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Abstract

We study a hierarchical dynamic state-space model for abundance
estimation. A generic data fusion approach for combining computer
simulated posterior samples of catch output data with observed re-
search survey indices using sequential importance sampling is pre-
sented. Posterior samples of catch generated from a computer soft-
ware are used as a primary source of input data through which fisheries
dependent information is mediated. Direct total stock abundance es-
timates are obtained without the need to estimate any intermediate
parameters such as catchability and mortality. Numerical results of a
simulation study show that our method provides a useful alternative
to existing methods. We apply the method to data from the Barents
Sea Winter survey for Northeast Arctic cod (Gadus morhua). The re-
sults based on our method are comparable to results based on current
methods.
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1 Introduction

An important fisheries management goal is often to utilize information from
ob- served data in designing sustainable harvesting strategies. The primary
sources of data frequently encountered in fisheries may be broadly grouped
into fishery dependent and fishery independent data. However, combining
data from multiple sources usually presents some statistical challenges. This
has been the motivation among statisticians and marine ecologists who have
invested tremendous efforts in the development of different stock assessment
models. These models are used to investigate dynamics in stock size as well
as prediction of the impact of the harvesting process on future stock popu-
lations through simultaneous modeling of empirical data (??). State-space
models are often used to incorporate process randomness in stock assessment.
Much of the early statistical work in this area focused mainly on develop-
ment of models us- ing classical likelihood-based methods of inference (???).
However, it is well known that this approach can be computationally lim-
ited by the need for high dimensional integration which re- quires unrealistic
linearity and normality assumptions (??).

? proposed a fully Bayesian state-space modeling approach as a less re-
strictive alternative to likelihood based inference. Bayesian state-space mod-
els (BSSM) provide a powerful and flexible framework for modeling stochastic
dynamics in animal populations (??). This class of models is now widely used
in fisheries to simultaneously model both process and measurement errors for
proper propagation and handling of commonly encountered data uncertain-
ties (?). Several authors have recently investigated BSSM using the Markov
chain Monte Carlo (MCMC) method which is considered gold standard par-
ticularly for marginal likelihoods (?????). However, sequential Monte Carlo
methods may offer a computationally less expensive alternative (???).

??? present a Bayesian framework for estimating catch-at-age from dif-
ferent data sources. They combine age, length and weight data in a Bayesian
hierarchical model for the estimation of catch-at-age with ap propriate un-
certainty and sampling scheme. ? used estimates of catch-at-age data and
indices of relative abundance to investigate stock dynam- ics using an age-
structured Bayesian state-space model with separable mortality causes. In
this paper, we examine the fundamental issues of combining information from
multiple data sources and error propagation in total abundance estimation.
We study a hierarchical dynamic abundance estimation model using sequen-
tial Monte Carlo methods by extending the work of ?. The main difference of
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our method is that unlike ?, we conceptualize true catch as unobserved and
treat computer generated posterior output samples as our source of fishery
dependent input data. The posterior data are combined with observed fishery
independent survey indices using adaptive importance sampling algorithms.
Furthermore, un- like current models, here we formulate the usual observa-
tion process model to eliminate the need to deal with nuisance “catchability”
parameters.

Outline: In Section 2, a brief description of the type of data we consider
is given. In Section 3, we motivate the Bayesian framework and the proposed
sequential importance sampling method as well as describing the proposed
dynamic model for abundance.We discuss a marine fisheries application ex-
ample and present the results of the analysis in Section 4. We conclude the
paper with some concluding remarks is Section 5.

2 Data

The primary sources of data that are frequently used in fisheries research may
be broadly grouped into fishery dependent and fishery independent data. In
this pa- per, fishery dependent data consists of landings data usually from
commercial fleets which contains information about amount (biomass), size
and the age-structure of the catches. These data are used to obtain esti-
mates of catch-at-age numbers which are often reported observed catch data.
The catch data are the primary in- put for fishery dependent information in
models for the estimation of stock size and the overall stock dynamics. Nev-
ertheless, the catch estimates are not directly observed but estimated from
composite measures which are themselves observed in error.

