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PREFACE

This thesis is submitted in partial fulfilment of the requirements for the degree
of Philosophiae Doctor (PhD) at the Norwegian University of Science and Tech-
nology (NTNU). The research is financed by the Norwegian Educational Loan
(Quota program) along with the NOMA program, Mathematical and Statisti-
cal Modeling (MASTMO), where the latter is administered by Prof. Henning
Omre, NTNU, and Dr. Ayele Taye, Hawassa University (HU), Ethiopia.

My supervisors have been Prof. Anne Kværnø (Department of Mathemati-
cal Sciences, NTNU), Prof. Harald Krogstad (Department of Mathematical
Sciences, NTNU ) and Assoc. Prof. Nils-Otto Kitterød (Department of Envi-
ronmental Sciences, NMBU). The work has been performed at the Norwegian
University of Science and Technology.

STRUCTURE OF THESIS

This thesis consists of an introduction and four papers, arranged in a total
of five chapters. A brief summary of each papers is given in Section 6 of the
introduction.
All four articles involve analysis, implementation and programming aspects. My
contribution to these articles has been substantial in all respects.
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INTRODUCTION

Groundwater is the term used for water in the saturated zone occurring below
the ground surface. This water is an important constituent of hydrological cycle
and is the major source of water supply in various sectors [19]. During the last
decades, the continuously increasing need of water has led to a rapidly growing
awareness in the field of groundwater. For groundwater assessment and man-
agement it is essential to have a thorough understanding of complex processes
viz., physical, chemical and/or biological processes occurring in the groundwa-
ter system.

To understand these complexities groundwater models plays an important
role. Groundwater models describe the groundwater flow and transport pro-
cesses using mathematical equations based on certain simplifying assumptions.
These assumptions typically involve the dimension of the flow, the geometry
of the aquifer, the heterogeneity or anisotropy of sediments or bedrock within
the aquifer, boundary and initial conditions. If transport of contaminants are
involved, assumptions regarding the contaminant transport mechanisms and
chemical reactions are necessary [13]. Because of the simplifying assumptions
embedded in the mathematical equations and the many uncertainties in the
values of data required by the model, a model must be viewed as an approxi-
mation and not an exact duplication of field conditions. Groundwater models,
however, even as approximations, are useful investigation tools that ground-
water hydrologists may use for a number of applications. Models range from
simple two-dimensional analytical groundwater flow models to complex three-
dimensional numerical groundwater flow models.

1



Essentially all natural groundwater flows are three-dimensional. That is, the
velocity of a percolating water particle is represented by a vector that has three
components. However, there are many situations in which the velocities are
nearly coplanar or there is radial symmetry. In these cases, the flow can be an-
alyzed as two-dimensional models with accuracy sufficient for many engineering
problems. In some cases the flow problem can be further reduced to a one di-
mensional problem. The existence of symmetry or special assumptions permits
the simplification of many problems. It is important, however, to recognize the
size of the errors that such simplifications can entail [5].

1 Groundwater and aquifers

Aquifers

Groundwater is contained in geological formations. If the permeability is high,
the geological unit is called an aquifer. The two main types are confined aquifers
and unconfined aquifers [8]. If the aquifer is situated between impermeable rocks
we call it a confined aquifer. An unconfined aquifer is a layer of water-bearing
material without a confining layer at the top of the groundwater, also called
the groundwater table, where the pressure is equal to atmospheric pressure. Of
that reason an unconfined aquifer is also referred to as phreatic.

Porosity

Porosity is a measure of a medium’s ability to store fluid, and is defined as the
ratio between the volume of the pores, and the total volume called the bulk
volume. Porosity usually is expressed as a percentage of the bulk volume of the
material [21]:

Effective Porosit(n) =
Volume of pore space
Volume of bulk solid

× 100. (1)

Sand and gravel may typically be quite porous, whereas solid rock such as gran-
ite and other eruptive rocks have usually very low porosity. If water takes up
all available pores, we say the formation is saturated. Otherwise, the formation
is unsaturated.
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Introduction

Hydraulic conductivity

Hydraulic conductivity is the property of a geological material that relates to
its ability to transmit water at a given temperature. This characteristic is also
known as the coefficient of permeability [2]. Permeability refers to the case
where any fluid moves through a geological material, therefore the term intrin-
sic permeability underlines that this parameter characterizes the soild phase in
difference to hydraulic conductivity. Thus, the intrinsic permeability (k) is the
ability of geologic material to transmit a fluid, and it is a function of the geolog-
ical material alone. The relation between intrinsic permeability and hydraulic
conductivity can be expressed as k = Kµ/ρwg, where µ is dynamic viscosity of
the fluid ; ρw is water density; K is the hydraulic conductivity of the porous
medium and g is the gravity acceleration [7].

2 The motion of groundwater

The motion of water requires energy. Water can possess several forms of en-
ergy. As stated in [5], it possesses potential energy, kinetic energy and pressure
energy. Potential energy is the energy that water possesses by virtue of its ele-
vation above the datum level. A mass mw of water at an elevation z above the
datum has a potential energy mwgz. This is the work necessary to move the
mass mw from the datum to the elevation z. The energy that water possesses
by virtue of its motion is the kinetic energy. A mass mw of water that moves
with a velocity v has a kinetic energy 1

2mwv
2.

If ρw is the density of the water, a unit volume of water has a mass ρw, a
weight ρwg, and a potential energy ρwgz. The potential energy per unit weight,
that is, the elevation head, is thus ρwgz/ρwg = z. Note that this head has the
unit of length. Similarly, the kinetic energy per unit volume is 1

2ρwv
2 and the

kinetic energy per unit weight or velocity head is 1
2ρwv

2/ρg = v2/2g . The ve-
locity head has the dimension of length. When groundwater is flowing through
the pores of the rock or soil formation, the velocity is very small, and the ve-
locity head is usually negligible with respect to the other forms of energy.

The third energy that water possesses is the pressure energy. The pressure of
the fluid, p, acting on an area dA produces a force pdA. If the area is displaced
by a distance ds in the flow direction, then the force produces an amount of work
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pdAds known as flow work. The volume dAds has a weight ρwgdAds and the
flow work per unit weight is pdAds/ρwgdAds = p/ρwg known as the pressure
head and it has a unit of length.
The sum of the elevation head and the pressure head is known as the piezometric
head and given by

φ = z + p/ρwg. (2)

see [21]. The groundwater head for an elemental volume in an aquifer is the
height to which water will rise in a piezometer (or observation well) relative
to a consistent datum. Groundwater flows from a higher to a lower head (or
potential).

Darcy’s Law
It was in 1856 that Henry Darcy carried out experiments which led to what we
now call Darcy’s Law. Darcy learned that the rate of flow through a column
of saturated sand is proportional to the difference in the hydraulic head at the
ends of the column and is inversely proportional to the length of the column
[7, 8, 23]. Combining these observations and writing an equation in differential
form gives Darcy’s law:

q = −ρwgk
µ
· ∇
(
p

ρg
+ z

)
= −K · ∇φ . (3)

Here q is the specific discharge (referred to as the Darcy velocity) and φ is also
called piezometric head. The minus sign is necessary because head decreases in
the direction of flow.

The calculation of the Darcy velocity ignores the fact that the aquifer cross-
section (A) contains both solid material and pores; consequently the Darcy
velocity is a volume average, and has in this sense no direct physical meaning.
Nevertheless, because of its convenience mathematically, the Darcy velocity is
frequently used. An approximation to the actual seepage (or pore water) velocity
can be obtained by dividing the Darcy velocity by the effective porosity n.

u =
q

n
. (4)

Assuming that the solid matrix as well as the water are incompressible, mass
conservation combined with Darcy’s law leads to the Boussinesq equation for
the hydraulic head,
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Introduction

∂ (Sφ)

∂t
+∇ · [−K∇φ] = Qf , (5)

where S is the specific storage coefficient, Qf is the water source/sink density
and t is the time. For steady state this becomes

∇ · [−K∇φ] = Qf , (6)

which is simply the well known Poisson equation.

Flow in phreatic aquifers
A phreatic aquifer is an unconfined aquifer where the top boundary (watertable
or the phreatic head) has a link through the pores to the surface, implying that
the pressure at the water table is equal to the atmospheric pressure. The hy-
draulic head at the water table is then the actual height relative to a datum. A
completely horizontal water head implies no flow. For the groundwater flowing
in an unconfined aquifer between two water reservoirs, the hydraulic head near
the reservoirs is approximately equal to the surface height of the reservoir, but
even if we know the formation between the reservoirs, we do not necessarily
know the location of the watertable.

One of the alternative formulations of the groundwater flow equation may
be obtained by invoking the Dupuit assumption (or Dupuit-Forcheimer assump-
tion), where it is assumed that heads do not vary in the vertical direction. It
gives reasonable result when the region of the unconfined flow is thin and the
slope of the free surface is small.

Consider steady flow without recharge in the vertical two-dimensional xz-
plane shown in Fig. 1a. The assumptions of steady flow and a horizontal
bottom are intended only to simplify the discussion. Under these conditions, the
phreatic surface is a streamline. At every point P along this streamline, p = 0,
and as consequence φ = h. Where h is the elevation of P above the horizontal
impervious bottom that serves as a datum level. In the case considered here,
φ = φ(x, z) and h = h(x). The specific discharge at P , which is in the direction
of the tangent to the streamline, is given by Darcy’s law

qs = −Kdφ

ds
= −Kdh

ds
= −K sin θ, (7)
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Figure 1: The Dupuit assumption in two dimensional unconfined flow without
recharge in the vertical xz-plane, the water table is a streamline

where θ is the angle between the tangent of phreatic surface the horizontal plane
(Fig. 1). For small θ, sin θ in Eq. 7 can be replaced by the slope, dh/dx and
since cos θ ≈ 1,

qx = qs cos θ ≈ −Kdh

dx
.

The assumption of small θ is equivalent to assuming that the equipotentials
are vertical, i.e φ = φ(x)(= h(x)), rather than φ = φ(x, z), and the flow is
essentially horizontal.

For unsteady flow in a three-dimensional domain, the Dupuit assumption
presented above is extended to φ = φ(x, y, z, t) and h = h(x, y, t). Then, the
Dupuit assumption leads to specific discharge expressed by

qx = −K∂h

∂x
, qy = −K∂h

∂y
.

Since, by making use of the Dupuit assumption, q is independent of elevation
z, the corresponding total discharge through a vertical surface of unit width
(normal to the direction of flow) can be expresses in the vector form:
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q = −Kh∇h, or q = −K∇(h2/2).

Recall that the aquifer’s bottom is horizontal and serves as a datum level for h.

3 Heat transfer in porous media

The heat transfer equation in porous media is deduced from the principle of
energy conservation in the aquifer. Advection of heat is transport by the liquid
phase medium, and conduction of heat is transport by the solid phase medium
as well as the liquid phase medium. Advective heat flux is passive transport by
the moving groundwater:

qc = (ρwcwTw)q,

where c is the specific heat [9, 11] and the subscripts w and s stand for the
liquid phase and solid phase medium, respectively. Using the relation in (4),
the advective heat flux is also given by

qc = nρwcwTwu.

