorb their own scrap in the future, but have a
limited capacity to utilize scrap from automobiles. This is likely
due to the large variety of alloys in the automotive sector and
the presence of cast alloys with high concentrations of alloying
elements, whereas for example the vast majority of extruded
building products are made from a few quite similar alloys of
the 6xxx series and can easily be separated from other types.18

The first place to look for improvements is therefore within the
automotive subsystem itself.
We track aluminum as components, alloys, and chemical

elements through the global system of vehicle use, production
and end-of-life management, as illustrated in Figure 1. The core
of the stock-driven model, developed in previous works,11,13

gives a forecast of the aluminum components entering and

leaving use through historic data and future projections of
world population and car ownership. By constructing a recipe
for the alloys used in various components we arrive at a range
of material compositions that needs to be produced by proper
blending of primary aluminum and alloying elements with the
scrap materials available at end-of-life. For each year, the model
determines: (1) stock of vehicles in use, S5, from population
and vehicle ownership; (2) vehicles leaving use, X56 and X50, by
lifetime distribution and production in previous years; (3)
demand for new vehicles in five segments, X45, from a balance
equation of stock change and outflow; (4) aluminum metal in
new components, X34, and alloys needed for these, X23; (5)
availability of scrap of different compositions, X71, X81 and X91,
by past alloy use and ELV management criteria; (6) optimal
blending of scrap and primary metals to produce the alloys
needed and the exact composition of alloys in X12, by a linear
program. The linear program minimizes the use of primary
aluminum and alloying elements, and does not consider the
difference in price between scrap types or the balancing of
supply and demand through price changes. The quality of scrap
and the amounts available in a given year are decided by the
historic aluminum use in different components, the simulated
utilization (blending) of scrap in the past, and the current
practice in ELV management. Along the chain there are losses
due to: incomplete collection, X50; shredder dust and
incomplete sorting from other materials, X80 and X70; oxidation
during remelting and magnesium removal, X20. In addition,
there may be a loss from the system due to surplus scrap, X20.
Forming and manufacturing scrap were excluded from the

model, because closed loop recycling of new scrap into the
same alloy or very similar alloy is something that is either done
already, or could relatively easily be achieved in the future by
scrap segregation at source or automatic sorting technolo-
gies.19,20 We do not consider this one of the main limitations
for the system in the future. If we assume closed loop recycling
of all new scrap, this flow will have no influence on the system’s
capacity to absorb end-of-life scrap, and including it in the
model will only introduce unnecessary calculations in the
optimization procedure. A complete description of the system
definition, mathematical model formulation, parameter estima-
tion and data sources is in the Supporting Information (SI).
The timing and magnitude of a potential scrap surplus

depend on many factors, including but not limited to future
population growth, vehicle ownership, and the market
penetration of electrical vehicles. Previous work has indicated
that a scrap surplus is likely to occur within a wide range of
scenarios for these parameters.11 Therefore, we focus on
interventions in the industry (end-of-life vehicle management,
secondary aluminum industry, component manufacturers),
which may enable increased scrap utilization in the future.

Table 1. Conditions Explored in Model Simulations

condition description implemented

low dismantling representing current level of component dismantling (e.g., 100% of wheels, 10% of closures, 50% of bumpers and crash
boxes, 0% of heat shields, 50% of engine blocks and cylinder heads, 0% of other engine components).

yes

high dismantling representing a maximum level of dismantling with current technology (e.g., 100% of wheels, 80% of closures, 75% of
bumpers and crash boxes, 50% of heat shields 100% of engine blocks and cylinder heads, 75% of other engine
components).

no

alloy sorting sorting of mixed shredded aluminum into 8 categories of alloys with 90% success rate. no
recycled material used in
safety-relevant cast
parts

end-of-life scrap used in the production of safety-relevant cast parts (body-in-white, suspension f rame, suspension arms and
steering, wheels, brake components, other steering components, other components)

no

demagging used magnesium removal during refining is used. yes
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The model was run for different scenarios of ELV management
and alloy production, assuming that the whole industry will
adapt a given strategy. This can shed light on the ultimate
potential of interventions, though in reality they would only be
implemented gradually. The interventions include: (1) different
levels of component dismantling before shredding; (2)
advanced alloy sorting of mixed shredded aluminum by laser-
induced breakdown spectroscopy (LIBS); (3) with and without
recycled material in safety-relevant cast components; (4) with
and without magnesium removal during refining. An overview
of interventions can be found in Table 1, and details are in the
SI.
Dismantling is already being done for some component

groups, mainly for the purpose of reuse or remanufacturing of
parts,21 but can also be an effective way of segregating scrap of
different qualities by taking advantage of the component-
specific use of alloys. We assume that components, once
dismantled, are kept apart from each other to obtain separate
scrap streams. It is also assumed that dismantled aluminum
parts are completely separated from particles of other metals.
Assumptions regarding current and possible future levels of
dismantling are based on a comprehensive evaluation by
industry experts for a project with the European Aluminium
Association and the International Aluminium Institute.13,22

LIBS sorting is a promising technology that enables high-
speed automatic sorting of aluminum particles based on their
chemical composition, but so far only being used on a small
scale with production scrap.19,20 We assume that alloys can be
identified by the series they belong to (1xxx, 3xxx, 4xxx, 5xxx,
6xxx, 7xxx, cast low Cu, cast high Cu) with a 90% success rate,
and that the failed 10% are distributed evenly between the
other categories.

Safety-relevant cast components, such as wheels or space
frame nodes, must have a combination of high strength and
ductility to be able to withstand impacts. This requires a very
low level of impurities, especially iron, which can only be
achieved using primary metal.23,24 We consider a widespread
use of old scrap in such components as a separate intervention
because it will require extensive testing, possibly adjustment of
company-specific alloy specifications, and substantial coordina-
tion between refiners, foundries and auto manufacturers.
Finally, the possibility of reducing the practice of magnesium

removal (demagging) in parallel with recycling into safety-
relevant components was investigated as a separate strategy by
running the model without the option of magnesium removal
in the refining/remelting process.

3. RESULTS
The flows of primary- and recycled aluminum into the stocks of
cast and wrought automotive components in use are shown for
all simulations from 2010 to 2050 in Figure 2 together with the
available scrap which could not be utilized due to material
composition constraints. Simulation a.1, representing current
practice, resulted in a scrap surplus from 2025 that grows to
28% of available scrap in 2050. An increased level of
dismantling (b.1) delayed the surplus until 2033, and reduced
the magnitude to 16% of available scrap in 2050. Alloy sorting
of the mixed shredded fraction gave similar results for both
levels of dismantling (c-d.1): the surplus was further delayed
until 2047 (low dism.) and 2048 (high dism.). In these
simulations (a-d.1), recycling into safety-relevant cast compo-
nents was excluded. By lifting this constraint (a-d.2), an
increased amount of scrap could be utilized and surplus was
avoided for the whole time period in the simulations with

Figure 2. Simulated future production of wrought and cast aluminum for vehicles, and the relative share covered by primary and secondary sources
under combinations of interventions in ELV management and scrap sorting (columns) and restrictions in aluminum/auto manufacturing industry
(rows). A combination of better scrap segregation and recycling into safety-relevant cast components is necessary to avoid surplus scrap until 2050
(b.2, c.2, d.2−3). Increased dismantling combined with alloy sorting eliminated the need for magnesium removal during refining (d.2).
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increased dismantling and/or alloy sorting. The third row
shows the results when magnesium removal during refining was
excluded. Here, scrap surplus was avoided only by combining
alloying sorting and increased dismantling (d.3).
Alloys and their compositions were tracked throughout the

system. Scrap streams, such as dismantled engine blocks, wheels
or the mixed shredded fraction, contain a variety of alloys.
Because of this mixing, it is often not possible to recycle a scrap
alloy into the same. For example, all 1xxx alloys that are
contained in the mixed shredded scrap will necessarily be
transformed to a lower purity alloy upon recycling. This leads
to a “cascade” of recycling where some alloys absorb most of
the scrap, and others act as sources of scrap only. Figure 3

visualizes this cascade in 2040 for four of the simulations by
showing the pathways taken by the main alloy groups through
recycling. The high-Cu cast alloys act as the bottom reservoir in
the system. They absorb large amounts of scrap from all other
alloys, but cannot in turn be used as a source for other alloys.
As seen from the lower half of the figure, the system’s
performance is improved by allowing recycling into safety-
relevant cast components. Scrap with the right composition is
available in large amounts due to the high dismantling rate for
wheels and the low variation in alloys used for that purpose.
Redirecting this scrap to an intermediate reservoir frees up
capacity in alloys with a high tolerance for impurities to absorb
more of the mixed scrap. When combined with a high level of

Figure 3. The automotive aluminum recycling cascade illustrates the pathways of alloys contained in scrap as they are recycled into new alloys in
2040. A “closed loop” is not achieved in most cases because of incomplete separation at end-of-life. By utilizing intermediate scrap reservoirs (low-Cu
cast and 6xxx) and taking full advantage of dismantling as a scrap segregation measure, surplus may be avoided (bottom right). Flows smaller than
0.5% of the total are not shown.
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dismantling (lower right of Figure 3), the 6xxx alloys and low-
Cu cast alloys both act as intermediate reservoirs, thereby
slowing down the cascading behavior of the system. In all
simulations, the surplus occurred mainly for the mixed
shredded scrap, such that the relative magnitudes of the red
flows in Figure 3 always reflect the constituents of this scrap.
Many of the wrought alloys (1xxx, 5xxx, 6xxx) are pulled out of
the system as “passengers” in mixed shredded scrap because of
limited dismantling, instead of being used to produce these
alloys again. There is low utilization of scrap in wrought alloys,
the only significant absorber being the 6xxx alloys.
The chemical composition of mixed shredded scrap is

expected to change significantly within the coming decades as
shown in Figure 4. Three major trends were observed: (1)
decreasing silicon concentration, (2) decreasing copper

concentration, and (3) increasing magnesium concentration.
This reflects the recent and expected future penetration of
wrought aluminum, which on average contain less silicon and
copper, but more magnesium. Increased dismantling will
amplify the trend, since it has a larger potential for cast than
wrought components. The concentration of copper shows the
largest change, down from almost 1% in 2010 with low
dismantling to 0.2% in 2040 with high dismantling.

4. DISCUSSION
Scrap surplus is a consequence of the dynamics of in-use stocks
and complexity in the recycling system. Mixing of different
materials prevents closed-loop recycling and leads to a recycling
cascade where alloys play different roles as sources or sinks of
scrap. Such systems depend on growing in-use stocks of the
sinks to ensure sufficient scrap demand. Parameters in the
model may be divided into two groups based on whether they
influence (1) the growth rate of the in-use stocks, or (2) the
complexity of the system. In group (1) are the drivers such as
population, vehicle ownership and the lifetime of cars which
determine the in-use stock over time and the number of
vehicles entering and leaving use. Because scrap surplus is
closely related to stock saturation, these factors have a large
influence on the timing of the problem. However, it was found
in a previous study the effect is small within a wide range of
future scenarios due to the amount of aluminum already
existing in use and the relatively slow rate of change for the
drivers.11 Increased growth rate of population or vehicle
ownership, or longer lifetime, may delay the problem but not
permanently solve it due to the eventual saturation of in-use
stocks. Similarly, large-scale penetration of electrical cars may
reduce the demand for secondary cast components, and thus
intensify the problem and the need for better scrap
segregation.9,11 Other sectors of use were not included in the
model, while in reality some scrap from these sectors is being
absorbed by the secondary cast alloys for automobiles. Due to
large in-use stocks, it is expected that scrap supply from these
sectors, particularly buildings, also increases in the future.25 It is
therefore unlikely that the system can be reversed so that these
sectors absorb scrap from automobiles. In group (2) are the
number of alloys, the chemical composition limits of these,
their relative use in various components, all the parameters that
influence scrap segregation at end-of-life (e.g., accuracy of alloy
sorting technologies), and the contamination rate for external
impurities such as free iron or copper. Changes in these
parameters may influence the time and magnitude of scrap
surplus as well as the effectiveness of dismantling and alloy
sorting. For example, a large diversity in alloys for closures will
make dismantling of these a less effective option. Because
complexity in the recycling system is a cause of surplus, most
model simplifications can inherently lead to more optimistic
results. One important limitation of the model is that although
26 different alloys were used, the specifications found in
industry standards are relatively wide and there is a significant
degree of overlap between them. Typically, a lower and upper
limit is defined for 1−3 of the alloying elements, while for the
rest, only the upper limit is given and the lower limit is zero.
Nevertheless, these minor alloying elements are often added.
Examples include iron for improved high-pressure die casting
process, titanium or boron for grain refining, zirconium to
influence recrystallization and antimony or strontium for
modification of the microstructure.26,27 Moreover, each
company has its own internal alloy specifications with stricter

Figure 4. Simulated future chemical composition of mixed shredded
automotive aluminum scrap under different degrees of component
dismantling (left), and composition limits for some important cast
alloys (right). The concentration of magnesium increases, while silicon
and copper decreases, due to increased penetration of wrought
components. The composition of mixed scrap is diverging from the
specifications of traditional secondary alloys (B380.0, 319) but is still
very far from typical primary cast alloys (A356.0). This trend is
amplified by increased dismantling, because it mostly targets the
secondary cast components.

Environmental Science & Technology Policy Analysis

dx.doi.org/10.1021/es405604g | Environ. Sci. Technol. 2014, 48, 4257−42654262



impurity limits. Hence, the real diversity of automotive
aluminum alloys is larger than what is captured by the model.
Another important simplification is that the relative use of
different alloys for a given component was assumed to be
constant over time. For most components this reflects reality
well given the resolution of the model (e.g., cast 3xx.x wheels
have always been the dominant technology for this
component), but there are exceptions: bumper technology
has moved from 7xxx sheet to 6xxx extrusions.28 Such changes
may inhibit recycling if the alloys become obsolete before they
are recycled.
Only one external impurity, iron, was included in the model,

and it was assumed that it only enters the system through
shredding of the vehicle hulk. Other contaminations in the
mixed shredded scrap, such as copper, zinc or nonmetallic
inclusions may further inhibit recycling, but were not included
due to a lack of quantitative estimates. Moreover, dismantled
parts will contain impurities to varying degrees. One important
future limitation to closed-loop recycling of wrought alloys may
be the use of steel rivets, which are difficult to separate from
aluminum sheet during recycling.29 An increased concentration
of iron leads to lower formability of the sheet material,30 which
is currently a limiting factor for aluminum use in more complex
closures such as doors and liftgates. 31

The model does not consider the relationships between scrap
supply, demand and prices; in other words the simulations
reflect a situation where both scrap supply and demand are
price inelastic. A surplus of scrap will lead to significantly lower
prices and have repercussions throughout the system of ELV
management, scrap processing, recycling and component
manufacturing, potentially increasing the competitiveness of
secondary aluminum versus other materials. However, the
short-run price elasticities of scrap supply and demand have
been shown to be very low, which confirms the validity of the
model.32

Most of the model limitations lead to an underestimate of
alloying element and impurity concentrations in scrap, or
idealize scrap blending possibilities; hence the conclusions
drawn here regarding interventions must be regarded as best-
case results. Nevertheless, it is possible to point out some
directions in which the system must develop to facilitate
aluminum recycling in the future.
In simulation a.1, representing current European ELV

management, scrap surplus occurred from 2025, which is 7
years later than in the base scenario of our previous model.11

Maximum recycled content was previously fixed as 56% and 0%
for cast and wrought alloys respectively. In the current model,
where maximum recycled content is determined by the
chemical composition of scrap and alloys, maximum recycled
content was found to be 51% and 13% for cast and wrought
respectively in 2025 (Figure 2, a.1), increasing to 55% and 19%
in 2040. The increased recycled content in wrought alloys and
an updated population scenario are the main reasons for
delayed scrap surplus compared to the previous model. This
result shows that current dismantling practice can already
alleviate some of the pressure on the traditional scrap absorbers
by liberating components which can be recycled into wrought
alloys. In the long term however, additional measures are
needed to ensure full utilization of scrap.
An increased level of dismantling delayed the scrap surplus

until 2033 (Figure 2, b.1). As can be seen in the upper part of
Figure 3, a higher level of dismantling enables significant
recycling into the 6xxx alloys (41% recycled content). However,

because of the restriction of not using scrap in safety-relevant
cast components such as wheels, this measure has little effect
on the recycled content in cast alloys, which is already close to
100% for the high-Cu alloys. Alloy sorting delayed the surplus
until 2047 and 2048 with low and high level of dismantling
respectively, by enabling a recycled content of about 50% in
5xxx and 64% in 6xxx alloys. The results indicate that advanced
alloy sorting of mixed shredded scrap is more effective than
intensified dismantling. However, such sorting technologies −
although promising − have yet to be proven effective for
sorting of dirty end-of-life scrap.20

The use of recycled material in safety-relevant cast parts had
a large impact on the results, and is a key development that
needs to take place to avoid scrap surplus in the long term.
However, it is only effective when combined with better scrap
segregation to reach sufficient quality. Again, impurities not
included in the model, for example, attached to dismantled
parts, may cause problems in practice. For example, iron levels
below 0.2% are usually required to achieve sufficient ductility in
cast wheels or nodes used in space frames.24 Current recycling
of used wheels into steering system parts by Nissan is a first
step toward development of intermediate scrap reservoirs.33

The results showed that the removal of magnesium during
refining is a necessary element of the current recycling system
(Figure 2, a.3), without which there would already be a surplus
of scrap today. Due to the increased penetration of wrought
alloys, the concentration of magnesium in mixed scrap is
expected to increase to about one and a half times its current
level (Figure 4). Hence, it is likely that efforts to reduce
chlorine emissions from demagging must be intensified in the
future. Because of such emissions and the value of magnesium
as an alloying element, it is desirable to keep this element in the
cycle. With the most ambitious strategy for scrap segregation,
scrap with magnesium can be redirected to applications where
it has a value, and removal is no longer needed for full scrap
utilization (Figure 2, d.3).
The results confirm that the automotive aluminum sector

may go from being a net scrap consumer to a net scrap
producer in the coming decade. Based on model simulations,
we suggest a tentative list of priorities to enable increased
recycling within the sector in the coming decades: (1) increased
dismantling of components before shredding, in conjunction
with a strategy to develop high-volume applications of 6xxx
alloys with a high recycled content; (2) closed-loop recycling of
safety-relevant cast parts (mainly wheels); (3) development of
technologies for automated sorting of shredded scrap. While
the need for such interventions comes from the aluminum
industry, the realization of them depends on agents elsewhere
in the system.
In the current situation, with a low price difference between

primary and secondary material, there is limited economic
motivation for investments in scrap segregation technologies or
for a wider use of postconsumer scrap. A higher availability of
scrap will lead to lower prices and incentivize such new
developments. However, in the case of dismantlers, it is unlikely
that prices of scrap will have a large influence on how they
operate; a study from France showed that about 95% of their
revenue comes from selling dismantled components for reuse
or remanufacture, and only about 4% comes from selling the
vehicle hulk which contains the majority of the aluminum.34

Sorting technologies such as LIBS are not yet efficient for end-
of-life scrap.20 A larger price difference between scrap types will
motivate companies to develop the technology, but only after

Environmental Science & Technology Policy Analysis

dx.doi.org/10.1021/es405604g | Environ. Sci. Technol. 2014, 48, 4257−42654263



the surplus has occurred. Increased scrap use in safety-relevant
components may require relaxing the composition limits of
alloys. Recent research has shown that the same material
properties can be achieved with a higher level of trace elements
by modifying the production route.35 Currently, agreements
between refiners and their customers are based on composi-
tional specifications rather than material properties. New
developments can only happen through cooperation to define
new alloy standards, which will demand extensive material
testing. Early recognition of these challenges and collaboration
between the different players to explore new technical solutions
are essential to ensure that aluminum and its alloying elements
are effectively recycled in the future, with associated energy use
and emissions reductions.
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ABSTRACT: Gallium has been labeled as a critical metal due to
rapidly growing consumption, importance for low-carbon tech-
nologies such as solid state lighting and photovoltaics, and being
produced only as a byproduct of other metals (mainly aluminum).
The global system of primary production, manufacturing, use and
recycling has not yet been described or quantified in the literature.
This prevents predictions of future demand, supply and possibilities
for efficiency improvements on a system level. We present a
description of the global anthropogenic gallium system and quantify
the system using a combination of statistical data and technical
parameters. We estimated that gallium was produced from 8 to 21%
of alumina plants in 2011. The most important applications of
gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22−37%, 16−
27%, and 11−21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less
important, both with 2−6%. We estimated that 120−170 tons, corresponding to 40−60% of primary production, ended up in
production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results
indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the
system-wide material efficiency.

