
Mesh Generation Techniques for
Isogeometric Analysis

Kine Aurora Mothes
Hansvold

Master of Science in Physics and Mathematics

Supervisor: Trond Kvamsdal, MATH
Co-supervisor: Kjetil André Johannessen, MATH

Department of Mathematical Sciences

Submission date: June 2015

Norwegian University of Science and Technology

Abstract

In any method aimed at solving a boundary value problem using isogeometric
analysis, it is imperative to find a high quality parameterization of the domain
over which the partial differential equation is posed. The parameterization of the
domain is an essential part of solving the problem, and the accuracy of the analysis
to be performed rely heavily on the quality of the parameterization.

In this thesis we introduce four different methods for parameterization of planar
geometries for applications within isogeometric analysis. The methods all rely on
B-splines and the isogeometric framework. We describe B-splines and isogeometric
analysis in detail, and we introduce several mesh metrics to be used to check the
mesh quality in our pursuit of producing superior meshes.

Several illustrative examples are given, and the methods tested on several dif-
ferent geometries, all representing different parameterization challenges.

The methods are found to produce quite different parameterizations for the
same geometry. We have found that the most complex methods in general show
the best overall performance, both with respect to mesh quality and perseverance.

i

Sammendrag

I enhver metode som tar sikte p̊a å løse et randverdiproblem ved hjelp av iso-
geometrisk analyse er det viktig å finne en høy-kvalitets parametrisering av det
fysiske domenet der den partielle differensialligningen er formulert. Parametris-
eringen av domenet er en avgjørende del av løsningen av det aktuelle problemet, og
analysens gyldighet og nøyaktighet er sterkt avhengig av kvaliteten p̊a parametris-
eringen.

I denne oppgaven vil vi presentere fire ulike metoder for parametrisering av
domener i planet med hensyn p̊a bruk innen isogeometrisk analyse. De fire meto-
dene vil alle involvere B-spliner og det isogeometriske rammeverket. Av den grunn
vil vi presentere en detaljert beskrivelse av b̊ade B-spliner og isogeometrisk anal-
yse. Vi vil ogs̊a introdusere flere gitter-metrikker som vil bli brukt som mål p̊a
gitterkvalitet, og som et hjelpemiddel for å produsere optimale gitter.

Flere illustrerende eksempler vil bli gitt ved at metodene testes p̊a flere forskjel-
lige geometrier, alle med ulike utfordringer forbundet med domene-parametrisering.

Resultatene viser at n̊ar metodene anvendes p̊a den samme geometrien, pro-
duserer de relativt ulike parametriseringer. Det har vist seg at de mest komplekse
metodene generelt kan vise til totalt best prestasjon, b̊ade n̊ar det gjelder gitterk-
valitet og utholdenhet p̊a utfordrende geometrier.

iii

Preface

This thesis completes my studies for the Master’s Degree Programme in Applied
Physics and Mathematics, with specialization in Industrial Mathematics, at the
Norwegian University of Science and Technology (NTNU). The work has been car-
ried out during the spring semester of 2015 at the Department of Mathematical
Sciences. It has been supervised by Professor Trond Kvamsdal and Postdoctoral
Fellow Kjetil André Johannessen, both from the Department of Mathematical Sci-
ences at NTNU, who also developed the idea for the thesis.

This thesis is an extension of a preceding specialization project, carried out during
the fall semester of 2014. Theory from this project has been included here for
completeness.

Trondheim, 21st June, 2015

Kine A. M. Hansvold

v

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Professor Trond
Kvamsdal and Postdoctoral Fellow Kjetil André Johannessen, for their valuable
guidance and support. Their help is greatly appreciated; the hours of discussion,
suggestions, and result interpretations as well as their continuous advice and ded-
ication helped this work become coherent and to elevate its quality.

I also wish to take this opportunity to thank my fellow students, Hager, Bjørn,
Sverre, Mats, Henrik, Ole, Hallvard, Christoffer, and Aleks for their input and
many good discussions.

Lastly, a huge thanks is directed to my family for their constant support and un-
derstanding, without which this thesis would not have seen the light of day.

K.A.M.H

vii

Contents

Abstract i

Sammendrag iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Background . 1
1.2 Aim and Outline . 3

2 Mesh Metrics 5
2.1 Quadrilateral Elements . 5
2.2 Metrics . 6

2.2.1 Relative Size Metric . 7
2.2.2 Shape Metric . 8
2.2.3 Skew Metric . 10
2.2.4 Combination Metrics . 11

2.3 Measure of Mesh Quality . 12
2.3.1 Min-Max Measure . 12
2.3.2 Root Mean Square Measure 13

3 Spline Theory and IGA 15
3.1 B-Splines . 15

3.1.1 Knot Vectors . 15
3.1.2 B-Splines . 16
3.1.3 Example . 16
3.1.4 General Properties . 19
3.1.5 Splines as a Basis for Curves 19
3.1.6 2D Surfaces . 22
3.1.7 Derivatives . 22

ix

x CONTENTS

3.1.8 Refinement . 24
3.1.9 Matrix Representation . 25

3.2 Isogeometric Analysis . 26
3.2.1 Strong Form Poisson Problem 26
3.2.2 Weak formulation . 26
3.2.3 Elements . 28
3.2.4 Spaces and Mappings . 28
3.2.5 Numerical Integration . 31
3.2.6 Imposing Boundary Conditions 32

3.3 Validating a B-spline Parameterization 32

4 Parameterization Methods 35
4.1 Gordon-Hall Algorithm . 35
4.2 Uncoupled Poisson using IGA . 38

4.2.1 Implementation and Verification 39
4.2.2 Gamma Function . 41

4.3 Linear Elasticity using IGA . 42
4.3.1 Introduction to Linear Elasticity 43
4.3.2 Linear Elasticity IGA Formulation 45
4.3.3 Implementation and Verification 47
4.3.4 Modified Elasticity Matrix 48

4.4 Quasistatic Method . 49
4.4.1 Implementation and Verification 50

5 Numerical Results 51
5.1 Bottom Sine Geometry . 51

5.1.1 Gordon-Hall . 52
5.1.2 Uncoupled Poisson . 54
5.1.3 Linear Elasticity . 57
5.1.4 Quasistatic . 60

5.2 Clover Geometry . 64
5.2.1 Gordon-Hall . 64
5.2.2 Uncoupled Poisson . 67
5.2.3 Linear Elasticity . 70
5.2.4 Quasistatic . 73

5.3 Jigsaw Geometry . 76
5.3.1 Gordon-Hall . 77
5.3.2 Uncoupled Poisson . 78
5.3.3 Linear Elasticity . 79
5.3.4 Quasistatic . 82

5.4 Method Comparison . 86

CONTENTS xi

5.4.1 Performance with respect to κ 86
5.4.2 Performance with respect to polynomial degree 92

6 Summary and Concluding Remarks 99
6.1 Summary and Conclusion . 99
6.2 Further Work . 101

Bibliography 101

Appendices 107

A Source Code 109
A.1 Gordon Hall Solver . 109
A.2 Uncoupled Poisson Solver . 113
A.3 Linear Elasticity Solver . 120
A.4 Quasistatic Solver . 125
A.5 Shared Functions . 126

B Jigsaw Geometry Specifications 133

C List of symbols 135

Chapter 1

Introduction

1.1 Background

Finite Element Analysis (FEA) has been used for a long time to find numeri-
cal approximations to solutions of boundary value problems. The Finite Element
Method (FEM) has been a preferred discretization technique for design and anal-
ysis for engineers [1] and has a wide range of applications [2], including solid and
structural mechanics, dynamics, and thermal analysis to name a few. Common
to all applications of FEM is the need for a geometrical model representing the
object being analyzed. These design models are typically made using computer
aided design (CAD) techniques.

Although this is the common practice, it is not without complications. When
using CAD it generally takes a long time to generate a mesh suitable for analy-
sis. This is unfortunate if the structure being analyzed undergoes frequent design
changes as is the case in many industrial applications. Furthermore, the CAD
model is not particularly suitable for analysis, so a geometric representation of the
model is used. However, the geometric representation is only an approximation to
the CAD model, and therefore refinement and improvements are necessary. This
process is both costly and time-consuming, and in the end the result is only an
approximated model, resulting in geometry inaccuracies [3].

A relatively new technique aimed at mending some of the shortcomings of FEM
was introduced by Hughes et al. in 2004 [3]. The idea is centered around building
a common model to be used both in CAD and FEM. Since CAD is a much larger
industry compared to FEA, and because CAD already can be used to make exact
models, it followed logically to explore possibilities for a new way of conducting
the analysis, while still being based on the familiar FEA. The result is now known
as isogeometric analysis (IGA) [2].

The idea is quite similar to that of FEA, with an important difference regard-

1

2 CHAPTER 1. INTRODUCTION

ing the basis functions, and, by extension, the geometry. By replacing the shape
functions in FEA with spline basis functions, the classical Galerkin approach is
still valid, while at the same time making it possible to perform analysis directly on
CAD models, and thus ensuring exact geometrical representation. Splines are al-
ready incorporated in most CAD techniques, since most geometries are graphically
represented using an extension of B-splines called NURBS.