In addition to the advective flux, there is a certain amount of diffusive flux in
the solid as well as liquid medium. The two diffusive fluxes are given by

qw = −nλw∇Tw, qs = −(1− n)λs∇Ts,

where λ is the heat diffusion coefficient. If the two media are at local thermal
equilibrium (when Tw = Ts = T ), the flux is given by

qT = −λm∇T,

where λm is an overall heat diffusion coefficient which is an average between the
corresponding values of water and solid:

λm = nλw + (1− n)λs

see [11, 18]. If a thermally insulated block of aquifer with Tw 6= Ts is left alone,
energy conservation implies that the system attains an equilibrium temperature
Tm equal to the weighted mean

7



Tm =
ρwcwn

ρmcm
Tw +

ρscs(1− n)

ρmcm
Ts,

where
ρmcm = (ρc)m = ρwcwn+ ρscs(1− n).

In respect to conservation laws for solid material and water, since the solid
material is stationary, there is no convective heat flux in the solid. For an
elemental volume R and no additional heat sources or sinks, the solid’s integral
heat conservation law reads

d

dt

∫
R

(1− n)ρscsTsdV +

∫
∂R

(1− n)(−λs∇Ts) · n̂dσ =

∫
R

h(Tw − Ts)dV. (8)

Similarly, the integral conservation form for heat in the fluid becomes:

d

dt

∫
R

nρwcwTwdV +

∫
∂R

[nρwcwTwu−nλw∇Tw]·n̂dσ = −
∫
R

h(Tw−Ts)dV. (9)

The differential form of equation 17 and 18 are also expressed as

∂

∂t
(1− n)csρsTs −∇ · ((1− n)λs∇Ts) = h(Tw − Ts), (10)

for the heat in the solid and

∂

∂t
ncwρwTw +∇ · (nρwcwTwuw)−∇ · (nλw∇Tw) = −h(Tw − Ts), (11)

for the transport of heat in the water.

Aquifer Thermal Energy Storage
Thermal energy storage systems around the world are often utilized to provide
economical and environmental solutions to the energy problems. Among various
types and sizes of storage media, soil or underground aquifers, known as under-
ground thermal energy storage (UTES), are mostly used for seasonal heat/cold
storage due to their large thermal capacity and thermal inertia [15]. One of
the more common storage type among UTES systems is aquifer thermal energy
storage (ATES) system in which groundwater is used to carry the thermal en-
ergy into and out of an aquifer [1].
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WINTER  SITUATION SUMMER  SITUATION 

CLIMATIZED BUILDING 

 WARM WELLS  COLD WELLS 

ENERGY PLANT  

CLIMATIZED BUILDING 

 WARM WELLS  COLD WELLS 

ENERGY PLANT  

Aquifer  Aquifer  

(a) 
(b) 

Figure 2: (a) ATES system. (b) The coupled fluid flow and heat transfer. The
velocity field (red arrow), stream lines (black lines) and temperature contour (thermal
color).

In an ATES system, groundwater is pumped from a supply aquifer for in-
jection or extraction of thermal energy. The groundwater at the changed tem-
perature is then injected back into the same or another aquifer for storage in
the aquifer medium (soil or rock). In the opposite season, the stored thermal
energy from the aquifer is recovered by pumping out the groundwater, using the
stored energy and re-inject the water at a changed temperature back into the
aquifer. Of course, to minimize thermal mixing within the aquifer, the supply
and injection wells have to be spaced somewhat apart (Fig. 2a). An ATES
system usually consists of two or more wells to store warm and/or cold thermal
energy in the aquifer, and there are mainly two operating types in the ATES
system: cyclic regime and continuous regime . In the cyclic mode, pumping and
injection wells are switched by the season, while not switched in the continuous
mode [12]. Cyclic flow will create a definite cold and heat reservoir around each
well or group of wells. It is possible to maintain a ground volume above or below
the natural ground temperature all the time.

The governing partial differential equation of ATES model is given by the
fluid flow equation 5 and heat transfer equations 10 and 8. The flow equation
and the heat transfer equation are coupled through the fluid velocity q. In most
models using Darcy’s approximation [24], the flow velocity equation is substi-
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tuted into the fluid flow equation and heat transfer equation. The elimination
of q simplifies the set of the governing equation for thermohydrologyic flow to
two equations for pressure and temperature fields. Once these fields are deter-
mined, the Darcy velocity q or the actual seepage velocity u is calculated from
the pressure gradient and other parameters. The stream lines, velocity field and
the temperature contour of one pumping and one injection wells are shown in
Fig. 2b.

The performance of ATES system is defined as the ground thermal load,
which is a function of mainly temperature difference between injected and ex-
tracted fluids, and fluid flow rate. The performance of the ATES system primar-
ily depends on the thermal interference between warm and cold thermal energy
stored in the aquifer [22]. As [12] argued, the borehole distance, the hydraulic
conductivity, and the pumping/injection rate affects the thermal interference
between two wells.

Oslo airport ATES system

In 1987, the first known ATES system in Norway was established in Seljord.
A 10 m deep well was drilled for heating and cooling of Seljord lysfabrikk [14].
However, the largest UTES system in Norway is at Oslo’s Gardermoen inter-
national airport. This ATES system has been in operation since the airport
opened in 1998 and comprises an 8 MW heat pump array, coupled to 18 wells
of 45 m depth, 9 for extraction of groundwater and 9 for re-injection. It is lo-
cated at Gardermoen, one of the largest groundwater reservoirs in Norway. The
area consists of glaciofluvial deposits. The soil structure in the area consists of
different layers of clay, sand and gravel. The depth to the ground water is 13-14
m, and the storage is located at approximately 20-45 m below surface level [6].

4 Finite element method

In order to analyze a certain system, a mathematical model is developed to de-
scribe the system. While developing the mathematical model, some assumptions
are made for simplification. Finally, the governing mathematical expression is
developed to describe the behavior of the system. The mathematical expression
usually consists of differential equations and given conditions.
These differential equations are usually very difficult to obtain solutions which
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explain the behavior of the given system. With the advent of high performance
computers, it has become possible to solve such differential equations. Various
numerical solution techniques have been developed and applied to solve numer-
ous problems in order to find their approximate solutions. Especially, the finite
element method has been one of the major numerical solution techniques. One
of the major advantages of the finite element method is that a general purpose
computer program can be developed easily to analyze various kinds of problems.
In particular, any complex shape of problem domain with prescribed conditions
can be handled with ease using the finite element method. Good references for
descriptions of finite element methods are [3] and [20].
Let us demonstrate the principle of finite element method on the Posisson prob-
lem, given by

−∆u = f in Ω, (12)

with boundary conditions {
u = g on ΓD,
∂u
∂n = ψ on ΓN ,

(13)

where Ω ⊂ Rd is the domain and an open bounded and connected set as shown
in Fig. 3, and let ∂Ω be its boundary.

By multiplying with a test function v, integrating over the domain Ω and
applying Green’s formula, we get the weak formulation of the problem :

Find u ∈W such that a(u, v) = F (v), ∀v ∈ V (14)

where

a(u, v) =

∫
Ω

∇u∇v dΩ, (15)

F (v) =

∫
Ω

fvdΩ +

∫
ΓN

ψvdγ, (16)

having

V = {v ∈ H1(Ω) : v|ΓD
= 0}, (17)

W = {v ∈ H1(Ω) : v|ΓD
= ψ}. (18)

For simplicity we will in the following assume the Dirichlet boundary conditions
g = 0, so W = V . The guarantee for existence and uniqueness of the solution

11



Figure 3: The computational domain Ω

of the variational problem Eq.14 is the Lax-Milgram Theorem which is stated
in [20] as

Theorem. (Lax-Milgram) Given a Hilbert space V , a(·, ·) : V × V → R a
continuous, coercive bilinear form, and F (·) : V → R a linear and continuous
functional. Then, there exists one unique solution to the problem

Find u ∈ V : a(u, v) = F (v), ∀v ∈ V. (19)

With coercivity, we mean that if there exists a constant α > 0 such that

a(u, u) ≥ α||u||2V ∀u ∈ V.

The proof of this is based on two classical results from functional analysis: the
Riesz representation theorem, and the Banach closed range theorem. The detail
of the proof is found in [3].
The Galerkin approximation method allows us to approximate a continuous
problem, such as the weak formulation for the partial differential equation given
in into a discrete problem that may be solved numerically. Let Vh be a finite
dimensional subspace of V , such that

Vh ⊂ V, dimVh = Nh <∞ .

12
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The approximate problem takes the form

Find uh ∈ Vh : a(uh, vh) = F (vh), ∀vh ∈ Vh, (20)

and is called Galerkin problem [20]. Let Vh = span{ϕj , j = 1, 2, . . . , Nh}, in
which case

uh(x) =

Nh∑
j=1

ujϕj(x),

and Eq. 20 reduces to a system of linear equations:

Nh∑
j=1

uja(ϕj , ϕi) = F (ϕi), i = 1, 2, . . . , Nh. (21)

If we denote the elements aij = a(ϕj , ϕi) by a matrix A (called stiffness matrix),
the vector with components fi = F (ϕi) by f and the unknown coefficients uj
by u Eq. 21 is equivalent to the linear system

Au = f . (22)

Since the Lax-Milgram Theorem holds for any Hilbert space, in particular, for
the space Vh and the bilinear form a(·, ·) and the functional F (·) are the same
as in the variational problem the hypothesis required by the theorem is fulfilled.
Thus, the following result applies:

Corollary 1. The solution of the Galerkin problem Eq. 20 exists and is unique.

By taking the same hypothesis of the Lax-Milgram Theorem allows to pro-
vide the stability result as

Corollary 2. The Galerkin method is stable, as the following upper bound holds
for the solution

||uh||V ≤
1

α
||F ||V ′ ,

where α is the coercivity constant of the bilinear form a(·, ·) and V ′ is the dual
of V , while ||F ||V ′ is the norm of the functional F .

The consistency of the method is also stated and proved in [20] by the
following Lemma:

Lemma. (Céa) The Galerkin method is strongly consistent, that is

a(u− uh, vh) = 0 ∀vh ∈ Vh. (23)
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Based on this lemma one can show that

||u− uh||V ≤
C

α
min
v∈Vh

||u− v||V , (24)

where C is the continuity constant and α is the coercivity constant of a(·, ·) on
V . It is evident that in order for the method to converge, it is sufficient to re-
quire that, forNh tending to infinity, the space Vh tends to fill the entire space V .

Finite Element Spaces

The finite element spaces will consist of piecewise polynomial functions on sub-
divisions or triangulations Th of Ω ⊂ Rd ,Th = {K : elements}. For instance if
d = 1 the elements K will be intervals, if d = 2 , triangles or quadrilaterals and
if d = 3 tetrahedrons.