1. INTRODUCTION

Technological development relies heavily on novel use of
materials, and is often enabled by geochemically scarce
elements. This is especially so for low-carbon technologies
such as wind power and photovoltaics (PV). Moreover, the
same elements are used in other fast growing applications such
as consumer electronics. The production of scarce elements is
usually geographically concentrated and linked to other scarce
elements or base metals through coproduction.1 This
combination of rapidly growing use and potential restrictions
in the production chain has led to concerns about whether the
future supply of scarce elements will be sufficient to meet
demand from emerging technologies. Recent reports commis-
sioned by the United States department of Energy and the
European Union have attempted to evaluate the criticality of
metals or mineral resources by looking at economic importance
and potential supply risk.1,2 However, due to the wide scope of
the reports and limited data there are many open questions
remaining about individual metals. A more in-depth under-
standing is provided by the description and quantification of
stocks and flows throughout the global system of production,
manufacturing, use and recycling, known as an element’s
“cycle”. While the global cycles of key industrial metals such as
iron, copper, and aluminum are well described, only a few such
studies have been performed for scarce elements.3 Recent

additions to this body of literature includes works on the
indium, platinum, tellurium, and rare earth element cycles.4−8

Gallium has been labeled as critical because of rapidly
growing use, importance for low carbon technologies and being
produced only as a coproduct of other metals, mainly
aluminum.1 Primary production of gallium is now around
four times higher than it was before 2010.9,10 This rapid growth
has been attributed to higher content of gallium arsenide
(GaAs) in mobile phones, especially smartphones, increasing
use of light-emitting diodes and penetration of thin-film PV
based on copper indium gallium diselenide (CIGS).11,12

However, the relative importance of these different applications
for primary gallium demand is not known. Furthermore, there
is a lack of knowledge about waste flows along the production
chain and the products from which the metal could be
recovered at end of life. Previous studies on the criticality of
gallium have mostly not used a systems approach,2,12−14 and
included only selected applications.2,13,14 All of these include
forecasts for future supply and demand, but are severely limited
by lack of knowledge about the current system. The two studies
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that used a systems approach to investigate the present
situation suffer from a lack of quantitative information and
details on applications and processes.15,16

Here, we present the first substance flow analysis of gallium
on a global level. We first characterize the system by describing
each process, then quantify the flows through production,
refining, manufacturing, use, and recycling, and determine the
relative importance of major applications for primary gallium
demand. The quantification relies on a combination of
statistical data and technical parameters such as materials
yield in the manufacturing processes. With this approach, we
accomplish two goals: quantification of a system with few
statistical data available, and identification of the technical
parameters that govern raw material demand and supply and
the magnitude of waste flows. The results contribute to a better
understanding of how emerging technologies might influence
demand for gallium, indicate the potential for increasing
primary production, and reveal options for improvement of
system-wide material efficiency.

2. MATERIALS AND METHODS

2.1. System Description. Geological Resources. Gallium
occurs mainly as a trace element in earth’s crust, with an
estimated average mass fraction of about 17 ppm.17 The world
average gallium mass fraction in bauxite, the main resource for
gallium extraction, has been estimated to 57 ppm, with regional
averages mostly between 28 ppm (Western Guanxi, China) and
75 ppm (Caribbean).18

Primary Production. Gallium metal is produced as a
byproduct, mainly from the Bayer process for alumina
production and to a lesser degree from the hydrometallurgical
route for zinc production.19 In the Bayer process, gallium
accumulates in the alkaline solution used to dissolve bauxite.20

Part of the gallium may be extracted, while the rest ends up in
the waste (red mud) or as an impurity in aluminum.
Secondary Production. Recycling of gallium from industrial

scrap is commonly done, while no end-of-life recycling is
known to occur.21 The most important type of industrial scrap
is GaAs in various forms: bulk crystal pieces, test wafers, broken
wafers, and slurries from grinding and cutting.22,23 Bulk GaAs
and clean wafers may be recycled internally at the crystal
growth facilities by direct remelting. Such recycling is defined as
part of the wafer production process here (reflected in a higher
process yield). Recycled gallium metal may be further refined to
obtain the same grades as from primary metal.
Refining. Refining of the metal to a purity of 99.9999% (6N)

or higher for electronic applications is achieved by a
combination of methods.24 Purification from 4N to 7N by
fractional crystallization could have a material yield in the range
70−80%.25 However, the discarded material is reintroduced at
an earlier stage in the process chain for an overall yield close to
100%.26 This recovery is here defined as part of the refining
process.
Production of Intermediate Compounds and Substrates.

The most common gallium-containing compounds are GaAs,
gallium nitride (GaN), gallium phosphide (GaP), copper
indium gallium diselenide (CIGS), and related alloys with
indium or aluminum. These are either grown as single crystals
and cut into wafers or produced directly from precursor gases
or other sources during the device fabrication process. The
wafer production process generates a large amount of waste due
to cutting and polishing, part of which is recycled.22,27

Fabrication. Semiconductor devices such as integrated
circuits (ICs) and light emitting diodes (LEDs) consist of a
few microns thick deposition layer on top of the much thicker
substrate. Integrated circuits and GaAs/GaP-based LEDs are
mainly produced on GaAs substrates.28 GaN-based LEDs are
produced on substrates of sapphire (Al2O3) or silicon carbide
(SiC),29 and therefore require very little gallium per device.
Material yields in deposition for LEDs and ICs are normally
less than 20% and can be as low as 1%,30 while the yield in thin
film PV production is higher, typically 30−60% assuming
sputtering deposition.31

The substrates for ICs and LEDs are much thicker than what
is required for the operation of the device, 450−675 μm,32 and
is therefore thinned to a thickness of 50−100 μm in a
“backgrinding” process.33 Cutting, wafer breakage, and non-
working devices further contribute to a total material loss that
may reach above 90% including substrate material.33−35

In the production of NdFeB magnets, Ga is often added at
approximately 0.5 wt % to improve magnetic properties,
corrosion resistance, and the production process.11,36,37 Ma-
terial losses in fabrication are typically 20−40% of the starting
material.38,39 Although it is common to recycle neodymium
from the production scrap, gallium is not recovered in this
process.39

End-Use. GaN-based LEDs (violet, blue, green, white) are
mainly used in general lighting, automotive and as backlighting
for liquid crystal displays.40 GaAs/GaP-based LEDs (red,
orange, yellow) are used in automotive dashboards and exterior
lights, traffic lights, full-color displays and many other signage
and display applications.41 GaAs ICs are mainly used in mobile
phones and other wireless communication devices and
infrastructure. More than 50% of the demand in 2011 has
been attributed to mobile phones.42 The most important
applications of NdFeB magnets are computers, electric motors
and audio systems, each responsible for about 30% of
demand.43

Waste Management. Currently, there is no recovery of
gallium from end-of-life products. The main end-of-life waste
streams are, due to the end uses, end-of-life vehicles and waste
electrical and electronic equipment. Current recycling processes
favor the recovery of bulk metals (steel, aluminum and copper)
and precious metals, while gallium ends up as an impurity in
recycled metals or in waste slags.44−46

2.2. System Quantification. Published statistics on
gallium production and use are scarce. The United States
Geological Survey (USGS) estimates global primary produc-
tion, refinery production from primary metal, as well as
capacities for these and secondary production.19 However, they
publish end-use statistics only for the United States, which is
markedly different from the global average because of a
concentration of LED and magnet producers in Asia. Most
flows in the system were therefore quantified using global
production data, market data and transfer coefficients. A
detailed explanation of the calculations is given in the
Supporting Information, and is summarized in the following:
(i) Primary production data was taken from the USGS,19 and
typical yield was used to estimate the input of Bayer liquor into
the extraction process. A model of gallium accumulation in
Bayer liquor, similar to that used by Hudson,20 was used to
estimate the distribution ratio between Bayer liquor and
alumina. Typical gallium concentration in aluminum was used
to verify the ratio ending up in red mud. Along with
concentrations in bauxites and bauxite production, this enabled
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estimating the Ga amount in bauxite consumed in the Bayer
process with Ga extraction versus Ga in bauxite consumed in
the Bayer process without Ga extraction. (ii) Primary refined
production was taken from the USGS.19 (iii) An estimate of the
global market for compound semiconductor substrates in terms
of area, as well as the use of trimethylgallium, were derived
from various market analyst reports.42,47,48 The demand for
trimethylgallium was verified by back-calculation from substrate

areas, deposition layer thickness and deposition yields.
Substrate thickness and yields in wafer production and
trimethylgallium synthesis were used to estimate the demand
for refined gallium. The excess refined gallium, possibly ending
up in stockpiles, was calculated by mass balance. The amount of
gallium ending up in final products was estimated from
fabrication yields, taking into account wafer breakage, non-
working devices and dicing as well as the large material losses

Table 1. Parameters, Estimated Values, Uncertainties and Probability Distributions Used for Monte Carlo Simulationa

description mean stand. dev. prob. dist. ref.

bauxite mining 259 ·106 tons 10% normal 49
Ga conc. in bauxite 49 ppm 15% normal 18
Ga conc. in bauxite used for Ga recovery 33 ppm 15% normal 18
Share of bauxite used in Bayer proc. 0.85 0.05 beta 50
alumina production 92 × 106 tons 10% normal 49
fraction of Ga in bauxite going to red mud 0.63 0.1 beta 20
fraction of dissolved Ga going to alumina 0.6 0.15 beta 20
yield in gallium recovery from Bayer liquor 0.95 0.03 beta 51,52
primary gallium production 292 tons 15% normal 19
primary gallium production from zinc route 4 tons 25% normal 19
refined gallium production 160 tons 10% normal 53
concentration of gallium in alumina 80 ppm 25% normal 54
yield in secondary production 0.9 0.05 beta 26
trimethylgallium production 22 tons 15% normal 48
GaAs semi-insulating (SI) substrate prod. 2.12 × 108 cm2 15% normal 42
GaAs semicond. sub. prod. relative to GaAs SI sub. prod. 0.84 15% normal 47
GaP substrate prod. relative to GaAs SI substrate prod. 0.096 15% normal 47
GaN substrate prod. relative to GaAs SI substrate prod. 0.014 25% normal 47
sapphire and SiC substr. prod. relative to GaAs SI substr. 1.84 15% normal 47
thickness of GaAs substrates for IC fabrication 650 μm 5% normal 22,32
thickness of other substrates 560 μm 10% normal 32
yield in trimethylgallium production 0.92 0.05 beta 55
yield in crystal growth and substrate production 0.35 0.03 beta 22
collection rate, crystal growth and substrate prod. scrap 0.63 0.1 beta 22
yield in MOCVD deposition 0.11 0.05 beta 30
yield in MBE deposition 0.07 0.03 beta 30
yield in sputtering deposition 0.45 0.1 beta 31
wafer breakage and nonworking devices loss, fabrication 0.08 0.03 beta 34,35,56,57
backgrinding loss in IC fabrication 0.86 0.02 beta 33,57
backgrinding/epitaxial lift-off loss in LED fab. 0.83 0.08 beta 58−60
dicing and edge loss in device fabrication 0.16 0.03 beta 35,61
collection rate broken wafers and nonworking devices scrap 0.7 0.1 beta b

collection rate backgrinding and dicing scrap from IC fabs. 0.1 0.2 beta c

collection rate backgrinding/epitaxial lift-off scrap, LED 0.3 0.2 beta d

LED deposition layer thickness 4 μm 15% normal 62−66
integrated circuit deposition layer thickness 2 μm 25% normal 67,68
CIGS deposition layer thickness 1.5 μm 15% normal 31
concentration of gallium in CIGS 0.34 g/cm3 5% normal 31
efficiency of CIGS cells 0.118 0.005 beta 31
standard test conditions PV 1000 W/m2 - 69
CIGS PV production capacity 1.6 GW 15% normal 70
PV total production capacity 46 GW 15% normal 70
new installed PV electricity generation capacity 30 GW 15% normal 70
power electronics deposition layer thickness 5 μm 15% normal 71
power electronics GaN market 7 mill. $ 25% normal 72
power electronics substrate area per unit value 0.17 cm2/$ 25% normal 72
gallium use in NdFeB magnet production 85 tons 20% normal 39e

material yield in NdFeB magnet production 0.7 0.1 beta 38,39
aUncertainties are given as absolute (equivalent to percentage points) for transfer coefficients, and as relative to the mean for other parameters.
bAssumed that broken wafers are collected, devices are not. cAssumed most slurries are not recycled. dAssumed 30% of backgrinding/epitaxial lift-off
scrap recycled, mainly from epitaxial lift-off. eEstimate is for 2014.
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associated with backgrinding of the substrates and epitaxial lift-
off. (iv) A separate approach was used for CIGS, where the
demand for refined gallium was back-calculated from installed
solar power, efficiencies, penetration of CIGS in the PV market,
thickness of thin films, gallium concentration, and deposition
yield. (v) An estimate of world demand for gallium for use in
NdFeB magnets in 2014 was obtained directly from Molycorp
Inc., a major producer of both refined gallium and NdFeB
magnets. The estimate is based on measured concentration of
gallium in magnets and world production of magnets. (vi)
Gallium use in power electronics was estimated based on
market value, device size and deposition layer thickness. (vii)
The aforementioned steps also led to estimates of scrap flows.
Collected scrap was estimated based on known practice to
recycle or not recycle different types of scrap. Recycling process
yield was used to estimate the supplied secondary production
from new scrap. It was assumed that all recycled material is
refined to high purity. An upper limit for stockpiling of
unrefined gallium metal was also estimated by mass balance.
Decomposition of gallium flows into use and in intermediate

compounds according to application was calculated as part of
the quantification process explained above. For primary gallium
demand and total gallium metal demand, it was calculated from
the flows of gallium going into each application, production
yields and the estimated recycling rates for production scrap
from each application. Primary production needed for a given
application was defined as the flow into use of the application
plus all nonrecycled losses associated with its production chain,
calculated by process yields and recycling rates; it thus

represents the total needed primary production if only this
application was produced. All parameters with values and
estimated uncertainties are given in Table 1.

2.3. Uncertainty Analysis. A Monte Carlo simulation (105

iterations) was conducted to obtain final estimates of flows and
their uncertainties. For each parameter, the uncertainty
(standard deviation) was estimated based on the type and
reliability of the reference, as well as knowledge of the
individual processes. For example, the uncertainty of the yield
in crystal growth and substrate production is estimated as
below 5 percentage points (pp), since there is essentially one
way to do it, and the majority of material losses from cutting
and similar operations are impossible to avoid with current
technology. On the other hand, uncertainties for scrap
collection rates were judged as 10−20 pp, since the estimates
are only based on rough knowledge of which types of scrap are
usually recycled. A beta distribution was used for all transfer
coefficients such as process yields. The beta distribution is
useful for this purpose because it is limited between 0 and 1, it
allows for asymmetric distributions (e.g., when a process yield is
close to 100%), and because it is not necessary to make
additional assumptions about the shape: for a given mean and
standard deviation, there is only one solution for the
parameters α and β of the beta distribution.73 For all other
parameters, a normal distribution was used. Uncertainties and
distributions are summarized in Table 1.

Figure 1. Global system of gallium production, refining, fabrication, use and recycling. Quantified flows are given as median ±84th and 16th
percentile (equivalent to mean ± one standard deviation if variable has a normal distribution) of Monte Carlo simulation. Process inputs and outputs
may not add up to the same number due to rounding. Colors indicate quantification method. Note that the flows in the upper part (dark colors) are
shown in a different scale.
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3. RESULTS

3.1. System Quantification. Figure 1 shows the quantified
gallium cycle for the year 2011. Values are given as the median,
the 16th percentile and the 84th percentile of the Monte Carlo
simulation results, equivalent to mean ± one standard deviation
if the variable is normally distributed. The total flow of gallium
in mined bauxite flows is around 11 000 tons, or about 40 times
the current primary production of gallium. The majority of this
gallium ends up in red mud or enters the aluminum cycle as an
impurity, because (i) only a small share of bauxite is used for
Ga recovery and (ii) even with Ga recovery, the amount
extracted is smaller than the amount lost. Uncertainties in this
part of the system are large, and in general larger above than
below the median, meaning that losses and hence the share of
bauxite already used for Ga extraction could potentially be
much higher.
Flows of primary and secondary gallium are in the same

order of magnitude, with larger uncertainties on the secondary
side due to uncertainties in collection rates. Estimated demand
of primary metal amounts to 210 ±30 tons in 2011,
corresponding to 73% of the primary production. The gap is
analyzed further in the discussion, section 4.1. Large material
losses occur both in the production of wafers and in fabrication.
While most of the scrap from wafer production is recycled, the
majority from fabrication is landfilled or otherwise stored. The
total loss, excluding that from the Bayer process and primary
extraction, is 140−20

+30 tons/year, with an estimated 50−10
+20 tons

from wafer and intermediate compound production (process
16), 90 ± 20 tons from device fabrication (process 17) and 8−4

+6

tons from recycling (process 14). The largest material losses
after primary production occur in production of GaAs
substrates (40−10

+20 tons), fabrication of ICs (30−8
+5 tons),

fabrication of NdFeB magnets (24−8
+11 tons) and fabrication of

GaAs/GaP-based LEDs (17 ± 6 tons) (details not shown in
Figure 1). Although substantial amounts of gallium are used to
produce semiconductors, the actual semiconductor applications
embody only relatively small amounts; most of the gallium is
lost during the manufacturing process. Only 13 ±3 tons of
gallium enter the use phase in semiconductor applications,
while 60−14

+15 tons enter use as an alloying element in NdFeB
magnets. Gallium content in end-of-life products was not
estimated, but is expected to be much lower due to the rapid
growth in all major applications and the extended lifetime of
products. Gallium use in power electronics was found to be
insignificant (less than 10 kg in 2011) and will not be discussed
further.
3.2. Demand Drivers. Figure 2 shows the decomposition

of four flows in the system according to which of the five major
applications they are driven by, with the median, 16th
percentile and 84th percentile. Figure 2b) represents the
market for refined and unrefined gallium. Refined gallium,
needed for all major applications except magnets, is dominated
by GaAs/GaP-based (red, orange, yellow) LEDs and ICs,
because of the need for GaAs substrates. It is estimated that a
significant share of scrap from substrate production is recycled,
leading to a lower need for primary metal for these applications
in Figure 2a). The amount of primary metal needed for
semiconductor applications adds up to 130 ±30 tons/year.
Figure 2c) shows the gallium contained in substrates and
intermediate compounds, illustrating how a large share of the
material is lost in the production of substrates for GaAs/GaP-
based LEDs and ICs. At the stage of final products entering use

there is very little gallium left in LEDs, ICs and PV. Blue, violet
and white LEDs are at this stage insignificant in terms of
gallium content, while red, orange and yellow LEDs, ICs and
PV are all around 5 tons/year. Contrary to the use in
semiconductors, most of the gallium used in magnets enter the
final application. The flow into use, and most likely also the
end-of-life flows, are therefore completely dominated by
gallium in magnets.

4. DISCUSSION
4.1. Gallium Demand. Semiconductor applications such as

ICs and LEDs are frequently listed as the most important
applications of gallium, and the recent growth in gallium
production has been attributed to rapid demand increase from
these.2,12,19 According to our results, however, these
applications only demand about 130 tons primary gallium, or
44% of the world production. An estimated 85 tons,
corresponding to 29% of primary production, were used in
the production of NdFeB permanent magnets, while the
remaining 27% were not accounted for. Possible explanations
for this disparity include (i) overestimation of production or
underestimation of demand, (ii) stockpiling of gallium by
national governments, (iii) stockpiling of gallium by industry
and private investors, (iv) demand from other applications. The
difference between estimated primary production and demand
was 80 ±50 tons, indicating that errors in the estimates most
likely cannot explain the entire gap. Some national govern-
ments are known to build up and hold strategic stockpiles of
gallium and other critical metals. Japan and South Korea hold
or plan relatively small stockpiles of gallium (60 days of
domestic consumption), the United States does not stockpile

Figure 2. Decomposition of flows: (a) primary production, (b)
primary and secondary production, (c) intermediate compounds
production, d) products entering use; according to application in 2011.
The black horizontal lines indicate the median; the colored bars show
the 16−84% confidence interval. Primary production needed for a
given application equals the flow into use of the application plus all
losses associated with its production chain; it thus represents the total
needed primary production if only this application was produced.
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gallium, while China has a stockpile of unknown magnitude.74

There have been reports of the Chinese State Reserve Bureau
buying as much as 50 tons in a single event.75,76 Some
companies offer ownership of physical metal stocks to private
investors,74 but the magnitude of such stocks is not known.
There are a number of applications of gallium which were not
included in this study, for example low melting point alloys,
catalysts, lithium thionyl chloride batteries, medical applica-
tions, piezoelectric materials, phosphors and transparent
conductive oxides.11 It has been estimated that these other
applications were responsible for 14% of demand in 2010.11 We
conclude that the gap between estimated demand and supply is
most likely due to other applications and stockpiling.
Further growth is likely in most applications. While LEDs are

expected to be gradually replaced by organic LEDs in
backlighting applications, a rapid penetration in general lighting
and automotive has been projected.29,40 Proliferation of
smartphones and wireless technology in general may drive
the demand for GaAs-based integrated circuits further.
However, competing silicon-based technology is expected to
take a larger market share in the future.42 The future demand
from photovoltaics and magnets will be highly dependent on
the penetration of gallium-containing technology in these
markets, as well as the overall demand for these applications.
While future market penetration is very difficult to predict, we
have seen that the potential growth is very large: the
penetration rate of CIGS in the photovoltaics market is
currently around 3%.70 It has been estimated that the average
gallium content in NdFeB magnets is 0.2 wt %,39 which could
translate to a 40% penetration rate assuming that Ga is
normally added at 0.5 wt % when it is used. Furthermore,
demand for solar panels and permanent magnets is expected to
increase fast with expansion of renewable energy and electrified
transport.43,77 In combination, these changes could drive
gallium demand to several times the current production. Such
demand increases may result in a necessity to increase gallium
recovery not only from primary production, but also from
manufacturing and end-of-life management over the coming
decades.
4.2. Gallium Supply.We estimated that globally, 8−21% of

the extraction potential for gallium from the Bayer process was
used in 2011, indicating that there is still room for increasing
primary production using conventional resources and tech-
nologies. A large share of the gallium in bauxite ends up in red
mud and as an impurity in alumina. Loss to red mud is difficult
to avoid, as the amount of dissolved gallium is closely related to
the amount of dissolved aluminum hydroxides. Loss to alumina
may be possible to reduce substantially by extracting gallium
more frequently from the Bayer liquor, that is, at lower
concentrations. This would reduce the amount precipitated to
alumina, as it is proportional to the concentration in the liquor.
However, a lower concentration may also lead to lower
efficiency in the extraction phase (process 6 in Figure 1). In
addition to the existing extraction routes, gallium may also be
produced from aluminous clay,78 fly ash from coal combus-
tion79,80 or gasification,81 and phosphorus flue dust.82

The majority of primary gallium is produced in China, which
had about 75% of world production capacity in 2012.19

Assuming that the same share applies to actual production, we
can estimate that about 40% of the Chinese gallium extraction
potential was utilized in 2011. This number is however subject
to large uncertainties, mainly due to limited information about
gallium concentration in Chinese bauxites. The number used

here, 28 ppm, is low compared to other regions and based on
data from only one deposit in the Western Guanxi province.18