Although most authors have previously ignored any uncertainties asso-
ciated with these reported catch estimates, there have been recent efforts
to formally model the bias using for example lognormal noise ??. ??? re-
cently introduced a Bayesian hierarchical modeling framework for estimating
catch-at-age data. They propose a Monte Carlo based inference procedure
for obtaining posterior samples of catch- at-age conditional on the observed
fishing process measures. This procedure has been implemented in a com-
puter software recently developed at the Institute of Marine Research in
Norway which is hereafter referred to as the ECA program. Here we utilize
the computer generated output posterior samples from the ECA program as
the source of fishery dependent input data.
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Fishery independent information usually consists of survey data collected
from research vessels. These data are in principle complex multivariate ob-
servations on composites measures which may include total catch biomass,
othliths and other biological samples, acoustics data, as well as assessments
on geo-physical spatial variables as well. These measures are often used to
compute indices of relative abundance which are assumed to be related to
the stock abundance. In this paper we use winter survey data on dermersal
fish species in the Barents Sea. These data are available through the Nor-
wegian Institute of Marine Research (IMR). A detailed description of these
data may be found in ?.

3 Modelling and inference

Let the tuple {N,C} denote the state process and
{
DN , DC

}
be the ob-

servation process, where N is stock abundance, C is true catch, DN de-
notes observed survey indices of relative abundance data and DC the ob-
served catch data. Note that both N and C are multidimensional including
abundances/catches for many years and age groups. Following the Bayesian
paradigm, our aim will be to perform inference based on the posterior distri-
bution p(N,C|DN , DC).

Suppose the assumption of conditional independence of DN and DC is
reasonable, that is p

(
DN , DC |N,C

)
= p

(
DC |C

)
p
(
DN |N

)
. Then Bayes rule

yields

p
(
N,C|DN , DC

)
∝ p (C) p

(
DC |C

)
p (N |C) p

(
DN |N

)
(1)

∝ p
(
C|DC

)
p (N |C) p

(
DN |N

)
,

where p
(
C|DC

)
is the posterior catch distribution based on catch data DC

only, p
(
DN |N

)
is a likelihood for survey indices conditional on the state pro-

cess and p (N |C) is a dynamic state space process model. The decomposition
in equation(1) conveniently permits us to incorporate fishery dependent infor-
mation in our estimation using independently computer generated posterior
samples from p(C|DC) which in this paper are obtained through the ECA
program. So far, we can simulate the state process from the joint distribution
of N and C conditional on the observed catch process through the dynamic
process model described in section 3.2 below. However, catch data alone
do not provide sufficient information to uniquely determine trends in stock
abundance (?).
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In this section, we present a generic data fusion approach for combining
com- puter simulated posterior output samples of catch data with observed
research survey indices data using a simple adaptive importance sampling
algorithm (???). We use posterior samples generated from the ECA program
conditional of the observed catch-at-age esti- mates as a source of input catch
data with better resolution (??).

3.1 Importance Sampling algorithm

The proposed algorithm is a simple application of importance sampling:

Algorithm 1 The main algorithm

for j = 1 to B do
1. Generate Cj ∼ p

(
C|DC

)
, j = 1, . . . , B,

2. State θ ∼ p(θ)
2. Simulate N j ∼ q (N |Cj; θ)

3. Calculate importance sampling weights W j ∝ p(Nj |Cj ;θ)p(DN |Nj ;θ)
q(Nj |Cj ,DN ;θ)

,∑B
j=1W

j = 1.
end for
Estimate E[g(N)] by

∑B
j=1 g(N j)W j.