By the introduction of isogeometric analysis, it became possible to represent
the geometry for analysis and the object itself using the same functions, and hence
avoiding difficulties connected to inaccurate geometries. The new basis functions
would also make refinements easier, since the geometry is constant under spline
refinement, and therefore the exact representation is preserved in every refinement.

IGA is a relatively new field when compared to FEA, and much research is
being done on improving techniques. Several papers on local refinement of splines
have been presented in recent years. In 2013, Dokken et al. addressed local refine-
ment of splines defined on box-partitions [4]. This introduction to locally refined
B-splines, LR B-splines, was continued by Johannessen et al. and used in local re-
finement strategies for adaptive IGA in 2014 [5]. The work on local refinement was
expanded in 2015 by Johannessen et al. [6] where they presented and compared
three strategies involving Classical Hierarchical B-Splines, Truncated Hierarchical
B-splines, and Locally Refined B-splines.

It is indisputable that parameterization, adaptation and refinement is an very
important part of IGA. This due to the fact that in any problem aimed at solving
a boundary value problem with IGA, it is essential to have an efficient way of
generating meshes of high quality. This is because the IGA methods require a valid
parameterization of the domain over which the PDE is posed, and the accuracy
of the analysis is heavily affected by the quality of this parameterization [7]. The
importance of generating a high-quality parameterization of the physical domain
in IGA can be compared to the importance of mesh generation in the standard
FEA [1].

While adaptation and local refinement is widely used, it is also possible to gen-
erate a parameterization of the physical domain through control point relocation.
The need for a robust and efficient parameterization from the boundary of a do-
main onto its interior is especially important in the use of isogeometric analysis in
shape optimization, where a domain parameterization is performed in every opti-
mization iteration. The application of isogeometric analysis in shape optimization
problems has been investigated among others by Manh et al. in [8], and Gravesen
et al. in [7].

When an isogeometric framework is used for fluid flow simulations, the simu-
lations will become inaccurate unless the parameterization is of very high quality.
This was examined by Nordanger et. al in [9] and [10].

1.2. AIM AND OUTLINE 3

Good techniques for parameterization of a domain are also needed when dealing
with systems undergoing large deformations. In such situations local refinement
may not be enough, and it will be necessary to do a re-meshings. Another reason for
looking at parameterization of the interior of a physical domain given its boundary,
is that CAD systems typically provide information about the boundary of a domain
only, while IGA requires a parameterization of the entire object. Thus, for IGA and
CAD to be compatible, we need to be able to construct a domain parameterization
from a given boundary.

Summarizing, being able to produce high quality parameterizations of a domain
is imperative, but it is also time consuming. Consequently, we wish to automate
the process of finding the best possible mesh for a given domain.

1.2 Aim and Outline

In this thesis we will examine several methods for parameterization of the interior
of a physical domain given its boundary through control point relocation. The
methods will be based on an isogeometric foundation.

Chapter 2 introduces several mesh metrics as a way of measuring the quality
of a parameterization mesh.

Chapter 3 gives a detailed and thorough introduction to splines. Understand-
ing of splines is essential for the understanding and development of isogeometric
methods. Chapter 3 also give an thorough introduction to isogeometric analysis.
However, it will be assumed that the reader is already familiar with some of the
classical numerical methods, including the finite element method, so these will not
be presented with the same level of detail.

Chapter 4 presents four different methods for domain parameterization. Each
method will be tested on three different geometries, all representing different pa-
rameterization challenges.

The numerical results are presented in Chapter 5. This chapter also compares
the methods regarding their ability to produce valid parameterizations for increas-
ingly challenging geometries, and their dependence on the polynomial degree.

A summary and concluding remarks can be found in Chapter 6. Finally, the
appendix presents the source code for the four different methods, as well as some
geometry specifications.

Chapter 2

Mesh Metrics

Since the aim of this thesis is to investigate different mesh generation techniques,
it is useful to have some measure of the quality of each mesh. That is, once a
parameterization is obtained it is necessary to have a way of evaluating its quality
and determine if it is suitable for computational analysis. Ultimately, the mesh
quality must be connected with the final solution error. However, for practical
purposes, it is useful to be able to evaluate the mesh quality before doing the
computations.

There exists a number of different metrics for meshes [11]. Only a few will be
considered here. All of the metrics tested will use the Jacobian matrix [12]. The
Jacobian is convenient because it contains information on size, shape, and skew.
These will each be evaluated as a metric. The metrics will be presented as explicit
formulas for quadrilateral elements. The reader is referred to [12] and [13] for more
theoretical background and metrics for other element types.

2.1 Quadrilateral Elements

Before we start introducing the metrics, some background material is presented.
See [12] for more details. All the parameterization methods will be using spline
representations. Each mesh element will consist of four nodes, but the edges con-
necting them are not required to be straight. That is, the elements are not nec-
essarily quadrilaterals, even though they have four nodes. However, for simplicity
we will assume that the elements may be considered as quadrilaterals when de-
veloping mesh metrics. Therefor, all the metrics being presented here are applied
to quadrilateral elements defined by four nodes with coordinates (xi, yi), where
i = 1, 2, 3, 4, see Figure 2.1. For each node i, the corresponding Jacobian matrix

5

6 CHAPTER 2. MESH METRICS

(x1, y1) (x2, y2)

(x3, y3)

(x4, y4)

Figure 2.1: Quadrilateral element with nodes (xi, yi), i = 1, 2, 3, 4.

Ai can be formed as

Ai =

[
xi+1 − xi xi+3 − xi
yi+1 − yi yi+3 − yi

]
(2.1)

Note that the modulo operator is applied to the subscripts, so that if i = 2, then
i + 3 = 1. The determinant of the Jacobian matrix, αi, denotes the local area
associated with node i [12], and thus the sum of αi and αi+2 is twice the total area
of the quadrilateral regardless of the index i. The product of the matrix ATi Ai
may be written as

ATi Ai =

[
λi11 λi12

λi12 λi22

]
(2.2)

where λi11 = (xi+1 − xi)2 + (yi+1 − yi)2 and λi22 = (xi+3 − xi)2 + (yi+3 − yi)2. This
can be interpreted as the square of the length of the sides connecting node i with
node i + 1 and i + 3 through the use of the Pythagorean theorem. The matrix
is symmetrical, and the element λi12 relates to the angle between the two sides
connected at node i.

If αi = 0 or αi = ∞, for any i, then the element is considered degenerate.
This means that any element consisting of three or more collinear nodes will be
degenerate.

Lastly, we note that any element possessing a negative local area, αi < 0 for
any node i, is excluded from the domain of the metrics. This exclusion covers
arrow shaped and bow-tie shaped elements. If such elements are encountered, the
corresponding metrics will be set to zero.

2.2 Metrics

Now we are ready to introduce the metrics we will be using. We will present a
relative size metric, a shape metric, and a skew metric. Additionally, we will use

2.2. METRICS 7

combinations of these metrics. All the metrics compare each element in the mesh
with a reference element in order to determine its quality.

2.2.1 Relative Size Metric

The first metric is the relative size metric. Mesh elements of relatively equal size
are preferred, while elements that are much smaller or much larger than other
elements are undesirable. One way to measure the relative size is to compare each
element to a reference element with area a. Here we define the reference area to
be the size of an element if the elements were uniform in the domain. That is, if
we have N elements on a domain with total area Atot, then a = Atot

N
.

Furthermore, we define σi = (αi + αi+2)/2a for each element. Notice that σ is
node independent and can be used for an arbitrary i, since αi+αi+2 = αi+1 +αi+3.
As we want to find both very small and very large elements, we use

MSize = min

(
σi,

1

σi

)
(2.3)

as the relative size metric for quadrilateral elements. The domain of this metric is
all quadrilateral elements with positive, finite area, requiring that 0 ≤ αi +αi+2 <
∞. If some elements in the mesh are inverted, the metric will pick up on this
because these elements will result in a negative area.

The image of the metric is all real numbers between 0 and 1, with the special
cases

MSize = 1 ⇐⇒ (αi + αi+2)/2 = a,

MSize = 0 ⇐⇒ element is degenerate.

Figure 2.2a shows a randomly generated mesh with 20 elements and Figure 2.2b
shows in shading the elements for which MSize is less than 0.5. The metric picks
up both very small elements such as those forming the second leftmost column
and large elements like those on the right side of the bottom row.

However, this metric alone is not very useful. Figure 2.2 illustrates that the
metric allows for some rather poorly shaped elements, implying that it is not
enough to rely solely on the relative size metric to identify all elements of poor
quality.

8 CHAPTER 2. MESH METRICS

(a) Mesh with 20 elements (b) Elements with MSize < 0.5

Figure 2.2: Randomly generated mesh and elements varying in size.

