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Abstract

Small intestinal (SI) neuroendocrine tumors (NET) are increasing in incidence, however little is known about their biology.
High throughput techniques such as inference of gene regulatory networks from microarray experiments can objectively
define signaling machinery in this disease. Genome-wide co-expression analysis was used to infer gene relevance network in
SI-NETs. The network was confirmed to be non-random, scale-free, and highly modular. Functional analysis of gene co-
expression modules revealed processes including ‘Nervous system development’, ‘Immune response’, and ‘Cell-cycle’.
Importantly, gene network topology and differential expression analysis identified over-expression of the GPCR signaling
regulators, the cAMP synthetase, ADCY2, and the protein kinase A, PRKAR1A. Seven CREB response element (CRE) transcripts
associated with proliferation and secretion: BEX1, BICD1, CHGB, CPE, GABRB3, SCG2 and SCG3 as well as ADCY2 and PRKAR1A
were measured in an independent SI dataset (n = 10 NETs; n = 8 normal preparations). All were up-regulated (p,0.035) with
the exception of SCG3 which was not differently expressed. Forskolin (a direct cAMP activator, 1025 M) significantly
stimulated transcription of pCREB and 3/7 CREB targets, isoproterenol (a selective ß-adrenergic receptor agonist and cAMP
activator, 1025 M) stimulated pCREB and 4/7 targets while BIM-53061 (a dopamine D2 and Serotonin [5-HT2] receptor
agonist, 1026 M) stimulated 100% of targets as well as pCREB; CRE transcription correlated with the levels of cAMP
accumulation and PKA activity; BIM-53061 stimulated the highest levels of cAMP and PKA (2.8-fold and 2.5-fold vs. 1.8–2-
fold for isoproterenol and forskolin). Gene network inference and graph topology analysis in SI NETs suggests that SI NETs
express neural GPCRs that activate different CRE targets associated with proliferation and secretion. In vitro studies, in a
model NET cell system, confirmed that transcriptional effects are signaled through the cAMP/PKA/pCREB signaling pathway
and that a SI NET cell line was most sensitive to a D2 and 5-HT2 receptor agonist BIM-53061.
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Introduction

Neuroendocrine or ‘‘carcinoid’’ tumors of the gut, usually

misperceived as a rare, indolent neoplasia, have not rigorously

been studied, are poorly understood and often misdiagnosed [1].

The perception that these tumors are rare has been altered by

introduction of diagnostic strategies including endoscopy, the

measurement of plasma biochemical markers such as Chromo-

granin A, and nuclear medicine techniques, including somatostat-

in receptor scintigraphy (SRS) [2]. A review of the current

Surveillance Epidemiology and End Results (SEER) database

indicates that small intestinal (SI) neuroendocrine tumors (NET)

comprise 24.3% of all NETs with the overall 5-year survival rate of

64.1% [3,4]. In the event of liver metastases, bioactive tumor

products enter the systemic circulation, bypassing hepatic

inactivation, and engender a ‘carcinoid syndrome’. This consists

of a variety of symptoms including episodic skin flushing, diarrhea,

bronchoconstriction, sweating and abdominal cramping, and as

many as 30–50% of individuals may have cardiac valvular disease

[5].

Although the cell of origin of SI NET has been identified as the

enterochromaffin (EC) cell, the secretory and proliferative

regulation of these cells is poorly defined and, as a result, progress

in the development of effective therapeutic strategies for diseases

associated with the cell, e.g. NETs or Crohns disease [6], has been

limited. The principal secretory product of the EC cell is serotonin

(5-HT), although substance P (motility regulator) and guanylin

(secretory regulator) have also been identified [7–9]. The most

successful therapy, to date, has been somatostatin analogs which

activate inhibitory G-protein coupled receptors (GPCRs) and
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result in decreased secretion of bioactive products with concom-

itant amelioration of symptoms [10–12].

GPCRs represent the largest family of cell-surface molecules

involved in environment sensing and signal transmission, account-

ing for .2% of the total genes encoded by the human genome

[13]. Mutations in GPCRs and Ga subunits have been identified in

endocrine tumors and are often associated with symptoms caused

by unregulated hormonal secretion. For example, activating

mutations of the thyroid stimulating hormone receptor (TSHR)

are found in some thyroid carcinomas and approximately 80% of

thyroid adenomas, while germline mutations in TSHR cause

familial non-autoimmune hyperthyroidism [14]. In the GPCR-

mediated downstream signal transduction system, cyclic AMP

responsive element-binding (CREB) protein has been shown to be

an important transcription factor that is involved in the

progression of hepatocellular carcinoma, leukemia, pituitary

tumor, and lung cancer through control of cell function (secretion,

proliferation, angiogenesis and apoptosis) [15–17]. To date, the

cAMP/CREB mechanism in SI NETs has not been demonstrated.