In this algorithm the first step samples from the posterior catch distri-
bution based on DC only using a separate computer software. In the sec-
ond step, hyperparameters (typically catchability and mortality parameters).
The likelihood term in step 3, p(DN |N j; θ), is described in Section 3.4. Note
that this procedure has a generic structure, hence many different specifica-
tions are possible for all the terms p(C|DC), p(N |C; θ) and p(DN |N ; θ). The
specific choices of p(N |C; θ) and p(DN |N ; θ) are described in Section 3.2. In
this paper, p(C|DC) will be given by the procedure described in ??? while
specific choises of p(N |C; θ) and p(DN |N ; θ) are described in Section 3.2.
Algorithm 1 can be seen as an application of ordinary sequential Monte
Carlo (?), and even more so when we consider the time-dynamics of the N
process in Section 3.3. Many refinements such as using other proposal distri-
butions for N , resampling steps and so on, are then possible to incorporate.
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3.2 State Space Model

In this section, we formulate a State Space model in the context of age struc-
tured fisheries data. In general, a state–space modeling framework involves
two parallel time series: a state process and an observation process (??). In
our case the state process both include abundance N and catch C. However,
in algorithm 1, the catch model is implicitly given through the availabil-
ity of p(C|DC). Our model specification will therefore be concentrating on
the conditional distribution of abundance given catch and on the likelihood
p(DN |N).

3.3 The abundance process model

Usually, abundance is structured into age-groups and yearly components with
a time-discrete specification, typically derived from continuous time differen-
tial equations (??). Here, we also include season, in order to take into account
that both fisheries dependent and fisheries independent data are collected at
relatively narrow time-windows.

Let Y,A and S respectively denote the current total number of years,
number of ordinal fish age-groups and number of fishing seasons per year in a
given fisheries time series survey. LetN = {Ny,s,a, y = 1, ..., Y, s = 1, ..., S, a = 1, ..., A}
where Ny,s,a denotes stock abundance of age a at the start of season s in year
y and similarly C = {Cy,s,a, y = 1, ..., Y, s = 1, ..., S, a = 1, ..., A} where Cy,s,a
denotes the total catch-at-age of age a fish at the start of season s in year y.
For both catch and abundance, age category A denotes a plus group.

Introduce furtherM = {My,a,s, y = 1, ..., Y, s = 1, ..., S, a = 1, ..., A} where
My,s,a is the total non-fishing mortality among age a fish over season s of year
y. Although different forms of the population cohort equation are frequently
encountered in the literature (??), here we consider the model

Ny,s,a =Ny,s,a−1e
−My,s,a−1 − Cy,s,a−1, (2)

y = 1, ..., Y, s = 2, ..., S, a = 1, ..., A, for within year transitions, and

Ny+1,a,1 =Ny,a−1,Se
−My,a−1,S − Cy,a−1,S, (3)

y = 1, ..., Y, a = 2, ..., A− 1 for between year transitions. Since the last age
group usually involves both between and within cohort transitions, we use
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the following slightly modified between year equation

Ny+1,A,1 =Ny,A−1,Se
−My,A−1,S − Cy,A−1,S +Ny,A,Se

−My,A,S − Cy,A,S, (4)

y = 2, ..., Y . These equations can be seen as a discretization of a continuous
time model with a constant natural mortality rate within each season and all
catch performed in the end of each season. Given the mortalities M , the pro-
cess is deterministic, but stochastisity is incorporated through distributional
assumptions about M , similar to e.g. ??, see below.

Since abundances need to be non-negative, constraints on the Ny,s,a’s and
thereby indirectly on the My,s,a’s needs to be incorporated. Simplification
of these constraints are obtained by considering the dynamic models above
backwards, giving equations

Ny,s,a−1 =[Ny,s,a + Cy,s,a−1]e
My,s,a−1 (5)

for y = 1, ..., Y, s = 2, ..., S, a = 1, ..., A,

Ny,a−1,S =[Ny+1,a,1 + Cy,a−1,S]eMy,a−1,S

for y = 1, ..., Y, a = 2, ..., A− 1, and

Ny,A−1,S =
[
Ny+1,A,1 + Cy,A−1,S −

(
Ny,A,Se

−My,A,S − Cy,A,S
)]
eMy,A−1,S . (6)