2.2.2 Shape Metric

The shape metric MShape is designed to find poorly shaped elements. The idea
behind this metric is to find how much each element deviates from a square refer-
ence element. In this metric it is necessary to include terms from all four nodes of
the quadrilateral in order to ensure that the metric is nodal invariant.

For a square we have that α1 = α2 = α3 = α4 = element area, and as all the
sides of a square by definition have the same length, λi11 = λi22 and λi11 = λj11, for
i, j = 1, 2, 3, 4. Furthermore, because λi11 can be interpreted as the square of the
length of the sides in the square, it follows that λi11 equals the total area of the
square element. This means that a square element satisfies(

λi11 + λi22

)
= 2αi, i = 1, 2, 3, 4. (2.4)

Using this result, we define the shape metric as

MShape =
8∑4

i=1 (λi11 + λi22) /αi
. (2.5)

Here, we divide 8 by the sum of equation (2.4) for all i in order for the metric to
lie between 0 and 1, since the maximum of (2.4) is 2. Some special cases also arise
with this metric,

MShape = 1 ⇐⇒ element is square,

MShape = 0 ⇐⇒ element is degenerate.

This metric makes it clear that some elements are excluded from the domain.
For example, the local area corresponding to the node (x, y) = (0.5, 0.2) in the

2.2. METRICS 9

Figure 2.3: Arrow shaped element with nodes in (0, −1), (2, 0), (0.1, 1.3) and
(0.5, 0.2).

Figure 2.4: Elements with MShape < 0.5

arrow-shaped element shown in Figure 2.3, is negative and the resulting shape
metric would become larger than one, which is outside our domain.

Applying the shape metric to the mesh in Figure 2.2a to see which elements
satisfyMShape < 0.5 and thus can be considered poorly shaped, yields the results
in Figure 2.4. The elements with MShape < 0.5 are shaded.

We see that the shape metric has picked up on some of the same elements as
the size metric, but also some that were not detected by the size metric. The large
elements to the bottom right are not detected by the shape metric. In fact, the
shape metric recognizes these elements as being very good because of their nearly
square shape. On the other hand, the shape metric identifies the third element on
the third row from the bottom to be rather bad, even though it was not identified
as poor by the relative size metric.

Here, the necessity of metrics also become apparent by comparing this element
to its neighbor on the right. The two elements may look similar, and one might

10 CHAPTER 2. MESH METRICS

conclude that they have similar MShape values. However, the rightmost element
has significantly better value in the shape metric than the left neighbor element.

2.2.3 Skew Metric

The last metric to be introduced here is the skew metric, MSkew. Although the
shape metric detects elements of poor shape deviating from a square shape, it does
not necessarily detect distortions arising from small or large angles in an element.
The reference element of the skew metric is rectangular [12].

As for the square element, the local area αi associated with node i equals the
total element area independent of i, but contrary to the square, the λi’s are not
all the same, instead they come in fours. That is, λi11 = λi+2

11 = λi+1
22 = λi+3

22 and
λi22 = λi+2

22 = λi+1
11 = λi+3

11 . Since the λ’s are interpreted as edge length squared, it
follows that λi11λ

i
22 = α2

i . This is utilized when the skew metric is formulated. As
we are looking for a metric that evaluates the skewness of an element compared
with a rectangle, we define the skew metric as

MSkew =
4∑4

i=1

(√
λi11λ

i
22

)
/αi

. (2.6)

Here, 4 is divided by the sum over all i’s of
√
λi11λ

i
22 = αi to get the metric to lie

between 0 and 1. The skew metrics’ special cases are similar to the special cases
of the shape metric,

MSkew = 1 ⇐⇒ element is rectangular,

MSkew = 0 ⇐⇒ element is degenerate.

The arrow shaped element in Figure 2.3 will also result in a skew metric larger
than one, and hence elements of this type will be assigned a skew metric of zero.

Figure 2.5 shows in shading the elements from the mesh in Figure 2.2a identified
by the skew metric to satisfy MSkew < 0.5. The figure shows that there are only
two elements for which the skew metric is smaller than 0.5. Closer inspection
shows that both of these elements consist of highly acute and obtuse angles.

2.2. METRICS 11

Figure 2.5: Elements with MSkew < 0.5

2.2.4 Combination Metrics

From the previous sections and examples, we have seen that the relative size,
shape, and skew metrics identify some of the same elements, but also some different
elements. It is possible to have elements that pass the quality threshold for each
metric, but appear to possess relatively bad size, shape, and skew at the same time.
In order to be able identify these elements we introduce combination metrics, where
the relative size metric is combined with the shape metric and the skew metric
respectively. This is unproblematic since the metrics (2.3), (2.5) and (2.6) all are
dimensionless, node independent, and take on values in the interval [0, 1]. They
do, however, have slightly different reference element, but this is easily rectified by
defining new reference elements for each combination metric.

The size-shape metric identifies elements that show tendencies for both bad
size and poor shape. With a square reference element with area a, the size-shape
metric is the product of the relative size and shape metric,

MSizeShape =MSize · MShape. (2.7)

It follows that the essential properties of this metric is a combination of the prop-
erties for the size and shape metric separately. Additionally,MSizeShape = 1 if and
only if the element is a square with area a and it is zero if and only if the element
is degenerate.

Similarly, the the size-skew metric is the product of the relative size metric and
the skew metric, and hence it detects elements with both poor size and skewness.
The metric,

MSizeSkew =MSize · MSkew, (2.8)

12 CHAPTER 2. MESH METRICS

(a) Elements with MSizeShape < 0.5 (b) Elements with MSizeSkew < 0.5

Figure 2.6: Combination metrics between size-shape and size-skew

has a rectangular reference element with area a. Thus, it has the properties
that MSizeSkew = 1 if and only if the element is a rectangle with area a, and
MSizeSkew = 0 if and only if the element is degenerate.

Figures 2.6a and 2.6b show the elements identified as having MSizeShape < 0.5
and MSizeSkew < 0.5 respectively. By comparing the results in Figure 2.6a with
Figure 2.2b and Figure 2.4 we see that theMSizeShape metric has detected several
elements not detected by either of MSize or MShape alone. Similar observations
can be made when comparing Figure 2.6b with Figure 2.2b and Figure 2.4.

2.3 Measure of Mesh Quality

The three metrics, relative size, shape, and skew, and the two combination metrics,
size-shape and size-skew, give a measure of the quality of each element in the mesh
under evaluation. Based on the local measure of each element, it is now possible
to find a global measure for the entire mesh. There are several ways of combining
the local element measures to a global mesh measure. Below we present the two
global measures for each of the metrics presented in the previous sections that we
will be using in this thesis.

2.3.1 Min-Max Measure

Each of the metrics presented gives a measure of element quality to each of the
N elements in the mesh. That is, each metric Mk gives a list of measures,
mk

1,m
k
2,m

k
3, . . . ,m

k
N . The first global measure we will be using is the min-max

2.3. MEASURE OF MESH QUALITY 13

(MM) measure. It simply takes the smallest mk and divides by the largest mk,

MM(Mk) =
mk
min

mk
max

, (2.9)

where max,min ∈ [1, 2, 3, . . . , N]. The largest value mk
i can have is one, and the

smallest is zero, thus MM(Mk) ∈ [0, 1]. If MM(Mk) tends towards zero, we
know that there are large variations between the elements of the mesh. If it is
identically equal to zero we have at least one degenerate element, since this can
only happen if mk

min = 0. On the other hand, if the min-max measure is closer
to one, we know that all the elements in the mesh are relatively similar in size,
shape, or skew, depending on k. Hence, the closer MM(Mk) is to one, the better
the mesh.

2.3.2 Root Mean Square Measure

The second global measure we are going to use is the root mean square (RMS).
For each metric, k, the RMS is the square root of the mean of the squares of the
values mk

i ,

RMS(Mk) =

√√√√ 1

N

N∑
i=1

(
mk
i

)2
. (2.10)

This measure includes terms from all the mesh elements, not just the best and
worst as the min-max measure. From the fact that mk

i ∈ [0, 1] for all i =
1, 2, 3, . . . N and metrics k, it follows that RMS(Mk) ∈ [0, 1]. This means that a
high value of RMS(Mk) implies a good mesh.

Both global measures are convenient in their own way. The min-max measure
gives an impression of how bad the worst mesh elements are compared to the best,
but it does not provide much information about the mesh overall. The RMS mea-
sure provides information about the mesh as a whole, but does reveal much about
the very worst elements. Thus, the two measures complement each other by each
compensating for the shortcomings of the other.

Chapter 3

Spline Theory and IGA

Before proceeding, we take some time to introduce splines and isogeometric anal-
ysis. IGA was first presented in 2004 by Hughes et al. [3]. It is based on classic
Finite Element Analysis, but instead of the linear shape functions used in most
Finite Element Methods [1] IGA uses splines [3], [2] as basis functions. Most of
what follows in the next few sections of this chapter is part of the work done in
the preceding specialization project, with some alterations and additions, and it
is included here for completeness.