In our previous evaluation of transcriptome analyses (Affymetrix

U133 Plus chips) of the normal human EC cell and GI NET cell

line KRJ-I, we identified candidate luminal GPCRs and neural/

hormonal GPCRs including b1 adrenergic and dopamine D

receptors (DR) [18,19]. Further investigation demonstrated that

isoproterenol, a ß-adrenergic GPCR agonist, stimulated 5-HT

secretion through increased intracellular cAMP [20]. Others have

shown, in PC12 (rat pheochromocytoma cells), HEK293T

(Human Embryonic Kidney cells) and the pancreatic beta cell

line, MIN6, that activation of the cAMP pathway stimulates gene

expression through protein kinase A (PKA)-mediated phosphor-

ylation of CREB at Ser-133 [21,22]. Since little is known about

neoplastic EC cell transcription and proliferation or secretion, we

considered that delineation of the molecular basis of GPCR-

mediated transcription through cAMP/PKA/CREB would pro-

vide novel information regarding the mechanistic basis of these

processes and facilitate the identification of new therapeutic targets

that might be used to inhibit NET function. As these tumors

autoregulate their own growth through amine production [23] and

regulate the local microenvironment (e.g. stimulate fibroblast

proliferation and secretion) [24], delineating GPCR-pathways may

identify novel targets to inhibit tumor cell proliferation.

We used gene network analysis and identified in silico the

cAMP/CREB-mediated mechanisms of transcription in SI NETs.

Using an established SI NET model, the human EC cell line

(KRJ-I) [25], we validated GPCR-mediated transcription of

CREB targets through cAMP/PKA/pCREB-activation in SI

NETs. Our results provide novel information regarding the

transcription of CREB response elements (CREs) known to be

relevant to tumor proliferation and secretion that are activated by

GPCR regulation of intracellular cAMP. Furthermore, we offer

the first formal network topology analysis of this disease.

Results

1. Systems-wide properties of a SI NET gene
co-expression network

Gene co-expression patterns reflecting the pathogenesis of SI

NETs were represented as undirected weighted network where

nodes correspond to genes and edges correspond to co-expressions

between them. We examined the network by systematically testing

the Pearson correlation coefficient (PCC) cut-off in the range from

0.5 to 1 (Figure S1). Only gene pairs with an absolute PCC$0.94

were included in the network. The reasons for selecting such

stringent cut-off (0.94) were three-fold: i) gene correlation profiles

with PCC over 0.60 are known to be more biologically relevant

[26], ii) at PCC,0.94 the network was excessively large (most of

the nodes were present), suggesting evidence of false-positive

edges, iii) at PCC$0.94, a large number of connected components

emerged, while the overall network density remained high,

suggesting that genes were organized into tightly interconnected

modules that may be functionally relevant (Figure S1). The final

network contained 3470 genes and 4549 links (average node

degree = 2.6). Of these, 788 (23%) genes have known tumorigenic

somatic mutations (obtained from the Catalogue of Somatic

Mutations in Cancer [COSMIC] database).

It has been suggested that, in a co-expression network,

functionally related genes tend to organize into tightly linked

communities [27]. The Louvain algorithm was used to identify

these functional modules in the SI NET network in an unbiased

manner (see Methods). The network was partitioned into 882

clusters, of which 10 contained .20 genes. Network modularity

was 0.86, confirming that the SI NET interactome is embedded

with highly interconnected modules, reinforcing the complex

nature of signaling cascades in this disease (Figure 1A). The top

10 clusters were enriched for Gene Ontology (GO) Biological

Process (BP) terms. The most enriched terms included ‘Nervous

system development’ (BEX1, SYN1, GRIA2), ‘Immune response’

(CD38, IGKC, SLAMF8), and ‘Cell cycle’ (ASPM, MKI67,

TOP2A).

To determine the overall architecture of the SI NET

interactome, the node degree frequency distribution was calculat-

ed and established to be ‘‘scale-free’’ (Figure 1B). Generally, a

scale-free architecture implies that most of the connections are

confined to a few highly interconnected nodes (hubs) – a hallmark

of most biological networks. However, it is possible to reconstruct

similar connectivity patterns using random edge rewiring. To

confirm that the SI NET network was non-random, we compared

it to two models of random networks (see Methods): the Maslov-

Sneppen model (scale-free architecture, preserved node degrees,

randomly rewired edges) and the Erdős–Rényi model (preserved

number of nodes, edges are constructed using a random Gaussian

probability distribution). For each model, 200 random networks

were generated and intersected with the original SI NET graph.