4.3. System-Wide Efficiency Improvements. The largest
losses in the system occur in (i) production of GaAs substrates,
(ii) fabrication of ICs, (iii) fabrication of NdFeB magnets, and
(iv) fabrication of GaAs/GaP-based LEDs. These losses may be
reduced by increased recycling of production scrap, or
improved material yield in the production processes. Recycling
of production scrap is technically feasible today, but may be
limited by economics. Most of the nonrecycled production
scrap is in the form of slurries or filter media with a relatively
low concentration of gallium,83 implying higher transportation
costs, lower recovery rates and a more demanding process. In
current wafer production it is difficult to reduce the waste
generation substantially, since the method depends on cutting
the ingot into wafers. Increased recycling is therefore the most
important measure in this part of the production chain. In
device fabrication, however, there are opportunities to reduce
wastes substantially. Wastes are mainly generated from the
backgrinding process when the substrate thickness is reduced
from around 600−100 μm or less. Reducing the wafer thickness
would lead to less wastes from backgrinding, but would
simultaneously increase wafer breakage.
A technology known as epitaxial lift-off has the potential to

eliminate most waste from semiconductor device fabrica-
tion.58,84 After devices have been produced on the wafer, a
new carrier substrate of a different material is attached on top of
the devices and the original GaAs substrate is removed by
selective etching of an AlGaAs layer. This process is already
being used in the fabrication of GaAs/GaP-based LEDs to
replace the light-absorbing GaAs substrate with a metallic light-
reflecting layer and a less expensive carrier substrate of silicon
or aluminum nitride.60 The original substrate can then be
reused to produce new devices, which removes the need for the
backgrinding process altogether and at the same time reduces
GaAs consumption in device fabrication by more than 90%,
assuming multiple reuses. Reuse of substrates has also been
demonstrated for thin-film GaAs solar cells, which could enable
large-scale terrestrial employment of the most efficient single
junction solar cells.85 It is not known whether epitaxial lift-off is
feasible for GaAs-based ICs.
Material efficiency in the production of GaN-based LEDs

and CIGS PV may become more important in the future if
these technologies see continued growth. Due to the small
amounts of gallium entering use in semiconductor devices it is
unlikely that end-of-life recycling of these will play a major role.
A more important question, due to the substantial use of
gallium in magnets, is whether effective recycling of gallium as
an alloying element in end-of-life NdFeB magnets will be
achieved. With increased penetration of CIGS photovoltaics,
end-of-life recycling of these could also become a substantial
source of gallium.
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M.; Lüllmann, A.; Handke, V.; Marwede, M. Rohstoffe fu ̈r
Zukunftstechnologien: Einfluss des branchenspezifischen Rohstoffbedarfs
in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnach-
frage; Fraunhofer Institut für System- und Innovationsforschung ISI,
Institut für Zukunftsstudien und Technologiebewertung IZT GmbH:
Stuttgart, 2009; http://www.isi.fraunhofer.de/isi-wAssets/docs/n/de/
publikationen/Schlussbericht_lang_20090515_final.pdf (accessed Jan-
uary 9, 2015).
(15) Wittmer, D.; Scharp, M.; Bringezu, S.; Ritthoff, M.; Erren, M.;
Lauwigi, C.; Giegrich, J. Umweltrelevante Metallische Rohstoffe:
Meilensteinbericht des Arbeitsschrittes 2.1 des Projekts “Materialeffizienz
und Ressourcenshconung” (MaRess); Wuppertal Institut fur Klima,
Umwelt, Energie GmbH: Wuppertal, Germany, 2011; http://
ressourcen.wupperinst.org/downloads/MaRess_AP2_1.pdf (accessed
January 9, 2015).
(16) Yarahmadi Dehnavi, P. Global cycle of gallium production, use
and potential recycling. Master’s thesis, Royal Institute of Technology
(KTH): Stockholm, Sweden, 2013; http://www2.lwr.kth.se/
Publikationer/PDF_Files/LWR_EX_13_23.pdf (accessed September
24, 2014).
(17) Burton, J. D.; Culkin, F.; Riley, J. P. The abundances of gallium
and germanium in terrestrial materials. Geochim. Cosmochim. Acta
1959, 16 (1−3), 151−180.
(18) Schulte, R. F.; Foley, N. K. Compilation of Gallium Resource Data
for Bauxite Deposits: U.S. Geological Survey Open-File Report 2013-
1272; 2014; http://pubs.usgs.gov/of/2013/1272/ (accessed Novem-
ber 21, 2014).
(19) United States Geological Survey. Gallium. In 2012 minerals
Yearbook; Jaskula, B. W., Ed., Washington DC, 2014; http://minerals.
usgs.gov/minerals/pubs/commodity/gallium/myb1-2012-galli.pdf (ac-
cessed January 9, 2015).
(20) Hudson, L. K. Gallium as a by-product of alumina manufacture.
J. Met. 1965, 17 (9), 948−951.
(21) Graedel, T. E.; Allwood, J.; Birat, J. P.; Reck, B. K.; Sibley, S. F.;
Sonnemann, G.; Buchert, M.; Hagelüken, C. Recycling Rates of
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Soler, Á.; Coca, P.; Peña, F. G. Recovery of gallium and vanadium
from gasification fly ash. J. Hazard. Mater. 2007, 139 (3), 413−423.

(82) Xu, K.; Deng, T.; Liu, J.; Peng, W. Study on the recovery of
gallium from phosphorus flue dust by leaching with spent sulfuric acid
solution and precipitation. Hydrometallurgy 2007, 86 (3−4), 172−177.
(83) Torrance, K. W.; Keenan, H. E.; Hursthouse, A. S.; Stirling, D.
Measurement of arsenic and gallium content of gallium arsenide
semiconductor waste streams by ICP-MS. J. Environ. Sci. Health Part A
2010, 45 (4), 471−475.
(84) Konagai, M.; Sugimoto, M.; Takahashi, K. High efficiency GaAs
thin film solar cells by peeled film technology. J. Cryst. Growth 1978,
45, 277−280.
(85) Bauhuis, G. J.; Mulder, P.; Haverkamp, E. J.; Huijben, J. C. C.
M.; Schermer, J. J. 26.1% thin-film GaAs solar cell using epitaxial lift-
off. Sol. Energy Mater. Sol. Cells 2009, 93 (9), 1488−1491.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.5b00320
Environ. Sci. Technol. 2015, 49, 5704−5712

5712

http://enterprise.astm.org/SUBSCRIPTION/filtrexx40.cgi?REDLINE_PAGES/E1036.htm
http://enterprise.astm.org/SUBSCRIPTION/filtrexx40.cgi?REDLINE_PAGES/E1036.htm
http://www.epia.org/fileadmin/user_upload/Publications/GMO_2013_-_Final_PDF.pdf
http://www.epia.org/fileadmin/user_upload/Publications/GMO_2013_-_Final_PDF.pdf
http://www.yole.fr/iso_upload/Mag/PowerDev_January2012_IR.pdf
http://www.yole.fr/iso_upload/Mag/PowerDev_January2012_IR.pdf
http://www.marketsandmarkets.com/PressReleases/gallium-nitride-semiconductor.asp
http://www.marketsandmarkets.com/PressReleases/gallium-nitride-semiconductor.asp
http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/stockpiling-report_en.pdf
http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/stockpiling-report_en.pdf
http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/stockpiling-report_en.pdf
http://www.metalbulletin.com/Article/3290225/Gallium-price-falls-as-overcapacity-minimises-impact-of-SRB-buying-50-tonnes.html#axzz3GycNazcQ
http://www.metalbulletin.com/Article/3290225/Gallium-price-falls-as-overcapacity-minimises-impact-of-SRB-buying-50-tonnes.html#axzz3GycNazcQ
http://www.metalbulletin.com/Article/3290225/Gallium-price-falls-as-overcapacity-minimises-impact-of-SRB-buying-50-tonnes.html#axzz3GycNazcQ
http://www.metalbulletin.com/Article/3091212/Chinese-gallium-price-rises-on-SRB-purchase.html#axzz3GycNazcQ
http://www.metalbulletin.com/Article/3091212/Chinese-gallium-price-rises-on-SRB-purchase.html#axzz3GycNazcQ
http://www.metalbulletin.com/Article/3091212/Chinese-gallium-price-rises-on-SRB-purchase.html#axzz3GycNazcQ
http://www.iea.org/etp/etp2014
http://www.iea.org/etp/etp2014
http://www.orbitealuminae.com/media/upload/filings/Gallium_Version_1_1.pdf
http://www.orbitealuminae.com/media/upload/filings/Gallium_Version_1_1.pdf
http://dx.doi.org/10.1021/acs.est.5b00320


 



S1 

 

Supporting information to: 

The global anthropogenic gallium system: Determinants of supply, 

demand and efficiency improvements 

Amund N. Løvik†*, Eliette Restrepo† ‡, Daniel B. Müller† 

 

† Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian 

University of Science and Technology (NTNU), NO-7491, Trondheim, Norway 

‡ Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-9014, St. Gallen, 

Switzerland 

 

Corresponding author:  

* E-mail: amund.lovik@ntnu.no, amund.loevik@gmail.com; phone: +47 41 69 70 86, +41 079 667 98 

74; fax: +47 73 59 35 80 

 

 

This supporting information includes 24 pages, 3 figures and 3 tables. 

 

Contents 

 

1. System description ........................................................................................................................ S2 

2. Quantification of flows and decomposition .................................................................................. S6 

3. Monte Carlo simulation ............................................................................................................... S18 

4. Detailed results ............................................................................................................................ S19 

5. References ................................................................................................................................... S21 

 

 

  



S2 

 

1. System description 
 

The system definition is shown in Figure S1. 

 

Figure S1 System definition of the global system of gallium production, manufacturing, use and recycling. Flows to and from 

sub-processes 16a-e and 17a-e were also estimated. 

 

 

Geological resources. Gallium occurs mainly as a trace element in earth’s crust, with an 

estimated average concentration of about 17 ppm.1 Minerals in which gallium forms a 

substantial part have been found only in uneconomic quantities.2 Elevated concentrations are 

found in aluminum-containing rocks and minerals such as bauxite (<10-180 ppm), micas (7-

170 ppm) and corundum (100 ppm), due to its chemical similarity to aluminum. Enrichments 

are also present in zinc blende (2-110 ppm) and magnetite (20-90 ppm). The world average 

gallium concentration in bauxite resources has been estimated to 57 ppm, with regional 

averages mostly between 28 ppm (Western Guanxi, China) and 75 ppm (Caribbean).3 

Primary production. Gallium metal is produced as a by-product, mainly from the Bayer 

process for alumina production and to a lesser degree from the hydrometallurgical route for 

zinc production.4 Alternative routes that are currently not used for large-scale production 

include recovery from aluminous clay,5 fly ash from coal combustion6,7 or gasification,8 and 

phosphorous flue dust.9 In the Bayer process, aluminum minerals in bauxite rock are dissolved 
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in a sodium hydroxide solution, separated from iron oxides and silicates by filtration and then 

precipitated as aluminum hydroxide. About 30-50% of the gallium in bauxite will remain 

undissolved and therefore be disposed of in the so-called red mud together with iron oxides, 

silicates and undissolved aluminum hydroxides.10,11 The alkaline solution (Bayer liquor) is 

recycled to process the next batch of bauxite. Gallium will accumulate in the liquor until it 

reaches a steady-state concentration, i.e. when the amount dissolved from bauxite equals the 

amount precipitated as an impurity in alumina.12 When the concentration reaches a certain level, 

the liquor may be removed from the Bayer process to extract gallium in a series of processing 

steps. The most common method is the ion exchange process in which an organic compound is 

used to preferentially adsorb gallium. Further processing separates gallium from the organic 

resin and metallic impurities, and finally gallium metal is produced by electrolysis.11  

Secondary production. Recycling of gallium from industrial scrap is commonly done, while 

no end-of-life recycling is known to occur.13 The most important type of industrial scrap is 

GaAs in various forms: bulk crystal pieces, test wafers, broken wafers and slurries from 

grinding and cutting.14,15 Bulk GaAs and clean wafers may be recycled internally at the crystal 

growth facilities by direct remelting.14 From less pure scrap, gallium is typically recovered by 

dissolving GaAs in a hot acidic solution such as nitric acid, precipitation of Ga2O3, re-

dissolution and electrolysis.15,16 Another method involves heating the GaAs material to 

evaporate arsenic and obtain Ga2O3.
16 Recycled gallium metal may be further refined to obtain 

the same grades as from primary metal. 

 

Refining. Refining of the metal to a purity of 99.9999% (6N) or higher for electronic 

applications, is achieved by a combination of methods such as vacuum refining,17 washing with 

aqueous acids and alkalis, fractional crystallization,18 zone melting19,20 and/or single crystal 

growth.21 Purification may also be conducted on gallium compounds such as gallium 

trichloride, which is sometimes produced directly at the gallium metal plant.22 The overall yield 

of the refining process depends on the final purity and the methods used. As an example, 

purification from 4N to 7N by fractional crystallization could have a material yield in the range 

70-80%.23 However, the discarded material is reintroduced at an earlier stage in the process 

chain for an overall yield close to 100%.24 This recovery is here defined as part of the refining 

process. 

Production of intermediate compounds and substrates. The majority of gallium demand 

arises from its use in compound semiconductors, the most common ones being GaAs, gallium 

nitride (GaN), indium gallium nitride (InxGa1-xN, hereafter InGaN), gallium phosphide (GaP), 

aluminum gallium indium phosphide ((Al1-xGax)yIn1-yP, hereafter AlGaInP) and copper indium 

gallium diselenide (CuInxGa1-xSe2, CIGS). These are either grown as single crystals and cut 

into wafers or produced directly from precursor gases or other sources during the device 

fabrication process. GaAs and GaP single crystal ingots are produced by two techniques, the 

liquid-encapsulated Czochralski process and the vertical gradient freeze process. Both involve 

directional solidification of a single crystal from a melt to produce a cylinder-shaped ingot with 

a diameter of 50-200 mm and length of up to 300 mm.25 The sides of the ingot are trimmed to 

an even diameter, the cone-shaped ends are cut off, and the ingot is sawed into thin wafers 

(<1mm thick) that are polished and used as substrates for device fabrication. Bulk losses such 

as the cone-shaped ends are usually recycled internally, while the wastes from sawing, 

trimming, polishing and etching are sent to an external recycler or disposed of.14 
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The other gallium-containing compounds are mainly produced during device fabrication by 

metalorganic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) or 

sputtering deposition. These processes are described under “fabrication”. The main precursor 

gas for MOCVD of gallium compounds is trimethylgallium (TMG), Ga(CH)3. TMG is 

synthesized from gallium trichloride and a metal alkyl such as trimethylaluminum,26,27 or 

directly from gallium metal and methyl iodide.28 Evaporation sources for MBE consist of pure 

gallium metal, while sputtering targets for CIGS production can be pure gallium metal or 

gallium in alloys with indium and/or copper. 

Fabrication. Semiconductor devices such as integrated circuits (ICs) and light emitting diodes 

(LEDs) consist of a few microns thick deposition layer on top of the much thicker substrate. 

GaAs is used both for the substrate and the deposition layer in GaAs-based ICs and LEDs, and 

as substrate for GaAs/GaP-based LEDs.29 GaN-based LEDs are produced on substrates of 

sapphire (Al2O3) or silicon carbide (SiC),30 and therefore require very little gallium per device. 

The deposition layer is produced by MOCVD or MBE.31 In an MOCVD process, precursor 

gases such as TMG and ammonia flow across the substrate surface in a reaction chamber to 

produce an epitaxial film of the desired compound. The MBE process is conducted in a vacuum 

chamber, where the low pressure causes the pure elemental sources (e.g. gallium metal) to 

sublimate. The beam of sublimated atoms is directed toward the heated substrate, and a thin 

film is formed. LEDs are mainly produced with MOCVD,29 while ICs are produced with both 

MOCVD and MBE.31,32 Thin film CIGS solar cells can be produced with a variety of 

techniques. Vacuum-based methods such as co-evaporation and sputtering are most common; 

methods with higher material utilization rates are being developed.33,34 Material yields in 

deposition for LEDs and ICs are normally less than 20% and can be as low as 1%,35 while the 

yield in thin film PV production is higher, typically 30-60% assuming sputtering deposition.36 

The substrates for ICs and LEDs are much thicker than what is required for the operation of the 

device, 450-675 µm,37 and is therefore thinned to a thickness of 50-100 µm in a “backgrinding” 

process to enable denser packaging and better heat dissipation.38 Each wafer is normally used 

to produce up to several thousand identical devices, which are separated by cutting, leading to 

some additional loss. Finally, wafer breakage and non-working devices contribute to a total 

material loss that may reach above 90% including substrate material.38–40 The majority of this 

loss is due to the backgrinding process. 

In the production of NdFeB magnets, Ga is often added at approximately 0.5%wt to improve 

magnetic properties, corrosion resistance and the production process.2,41,42 The magnets are 

produced by melting the constituent elements to form an alloy, milling to a fine powder, 

pressing, sintering and machining into the final shape. Material losses are typically 20-40% of 

the starting material.43,44 Although it is common to recycle neodymium from the production 

scrap, gallium is not recovered in this process.44 

End-use.  

GaN-based LEDs are used to produce light with color ranging from ultraviolet to green.45 The 

most important application is as a component of white LEDs, where a blue or ultraviolet LED 

is combined with a phosphor. White LEDs are today used in all key lighting markets such as 

residential, offices, outdoor, architectural and automotive; however, the penetration is still low 

compared to other lighting technologies. In addition, white LEDs are extensively used for 

backlighting in liquid crystal displays, especially in handsets and portable computers.46 
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GaAs/GaP-based LEDs can produce light with color ranging from green to red. They are used 

in automotive dashboards and exterior lights, traffic signal lighting, full-color displays and 

many other signage and display applications.47 In the future, increased use may be seen in 

indoor general lighting where they can be used to improve the color temperature of white LED 

lamps.48 Red LEDs can also be used together with green and blue LEDs to produce white light, 

but this is more expensive and therefore much less used than the phosphor-based white LED.49 

GaAs ICs are mainly used in mobile phones and other wireless communication devices and 

infrastructure. More than 50% of the demand in 2011 has been attributed to mobile phones,32 

the majority of which comes from power amplifiers used to strengthen the signal before it is 

transmitted through the antenna. Due to the wide variety of air interface standards (e.g. GSM, 

EDGE, CDMA, LTE) and frequency bands, new handsets contain several power amplifiers for 

international compatibility including older standards.32 

The main applications for NdFeB magnets are computers, electric motors and audio systems, 

each responsible for about 30% of demand.50 

Waste management. 

Currently, there is no recovery of gallium from end-of-life products, mainly due to the low 

concentrations with respect to other materials in the products, but also due to the lack of 

technologies for its recovery from end-of-life products. 

The main end-of-life waste streams are, due to the end uses, end-of-life vehicles (ELV) and 

waste electrical and electronic equipment (WEEE). Gallium in automobiles is mainly in lighting 

systems and electrical motors;51 in electronics it is found in printed circuit boards.52 Typical 

recycling of ELV favors the recovery of bulk metals such as steel and aluminum and it can 

include depollution, dismantling, shredding and recovery of materials.53 After shredding, 

gallium is found mainly in the automobile shredder residue (ASR) and in low concentrations in 

the bulk aluminum fractions, most likely as a native impurity in the base metal.54 The ASR is 

subsequently incinerated or landfilled. Some processes exist to recover precious metals after 

incineration.55 However, in such processes gallium is transferred to slags from which it is not 

recovered.56 

Recycling of WEEE can include depollution, dismantling, crushing, separation and recovery of 

materials. As for ELV, it favors the recovery of bulk metals (steel, aluminum and copper), as 

well as the recovery of precious metals.57 The final recovery of these metals is carried out in 

copper smelters or in integrated metals smelters in which gallium is transferred to slags and not 

recovered.56 
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2. Quantification of flows and decomposition 

The system variables (flows) are listed and described in Table S1. Xm-n refers to the flow from process 

m to process n. Letters a-f designate sub-processes, letters p and s stand for primary and secondary 

material respectively, sc stands for semiconductor applications (light emitting diodes, integrated circuits 

and photovoltaics), and pe stands for power electronics . All system variables refer to the gallium content 

in the flows. 

Table S1 System variables. All variables refer to the gallium content in the flows. 

Variable name Description of flow 

X1-2 Bauxite input to non-Ga Bayer process 

X1-4 Bauxite input to Ga-extr. Bayer process 

X2-3 Red mud from non-Ga Bayer process 

X2-5 Alumina from non-Ga Bayer process 

X4-3 Red mud from Ga-extr. Bayer process 

X4-5 Alumina from Ga-extr. Bayer process 

X4-6 Gallium entering extraction process from Bayer route 

X6-11 Primary production of gallium metal from Bayer route 

X6-19 Loss from extraction process 

X6-11 Primary gallium to refining 

X10-11 Primary production of gallium metal from zinc route 

X11-15 Primary unrefined gallium going into stockpiles 

X11-12,p Refined gallium from primary production 

X11-12,s Refined gallium from recycling 

X14-11 Recycled material going to refining 

X14-19 Loss from recycling 

X13-15 Gallium going into stockpiles 

X13-16a Refined gallium used in production of sputtering targets and MBE sources 

X13-16b Refined gallium used in the production of TMG 

X13-16c Refined gallium used in the production of GaAs substrates 

X13-16d Refined gallium used in the production of GaP and GaN substrates 

X13-16f Refined gallium used for other purposes 

X13-16 Consumption of refined gallium 

X16b-19 Loss from production of TMG 

X16c-19 Loss from production of GaAs substrates 

X16d-19 Loss from production of GaP and GaN substrates 

X16-19 Loss to landfills from compound production 

X16c-14 Recycling from production of GaAs substrates 

X16d-14 Recycling from production of GaP and GaN substrates 

X16-14 Recycling from compound production 

X16a-17 Consumption of sputtering targets and MBE sources 

X16b-17 Consumption of TMG 

X16c-17 Consumption of GaAs substrates 

X16d-17 Consumption of GaP and GaN substrates 

X16-17 Consumption of intermediate compounds 
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Table S1 cont.  