3.1 B-Splines

Like most splines, B-splines are piecewise polynomial functions defined over con-
nected intervals. They are continuous, differentiable, and since they are polyno-
mials, they inherit all polynomial properties. B-splines are a part of the very core
of isogeometric analysis, and it is paramount to understand them thoroughly.

3.1.1 Knot Vectors

A B-spline typically consists of n piecewise polynomial basis functions, with poly-
nomial degree p [14], [15]. A knot vector is used to define the set of basis functions.
The knot vector is a set of non-decreasing real values Ξ = {ξ1, ξ2, . . . , ξn+p+1},
where ξi ∈ R is the ith knot and p is the polynomial degree. The knot intervals
define elements where the basis functions typically are C∞-continuous [2], [15].

Since the knots need only be non-decreasing, it is possible to have several knots
of the same value. If a knot is repeated m times in the knot vector it is said to have
multiplicity m. Across a knot with multiplicity m, continuity is reduced to Cp−m.
Thus, by repeating knots, the continuity of the basis functions can be reduced.
When repeating a knot p times the spline will be C0-continuous at the knot [14].

15

16 CHAPTER 3. SPLINE THEORY AND IGA

This property makes it is possible to create sharp corners in the spline curve [15]
by controlling the continuity to the associated basis functions.

The knot vectors are often required to repeat the first and last knot values a
total of p+ 1 times, making the spline discontinuous at these points. This ensures
that the corresponding basis functions are interpolating at these points. When the
end knots are repeated p+1 times, the knot vector is said to be open. Furthermore,
a knot vector is said to be uniform if the knots are equally spaced. Alternatively,
if the knots are not uniformly distributed, they give rise to a nonuniform knot
vector, and hence nonuniform splines.

For any knot vector, it is only the multiplicity and relative distance between
the knots that affect the resulting basis functions. That is, if a new knot vector Ξ̃
is produced by adding a constant to every knot or scaling by a constant, the new
knot vector will produce the same B-splines as the original knot vector Ξ.

3.1.2 B-Splines

The ith B-spline basis function of degree p with knot vector Ξ = [ξ1, . . . , ξi, . . . , ξn+p+1]
is defined recursively [15], [14] by

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+1+p − ξ
ξi+1+p − ξi+1

Ni+1,p−1(ξ) (3.1)

for i = 1, 2, . . . , n. In the special case where p = 0 the ith spline is simply

Ni,0(ξ) =

{
1, if ξi ≤ ξ < ξi+1

0, otherwise.
(3.2)

It is important to note that in the case of open knot vectors or repeated knots,
one might encounter a denominator evaluating to zero. This problem of possible
zero division is resolved by defining that “anything divided by zero is zero” [15],
implying that if ξi+p−ξi = 0 then ξ−ξi

ξi+p−ξi = 0 and similarly, if ξi+p+1−ξi+1 = 0 then
ξi+1+p−ξ

ξi+1+p−ξi+1
= 0. Figure 3.1 shows the dependencies between B-splines of different

orders. Notice how any B-spline of order p depends on p+ 1 B-splines of order 0.

3.1.3 Example

To better understand the concepts presented thus far, consider the knot vector
Ξ = [0, 0, 0, 0.5, 1, 1, 1] for p = 2. This knot vector is open, since the knots 0
and 1 are repeated a total of p + 1 = 3 times each. Furthermore, the knot vector
of 7 knots will give rise to n = 7 − (p + 1) = 4 basis functions. As there are no
repeated interior knots, i.e. the multiplicity is m = 1, the basis functions will be
Cp−m = C1 continuous across the interior knot at ξ = 0.5.

3.1. B-SPLINES 17

Ni,3

Ni,2

Ni+1,2

Ni,1

Ni+1,1

Ni+2,1

Ni,0

Ni+1,0

Ni+2,0

Ni+3,0

Figure 3.1: Dependencies when computing the B-spline Ni,p for p = 3 using (3.1).

We will look at the second of these B-splines in more detail, namely N2,2(ξ).
First of all, Ni,0, for i = 1, 2, . . . , 6, is determined by the relation given in (3.2) as

N1,0 = 0

N2,0 = 0

N3,0 =

{
1 if 0 ≤ ξ < 0.5

0 otherwise

N4,0 =

{
1 if 0.5 ≤ ξ < 1

0 otherwise.

N5,0 = 0

N6,0 = 0

(3.3)

Thus, by (3.1) and the zero division convention, the second B-spline of order 2 is

N2,2(ξ) =
ξ

0.5
N2,1(ξ) +

1− ξ
1

N3,1(ξ)

= 2ξ

(
ξ

0
N2,0(ξ) +

0.5− ξ
0.5

N3,0(ξ)

)
+ (1− ξ)

(
ξ

0.5
N3,0(ξ) +

1− ξ
1− 0.5

N4,0(ξ)

)
= 2ξ(2− 3ξ)N3,0(ξ) + (1− ξ)(2− 2ξ)N4,0(ξ).

(3.4)

18 CHAPTER 3. SPLINE THEORY AND IGA

In a similar fashion we can determine N1,2, N3,2 and N4,2. By utilizing (3.3), we
get

N1,2(ξ) =

{
(1− 2ξ)2 if 0 ≤ ξ < 0.5

0 if 0.5 ≤ ξ < 1,

N2,2(ξ) =

{
2ξ(2− 3ξ) if 0 ≤ ξ < 0.5

(1− ξ)(2− 2ξ) if 0.5 ≤ ξ < 1,

N3,2(ξ) =

{
2ξ2 if 0 ≤ ξ < 0.5

(2− 2ξ)(3ξ − 1) if 0.5 ≤ ξ < 1,

N4,2(ξ) =

{
0 if 0 ≤ ξ < 0.5

(2ξ − 1)2 if 0.5 ≤ ξ < 1.

(3.5)

Figure 3.2a gives a plot of the four basis functions from (3.5). The basis
functions are clearly C1-continuous across the interior knot.

The effect of adding an extra internal knot at 0.5, and thus elevating the
multiplicity of this knot to m = 2, is shown in Figure 3.2b. The figure show how
the continuity of the B-spline N3,2 is reduced to C0 across the knot. This coincides
with what we know about the continuity depending on the order p as well as the
multiplicity m of the corresponding knot. Since the new knot vector Ξ̃ has one
more element than Ξ, giving nΞ̃ = nΞ + 1, it also induces an additional basis
function.

(a) Original Ξ (b) Refined Ξ̃

Figure 3.2: Plot of basis functions corresponding to knot vector Ξ =
[0, 0, 0, 1

2
, 1, 1, 1], (a), and refined knot vector Ξ̃ = [0, 0, 0, 1

2
, 1

2
, 1, 1, 1], (b),

both with p = 2.

3.1. B-SPLINES 19

3.1.4 General Properties

B-splines possess a number of important properties that is frequently exploited
in practical applications. If p is a nonnegative polynomial degree and Ξ = (ξj)
is a nondecreasing knot sequence, then the B-splines defined on Ξ will have the
following properties [15], [3]:

Local knots The ith B-spline Ni,p depends only on the knots ξi, ξi+1, . . . , ξi+p+1.

Local support
If ξ /∈ [ξi, ξi+p+1) then Ni,p(ξ) = 0. In particular, if ξi = ξi+p+1 then Ni,p ≡ 0.
If x ∈ [ξµ, ξµ+1) then Ni,p(ξ) = 0 if i < µ− p or i > µ.

Positivity If ξ ∈ (ξi, ξi+p+1) then Ni,p(ξ) > 0. This closed interval [ξi, ξi+p+1] is
called the support of Ni,p.

Piecewise polynomial The B-spline Ni,p can be written:

Ni,p(ξ) =

i+p∑
k=i

Nk
i,p(ξ)Nk,0(ξ) (3.6)

where each Nk
i,p(ξ) is a polynomial of degree p.

Special values If z = ξi+1 = · · · = ξi+p < ξi+p+1 then Ni,p(z) = 1 and Ni,p(z) = 0
for i 6= j.

Smoothness If the number z occurs m times among ξi, . . . ξi+p+1 then the deriva-
tives of Ni,p of order 0, 1, . . . , p−m are all continuous at z.

Basis The B-splines are all linearly independent and thus form a basis.

Partition of unity The basis forms a partition of unity, i.e.

n∑
i=1

Ni,p(ξ) = 1, ∀ p ∈ Z, ξ ∈ R. (3.7)

Several of these properties are recognized in the example in Section 3.1.3.

3.1.5 Splines as a Basis for Curves

B-spline basis functions may be combined to make curve and surface representa-
tions in a physical space. This is achieved by multiplying each B-spline basis with
a control point, Bi, to make a linear combination of B-splines. The control points
are usually points in R,R2 or R3, implying that if B

(j)
i is the jth component of

20 CHAPTER 3. SPLINE THEORY AND IGA

control point i, then B
(j)
i ∈ R. The mapping from the parameter space of basis

functions to the physical space is given by

C =
n∑
i=1

Ni,p(ξ) Bi. (3.8)

The linear space of all linear combinations of B-splines defined on a knot vector Ξ
is the space

Sp,Ξ = span{N1,p, N2,p, . . . , Nn,p} =

{
n∑
i=1

Ni,p Bi

∣∣∣B(j)
i ∈ R

}
. (3.9)

It is important to note that the curve does not in general interpolate the control
points. It is also noteworthy that the control points and knots in general are
uncorrelated. This is an important difference from the FEM. One may think of
control point i as the weight put on the ith basis function.