On average, the Maslov-Sneppen and the Erdős–Rényi networks

shared 78.3 (standard deviation = 7.7) and 229.1 (standard

deviation = 15.3) links with the SI NET interactome respectively

(Figure 1C). This substantiates the hypothesis that the original

network is significantly non-random (minimal z-score = 282.3).

To assess the stability of the SI NET network, we measured the

effects of random (error) and targeted (attack) node removal on the

network diameter. Removal of random nodes had no effect on the

diameter, suggesting that the SI NET interactome was robust

against random mutations. However, targeted removal of the most

connected hubs, as predicted, caused the network to collapse

(Figure 1D).

2. In Silico Prediction of CREB Targets
Interestingly, 940/3470 genes (27%) in the SI NET network

were differentially expressed (student’s t-test, p#0.05). Of these,

539 were up-regulated and 401 were down-regulated compared to

normal SI mucosa. Eight genes (CHGA, CPE, ENO2, INSM1,

PTPRN2, SERPINA10, and SLC18A1/2) that have been

previously identified as markers of neuroendocrine tumors [28–

31] were confirmed in this study to be altered. Automated KEGG

pathway analysis (using the DAVID Functional Annotation

Database) of differentially expressed genes, identified an over-

represented (p = 0.03) GPCR signaling pathway characterized by

an over-expression of cyclic AMP synthetase and adenylate cyclase

CREB Targets in Carcinoid Disease
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2 (ADCY2, t-value = 6.0) and ADCY9 (t-value = -3.8), and a PKA

responsible for phosphorylation of the CREB transcription factor,

PRKAR1A (t-value = 2.8) (Figure S2). The Wnt signaling

pathway was also identified. These findings are consistent with

previous studies in vitro of small intestinal and pituitary NET cell

lines investigating cAMP recruitment through a GPCR complex

and downstream elements of CREB phosphorylation [20,32–36].

We next compared up-regulated genes to a CREB Target Gene

database (http://natural.salk.edu/CREB/) to identify potential

CREs in SI NETs. Using a confidence level for the binding value

(BV),0.001 and a binding ratio (BR).1.5, which are considered

to be significant for the identification of CREs [22], a list of 123

genes representing putative CREB binding targets and cAMP

response elements was compiled. Interestingly, the putative CREs

localized only to the ‘Synaptic transmission’ and ‘Nervous system

development’ clusters of the SI NET interactome, which is

consistent with the biological function of known CREB targets as

well as the nature of the neuroendocrine system [37] (Figure 2A).

We specifically selected for further investigation the CREs (BEX1,

BICD1, CHGB, CPE, GABRB3, SCG2, and SCG3) given their

known association with the regulation of cell function

[16,29,30,38–40] (Table 1).

3. Real-time PCR Validation of the Gene Expression
Analysis

To confirm the over-expression of CRE transcripts in SI NETs,

we measured transcript expression by real-time PCR (RT-PCR) of

n = 7 CREB targets (Table 1) in the SI NET cell line KRJ-I

(n = 10) and in normal EC cell preparations (n = 8) (Figure 2B).

Transcript levels were normalized to expression of housekeeping

genes ALG9, TFCP2, and ZNF410 as described [41] using

GeNorm [42]. Levels of BEX1, BICD1, CHGB, CPE, GABRB3

and SCG2 were up-regulated in SI NETs (p,0.05) while

Secretogranin III (SCG3) was not differently expressed, p = 0.24

(Figure 2B).

Additionally, we measured transcription of ADCY2 and

PRKAR1A. Levels of these upstream CRE pathway regulators

were elevated 700% and 722% respectively, in KRJ-I (p = 0.02)

compared to normal EC cells (Figure 2B).

Figure 1. Network analysis of the SI NET interactome. 1A) The SI NET network and top 10 functional gene clusters identified using the Louvain
algorithm and enriched for Gene Ontology (GO) Biological Process (BP) terms. 1B) Node degree frequency distribution for the SI NET gene co-
expression network. 1C) Comparison of the SI NET network to random graph models generated by using the Erdős–Rényi and Maslov-Sneppen
algorithms. 1D) Change in stability of the SI NET network following the removal of highly connected genes (attack) and random genes (error).
doi:10.1371/journal.pone.0022457.g001
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4. In vitro model of CRE transcription
To evaluate whether these genes were regulated through the

cAMP signaling pathway in vitro, we investigated their expression

in KRJ-I. CRE transcription was measured by stimulating KRJ-I

cells with the cAMP activator forskolin (1026 M and 1025 M), the

selective b-adrenergic receptor agonist isoproterenol (1025 M),

and the dopamine D2 (D2R) and Serotonin (5-HT) receptor

agonist BIM-53061 (1026 M) (Figure 3) for two hours. While

ADCY2 was significantly upregulated only by forskolin (1025 M,

220%, p,0.03), PRKAR1A transcripts were up-regulated both by

forskolin and BIM-53061 (188%, p = 0.0004, and 153%, p = 0.021

respectively). Lower concentrations of forskolin (1026 M) did not

stimulate transcription of either ADCY2 or PRKAR1A. Overall,

BIM-53061 was a universal CRE activator (100% of target genes

transcriptionally activated), while the effects of forskolin (1025 M,

,42% activated) and isoproterenol (,57% activated) were less

pronounced.