Assume that we have a triangulation Th = {K : elements} of Ω ∈ Rd,
i.e., Ω = ∪K∈ThK. The triangulation is admissible if the intersection of two
triangles is either empty, or a vertex, or a common side, and from now on,
all the triangulations considered are assumed to be admissible. Given a natural
number k we associate with Th the spaceXh of continuous piecewise polynomials
of degree k, i.e.,

Xh = Xk
h := {v ∈ C0(Ω) : v|K ∈ Pk,∀K ∈ Th},

where Pk denotes the space of polynomials of degree k. Therefore, we can define
the finite element approximation uh ∈ Xh to the exact solution u as its Galerkin
approximation.

5 COMSOL

COMSOL is a finite element analysis and solver software package for various
physics and engineering applications, especially coupled phenomena, or multi-
physics. It includes a complete environment for modeling any physical phe-
nomenon that can be described using ordinary or PDEs [17]. In addition to
conventional physics based user interfaces, COMSOL allows for building cou-
pled systems of PDEs. The PDEs can be entered directly or using the so called
weak form. COMSOL also offers an extensive and well managed interface to
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MathWorks MATLAB (http://www.mathworks.com/) and its toolboxes for a
large variety of programming, preprocessing, and postprocessing possibilities
[16].

COMSOL is a well-documented, powerful, and stable tool containing a set
of application templates that simulates flow and transport of heat in both sat-
urated and partially saturated heterogeneous porous media. COMSOL can ac-
curately represent complex 3D geological media and structures and their effects
on subsurface flow and transport.
COMSOL is also covers a wide range of applications for those interested in
integrated hydrological modeling [4]. It is very convenient to have a single mod-
eling platform for simulations of traditional fluid flow problems in addition to
heat transport as well as other multiphysics problems. The ability to add user
defined functions is a very positive aspect of the software.
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6 Summary of Papers

Overview

In this work the groundwater flow model together with the heat transfer in
porous media model has been used to investigate the behavior of the ATES sys-
tem. The location of the water table in unconfined aquifer near a pumping well
has been studied using the groundwater flow model. During the study different
numerical methods and software have been used.

The papers in this thesis are related to the topic of groundwater flow and
heat transfer in porous media. Paper 1 focuses on analytical and numerical
solution of radial symmetric aquifer thermal energy storage. The efficiency
of the ATES also considered in this paper. Paper 2 considers the effect of
regional groundwater flow on the efficiency of ATES for different well orientation.
The ATES system of Oslo Airport also studied in this part. Paper 3 is from
the preceedings of the ICNAAM-2014 conference and focuses on the effect of
boundary condition in the simulation of ATES. Paper 4 considers the location
of water table in unconfined aquifer near a pumping well. The numerical result
of the full model (in which Darcy’s law is directly applied) is compared with the
Dupuit- Forchheimer model (vertical flow is ignored).

List of papers

Paper I : Zerihun Birhanu, Nils-Otto Kitterød, Harald Krogstad and Anne
Kværnø. Analytical and Numerical Solutions of Radially Symmetric Aquifer
Thermal Energy Storage Problems. Submitted to Transport in Porous Media.

In this paper we discuss analytical and numerical radial solutions of the dif-
ferential equations for heat transport in water-saturated porous media. In par-
ticular, a similarity solution is obtained for a 2D-horizontal confined aquifer with
constant radial flow. Numerical solutions are derived using a high-resolution La-
grangian approach avoiding spurious oscillations and artificial dispersion, and
are shown to match the analytical solutions.
The primary purpose of the investigation has been to calculate the recovery
factor of an Aquifer Thermal Energy Storage (ATES) system with a cyclic rep-
etition of injection and pumping. Solutions covering both instantaneous and
delayed heat transfer between fluid and solid, as well as time varying water
flow, are derived and applied to a one-well test case.
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In hydrological terms, these solutions should be relevant for a wide range of
problems.

Paper II: Zerihun Birhanu, Nils-Otto Kitterød, Harald Krogstad and Anne
Kværnø. Numerical Modeling of Aquifer Thermal Energy Efficiency Under Re-
gional Groundwater Flow, a case study at Oslo Airport. To appear in Journal
of Hydrology Research. Doi: 10.2166/nh.2015.119.

The main purpose of this paper is to present a robust forward model for
simulating extraction and storage of thermal energy in an aquifer. The model
is a local three dimensional Finite Element Model (FEM) with boundary con-
ditions derived from an analytic large scale model based on the regional water
balance. Numerical investigations and thermohydraulic evaluation of a typical
dipole injection/extraction system are presented. Most of the simulation results
are focused on the spatio-temporal extension of the hot water plume close to
the injection well where the main challenges occur with respect to numerical
stability. Because the ATES-system is located close to the groundwater divide,
the energy recovery is less sensitive to the well configuration with respect to the
groundwater flow direction.

Paper III: Zerihun Birhanu, Nils-Otto Kitterød, Harald Krogstad and Anne
Kværnø. Temperature Boundary Conditions for ATES Systems. AIP Confer-
ence Proceedings, 1648, 030032 (2015); doi: 10.1063/1.4912349.

We first briefly recall the mathematical equations needed for the analysis
of Aquifer Thermal Energy Storage (ATES) systems. The equations form the
basis of a simplified numerical model of (part of) the ATES system located at
Oslo Airport, Gardermoen, Norway. This local 3d finite element model consists
of an aquifer block penetrated by two wells to form a typical dipole injection-
extraction system. Flow boundary conditions are derived from a semi-analytic
large scale model. We present here some of the results from the thermohydraulic
evaluation of the injection-extraction system, with focus on the effect thermal
boundary conditions have on the estimated efficiency of the ATES system.
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Paper IV: Zerihun Birhanu and Anne Kværnø. Numerical Simulation of the
Water Table Near a Pumping Well. Preprint.

In this paper, we study the drawdown of the water table near a pumping
well in an unconfined aquifer. Two models for this problems are compared:
The Dupuit-Forchheimer model, in which case vertical flow is ignored, thus the
model is sufficiently simplified to allow for analytical solutions. This is compared
with the solution of a full model, in which Darcy’s law has been applied to solve
for the hydraulic pressure head, and the water table is the surface for which
the hydraulic head equals the atmospheric pressure. A finite element method,
utilizing the radial symmetry of the problem, has been implemented to solve
this problem.
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Abstract

The paper discusses analytical and numerical radial solutions of the dif-
ferential equations for heat transport in water-saturated porous media. In
particular, a similarity solution is obtained for a 2D-horizontal confined
aquifer with constant radial flow. Numerical solutions are derived using
a high-resolution Lagrangian approach avoiding spurious oscillations and
artificial dispersion, and are shown to match the analytical solutions.
The primary purpose of the investigation has been to calculate the recov-
ery factor of an Aquifer Thermal Energy Storage (ATES) system with a
cyclic repetition of injection and pumping. Solutions covering both in-
stantaneous and delayed heat transfer between fluid and solid, as well as
time varying water flow, are derived and applied to a one-well test case.
In hydrological terms, these solutions should be relevant for a wide range
of problems.

Keywords: Energy transport, Thermal energy, Energy efficency, Heat trans-
fer in porous media, Analytical solution, Lagrangian approach, Similarity solu-
tion

1 Introduction

Heat transfer in porous media has received considerable attention and has been
the topic of a number of investigations during the last decade [3]. A driving
force for research on this subject is engineering applications, such as geothermal
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systems [9], heat exchangers [6], thermal insulation [5, 15], and safety issues
regarding storage of nuclear waste [25].

In addition to equations for the fluid flow, the mathematical model of heat
transfer in porous media is given by second-order partial differential equations
for heat energy conservation and flow in the model domain. Two kinds of models
can be applied to investigate thermal characteristics of conduction and advection
within a porous medium, namely, a thermal equilibrium model and a thermal
nonequilibrium model [27]. The difference between the two models is the ther-
mal coupling between the liquid and the solid phase. For the equilibrium model
the coupling is modeled as an instantaneous heat transfer. This assumption is
close to the reality for homogeneous aquifers with solid particles of minor size
(diameter dp < 1 mm). For the non-equilibrium model there is a time delay
attached to the heat transfer between the two phases. In the literature of trans-
port in porous media, this model is usually called double porosity model which
may also be expanded to a dual permeability model [23].

Researchers have highlighted different analytical and numerical methods to
find the solution for this model based on different physical phenomena. In [2]
presented the solution of heat transfer in porous media for 1D by using similar-
ity solution method. A two-dimensional numerical model for heat transport in
a heterogeneous porous aquifer thermal energy storage system is presented by
[10]. They considered transient heat transport phenomenon in a heterogeneous
porous aquifer due to hot water injection and validated the solution analytically.

Aquifer Thermal Energy Storage (ATES) is an example of technology where
subsurface storage and transport of heat is used to save energy. ATES systems
may utilize inter-seasonal heat storage, which means storage of excess energy
from summer that is used in winter time for heating purposes. For cooling
purposes low temperature water is extracted from cold wells and heated water is
injected into hot water wells [5]. Thus, ATES installations actively store cooled
and heated groundwater in the ground from respective heating and cooling mode
cycles [7]. An ATES system involves both the flow of water and heat transport.
In order to predict the performance and efficiency of an ATES system, one
possibility is to run detailed numerical simulations, and researchers have long
highlighted numerical modelling for analysis and optimization of ATES systems
[17]. In some cases, the injection and pumping wells may be simplified to a
classical dipole geometry. In this case, the flow field may be simplified to axis
symmetry where the flow velocities are governed by the injection/pumping rate
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and the aquifer porosity. In the present study, we take advantage of a simplified
flow field and solve the transport equation by simple analytical and numerical
methods to evaluate the energy efficiency of an idealized ATES system. For
fine grained porous media, we calculate and initial energy efficiency about 0.75.
This result is close to empirical observations and detailed numerical simulations
[4].

Numerical solutions of transport problems are usually affected by artifacts,
and because all mathematical models are simplifications of reality, boundary
conditions should be specified with great precautions. In [4] showed that the
most evident boundary condition of temperature at the top of an unconfined
aquifer gave unphysical energy efficiency for simulation experiments of a real
ATES system. In this study we use analytical solutions to understand the
quality of numerical simulations by doing (simple) numerical experiments. One
experiment we carry out is an idealized ATES production sequence by repeating
injection and pumping of hot water in a confined aquifer. The performance of
the alternative solutions is quantified by a recovery (or efficiency) factor.

