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Abstract

Background: Avian brood parasites and their hosts are involved in complex offence-defense coevolutionary arms races. The
most common pair of reciprocal adaptations in these systems is egg discrimination by hosts and egg mimicry by parasites.
As mimicry improves, more advanced host adaptations evolve such as decreased intra- and increased interclutch variation
in egg appearance to facilitate detection of parasitic eggs. As interclutch variation increases, parasites able to choose hosts
matching best their own egg phenotype should be selected, but this requires that parasites know their own egg phenotype
and select host nests correspondingly.

Methodology/Principal Findings: We compared egg mimicry of common cuckoo Cuculus canorus eggs in naturally
parasitized marsh warbler Acrocephalus palustris nests and their nearest unparasitized conspecific neighbors having similar
laying dates and nest-site characteristics. Modeling of avian vision and image analyses revealed no evidence that cuckoos
parasitize nests where their eggs better match the host eggs. Cuckoo eggs were as good mimics, in terms of background
and spot color, background luminance, spotting pattern and egg size, of host eggs in the nests actually exploited as those
in the neighboring unparasitized nests.

Conclusions/Significance: We reviewed the evidence for brood parasites selecting better-matching host egg phenotypes
from several relevant studies and argue that such selection probably cannot exist in host-parasite systems where host
interclutch variation is continuous and overall low or moderate. To date there is also no evidence that parasites prefer
certain egg phenotypes in systems where it should be most advantageous, i.e., when both hosts and parasites lay
polymorphic eggs. Hence, the existence of an ability to select host nests to maximize mimicry by brood parasites appears
unlikely, but this possibility should be further explored in cuckoo-host systems where the host has evolved discrete egg
phenotypes.
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Introduction

Brood parasitic birds such as cuckoos and their hosts are involved

in complicated coevolutionary arms races [1]. Such interactions

lead to evolution of antiparasite defenses by the hosts followed by

counter-defenses by the parasite [2,3]. The most common pair of

reciprocal adaptations in host-brood parasite systems is foreign egg

discrimination of the hosts and egg mimicry of their parasites [4].

Once parasites evolve eggs that mimic the average host egg

phenotype, hosts are selected for more advanced antiparasite

adaptations such as decreased intra- and increased inter-clutch

variation of egg appearance to facilitate the detection of the parasitic

egg [5,6,7]. As host interclutch variation becomes more extreme, it

may be manifested in egg polymorphism, i.e. dramatically different

discrete egg morphs [8]. Host egg polymorphism is a major

challenge to brood parasites especially if host egg morphs have

similar frequencies. Thus, for the parasite to persist with such a host,

it should also evolve corresponding polymorphism. Theory shows

that if there is matrilineal inheritance of parasite egg phenotypes

and mimicry-dependent egg discrimination by the host, stable egg

polymorphism in both parties may evolve [9]. This phenomenon

occurs in nature in at least two host-parasite systems in which

parasites have discrete egg morphs that match corresponding egg

morphs of a single polymorphic host species [10,11].

Once matching host and parasite egg polymorphism has arisen,

particularly when hosts that are able to recognize and reject

mismatched parasitic eggs, parasites that preferentially victimize

host nests of the right host phenotype would have an advantage.

Thus, appropriate host choice by the parasite would be adaptive

[12,13]. However, appealing though this is as a hypothesis, there is

no evidence for selection of hosts by parasites in relation to egg

morph in these dual polymorphic systems [10,11]. Nonetheless,

brood parasites do not lay in all host nests they have discovered

but may prefer some host individuals over others based on host
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quality and/or behavior [14,15,16,17]. Might brood parasites

choose their host nests based on the phenotypic match between

their own and the host’s eggs when egg phenotypic variation is

gradual rather than expressing distinct morphs? This hypothesis

has been tested only twice in the common cuckoo Cuculus canorus

and its reed warbler Acrocephalus scirpaceus and great reed warbler A.

arundinaceus hosts [13,18], both species having continuous inter-

clutch variation in egg appearance. These studies found that

cuckoo eggs in naturally parasitized nests matched their host

clutches in some color components better than did unparasitized

or experimentally parasitized host clutches.