Variable name Description of flow 

X16a-17c Use of sputtering targets and MBE sources for ICs 

X16a-17d Use of sputtering targets and MBE sources for PV 

X16b-17a Use of TMG for production of GaN LEDs 

X16b-17b Use of TMG for production of GaP/GaAs LEDs 

X16b-17c Use of TMG for production of ICs 

X16b-17f, pe Use of TMG for production of power electronics 

X16b-17 Total use of TMG (estimated from substrates area) 

X16c-17b Use of GaAs substrates for GaP/GaAs LEDs 

X16c-17c Use of GaAs substrates for ICs 

X16d-17b Use of GaP substrates for GaP LEDs 

X16d-17f Use of GaN substrates for lasers and other applications 

X16e-17e Use of NdFeB to produce magnets 

X17a-19 Scrap lost from production of GaN LEDs 

X17b-19 Scrap lost from production of GaP/GaAs LEDs 

X17c-19 Scrap lost from production of ICs 

X17d-19 Scrap lost from production of PV 

X17e-19 Scrap lost from production of NdFeB magnets 

X17f, pe-19 Scrap lost from production of power electronics 

X17-19 Total scrap loss to landfills from fabrication of devices 

X17b-14 Collected scrap from production of GaP, GaAs LEDs 

X17c-14 Collected scrap from production of ICs 

X17d-14 Collected scrap from production of PV 

X17-14 Total collected scrap from fabrication 

X17a-18 Total use of GaN LEDs 

X17b-18 Total use of GaP/GaAs LEDs 

X17c-18 Total use of ICs 

X17d-19 Total use of PV 

X17e-18 NdFeB magnets entering use 

X17f, pe-18 Total use of power electronics 

X17-18 Total gallium entering use 

 

The system was quantified using a combination of statistical data, market data and technical process 

parameters. The parameters used in the quantification are listed in Table S2. 
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Table S2. Parameters used in the quantification of the system. 

Symbol Description 

B Bauxite mining 

c0 Ga concentration in bauxite 

c1 Ga concentration in bauxite used for Ga recovery 

a Share of bauxite used in Bayer process 

A Alumina production 

b Fraction of Ga in bauxite going to red mud 

p Fraction of dissolved Ga going to alumina 

y1 Yield in gallium recovery from Bayer liquor 

Y Primary gallium production 

Z Primary gallium production from zinc route 

R Refined gallium production 

c2 Concentration of gallium in alumina 

T Trimethylgallium production 

G1 GaAs semi-insulating (SI) substrate prod. 

g2 GaAs semiconducting substrate production relative to GaAs SI substrate production 

g3 GaP substrate production relative to GaAs SI substrate production 

g4 GaN substrate production relative to GaAs SI substrate production 

g5 Sapphire and SiC substrate production relative to GaAs SI substrate 

d1 Density of GaAs 

d2 Density of GaP 

d3 Density of GaN 

m1 Molar mass of Ga 

m2 Molar mass of As 

m3 Molar mass of P 

m4 Molar mass of N 

t1a Thickness of GaAs substrates for IC fabrication 

t1b Thickness of other substrates 

y4 Yield in trimethylgallium production 

y5 Yield in crystal growth and substrate production 

r2 Collection rate, crystal growth and substrate production scrap 

y7 Yield in MOCVD deposition 

y9 Yield in MBE deposition 

y10 Yield in sputtering deposition 

q1 Wafer breakage and non-working devices loss, fabrication 

q2 Backgrinding loss in IC fabrication 

q4 Backgrinding/epitaxial lift-off loss in LED fabrication 

q3 Dicing and edge loss in device fabrication 

M Mass of gallium used in production of magnets 

y11 Yield in fabrication of NdFeB magnets 

r4 Collection rate broken wafers and non-working devices scrap 

r5 Collection rate backgrinding and dicing scrap from IC fabricators 

r6 Collection rate backgrinding/epitaxial lift-off scrap, LED  

t2 LED deposition layer thickness 

t4 Integrated circuit deposition layer thickness 

t5 CIGS deposition layer thickness 

c4 Concentration of gallium in CIGS 

W1 CIGS PV production capacity 

W2 PV total production capacity 

W3 New installed PV electricity generation capacity 

t6 Power electronics deposition layer thickness 

W4 Power electronics GaN market 

w Power electronics GaN substrate area per unit value 
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Calculation of flows 

The equations used to quantify the flows are explained in the following. 

Primary production from zinc route: 

10 11X Z    

Primary production from aluminum route estimated as total primary production minus production from 

zinc route: 

6 11X Y Z     

Loss during extraction from Bayer liquor estimated from process output and yield y1 in the extraction 

process: 

1
6 19

1

(Y Z)(1 y )
X

y


 
   

Input to Bayer liquor extraction process also estimated from process yield: 

 
4 6

1

( )Y Z
X

y



   

Ga ending up in alumina estimated from transfer coefficient p: 

 4 6
4 5

1

X p
X

p


 


  

Likewise, Ga ending up in red mud was calculated from transfer coefficient b: 

 4 6
4 3

(1 )(1 )

X b
X

b p


 

 
 

The amount of Ga entering the Bayer process with Ga extraction was back-calculated from output and 

the transfer coefficients b and p which designate the fractions ending up in red mud and alumina (as 

fraction of the gallium dissolved, i.e. not going to red mud) respectively.  

 4 6
1 4

(1 )(1 )

X
X

p b


 

 
  

The amount of Ga entering the Bayer process without Ga extraction was estimated from the total bauxite 

production times the share of bauxite used for alumina production times the average concentration of 

Ga in bauxites minus the amount entering the Bayer process with Ga extraction: 

 1 2 0 1 4X Bac X     

Ga to red mud from Bayer process without Ga extraction was estimated from transfer coefficient b: 

 2 3 1 2X X b    

Ga to alumina from Bayer process without Ga extraction was estimated by mass balance (input minus 

the fraction ending up in red mud): 
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 2 5 1 2 2 3X X X      

Refined Ga production was taken directly from statistics: 

12 13, pX R    

Since the yield was assumed to be 100%, the input to the refining process is the same as the output: 

11 12, pX R    

Sources of gallium used in molecular beam epitaxy (MBE) for integrated circuits (IC) was estimated 

from area of GaAs wafers used for IC production (semi-insulating wafers), G1, times the thickness of 

the deposition layer, the density of GaAs, the share of ICs produced with MBE, the molar masses of 

gallium and arsenic, as well as the epitaxy yield factor, y9: 

 

6

1 4 1 1 1
16 17

1 2 9

(1 )10

( )
a c

G t d h m
X

m m y









  

Ga in trimethylgallium (TMG) consumed was estimated from the consumption of TMG times the 

concentration of gallium in TMG: 

 16 17 3bX Tc    

Ga in GaAs semiconducting (SC) substrates for LEDs was estimated from the area of GaAs semi-

insulating (SI) substrates, the area of SC substrates relative to SI substrates, the thickness of SC wafers, 

the density of GaAs and molar masses of Ga and As: 

 
61

16 17 2 1 1 1

1 2

10c b b

m
X g G t d

m m



 


  

Ga in GaAs substrates for ICs was estimated from the area of GaAs SI substrates, the thickness of SI 

wafers, the density of GaAs and the molar masses of Ga and As: 

 
61

16 17 1 1 1

1 2

10c c a

m
X G t d

m m



 


  

Total Ga in GaAs substrates was calculated from the sum of Ga in SC and SI substrates: 

 16 17 16 17 16 17c c b c cX X X      

Ga in GaP substrates was estimated from the area of GaAs SI wafers, the area of GaP wafers relative to 

GaAs SI wafers, g3, the thickness of GaP substrates (assumed same as GaAs SC substrates), the density 

of GaP, and the molar masses of Ga and P. It was assumed that all GaP substrates are used to 

manufacture light-emitting diodes (LEDs). 

 
61

16 17 3 1 1 2

1 3

10d b b

m
X g G t d

m m



 


  

Ga in GaN substrates was estimated from the area of GaAs SI wafers, the area of GaN wafers relative 

to GaAs SI wafers, g4, the thickness of GaN wafers (assumed same as GaAs SI substrates), the density 

of GaN, and the molar masses of Ga and N. It was assumed that all GaN substrates are used to produce 

solid state lasers (other applications). 
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61

16 17 4 1 1 3

1 4

10d f a

m
X g G t d

m m



 


  

Total Ga in GaP and GaN substrates was calculated from the sum of the two: 

 
16 17 16 17 16 17d d b d fX X X      

Ga in NdFeB semi-finished products was calculated directly from the estimated amount used: 

16 17e eX M    

Ga going into use was calculated by the material yield in fabrication of magnets: 

17 18 11eX y M    

The rest of the flows related to magnets were calculated by simple mass balances. 

Ga in CIGS photovoltaics (PV) going into use was estimated from the generation capacity of newly 

installed CIGS PV, the standard test condition irradiance, the efficiency of the cells, the thickness of the 

deposition layer and the concentration of Ga in the material. The newly installed capacity of CIGS cells 

is not reported. Therefore, this was estimated from the total newly installed PV capacity W3 (all 

technologies), and the share of CIGS in the production capacity in the PV industry (W1/W2). Since the 

generation capacity of PV is based on testing under standard conditions (k=1000W/m2), this value was 

used to find the area of the cells from the electricity generation capacity. 

5

1 3 5 4
17 18

2 1

10
d d

WW t c
X

W e k
    

Consumption of sputtering targets (assuming all CIGS cells are produced with sputtering) was back-

calculated from the amount of Ga in installed CIGS cells, assumed breakage rate in the manufacturing 

process, and the yield in sputtering deposition. Note that the uncertainties of these process yield 

parameters are quite high. 

 17 18
16 17

10 1(1 )

d d
a d

X
X

y q


 


  

Scrap collected from CIGS production was estimated from the input to the production process, the 

deposition yield and the breakage rate in manufacturing, assuming that all broken cells are recycled. 

 17 14 16 17 10 1d a dX X y q    

Uncollected scrap (i.e. undeposited Ga) was calculated by mass balance: 

 17 19 16 17 17 14 17 18d a d d d dX X X X        

Total CIGS into use is equal to the CIGS going into sub-process 18d: 

 17 18 17 18d d dX X    

Total use of MBE sources and sputtering targets was calculated from the sum of the two: 

16 17 16 17 16 17a a c a dX X X      

The amount of Ga in TMG used for power electronics was estimated from the GaN power electronics 

market size in monetary value, W5, the area of GaN wafers per unit value, w, the thickness of the 
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deposition layer, the density of GaN, and the yield in the deposition process assuming metal-organic 

chemical vapor deposition (MOCVD). 

6

5 6 31
16 18 ,

1 4 7

10
b f pe

W wt dm
X

m m y



 


  

The amount of Ga in power electronics going into use was estimated from the input to the manufacturing 

process times the deposition yield, breakage loss rate, and dicing loss rate: 

 
17 18, 16 18 , 7 1 3(1 )(1 )f pe b f peX X y q q      

Uncollected scrap was estimated by mass balance, assuming that no scrap is collected from this process: 

 
17 19, 16 18 , 17 18,f pe b f pe f peX X X      

Total use of intermediate compounds (sputtering/MBE targets and sources, GaAs wafers, GaP wafers, 

GaN wafers and TMG) was calculated by summing up the individual flows: 

16 17 16 17 16 17 16 17 16 17 16 17a b c d eX X X X X X            

 

Use of refined Ga for producing sputtering targets and MBE sources was set as equal to the consumption 

of these, assuming no loss in this process or 100% recycling (likely because it is high purity Ga metal 

and simple manufacturing process). 

13 16 16 17a aX X    

Use of refined Ga for TMG production was calculated from TMG consumption, concentration of Ga in 

TMG and the yield in the production process: 

 3
13 16

4

b

c
X T

y
    

Use of refined Ga for production of GaAs substrates was calculated from the consumption of GaAs 

substrates (see individual calculations above), and the yield in substrate production, y5: 

 
61 1 2 1 1 1 1

13 16

5 1 2

( )
10a b

c

G t g G t d m
X

y m m









  

Likewise, refined Ga for GaP and GaN substrates was back-calculated from the Ga in produced 

substrates (see equations above) and the substrate production yield, y5. It was assumed that the substrate 

production yield is the same as for GaAs substrates. 

 

6

1 1
13 16 3 1 1 2 4 1 1 3

1 3 1 4 5

10
(( ) ( ))d b b

m m
X g G t d g G t d

m m m m y



  
 

  

Total consumption of refined Ga was then calculated by summing up individual flows: 

 13 16 13 16 13 16 13 16 13 16a b c dX X X X X          

Loss from TMG production process was calculated from input to process times the loss rate (1 minus 

production yield). It was assumed that none of this is recycled. 
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 16 19 13 16 4(1 )b bX X y     

Uncollected scrap from GaAs substrate production was calculated from process input, production yield 

and collection rate, r2: 

16 19 13 16 5 2(1 )(1 )c cX X y r      

Likewise, the uncollected scrap from GaP and GaN substrate production were calculated: 

 16 19 13 16 5 2(1 )(1 )d dX X y r      

Total uncollected scrap from production of intermediate compounds was found by summing up 

individual flows: 

 16 19 16 19 16 19 16 19b c dX X X X        

Collected scrap from GaAs substrate production was calculated from process input, yield and collection 

rate: 

 16 14 13 16 5 2(1 )c cX X y r     

Collected scrap from GaP and GaN substrate production was estimated by the same procedure: 

16 14 13 16 5 2(1 )d dX X y r     

Total amount of collected scrap from production of intermediate compounds was found by summing up 

the collected scrap from GaAs substrate production and GaP/GaN substrate production: 

16 14 16 14 16 14c dX X X      

Use of Ga in TMG for GaN LED (white, blue, violet, green LED) production was estimated from the 

area of sapphire and silicon carbide substrates relative to GaAs SI substrates, the area of GaAs SI 

substrates, the thickness of the deposition layer, the density of GaN, the molar masses of Ga and N, and 

the deposition yield: 

 

6

1
16 17 5 1 2 3

1 4 7

10
b a

m
X g G t d

m m y



 


  

Use of Ga in TMG for InGaP-based LEDs (red, orange, yellow LEDs) was estimated from the area of 

GaAs SC substrates and GaP substrates relative to the area of GaAs SI substrates, the area of GaAs SI 

substrates, the thickness of the deposition layer, the density of GaP, the molar masses of Ga and P, and 

the deposition yield. The factor 0.15 was introduced to correct for the stoichiometry of the InGaP 

deposition layer compared to GaP. 

 

6

1
16 17 2 1 3 1 2 2

1 3 7

10
( )0.15b b

m
X g G g G t d

m m y



  


  

Ga in TMG used for production of integrated circuits was estimated from area of SI substrates, thickness 

of the deposition layer, the density of GaAs, the molar masses of Ga and As, the share of GaAs ICs 

produced with MOCVD, and the deposition yield: 

 
6 1 1

16 17 1 4 1

1 2 7

10b c

m h
X G t d

m m y



 

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The amount of scrap collected from production of InGaP LEDs was estimated from inputs into the 

process, the loss rates in the different fabrication stages and the assumed collection rate: 

 

17 14 16 17 7 1 4 1 3 6 16 17 16 17 1 4 1 4 6 1 4 3 6( (1 ) ) ( X )(q (1 ) (1 )(1 ) )b b b d b c bX X y q r q q r X r q q r q q q r               

Scrap collected from production of ICs was estimated from process inputs, losses in the different 

fabrication stages, and the assumed collection rate: 

  

17 14 16 17 9 16 17 7 1 4 1 3 5 16 17 1 4 1 2 5 1 2 3 5(X )( (1 )q ) ( (1 ) (1 )(1 ) )c a c b c c cX y X y q r q r X q r q q r q q q r               

The total collected scrap in fabrication was found by summing up individual flows: 

17 14 17 14 17 14 17 14b c dX X X X        

The amount of Ga in GaN LEDs going into use was calculated from inputs to the fabrication process, 

the deposition yield and the loss rates due to breakage/non-functioning devices and dicing: 

 17 18 16 17 7 1 3(1 )(1 )a b aX X y q q      

The amount of Ga in InGaP LEDs going into use was calculated from inputs to the fabrication process, 

deposition yield and loss rates due to breakage/non-functioning devices, dicing and 

backgrinding/epitaxial lift-off. Note that backgrinding/epitaxial lift-off loss, q4, is only included for the 

substrate term, not the deposition layer:  

17 18 16 17 7 1 3 16 17 16 17 1 4 3(1 )(1 ) ( )(1 )(1 )(1 )b b b c b d bX X y q q X X q q q             

The Ga in integrated circuits going into use was calculated from fabrication process inputs, MOCVD 

and MBE yields and loss rates due to breakage/non-functioning devices, dicing and backgrinding. Note 

that backgrinding loss only applies to the substrate term:  

17 18 16 17 9 16 17 7 1 3 16 17 1 2 3( )(1 )(1 ) (1 )(1 )(1 )c a c b c c cX X y X y q q X q q q             

Total amount of Ga going into use in the form of semiconductor devices (LEDs, ICs, power electronics 

and CIGS photovoltaics) was calculated by summing up individual flows:  

17 18 17 18 17 18 17 18 17 18 17 18,a b c d f peX X X X X X            

Uncollected scrap from production of GaN LEDs was calculated by mass balance: 

 17 19 16 17 17 18a b a aX X X      

Uncollected scrap from fabrication of InGaP LEDs was calculated by mass balance:  

17 19 16 17 16 17 16 17 17 18 17 14b b b c b d b b bX X X X X X            

Uncollected scrap from fabrication of GaAs ICs was calculated by mass balance: 

 17 19 16 17 16 17 16 17 17 18 17 14c a c b c c c c cX X X X X X            

Total uncollected scrap from fabrication was found by summing up individual flows: 

 17 19 17 19 17 19 17 19 17 19 17 19,a b c d f peX X X X X X            
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Recycled material going to refining was calculated from inputs to recycling and the recycling yield, y3, 

assuming that all recycled Ga is refined. This is likely, because it is the same companies doing recycling 

and refining, who mostly serve the semiconductor device industry. 

 
11 12, 3 16 14 17 14( )sX y X X      

Refined production from secondary material (production scrap), is assumed to be the same as input to 

refining, since the refining process has a net yield close to 100%: 

12 13, 11 12,s sX X    

Loss from the recycling process was calculated from input to recycling and recycling yield: 

 14 19 16 14 17 14 3( )(1 )X X X y       

Stockpiling of refined gallium was estimated by mass balance: 

 
13 15 12 13, 12 13, 13 16s pX X X X        

 

Decomposition of flows (Figure 2 in main paper) 

The decomposition of primary Ga demand, demand for refined Ga and demand for Ga in intermediate 

compounds was done using the following equations: 

Primary demand from GaN-based LEDs: 

 16 17
1

4 2

b a
LED

X
Primary

y y

   

Primary demand from InGaP-based LEDs. This takes into account the that some of demand is covered 

by secondary material (the last two terms). 

16 17 16 17 5 2 3 2
16 17 17 14 3 2

4 2 5 2 5

(1 )b b c b
LED2 c b b

X X y r y y
Primary X X y y

y y y y y

 
 


      

Primary demand from integrated circuits, also taking into account recycling (last two terms): 

16 17 16 17 5 2 3 2
16 17 17 14 3 2

2 5 2 5

(1 )a c c c
IC c c c

X X y r y y
Primary X X y y

y y y y

 
 


      

Primary demand from photovoltaics, also taking into account recycling (second term): 

 16 17
17 14 3 2

2

a d
PV d

X
Primary X y y

y


   

The total refined metal (primary and secondary) for GaN-based LEDs: 

16 17
1

4 2

b a
LED

X
Metal

y y

   

The total refined metal (primary and secondary) for InGaP-based LEDs: 
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16 17 16 17
2

4 2 5 2

b b c b
LED

X X
Metal

y y y y

     

The total refined metal (primary and secondary) for integrated circuits: 

16 17 16 17

2 5 2

a c c c
IC

X X
Metal

y y y

     

The total refined metal (primary and secondary) for photovoltaics: 

16 17

2

a d
PV

X
Metal

y

   

Ga in intermediate compounds for GaN-based LEDs: 

1 16 17LED b aSemi X    

Ga in intermediate compounds for InGaP-based LEDs: 

2 16 17 16 17LED b b c bSemi X X     

Ga in intermediate compounds for integrated circuits: 

16 17 16 17IC a c c cSemi X X     

Ga in intermediate compounds for photovoltaics: 

16 17PV a dSemi X    

 

Model for accumulation of Ga in Bayer liquor 

The fraction of Ga lost to alumina depends on how long the gallium is allowed to accumulate in the 

Bayer liquor before it is extracted. In the case that no Ga extraction occurs (assuming that the liquor is 

not discarded after a certain number of loops), the system will reach steady state, and the amount of Ga 

dissolved in the liquor for each batch will be the same as that precipitated to aluminum hydroxides, i.e. 

the loss to alumina is 100%. This fact, combined with the typical concentration of Ga in aluminum (100-

200 ppm),58 was used to back-calculate how much of the Ga ends up in the red mud, and it was found 

to be 30-50%. It was assumed that most alumina is produced without a Ga extraction loop, which later 

was confirmed by quantification of the other flows. To estimate how much gallium is lost to alumina 

when Ga is extracted from the liquor, it is necessary to make an assumption about how long the gallium 

is allowed to accumulate, i.e., until what concentration does Ga accumulate before the liquor is removed 

for Ga extraction. There is not much information available about this, and it is also likely that this varies 

a lot between different producers. A higher concentration of Ga is better for the extraction process, but 

leads to a higher loss to alumina. However, since there is currently an oversupply of gallium, it was 

assumed that a more efficient extraction process is favored over larger amounts produced. We made a 

model similar to that used by Hudson to estimate the relationship between the number of accumulation 

cycles and Ga concentration in Bayer liquor. Figure S2 shows how Ga builds up in the Bayer liquor. 