The stochastisity in the model is then incorporated by making distributional
assumptions about the My,s,a’s. Here, we assume constant annual natural
mortality My,a, which is uniformly distributed across season within a year
such that My,s,a = 1

S
My,a , where My,s,a denotes mortality attributed to

season s in year y. Following ?, we further assume the hierarchical mortality
model

log(My,a) = ma + Uy + Vy,a, (7)

where ma = log(0.2) and

Uy ∼ N (0, ξ) , Vy,a ∼ N (0, φ)

Millar and Meyer (2000) placed priors on recruitment in all years and on
numbers-at-age all ages at year one. In a slight departure, here we specify
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priors on numbers-at-age in the last year and for the terminal age at each
year. We assume

NY,a,S =
CY,a,S

FY,a,S
eMY,a,S , (8)

Ny,A,S =
Cy,A,S

Fy,A,S
eMy,A,S (9)

where the fishing Mortality rates Fy,A,S are given priors

Fy,A,S ∼Uniform[0, 1] (10)

for year Y and age A, where S denotes the number of seasons.
In equation (4) and (6), we account for the fact that age A stock size

in year y is a mixture of survivors from age groups A − 1 and A in the
previous year. We introduce a random mixing variable ωy to account for
indistinguishable contributions of survivors from different cohorts to age A
stocks. Accordingly, we reparametrize equation (6) as

Ny,A−1,S = [ωyN
0
y+1,A,1 + Cy,A1,S]eMy,A1,S , (11)

where N0
y+1,A,1 ∼ Uniform[0, N0

A + C0
A], for y = 1, ..., Y . Equation (10),

follows by substituting

Ny,A,S = [(1− ωy)N0
y+1,A,1 + Cy,A,S]eMy,A,S ,

in equation (6). Note that this implies that

ωy =
Ny,A−1,Se

−My,A1,S − Cy,A1,S
Ny,A−1,Se−My,A1,S − Cy,A1,S +Ny,A,Se−My,A,S − Cy,A,S

the fraction from age group A − 1 that contributes to Ny+1,A,S. Hence, it
is sufficient to specify a prior on y instead of placing priors on Ny,A,S. We
consider a skewed beta prior

ωy ∼ Beta(α, β), (12)

for y = 1, ..., Y , where the hyper-parameters are chosen to allow for greater
contribution from survivors of year y1 cohort A1 stocks relative to cohort
A+ stocks, where A+ denotes indistinguishable age A or older stocks at year
y1.
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3.4 Likelihood for survey indices

Survey indices of relative abundance are used as the primary source of ob-
servations in this paper. We assume that the observed catches are related
to the population process through a posterior catch distribution. Let Iy,a,
denote the survey relative abundance index and N I

y,a, be the numbers-at-age
at the time of survey respectively. The log-normal model is frequently used
as a sensible choice for modeling Iy,a, so that:

Iy,s∗,a = qaNy,s,ae
εy,s,a , (13)

where qa denotes age specific catchability, assuming the observed relative
abundance is proportional to the numbers-at-age at the time of survey. The
subscript sI ∈ {1, . . . , S}, denotes the season at which the survey indices are
observed. Here we assume indices are only available at one (the same) season
per year, but the framework is easily extended to more general cases.

The fundamental challenge of this formulation is often how to estimate
the unknown catchability nuisance parameters. We circumvent this problem
by considering the relative indices Ĩy,s,aI ≈ Iy,a/

∑Y
j=1 Ij,a which we assume

are related to the relative abundances Ñy,s,aI ≈ Ny,a/
∑Y

j=1Nj,a,sI through
the model

Ĩy,s∗,a = Ñy,s∗,ae
ε̃y,s∗,a , (14)

which does not explicitly depend on the estimates of the unknown nuisance
parameters. Here, we assume εy,s∗,a ∼ N(−0.5σ2

y,s∗,a, σ
2
y,s∗,a) so that Ĩy,s∗,a

is an unbiased estimate of Ny,s∗,a. Given bootstrap replicates of the survey

indices, we specify Ĩy,s∗,a as the mean of these replicates and σy,s∗,a as their
standard deviation.