Here we tested cuckoo-host selection hypothesis in a population of

marsh warblers A. palustris parasitized by the common cuckoo. We

compared egg phenotype matching of host and parasite eggs at

parasitized nests and their nearest unparasitized conspecific

neighbors using visual modeling and image-processing approaches,

and also accounted for host nest availability to cuckoos. This system

is relevant for addressing cuckoo-host selection hypothesis because:

(1): marsh warblers in the study area are regularly and frequently

parasitized by cuckoos [19]; (2) the local marsh warbler cuckoo gens

shows specific adaptations to marsh warbler eggs, laying highly

mimetic eggs [20]; (3) marsh warblers exhibit refined egg

discrimination abilities [19]; (4) hosts have substantial, albeit

continuous, interclutch variation [20], creating ample variation in

cuckoo egg matching among the different host clutches. We

predicted that, if cuckoos discriminate among host clutches, cuckoo

eggs should be a better match to the host eggs in the nest where they

were laid than in the nearest unparasitized nest principally available

for parasitism. In contrast to the few previous similar studies we did

not find evidence for cuckoos selecting host nests based on egg

matching and argue that such a matching is hardly possible with host

species having continuous interclutch variation in egg appearance.

Results

The mean inter-nest distance was 60.9633.3 m (range: 14–

127). Thus, we assume that nests parasitized by the cuckoo and

their nearest unparasitized neighbors were close enough to be

detected by the same cuckoo while also distant enough for the

cuckoo to perceive them as different nesting attempts. Parasitized

nests and their nearest unparasitized neighbors also had similar

laying dates (Table 1), differing by a median of 1.5 days (IQR:

0.25–2.50). Parasitized and unparasitized nests also did not differ

significantly in the distance to the nearest tree, height of the

nearest tree as well as vegetation cover above the nest (Table 1).

All the three variables were important correlates in discriminating

between parasitized and unparasitized marsh warbler nests in the

same population [21]. Thus we can consider that the two nests

within a pair were similarly available to parasitism by cuckoos.

Cuckoo egg mimicry was not better in parasitized than

unparasitized nests with respect to any of the egg characteristics

measured, i.e. background and spot color contrasts, background

luminance, spotting pattern and egg size (Table 1). Nevertheless,

spot cover and background luminance tended to be more closely

matched at parasitized than in non-parasitized nests, though the

differences were not significant (Table 1).

Discussion

We found no evidence that cuckoos parasitizing marsh warblers

preferentially select host nests based on egg appearance so that

Table 1. Nest site characteristics and cuckoo-host egg phenotype contrasts at marsh warbler nests naturally parasitised by the
common cuckoo and the nearest unparasitised nests.

Variable Parasitized Unparasitized Statistic df P

Laying dates
(1 = 1 May)

21.3665.71
(10–32)

22.6864.54
(16–35)

1.7613 21 0.09

Distance to nearest tree, m 12.0465.63
(4.5–22.0)

13.8967.87
(4.0–30.0)

149.5 (V) 21 0.46

Height of the nearest tree, m 5.8963.84
(3.0–16.0)

7.2564.68
(3.1–16.0)

101.5 (V) 21 0.09

Vegetation height above nest, cm 115.95646.43
(45.0–200.0)

105.82654.13
(37.0–230.0)

89.5 (V) 21 0.24

Background color, JND 3.25862.682
(0.455–11.770)

3.05261.623
(0.490–6.584)

118.0 (V) 21 0.80

Spot color, JND 5.01162.609
(0.950–11.287)

6.04263.223
(0.805–11.863)

1.22 (V) 21 0.24

Background luminance, JND 2.90362.168
(0.000–8.682)

4.63064.205
(0.424–15.998)

165.0 (V) 21 0.22

Spot cover 0.13960.076
(0.017–0.268)

0.17060.103
(0.005–0.370)

1.47 20 0.16

Spot distribution 0.10560.067
(0.008–0.213)

0.12660.066
(0.010–0.263)