5. cAMP/PKA and pCREB activation in vitro
Next, to confirm that the mechanisms regulating CRE

transcription occurred through the cAMP signaling pathway, we

measured cAMP in response to each of the ligands in the KRJ-I

cell line. Twenty minute incubation with forskolin (1025 M),

isoproterenol (1025 M) or BIM-53061 (1026 M) all increased

intracellular cAMP accumulation 1.72-fold, 1.67-fold, and 2.78-

fold respectively compared to control (p,0.05). Lower concentra-

tions of forskolin (1026 M) had no effect on cAMP accumulation

(Figure 4A). PKA activity was similarly stimulated by these agents

in the order of BIM-53061 = forskolin (1025 M) (2.2–2.4-fold).i-

soproterenol (1.85-fold) (Figure 4B), as was pCREB (BIM-

53061 = forskolin (1025 M) (1.75–1.9-fold).isoproterenol (1.2-

fold) (Figure 4C).

Discussion

The role of the cAMP signaling pathway in the regulation of

tumor CREB-mediated transcription has not previously been

investigated in gastrointestinal NETs. In the current study, using a

transcript database of SI NETs and normal SI mucosa we

demonstrated: 1) transcripts of ADCY2, a member of the adenylate

cyclase family, are up-regulated in SI NETs and KRJ-I; 2)

intracellular accumulation of cAMP is stimulated by forskolin,

Figure 2. ADCY2, PRKAR1A, and CREB response elements expression examined by Real-time PCR. 2A) Identification of putative CREB
response elements in the SI NET interactome. 2B) Transcripts of ADCY2, cAMP synthetase, and PRKAR1A, a key member of the PKA, were up-regulated
in KRJ-I, (700% and 722% respectively, p,0.02 compared to normal). Six of 7 CRE transcripts were confirmed to be over-expressed in SI NETs (p,0.05)
with the exception of SCG3 (p = 0.24). MEAN6SEM (nTumor = 10, nNormal = 8).
doi:10.1371/journal.pone.0022457.g002
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isoproterenol and BIM-53061; 2) intracellular PKA activity and

pCREB is stimulated by these agents; 4) cAMP-dependent protein

kinase, PRKAR1A, is over-expressed in SI NETs and KRJ-I cells; 5)

CREs are differentially transcribed when subject to a classic cAMP

activator, a selective ß-adrenergic receptor agonist, or a selective

D2R and 5-HT receptor agonist. Additionally, we performed the

first formal large scale network topology assessment of SI NET

disease.

Initially, using gene network inference, we reconstructed the SI

NET co-expression network from genome wide expression levels

obtained from microarray profiling. The network (Table S1) was

determined to be scale-free, non-random, and topologically stable.

This suggests a system that is dominated by a few highly connected

biologically relevant hubs and that is ‘‘protective’’ against random

perturbations (e.g. mutations). Indeed, this is consistent with the

behavior of most cellular networks [43] and confirms that the

biology of SI NETs can be further probed using graph-theory

approaches. The advantage of this approach is that it allows the

study of significant genes in relation to the entire system rather

than by merits of up- or down-regulation alone. For example,

node betweenness centrality as well as node degree have been

previously reported as possible indicators of gene essentiality [44].

We computed these statistics for every gene in the SI NET

network. Thus our dataset can further be explored using

functional assays utilizing network topology as well as differential

expression.

Highly modular structure of the SI NET network was explored

using an unbiased graph clustering technique (the Louvain

algorithm). The method is a greedy optimization method that

attempts to optimize the modularity [45] of a partition of the

network. We identified 10 modules (.20 genes) in the SI NET

that were subsequently enriched for GO-BP terms including

‘Nervous system development’ and ‘Cell cycle’. The functional

cluster heterogeneity suggests that the SI NET disease is a multi-

modal entity with complex metabolic, hormonal, and proliferative

cascades that call for a systems-wide assessment as well as

traditional approaches.