Figures 3.3 and 3.4 show two spline curves and the basis functions they consist
of. Note that the control points are unchanged in the two figures. Only the knot
vectors, and thus the basis functions, are different. In both cases the control points
are given in R2 as

B =

[
Bx

By

]
=

[
2 0 −2 0 1 0 −1 0 1

2
0

0 2 0 −2 0 1 0 −1 0 1
2

]
(3.10)

Since the control points already are points in the physical space, they can be
plotted directly, and are shown in Figure 3.3 and 3.4 as red squares. To be able to
show the knots in the same space, they need to be mapped to the physical space
through (3.8). The knots are shown as yellow circles in the figures.

Figure 3.4 shows how a knot of multiplicitym = p affects the curve. The basis is
C0-continuous and this results in sharp corners in the associated spline curve. The
figures also show how the curve not necessarily passes through the control points.
In Figure 3.3b the control points are only interpolated at the beginning and end
of the curve. This is because the knot vector is open, i.e. ξ1 = ξ2 = . . . = ξp+1 and
ξn+1 = ξn+2 = . . . = ξn+p+1.

In Figure 3.4b two additional control points are being interpolated. This is due
to the repeated knots in the knot vector. Since the knots 2

8
and 6

8
are repeated p

times the curve has sharp corners. This is also reflected in the basis functions in
Figure 3.4a, i.e. the curve interpolates control point i if spline i is C0-continuous.

Another noteworthy characteristic is that if a curve is drawn based on the
ordered set of control points, called the control polygon, then the spline curve C
will always lie entirely within this polygon. In Figures 3.3 and 3.4 the control
polygon is shown in red.

3.1. B-SPLINES 21

(a) Basis functions (b) Spline curve

Figure 3.3: Basis and corresponding curve when the knot vector is Ξ1 =
[0, 0, 0, 2

10
, 3

10
, 4

10
, 5

10
, 6

10
, 7

10
, 8

10
, 1, 1, 1], polynomial degree is p = 2, and control

points B given in (3.10).

(a) Basis functions (b) Spline curve

Figure 3.4: Basis and corresponding curve when the knot vector is Ξ2 =
[0, 0, 0, 2

8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 6

8
, 1, 1, 1], polynomial degree is p = 2, and control points

B given in (3.10).

It is also worth mentioning that due to the local support property of B-splines,
only a small part of the curve, closest to the control point, will change if one
control point is changed. This means that it is possible to manipulate the curve
locally by changing the position of the control points.

22 CHAPTER 3. SPLINE THEORY AND IGA

3.1.6 2D Surfaces

Equipped with the properties presented in the previous sections it is now possible
to extend to 2D surfaces. The extension is quite straightforward. In addition
to the knot vector Ξ = [ξ1, . . . , ξn+p+1] from the 1D case, we now need one more
knot vector in the other parametric direction, H = [η1, . . . , ηm+q+1] with associated
polynomial order q. The two knot vectors do not need to be equal, they are not
even required to have the same polynomial degree, that is, we may have n 6= m or
p 6= q or both.

The knot vectors Ξ and H give rise to a set of linearly independent basis
functions, Ni,p(ξ) and Mj,q(η), with i = 1, . . . , n and j = 1, . . . ,m respectively,
given recursively by (3.1). The two-dimensional B-spline basis functions can now
be defined as the product of any pair (i, j) of these basis functions [15]. That
is, the 2D basis functions are given as Ni,p(ξ)Mj,q(η), where i = 1, . . . , n and
j = 1, . . . ,m. Now, the 2D basis functions can be used to represent a surface in
the physical space by

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bij, (3.11)

where Bij is a set of control points in R2 or R3. The parametric domain defining
the surface will be the rectangle (ξ, η) ∈ [ξ1, ξn+p+1]× [η1, ηm+q+1].

Figure 3.5 shows the nine 2D basis functions when Ξ and H are identically
[0, 0, 0, 1, 1, 1]. We can also recognize many of the spline properties presented in
Section 3.1.4 for this case.

It is worth noting that the number of 2D B-splines are still determined by the
knot vectors Ξ and H. Each of the knot vectors induce three 1D B-splines, which
when combined, generate 3 · 3 = 9 2D basis functions.

Figure 3.6 shows an example of a spline representation of the paraboloid ζ =
ξ2 + η2. The control points are visualized in Figure 3.6b. Since the knot vectors
used to render the surface in Figure 3.6a have one more internal knot compared
to the knot vectors used in Figure 3.5, the surface is made up of 42 = 16 basis
functions.

3.1.7 Derivatives

When using B-splines for analysis we will often need the derivatives of the basis
functions. The first derivative of the ith B-spline basis function of order p is given
by [16], [14], [15]

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (3.12)

3.1. B-SPLINES 23

Figure 3.5: The nine 2D basis functions obtained from Ξ = H = [0, 0, 0, 1, 1, 1]
with p = q = 2.

(a) 2D surface (b) Control points Bij in R3

Figure 3.6: 2D surface with associated control points. Knot vectors
Ξ = H = [0, 0, 0, 1

2
, 1, 1, 1], and with p = q = 2.

24 CHAPTER 3. SPLINE THEORY AND IGA

Higher order derivatives can be found by implicit differentiation [14],

dk

dkξ
Ni,p(ξ) =

p

ξi + p− ξi

(
dk−1

dk−1ξ
Ni,p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dk−1ξ
Ni+1,p−1(ξ)

)
=

p!

(p− k)!

k∑
j=0

αk,jNi+j,p−k(ξ),

(3.13)
where

α0,0 = 1,

αk,0 =
αk−1,0

ξi+p−k+1 − ξi
,

αk,j =
αk−1,j − αk−1,j−1

ξi+p+j−k+1 − ξi+j
for j = 1, . . . , k − 1,

αk,k =
−αk−1,k−1

ξi+p+1 − ξi+k
.

(3.14)

3.1.8 Refinement

In the standard finite element method there are two common ways of enriching
the basis [2]. The first method, h-refinement, involves increasing the number
of elements by decreasing the element size and thus enabling higher resolutions,
while the second method, p-refinement, involves increasing the polynomial degree
of the basis functions. Isogeometric analysis comprises methods similar to h- and
p-refinement, as well as additional possibilities for refinement. Contrary to the
FEM methods, the geometry remains unchanged under each refinement and the
continuity across each element is more controllable in isogeometric analysis.

The isogeometric version of h-refinement is knot insertion [2]. This is done by
inserting new knots in the knot vector. This enriches the basis because the knot
vector now gives rise to additional basis functions. The value of the new knots
may already be in the knot vector to elevate the multiplicity of an already existing
knot, or it may be new, unique knots. Knot insertions are common to do in the
interior of the knot vector, keeping the p+ 1 first and last knots unchanged in the
enriched knot vector.

After a knot is inserted, the knot vector will render more B-splines and thus it
is necessary to increase the number of control points accordingly. Several methods
for obtaining new control points exist, see for instance [15], [14].

Figure 3.2a and Figure 3.2b illustrate how the basis is enriched when a knot is
inserted and thus elevating the multiplicity of the internal knot to m = 2 = p.

The p-refinement equivalent in isogeometric analysis is order elevation, where
the polynomial degree of the basis functions is increased from p to p̃ > p. Here

3.1. B-SPLINES 25

it becomes clear how we can control the continuity; in the classical p-refinement
the basis has C0-continuity. In order elevation the continuity across a knot is
changed from Cp−m to C p̃−m. To preserve Cp−m-continuity, we simply increase the
multiplicity of each knot by p̃− p.

It is important to note that while knot insertion can be done locally, order
elevation is a global operation since the polynomial order of a B-spline is a global
property.

It is also possible to perform both knot insertion and order elevation in cascade.
The sequence does not in general commute [2], and better results are obtained
when performing the order elevation before knot insertion. In IGA this is called
k-refinement, and this method does not have any equivalent refinement method in
the standard FEM.

3.1.9 Matrix Representation

When dealing with recursively defined mathematical objects we quickly learn that
the complexity of such objects rapidly becomes daunting, even if the recurrence
relation itself is quite simple [15]. B-splines as defined by (3.1) are recursive,
but luckily the splines can be represented as products of some relatively simple
matrices.

As before we let Ξ = [ξ1, . . . , ξn+p+1] be a knot vector with polynomial degree
p. Furthermore, we let µ be an integer such that p + 1 ≤ µ ≤ n and ξµ < ξµ+1.
Then, for each positive integer k ≤ p we can define the B-spline matrix

Rk(ξ) =


ξµ+1−ξ

ξµ+1−ξµ+1−k

ξ−ξµ+1−k
ξµ+1−ξµ+1−k

0 . . . 0

0 ξµ+2−ξ
ξµ+2−ξµ+2−k

ξ−ξµ+2−k
ξµ+2−ξµ+2−k

. . . 0
...