3.5 Observation model

In this paper, we use indices of relative abundance from research surveys at
the Barent sea as the primary source of Fisheries independent data. The
other source of observations are observed catches data which are usually ob-
tained by randomly collecting samples from landings by commercial fleets.
Although, catch data is often used as the primary source of fisheries depen-
dent data in most applications, here it constitutes a realization of the true
but unobserved catch which is related to the population process through a
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posterior catch distribution. Hence, fisheries dependent information is indi-
rectly conveyed through the posterior catch distribution denoted by p(C|DC),
where DC denotes the observed catch data. We use samples generated from
the posterior distribution to estimate true catch.

3.5.1 Likelihood for survey indices

Let Iy,a denote the survey relative abundance index and Ny,a be the numbers-
at- age at the time of survey respectively. The log-normal model is often
considered as a sensible choice for modeling Iy,a (Millar and Meyer, 2000).
We similarly assume here that the survey indices of relative abundance are
related to the population size at the time of survey through:

Iy,a = qaNy,ae
εy,a , (15)

where qa denotes age specific catchability, assuming the observed relative
abundance is proportional to the numbers-at-age at the time of survey and
εy,a is a normally distributed mean zero random variable with variance σ2

I ,
assumed independent between ages and years (Aanes et al, 2007).

The fundamental challenge of this formulation is often how to estimate the
unknown catchability nuisance parameters. Assuming constant age-specific
cachabilities between surveys, we circumvent this problem by considering the
normalized relative indices Ĩy,a = Iy,a/

∑Y
j=1 Ij,a. In Appendix A, we derive

the likelihood for Iy,a under the assumptions of a log-normal model. In this
model, we show that the relative indices are related to relative abundances
Ñy,a,s ≈ Ny,a,s/

∑Y
j=1Nj,a,s through

Iy,a = Ny,a,se
εy,a , (16)

which does not explicitly depend on the estimates of the unknown nuisance
parameters, where the subscript s ∈ {1, ..., S} indicates that the relative
abundances are computed for the season in which the survey indices are
observed. Here we assume indices are only available at one (the same) season
per year, but the framework can be easily extended to more general cases.
By the independency of Iy,a observations, we assume Iy,a are independent
between years and ages and lognormally distributed. Here, we assume εy,a =

εĨy,a0.5σ
2
Ĩ

, where εĨy,a is normally distributed with mean zero and variance σ2
I

, so that Ĩy,a is an unbiased estimate of Ny,a,s. In this paper, we calibrate
the prior for Ĩ based on the variability in the bootstrap distribution of the
observed survey indices.
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3.6 Priors

The model requires specification of prior distributions for parameters (ma, ξ, φ)
describing the variability in mortality. The lognormal distribution is usually
considered a reasonable choice for modeling mortality. We assume quantities.
We specify a hierarchical prior model

ξ ∼ IG(α1, β1), φ ∼ IG(α2, β2),

In order to make the results comparable to ?, we make similar assumptions
by setting α1 = α2 = 3.78 and β1 = β2 = 0.478 respectively (more details
can be found in ? Appendix B). We set ma = log(0.2) and choose a large
value for σ2 to represent our little belief in the fixed VPA value.

4 Application

The proposed method was applied to data for Northeast Arctic cod from
the Norwegian section of the Barents Sea for the period 1985-2003. In this
analysis, we use catch data on biological samples and reported landings data
obtained from commercial fleets which was provided by the Norwegian man-
agement authorities (?). To ensure the catch data is representative of the
Barents Sea winter survey sampling frame, data believed to represent coastal
cod were omitted from the analysis.