We used differential expression analysis to map significantly

changed genes onto the SI NET network to increase the biological

utility of the analysis. Most of the significantly changed genes

formed tight networks involved in transcription, secretion, cell

proliferation, tissue development, embryonic development and

extracellular matrix regulation. Using the DAVID functional

annotation tool [46], it was determined that cAMP/CREB

signaling cascade was highly upregulated in SI NETs (Figure
S2). It was of interest to note that the statistical enrichment also

identified that the Wnt signaling pathway was similarly altered. It

was previously suggested that the cAMP/CREB signaling may

also contribute to Wnt-regulated processes in cancer [47]. It

appears that our network analysis reiterates this concept; however,

further implications of this finding in NET biology need to be

investigated.

We further explored the CREB mechanism in silico by

identifying possible CREB binding targets and cAMP response

elements among the significantly altered genes using the Salk

CREB Target Gene database [22]. These CRE targets encoded

genes responsible for nucleosome assembly (NAP1L3, TSPYL4),

regulation of transcription (TERF2IP), organism development

Table 1. 7 CREB targets assessed by Real-time PCR in a SI NET database and the KRJ-I cell line.

Gene Symbol Gene Title CREB p-value
CREB binding
ratio GO Biological Process

Chromosomal
Location

BEX1 brain expressed, X-linked 1 5.00E-05 2.1 multicellular organismal development Xq21-q23

nervous system development

cell differentiation

BICD1 bicaudal D homolog 1 (Drosophila) 1.30E-03 1.7 RNA processing 12p11.2-p11.1

intracellular mRNA localization

anatomical structure morphogenesis

CHGB chromogranin B (secretogranin 1) 7.50E-08 3 — 20pter-p12

CPE carboxypeptidase E 1.10E-12 7.4 protein modification process 4q32.3

proteolysis

neuropeptide signaling pathway

metabolic process

insulin processing

GABRB3 gamma-amino[10]butyric acid
(GABA) A receptor, beta 3

1.20E-02 1.5 Transport 15q11.2-q12

signal transduction

SCG2 secretogranin II (chromogranin C) 1.70E-04 1.9 MAPKKK cascade 2q35-q36

Angiogenesis

regulation of endothelial cell proliferation

cell motility

inflammatory response

intracellular signaling cascade

protein secretion

SCG3 secretogranin III 2.50E-05 2.2 — 15q21

doi:10.1371/journal.pone.0022457.t001
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(BEX1, INA), secretion (CHGB, SCG2, SCG3, SYN1) and adhesion

(TRO). Because we were specifically interested in genes involved in

cAMP-mediated secretory processes, we examined this subset

further.

The accumulation of cAMP in response to activation of GPCRs

induces a wide range of cellular processes including transcription,

metabolism, cell cycle progression and apoptosis through the PKA

pathway [48]. In this study, transcript of PRKAR1A, the type

1alpha regulatory subunit (RIalpha) of PKA, was up-regulated in

KRJ-I and stimulated by forskolin and BIM-53061. This is

consistent with the function of these compounds as inducers of the

cAMP pathway. The selective D2R and 5-HT receptor agonist,

BIM-53061 appears to be at least as potent a cAMP recruiter as

either forskolin or isoproterenol particularly for secretory gene

transcription. This suggests the involvement of the dopamine/5-

HT-mediated pathway in the recruitment of intracellular cAMP/

PKA activation. In addition, PRKAR1A transcript levels stimulated

by BIM-53061 were consistent with the accumulation of

intracellular cAMP suggesting a direct involvement of neural

GPCR receptor activation with ADCY2 and PRKAR1A recruitment

and subsequent PKA-induced CREB phosphorylation.

We have demonstrated that elevation in cAMP is associated

with normal and neoplastic EC cell secretion [18,49]. In the

present study, we identified elevated levels of ADCY2 and

PRKAR1A transcripts in a database of SI NETs compared to

normal SI mucosa, suggesting that cAMP signaling may indeed be

activated in tumor cells [32,50]. ADCY2 is a class B member of

the Adenylate Cyclase (ADCY) which is calcium insensitive but is

stimulated by Gbc subunits of heterotrimeric G-proteins and is

therefore directly coupled with GPCRs [35]. In the KRJ-I cell line,

transcript levels of ADCY2 were sensitive to forskolin and BIM-

53061, which suggests that cAMP-induced transcription may

occur through activation of this cyclase regulator in the KRJ-I cell

line.