1.00 20 0.33

Spot size, mm2 0.17360.137
(0.010–0.488)

0.22760.341
(0.009–1.558)

0.70 20 0.49

Egg volume, cm3 1.00560.203
(0.627–1.398)

0.99860.187
(0.695–1.306)

0.18 20 0.86

Data are presented as Means 6 SD (ranges). Spot cover and spot distribution are expressed as proportions (see also Material and Methods). Test statistic refers to paired
t-tests or Wilcoxon’s rank sum tests (indicated as V in brackets), depending on the distribution of the variables. Background and spot color color contrasts as well as
luminance contrasts are calculated based on the Vorobyev & Osorio’s (1998) perceptual model and the units are JND, meaning ‘‘just noticeable differences’’. Degrees of
freedom are 20 in some cases because for one pair of clutches we did not measure some of the variables.
doi:10.1371/journal.pone.0031704.t001
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mimicry is maximized. Cuckoo egg phenotype match did not

differ significantly between parasitized and unparasitized but

similarly available nests in spot and background color, background

luminance, spotting pattern and egg size. This contrasts with

studies on two other Acrocephalus warblers, the reed warbler and the

great reed warbler, which found some indication that cuckoos may

select host nests where mimicry in some color components is

higher [13,18]. This discrepancy in the findings may stem from the

different approaches used both in phenotypic measures and in

experimental design. Both previous studies used principal

components to analyze egg color, while we used a visual modeling

technique which, unlike principal component analysis, weights

spectra according to host cone sensitivity functions, thereby only

focusing on the relevant visual information perceivable by the

receiver. Due to sample size limitations, we cannot repeat our

analyses using principal components (PCA) to directly compare

our results with the aforementioned studies. However, such a step

would be of little use anyway since the principal components

generated by an analysis are too dependent upon the data entered

into the PCA, so PCA scores (and also perhaps differences in

scores) from one study cannot be compared directly with those of

another study without a re-analysis of the raw data [22,23]. While

principal components can be useful in describing spectral shapes,

their use for statistical comparisons of color data has been strongly

discouraged for several reasons [24]. Furthermore, unlike the two

other studies testing the same hypothesis, we also analyzed

background and spot color separately which should be more

accurate than simply using random samples over the egg surface

which does not control for the differential inclusion of portions of

background or spots across measurements. More importantly,

these studies took no account of availability of unparasitized nests

to cuckoos in terms of their nest-site characteristics and timing. In

addition, host selection by cuckoos should be investigated for

individual cuckoo females but neither of above studies employed a

paired-design in comparing mimicry. [18] compared the pheno-

type of a few cuckoo eggs to the appearance of reed warbler host

eggs in parasitized and unparasitized nests, without directly

addressing mimicry within nests. [13] compared egg mimicry in

naturally parasitized nests with mimicry in unparasitized nests to

which a different set of real cuckoo eggs were introduced by the

experimenters. Despite these flaws, we cannot dismiss the

significant results found by these two studies. Further research

using unified approaches and more host species/populations

should provide a better answer to this fundamental question of

avian host-brood parasite coevolution.