2 Mechanisms and Equations

A thermo-hydraulic analysis requires calculation of simultaneous water and heat
transport in an aquifer consisting of a solid porous medium (s) with pores filled
with water (w). The water flow depends on properties of the water as well as the
solid, and the gradient of the hydraulic head, as stated in Darcy’s law [19, 20]:

q = −ρgk
µ
∇
(
p

ρg
+ z

)
= −K∇φ. (1)

Here, q is the specific discharge or the Darcy velocity, k the intrinsic perme-
ability tensor, z the elevation of the piezometric head relative to a datum level,
p the fluid’s pressure, ρ water mass density, g the acceleration of gravity, and µ
the dynamic viscosity of water. Furthermore, K = ρgk/µ is the hydraulic con-
ductivity, and φ = p/ρg+ z is the hydraulic head. The volume average velocity
differs from the velocity of the water in the pores, the so-called seepage velocity,
u = q/n, where n is the (effective) porosity [14]. The water density and, more
pronounced, viscosity varies with temperature. However, we shall here assume
that the flow field represented by q remains independent of the temperature
changes. Assuming that the solid matrix as well as the water are incompress-
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ible, mass conservation combined with Darcy’s law leads to the Poisson equation
for the hydraulic head,

∇ · [−K∇φ] = Qw(t), (2)

where Qw(t) is a source/sink term.
The heat energy content per aquifer volume unit may be written

ρwcwTwn+ ρscsTs(1− n), (3)

where c is the specific heat, and subscripts w and s refer to water and solid. At
a local temperature equilibrium where, Tw = Ts = T , the heat content may be
thus expressed as (ρc)mT , where

(ρc)m = ρwcwn+ ρscs(1− n), (4)

see [13] and [14]. In the following we will use the convention ρmcm for (ρc)m.
The water flow causes advection of heat,

qc = (ρwcwTw)q, (5)

whereas conduction/diffusion of heat takes place both in the solid and the liquid,

qw = −nλw∇Tw, (6)
qs = −(1− n)λs∇Ts, (7)

and λw,s are the heat diffusion coefficients. If the two media are at a local
thermal equilibrium, the volume average diffusive heat flux may be expressed
by

qT = −λm∇T, (8)

where λm is a bulk aquifer heat diffusion coefficient,

λm = nλw + (1− n)λs, (9)

see [14] and [20]. Other expressions for λm, e.g. porosity-weighted geomet-
ric and harmonic means are also discussed in the literature [20]. In addition,
the heterogeneity of the pores induces a certain amount of thermal dispersion,
parametrized, in its simplest form as

qd = ρmcmα̂|q|∇T. (10)
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Here α̂ is the thermal dispersivity length, and the total diffusion flux becomes
qT + qd [1].

If a thermally insulated block of aquifer with Tw 6= Ts is left alone, energy
conservation implies that the system attains an equilibrium temperature Tm
equal to the weighted mean

Tm =
ρwcwn

ρmcm
Tw +

ρscs(1− n)

ρmcm
Ts. (11)

How fast this equilibrium is reached depends on the efficiency of the energy
exchange between the two media. It turns out to be reasonable to express the
heat exchange per time and volume unit as

P = h(Tw − Ts), (12)

where h is a heat transfer coefficient [16, 20]. The coefficient varies with tem-
perature and the flow, in particular for large flows. Following the discussion in
[20], h may be expressed as h = awshv, where aws = 6 (1− n) /dp is the surface
area of the water/solid interface per volume unit, and hv an expression which
for low Reynolds numbers may, for simplicity, be set to

hv =
5λH
2dp

,
1

λH
=

1

2

(
1

λw
+

1

λs

)
. (13)

Here, dp is the size of the grains making up the solid, and the expression for h
becomes

h = 15λH (1− n) d−2
p . (14)

A rough estimate of the time scale ∆t towards thermal equilibrium may be
obtained from the energy exchange per time unit at the start of the heating,
P = h (Tw − Ts), compared to the required amount of energy to be transferred,
E = (1− n)ρscs(Tw − Ts):

∆t =
E

P
=

1

15

ρscs
λH

d2
p. (15)

The time scale is thus only dependent on basic material constants and the grain
size. With typical values for rock, we obtain

∆t [s] ≈ 0.15× (dp [mm])
2
. (16)

A similar time scale may actually be derived from the heating of spheres dis-
cussed in [11].
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For an elemental aquifer volume R with boundary ∂R, the solid’s integral
conservation law reads

d

dt

∫
R

(1− n)ρscsTsdV +

∫
∂R

(1− n)(−λs∇Ts) · n̂dσ =

∫
R

h(Tw − Ts)dV. (17)

Note that since the solid is stationary, there is no convective heat flux. Similarly,
the integral conservation form for heat in the water is

d

dt

∫
R

nρwcwTwdV +

∫
∂R

[ρcwTwq−nλw∇Tw] · n̂dσ = −
∫
R

h(Tw−Ts)dV. (18)

The differential forms of the conservation laws with the assumptions above
become

(1− n)
∂

∂t
(ρscsTs)− (1− n)∇ · (λs∇Ts) = h (Tw − Ts) , (19)

n
∂

∂t
(ρwcwTw) +∇ · (ρwcwTwq)− n∇ · (λw∇Tw) = −h (Tw − Ts) . (20)

We observe that when Tw is kept constant and diffusion is neglected, the natural
time scale (inverse rate of change) in Eq. 19 is essentially ∆t. For dp less than
about a millimetre, the thermal equilibrium is virtually spontaneous and we
may assume that Tw and Ts are equal.

For the case where T = Tw = Ts, we obtain by adding Eq. 19–20,

d

dt

∫
R

cmρmTdV +

∫
∂R

[ρwcwTq− λm∇T ] · n̂dσ = 0, (21)

and the corresponding differential form.

∂ (cmρmT )

∂t
+∇ · (cwρwTq)−∇ · (λm∇T ) = 0. (22)

If the parameters like c, ρ, λ and the flow q are assumed to be independent of
T , then dividing through with cmρm in Eq. 22 leads to

∂T

∂t
+∇ · (κT )− λ∇2T = 0, κ =

ρwcw
ρmcm

q, λ =
λm
ρmcm

. (23)

In our model, the flow q is caused by water injected or pumped with a discharge
rate Q(t) from a well located at the origin. When Q(t) > 0, water is injected
from the well into the aquifer, causing a flow away from the well. During
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pumping, Q(t) < 0 and the flow is directed towards the well. Utilizing symmetric
geometry of the aquifer near the well, the flow is q = qdir in which the discharge
velocity qd = Qd

rd−1 where

Qd =


Q
HW for d = 1 (linear flow),
Q

2πH for d = 2 (radial flow),
Q
4π for d = 3 (spherical flow).

(24)

The width W and height H are constants characteristic for the aquifer. In this
case, Eq. 23 becomes

∂T

∂t
+

κd
rd−1

∂T

∂r
=

λ

rd−1

∂

∂r

(
rd−1 ∂T

∂r

)
, κd =

ρwcw
ρmcm

Qd. (25)

Using the same symmetry considerations in the nonequilibrium case Eq.19–20
become

∂Ts
∂t

=
λs
ρscs

1

rd−1

∂

∂r

(
rd−1 ∂Ts

∂r

)
+

h

(1− n)ρscs
(Tw − Ts),

(26)
∂Tw
∂t

+
Qd
n

1

rd−1

∂Tw
∂r

=
λw
ρwcw

1

rd−1

∂

∂r

(
rd−1 ∂Tw

∂r

)
− h

nρwcw
(Tw − Ts). (27)

3 Analytical Solutions

We shall consider the formation of a hot water plume in a local thermal equilib-
rium aquifer generated by a constant hot water source at the origin. Consider
Eq. 25 with the following initial and boundary conditions:

T (r, 0) = 0, T (0, t) = 1, lim
t→∞

T (r, t) = 0, r, t > 0. (28)

If the diffusion term is negligible, Eq. 25 becomes a simple hyperbolic equation
which, for any initial temperature distribution, T (r, 0) = f(r), has the solution
T (r, t) = f

(
rd − dκdt

)
. In particular, for the conditions in Eq. 28, the hyper-

bolic solution is the moving front T (r, t) = Hc

(
rd − dκdt

)
where Hc(x) is the

complementary Heaviside function (= 1 for x ≤ 0, = 0 for x > 0). Since ρwcw is
typically about twice as large as ρscs, the ratio ρwcw

ρmcm
depends on the porosity

n and varies between 1 and 2. The temperature front thus moves significantly
faster than the discharge velocity q, but slower than the average seepage velocity,
u = q/n.
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The 1-dimensional case

When d = 1 Eq. 25 becomes

∂T

∂t
+ κ1

∂T

∂x
= λ

∂2T

∂x2
, (29)

where we choose the more standard spatial variable x rather than r. In this
case, a well known similarity variable is η = (x−κ1t)/

√
λt, which, inserted into

the equation results in

2
d2T

dη2
+ η

dT

dη
= 0, (30)

with the general solution T (η) = C1erf(η/2) + C2. However, no solution from
this collection satisfies the boundary condition T (0, t) = 1. Nevertheless, the
similarity solution of the closely related problem satisfying the initial values
T (x, 0) = Hc(x), x ∈ R is a good approximation:

T (x, t) =
1

2
erfc

(
x− κ1t

2
√
λt

)
. (31)

A modification of this solution, satisfying all conditions in Eq. 28 exactly has
been derived in [21], see also [2], Eq. 6.4.30:

T (x, t) =
1

2

(
erfc

(
x− κ1t

2
√
λt

)
+ exp

(κ1x

λ

)
erfc

(
x+ κ1t

2
√
λt

))
. (32)

The similarity solution Eq. 31 and the exact solution Eq. 32 are presented
in Fig. 1 together with the hyperbolic front solution T (x, t) = Hc(x − κ1t).
As expected, the similarity solution in Eq. 31 does not satisfy the boundary
conditions at x = 0. Still, as λ tends to 0, the solution approaches the hyperbolic
front, and Eq. 31 becomes a very good approximation.

The 2-dimensional radial symmetric case

For a 2-dimensional problem, assuming radial symmetry, Eq. 25 becomes

∂T

∂t
+
κ2

r

∂T

∂r
=
λ

r

∂

∂r

(
r
∂T

∂r

)
, (33)

which may be rewritten as

∂T

∂t
+
κ2 − λ
r

∂T

∂r
= λ

∂2T

∂r2
. (34)
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Figure 1: The 1-D similarity solution Eq. 31 and the exact solution Eq. 32 compared
with the hyperbolic front for two different values of the diffusion coefficient λ.

Again, it turns out that assuming the similarity variable η = r/
√
λt, we obtain

an equation
d2T

dη2
=

(
α− 1

η
− η

2

)
dT

dη
, α =

κ2

λ
, (35)

with general solution

T (η) = C1

∫ η

0

sα−1e−s
2/4ds+ C2. (36)

The solutions may be written in terms of the incomplete Γ-function, defined as

γ(x, a) =

∫ x

0

ta−1e−tdt, Γ(a) = γ(∞, a). (37)

The radial 2D similarity solution becomes

T (η) = 1−
γ
(
η2

4 ,
α
2

)
Γ
(
α
2

) , (38)

or

T (r, t) = 1−
γ
(
r2

4λt ,
α
2

)
Γ
(
α
2

) , (39)

and the solution is shown is Fig. 2.
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Figure 2: The exact similarity solution Eq. 39 compared with the hyperbolic front for
two different values of the diffusion coefficient λ in the 2-dimensional radial symmetric
case.