.
...

0 0 . . .
ξµ+k−ξ
ξµ+k−ξµ

ξ−ξµ
ξµ+k−ξµ

 . (3.15)

Now, for ξ ∈ [ξµ, ξµ+1) and using (3.15) we can write the p + 1 nonzero B-splines
on the interval [ξµ, ξµ+1) as

Np = (Nµ−p,p, Nµ−p+1,p, . . . , Nµ,p) = R1(ξ)R2(ξ) · · ·Rp(ξ). (3.16)

In a similar fashion, the recursive relation for the derivative of a B-spline from (3.12)
and (3.13) can be represented as a matrix product. Several algorithms for eval-
uating the B-spline matrix and its derivatives have been developed, see [15] for
details.

When using B-splines for computations and analysis, we will use the matrix
form.

26 CHAPTER 3. SPLINE THEORY AND IGA

3.2 Isogeometric Analysis

As mentioned briefly in the chapter introduction, splines are heavily incorporated
in isogeometric analysis. IGA will be a vital part of our parameterization methods,
and we will devote some time to get familiarized with IGA and the IGA problem
formulation before presenting the parameterization methods.

Isogeometric analysis is, as the well-known finite element method, a technique
for finding numerical approximations to boundary value problems for partial differ-
ential equations (PDEs). It is assumed that the reader is already familiar with the
classic FEM, using for instance linear or bilinear polynomials as basis functions [1].

3.2.1 Strong Form Poisson Problem

To get better acquainted with isogeometric analysis as a method for numerically
solving PDEs, we look at a simple, yet powerful example of how a PDE is actually
solved using IGA. We choose the Poisson problem as an example, and it can be
stated as follows [17]

∇2u(x, y) + f(x, y) = 0, (3.17)

with boundary conditions

u(x, y) = g on ΓD,

∇u(x, y) · n = h on ΓN ,

αu+∇u(x, y) · n = r on ΓR.

(3.18)

The problem is defined on a two dimensional domain Ω with boundary ∂Ω =
ΓD ∩ ΓN ∩ ΓR and outward normal vector n. The function f(x, y) is given. The
boundary is divided into ΓD, ΓN and ΓR representing Dirichlet, Neumann and
Robin boundary conditions respectively.

3.2.2 Weak formulation

To solve the strong form (3.17)-(3.18) numerically, we formulate the problem using
the Galerkin approach, see [1], [18] [19] or [20] for details. The idea behind this
method is to reformulate the strong form of the problem into a weak formulation
by multiplying with a spline test function N on both sides and integrating over
the domain Ω, ∫

Ω

∇2u ·N dA = −
∫

Ω

f ·N dA. (3.19)

Since the spline test function will fulfill N |ΓD = 0, integrating by parts yields∫
Ω

∇u ·∇N dA =

∫
Ω

f ·N dA+

∫
ΓN

h ·N dS+

∫
ΓR

r ·N dS−β
∫

ΓR

u ·N dS. (3.20)

3.2. ISOGEOMETRIC ANALYSIS 27

For simplicity it is assumed we only have Dirichlet boundary conditions, that is,
the terms concerning Neumann and Robin boundaries vanish, and we arrive at∫

Ω

∇u · ∇N dA =

∫
Ω

f ·N dA. (3.21)

This expression can be written as

a(u,N) = l(N), (3.22)

which we recognize as the standard bilinear and linear form from the finite element
method [1]. However, contrary to the FEM, isogeometric analysis uses splines as
test functions, and hence we are searching for a solution in a subspace Sn of the
space of all splines S instead of the Sobolev space H1(Ω), which is common in
FEM.

The subspace we will be searching for a solution in is the space spanned by the
finite number of basis functions defined on a knot vector spanning the domain Ω,
that is

Sn = span

{
Ni ∈ Sp,Ξ

∣∣∣C(ξ, η) =
n∑
i=1

NiBi = Ω

}
. (3.23)

Once the finite-dimensional approximation space in which we are going to
search for the trial solution u and test function N have been chosen, we can
proceed with the matrix representation of the weak form (3.22). This procedure is
quite familiar for people acquainted with the FEM. We write the solution on the
form

uh =
n∑
i=1

uihNi, (3.24)

which inserted into (3.22) gives

n∑
i=1

a(Ni, Nj)u
i
h = l(Nj), ∀Nj ∈ Sn, (3.25)

where we have exploited the bilinearity of (3.21). We immediately recognize (3.25)
as a system of linear equations, and thus formulate it as

Au = f , (3.26)

where the elements of the stiffness matrix A are ai,j = a(Ni, Nj) and the elements
of the force vector f are fj = l(Nj).

28 CHAPTER 3. SPLINE THEORY AND IGA

3.2.3 Elements

In the FEM, nodal functions are used to define the elements on which we oper-
ate [1]. When dealing with splines as basis functions, the understanding of elements
are not as intuitive. By adopting the convention from [3] we define an element in
one dimension as the span between two neighboring knots.

In Section 3.1.4 it was stated that the spline basis functions are defined on
at most p + 1 knot spans. This property of local support of the basis functions
ensures that the stiffness matrix has a sparse nature. It is also worth noting that
because a basis function can be defined on as many as p+ 1 knot spans, the basis
functions can be contributing on several elements.

As briefly mentioned in Section 3.1, the continuity across elements is much
easier to control when using splines compared to the standard basis functions used
in FEM, where we typically have C0 continuity across elements. As discussed in
Section 3.1.1, the continuity across elements depends on the multiplicity of the
corresponding knots when using spline basis functions. This essentially means
that we are free to choose the continuity as we please.

3.2.4 Spaces and Mappings

The stiffness matrix A and the force vector f in the weak problem formula-
tion (3.26) require integration. In this thesis we use Gaussian quadrature to eval-
uate these integrals. When using Gaussian quadrature in two dimensions we will
need to map the functions being integrated to a unit square (ξ̃, η̃) ∈ [−1, 1]×[−1, 1].
This is familiar from the FEM and will be explained in more detail in Section 3.2.5.

The unit square mapping comes in addition to the mapping from the parameter
space to the physical space which was presented in (3.8) in Section 3.1.5.

Figure 3.7 shows the three spaces we will be working in together with the
corresponding mappings between them. The mapping from the unit square to the
parametric element C̃ : Ω̃K 7→ Ω̂K is an affine mapping, that is, the mapping
preserves points and lines, while the mapping C : Ω̂K 7→ ΩK is a polynomial
mapping from the parametric element to the physical element.

It is important to be well acquainted with these spaces and mappings, as we will
be working in all of them at the same time. The numerical integration will be done
on the unit square Ω̃, all basis functions are defined over the parametric domain Ω̂,
and the differential equation is formulated and evaluated in the physical domain
Ω. As the basis functions and the differentials are not defined in the same space,
we need to formulate the equations using the Jacobian matrix of the geometry
mapping between the parameter and physical space. In two dimensions this is

3.2. ISOGEOMETRIC ANALYSIS 29

ξ̃

η̃

Ω̃K

(−1,−1)

(1, 1)(−1, 1)

(1,−1)

ξ

η

Ω̂K

ξi ξi+1

ηj

ηj+1

x

y

ΩK

C̃

C

Figure 3.7: Illustration of the unit square, or parent element, Ω̃, the parametric
space Ω̂ and the physical space Ω, with the mappings C̃ : Ω̃ 7→ Ω̂ and C : Ω̂ 7→ Ω.

stated as

C(x, y) =
n∑
i=1

Ni(ξ, η)Bi. (3.27)

We will also need the inverse of the Jacobian of this mapping before we can compute
the spatial derivatives of the basis functions. The Jacobian and its inverse are
defined as

Jξ =

[
xξ xη
yξ yη

]
, J−1

ξ =

[
ξx ξy
ηx ηy

]
. (3.28)

with components ∂xI
∂ξJ

= ∂Ni
∂ξJ

Bi,I , where Bi,I is the Ith coordinate of control point

i [16]. The Jacobian is defined as the determinant of the Jacobian matrix, |Jξ|.
The Jacobian represents the transformation from the physical space to the param-
eter space, and consequently the inverse represents the transformation from the
parameter space back to the physical space.

The second mapping, from the unit square, (ξ̃, η̃) ∈ Ω̃, to a parametric element

30 CHAPTER 3. SPLINE THEORY AND IGA

domain, (ξ, η) ∈ [ξi, ξi+1] × [ηj, ηj+1], is easier to deal with because the mapping
is affine. The transformation is given by

ξ =
1

2

(
(ξi+1 − ξi)ξ̃ + (ξi+1 + ξi)

)
η =

1

2

(
(ηj+1 − ηj)η̃ + (ηj+1 + ηj)

)
,

(3.29)

and the Jacobian of this mapping becomes

|Jξ̃| =
1

4
(ξi+1 − ξi)(ηj+1 − ηj). (3.30)

Now that we are equipped with three different spaces with appropriate map-
pings and Jacobians, we are ready to take on the numerical integration of the
elements in the stiffness matrix and force vector. But first, let us see how the
integral of a general function of two variables g(x, y) taken over the entire domain
Ω may be written when working with the spaces and mappings presented here,∫

Ω

g(x, y) dΩ =
∑
K

∫
ΩK

g(x, y) dΩK

=
∑
K

∫
Ω̂K

g(x(ξ), y(η)) |Jη| dΩ̂K

=
∑
K

∫
Ω̃K

g(ξ̃, η̃) |Jξ| |Jξ̃| d Ω̃K .