The model was calibrated against the results presented by Hudson,12 which gave a distribution 

coefficient of 0.3 between the concentration of Ga in precipitated hydrates and the concentration in the 

liquor. We assumed that Ga accumulates in the liquor until it reaches 90% of the steady state 

concentration, i.e. 0.14 g/l, meaning that 40% of the Ga dissolved from bauxite enters the Ga extraction 

process. 
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Figure S2. Gallium concentration in Bayer liquor as function of the number of cycles of dissolving bauxite and precipitation 

of aluminum hydroxide. 

 

Figure S3. Share of Ga entering extraction process as a function of the concentration to which Ga is allowed to accumulate in 

the Bayer liquor, assuming 33 ppm Ga in bauxite. Higher concentrations lead to lower amount of Ga entering the extraction 

process. Steady state can be observed around 0.15 g/l. We assumed that the concentration builds up to 0.14 g/l, which means 

that 40% of the Ga would enter the extraction process. 
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3. Monte Carlo simulation 
 

The Monte Carlo simulation was performed with MATLAB.59 All parameters with uncertainty above 

zero were treated as random variables. Transfer coefficients (parameters limited between 0 and 1) were 

given a beta distribution and all other parameters were given a normal distribution. Uncertainties 

(standard deviations) were estimated based on the quality of data and knowledge about processes. The 

beta distribution is defined by the parameters α and β, which are related to the standard deviation and 

mean by the following relations: 

2

2

1 1
 

 

 
  

 
  

1
1 



 
  

 
  

Using the defined probability distributions, 100 000 sets of the parameters were drawn, and for each of 

the sets, a complete system quantification was done using the equations in chapter 2 of this 

supplementary information. Confidence intervals, mean and median were calculated for each system 

variable. 
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4. Detailed results 
 

The detailed results of the quantification and Monte Carlo simulation are shown in Table S3. Note that 

the consumption of TMG, X16b-17 was calculated using two approaches and is therefore listed twice. 

 

Table S3. Results from the Monte Carlo simulation. All values are in metric tons/year. 

Variable Description Mean Stand. dev. 16th 

percentile 

Median 84th 

percentile 

X1-2 Bauxite input to non-Ga Bayer process 9290 2284 7124 9254 11504 

X1-4 Bauxite input to Ga-extr. Bayer process 1521 993 830 1265 2125 

X2-3 Red mud from non-Ga Bayer process 3508 1225 2319 3396 4702 

X2-5 Alumina from non-Ga Bayer process 5782 1772 4055 5694 7514 

X4-3 Red mud from Ga-extr. Bayer process 605 492 261 476 909 

X4-5 Alumina from Ga-extr. Bayer process 613 558 234 462 945 

X4-6 Gallium entering extraction process 

from Bayer route 

304 47 257 303 350 

X6-11 Primary production of gallium metal 

from Bayer route 

288 44 244 288 332 

X6-19 Loss from extraction process 15 10 6 13 25 

X6-11 Primary gallium to refining 160 16 144 160 176 

X10-11 Primary production of gallium metal 

from zinc route 

4 1 3 4 5 

X11-15 Primary unrefined gallium going into 

stockpiles 

47 50 -2 47 96 

X11-12,p Refined gallium from primary 

production 

160 16 144 160 176 

X11-12,s Refined gallium from recycling 82 22 60 80 103 

X14-11 Recycled material going to refining 82 22 60 80 103 

X14-19 Loss from recycling 9 5 4 8 14 

X13-15 Gallium going into stockpiles 27 29 -2 28 56 

X13-16a Refined gallium used in production of 

sputtering targets and MBE sources 

13 5 8 12 17 

X13-16b Refined gallium used in the production 

of TMG 

15 2 12 15 17 

X13-16c Refined gallium used in the production 

of GaAs substrates 

176 34 143 174 209 

X13-16d Refined gallium used in the production 

of GaP and GaN substrates 

12 3 9 12 15 

X13-16 Consumption of refined gallium 215 37 179 213 251 

X16b-19 Loss from production of TMG 1 1 0 1 2 

X16c-19 Loss from production of GaAs 

substrates 

42 15 28 41 57 

X16d-19 Loss from production of GaP and GaN 

substrates 

3 1 2 3 4 

X16-19 Loss to landfills from compound 

production 

47 16 31 45 62 

X16c-14 Recycling from production of GaAs 

substrates 

72 20 53 70 91 

X16d-14 Recycling from production of GaP and 

GaN substrates 

5 2 3 5 6 

X16-14 Recycling from compound production 77 21 57 75 97 

X16a-17 Consumption of sputtering targets and 

MBE sources 

13 5 8 12 17 

 



S20 

 

Table S3 cont.  

Variable Description Mean Stand. dev. 16th 

percentile 

Median 84th 

percentile 

X16b-17 Consumption of TMG 13 2 11 13 15 

X16c-17 Consumption of GaAs substrates 61 10 51 61 71 

X16d-17 Consumption of GaP and GaN 

substrates 

4 1 3 4 5 

X16e-17e Ga in NdFeB to produce permanent 

magnets 

85 17 68 85 102 

X16-17 Consumption of intermediate 

compounds  

176 21 155 176 197 

X16a-17c Use of sputtering targets and MBE 

sources for ICs 

1 1 0 1 1 

X16a-17d Use of sputtering targets and MBE 

sources for PV 

12 5 7 11 16 

X16b-17a Use of TMG for production of GaN 

LEDs 

10 8 5 8 15 

X16b-17b Use of TMG for production of InGaP 

LEDs 

0 0 0 0 1 

X16b-17c Use of TMG for production of ICs 1 1 0 1 1 

X16b-17f, pe Use of TMG for production of power 

electronics 

0 0 0 0 0 

X16b-17 Total use of TMG (estimated from 

substrates area) 

11 8 5 9 16 

X16c-17b Use of GaAs substrates for InGaP LEDs 26 6 20 25 32 

X16c-17c Use of GaAs substrates for ICs 35 6 30 35 41 

X16d-17b Use of GaP substrates for InGaP LEDs 3 1 3 3 4 

X16d-17f Use of GaN substrates for lasers and 

other applications 

1 0 1 1 1 

X17a-19 Scrap lost from production of GaN 

LEDs 

9 7 4 7 14 

X17b-19 Scrap lost from production of InGaP 

LEDs 

17 6 11 17 23 

X17c-19 Scrap lost from production of ICs 28 7 22 29 35 

X17d-19 Scrap lost from production of PV 7 4 3 6 10 

X17e-19 Scrap lost from production of NdFeB 

magnets 

26 10 16 24 35 

X17f, pe-19 Scrap lost from production of power 

electronics 

0 0 0 0 0 

X17-19 Total scrap loss to landfills from 

fabrication 

87 18 70 86 104 

X17b-14 Collected scrap from production of 

InGaP LEDs 

8 5 4 7 14 

X17c-14 Collected scrap from production of ICs 5 6 1 3 8 

X17d-14 Collected scrap from production of PV 0 0 0 0 1 

X17-14 Total collected scrap from fabrication 14 8 7 12 21 

X17a-18 GaN LEDs going into use 0.6 0.2 0.5 0.6 0.8 

X17b-18 InGaP LEDs going into use 3.7 2.0 1.8 3.4 5.7 

X17c-18 ICs going into use 3.9 0.8 3.0 3.8 4.7 

X17d-18 PV going into use 4.6 1.5 3.2 4.4 6.0 

X17e-18 NdFeB magnets going into use 59 15 45 59 74 

X17f, pe-18 Power electronics going into use 0.0 0.0 0.0 0.0 0.0 

X17-18 Total gallium entering use 72 15 57 72 87 
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ABSTRACT  11 

Future availability of byproduct metals, essential for existing and emerging technologies, is 12 

governed by the demand for the more commonly used carrier metals. This linkage, while 13 

recognized in past studies, has not been adequately taken into account in resource availability 14 

estimates. Here, we assess the future global availability of gallium by comparing scenarios for 15 

gallium demand from the five most important applications with the gallium supply potential, 16 

which is determined through scenarios for the global cycle of aluminum, the main carrier metal 17 

of gallium. We found that longer-term gallium demand is highly uncertain; the gallium supply 18 

potential is heavily influenced by the development of the in-use stocks and recycling rates of 19 

aluminum; with current applications, a shortage of gallium is unlikely by 2050; however, the 20 

gallium industry may need to introduce ambitious recycling- and material efficiency strategies 21 

to meet its demand; if in-use stocks of aluminum saturate or even decline, a shift to other 22 

gallium sources such as zinc or coal fly ash may be required. Traditional mineral resource 23 

classification systems and life cycle impact assessment methods do not account for the linkages 24 

between byproduct and carrier metals and therefore require appropriate extensions to provide 25 

meaningful information about resource depletion.  26 
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INTRODUCTION 27 

The limited availability of metals is often suggested as a possible constraint for widespread 28 

use of emerging technologies, such as photovoltaics (PV) and electric vehicles.1–5 These 29 

concerns are justified: Mineral resources are finite stocks in the lithosphere, which possess the 30 

capacity to become exhausted. The concept of fixed geological stocks has therefore been used 31 

to assess the future availability of a range of metals and other mineral resources,5–8 and is also 32 

used in life cycle impact assessment, such as the abiotic depletion potential in the CML 33 

method.9 However, most metals are not mined primarily for their own sake, but are produced 34 

as minor byproducts of more common metals.10,11 The value of the byproduct metal is, (by 35 

definition), too small to justify mining of the mineral, so mining activity is driven exclusively 36 

by the demand for the “carrier” metal. As a consequence, future availability of byproduct 37 

metals is limited by the anthropogenic flows of the carrier metal, rather than geological stocks 38 

of the byproduct metals. This should be taken into account in resource availability estimates 39 

by conceptualizing these resources as flows, as illustrated in Fig. 1. 40 

 41 

Figure 1 Illustration of the difference between a stock- and flow resource concept for a 42 

byproduct metal. The stock resource concept regards the byproduct independently from its 43 

carrier metal, e.g. by comparing production to reserves in the lithosphere. The flow resource 44 

concept links the availability of the byproduct metal directly to the production of the carrier 45 

metal. Because availability of the byproduct metal is determined by demand for the carrier 46 

metal, the stock resource concept is inadequate for evaluating byproduct metal availability. 47 
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 48 

The “byproduct constraint” to metal supply was brought to attention by Verhoef et al., and has 49 

subsequently been picked up by the research community. In criticality assessments, it is 50 

sometimes included, although in a highly simplified manner.12 For example, in the 51 

methodology of Graedel et al., the percentage of the metal produced as a byproduct is weighted 52 

and added up with a normalized depletion time (a stock-based concept) and other indicators to 53 

arrive at an overall supply risk indicator.13 Such calculations can be useful to create a list of 54 

critical metals that should be monitored, but they do not provide any quantitative estimate of 55 

future availability or demand. Only a handful of studies have conceptualized byproduct metals 56 

as flow-based resources:10,14–20 Long and Smith used a simple model to look at large scale 57 

employment of GaAs PV and a possible limitation of gallium supply,18 Verhoef et al. and 58 

Nakamura et al. investigated silver and bismuth availability for lead-free solder,10,14 while 59 

Fthenakis, Houari et al., Fizaine, Stamp et al., and Bustamante and Gaustad analyzed 60 

availability of tellurium, indium and/or gallium for thin film PV.15–17,19,20 These studies all take 61 

the perspective of a single technological shift and its potential restriction due to resource 62 

availability. Demand from other applications is usually modelled as a constant or ignored 63 

completely. Only Stamp et al. modelled the use in other applications explicitly, using 64 

exponential growth functions; however, they did not model the carrier metal cycle.19 By 65 

focusing only on one application, the hypothesis of a resource constraint may be confirmed, 66 

but it may not be rejected: there could always be additional demand from other applications. 67 

While it is impossible to include all possible future uses, it would be beneficial to include at 68 

least the most important current applications. More importantly, past studies have a limited 69 

consideration of the future production of the carrier metals, using either Hubbert curves,16,17 70 

exponential growth,15,18,20 static production,10,14 or no explicit modelling of future supply.19 71 

None of these approaches link the production of the carrier metal to its in-use stocks or the 72 
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service levels provided. Hence, they neither take into account the socio-economic drivers nor 73 

stock dynamics, which are decisive factors for the long-term demand for major metals.21 To 74 

address these shortcomings, we explore potential future supply restrictions and mitigation 75 

strategies by modeling the linkages between the cycles of gallium and its carrier metal 76 

aluminum. 77 

 78 

Gallium is produced as a byproduct of aluminum, and is today mainly used in integrated circuits 79 

(ICs), light emitting diodes (LEDs), PV, and as an alloying element in neodymium ferrite boron 80 

(NdFeB) permanent magnets.22 Primary production of gallium has grown rapidly in the last 81 

years, from below 100 tons/year before 2010 to 440 tons/year in 2014.23,24 This growth is 82 

usually attributed to increasing use of GaAs in mobile phones. Considering the main end uses 83 

and applications of gallium, i.e. information technology (IT), telecommunications, energy 84 

efficient lighting, renewable energy, and electrified transport, a continued growth in gallium 85 

demand is expected. However, gallium supply may be restricted by the development of the 86 

aluminum cycle. For example, a slow-down of the growth of aluminum in-use stocks could 87 

lead to a drop in demand for primary aluminum and reduce the supply potential of gallium 88 

accordingly, a trend which may be exacerbated by efforts to increase scrap collection and 89 

recycling efficiency.25 We therefore address the following research questions: (i) What are 90 

likely future trajectories for gallium supply potential, given the influence of stock dynamics in 91 

the aluminum cycle?  (ii) Under what conditions, relating to expansion of emerging 92 

technologies, may primary gallium demand grow beyond supply potential? (iii) Which 93 

measures can be taken to ensure sufficient gallium supply for existing and emerging 94 

technologies, and how effective are these measures? 95 

 96 

 97 
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METHODS 98 

A dynamic material flow model of the global gallium cycle was developed and used to quantify 99 

the demand for primary gallium from the five most important applications, as well as the future 100 

supply potential from the bauxite/alumina route. A mathematical description and details on 101 

scenario development and data sources are in the SI, and the most important features are 102 

explained here. The demand model includes the following key processes: refining to high-103 

purity gallium, crystal growth and substrate production (GaAs, GaP), production of 104 

trimethylgallium, fabrication of GaN-LEDs, fabrication of GaAs/GaP-LEDs, fabrication of 105 

GaAs ICs, fabrication of CIGS PV, manufacturing of NdFeB permanent magnets, recycling, 106 

and use (general lighting, automotive, mobile phones, other IT/telecom. equipment, renewable 107 

energy, others). It takes the following inputs: (i) parameters describing the yields, recycling 108 

rates and other relevant characteristics of the production chains, from semi-finished product 109 

manufacturing to device fabrication and recycling, as well as the lifetimes of products, (ii) time 110 

series of demand for the five most important applications: GaN-based LEDs, GaAs/GaP-based 111 

LEDs, GaAs ICs, copper indium gallium diselenide (CIGS) PV, and NdFeB magnets, in 112 

physical units (device area or mass). The demand model calculates stocks and flows of the 113 

gallium system, in particular the global demand for primary gallium. 114 

 115 

Input data for group (i) were obtained from a previous quantification of the gallium cycle. 22 116 

The following expected lifetimes were assumed for products in use:  15 years for automobiles,26 117 

10 years for general lighting,27 3.25 years for mobile phones (estimated in this work), 6 years 118 

for other IT and telecom equipment (based on computers),28 25 years for PV,29,30 20 years for 119 

wind turbines,31 and 8 years for all other applications. The standard deviation of the lifetime 120 

probability normal distribution was set to one fifth of the expected lifetime. 121 
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The time series data of group (ii) define the differences between the demand scenarios. These 122 

were constructed individually for each of the five applications, relying on previously published 123 

projections 27,32,33 and smaller models developed in this work which are briefly explained in 124 

the following and in detail in the SI. The set of demand projections was generated by combining 125 

different development paths for CIGS PV and NdFeB magnets with the baseline projection 126 

from LEDs and ICs. For LEDs and ICs, only one scenario was defined (baseline), due to the 127 

limited capacity of these applications to cause a significant gallium demand. The scenarios are 128 

labeled according to the difference in assumptions for the demand for magnets and PV as well 129 

as the penetration of gallium-based technology in these applications: M and m refer to high and 130 

low demand for NdFeB magnets respectively, while the following + or – refers to high (100%) 131 

or low (20%) penetration rate of gallium as an alloying element in NdFeB magnets, assumed 132 

to be used at 0.5% wt; P and p refer to high and low demand for PV respectively, while the 133 

following + or – refers to high (40%) and low (5%) future penetration rate of CIGS in the PV 134 

market. The low magnet and PV demand (m, p) correspond to the assumed developments in 135 

the International Energy Agency (IEA) 6DS (6 degree Celsius) scenario while the high magnet 136 

and PV demand (M, P) correspond to the 2DS-HR (2 degree Celsius, high renewable energy) 137 

scenario.33 138 

The projections for gallium in magnets are based on demand scenarios for NdFeB magnets 139 

by Habib and Wenzel,32 (which are again based on the IEA climate change mitigations 140 

scenarios) and a logistic function for the penetration rate of gallium alloying in magnet 141 

production. Note that even the m scenarios involve a large growth due to traditional 142 

applications such as computers. The penetration rate of gallium alloying was assumed to 143 

saturate at 20% (today’s level), or 100% in the – and + scenarios respectively. Mass fraction 144 

of gallium in magnets was assumed to remain constant at 0.5% when used. 145 
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The projections for CIGS PV are based on the IEA scenarios for climate change mitigation 146 

(6DS, 4DS, 2DS, 2DS-HR),33 which give the delivered electricity from PV in TWh, and a 147 

logistic function for increased market penetration of CIGS. A stock-driven lifetime based 148 

model was used to calculate the required production of PV cells to meet the solar PV electricity 149 

supply of the IEA scenarios, assuming a lifetime of 25 years. The 6DS scenario, here equivalent 150 

to p, assumes 900 TWh of electricity supplied in 2050, while the 2DS-HR scenario, equivalent 151 

to P, assumes 6200 TWh.33 The penetration rate of CIGS was assumed to saturate at 5%, or 152 

40% in the –/+ scenario respectively. 153 

The projection for ICs was developed in this work, using a stock-driven model for mobile 154 

phones, penetration rate of smartphones in the market, and number and size of GaAs chips in 155 

smart phones and standard mobile phones. Historic data on sales of standard phones and 156 

smartphones were used to calibrate a logistic function for the future penetration rate of 157 

smartphones, assuming saturation at 90% (from 54% in 2013). The number of mobile phones 158 

per capita was also calibrated as a logistic function, assuming saturation at 1.05 (0.9 in 2013). 159 

Historic data on the number and size of GaAs power amplifiers was gathered from suppliers 160 

and technical papers. 161 

The LED area entering use was broken down into general lighting, liquid crystal display 162 

backlighting, automotive, and signage and others. Projections are based on lighting market 163 

scenarios by McKinsey & Company,27 which indicate that LED lighting will have a market 164 

share above 70% in most general lighting sectors by 2020. It was assumed that LED market 165 

share saturates at 90% in the 2030’s for general lighting, automotive and signage and others. 166 

For backlighting, it was assumed to approach zero, as LEDs are expected to be replaced by 167 

organic LED. The scenarios result in an increase from 10 bn. mm2 GaN-LED device area 168 

entering use in 2012, to 80 bn. mm2 in 2050. GaAs/GaP-LED grows from 10 bn. mm2 in 2012 169 
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to 35 bn. mm2 in 2050. Note that the amount of gallium required per area LED is much higher 170 

for GaAs/GaP than for GaN, due to the use of sapphire or silicon carbide substrates in the latter. 171 

Projections of the supply potential were calculated from previously published scenarios for 172 

the global aluminum cycle that determine the level of alumina production,25 average gallium 173 

mass fraction in bauxite produced today (49 ppm),34,35 loss rate to red mud (38%), loss rate to 174 

alumina (60% of what remains after red mud loss), and extraction yield (95%).22 The alumina 175 

projections are determined by saturation level of aluminum in-use stocks (L = 200 kg/cap, M = 176 

400 kg/cap, H = 600 kg/cap), saturation time (2050, 2075, 2100), and whether near-perfect 177 

collection of scrap is implemented (NPC) or not (BAU), using a stock-driven material flow 178 

model.25 Gallium production from other raw material sources, such as zinc leach residue (< 3% 179 

of production) and coal fly ash (currently not used), were not included in the model. 180 

 181 

RESULTS 182 

Fig. 2 shows historic primary production, refining to high purity, modelled demand and supply 183 

potential under different scenarios, and the contributions from each application to demand in 184 

2050. The supply potential in 2050 ranges from 1700 tons/year (NPC L2100) to 11000 185 

tons/year (BAU H2075). The effect of the different conditions in the aluminum cycle can be 186 

observed by comparing other scenarios to the lowest projection, NPC L2100. Aluminum scrap 187 

collection greatly influences the gallium supply potential: Without implementation of near-188 

perfect collection, the supply potential projection instead reaches 2900 tons/year in 2050 (BAU 189 

L2100), 70% higher than with near-perfect collection. Saturation time has a relatively small 190 

impact (NPC L2050), giving a supply potential of 1900 tons/year in 2050, but may lead to a 191 

lower supply potential in the second half of the century. With a medium saturation level (NPC 192 

M2100), the supply potential reaches 4300 tons/year in 2050, which is higher than all demand 193 
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projections except the maximum (M+P+). The highest supply potential scenarios (BAU 194 

H2075, NPC H2075) remain far above any of the demand scenarios. 195 

 196 

 197 

Figure 2 Modelled world primary Ga demand and supply potential, and historic primary 198 

production and refining (left). Supply potential projections vary due to different saturation 199 

levels (L = 200 kg/cap, M = 400 kg/cap, H = 600 kg/cap) and time (2050, 2075, 2100) of 200 

aluminum in-use stocks, and whether near-perfect collection (NPC) of aluminum scrap is 201 

implemented or not (BAU = business as usual).  Demand projections vary due to different 202 

development paths for Ga in NdFeB magnets and CIGS photovoltaics. M = high magnet 203 

demand, m = low magnet demand, P = high PV demand, p = low PV demand, +/- indicate high 204 

or low penetration of gallium-containing technology in the magnet- or PV markets. Breakdown 205 

of primary Ga demand into the five applications in 2050 for the different scenarios (right). 206 