Cellular gene expression is regulated following CREB protein

phosphorylation at serine residue 133 [21,51]. This occurs as a

consequence of cAMP accumulation which liberates the C

subunits of PKA that passively diffuse into the nucleus and induce

CREB phosphorylation. CREB is an important transcription

factor activated by multiple signal transduction pathways in

response to external stimuli, including synaptic activity, hormones,

growth factors, cytokines, and stress [15]. It affects cellular

Figure 3. In vitro assessment of ADCY2, PRKAR1A, and CREB response elements transcripts. ADCY2 responded to cAMP activator forskolin
(1025 M: 220%) (3A), while PRKAR1A was stimulated by forskolin and dopamine D2 and 5-HT2 receptor agonist BIM-53061 (1026 M) (188% and 153%
respectively) (3B). BIM-53061 was a universal CRE activator, while forskolin had a less pronounced effect (3C–I). The selective ß-adrenergic receptor
agonist isoproterenol (1025 M) stimulated transcription of BEX1, BICD1, SCG2 and SCG3. Forskolin (1026 M) had no effect. *p,0.05 vs. CON.
MEAN6SEM (n = 6).
doi:10.1371/journal.pone.0022457.g003
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functions and enhances growth, increases angiogenesis, and

decreases apoptosis. We identified in silico and demonstrated in

vitro cAMP-mediated regulation of seven putative CREB targets –

BEX1 (modulates nerve growth factor [NGF] signaling through

nuclear factor-kappaB [NFkB] to regulate cell cycle, apoptosis,

and differentiation in neural tissues [38]), BICD1 (structural

constituent of cytoskeleton [39]), CHGB (neuroendocrine cell-

specific gene, which may play a role in early tumor development

but is also a NET secretory product [16,52], CPE (pulmonary

NET marker [29]), GABRB3 (characteristic GABA receptor of

normal and neoplastic human EC cells and controlled through

CREB [20,36,40]), SCG2 (secreted neuroendocrine marker

observed in prostatic small-cell neuroendocrine carcinoma [30])

and SCG3 (secretory product commonly expressed in pituitary

adenomas [53]). In vitro investigations of these CREs indicate that

cAMP activation through either adenylate cyclase activation

(forskolin) or through neural GPCR activation (isoproterenol and

dopamine/5-HT) resulted in gene expression. CRE transcription

correlated with cAMP levels: BIM-53061, which was associated

with the highest cAMP (2.8-fold) accumulation, was also associated

with the majority of genes transcribed (100%). Both forskolin and

isoproterenol stimulated cAMP levels 1.8-fold and were associated

with 42–57% of target genes being transcribed. The suggestion

that gene transcription was cAMP concentration-dependent was

reinforced by the observation that forskolin (1026 M), which did

not significantly elevate cAMP, was not associated with CRE

target transcription. Similar investigations in the rat pituitary cell

line GH4 have shown that forskolin-induced cAMP accumulation

results in an increase of prolactin and growth hormone gene

transcription [54], suggesting that a single intracellular mediator

can simultaneously regulate the transcription of different sets of

responsive genes by stimulating independent biochemical events.

The study provides an illustration of how genome-wide network

inference can be used to infer CRE-mediated transcription in

neoplastic cell lines and has implications for defining the

mechanisms of NET proliferation and secretion. Similar studies

examining the progression of cancer [55,56], heart disease [57],

neuropsychiatric disorders [58,59], asthma pathogenesis [60], and

the analysis of factors associated with infertility [61] have provided

information in regard to these disease processes. We propose that

the application of this methodology to the investigation of NETs or

other diseases associated with abnormal EC cell secretion, like

Crohn’s disease [6] or IBS [62], will provide significant

mechanistic information on the cell regulatory phenomena. Our

current data demonstrates that neoplastic EC cells over-express

regulators in the cAMP signaling pathway and that activation of

neural GPCRs results in proliferative and secretory gene

transcription thus providing novel information regarding the

neural activation of tumor behavior. This investigative strategy,

that emphasizes co-expression network inference, provides a useful

tool to define and delineate the mechanisms involved in the

mechanistic cellular basis of the clinical manifestations of NET

disease. It is likely that the application of this technique will

facilitate the identification of specific regulatory elements that can

be targeted for therapeutic gain.

Materials and Methods

Statistical analyses of Affymetrix GeneChip data
Raw expression data for each of the 13 microarray experiments

(Affymetrix U133A; normal mucosa: n = 4; primary SI NETs:

n = 9) was normalized using the MAS5.0 algorithm available

through the Bioconductor suit [63] for the R statistical language

[64]. Affymetrix probe identifiers (IDs) were mapped to their

corresponding Ensembl (September 26, 2010) gene IDs [65]. In

cases where multiple probesets mapped to a single gene, only

median signal intensity was retained. Data is deposited in the

ArrayExpress database (accession number: E-GEOD-6272).