The spherical symmetry 3D-case is easily seen to have intrinsic scales for r
and t involving κ3 and λ, and no simple similarity solution exists. The scaled
equation may however be transformed to a 1D heat equation with a space depen-
dent diffusion coefficient [22]. Actually, the numerical algorithm below applies
a similar transformation.

4 Computational procedure

We shall now consider a numerical algorithm for solving Eq. 19–20, or the equi-
librium model Eq. 23 in the case of symmetric geometry. It turns out that
the numerical solution of these problems are nontrivial. They are typically ad-
vection dominated, and we have already seen in the previous section that the
temperature profile is a sharp front moving away from the source. In the radial
and spherical case, the flow becomes very large close to the origin, leading to
an almost hyperbolic equation in this region. Advection dominated problems
are notoriously difficult to solve numerically. Popular schemes, like central dif-
ferencing schemes result in unstable or spurious oscillatory solutions. Upwind
discretization for the advection term avoid oscillations, but do create artificial
diffusion, leading to a smoothed temperature front when applied on a coarse
grid. Several other methods have been proposed and discussed in the literature,
see e.g. [24] and [18].
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We propose a computational procedure utilizing the special structure of the
Eq. 25 or Eq. 26–27. The procedure is composed by the well-known Lagrangian
approach combined with a coordinate transformation. The idea will first be
explained for the equilibrium case Eq. 25.

Before discussing the numerical scheme, it is convenient to say something
about the scaling of the problem. Consider a time scale T for the time t, and
R for the space variable r. A reasonable relation between the two scales is
Rd = κ̄dT , R is the distance a hyperbolic temperature front moves in time T
for a constant κd = κ̄d. The temperature T will typically be scaled with the
temperature of the injected water. With these scales we get the dimensionless
equation

∂T

∂t
+ v(t)

1

rd−1

∂T

∂r
=

λ̂

rd−1

∂

∂r

(
rd−1 ∂T

∂r

)
r > 0, t > 0, (40)

where v(t) = κd(t)/κ̄d, λ̂ = λT /R2. As a curiosity, notice that in the case of
a constant κd, by choosing R and T such that κdT /Rd = λT /R2 = 1, the
parameters are completely absorbed, in the sense that also λ̂ becomes equal to
one. This is possible for d = 1 and d = 3, but not for d = 2. We will not pursue
this idea further here.

To handle the singularities in origin in the radial and spherical cases, we
introduce the transformation s = rd/d so that ∂s = rd−1∂r, valid for all dimen-
sions d. In this case, Eq. 40 becomes

∂T

∂t
+ v(t)

∂T

∂s
=

∂

∂s

(
λ̂ a(s)

∂T

∂s

)
, a(s) = (d · s)2(d−1)/d. (41)

Notice that a(0) = 0 for the d ≥ 2, elucidating the hyperbolic nature of the
problem close to origin. The numerical difficulties of hyperbolic problems can
be resolved by using a Lagrangian method: Given a path s(t) in the (s, t) plane.
The solution along this path is T (s(t), t) and the total derivative of T with
respect to time becomes

dT

dt
=
∂T

∂s

ds

dt
+
∂T

∂t
, (42)

which, inserted into Eq. 41 gives

dT

dt
+

(
v(t)− ds

dt

)
∂T

∂s
=

∂

∂s

(
λ̂ a(s)

∂T

∂s

)
. (43)

If we let the path s(t) satisfy ds/dt = v(t), the advection term is eliminated. In
fact, the paths s(t) are the characteristics for the hyperbolic equation we obtain
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for λ̂ = 0. As a result, Eq. 41 can be solved as a system of differential equations:

ds

dt
= v(t),

dT

dt
=

∂

∂s

(
λ̂ a(s)

∂T

∂s

)
.

The first equation is an ordinary differential equation, whereas the second one
is a just a heat equation with a space dependent diffusion coefficient. This can
be discretized in space by some appropriate finite difference schemes, e.g.

dsi
dt

= v(t), (44)

dTi
dt

=
2λ̂

si+1 − si−1

(
ai+1/2

Ti+1 − Ti
si+1 − si

− ai−1/2
Ti − Ti−1

si − si−1

)
, (45)

with ai+1/2 = (a(si+1) + a(si))/2, and initial values si(0) = si,0 and Ti(0) =
T (si,0, 0). The procedure is significantly simplified if v is constant, in which
case the characteristics s(t) are just straight lines.

The spacial domain can be extended to R by defining a(s) = 0 for s < 0. In
this case, we may solve Eq. 41 with the boundary conditions:

lim
s→−∞

T (s, t) = 1, lim
s→∞

T (s, t) = 0. (46)

When water is injected, v > 0 and the temperature of the water at the well is
T (0, t) = 1. This is realized by choosing T (s, t0) = T0(s) whenever s > 0 and
T (s, t0) = 1 for s ≤ 0. Here t0 is either the initial time or a switching time, that
is whenever v(t) changes from negative to positive (from pumping to injection).
The procedure is illustrated for the injection phase in Fig. 3.

In order to be able to resolve a sharp front, the characteristics si(t) used in
the discretization can be concentrated around it.

Example 1. The algorithm described above is used for solving Eq. 40 for
d = 2, using κ2 = 1, T (0, t) = Tinj = 1 and T (r, 0) = 0. The exact solution
is given by Eq. 39. The problem is first solved by the algorithm described
above. The initial computational domain is (−Sint, Sint ) where Sint is chosen
sufficiently large to avoid any influence from the boundaries. The concentration
of characteristics around the front is achieved by using

s̄i = −1

2
+

i

N
, si(t0) = (sgn(s̄i))

p−1s̄pi Sint, i = 0, · · · , N, (47)
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𝑠 0 
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Physical Domain 
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𝑠𝑖(0) 

Figure 3: The extended domain and the characteristic lines in the injection phase.

where p is a positive integer, the higher p the stronger concentration. In our
experiments, we have used p = 3, N = 100 and Sint = 2.4.

For comparisons, the equation Eq. 40 is also solved by a standard difference
scheme with constant stepsize. In this case the advection term is approximated
with an upwind scheme, (∂T/∂r)(ri, t) ≈ (Ti(t)−Ti−1(t))/∆r. For the diffusion
term a central difference scheme us applied. The spatial gridsize is ∆r = 0.012.

The problem is solved for different values of λ̂, and the results are shown
in Fig. 2 together with the exact solutions given by Eq. 39. For λ̂ = 0.1, the
diffusion is large and the artificial diffusion of the upwind method is insignificant.
For smaller values of λ̂, the front remains sharp, and the effect of the artificial
diffusion of the upwind method becomes quite pronounced. The Lagrangian
approach preserves the sharp temperature front.

The non-equilibrium case

We now consider the non-equilibrium case Eq. 26–27, which in scaled form
becomes

∂Ts
∂t

=
λ̂s
rd−1

∂

∂r

(
rd−1 ∂Ts

∂r

)
+ γs(Tw − Ts), (48)

∂Tw
∂t

+ v
1

rd−1

∂Tw
∂r

=
λ̂w
rd−1

∂

∂r

(
rd−1 ∂Tw

∂r

)
− γw(Tw − Ts), (49)
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Figure 4: Comparison of the numerical solutions based on the Lagrangian method,
and a classical upwind scheme of the 2-dimensional radial symmetric case (Eq. 40)
for different values of the diffusion parameterλ̂. The Lagrangian solution overlaps the
exact solution for all three values of λ̂.

where

λ̂s =
λs
ρscs

T
R2

, λ̂w =
λw
ρwcw

T
R2

, γs =
h

(1− n)ρscs
T , γw =

h

nρwcw
T

(50)
and

v =
Qd
n

T
Rd

. (51)

Again, for a given time scale T it is appropriate to choose a spatial scale R
such that v(t) is of the size of 1. The boundary conditions in the injection case
(v(t) > 0) is

Tw(0, t) = Tinj ,
∂Ts
∂t

(0, t) = γs(Tinj − Ts(0, t)), (52)

(with Tinj = 1 if the temperature is scaled).
By applying the transformation s = rd/d and using the Lagrangian ap-

proach, we can find the solutions Ts(s(t), t) and Tw(s(t), t) on the characteristics
s(t) from

ds

dt
= v, (53)

dTs
dt
− v ∂Ts

∂s
= λ̂s

∂

∂s

(
a(s)

∂Ts
∂s

)
+ γs(Tw − Ts), (54)

dTw
dt

= λ̂w
∂

∂s

(
a(s)

∂Tw
∂s

)
− γw(Tw − Ts). (55)
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Figure 5: Temperature distribution of water (left) and solid (right) in the aquifer as
a function of time t and radial distance r for v(t) = cos(πt). Hot water is injected for
t < 0.5 and pumped for t > 0.5.

However, the advection term is not eliminated as in the equilibrium case, but
has moved from the equation of water to the equation of solid, with a sign
change. The formulation is still useful, since it is straightforward to construct a
spatial grid which is dense around sharp solution profiles, and moves with them.
This is illustrated in the following example.

Example 2. Consider the nondimensional equations Eq. 48–49, using d = 2
and parameters

λ̂w = λ̂s = 10−5, γw = 1, γs = 2, (56)

and a time dependent flow, v(t) = cos(πt). For 0 < t < 1, both injection,
0 < t < 0.5, and pumping, 0.5 < t < 1, are demonstrated. The equations are
solved with the Lagrangian approach, using a central difference approximation
for the diffusion terms, and a downwind scheme

∂T

∂s
(si, t) ≈

Ts,i+1 − Ts,i
∆si

(57)

for the advection term. We have used a spatial stepsize ∆si, varying from
1.1 · 10−6 to 0.14 and concentrated around the temperature front of the water.
The semidiscretized system is solved by MATLABs ODE15s.

The result of the simulation is presented in Fig. 5. We can clearly see how
the hot water plume develops with time t. The concentration of characteristics
moves with the temperature front, which remains sharp. At the same time, there
is a heat exchange from water to solid, and the temperature of the water behind
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the front is reduced at the same time as that of the solid increases. The diffusion
most of the time is almost negligible, but will cause a slight smoothing of the
front. When t→ 1, the front approaches the well with increasing velocity, and
the smoothing of the front becomes more pronounced. This example illustrates
the numerical challenge, namely the coupling of advective and diffusive physics.
Usually, the numerical solutions of such problems are suffering from artifacts,
such as numerical diffusion and/or oscillations, but in this case it is possible to
suppress the numerical artifacts to negligible levels.

5 Case study: Temperature profile near a well in
an ATES system

In this section, we consider the temperature propagation around a hot well in an
ATES system. The physical and thermal properties of the Gardermoen aquifer
where obtained from [12] and [26], and is given in Table 1. The ATES system
is typically operating in one of two modi: Injecting hot water during daytime
and extracting it during nighttime, resulting in a full operational cycle of 24
hours. Alternatively, the warm water is injected during the summer months,
and extracted in the winter, giving a cycle of one year. In reality, a combination
of these are used, but in our study, we only consider the first modi, assuming
the injection and extraction periods to be of equal lengths, 12 hours.