 207 

The lowest demand projection (m-p-) is mainly a continuation of current trends. Demand for 208 

NdFeB magnets continues to grow fast, while the share of magnets produced with gallium as 209 

an alloying element remains at today’s level (~20%), resulting in a gallium demand from 210 
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magnets that increases from about 85 tons/year today to 500 tons/year in 2050. Demand for PV 211 

grows slightly and the share of CIGS in the PV market remains similar as today (5%), causing 212 

a growth from around 10 tons/year to 40 tons/year in 2050 for PV applications. The demand 213 

growth for ICs slows down significantly after 2020, due to saturation of smart phones in the 214 

handset market and the number of mobile phones per capita globally. In 2050, the demand for 215 

primary gallium due to ICs has grown to 150 tons/year, from today’s 60 tons/year. Rapid 216 

penetration of LEDs in the general lighting and automotive markets drives a growing demand 217 

for both types of LEDs. However, this is somewhat dampened by the expected replacement of 218 

LED-backlit liquid crystal displays with organic LED technology. The primary gallium 219 

requirements of LEDs reach 150 tons/year and 30 tons/year from GaAs/GaP-LEDs and GaN-220 

LEDs respectively. In total, primary gallium demand amounts to 900 tons/year in 2050, which 221 

is still far below the lowest supply potential at 1700 tons/year. 222 

The second lowest demand scenario (M-P-) involves high demand for magnets and PV, 223 

corresponding to the IEA 2DS-HR, while the penetration rates of gallium-containing 224 

technologies in the magnet- and PV markets remain the same as today. This scenario leads to 225 

a demand of 1200 tons/year in 2050. High PV and magnet demand alone does not drive gallium 226 

demand beyond the supply potential; it only occurs when the penetration rate of CIGS or 227 

gallium alloying in magnets increases from today’s level. The next scenario, m-P+, illustrates 228 

the highest modelled demand from CIGS. A rapid growth in PV deployment together with an 229 

increased market penetration of CIGS from 3% to 40% causes demand to exceed the lowest 230 

supply potential curve around 2030. Gallium demand peaks at 2500 tons/year in 2036 due to 231 

slower growth of the PV in-use stock, and declines to 2100 tons/year in 2050. The m+p+ 232 

scenario shows the effect of increased penetration rate of CIGS and gallium alloying in magnets 233 

without the rapid demand increase for PV and magnets driven by climate change mitigation. 234 

In this case, primary demand grows steadily to pass the minimum supply potential in 2038, and 235 
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reaches 3100 tons/year in 2050. It should be noted that even in the 6DS scenario, demand for 236 

magnets is expected to increase significantly from today’s level.32 Increased market share of 237 

gallium-containing magnets would not on its own cause such a dramatic change. The M+p- 238 

scenario shows the maximum contribution of magnets, causing demand to reach 4000 tons/year 239 

in 2050. The combined effect of high PV demand, high magnet demand, and increased 240 

penetration rates of CIGS and gallium alloying in magnets can be seen in the M+P+ scenario. 241 

Here, demand exceeds the lowest supply potential curve already in 2029, and reaches 5200 242 

tons/year in 2050. 243 

The model results start from 2008, which allows for comparison with the reported primary 244 

production in recent years. In 2008 and 2009, most scenarios give results that are reasonably 245 

close to the reported primary production. From 2010, the reported primary production diverges 246 

from the reported high purity refining and the model results. Among the most common 247 

applications, all but NdFeB magnets require high purity gallium. It therefore seems very likely 248 

that the large growth seen in recent years is in part due to this application. The scenarios with 249 

a high penetration rate of gallium in magnets show a similar rate of growth as the reported 250 

production, but with about two years delay. 251 

There are many options to reduce the demand for primary gallium. However, the 252 

effectiveness of these options may change significantly over the next decades (Figure 3). Due 253 

to the possible shift of importance from ICs and LEDs toward magnets and PV, the impact of 254 

individual measures can be very different in 2015 and 2050. In 2015, the most effective 255 

measure is to improve collection of scrap from crystal growth and substrate production. An 256 

improvement from 63% collection rate to 98% could reduce primary gallium demand with 257 

16%. A reduced substrate thickness from 650 µm to 450 µm could lower primary demand with 258 

13%. However, this supposes that process yields remain constant, which is unlikely due to the 259 
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nature of the production process: thinner wafers break more often, and imply more scrap from 260 

cutting per kg output. Other options include recycling of gallium from magnet production scrap 261 

(from 0% to 98% collection rate: -10% demand), improved yield in crystal growth and substrate 262 

production (from 35% to 50%: -10% demand), and improved collection of IC fabrication scrap 263 

(from 10% to 98%, -9% demand). In 2050 in the M+P+ scenario, the most effective measures 264 

would be recycling of gallium from magnet fabrication scrap (-16% demand), reduced 265 

thickness of CIGS cells (-12%), improved collection of scrap from PV fabrication (-11%) or 266 

improved yield in sputtering deposition (-11%). End-of-life (EOL) recycling has almost no 267 

effect in 2015, but could contribute significantly in 2050. Some of the measures are redundant. 268 

For example, improved yield in the substrate production process has a very small effect after 269 

the introduction of near perfect collection. Increased yield in secondary production on the other 270 

hand, would have a higher impact if introduced together with increased scrap collection for 271 

recycling. The effects of individual interventions discussed here are dependent on the context 272 

of the overall system, and are therefore not cumulative. 273 

 274 

 275 
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 276 

Figure 3 Effect of system improvements on world primary gallium demand in 2015, and 2050 277 

under the maximum demand scenario (M+P+). CR = collection rate, the share given scrap 278 

collected for Ga recovery. Note that some scrap flows, e.g. magnet production scrap, are 279 

recycled today, but not for Ga recovery. The large effect of reducing substrate thickness 280 

originates from reduced losses in device manufacturing; lower yield in substrate manufacturing 281 

is not taken into account. 282 

 283 

Industry can use a portfolio of measures to secure gallium supply in the case of maximum 284 

demand and minimum supply potential (see cumulative effects for scenario M+P+ in Figure 285 

4). On the supply side, there is a high potential for reducing the loss of gallium to alumina by 286 

extracting gallium more frequently from the Bayer liquor, possibly increasing the supply 287 

potential by as much as 50%. An additional 3% increase may be obtained by improving the 288 

efficiency of the extraction process itself. Combined, these changes would lead to a 55% 289 

increase in supply and a 51% reduction of demand, which is just enough to avoid a shortage. 290 



 15 

 291 

Figure 4 Example of how to ensure sufficient availability of Ga under the maximum demand 292 

projection (M+P+) and minimum supply projection (NPC L2100), through gradual system 293 

improvements. Parameters were changed linearly to reach the best value in 2050. Areas (white 294 

to red) show cumulative effect of individual improvements on demand when they are applied 295 

in the order from top to bottom. Dashed lines show the supply potential: minimum scenario 296 

(dark blue) with reduced loss to alumina (middle blue), with both supply side measures (light 297 

blue). CR = collection rate, EOL = end-of-life. 298 

 299 

DISCUSSION 300 

This analysis did not include an estimation of the potential demand from other applications, 301 

such as low melting point alloys, catalysts and piezoelectric materials.36 To contribute 302 

significantly to future gallium demand, these applications would have to grow by several orders 303 

of magnitude. Although it seems unlikely, this possibility cannot be ruled out completely. It 304 

was further assumed that the average gallium mass fraction in bauxite remains at the current 305 

level of 49 ppm, varying between 28 ppm (Western Guanxi, China) and 75 ppm (Caribbean) 306 
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gallium by mass. While in the next few decades, average gallium content in mined bauxite is 307 

likely to remain similar to today’s, this may change in the longer term. The largest known 308 

bauxite reserves are found in Australia and Guinea. While Australian bauxites have a relatively 309 

high gallium content (59 ppm), data for those of Guinea were not available. Measurements for 310 

African bauxites (43 ppm) 34 are on average slightly lower than the current global average, 311 

however, the variation within Africa is large. 312 

We found that demand for gallium from current applications may exceed the future supply 313 

potential if the following two conditions are met: (i) the market share of gallium-containing 314 

technologies, CIGS or gallium alloying of NdFeB magnets, increases significantly from 315 

today’s level, (ii) the aluminum in-use stock grows slowly to approach a saturation level of 200 316 

kg/cap. Rapidly increasing demand from NdFeB magnets seems likely given past development, 317 

while CIGS producers face tough competition from other technologies, and have not been able 318 

to increase their market share lately.24,37 Integrated circuits and LEDs appear not to have the 319 

potential to cause large increases in demand for primary gallium although significant growth 320 

is expected. An aluminum in-use stock of 200 kg/cap is similar to current levels in the United 321 

Kingdom, France or Spain, but lower than current levels of Japan (∼350 kg/cap), Germany and 322 

Austria (∼400 kg/cap), or The United States and The Netherlands (>500 kg/cap).25 Reaching 323 

this level globally by the end of the century still implies significant growth from today’s level 324 

of 100 kg/cap, and can be regarded as a likely development. 325 

If demand grows beyond the supply potential, there are many opportunities for reducing 326 

primary gallium demand or increasing the supply potential. Recycling of manufacturing scrap 327 

can have a large impact on the overall material efficiency in the system, but may be severely 328 

limited by economics. Gallium recovery from recycling of NdFeB manufacturing scrap is 329 

currently not economic 38 because gallium prices are low 24,39 and the value of neodymium in 330 
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magnets is more than 10 times that of gallium. Similarly, both the price and weight fraction in 331 

CIGS of gallium are smaller than that of indium.40–42 End-of-life recycling could play an 332 

important role in the future, but is economically even less attractive than recycling of 333 

production scrap. Most of the gallium entering use is as an alloying element at less than 1% of 334 

the mass in NdFeB magnets, which again constitute a small part of the product in which they 335 

are used. Today, not even neodymium is recovered from this end-of-life material.43 Improved 336 

yield and thickness reductions in manufacturing of CIGS can have a large effect on primary 337 

demand, and are likely developments to reduce costs,17,29 but may render recycling less 338 

economic. Similar yield improvements cannot be expected for magnets. However, gallium in 339 

NdFeB magnets is not essential, but is used for minor improvements of the properties.44,45 340 

Hence, gallium in magnets may in the future act as a buffer: its use can be reduced if gallium 341 

demand for other applications is rising, short term or long term. Stockpiling of the byproduct 342 

metal on expectations of high demand in the future may be regarded as a viable strategy, 343 

particularly if production of the carrier metal is expected to decline. However, the large 344 

uncertainties related to future demand and the high investment risks may discourage such 345 

measures. Environmental impacts and energy requirements of extraction, possibly with no 346 

associated benefit for many years, provide another argument against this strategy. 347 

 348 

We conclude that a constraint to future use of gallium-containing technologies due to gallium 349 

supply is unlikely over the coming decades. Nevertheless, a move from primary to secondary 350 

production and substantial material efficiency improvements may be needed to meet demand, 351 

possibly already before 2030. Beyond 2050, stock saturation in the aluminum cycle could 352 

further reduce gallium supply potential and necessitate a shift towards alternative primary 353 

sources such as zinc leach residue or coal fly ash. Coal fly ash could provide a source of gallium 354 
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in the same order of magnitude as from bauxite per year,46 with extraction efficiency above 355 

60%.47 Large stocks of gallium also exist in red mud holding ponds as a result of past alumina 356 

production. Depending on the cost of extraction from alternative sources compared to the cost 357 

of increased recycling and yield improvements, shift to alternative sources may happen earlier. 358 

This study demonstrated that the future supply potential from bauxite is highly dependent on 359 

the development of the aluminum cycle. For other byproduct metals, the future resource 360 

availability may be even more complex. For example, the use of zinc is closely related to that 361 

of steel, leading some authors to discuss whether a saturation of the steel stock would also 362 

imply saturation of the zinc stock, with further implications for indium extraction as a 363 

byproduct of zinc.19 Tellurium is another example for which resource availability assessments 364 

would benefit from a more refined development of scenarios for future in-use stocks and 365 

primary production of the carrier metal, copper. 366 

In the case presented here, there is virtually no technological correlation between the use of 367 

the two metals, aluminum and gallium, which justifies an independent development of supply 368 

potential and demand scenarios. In other cases however, the opposite might be true, for 369 

example the linkage between copper production and tellurium supply. While a technology such 370 

as CdTe thin-film PV may be limited by tellurium availability, its deployment will require large 371 

amounts of copper,4 and therefore simultaneously increase the supply potential of tellurium. 372 

Such indirect correlations between the demand for a byproduct metal and its supply potential 373 

may be modelled, as has been done in case studies on the introduction of lead free solder.10,14 374 

Realizing the importance of such linkages, a natural methodological development would be the 375 

integration of several metal production and use systems in one model. While this could allow 376 

for a better representation of linkages, such integration would lead to highly complex models 377 

that may have limited usefulness for systems understanding. Order of magnitude changes of 378 
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demand for minor metals are, as illustrated here, driven by technological shifts rather than 379 

socio-economic variables such as population and affluence. The detailed knowledge of 380 

individual technologies and their production systems thus required to create reasonable 381 

scenarios may be difficult to reconcile with a complete integration of many material cycles in 382 

one model. A possible way forward could be development of integrated scenarios only for 383 

carrier metals (Al, Sn, Ni, Cu, Pb, Zn, Cr),10 which can consistently take into account the 384 

correlation between their use, socioeconomic drivers and stock dynamics. Resource availability 385 

of byproduct metals could then be evaluated over these background scenarios through case 386 

studies incorporating detailed knowledge of relevant applications and production systems. 387 

Using gallium as an example, this study showed that an assessment of the practical future 388 

resource availability of byproduct metals requires an understanding of their linkages with their 389 

carrier metals as well as a shift in the conceptualization of these resources as flows rather than 390 

stocks. As a consequence of the flow nature of byproduct mining, resource depletion of the 391 

byproduct metals is caused by the mining of the carrier metal. Extraction of a byproduct metal 392 

only reduces its concentration in carrier metal or mining waste. Current assessments of resource 393 

availability are based on resource classification systems that exclusively focus on stocks of 394 

mineral resource deposits and neglect the flow nature of byproduct mining. They are therefore 395 

insufficient to provide meaningful insights into practical future resource availability for 396 

byproduct metals. Since most of the metals considered to be critical are mined as byproducts 397 

of carrier metals, it is of highest importance to complement and harmonize efforts for the 398 

standardization of mineral information systems with efforts to characterize metal cycles and 399 

their linkages. 400 

The absence of causality between byproduct extraction and geological depletion also has 401 

important consequences for how these resources should be considered in life cycle assessments. 402 
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For example, in the CML method for life cycle impact assessment, an abiotic depletion 403 

potential is calculated for a metal from annual production and reserves.9 We argue that such 404 

depletion potential should not be assigned to byproduct metals, at least when production is far 405 

below the supply potential. To the extent that depletion of geological resources is taking place, 406 

it is driven by extraction of the carrier metal. This point has not been taken up in recent 407 

discussions on abiotic resource depletion in LCA,48,49 even though the majority of metals are 408 

produced as byproducts. 409 
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1. System definition 
 

We used a somewhat simplified system definition compared to our previous work where we quantified 

the 2011 anthropogenic gallium system. This is because some flows, e.g. into stockpiles, were not 

included in the scenario analysis. The system variable names are the same as in the previous work.1 

The system definition is shown in Figure S1. 

 

Figure S1 System definition of the global system of gallium production, manufacturing, use and recycling. Sub-flows to and 

from sub-processes 16a-e and 17a-e were also estimated. 

 

The system variables are listed in Table S1. All variables refer to the gallium content. In addition, flows 

between sub-processes, e.g. X17a-18b (GaN-LEDs used in general lighting), were calculated. 
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Table S1 Description of system variables. 

Variable name Description of variable Units 

X1-2 Bauxite input to non-Ga Bayer process tons 

X1-4 Bauxite input to Ga-extr. Bayer process tons 

X2-3 Red mud from non-Ga Bayer process tons 

X2-5 Alumina from non-Ga Bayer process tons 

X4-3 Red mud from Ga-extr. Bayer process tons 

X4-5 Alumina from Ga-extr. Bayer process tons 

X4-6 Gallium entering extraction process from Bayer route tons 

X6-11 Primary production of gallium metal from Bayer route tons 

X6-19 Loss from extraction process tons 

X6-11 Primary gallium to refining tons 

X11-12,p Refined gallium from primary production tons 

X11-12,s Refined gallium from recycling tons 

X14-11 Recycled material going to refining tons 

X14-19 Loss from recycling tons 

X13-16 Consumption of refined gallium tons 

X16-19 Loss to landfills from compound production tons 

X16-17 Total use of intermediate compounds in fabrication tons 

X16-14 Recycling from compound production tons 

X17-19 Total scrap loss to landfills from fabrication of devices tons 

X17-14 Total collected scrap from fabrication tons 

Y Maximum production of gallium from Bayer route with conventional methods tons 
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2. Model formulation 
 

A mathematical model was used to estimate the demand for refined and primary gallium as well as the 

maximum production by conventional methods (i.e. from the Bayer route). Scenarios were developed 

for the demand for the most important gallium-containing products and the maximum supply from the 

Bayer process. In the mathematical model, the driver for maximum supply is the mass of bauxite 

entering the Bayer process. The drivers of demand are: the area of GaN-LED chips entering use, the 

area of GaAs/GaP-LED chips entering use, the area of GaAs integrated circuit (IC) chips entering use, 

the area of CIGS photovoltaic cells entering use, the mass of gallium contained in NdFeB magnets 

entering use. Table S2 lists the drivers. The development of the scenarios for the individual application 

areas and bauxite entering the Bayer process is explained in section 3. 

 

Table S2. Drivers of demand and maximum supply in scenarios for future development of the anthropogenic gallium system. 

Description Symbol Units No. scenarios Scenario reference 

Bauxite entering Bayer process B mill. tons/year 18 Liu et al. 2 

GaN-LED entering use ALED1 m2/year 1 McKinsey and Company 3 

GaAs/GaP-LED entering use ALED2 m2/year 1 McKinsey and Company 3 

GaAs Integrated circuits entering use AIC m2/year 1 This work 

CIGS photovoltaics entering use APV m2/year 12 IEA,4 EPIA 5, this work 

Gallium in NdFeB magnets entering use Mmag tons/year 9 Habib and Wenzel 6 

 

In addition to the drivers, a number of parameters were used to estimate other flows in the system. The 

selection of these parameters and the determination of mathematical relationships between the different 

flows were largely based on previous work,1 and is explained in the following. 

The model parameters are listed in Table S3. 
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Table S3 Description of model input parameters. All process parameters, down to prod. of GaP substrates, from 1. 

Group Description Symbol Value Units 

Primary prod. Mass fraction of Ga in bauxite x1 4.91· 10-5 kg/kg 

 Fraction of Ga lost to red mud k1 0.38 1 

 Fraction of Ga lost to alumina k2 0.60 1 

 Extraction yield from Bayer liquor y1 0.95 1 

Secondary prod. Yield in recycling of wafer production scrap y2 0.92 1 

 Yield in recycling of fabrication scrap (devices) y3 0.80 1 

 Yield in recycling of end-of-life scrap y4 0.80 1 

Fabr. of LEDs Loss rate due to dicing of LEDs k3 0.31 1 

 Loss rate due to non-working devices LED k4 0.08 1 

 Thickness of LED chips t1 1.4· 10-4 m 

 Thickness of deposition layer of LEDs t2 4· 10-6 m 

 Deposition yield MOCVD y5 0.11 1 

 Share of GaP/GaAs LEDs fabricated on GaAs substrates h1 0.88 1 

 Collection rate of backgrinding/epitaxial lift-off scrap LEDs r1 0.30 1 

 Collection rate other LED fab. scrap r2 0 1 

Fabr. of IC Loss rate due to dicing of integrated circuits k5 0.15 1 

 Loss rate due to non-working devices IC k6 0.08 1 

 Thickness of integrated circuit chips t3 1.0· 10-4 m 

 Thickness of deposition layer t4 2.0· 10-6 m 

 Deposition yield MBE y6 0.07 1 

 Share of integrated circuits produced with MOCVD h2 0.67 1 

 Collection rate backgrinding scrap IC r3 0.10 1 

 Collection rate other scrap IC fab. r4 0 1 

Fabr. PV Loss rate due to non-working photovoltaics k7 0.08 1 

 Deposition yield photovoltaics y7 0.45 1 

 Deposition layer thickness CIGS t7 1.5· 10-6 m 

 Collection rate non-working photovoltaics scrap r5 0.70 1 

 Collection rate other photovoltaics scrap r6 0 1 

Prod. NdFeB magnets Yield in production of NdFeB magnets y8 0.70 1 

 Collection rate of magnet scrap for gallium recycling r14 0 1 

Prod. sputtering 

targets/MBE sources 

Yield in production of sputtering targets/MBE sources y9 1 1 

Prod. of TMG Yield in production of TMG y10 0.92 1 

Prod. GaAs substrates Thickness of GaAs substrates t5 6.53· 10-4 m 

 Yield in production of GaAs substrates y11 0.35 1 

 Collection rate GaAs substrate production scrap r7 0.63 1 

Prod. GaP substrates Thickness of GaP substrates t6 5.62· 10-4 m 

 Yield in production of GaP substrates y12 0.35 1 

 Collection rate GaP substrate production scrap r8 0.63 1 

Use Share of GaN-LEDs used in automotive wa 0.02 1 

 Share of GaN-LEDs used in general lighting wb 0.22 1 

 Share of GaN-LEDs used in mobile phones wc 0.08 1 

 Share of GaN-LEDs used in other consumer electronics and 

IT/telecom eq. 

wd 0.54 1 

 Share of GaN-LEDs used in wind/solar power we 0 1 

 Share of GaN-LED used in other applications wf 0.15 1 

 Share of GaAs/GaP-LEDs used in automotive qa 0.12 1 

 Share of GaAs/GaP-LEDs used in general lighting qb 0.17 1 

 Share of GaAs/GaP-LEDs used in mobile phones qc 0.03 1 

 Share of GaAs/GaP-LEDs used in other consumer electronics 

and IT/telecom eq. 

qd 0.20 1 

 Share of GaAs/GaP-LEDs used in wind/solar power qe 0 1 

 Share of GaAs/GaP-LEDs used in other applications qf 0.49 1 

 Share of ICs used in automotive ua 0 1 

 Share of ICs used in general lighting ub 0 1 

 Share of ICs used in mobile phones uc 0.55 1 

 Share of ICs used in other IT/telecom eq. ud 0.37 1 

 Share of ICs used in wind/solar power ue 0 1 

 Share of ICs used in other applications uf 0.08 1 

 Share of PV used in automotive za 0 1 

 Share of PV used in general lighting zb 0 1 
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Table S3 cont. 