We find the lack of selective phenotypic egg matching by cuckoo

females unsurprising for host species with continuously distributed

egg phenotypes. Marsh warbler eggs as well as great reed warbler

ones show substantial but continuous interclutch variation so that

no clear egg morphs can be distinguished [20]. Both species show

substantial overlap of host and parasite egg phenotypes in the

same Bulgarian population [20], indicative of advanced stages in

the coevolutionary arms race. If cuckoos are to choose among

nests of such hosts, a perfect knowledge of their own eggs is

required and the mechanism behind must involve a memory

template as well as remembering egg matching among the

different host nests. Cuckoo females must either lay their first

egg in isolation or have the ability to distinguish between their own

egg and the host eggs already in the nest. Since host species differ

substantially in their rejection rates of non-mimetic eggs [1,25], the

benefits of cuckoos matching their eggs within hosts will differ

dramatically among cuckoo gentes. Furthermore, in hosts with

continuously distributed egg phenotypes, selection would still favor

cuckoos mimicking the average host phenotypes [26]. If cuckoos

practice such a fine-grained selection of host individuals, this

should also enhance a pattern of local adaptation of parasites to

their sympatric host egg phenotypes. A recent study on cuckoo and

reed warbler egg appearance across Europe showed substantial

inter-population differences in host and parasite egg phenotypes

but no evidence for local adaptation [27]. Finally, even in host-

parasite systems with matching egg polymorphism, where selection

by cuckoos of host egg phenotype would be extremely advanta-

geous, there is no evidence that it has appeared. In cuckoo finches

Anomalospiza imberbis parasitizing tawny-flanked prinias Prinia

subflava and common cuckoos parasitizing ashy-throated parrot-

bills Paradoxornis alphonsianus, there is dramatic matching egg

polymorphism in host and parasite [10,11] and hosts reject both

eggs of the wrong morph and experimentally generated fine-scaled

intermediates [11]. Nevertheless, even in these systems there is no

evidence that parasites choose the ‘right’ host egg morph [10,11],

even though this possibility requires further investigations. In

addition, a theoretical model has shown that egg polymorphism in

both hosts and parasites may be stable even with random laying by

the parasite [9]. Although an appealing idea, it remains to be

shown that selective choice of particular host clutches based on egg

phenotype matching by brood parasites would be advantageous

and could evolve. Clearly this is not supported by any compelling

evidence to date.

Nonetheless, brood parasites exploit their pool of available host

nests non-randomly [14,28]. We paired parasitized nests with their

nearest unparasitized neighbors so as to reduce the variation in

laying dates and nest site characteristics likely to constrain

availability of nests to cuckoos. The two groups did not differ

significantly in any of these variables, suggesting that cuckoos

could have chosen to parasitise either. Therefore the very

existence of these unparasitized nests begs an explanation if

cuckoos are, as we think, nest limited. It may be that either: 1)

cuckoos failed to find these nests anyway due to factors we did not

take into account, e.g. more secretive host behavior [16], or 2)

cuckoos knew all the nests but avoided some of them due to host

characteristics other than the degree of egg similarity to the

parasite’s eggs, e.g. host quality [17,29]. Further studies involving

close tracking of individual parasite females and considering a

wider range of host characteristics are needed to directly control

for actual availability of host nests.

Materials and Methods

Fieldwork was carried out during 2007–2010 between the

villages of Zlatia (43u469N23u309E), Ignatovo (43u469N23u289E)

and Dolni Tsibar (43u489N23u319E), north-western Bulgaria.

Marsh warblers breed at high densities in diverse but typically

reed-dominated vegetation. For more details on the study area see

[20].

All the patches of suitable breeding habitat with singing marsh

warblers were carefully searched for nests between 15 May and 10

June each year. For the purposes of this study we only considered

areas containing at least two neighboring territories adjacent to

trees, i.e. readily accessible to cuckoos [21]. To enable correct

assignment of the parasitism status, only nests found during the nest

building or early egg laying stage were included here. These nests

were monitored daily until 5–6 days following clutch completion.

Since cuckoos remove 1–2 eggs at laying [3], a would-be fast, hence

undetected ejection would be manifest as gaps in the host laying

cycle. Furthermore, during the process of puncture ejection, host

eggs often become smeared with yolk, a strong indicator that the

nest had received a parasitic egg that was ejected [30]. None of the

nests classified as ‘‘unparasitized’’ in this study had such indications
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of undetected parasitism. To further make sure that only nests

available to cuckoos were included in the analyses we restricted the

sample to parasitized nests and their nearest unparasitized neighbor

nest having a similar laying date and positioning, thus creating a

paired design (Table 1). Twenty-two pairs of nests passing these

rigorous criteria were available for analyses.

A previous study on the same population identified three main

nest-site variables discriminating between parasitized and non-

parasitized marsh warbler nests: parasitized nests had shorter

vegetation covering them from above, were situated closer to trees,

and these trees were taller compared to those close to un-

parasitized nests [21]. Therefore, we measured these characteris-

tics for all the nests in this study. According to our unpublished

data, marsh warblers have low intraclutch variation, thus we

measured spectral reflectance and size of a randomly selected host

egg and the cuckoo egg (if the nest was parasitized) from each nest.