The Gardermoen aquifer is a delta structure deposited in a glacio-fluvial/glacio-
marine environment during the last deglaciation of the Scandinavian crust (ap-
prox. 10.000 B.P., [26]). The river discharge and the sediment load from the
melting glacier were significant, which explains the wide range of grain sizes of
the sediments from boulders (dp > 500mm, at the proximal side of the delta), to
fine sand and silt (dp <∼ 1mm) at the distal side of the delta. The ATES sys-
tem for this case study was located in the delta foresets with homogeneous fine
sand, but it is interesting to compare the energy efficiency of this ATES with
an alternative locations. We therefore let the sediments vary form dp = 1mm,
which correspond to a foreset location, to dp = 500mm mimicking a location
close to the glacial portals. In that case, the aquifer permeability would have
been better, but to keep the experiment as simple as possible, we let the pump-
ing rate and the porosity be the same for all grain sizes. In Table 2 the value
of the heat transfer coefficient h, Eq. 14, and the time scale towards thermal
equilibrium ∆t, Eq. 16, for different particle size are shown. So we can con-
clude that within time scales given by the injection/extraction periods, there is
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almost thermal equilibrium for realistic particle sizes. It is still of interest to
see what happens in the initial injection phase, before thermal equilibrium is
established, so we will solve Eq. 26–27. In a horizontal confined aquifer we can
assume radial symmetry in the vicinity of a well, so d = 2. Initial and boundary
conditions for the first injection phase is

Tw(0, t) = Tinj , Tw(r, 0) = T0, (58)
∂Ts
∂t
|r=0 = γs(Tw − Ts), Ts(r, 0) = T0. (59)

The equations are solved by the numerical approach outlined in Section 4.

Property Symbol Value
Porosity n 0.1507
Density of fluid ρw 1000 kg/m3

Density of aquifer ρs 2630 kg/m3

Specific heat of fluid cw 4200 J/kgK
Specific heat of solid cs 800 J/kgK
Thermal conductivity of fluid λw 0.6 W/mK
Thermal conductivity of solid λs 2.0 W/mK
Injection/pumping rate Q 28 m3/hr
Temperature of the injected water Tinj 30 ◦C
Aquifer initial temperature T0 4 ◦C
Aquifer height H0 24.4 m

Table 1: Physical and thermal properties of fluid and aquifer for the thermo-hydraulic
modelling of the Gardermoen aquifer.

dp 500mm 100mm 10mm 5mm 1mm
h[W/mK] 49.3 1.2×103 1.2×105 4.9 ×105 1.2×107

∆t 10.3 hr 25 min 15 sec 3.8 sec 0.15 sec

Table 2: The heat transfer coefficient (Eq. 14) and the estimated time scale (Eq. 16)
towards thermal equilibrium for different particle size.

Transient injection phase

In Fig. 6 we present the temperature profiles for the first few seconds of the
injection period. The first rows shows the situation for particle size dp = 1mm.

39



Paper 1

Thermal equilibrium happens almost immediately in this case, but the energy
transfer still has an effect in the sense that the temperature front become more
smooth. Also notice that after 0.15 sec, the solid temperature at the wall has
reached to about 2/3 of the water temperature, while the water is almost cooled
at the front. This is consistent with the fact that (1 − n)ρscs/(nρwcw) ≈ 2.8,
thus we expect the water to cool down approximately 3 times as fast as the solid
heats up. The lower row gives the same profile for dp = 5mm and dp = 10mm,
and as expected, the heat exchange is significant slower in these cases. As a
consequence, the width of the front increases.

Observe the similarities of the top left and the lower right plots in Fig. 6.
This is due to the fact that the thermal transfer coefficient h given by Eq. 14
is proportional to d−2

p . For the 2-dimensional radial symmetry case, the two
solutions may be proved to be identical up to scalings of t and r.

Energy efficiency

In this part we study the energy recovery from an ATES well based on 12 hours
injection and extraction periods. In general, the energy transfer E in the well
over a time interval τ is given by

E (τ) =

∫
τ

ρwcw (Tw,0 (t)− T0)Q (t) dt, (60)

where Tw,0 = Tw(0, t) is the water temperature at the well. The efficiency can
me measured in terms of the energy recovery factor given by, [8]

θ =
|E (τextraction) |
|E (τinjection) |

. (61)

Clearly, if the injected water has a constant temperature and the injection rate
Q is constant, then E(τinjection) = ρwcw(Tinj −T0)Qτinjection, however, during
pumping the water temperature at the well will vary. The temperature of the
water and solid at the well over five consecutive cycles are given in Fig. 7, as
well as the recovery rate over these cycles.

We observe that the heat exchange have a significant impact on the efficiency
rate for dp = 500mm, otherwise not. We notice that the efficiency recovery rate
based on this simplified model corresponds well with the rates achieved for an
ATES system in the same aquifer presented in [4].

The temperature profile over one cycle (injection and pumping) is given for
the two extreme cases dp = 500mm and dp = 1mm in Fig. 8.
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Figure 6: The temperature profile of the solid and the water for different values of
dp[mm] in 2D radial flow near a well. The solid lines indicate the temperature of the
water and the broken lines for solid temperature. The upper row emphasize water
and solid temperature profile of the same particle size with different timescale while
the bottom row emphasize the water and solid temperature profile of different particle
size over the same timescale.

6 Conclusion

This paper has briefly reviewed the differential equations for heat transport
in water-saturated porous media, and presented numerical and analytical so-
lutions for radially symmetric flow. In particular, a simple similarity solution
was obtained for the heat transfer in a 2D horizontal confined aquifer in local
fluid/solid thermal equilibrium. For a time varying fluid flow and different fluid
and solid temperatures, that is, the non-equilibrium or delayed case, solutions
have to be obtained numerically. The numerical algorithms have been based on
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Figure 7: The temperature of the water and solid at the well for five consecutive
cycles of 24 hours for aquifers of different particle sizes. In the lower right corner, the
corresponding recovery rates.

a semi-discrete Lagrangian formulation for the equilibrium case, and a standard
finite difference method for the non-equilibrium case.

The numerical models have enabled us to consider the primary purpose of
this investigation, namely to calculate the recovery factor of a one-well ATES
system with a cyclic repetition of injection and pumping. It has turned out that
the performance is dependent on the total length of the cycle relative to the time
scale for the heat transfer between fluid and solid. The latter may be linked
to the typical grain size dp as shown in Table 2. For a total cycle of length 24
hours, referring to Fig. 7, the performance is seen to be virtually independent
of the grain size as long as dp is less than about 100mm (∆t ≈ 25minutes), but
significantly affected for ds = 500mm (∆t ≈ 10hours). In the latter case, the
efficiency is also significantly reduced.

Based on the presented results, the analytic and numerical solutions should
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Figure 8: Temperature profiles of water (solid lines) and solid (dashed lines) for
different particle sizes The left column shows the temperature profiles during injection,
the right during pumping.

provide a consistent tool for the understanding of water and solid temperatures
near wells with radial flow.
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Abstract

We first briefly recall the mathematical equations needed for the analysis
of Aquifer Thermal Energy Storage (ATES) systems. The equations
form the basis of a simplified numerical model of (part of) the ATES
system located at Oslo Airport, Gardermoen, Norway. This local 3d
finite element model consists of an aquifer block penetrated by two wells
to form a typical dipole injection-extraction system. Flow boundary
conditions are derived from a semi-analytic large scale model. We present
here some of the results from the thermohydraulic evaluation of the
injection-extraction system, with focus on the effect thermal boundary
conditions have on the estimated efficiency of the ATES syste.

Keywords: Efficency, Numerical modeling, Natural flow conditions, Thermal
energy

1 Introduction

Energy conservation is becoming an increasingly important aspect of essentially
all types of economic activity. One method of energy conservation is the Aquifer
Thermal Energy Storage (ATES) system utilizing inter-seasonal heat storage.
This involves storage of excess energy from summer for use in winter heating
applications, and the storage of cooling potential from winter for free cooling
in summer. For typical summer conditions, low temperature water from a cold
well is pumped through a heat exchanger and used for cooling. This increases
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the temperature of the production water before injecting it into a hot well. In
winter, the process is reversed. Warm water is pumped from the hot well and
sent through the heating system to pre-heat the buildings’ air intake. In trans-
ferring thermal energy to the air, water becomes cooler, and this cooler water
is returned to the cold well. Oslo Airport, located on top of the Gardermoen
aquifer in southern Norway, has been operating an ATES system consisting nine
cold and hot well pairs attached to an energy plant since the airport opened in
1998. The seasonal operation of the system is illustrated in Fig. 1.

WINTER SITUATION
SUMMER SITUATION

CLIMATIZED BUILDING

WARM WELLSCOLD WELLS

ENERGY PLANT 

CLIMATIZED BUILDING

WARM WELLSCOLD WELLS

ENERGY PLANT 

Figure 1: Principal ATES configuration.

In order to predict the performance and efficiency of an ATES system, one
possibility is to run detailed numerical simulations, and researchers have long
highlighted numerical modeling for analysis and optimization of ATES systems.
Numerical models available to simulate an ATES system by modeling the mass
and heat transport in the aquifer have been reviewed in [4]. In particular,
numerical simulation of the continuous operation of an ATES under regional
groundwater flow was carried out by [5], emphasizing the influence of regional
groundwater flow on the performance of the system under various operational
scenarios. Numerical simulations which describe the efficiency of the ATES sys-
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tem at Oslo Airport under regional groundwater flow with thermal insulation
of the aquifer have been studied in [1]. In the present work, we address some
unresolved problems from the former study. In particular, the effect of bound-
ary conditions on the simulated efficiency of the system is discussed. For the
simulation of the ATES system we have applied the commercial finite element
software COMSOL Multiphysics [7].

2 Mathematical Model

The thermo-hydraulic analysis requires calculation of groundwater and heat
transport in an aquifer consisting of a solid porous matrix (s) with pores sat-
urated with water (w). The flows are governed by a set of coupled partial
differential equations describing the mass and heat energy balance. The flow of
water depends on properties of the water and the matrix, and the gradient of
the hydraulic head, as represented by Darcy’s law for groundwater flow [6]:

q = −ρgk
µ
∇
(
p

ρg
+ z

)
. (1)

Here, q is the specific discharge or the Darcy velocity, k the intrinsic perme-
ability tensor, z the elevation of the piezometric head relative to a datum level,
p the fluid’s pressure, ρ water mass density, g the acceleration of gravity, µ the
dynamic viscosity of water, and φ = p/ρg + z is the hydraulic head.