Gene Network Inference
Pairwise similarity in gene expression vectors was expressed by

the PCC. Gene pairs that correlated above a predefined PCC

threshold value were represented in the form of an undirected

weighted network, where nodes (vertices) correspond to genes and

links (edges) correspond to co-expression between genes. The

Maslov-Sneppen randomized network model was generated by

Figure 4. Functional assessment of the cAMP pathway in the KRJ-I cell line. 4A) Intracellular cAMP accumulation in KRJ-I cell line.
Stimulation with forskolin (1025 M), isoproterenol (1025 M) or BIM-53061 (1026 M) increased cAMP accumulation in vitro 72%, 67%, and 178%
respectively. Forskolin at lower concentrations (1026 M) had no effect. *p,0.05, **p = 0.006 vs CON. MEAN6SEM (n = 3). 4B) PKA activity in the KRJ-I
cell line. Stimulation with forskolin (1025 M), isoproterenol (1025 M) or BIM-53061 (1026 M) increased PKA activity in vitro 142%, 85%, and 122%
respectively. Forskolin at lower concentrations (1026 M) had no effect. *p,0.05, **p,0.01 vs. CON. MEAN6SEM (n = 4). 4C) Phospho-CREB(Ser133)
activation in KRJ-I cell line. Stimulation with isoproterenol (1025), BIM-53061 (1026 M) or forskolin (1025 M) increased CREB phosphorylation at the
Ser133 site after 15 mins by 122%, 175% and 192% respectively. *p,0.05 vs. CON. MEAN6SEM (n = 3).
doi:10.1371/journal.pone.0022457.g004
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rewiring edges in the original network while preserving the degrees

of the respective nodes [66]. The number of rewiring steps taken

for each model was 46 (number of edges). This method ensures

that the topological structure of the network is retained during

randomization. The Erdős–Rényi random model was generated

by retaining the nodes of the original network and building edges

using a uniform probability [67].

Network Topology Concepts
Topological properties examined were node degree, network

diameter, betweenness centrality, connected components, cluster-

ing coefficient, and modularity [68]. Node degree is defined as the

total number of edges that connect to a given node. Network

diameter is defined as the average shortest path between any pair

of nodes in the network. Betweenness centrality is the measure of

node importance within a graph, where nodes that occur on many

shortest paths between nodes have higher betweenness. Connected

components are maximal connected subgraphs of an undirected

graph in which any two vertices are connected to each other by

edges. Clustering coefficient is the degree to which nodes tend to

cluster together. Modularity quantifies the capacity of a network to

divide into clusters or communities. Higher modularity indicates a

favorable partition.

Network clustering and functional enrichment
Clusters of genes in a co-expression network were identified

using the Louvain method, a fast algorithm for community

detection in graphs [69]. The Louvain method is a greedy

algorithm for iterative grouping of nodes into communities based

on optimization of modularity [45]. A distinct advantage of this

method is its parameter-free architecture that allows unbiased

exploration of network structure. Because clusters of co-expressed

genes are known to be functionally related [27], functional

enrichment for GO-BP terms was performed. For a cluster with n

genes and an a priori defined functional category with K genes, the

hypergeometric test was used to evaluate the significance of the

overlap k between the cluster and a functional category [70]. All

genes in a network were used as reference.

Pathway Analysis
Over-represented pathway analysis was performed using the

DAVID functional annotation tool [46] and prediction of CREB

target phosphorylation was assessed using CREB target gene

database (http://natural.salk.edu/CREB/) [22] with a confidence

level of the binding value (BV)#0.001 and a binding ratio

(BR)$1.5.

Validation and in vitro experiments
Culture Conditions. KRJ-I cells, derived from a ‘‘typical’’ SI

NET [18,71], were cultured as floating aggregates at 37uC with

5% CO2. Cells were kept in Ham’s F12 medium (GibcoTM)

containing 10% fetal bovine serum (FBS) (Sigma-Aldrich),

penicillin 100 U/ml, and streptomycin 100 mg/ml [18,25].

Real-Time PCR. To validate the presence of genes involved

in cAMP-mediated transcription pathway, two approaches were

undertaken. In the first approach, transcripts for selected CREs,

ADCY2, and PRKAR1A were measured in an independent data set

of neoplastic EC cell line KRJ-I (n = 10) and normal EC cell

preparations (n = 8) using real-time PCR. In the second approach,

the effect of forskolin (1025 M and 1026 M), isoproterenol

(1025 M), and BIM-53061 (1026 M) was measured on target

transcription in KRJ-I cells. KRJ-I cells (56104 cells/well, in

triplicate) were stimulated for 2 hours and RNA was extracted

from 16106 cells in log phase growth (TRIZOLH, Invitrogen,

USA). Real time RT-PCR analysis was performed using Assays-

on-DemandTM products and the ABI 7900 Sequence Detection

System according to the manufacturer’s suggestions. Cycling was

performed under standard conditions (TaqManH Universal PCR

Master Mix Protocol) and data normalized using GeNorm [42]

and expression of the novel house-keeping genes, ALG9, TFCP2

and ZNF410 [41].