A Bayesian hierarchical model developed in ? was fitted to the resulting
data according to the standard definition based on area and season to esti-
mate catch-at-age. The model was implemented in ECA, a comprehensive
computer software recently developed by the Norwegian Computing Cen-
ter, the Institute of Marine Research and the University of Oslo in Norway.
This program was then used to generate independent posterior catch-at-age
samples from the full marginal catch distributions (??).

The other data used in this analysis are the annual research survey indices
of relative abundance. The survey indices data are provided by the Norwe-
gian Institute of Marine Research (IMR). The IMR, has been conducted a
Winter Survey annually in January, February and March since 1981 at the
Barents Sea (?). Independent relative abundance indices were obtained as
the mean catch per trawled distance (?). To preserve the original survey
design considerations, stratified bootstrap samples of observed abundance
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indices were generated by resampling the observed data according to the
survey sampling scheme.

The Norwegian Winter Survey only covers the section of the Barents Sea
excluding the Russian waters. In this analysis however,the results have been
scaled-up to the entire Barents Sea for comparison purposes with results
in ? as well as the VPA analysis by the Arctic Fisheries Working Group
respectively. A scaling factor was computed based on the data used in ?
assuming total Norwegian catches are directly proportional to overall Winter
catches from the Barents Sea.

The analysis results are summarized in Table 1. The estimated annual to-
tal catch based on our model is comparable to the VPA estimate as reported
in the 2004 Report by the Arctic Fisheries Working Group (Figure 1). In the
Figure, we compare our method to results of ? relative to the VPA estimate
as gold standard. The results show that the proposed method performs con-
sistently better than the ? estimator as evidenced by tighter estimated 95%
credibility sets each year. It can be infered from the figure that unlike our
method, the ? approach appears to consistently overestimate total stock
abundance.

The results further illustrates that although our estimate is virtually in-
distinguishable from the VPA estimate, earlier in the time series, it exhibits
increasingly greater variability in later years. This pattern may be associated
with the backward simulation in the dynamic model such that the influence
of initial state prior distributions diminishes back in time from year Y as we
incorporate more data.

5 Conclussions and discussion

Discuss the implications of doing modelling backwards, in particular what
it means that we assum all mortalities to be independent of later (in time)
abundances. This is in contrast to e.g.? in which modelling is performed
forwards.

Also discuss alternative modelling of likelihood for indices taking a more
proper Bayesian approach.

Compared to ?, the proposed method provides a direct estimate of stock
abundance which does not involve the estimation of intermediate parame-
ters, achieves tighter intervals of the 95% credible set (included later) and is
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Table 1: The DSSM estimated VPA-type (numbers-at-age) population size
of ages 3− 13+ years for the annual Barents Sea Winter survey for Northest
Arctic cod (Gadus morhua) for the years 1985–2003.

Ny,a (×106) Ny

Year 3 4 5 6 7 8 9 10 11 12 13+ (Total)