We assume that the thermal coupling between the solid and fluid is very
good, implying that their respective temperatures are the same. With these
assumptions, the energy conservation may be written [8]:

∂ρmcmT

∂t
+∇ · (cwρwTq) +∇ · [−λh∇T ] = H̃, (2)

where c is the specific heat, λh is the thermal conductivity, and H̃ is any heat
source/sink. The aquifer’s heat capacity, depending on the porosity n, is

ρmcm = nρwcw + (1− n) ρscs, (3)

and cwρwTq is the advective heat flux [8]. The heat conductivity λh has contri-
butions both from molecular diffusion, often expressed as λm = nλw+(1− n)λs,
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and mechanical dispersion, which may be expressed as ρmcmα |q|, where α is
the dispersivity length.

The efficiency analysis of the ATES system in this study is based on a full
operational cycle consisting of two periods; injection of hot water followed by
extraction of hot water. In general, the energy transfer E in the well over a
time interval τ may be written as

E (τ) =

∫
τ

cwρw (T (t)− T0)Q (t) dt, (4)

where T is the water temperature at the well, T0 the ambient groundwater
temperature, and Q (m3/s) the water injection or extraction rate. The energy
recovery may then be expressed as the ratio

θ =
E (τextr.)

E (τinj.)
. (5)

Model Setup

Oslo Airport is located at Gardermoen, on the largest precipitation-fed aquifer
of mainland Norway. A local domain of the aquifer, close to a regional ground-
water divide, is utilized as a source for heating and cooling of the indoor space
at the airport. The ATES system consists of 18 wells, 9 warm and 9 cold, each
with a diameter of 450 mm and drilled down to 45 m below the surface. In order
to demonstrate the essential physics, we have decided to simplify the simulations
to a pure dipole system with one injection and one extraction well. Pumping
and injection volumes are chosen close to the real production volumes. Initial
physical parameters for the Gardermoen aquifer were obtained from [2] and [9].
Boundary conditions are derived from an analytic large scale model [3] and are
consistent with the regional water balance.

3 Discussion

Figure 2 demonstrates the development of the hot water plume around the
warm well for a cycle of 6 months of injection followed by 6 months of pump-
ing. Two different thermal boundary conditions are imposed. The figure to the
left shows the temperature propagation for a non insulated aquifer for which
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the temperature is constant (4◦) at the top and the bottom of the aquifer.
The water is rapidly cooled, the hot water plume is quite small, and during the
pumping period (bottom row), cold water almost immediately enters the screen,
resulting in a simulated recovery factor of about 0.24, far below realistic values
at the Gardermoen ATES system. We also observe that almost no hot water
is left after one period. As a consequence, subsequent cycles will behave similar.

The same simulations were done on an thermally insulated aquifer, where no
thermal flux were allowed at the top and the bottom of the aquifer. The result
is given in the right of Fig. 2. In this case, we can see that there are almost no
heat loss. We also observe that there is a small plume of hot water left after one
period, mostly due to thermal diffusion. After one cycle, the estimated recovery
factor is about 0.75. The minor drifting of the temperature plume downwards
and to the right of Fig. 2 was due to infiltration of water at top of the aquifer
and outflow of groundwater to the right of the model.

Figure 2: Temperature distributions for a vertical slice at y = 185m after warm
water injection during the first six months (upper row) and pumping of hot water for
another six months (lower row). The vertical broken black line in the top three figures
shows the open screen. (a) Thermally non insulated aquifer (constant temperature
boundaries). (b) Thermally insulated aquifer (no heat flow across boundaries).

The simulations were also performed over for a period of 5 injection/pumping
cycles. The recovery factor has been estimated at the end of each cycle of one
year. In the non insulated case, the recovery factor is almost the same over time,
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Figure 3: Efficiency of the ATES at Oslo Airport for different temperature boundary
condition at the top and bottom of the model. (a) Thermally open aquifer (b) Ther-
mally insulated aquifer condition. For a thermally open aquifer the recovery factor
does not increase above 0.239 due to external cooling. For a perfect thermally insu-
lated aquifer the recovery factor increases due to a better containment of the escaped
hot water.

due to the fact that during one period, all hot water has either been pumped,
or cooled down from the top/bottom boundaries. In the insulated case, the
recovery factor increases over time. This because the small plume of hot water
left after the first cycle will be recovered in the next one. This is far closer to
realistic values.

This initial study indicates that the assumption of a thermal insulated
aquifer gives better estimates for the recovery rate that the non-isolated one.
These are both extreme cases, the truth is probably somewhere between. To get
an accurate picture of the hot water transport in the subsurface there are also
other effects that could have been considered. One is the drawdown near the
pumping wells, and a different issue is the of temperature dependent viscosity
of water. This is left for future work.

4 Conclusion

This paper has briefly recalled the differential equation for modeling and assess-
ment of aquifer thermal energy storage systems. Numerical simulations have
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been carried out to see the thermal behavior of an ATES system with two wells.
The simulation results clearly indicate the thermal boundary conditions may
have a significant effect on the estimated efficiency of the ATES system.
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Abstract

In this paper, we study the drawdown of the water table near a pumping
well in an unconfined aquifer. Two models for this problems are
compared: The Dupuit-Forchheimer model, in which case vertical flow is
ignored, thus the model is sufficiently simplified to allow for analytical
solutions. This is compared with the solution of a full model, in which
Darcy’s law has been applied to solve for the hydraulic pressure head,
and the water table is the surface for which the hydraulic head equals
the atmospheric pressure. A finite element method, utilizing the radial
symmetry of the problem, has been implemented to solve this problem.

1 Introduction

Groundwater hydrologists distinguish between two basic types of flow: con-
fined flow and unconfined flow [4]. Confined flow occurs in an aquifer which
is sandwiched between two "impermeable" geological formations, e.g., a layer
of saturated sand and gravel between two clay layers. Unconfined aquifers, in
contrast, have as their upper aquifer boundary the water table, whose position
depends on the groundwater flow regime and is a priori not known [9].

Many researchers utilized several methods to determine the location of the
water table boundary. Several examples of analytical solutions for steady state
piezometric heads in phreatic and confined aquifers with radial symmetric flow
was carried out in [1]. In [2] performed the method of fundamental solutions in
order to determine the free boundary in saturated seepage problems. Similar, [5]
has utilized axial symmetry of delta structures. These analytical solutions can
be obtained by introducing the Dupuit-Forchheimer assumptions, the vertical
component of the flow is ignored. But, [3] proved that the Dupuit-Forchheimer
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approach sometimes may be inadequate in terms of characterizing groundwater
flow in an unconfined aquifer. In order to overcome this problem several numer-
ical solutions and techniques have been introduced.

Our intention with this work is to make a preliminary study of the water
flow during pumping close to a well in an unconfined aquifer. Usually the water
table in this case is found by the use of the Dupuit-Forchheimer assumption.
However, this can not be true very close to the well. In the present work, we
apply a simple finite element method to solve the full problem, and we com-
pare the water table and hydraulic head found by this strategy with this of the
Dupuit approximation.

2 Mathematical model

The rate of flow of water through a porous medium is related to the properties
of the water, the properties of the porous medium, and the gradient of the
hydraulic head, as stated by Darcy’s law [1, 7]:

q = −ρgk
µ
∇
(
p

ρg
+ z

)
= −K∇φ. (1)

Here q is the specific discharge or the Darcy velocity, k the intrinsic perme-
ability tensor, z the elevation of the piezometric head relative to datum level,
p the fluid’s pressure, ρ water mass density, g the acceleration of gravity, and
µ the dynamic viscosity of water. Furthermore K = ρgk/µ is the hydraulic
conductivity and φ = p/ρg + z is the hydraulic head. Conservation of mass for
water combined with Darcy’s law result in the continuity equation for steady
fluid flow in the medium,

∇ · [−K∇φ] = Qf , (2)

where Qf is water source /sink density. In the present work, we assume there
are no internal sinks or sources. Moreover, we will assume the aquifer to be
homogeneous and isotropic, thus K has a constant scalar value.
Consider the radial symmetric flow of water for the geometry described in Fig.
1. The flow domain is sufficiently large such that the effect of the pumping is
negligible at r = R, so at this boundary we set φ = H0, that is the head (and
the height of the water table) in the undisturbed case. The height of the water
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h

Q Actual watertable

Dupuit-Forchheimer 
watertable

(a) (b)

h(r)

Figure 1: The radial flow to a well in unconfined aquifer

table, h(r) measured from the datum level at z = 0, the bottom of the aquifer.
The bottom layer is given to be impermeable and we assume there is no infiltra-
tion through the top boundary. At a free water surface, the pressure component
of the total head is zero; hence the hydraulic head at the water’s surface is equal
to the elevation component of this surface at a given point: h = φ. The radius
of the well is rw and water is pumped out from the well with rate Q through
the screen located between zb and zu (see Fig. 1b). The pumping well cause a
drawdown of the water table near the well. Thus the flow domain Ω becomes
rw ≤ r ≤ R, 0 ≤ z ≤ h(r), where h(r) depends on Q. Our aim is to find this
domain.

A method first developed by Dupuit in 1863, and improved by Forchheimer
in 1930, were used to find solutions to problems of flow to parallel canals and
to pumped wells, [4]. In the derivation Dupuit and Forchheimer assumed the
flow pattern to be steady and horizontal, thus neglected the variation of the
piezometric head with depth (∂φ/∂z = 0) meaning that the head along any
vertical line is constant, [6]. Physically, this assumption is not true. The actual
and Dupuit’s assumption groundwater flow patterns are shown in Fig. 2. But,
under the assumptions of Dupuit and Forchheimer, the discharge of water is
proportional to h, thus

q̄ = h · q = −K · h · ∇h = −1

2
K · ∇h2, (3)
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(a)  Acctual flow pattern (b) Dupuit’s assumptions flow pattern 

Figure 2: Actual and Dupuit assumption groundwater flow pattern

and the total pumping rate becomes

Q = −2πrh · q̄ = πrK∇h2 = πrK
dh2

dr
. (4)

Integrating Eq. 4 and using the boundary condition h = H0 at r = R, we obtain

h2(r) = H2
0 −

Q

πK
ln (R/r) , (5)

see [1]. The dashed curve in Fig. 1 gives the unconfined surface elevations
h = h(r), as expressed by Eq. 5. At the well, the height is

h2
w = H2

0 −
Q

πK
ln(R/rw). (6)

Clearly, for large pumping rates or small well radiuses, this becomes completely
unphysical.