Group Description Symbol Value Units 

 Share of PV used in mobile phones zc 0 1 

 Share of PV used in IT/telecom. eq. zd 0 1 

 Share of PV used in wind/solar energy ze 1 1 

 Share of PV used in other applications zf 0 1 

 Share of magnets used in automotive va 0.03 1 

 Share  of magnets used in general lighting vb 0 a 1 

 Share of magnets used in mobile phones vc 0 a 1 

 Share of magnets used in other IT/telecom. eq. vd 0.60 a 1 

 Share of magnets used in wind/solar power ve 0.01 a 1 

 Share of magnets used in other applications vf 0.36 a 1 

End-of-life Collection rate for automotive EOL gallium scrap r9 0 1 

 Collection rate for general lighting EOL gallium scrap r10 0 1 

 Collection rate for consumer electronics, IT, telecom eq. EOL 

gallium scrap 

r11 0 1 

 Collection rate for renewable energy EOL scrap r12 0 1 

 Collection rate for other EOL scrap r13 0 1 

 Expected lifetime of automobiles  µa 15 years 

 Expected lifetime of general lighting µb 10 years 

 Expected lifetime of mobile phones µc 3.25 years 

 Expected lifetime of other consumer electronics, IT and telecom 

eq. 
µd 6 years 

 Expected lifetime of photovoltaics µe1 25 years 

 Expected lifetime of wind turbines µe2 20 years 

 Expected lifetime of other applications µf 8 years 

Materials Concentration of Ga in GaN c1 5.12 g/cm3 

 Concentration of Ga in GaAs c2 2.56 g/cm3 

 Concentration of Ga in GaP c3 2.87 g/cm3 

 Concentration of Ga in AlInGaP c4 0.96 g/cm3 

 Concentration of Ga in CIGS c5 0.34 g/cm3 
a Value changes over time depending on scenario, shown for 2010. 

The following procedure was used to quantify flows based on drivers and parameters. Any parameter 

and flow is a function of time in these calculations, although not indicated. However, many parameters 

were assumed constant over time.Equation Section 2 

The amount of gallium going into use in GaN-LEDs is determined by the demand for GaN-LED area, 

the thickness of the deposition layer and the concentration of gallium in GaN: 

 17 18 1 2 1a LEDX A t c    (2.1) 

Gallium in TMG required to produce GaN-LEDs is determined by deposition yield, losses due to dicing 

of LEDs and losses due to non-working devices: 

 17 18
16 17

5 3 4(1 )(1 )

a
b a

X
X

y k k


 

 
  (2.2) 

The amount of scrap lost from fabrication of GaN-LEDs is determined by mass balance and the 

collection rate: 

  17 19 16 17 17 18 2(1 )a b a aX X X r       (2.3) 



S8 

 

The amount of scrap collected from the production of GaN-LEDs is calculated by mass balance: 

 
17 14 16 17 17 18 17 19a b a a aX X X X        (2.4) 

GaAs/GaP-LEDs going into use, calculated from device area, thickness of device and deposition layer, 

as well as the concentration of Ga in GaAs and GaP: 

  17 18 2 1 1 2 2 2 4 2 1 1 3( ) (1 )b LED LEDX A h t t c t c A h t c        (2.5) 

TMG needed for GaAs/GaP LEDs, calculated from device area, thickness, concentrations and the losses 

and yields in different fabrication steps: 

 1 2 4 1 2 3
16 17 2

3 4 5

(1 )

(1 )(1 )
b b LED

h t c h t c
X A

k k y


 


 
  (2.6) 

GaAs substrates needed for LEDs, calculated from device area, substrate thickness, concentration of Ga 

and fabrication losses from non-working devices and dicing: 

 1 5 2
16 17 2

3 4(1 )(1 )
c b LED

h t c
X A

k k
 

 
  (2.7) 

GaP substrates needed for LEDs, calculated by the same method as for GaAs substrates: 

 1 6 3
16 17 2

3 4

(1 )

(1 )(1 )
d b LED

h t c
X A

k k





 
  (2.8) 

Collected fabrication scrap from GaAs/GaP LEDs, from process yields and collection rates: 

 

 

 

2
17 14 1 2 5 1 2 1 1 2 1 2 3 4 2

3 4

2
1 6 1 2 3 1 1 1 2 3 3 4 2 16 17 5 2

3 4

c ( ) r c (t )
(1 )(1 )

(1 )( ) (1 )( ) (1 )
(1 )(1 )

LED
b

LED
b b

A
X h t t t h t k k r

k k

A
h t t t c r h t t c k k r X y r

k k





    
 

        
 

  (2.9) 

Lost scrap from fabrication of GaAs/GaP LEDs, by mass balance: 

 17 19 16 17 16 17 16 17 17 14 17 18b b b c b d b b bX X X X X X            (2.10) 

Integrated circuits into use, calculated by device area demand, thickness and concentration of Ga: 

 17 18 3 2c ICX A t c    (2.11) 

MBE targets for integrated circuits, from device area, deposition layer thickness, concentration, share 

of devices produced by MBE, fabrication losses and yields: 
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 4 2 2
16 17

5 6 6

(1 )

(1 )(1 )

IC
a c

A t c h
X

k k y





 
  (2.12) 

TMG for integrated circuits, calculated by the same method as MBE targets: 

 4 2 2
16 17

5 6 5(1 )(1 )

IC
b c

A t c h
X

k k y
 

 
  (2.13) 

GaAs substrates for integrated circuits, calculated from device area, substrate thickness, concentration 

and fabrication loss rates: 

 

 5 2
16 17

5 6(1 )(1 )

IC
c c

A t c
X

k k
 

 
  (2.14) 

Collected scrap from fabrication of integrated circuits, calculated from loss rates and process yields in 

different steps of the fabrication process as well as collection rates: 

 2 3 5 6 4
17 14 2 5 4 3 3 16 17 6 4 16 17 5 4

5 6

( ) (1 ) r (1 )
(1 )(1 k )

IC
c IC a c b a

A c t k k r
X A c t t t r X y X y r

k
         

 
  (2.15) 

Uncollected scrap from fabrication of integrated circuits, calculated by mass balance: 

 
17 19 16 17 16 17 16 17 17 18 17 14c a c b c c c c cX X X X X X            (2.16) 

Gallium in CIGS photovoltaics entering use, calculated from solar cell area, thickness of deposition 

layer and concentration of gallium in CIGS: 

 17 18 7 4d PVX A t c    (2.17) 

Sputtering targets used in fabrication of photovoltaics, calculated from solar cell area, thickness of 

deposition layer, concentration in CIGS, deposition yield and overall fabrication loss rate: 

 
16 17 7 4

7 7

1

(1 )
a d PVX A t c

y k
 


  (2.18) 

Collected scrap from fabrication of CIGS PV, calculated from solar cell area, thickness of deposition 

layer, concentration, fabrication losses, process yields and collection rates: 

  17 14 7 4 7 5 7 6

7 7 7

1 1
1

(1 ) (1 )
d PVX A t c k r y r

k y k


 
   

  
  (2.19) 

Uncollected scrap from fabrication of CIGS PV, calculated by mass balance: 
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17 19 16 17 17 18 17 14d a d d dX X X X        (2.20) 

Gallium entering use as alloying element in NdFeB magnets, given directly from scenario output: 

 17 18e magX M    (2.21) 

Uncollected scrap from magnet production is calculated from production yield and collection rate: 

 
 

 8

17 19 17 18 14

8

1
1e e

y
X X r

y
 


    (2.22) 

Input into magnet fabrication equal to mass entering use divided by fabrication yield: 

 16 17 17 18

8

1
e e eX X

y
    (2.23) 

Collected scrap from magnet fabrication is calculated from process yield and collection rate: 

  17 14 16 17 8 141e e eX X y r     (2.24) 

 

Total Ga going into use is calculated by summing up individual applications: 

 
17 18 17 18 17 18 17 18 17 18 17 18a b c d eX X X X X X            (2.25) 

Refined gallium used in the production of sputtering targets and MBE sources, calculated from use of 

sputtering targets and MBE sources in fabrication, and yield in the production of these: 

  13 16 16 17 16 17

9

1
a a c a dX X X

y
      (2.26) 

Since yield is assumed 100%, the lost scrap from manufacturing of MBE sources and sputtering targets 

is zero: 

 16 19 0aX     (2.27) 

Likewise, collected scrap is zero: 

 16 14 0aX     (2.28) 

Refined gallium used in the production of TMG, calculated by use of TMG in fabrication and yield in 

production of TMG: 
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  13 16 16 17 16 17 16 17

5

1
b b a b b b cX X X X

y
        (2.29) 

Gallium lost from TMG production calculated by input of refined gallium and production yield: 

  16 19 13 16 51b bX X y     (2.30) 

Gallium collected for recycling from TMG production is zero because collection rate is assumed to be 

zero: 

 
16 14 0bX     (2.31) 

Refined gallium used in production of GaAs substrates calculated from the use of substrates in 

fabrication and the yield in production of substrates: 

  13 16 16 17 16 17

11

1
c c b c cX X X

y
      (2.32) 

Uncollected scrap from production of GaAs substrates calculated from process input, production yield 

and collection rate: 

   16 19 13 16 11 71 1c cX X y r      (2.33) 

Collected scrap calculated from process input, yield and collection rate: 

  16 14 13 16 11 71c cX X y r     (2.34) 

Refined gallium used in the production of GaP substrates, calculated from the demand for GaP substrates 

and production yield: 

 
16 17

13 16

12

d b
d

X
X

y


    (2.35) 

Collected scrap from production of GaP substrates calculated from process input, yield and collection 

rate: 

  16 14 13 16 12 81d dX X y r     (2.36) 

Uncollected scrap from production of GaP substrates calculated from process input, yield and collection 

rate: 

   16 19 13 16 12 81 1d dX X y r      (2.37) 
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Input of gallium metal in production of NdFeB is equal to output from the same process (assumed 100% 

yield of gallium in production): 

 11 16 16 17e e eX X    (2.38) 

The loss from NdFeB production is zero: 

 16 19 0eX     (2.39) 

Likewise, the collected gallium is zero: 

 16 14 0eX     (2.40) 

The input into each end-use from each application type was calculated by multiplying the total use of a 

product (e.g. integrated circuits) with the share going to the given end-use. These equations are all of 

the same form; one example is given below, for integrated circuits going into “other IT/telecom. 

equipment: 

 17 18 17 18c d d cX w X    (2.41) 

End-of-life flows, X18a-19, X18b-19, X18c-19, X18d-19, X18e-19, X18a-14, X18b-14, X18c-14, X18d-14 and X18e-14, were 

calculated based on lifetime distribution functions and expected lifetimes of the products. The procedure 

is explained generally in chapter 3.1 under “inflow-driven model”. The distribution between process 14 

and 19 (i.e. collected and uncollected scrap), was calculated by collection rates. 

Recovered metal from recycling is equal to the inputs of different scrap types times recycling yields: 

 14 11 2 16 14 3 17 14 4 18 14X y X y X y X        (2.42) 

Loss from recycling process calculated by mass balance: 

 14 19 16 14 17 14 18 14 14 11X X X X X          (2.43) 

Input of secondary material to refining is set equal to recycled gallium, assuming all recycled gallium is 

refined: 

 11 12, 14 11sX X    (2.44) 

Refined secondary material set equal to input of secondary material to refining (assuming 100% yield 

due to internal recycling loops in refining): 

 12 13,s 11 12,sX X    (2.45) 
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Refined primary material calculated by mass balance from demand and refined secondary material: 

 12 13, 13 16 12 13,p sX X X      (2.46) 

Input of primary metal to refining set equal to demand for refined primary material (assuming 100% 

refining yield): 

 11 12, 12 13,p pX X    (2.47) 

Required primary production is equal to the input of primary material to refining plus gallium used in 

NdFeB: 

 6 11 11 12, 11 16p eX X X      (2.48) 

Input into primary production (extraction from Bayer liquor) is calculated from primary production and 

extraction yield: 

 
6 11

4 6

1

X
X

y


    (2.49) 

Losses from primary production calculated by mass balance: 

 6 19 4 6 6 11X X X      (2.50) 

Input to Bayer process with gallium extraction calculated from input to extraction process, loss rate to 

red mud and loss rate to alumina: 

 
  

4 6
1 4

1 21 1

X
X

k k


 

 
  (2.51) 

Loss to red mud calculated by input to Bayer process with Ga extraction and loss rate: 

 4 3 1 1 4X k X    (2.52) 

Loss to alumina calculated by input to Bayer process with Ga extraction and loss rates: 

  4 5 2 1 1 41X k k X     (2.53) 

Maximum primary production from bauxite is calculated from mass fraction of Ga in bauxite, total 

bauxite input to Bayer process, loss rate to red mud, loss rate to alumina and extraction yield: 

   1 1 2 11 1Y x B k k y     (2.54) 
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3. Parameter estimation 

 

Most of the parameters used in the model were estimated in a previous work 1. Some additional 

parameters were used here, mainly the average lifetimes of end-use products. We used 15 years for 

automobiles 7, 10 years for general lighting (LEDs) 3, 3.25 years for mobile phones (estimated in this 

work), 6 years for other IT and telecom equipment (based on computers) 8, 25 years for photovoltaics 

9,10, 20 years for wind turbines 11, and 8 years for all other applications. The standard deviation of the 

lifetime probability distribution function was always set to one fifth of the expected lifetime. The data 

used for scenario development are explained in the scenario development section. 

 

4. Scenario development 
 

4.1 Stock dynamics model 
 

For some of the application areas, we used dynamic models based on a lifetime distribution function 

and mass balance in the use phase. A general explanation of this model will be given here; the difference 

between each application arises from different input data and lifetime assumptions.Equation Section 4 

Inflow-driven model: 

The inflow-driven model takes the sales, Ic, in cohort year c of a product as the starting point. We used 

a normal distribution to represent the probability of a product to reach end of life after a given time in 

use. This is then used to estimate the outflow, Ot, from the use phase in all future years t: 

 
,c t c t cO I f    (4.1) 

where ft-c is the probability of reaching end-of-life in the year t. The total outflow in year t is then: 

 

 

0

t

t c t c

c c

O I f 



   (4.2) 

Note that this includes the year when the age of the product is 0, i.e. products that leave use the same 

year as they are produced, which may be a significant share for products with a short lifetime. The factor 
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ft-c is given by the lifetime distribution function, in this case a normal distribution. For t=c, the probability 

of a product leaving use the same year as it is being sold, is: 

 

   0 0.5, , (0, ,f k cdf cdf       (4.3) 

where k is a correction factor to account for the portion of the normal distribution that lies below zero, 

µ is the expected lifetime, σ is the standard deviation of the lifetime distribution function, and cdf is the 

cumulative distribution function, defined as: 

 

  
2

2

1 ( )
, , exp

22

x
x

cdf x dx


 
 

 
    (4.4) 

The correction factor is calculated as: 

 

  
1

1 (0, , )k cdf  


    (4.5) 

The probability of leaving use in all other years is given by: 

 

  ( 0.5, , ) ( 0.5, , )t cf k cdf t c cdf t c            (4.6) 

If sales (inflow) are given, the in-use stock can be calculated by mass balance from the initial stock plus 

the stock change (inflow minus outflow) in all subsequent years: 

 

  
1

0

t

t t t

t t

S S I O 



     (4.7) 

where the outflow has already been calculated using the above equations. 

 

Stock-driven model 

A stock-driven model may be used to derive the required inflow (sales) from a predefined in-use stock. 

We used this approach to create scenarios for future demand, given a pattern of in-use stock 

development. In this method we use the same relations between inflow, outflow and the stock as defined 
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above, only that the stock change is calculated first, then the outflow from previous inflows, and finally 

the required inflow in the given year. This approach has been described in previous works, and will not 

be elaborated further here.12 

  

4.2 Gallium supply 

 

The maximum supply of primary gallium, assuming current technology and practice for extraction, was 

calculated based on scenarios for primary production of aluminum. Scenarios for the aluminum cycle 

have been developed and analyzed by Liu et al.2 They used a stock-driven MFA model to derive 

production from nine different development paths of the per-capita in-use stock, where the paths are 

distinguished by stock saturation level (200, 400, 600 kg/cap) and stock saturation time (2050, 2075, 

2100). In addition, they combined the stock development patterns with different measures for reducing 

energy demand and greenhouse gas emissions from the aluminum cycle: near perfect collection of scrap, 

and material yield improvements. After stock saturation, secondary production may replace a large share 

of the primary production, such that a characteristic peak in primary production is observed some years 

before saturation. Primary production of aluminum drives the demand for alumina from the Bayer 

process, and therefore defines an upper limit for gallium extraction from conventional resources. We 

used the scenarios from Liu et al. for bauxite input to the Bayer process, assumed that the average mass 

fraction of Ga in bauxite remains the same as today, and assumed the same coefficients for loss to red 

mud and alumina. The bauxite flows for the various scenarios are shown in Figure S2. 

 

Figure S2. Bauxite input to Bayer process in different scenarios. a) No action; b) near perfect collection.  

 



S17 

 

4.3 LEDs 

 

For our purpose, LEDs can be divided into two main types: i) green, blue, violet, ultraviolet and white 

LEDs based on the GaN/InGaN system, from now on called GaN-based and ii) infrared, red, orange, 

yellow and green LEDs based on the GaAs, GaP, InGaP or AlInGaP system, from now on called 

GaAs/GaP-based. The former are mainly produced on substrates of sapphire (Al2O3) or silicon carbide 

(SiC), while the latter are produced on substrates of GaAs or GaP. We previously estimated the amount 

of gallium in each of these types from the production of substrates.1 However, to say something about 

the future demand, it is also necessary to know which products the LEDs are used in. There are several 

market reports that estimate the revenue from different applications of LEDs. Table S4 shows the 

estimated revenue-based market breakdown in 2011 for GaN-based LEDs, high-brightness LEDs and 

the total LED market from three different sources. 

 

Table 4. The LED market breakdown. Note that the application categories are from the HB-LED market report. The two others 

have more detailed categories, which have been aggregated in this table. 

 Market share 

 Total LED market 13 HB-LED 14 GaN LED market 15 

Market value $10 bn. $9 bn. $8 bn. 

Mobile appliances 19% 16% 12% 

Large display backlight 35% 30% 47% 

Lighting 25% 23% 21% 

Automotive 6% 12% 5% 

Signs and signals 14% 10% 5% 

Other applications 1% 9% 9% 

 

These estimates of the market breakdown are not consistent. For example, the HB-LED market for 

automotive is estimated to be about twice as large as the total LED market and “Other applications” is 

estimated to be only 1% of the total market while being 9% in the two other markets. Some of these 

inconsistencies are probably due to different definitions of the categories, while others simply illustrate 

the large uncertainties in such estimates. Nevertheless, these reports give some indication about the 

importance of different markets. 

 

GaN-based LEDs 

We took the total demand for sapphire and silicon carbide substrates as a starting point in 2011, and 

assumed that the price of an LED is proportional to the chip size, such that the breakdown of the substrate 

use into different application areas is the same as the revenue-based breakdown shown in the last column 

of Table 1. The total production of sapphire and silicon carbide substrates for LEDs was according to 

Yole Développement about 1.16 times that of semi-insulating (SI) GaAs in 2008, and expected to grow 
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to 2.9 times that of SI GaAs in 2013.16 A simple extrapolation of this relative size combined with an 

estimate of the SI GaAs substrate market size in 2011 17 gives a rough estimate of 39,000 m2 of sapphire 

and silicon carbide substrate produced in 2011. However, another source indicates that only about half 

of the production was used due to massive oversupply of substrates in 2011 and 2012.18 This source 

estimates that in 2011, about 30,000 m2 of sapphire substrates were produced while the demand from 

LEDs was about 15,000 m2. Silicon carbide substrates for LEDs were estimated to 2,400 m2 in 2011.16 

It has been estimated that about 115 billion GaN-based LED chips were produced in 2011 while the 

demand was about 80 billion chips.15 From these numbers we can estimate the average chip size as 0.1 

mm2, where we assumed a loss of 37% of the area in fabrication. This loss rate was estimated based on 

a wafer size of 76.2 mm (3 inches) diameter, a 5 mm wide unused edge zone, 0.03 mm cut trench and 

8% loss rate due to non-working devices and breakage. An average chip size of 0.1 mm2 seems plausible, 

while somewhat low: chips for mobile phone backlighting and keypads are usually smaller, but chips 

for general lighting can be around 1 mm2 (data sheets for various LED chips were obtained from the 

webpages of major producers: Epistar, Cree and Luxtaltek).19–21 

 

GaAs/GaP-based LEDs 

These LEDs produce infrared, red, orange, yellow or green light. They are mainly used in colored LED 

displays (e.g. for advertisement), signage, traffic lights, automotive turn lights and stop lights, and in 

colored indicator lamps. There is very little information available on the relative importance of the 

different applications for the overall demand of GaAs semiconducting substrates. According to a report 

from the United States Geological Survey, signage (including outdoor displays) was by far the most 

important category in 2010, before handheld electronic devices. However, this report seems to 

overestimates the amount of red LEDs in mobile phones, as mobile phones almost exclusively use blue 

LEDs with yellow phosphors to create backlight. Only high end TVs and monitors use red, green and 

blue (RGB) LEDs for backlighting.22 Assuming that at most 25% of these large LCDs used the RGB-

type LEDs, we can conclude that less than 10% of this market is comprised of GaAs/GaP-based LEDs. 