(3.31)

In addition to this, we need to be precise when applying the gradient in (3.25).
The gradient ∇ is applied with respect to x and y, but the objects it is applied to,
the spline basis functions Ni’s, are expressed in terms of ξ and η. It is intuitive,
and quite easy to check, that the relation

∇ =

[
∂
∂x
∂
∂y

]
=

[
ξx ηx
ξy ηy

] [∂
∂ξ
∂
∂η

]
= J−Tξ ∇̂ (3.32)

holds. Now, applying this to the bilinear form in (3.25) yields

a(Ni, Nj) =

∫
Ω

(∇Ni)
T (∇Nj)dxdy (3.33)

=

∫
Ω

(J−Tξ ∇̂Ni)
T (J−Tξ ∇̂Nj)dxdy (3.34)

=

∫
Ω̂

(∇̂Ni)
TJ−1

ξ J−Tξ (∇̂Nj) |Jξ| dξdη (3.35)

=

∫
Ω̃

(∇̂Ni)
TJ−1

ξ J−Tξ (∇̂Nj) |Jξ| |Jξ̃| dξ̃dη̃. (3.36)

3.2. ISOGEOMETRIC ANALYSIS 31

The same process is applied to l(Nj) in (3.25) to obtain

l(Nj) =

∫
Ω

f ·Nj dxdy

=

∫
Ω̂

f ·Nj |Jξ| dξdη

=

∫
Ω̃

f ·Nj |Jξ| |Jξ̃| dξ̃dη̃.

(3.37)

3.2.5 Numerical Integration

As mentioned in the previous section, we need to perform numerical integration
in order to evaluate the integrals that are present in the stiffness matrix and force
vector. There exists a number of methods for numerical integration [17], [20],
[21] We have chosen to use Gaussian quadrature in this thesis. The idea behind
Gaussian quadrature in two dimensions is to approximate an integral over the
domain [−1, 1]× [−1, 1] with finite sums on the form∫ 1

−1

∫ 1

−1

g(x, y) dxdy ≈
c1∑
α=1

c2∑
β=1

g(x̄α, ȳβ)wα,β. (3.38)

The Gauss points (x̄α, ȳβ) and the weights wα,β can be found in [22] and [23].
Naturally, it is possible to do the integration over a different domain, say [a, b] ×
[c, d], but for simplicity and generality, we use the unit square here. If we choose

another domain, the mapping C̃ in Section 3.2.4 will also change. In (3.38) c1 and
c2 represent the number of Gauss integration points in each spatial direction.

In order for the approximation (3.38) to be reliable, the function g needs to
be sufficiently smooth. Generally speaking, a C2c continuous function needs c
quadrature points in the approximation. When using splines as integrands, this
might give rise to issues since the continuity of splines might be limited across
knot spans, cf. Section 3.1.1. Luckily, we avoid the potential issue by performing
integration element-wise as each element is defined as a knot span, on which the
basis functions typically are C∞-continuous.

Applying Gauss quadrature for numerical integration means that the exact
integral given in (3.36) is approximated by

a(Ni, Nj) ≈
∑
α

∑
β

(
∇̂Ni(ξα, ηβ)

)T
J−1
ξ J−Tξ

(
∇̂Nj(ξα, ηβ)

)
|Jξ| |Jξ̃|wα,β (3.39)

The exact same procedure is used to approximate (3.37).

32 CHAPTER 3. SPLINE THEORY AND IGA

3.2.6 Imposing Boundary Conditions

We have so far described what is a powerful method for solving boundary value
problems such as (3.17). However, the enforcement of the boundary conditions
needs some special handling when using IGA compared with the FEM. Many dif-
ferent approaches to the enforcement of boundary conditions have been suggested,
such as least squares, Lagrange multipliers, and penalty methods. The reader is
referred to [24], [25], [3], [2], and [16] for further details.

In this thesis we will only be considering Dirichlet boundary conditions and
the easiest way to impose this type of boundary condition is to apply them to the
control variables corresponding to the boundary.

Homogeneous Dirichlet boundary conditions, u = 0 on ΓD, are imposed by
finding the basis functions located at the boundary and modify the columns and
rows corresponding to these basis functions in the stiffness matrix and force vector
for these basis variables to be set to zero. In the case of homogeneous Dirichlet
conditions this approach results in exact pointwise satisfaction [3]. When dealing
with inhomogeneous Dirichlet boundary conditions, u = g on ΓD, this method
will not be accurate, and it is necessary to approximate the boundary values with
splines [3].

Here, we have chosen to go for a least squares approximation approach in which
we seek to minimize the error at the boundary data points. The basic idea of the
least squares method is to find the parameters of the boundary control points that
minimize ‖Gc∗−b‖2. The matrix G and vector b have components gi,j = Nj(xi)
and yi, respectively, where (xi, yi) are data points along the boundary. Solving the
minimization problem for c∗ is equivalent to solving the set of equations [16]

GTGc∗ = GTb. (3.40)

This method is limited to sufficiently smooth boundary conditions and it will in
general only be interpolatory at the endpoints.

We will only deal with Dirichlet conditions when IGA is applied to the domain
parameterization problem. Therefore, we will only briefly mention that Neumann
conditions are satisfied in the same way as in the standard FEM. That is, by
including the terms which arise naturally from the variational problem formula-
tion (3.20), see [2] and [3] for details.

3.3 Validating a B-spline Parameterization

When B-splines are used to find a parameterization of a domain Ω it is necessary
to have a way to validate the parameterization. In a parameterization mesh, all
elements must be non-inverted. If some elements are inverted, the mesh is not

3.3. VALIDATING A B-SPLINE PARAMETERIZATION 33

suitable for computational analysis. It turns out that a parameterization

F(ξ, η) =
n∑
i=1

m∑
j=1

ui,jNi,p(ξ)Mj,q(η) (3.41)

of a domain Ω = {x ∈ R2|x = F(ξ, η)} is valid if the Jacobian of F has a positive
determinant [8], [7]. If the determinant of the Jacobian is positive, we also know
that the elements in question is non-inverted. The inner control points are here
denoted by u = [ux, uy]. The determinant of the Jacobian J can be written as

det(J) =

n,m∑
i,j

n,m∑
k,l

det[ui,juk,l]
T dNi,p(ξ)

dξ
Mj,q(η)Nk,p(ξ)

dMl,q(η)

dη
(3.42)

It is possible to determine if the determinant is positive by simply evaluating (3.42)
at numerous points (ξ, η), provided we evaluate at enough points. This way of
evaluating the sign of the determinant is not necessarily sufficient, as we may be
evaluating at too few or at the wrong points, and thus missing some areas where
det(J) < 0. However, it is sufficient for our needs as we will be evaluating at
numerous points and evaluating the results in combination with the parameteri-
zation.

Chapter 4

Parameterization Methods

It is now time to introduce the methods we will be using to parameterize a given
physical domain Ω. The parameterization will be given in terms of points as
u = [ux, uy]

T . Here ux is the x-coordinate and uy is the y-coordinate of the
parameterization points.

Four methods will be presented. All the methods are based on the framework
presented in the preceding chapter and utilizes the spline infrastructure and IGA
approach. The methods will be presented in order of increasing complexity.

4.1 Gordon-Hall Algorithm

One of the first methods for mesh generation intended for use in finite element
analysis was proposed by W. J. Gordon and C. A. Hall in 1973 [26]. The method is
a form of bilinear blending, and is today known as the Gordon-Hall algorithm [27],
transfinite interpolation, or Coons patch.

We will first present the general technique, before introducing splines into it.
We start by considering the mapping F : Ω̂ 7→ Ω from the parameter domain to
the physical domain, see Figure 4.1. The mapping F is a continuous, vector-
valued function taking the independent variables ξ and η as arguments, so that F
maps the parametric boundary ∂Ω̂ into the physical boundary ∂Ω [27]. In order
to generate a parameterization of Ω we need to use F . However, the mapping is
unknown to us, we only know the boundary ∂Ω.