The full problem

For the aforementioned flow conditions, the steady state flow equation without
any internal source in an homogenous aquifer is given by the Laplace equation
(see Eq. 2):

∆φ = 0 on Ω = {r, z : 0 < z < h(r), rw ≤ r ≤ R}, (7)
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which by exploiting the radial symmetry becomes(
1

r

∂

∂r

(
r
∂φ

∂r

)
+
∂2φ

∂z2

)
= 0. (8)

The boundary conditions are given by

φ(R, z) = H0, 0 ≤ z ≤ H0. (9)

At the well r = rw we have

∂φ

∂r
=

{
−q zb ≤ z ≤ zu,
0 otherwise,

(10)

where the flux is q = Q/(2πrw(zu − zb)). The base is impervious, thus

∂φ

∂z
= 0, z = 0, rw ≤ r ≤ R, (11)

and, since we assume no infiltration throughout the upper surface

∂φ

∂n
= 0, z = h(r), rw ≤ r ≤ R, (12)

where n denotes the normal to the surface and h(r) is the height of the water
table. Finally the phreatic surface is given by p = 0, which becomes

φ(r, h(r)) = h(r), rw ≤ r ≤ R. (13)

The numerical algorithm
In this section, we develop a numerical algorithm for the full problem Eq. 8–13.
The weak formulation of this problem is :

Find φ ∈W such that a(φ, v) = f(v), ∀v ∈ V (14)

where

a(φ, v) =

∫
Ω(h)

r∇φ∇v dΩ, (15)

f(v) =

∫ zu

zb

qrwvdz, (16)
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Figure 3: Discretized domain, and one unit consisting of two elements

having

V = {v ∈ H1(Ω(h)) : v|r=R = 0}, (17)

W = {v ∈ H1(Ω(h)) : v|r=R = H0}, (18)

and Ω(h) = {r, z : 0 ≤ z ≤ h(r), rw ≤ r ≤ R} is defined by the constraint
Eq. 13. The problem is solved numerically by a linear finite element method
(see e.g. [8]), based on a mesh similar to the one given in Fig. 3. The grid is
equidistributed in the z-direction, but we allow for a finer grid in the r-direction
near the well.

The discrete variational problem, using φh =
∑
P φPϕP where ϕP are the clas-

sical hat base functions becomes∫
Ω(h)

(∑
P

φP∇ϕP

)
∇ϕQrdΩ =

∫ zu

zb

qϕQ rdz, ∀Q ∈
◦
N (19)
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where the sums are over all P ∈ N = {1, 2, . . . , N},
◦
N is the set of gridpoints

for which the solutions is not known (excludes the Dirichlet grid points at the
right boundary). Let the set of gridpoints for the upper boundary be denoted
by Pu and the discrete form of Eq. 13 becomes φP = hP ,∀P ∈ Pu.

By the standard manipulations, Eq. 19 can be written as∑
P

(∫
Ω

∇ϕQ · ∇ϕP rdΩ

)
φP =

∫ zu

zb

qϕQ rdz, ∀Q ∈
◦
N . (20)

and φP = hP ,∀P ∈ Pu.We end up with a set of nonlinear equations of the form

A(h)Φ = f (21)
Φu = h, (Upper boundary points) (22)

where A is
◦
N ×N matrix which depends on the gridpoints at the top boundary

h, and Φ is the vector of the numerical solution in all gridpoints, including
the Dirichlet points. The construction of the matrices and the vectors will be
explained in the Appendix.

Figure 4: Numerical solution of the full model for Q = 0.4. The corresponding
Dupuit solution is marked with a dashed line.

3 Numerical test

In this section we will use the above method to find the location of the wa-
ter table in a steady state flow towards the well based on synthetic data. We
also compare the numerical result with the analytical solution which can be
calculated by using the Dupuit-Forchheimer assumption. For all numerical and
analytical solutions tests we use the geometry rw = 0.05, R = 10 and the well
screen is located between z = 0.1 and z = 0.4. The height of the undisturbed
water table at r = R is H0 = 1. We used 40 equally distributed gridponts in the
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Figure 5: Closeup of numerical and Dupuit solutions of Fig. 4.

z-direction and 200 nonuniformly distributed in the r− direction.

The numerical solution of the piezometric head φ and the domain Ω(h) is
presented in Fig. 4, and the location of the water table is compared with the
height approximated from the Dupuit-Forchheimer approximation given by Eq.
5 for Q = 0.4. We observe that the Dupuit-Forchheimer solution is reasonable
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Figure 6: The numerical solutions of the free surface boundary (left) and Dupuit-
Forchheimer geometry (right) for Q = 0.3.

for r & 1. The same experiment, with the same geometry, has been conducted
for various values of Q, and the results in the region close to the well are given
in Fig. 5. As expected the difference between the Dupuit-Forchheimer and
the full model solutions increases with increasing Q. We also observe that the
water table is perpendicular to the well, indicating no flow of water in the upper
left corner. Also, as expected, the equipotential lines are perpendicular to the
surface, the flow of water follows the surface. The numerical scheme fails to find
a solution for Q ≥ 0.6.

Figure 7: The difference between numerical solutions of the free surface boundary
and Dupuit-Forchheimer geometry when Q = 0.3.
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Finally, we have compared the solution of Eq. 8, both for the geometry
given by the full problem, and that of the Dupuit-Forchheimer solutions, for the
pumping rate Q = 0.3. The results are presented in Fig. 6 and 7.

4 Conclusion

In this preliminary study, we have constructed a scheme for solving ground-
water flow equation around a well at steady state. Our numerical scheme has
been able to find solutions for very small values of rw, a situation for which
the Dupuit-Forchheimer solution is completely unreasonable since h(rw) < 0.
Even if our numerical algorithm works for determining the location of the free
surface, this simple study has raised a lot of questions we would like investigate
in the future. First of all, we would like to prove existence and uniqueness of
the solution of the full problem. We would like to understand why our code fails
for large pumping rates.
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Appendix

Construction of the discretized system
We use linear element functions on a structured grid and the grid is typically
be as given in Fig. 8.

r

z

rw R

P

P + 1

P − 1

dz2

dz1

dr

dz1
(r, z)

2, 3

3, 2

1

L

U

Figure 8: Discretized domain, and one unit consisting of two elements

The gridpoints are

ri+1 = ri + dri, zi,j+1 = zi,j + dzi,j , i = 1, . . . , Nr, j = 1, 2, . . . , Nz

where
r1 = rw, rNr+1 = R, zi,1 = 0, zi,Nz+1 = Z(ri).

The gridpoints are labelled such that P = i(Nz + 1) + j. In the code, we
have considered the trapezoidals as a unit, and divided each into an upper and
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a lower triangular, as indicated above, each element is labelled by the lower left
gridpoint. The local gridpoints for the triangles are indicated by blue (lower
triangle) and red (upper triangle).

In the following, we will somewhat ambiguous denote the trapezoidal bounded
by the gridpoints P, P + 1, P + Nz + 1, P + Nz + 2 as a unit consisting of two
triangular elements, and use K as index for this unit, see Fig. 8. However, K
corresponds to the index of the lower left corner of the unit, so K ∈ K, that
is the indices of all the gridpoints except those at the upper and at the right
boundary.

The local to global mapping P = θ (K,α) becomes

Lower triangle: θ (K, 1) = K, θ(K, 2) = K +Nz + 1, θ (K, 3) = K + 1,
(23)

Upper triangle: θ (K, 1) = K +Nz + 2, θ(K, 2) = K + 1, θ (K, 3) = K +Nz.

Mass matrix A :

The elements of the mass matrix, aQP are given by

aQP =

∫
Ω

r∇ϕQ · ∇ϕP dΩ =
∑
K

(∫
LK

r∇ϕQ · ∇ϕP dΩ +

∫
UK

r∇ϕQ · ∇ϕP dΩ

)
=
∑
K

(
aL,Kαβ + aU,Kαβ

)
,

where α, β are the corresponding local indices. Using the notation of Fig. 8 we
get the following the element matrices:

AKL =
3r + dr

6


dz21−2dz dz1+dz2+dr2

dr dz1
−dz1+dz

dr
dz dz1−dz2−dr2

dr dz1
−dz1+dz

dr
dz1
dr −dzdr

dz dz1−dz2−dr2
dr dz1

−dzdr
dz2+dr2

dr dz1



AKU =
3r + 2dr

6

AKU (1, 1) AKU (1, 2) AKU (1, 3)
AKU (2, 1) AKU (2, 2) AKU (2, 3)
AKU (3, 1) AKU (3, 2) AKU (3, 3)

 .
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where

AKU (1, 1) =
dz2

1 − 2dz1 dz + dz2 + dr2

dr2 dz2
2

,

AKU (1, 2) =
−dz1 + dz

dr
,

AKU (1, 3) =
−dz2

1 + 2dz1 dz + dz1 dz2 − dz2 − dz dz2 − dr2

dr dz2
,

AKU (2, 1) =
−dz1 + dz

dr
,

AKU (2, 2) =
dz2

dr
,

AKU (2, 3) =
dz1 − dz − dz2

dr
,

AKU (3, 1) =
−dz2

1 + 2dz1 dz + dz1 dz2 − dz2 − dz dz2 − dr2

dr dz2
,

AKU (3, 2) =
dz1 − dz − dz2

dr
,

AKU (3, 3) =
dz2

1 − 2dz1 dz − 2dz1 dz2 + dz2 + 2dz dz2 + dz2
2 + dr2

dr dz2
.

Assembly of the matrix:
We construct the extended stiffness matrix Ae, including all the elements for all
vertices. The elements are stored in a sparse matrix of dimension N ×N . The
assembly process is illustrated in Fig. 9.

The problematic issue is to put the contributions from the different elements
at the right place in Ae. For instance,

aPP = aL,P11 + aU,P−1
22 + aL,P−1

33 + aU,P−Nz−2
11 + aL,P−Nz−1

22 + aU,P−Nz−1
33 ,

aP,P+Nz+1 = aL,P12 + aU,P−1
21 ⇒ aP−Nz−1,P = aL,P−Nz−1

12 + aU,P−Nz−2
21 , P ∈ K +Nz + 1

aP,P−1 = aL,P−1
31 + aP,P−Nz−2

13 ⇒ aP+1,P = aL,P31 + aU,P−Nz−1,
13 , P ∈ K + 1

The element aQP gets a contribution from a∗,K∗ . Make sure P is denotes the
column index, solve K with respect to P and you know where to add the con-
tribution.
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P −Nz − 2

P −Nz − 1

P −Nz

P − 1

P

P + 1

P +Nz

P +Nz + 1

P +Nz + 2

1
K

2

3

2

3

1

K

Figure 9: Assembly

Neumann boundary condition
Consider the term ∫ zu

zb

qϕQ rdz, (24)

x

y

O

zi+1

zi

zi−1

n
zb

zu

GA

C
H

B E

zb

zu

D

F

Figure 10: The location of the screen compared to the gridpoints of the well bound-
ary.
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in Eq. 20. In our case we have Neumann boundary on the screen of the well
zb ≤ z ≤ zu. The grid points of our domain may not coincide with the upper
and lower location of the well screen. If the two locations coincide with the grid
points by the trapezoidal rule we get∫ zu

zb

qϕQ rdz = rm
L

2
q (25)

where rm =
rzb+rzu

2 and L is the length of the edge. If the screen locations not
coincide with grid points as shown in Fig. 10 we need to modify the contribu-
tion from each edge to the corresponding grid points particularly the upper and
lower edge of the screen.
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