Some red LEDs are also used in general lighting. Architectural lighting has been the early adopter of 

LED lighting, where the ability to adjust color is often the motivation for using LEDs.3 It has been 

estimated that architectural lighting comprised about 70% of the general lighting LED market in 2011.3 

Assuming that at most 50% of architectural LEDs are RGB and only white GaN-based LEDs in other 

general lighting, we get an estimated maximum of 10% GaAs/GaP-based LEDs in general lighting. 

Traffic lights can be assumed to have 2/3 GaAs/GaP -based LEDs to produce red and orange light, the 

green being produced with GaN-based LEDs. In signage and outdoor LED displays we assume 50% 

GaAs/GaP -based and 50% GaN-based (full color displays would have 1/3 GaAs/GaP-based LEDs, 

while single color displays can have up to 100% GaAs/GaP-based LEDs). In the automotive sector, the 
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highest penetration rates for LEDs are found in the interior instrument panel (~80%), stoplights (~40%), 

daytime running lights (~15%) and mirror turn lights (~10%).23 Based on these penetration rates and the 

relative market size of different lighting components, we estimated that LEDs in automotive applications 

are currently 20% GaN-based and 80% GaAs/GaP-based. Based on these assumptions for GaAs/GaP 

share in each application category, and the market values of these (Table 1), we can estimate the 

following market breakdown of GaAs/GaP -based LEDs in 2011: 19%  LCD backlighting, 14% general 

lighting, 27% automotive, 40% signage, traffic lights and other. 

 

Future demand from key LED applications 

As far as possible, we based the scenarios for future LED demand on a lighting market report from 

McKinsey & Company.3 They used an economic model to make forecasts of the demand for lighting 

units in different application areas and with different lighting technologies. The report covers general 

lighting (including residential, hospitality, outdoor, office, architectural, shop, industrial), backlighting 

for LCD screens (handsets, TVs, PC monitors and laptop computers) and automotive, from 2010 to 

2020. According to this report, the LED general lighting and automotive markets will be about 10 and 

3 times larger in 2020 than in 2010. In backlighting, LEDs are expected to reach a maximum around 

2020 due to OLED (organic LED) screens taking over the market from LCD screens. Accordingly, it is 

expected that the demand for GaN-based white LEDs will grow dramatically. For GaAs/GaP-based 

LEDs we expect a less dramatic change since these have already reached a higher penetration rate (e.g. 

in traffic lights, signage, automotive). 

Current demand for GaN-based and GaAs/GaP-based LEDs in the four main application areas (general 

lighting, backlighting, automotive, signage and others) was estimated as explained in the above 

paragraphs. For general lighting and backlighting we used the following approach to create scenarios 

for the area of LED chips going into use:  i) the relative change in demand until 2020 from each 

application area was estimated from the McKinsey report (except signage and others); ii) after 2020 we 

assumed that demand growth is driven by population growth and increased penetration of LED lighting 

(which until 2020 was estimated in the McKinsey report). The penetration rates were assumed to follow 

a logistic curve that saturates at 90% in the future (for general lighting) or goes down to 0% (for 

backlighting). 

For automotive applications, the McKinsey report only covers the headlamp, which is currently not the 

main application of LEDs in cars. The penetration rate of LEDs in different automotive components are 

approximately: 5% in headlamp; 15% in daytime running lights and fog lamp, 10% in side lamps, 30% 

in rear lamps and 85% in interior (including dashboard).23 From these rates, we estimate that GaN-based 

LEDs had an 8% penetration rate in 2014, and GaAs/GaP-based LEDs had a 35% penetration rate in 

2014. We created scenarios by assuming that these will grow to 85% in 2030 and 2025 respectively, and 
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saturating at 90%. The number of cars going into use was taken from a previous work, where this was 

estimated using a stock-driven model of the vehicle stock, with population scenario from the UN and 

cars per capita scenario from the International Energy Agency.24 

For signage and others, we assumed a moderate growth by assuming a current LED penetration rate of 

70% that grows to 85% in 2020 and saturates at 90%, again using a logistic function. The relative growth 

in LED demand was calculated as a product of the relative population growth and the relative growth of 

the penetration rate. 

Figure S3 shows the scenarios for LED demand in terms of chip area going into use. 

 

Figure S3 Area of LEDs going into use in the modelled scenario, a) divided by type of LED, b) GaN-based LEDs by application, 

c) GaAs/GaP-based LED by application. 

 

4.4 Integrated circuits 
 

The market for GaAs integrated circuits was in 2011 dominated by mobile phones (handsets), with 55% 

of semi-insulating substrate area demand.17 The second most important use was in other wireless 

communication (e.g. laptop and tablet computers and wireless infrastructure) with around 20% of 

substrate area. When developing scenarios for integrated circuits, we used a detailed approach for 
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handsets. For all other applications, we assumed that the market remains in the same proportion to 

handsets. 

We broke down the mobile phone market into two segments: i) standard mobile phones ii) smartphones. 

This corresponds roughly to 2G and older technology (i) and 3G/4G technology (ii). The amount of 

GaAs entering use in mobile phones was calculated as: 

  phones phones standard standard smart smartA I x a x a    (4.8) 

Where Aphones is the GaAs chip area in mobile phones, Iphones is the number of mobile phones sold 

(calculated from the stock driven model), x is the market share of the indicated technology, and a is the 

area of GaAs chips per phone for the indicated technology.  

 

 

Market share of handset technology 

The number of standard phones and smartphones sold each year from 2001 to 2013 was compiled from 

various news reports from Gartner, Inc., a market analysis and advisory company that specializes on 

IT.25–34 The market share of smartphones was then modeled as a logistic function with lower value 0 and 

upper value 0.9, assuming that there will always be a market for cheaper standard phones. Data on 

handset sales, penetration rate of smartphones and projections are shown in Figure S4. 

 

Figure S4. a) World handset sales. b) Market share of smartphones versus standard handsets. 
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GaAs content in handsets 

GaAs is used in the radio frequency (RF) front end of handsets, which is the part between the antenna 

and the transceiver. Traditionally, GaAs has been used in switches and power amplifiers (PAs), but due 

to competition from silicon-based technology, it is now mainly used in PAs.17 It was estimated that 80% 

of handsets used GaAs technology in 2004,35 while in 2011 this had grown to about 90%.36 However, it 

is expected that the market share GaAs will drop to 75% by 2018 due to competition from silicon-based 

technology.36 

A typical architecture of the front end involves one PA module for the 2G frequency bands (up to four 

bands) and one additional single PA for each band in the 3G/4G modes.37 The breakdown of the handset 

market from 2008 to 2014 according to which modes and how many bands the handsets support has 

been estimated by Bolton.38 We used this information to estimate the number of 2G PA modules and 

3G/4G PAs required in new handsets. The number of 2G PA modules is one per handset (standard and 

smartphones), while we estimated the average number of 3G/4G PAs per smartphone to be 1.8 in 2008, 

2.5 in 2011 and expected to grow to 3.1 in 2014. 

A typical size for a 3G/4G PA package is 3x3 mm2,39,40 while a 2G PAM is usually around 5x5 mm2.41,42 

However, only a fraction of the package size is occupied by the GaAs chip. For a 3x3 mm2 package, the 

chip occupies about 1.35 mm2, or 15% of the area. 43 We assumed that the same fraction applies to larger 

modules, so that the GaAs chip area in a 2G PA module would be approximately 3.75 mm2. From these 

data, we estimated that the average GaAs chip area in a standard (2G) handset is 0.90*3.75 mm2=3.38 

mm2. In a smartphone (3G/4G), we estimate that the average GaAs chip area is 0.90*(3.75 mm2 + 

2.51*1.35 mm2) = 6.43 mm2. By adjusting for the growing number of PAs and changing market share 

of GaAs, we estimated that the corresponding numbers in 2008 and 2014 were  5.26 mm2 and 6.53 mm2 

respectively in smartphones. 

An estimate of the GaAs chip area per handset between 2000 and 2007 was made by Augustine in 

2004.35 It was then reported to grow from 1.5 mm2 in 2000 to 3.4 mm2 in 2007, where the latter value 

was a forecast. 

From market data on GaAs substrates,17 and yields in the fabrication process for integrated circuits,1 we 

made a top-down estimate to compare with the previous numbers. The chip area per handset was then 

found to be 5.4 mm2 per handset. This is 27% higher than our estimated 4.24 mm2 from the calculations 

explained above. Possible explanations for this discrepancy, apart from errors in the estimates, could be: 

i) use of GaAs in handset switches, ii) time lag between production of substrates. Based on the collected 

data, we created time series for the average GaAs content in standard handsets and smartphones. For 

standard handsets, we took 3.75 mm2 in 2011 as a starting point, assumed this to remain constant in the 

future, and made a linear extrapolation backwards to the estimates provided by Augustine.35 For 

smartphones, we used our own estimates for 2008, 2011 and 2014 based on the number of PAs and a 
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size of 1.35 mm2 per 3G/4G PA. For the years in between, we made a linear interpolation, and for the 

years before and after, we assumed the content to remain constant. Finally, we adjusted all the numbers 

with a constant factor, to calibrate it towards the top-down estimate based on Higham’s estimate of 

substrate area. The average GaAs chip area in handsets from the different data sources and our model is 

shown in Figure S5. 

 

Figure S5. Average GaAs chip area in handsets. The “own estimate” and the estimate based on Augustine only include power 

amplifiers, while the estimate based on Higham and the model include all use of GaAs in handsets. 

  

To calibrate a stock-driven model, we used global mobile phone subscriptions data from the UN.44 For 

many countries, mainly less developed countries, the data seem to overestimate the number of active 

subscriptions, for example because the data refers to number of registered phone numbers. To correct 

for this, we assumed that the number of mobile phones in use is equal to 0.9 times the number of 

subscriptions. The corrected values are shown as blue dots in Figure 4b). We then used these corrected 

data as inputs in a stock-driven dynamic material flow analysis (MFA) model, and adjusted the lifetime 

to fit the independent sales estimates from Gartner. We found that an average lifetime of 3.25 years gave 

the best fit. The sales modelled with the stock-driven model is shown together with the adjusted 

subscriptions data in Figure S6 a). To make a future projection, we fitted a logistic curve to the calculated 

number of handsets in use per capita. The best fit was obtained by setting the saturation value to 1.1 

mobile phones per capita, which is around current values for countries in Northern Europe. The 

estimated historic in-use stock (from subscriptions) is shown together with the fitted curve in Figure S6 

b). 
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Figure S6. a) Historic sales of mobile phones and the sales estimated with a stock-driven material flow analysis model, using 

subscriptions as a proxy for in-use stock. b) In-use stock of handsets estimated from subscription data and a logistic curve fitted 

to this data. 

Finally, the calibrated future in-use stock per capita was used in a stock-driven model to produce a 

scenario for future sales of handsets. Combined with the calibrated market penetration scenarios, this 

gave the expected future sales of standard handsets and smartphones. These are shown together with the 

historic data in Figure S7. 

 

Figure S7. Historic sales of standard phones and smartphones, and scenarios for future sales. 

The resulting scenario for integrated circuits, in terms of area of devices going into use, is shown in 

Figure S8. 
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Figure S8. Scenario for GaAs integrated circuit device area going into use. 

 

4.5 Photovoltaics 
 

For future production of copper indium gallium diselenide (CIGS) photovoltaics, we took scenarios 

from the International Energy Agency (IEA) for photovoltaic power generation as a starting point. 

Divided by the average capacity factor and the number of hours per year, this gives the installed capacity 

(in-use stock) of photovoltaics in GW. This was then used as the driver for a stock-driven model, which 

then estimates the required new installations per year in GW. This was multiplied with the market share 

of CIGS compared to other PV technologies, and divided by the standard test condition irradiance (1000 

W/m2) and the efficiency of CIGS cells, to find the area of new installed CIGS cells. Table S5 

summarizes the parameters used to create the scenarios. 

Table S5. Parameters used to create the CIGS scenarios. 

Symbol Description Units Data source 

E Delivered electricity from photovoltaics GWh/year 4 

w Capacity factor 1 9 

K Total installed PV capacity GW - 

Npv New installed PV capacity GW/year - 

kcigs Market share of CIGS in PV market 1 5 

Ncigs New installed CIGS capacity GW/year - 

S Standard test conditions irradiance W/m2 45 

e Efficiency 1 46, own assumptions 

Acigs Area of  new installed CIGS m2 - 

µpv Expected lifetime years 9,10 

σpv Standard deviation of the lifetime probability 

distribution 

years own assumption 

 

The calculation procedure is summarized in the following. The in-use stock of PV in GW was calculated 

from the delivered electricity from PV, the number of hours per year, and the capacity factor: 
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The new installed PV capacity per year was then calculated using a stock-driven model and the lifetime 

parameters, as explained in section 3.1. The area of new installed CIGS cells was calculated from the 

new installed PV capacity, the market share of CIGS, standard test conditions, and efficiency: 
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We used four scenarios from IEA for the electricity generation from PV, the 6DS, 4DS, 2DS and the 

2DS hi-ren.4 A forecast for the average capacity factor of installed photovoltaic cells was calculated 

from an IEA scenario for annual power generation and installed capacity, which assumes a slightly 

increasing capacity factor (15.6% in 2010, 16.2% in 2020, 16.3% in 2030, 16.4% in 2040, and 16.5% 

in 2050).9 We assumed an average lifetime of 25 years,9,10 which is usually taken as a minimum for 

photovoltaic panels, and 5 years as the standard deviation of the lifetime probability distribution 

function. The market share of CIGS from 2012 to 2017 was taken from a scenario from the European 

Photovoltaic Industry Association (EPIA).5 We then created three scenarios, assuming a lower 

converging value of 3% and upper converging value of 5%, 20% and 40%, and fitted a logistic function 

to the data from EPIA and one additional data point, which was set as the converging upper value in 

2050. For the efficiency of CIGS cells we assumed that it will increase linearly from the current value 

of around 11.8%,46 to reach 15% in 2050. Figure S9 summarizes the key variables and their development 

over time in the different scenarios. 
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Figure S9. a) Scenarios for electricity generation from photovoltaics, taken from IEA’s Energy Technology Perspectives 2014. 

b) New installed photovoltaics electricity generation capacity, obtained from a stock-driven model of the IEA scenarios. c) 

Market share of CIGS. Data from EPIA and our own scenarios. d) 12 scenarios for new installed CIGS panels, resulting from 

combinations of the four scenarios for total PV stock and the 3 scenarios for the market share of CIGS. 

 

4.6 NdFeB magnets 

 
Scenarios for gallium use in NdFeB magnets were developed by decomposing the demand into three 

factors, the demand for NdFeB magnets, the share of NdFeB magnets using Ga as a dopant, and the 

concentration of Ga in these magnets: 

 
magnets NdFeB Ga NdFeB magnetsM M k c   (4.11) 
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The demand for NdFeB magnets in 2012 was taken from an estimate from Roskill Information Services, 

presented in a critical raw materials report by the European Commission.47 For the future demand for 

NdFeB magnets, we took the scenarios developed by Habib and Wenzel as a starting point.6 They 

defined four scenarios, which are supposed to reflect the technological developments analyzed by the 

IEA in their baseline, BLUE map, and BLUE map high renewables scenarios, as well as an additional 

scenario that they call “100% renewables”. The first three scenarios correspond to the 6DS, 2DS and 

2DS hi-ren scenarios respectively, which we used to define the scenarios for CIGS demand. We assumed 

that the average concentration of neodymium in NdFeB magnets will remain at 26.8%.47 We note that 

the scenarios from Habib and Wenzel in general show a very high growth in demand for NdFeB 

magnets. This may be because they assumed a short lifetime of 10 years for electric vehicles (EVs), and 

because they assumed that use in computers, audio systems, electric bicycles, and electric motors will 

grow exponentially with a rate similar to projected economic growth. 

The average weight fraction of gallium in NdFeB magnets was around 0.1% in 2014,1 which is 

equivalent to 20% of NdFeB magnets containing 0.5% gallium. We assumed that the weight fraction of 

Ga in NdFeB magnets will be 0.5% when used, which is current practice.48 Starting from a 20% 

penetration rate of gallium in magnets, we created three scenarios for how it develops in the future. The 

first assumes that it remains at 20%; the second assumes that it increases gradually to 60%; the third one 

assumes that it increases gradually to 100%. In Figure S10, we show how the key parameters and 

resulting gallium demand for NdFeB magnets develop over time in the different scenarios. 
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Figure S10. a) Three scenarios for NdFeB magnet demand, based on IEA scenarios and Habib and Wenzel.6 b) Three scenarios 

for the share of NdFeB that contain Ga. c) Nine resulting scenarios for Ga in new NdFeB magnets. 

 

5. Sensitivity analysis and system improvements 
 

5.1 Sensitivity analysis 

 

A sensitivity analysis was conducted on the scenarios of minimum supply potential and maximum 

demand, by changing one parameter at the time. Table S6 shows the list of potential improvements and 

the corresponding most optimistic parameter changes. Many of the parameters are process yields and 

scrap collection rates for which it is difficult to set a realistic best value. In these cases we assumed 98% 

as a “near perfect” improvement. 
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Table S6 Parameter changes used in sensitivity analysis. 

Measure Parameters Original value New value Source 

Reduced loss to alumina in Bayer process k2 0.60 0.40 a 

Increased yield in Ga extraction from Bayer liquor y1 0.95 0.98 b 

Increased yield in secondary production y2 

y3 

y4 

0.92 

0.80 

0.80 

0.98 

0.98 

0.98 

b 

Reduced substrate thickness of GaAs t5 653 µm 450 µm 49 

Increased yield in TMG production y10 0.92 0.98 b 

Increased yield in crystal growth and substrate production y11 

y12 

0.35 

0.35 

0.50 

0.50 

b 

Increased yield in MOCVD y5 0.105 0.20 50 

Increased yield in MBE y6 0.065 0.10 50 

Increased yield in sputtering deposition y7 0.45 0.80 46 

Reduced breakage and loss from nonworking devices k4 

k6 

k7 

0.08 

0.08 

0.08 

0.02 

0.02 

0.02 

b 

Increased collection of fabrication scrap from LEDs r1 

r2 

0.30 

0 

0.98 

0.98 

b 

Increased collection of fabrication scrap from IC r3 

r4 

0.10 

0 

0.98 

0.98 

b 

Increased collection of fabrication scrap from PV r5 

r6 

0.70 

0 

0.98 

0.98 

b 

Increased recycling of Ga from magnet fabrication scrap r14 0 0.98 b 

Reduced thickness of LED deposition layer t2 4 µm 2 µm c 

Reduced thickness of IC deposition layer t4 2 µm 1 µm c 

Reduced thickness of PV deposition layer t7 1.5 µm 0.8 µm 51 

Increased yield in magnet fabrication y8 0.70 0.80 52 

EOL recycling of gallium from automobiles r9 0 0.98 b 

EOL recycling of gallium from general lighting r10 0 0.98 b 

EOL recycling of gallium from IT/telecom. eq. r11 0 0.98 b 

EOL recycling of gallium from PV and windmills r12 0 0.98 b 

EOL recycling of gallium from other products r13 0 0.98 b 

a – Assuming that Bayer liquor is removed for Ga extraction when Ga concentration has reached 100 mg/l instead of 140 mg/l. 

b – Assumed near perfect collection or process yields 

c – Assumed similar reduction as for PV 

 

 

 

 

5.2  Modeled system improvements 

 

After conducting the sensitivity analysis, the six measures with highest impact on primary Ga demand 

and the two supply improvements were selected for illustrating a possible solution to a gallium shortage. 

These were introduced in the model by letting the relevant parameters change linearly from the original 

value in 2015 to reach the new value (Table S6) in 2050. Measures were applied in the following order: 
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(i) Recycling of gallium from magnet fabrication scrap, (ii) reduced thickness of CIGS PV cells, (iii) 

increased yield in sputtering deposition, (iv) increased collection of PV fabrication scrap, (v) EOL 

recycling of gallium from IT/telecom. equipment, (vi) EOL recycling of gallium from other products, 

(vii) reduced loss of Ga to alumina, (viii) increased yield in Ga extraction from Bayer liquor. 

 

Supply improvements. The extraction of gallium from Bayer liquor is enabled by the accumulation of 

gallium that happens upon repeated recycling of the liquor in the process for dissolving and precipitation 

of aluminum hydroxides.53 The share of gallium lost to alumina increases with higher concentration in 

the liquor, and therefore depends on the number of cycles conducted. Hence, it is possible to reduce the 

loss by extracting gallium more frequently. In the original scenarios, we assumed a loss rate of 60%, 

equivalent to a concentration of around 140 mg/l. With system improvements, we assume a loss rate of 

40%, which would be equivalent to a concentration of around 100 mg/l upon extraction. In addition, we 

assumed that the extraction efficiency increases from 95% to 98%. 

Demand reductions. Recycling of Ga from magnets fabrication scrap was introduced as the first 

measure, increasing to a collection rate of 98% in 2050. Since Ga is only a very small fraction of the 

total magnet mass and recycling is currently focused on recovery of neodymium,52 this must be seen as 

a very optimistic development. Reduced thickness of CIGS cells and improved deposition yield are 

expected developments from efforts to cut material costs.51 The improved values are considered 

optimistic, but possible. Recycling of CIGS production scrap is mainly focused on recovering indium, 

but it is also possible to recover gallium.54 The assumed collection rate in 2050 is considered very 

optimistic. End-of-life recycling of gallium from IT/telecom. equipment and other products does not 

take place today. Most of the gallium entering use is contained as an alloying element in NdFeB magnets. 

As is the case for fabrication scrap, recycling is likely to focus on Nd recovery; gallium recovery from 

end-of-life products is considered a very optimistic development. 
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