1985.0 696.9 338.0103.2 44.2 19.5 6.3 3.0 1.9 0.5 0.4 0.5 1214.3
1986.0 1250.1 584.6255.0 63.2 19.3 6.8 1.9 1.2 0.9 0.3 0.6 2183.8
1987.0 563.21006.6403.9130.3 27.5 6.6 2.0 0.8 0.3 0.3 0.4 2141.9
1988.0 261.0 393.7619.8212.8 43.8 9.6 2.5 0.7 0.2 0.1 0.3 1544.7
1989.0 180.3 176.5221.1284.5 89.113.2 4.0 0.7 0.3 0.1 0.2 970.1
1990.0 280.4 137.4132.3100.1137.631.7 5.5 1.9 0.4 0.2 0.2 827.6
1991.0 578.6 210.3103.6 91.7 61.889.118.2 3.9 1.4 0.2 0.2 1159.0
1992.0 821.3 357.4149.4 68.8 48.731.949.3 9.1 2.8 1.1 0.5 1540.3
1993.0 864.3 620.5259.9 99.9 37.523.415.1 27.3 5.3 2.1 1.2 1956.7
1994.0 563.8 672.1481.8148.6 48.817.611.2 6.1 11.2 3.0 2.2 1966.3
1995.0 315.1 410.9422.1234.5 63.612.9 4.8 3.1 2.0 2.9 3.3 1475.2
1996.0 264.3 232.8267.5241.0107.019.3 4.6 1.6 0.9 0.8 3.1 1142.9
1997.0 478.3 195.0158.3165.4117.041.1 6.5 1.9 0.7 0.4 1.8 1166.4
1998.0 763.6 390.9133.8 76.9 69.544.010.6 1.6 0.5 0.2 0.7 1492.4
1999.0 576.4 546.7243.8 61.8 28.425.312.4 2.5 0.6 0.3 0.7 1498.9
2000.0 628.9 473.7375.9116.2 24.110.7 6.8 2.6 0.5 0.3 0.8 1640.5
2001.0 347.4 455.9344.4229.0 49.9 9.3 2.6 1.9 0.6 0.1 0.7 1441.9
2002.0 440.5 293.3345.0218.5129.121.5 3.3 0.8 0.6 0.2 0.4 1453.3
2003.0 25.1 373.8215.5201.6108.565.0 8.7 1.4 0.3 0.3 0.2 1000.4

relatively computationaly fast. Therefore, the method provides a usefull and
robust extension of the work of ?.
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Figure 1: The 1985–2003 DSSM estimated Northest Arctic cod (Gadus
morhua) stock size assuming a minimum fishing age of 3-years (solid line).
The dashed line (green) gives the estimates from ?. The dotted and broken
lines gives the VPA and XSA estimates from the Arctic Fisheries Working
Group respectively.
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A Importance Sampling

Although we can simulate the states N j, j = 1, . . . , B, from the joint distri-
bution of N and C given observed catch data through the dynamic process
model described in section (3.2), catch data alone do not provide sufficient
information to uniquely determine trends in stock abundance (?). We can
use Sequential Importance Sampling (SIS) to combine the fisheries dependent
catch data with survey indices data which provides fisheries independent in-
formation on stock dynamics.

Let Cj ∼ p
(
C|DC

)
be a sample from the posterior catch distribution

conditional on observed catch data and N j ∼ p (N |C) be a simulated state
process conditional on sample Cj, for j = 1, . . . , B. Define N = {N0|N0−},
where N0 = {N0

Y,a,S, N
0
y,A,S} denotes the initialized rows and columns of N

and N0− denotes N excluding the elements of N0 respectively. Suppose that
it is not possible to sample directly from the target density p

(
N |C,DN

)
, but

we can easily draw samples from some proposal density q
(
N |C,DN

)
. Then,

we can construct importance weights as

W j =p
(
DN |N j

)
p
(
N j|Cj

)
/q
(
N j|Cj

)
(17)

=
q
(
DN |N j

)
q
(
N j

0−|N
j
0 , C

j, DN
)
q
(
N j

0 |Cj
)

q0
(
N j

0 |Cj, DN
)
q
(
N j

0−|N
j
0 , C

j, DN
)

=p
(
DN |N j

)
p
(
N j

0 |Cj
)
/q0
(
N j

0 |Cj, DN
)

for j = 1, . . . , B, where the third equality follows by letting, p
(
N j

0−|N
j
0 , C

j, DN
)

=

q
(
N j

0− |C
j, DN

)
. Further simplification may be achieved by choosing a flat

prior for p
(
N j

0 |Cj
)
. Normalized weight can be computed as

wj =
e

{
log
(
Wj

)
−max

[
log
(
Wj

)]}
∑B

j=1 e

{
log
(
Wj

)
−max

[
log
(
Wj

)]} , (18)

for j=1,. . . ,B. The expected total abundance estimate N̂ is obtained as a
function of the normalized importance sampling weights as

E
[
N |DN , DC

]
=

B∑
j=1

wjf
(
N j;Cj

)
, (19)

where wj are normalized W j weights for j = 1, . . . , B.
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