cAMP and PKA Activation. To test whether KRJ-I cells

were physiologically responsive to neural GPCR agonists,

intracellular cAMP accumulation in response to the three

stimulants after 20 mins was assayed using a cAMP ELISA

assay (R&D Research, Minneapolis, MN). PKA activity was

quantitated in the same samples (Enzo Life Sciences, Butler Pike,

PA). Cells (56104 cells/well, in triplicate) were stimulated with

forskolin (1025 M, 1026 M), isoproterenol (1025 M), and BIM-

53061 (1026 M) after which cells were lysed with 0.1 N HCL and

freezing. All samples and controls were acetylated prior to

performing the cAMP ELISA (R&D cAMP ELISA handbook).

PKA activity was determined according to the manufacturer’s

recommendations. Lysed samples were incubated with 20 ml PKA

reaction mixture at 30uC for 30 min. The reaction was terminated

and activity quantitated versus levels of a highly specific substrate

using an ELISA protocol. Absorbance readings for either cAMP or

PKA were measured at 450 nm on a microplate reader (Bio-Rad

3500).

pCREB quantitation - western Blotting. KRJ-I cells

(46105 cells/ml) were seeded in 6 well plates (Falcon, BD,

Franklin Lakes, NJ) and treated with each of the agents for 15 and

60 mins. After cells were harvested, whole-cell lysates were

prepared by adding 200 ml of ice-cold cell lysis buffer (106
RIPA lysis buffer (Millipore, Billerica, MA), complete protease

inhibitor [Roche, Indianapolis, IN], phosphatase inhibitor set 1&2

(Calbiochem, Gibbstown, NJ), 100 mM PMSF (Roche), 200 mM

Na3VO4 (Acros Organics), 12.5 mg/ml SDS (American

Bioanalytical, Natick, MA). Tubes were centrifuged at 12,000 g

for 20 min and protein amount in the supernatant was quantified

using the BCA protein assay kit (Thermo Fisher Scientific,

Rockford, IL). For western blot, total protein lysates (20 mg)

were denaturated in SDS sample buffer, separated on an SDS-

PAGE gel (4, 10%) and transferred to a PVDF membrane (Bio-

Rad, Hercules, CA, pore size 0.45 mm). After blocking (5% BSA

for 60 min at room temperature) the membrane was incubated

with the phospho-CREB (Ser133) primary antibody (Cell

Signaling Technology, Danvers, MA) in 5% BSA/PBS/Tween

20 overnight at 4uC. The membranes were incubated with the

horseradish peroxidase-conjugated secondary antibodies (Cell

Signaling Technology) for 60 min at room temperature and

immunodetection was performed using the Western LightningTM

Plus-ECL (PerkinElmer, MA). Blots were exposed on X-OMAT-

AR films. The optical density of the appropriately sized bands was

measured using ImageJ software (NIH, USA). The ratio between

phospho-protein expression was reported relative to that of b-actin

(Sigma-Aldrich, MO).

Supporting Information

Figure S1 SI NET network properties as functions of
Pearson correlation coefficient (PCC). For each PCC cutoff,

the number of nodes, number of edges, number of connected

components, and network density were measured. It was noted

that at PCC$0.94, the SI NET network was most modular while

retaining a reasonable number of genes and links.

(TIF)
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Figure S2 cAMP/CREB signaling cascade. Differentially

expressed elements identified using gene network inference are

highlighted in red and annotated.

(TIF)

Table S1 SI NET interactome.
(DOC)
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67. Erdős P, Rényi A (1959) On Random Graphs. I. Publicationes Mathematicae 6:
290–297.

68. Freeman TC, Goldovsky L, Brosch M, van Dongen S, Maziere P, et al. (2007)

Construction, visualisation, and clustering of transcription networks from
microarray expression data. PLoS Comput Biol 3: 2032–2042.

69. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of
communities in large network. J Stat Mech P10008.

70. Xu D, Matsuo Y, Ma J, Koide S, Ochi N, et al. (2010) Cancer cell-derived IL-
1alpha promotes HGF secretion by stromal cells and enhances metastatic

potential in pancreatic cancer cells. J Surg Oncol 102: 469–477.

71. Pfragner R, Wirnsberger G, Niederle B, Behmel A, Rinner I, et al. (1996)
Establishment of a continuous cell line from a human carcinoid of the small

intestine (KRJ-I): Characterization and effects of 5-azacytidine on proliferation.
Internation Journal of Oncology 8: 513–520.

CREB Targets in Carcinoid Disease

PLoS ONE | www.plosone.org 10 August 2011 | Volume 6 | Issue 8 | e22457