Using only one host egg in the context of this study is also justified

by the fact that cuckoos typically parasitize host nests before clutch

completion [3,31,32]. Thus, cuckoos are unable to assess variation

in color of the entire clutch before deciding in which nest to lay.

Cuckoos also remove 1–2 eggs before laying its own eggs [3],

making it impossible for us to measure reflectance of all host eggs

within a parasitized clutch. Egg dimensions were taken with a

digital caliper to the nearest 0.01 mm and were used to calculate

egg volume (cm3) as 0.516length6breadth26100021 [33]. We

measured egg reflectance under standard light conditions by using

a USB2000 spectrophotometer with a deuterium halogen light

source (D2-W, mini). Each measurement covered ca. 1 mm2 and

was taken at a 45u angle to the egg surface, with the spec-

trophotometer and the light source connected with a coaxial

reflectance probe (QR-400-7-UV-vis). The spectra were loaded

into OOIBASE32 software (Ocean Optics) and interpolated with a

step of 1 nm in the range 300–700 nm. We measured reflectance

of background color and spots separately because cuckoo and host

eggs may differ in the degree of match in these two components of

egg coloration [20]. A total of two background and 3–4 spot

measures were obtained for each egg. Since in some cases it was

difficult to avoid tiny and dense spots for background measure-

ments, we selected the background spectrum with the highest

reflectance to represent background color of the egg while spot

spectra were averaged. Since human and avian vision differ

dramatically [34], we analyzed egg color and luminance by using a

perceptual visual model [35]. This model has successfully

described thresholds for visual discrimination in birds [35,36]

and also predicted egg rejection behaviour under photopic

conditions [37,38]. By taking into account cone sensitivities,

photoreceptor noise and irradiance, Vorobyev & Osorio’s (1998)

model produces chromatic (DS) and achromatic (DQ) contrasts

between any two stimuli (eggs in our case) in the receptor space.

Details about calculations of these contrasts can be found

elsewhere [35,39]. The units for DS and DQ are JNDs (just

noticeable differences). Following [40], we considered discrimina-

bilities below 1 JND to be undetectable by birds, and those with

values below 3 JND difficult to distinguish even under favourable

light conditions. Recent evidence suggests that there are negligible

differences among model calculations obtained using spectral

sensitivity data for different passerine species [10]. Thus, given that

sensitivity data for cuckoos are not available, we used here single-

and double-cone photoreceptor spectral sensitivities, photorecep-

tor noise, and the transmission properties of ocular media for the

blue tit Cyanistes caeruleus as representative of UVS type avian visual

system which is well understood [41]. Blue tit cone proportions are

1:1.92:2.68:2.7 for SWS1/SWS2/MWS/LWS cones, respectively

[41]. Irradiance spectra at the nests of a typical open nester as the

marsh warbler was kindly provided by J. M. Avilés based on [42].

We assumed that the signalling noise for each cone ei is

independent of light intensity and set the Weber’s fraction at

0.05 for all single cones.

We also quantified spotting pattern of cuckoo and host eggs

based on photographs of the eggs taken in a standard way on a

Kodak Grey plate. Each egg image was divided into three equal

sections along the long axis – sharp, middle and blunt. Egg images

were processed in Adobe Photoshop CS and IAN software

(http://landscape.forest.wisc.edu/projects/ian/) to calculate mean

spot cover, spot distribution (proportion of the total spot cover in

the blunt egg sector) and spot size. For more methodological

details see [20,38].

Color and luminance contrasts, absolute differences in the three

spotting pattern variables and egg volume were calculated for each

cuckoo egg in relation to host eggs of its ‘home’ nest and the

nearest unparasitized nest. Visual modeling was performed in

Avicol software v5 [43]. Contrasts between the two groups were

compared via paired t-tests or Wilcoxon’s rank sum tests, for

normally and non-normally distributed variables, respectively.

Statistical tests were run in R.2.11.1 (www.R-project.org).
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