Gordon and Hall found a method of obtaining the mapping F . The first step
towards finding F is representing the domain boundary as curves,

∂Ω1 : x(ξ,−1) ∂Ω2 : x(1, η)

∂Ω3 : x(ξ, 1) ∂Ω4 : x(−1, η).
(4.1)

We may now choose any point (ξ, η) along the boundary ∂Ω̂ and get a correspond-

35

36 CHAPTER 4. PARAMETERIZATION METHODS

Ω

∂Ω1

∂Ω3

∂Ω4 ∂Ω2

x

y

∂Ω̂1

∂Ω̂2

∂Ω̂3

∂Ω̂4

(−1,−1)

(1, 1)

ξ

η

Ω̂

F

Figure 4.1: Physical domain Ω defined by the four curves ∂Ω1, ∂Ω2, ∂Ω3 and ∂Ω4,
parametric space Ω̂, and the mapping F .

r−1 1

ϕ0 ϕ1

Figure 4.2: Linear polynomials ϕ0 and ϕ1 for linear interpolation.

ing point (x, y) on ∂Ω. However, since there exists many mappings from ∂Ω̂ to ∂Ω
with different mappings of the interior, this is not enough to uniquely define the
mapping F . To determine F we use linear interpolation with linear polynomials
satisfying

ϕi(r) ∈ P1(−1, 1), i = 0, 1,

ϕi(rj) = δij, 0 ≤ i, j ≤ 1,
(4.2)

where r0 = −1 and r1 = 1. See Figure 4.2 for a simple illustration of the condi-
tions (4.2). The polynomials ϕ0(r) = r−r1

r0−r1 = 1−r
2

and ϕ1(r) = r−r0
r1−r0 = 1+r

2
satisfy

the conditions (4.2). Then, linear interpolation may be applied to obtain [17]

g(r) = ϕ0(r)g0 + ϕ1(r)g1, (4.3)

where g0 and g1 are known values of the function at points r0 and r1 respectively.
By setting these points to be coordinates along opposite edges of Ω, we can use
linear interpolation once more to interpolate between the opposite sides (∂Ω1, ∂Ω3)
and (∂Ω2, ∂Ω4). That is, the mapping

Fξ(ξ, η) ≡ ϕ0(ξ)x(−1, η) + ϕ1(ξ)x(1, η) (4.4)

exactly preserves the edges ∂Ω2 and ∂Ω4, while the mapping

Fη(ξ, η) ≡ ϕ0(η)x(ξ,−1) + ϕ1(η)x(ξ, 1) (4.5)

4.1. GORDON-HALL ALGORITHM 37

exactly preserves ∂Ω1 and ∂Ω3. Now all the boundary curves are preserved, but
we also need to preserve the corner points of Ω. This is obtained through

Fξη(ξ, η) =
1∑
i=0

1∑
j=0

ϕi(ξ)ϕj(η)x(ri, rj). (4.6)

Combining the mappings (4.4), (4.5) and (4.6) yields the mapping F from the
parameter space to the physical space,

F ≡ Fη + Fξ −Fξη. (4.7)

This mapping will map ∂Ω̂ exactly to ∂Ω, and the interior points of Ω will be
defined by an affine mapping [27].

Now, we introduce splines as basis functions in the expressions for Fξ, Fη,
and Fξη. The linear polynomials ϕi are replaced by linear splines defined on the
knot vector [0, 0, 1, 1] with polynomial degree q = 1. We use the mapping from
the parametric space to the physical space given by equation (3.8) with n splines
defined from a knot vector with polynomial degree p to represent the domain
boundary curves. Thus, Fξ, Fη, and Fξη can be expressed as

Fη =
n∑
i=1

2∑
j=1

Np
i (ξ)M̃ q=1

j (η) x̃ηij

Fξ =
2∑
i=1

n∑
j=1

M̃ q=1
i (ξ)Np

j (η) x̃ξij

Fξη =
2∑
i=1

2∑
j=1

Ñ q=1
i (ξ)M̃ q=1

j (η) x̃ξηij

(4.8)

where x̃ηij are points along Ω1 and Ω3, x̃ξij are points along Ω2 and Ω4, and x̃ξηij are
the points where the four boundary curves meet.

Next, we wish to get all the the mappings on the same basis. This is done in
several steps: first the linear basis undergoes order elevation and then knots are
inserted into the knot vector to enrich the basis, that is, the linear basis undergoes

38 CHAPTER 4. PARAMETERIZATION METHODS

k-refinement. Then, the mapping Fη from (4.8) becomes

Fη =
n∑
i=1

2∑
j=1

Np
i (ξ)M̃ q=1

j (η) x̃ηij (4.9)

=
n∑
i=1

p+1∑
j=1

Np
i (ξ)M̂p

j (η) x̂ηij (4.10)

=
n∑
i=1

n∑
j=1

Np
i (ξ)Mp

j (η) xηij. (4.11)

The step from (4.9) to (4.10) involves order elevating the knot vector used to define

the splines M̃ q=1
j (η). In the process the control points are also altered, so that we

end up with more control points x̂ηij. Now the basis N(ξ) and M̂(η) have the
same polynomial degree, but the basis in the ξ-direction is still richer than in the
η-direction.

This is fixed in the next step, from (4.10) to (4.11), by inserting knots into
the knot vector giving rise to the basis in the η-direction. Once again, the control
points are altered in the process to fit the new basis.

The exact same procedure is applied to Fξ and Fξη, but in the latter case, the

process is repeated twice, once for M̃ q=1
i (ξ) and once for Ñ q=1

j (η).
Since we are free to choose the polynomial order and number of basis functions

as we please, we chose the same p and n in all the mappings. Hence, when the
mappings are added together, the control points can be added separately, i.e.

F =
n∑
i=1

n∑
j=1

Np
i (ξ)Np

j (η) xηij +
n∑
i=1

n∑
j=1

Np
i (ξ)Np

j (η) xξij

−
n∑
i=1

n∑
j=1

Np
i (ξ)Np

j (η) xξηij

=
n∑
i=1

n∑
j=1

Np
i (ξ)Np

j (η)
(
xηij + xξij − xξηij

)
.

(4.12)

The domain parameterization u is given by the mapping F . The code imple-
mentation of this domain parameterization method can be found in Appendix A.1.

4.2 Uncoupled Poisson using IGA

The next method to be introduced involves the solving of an uncoupled Poisson
problem for the parameterization u. The Poisson problem will be solved by the
isogeometric analysis approach presented in Section 3.2.

4.2. UNCOUPLED POISSON USING IGA 39

The idea behind this method is to solve two uncoupled Poisson problems, one
for the x-coordinate and one for the y-coordinate of the parameterization points.
That is, the method yield a parameterization mesh with coordinates given as
u = [ux, uy], where ux is obtained by solving one Poisson problem, and uy is ob-
tained by solving another Poisson problem. The two Poisson problems are solved
independently from each other. The boundary conditions are set to be the para-
metric representation of the domain boundary. This is formulated mathematically
as

∇2ux = 0 in Ω

ux = x̂ on ∂Ω
(X’)

and
∇2uy = 0 in Ω

uy = ŷ on ∂Ω
(Y’)

where x̂ and ŷ are known values for ux and uy along the boundary ∂Ω. To prepare
the problems (X’) and (Y’) for isogeometric analysis we rewrite them into the weak
form, cf. 3.2.2.Thus, to find the parameterization u = [ux, uy] of a domain Ω with
boundary ∂Ω, the two problems

Aux = fx, (X)

Auy = fy (Y)

are solved separately. The elements of the stiffness matrix A, are as in Section 3.2
ai,j = a(Ni, Nj). The elements of the right hand side vectors fx and fy are (fx)j =
lx(Nj) and (fy)j = ly(Nj), where li(·), i = {x, y} are given by (3.21). However,
since the right hand side in both (X’) and (Y’) are zero, fx = 0 and fy = 0.

4.2.1 Implementation and Verification

The method is implemented in MATLAB. When performing finite element analysis
and, by extension, isogeometric analysis, the procedure can generally be divided
into three parts: the pre-processing, the processing, and the post-processing.

The pre-processing initializes the problem with the right hand side function f ,
knot vectors Ξ and H, control points, boundary conditions, refinement and any
other necessary features. The connectivity between the basis functions on each
element is important for the assembly of the stiffness matrix, so they are also
included in the pre-processing.

The processing part of the program is where the system is assembled. The
stiffness matrix A and the right hand side f are assembled by looping over each
element, and adding the contribution from all the nonzero basis functions on each
element. After the assembly of the system, the boundary conditions are enforced

40 CHAPTER 4. PARAMETERIZATION METHODS

through the least squares approach, before the system AU = f is solved using
MATLAB’s solver for systems of linear equations. The solution U is the value of
the control variables.

In the post-processing, the control variables are used to find the solution u in
the physical space. This whole procedure has to be carried out twice in order to
solve the problems (X’) and (Y’).

An outline for this may be seen in Algorithm 4.1. The main solver function
consists of a number of other functions running in sequence, each contributing
to setting up and solving the Poisson problem. The main sequence is explained
schematically in Appendix A.2 together with the code in its entirety.

Before the program may be used to parameterize an arbitrary domain, it must
be verified. That is, we have to confirm that the program produces the right out-
put. This is done by applying the solver to a problem with a known solution. The
inhomogeneous Poisson problem

∇2u(x, y) = 0 in Ω

u(x, y) = ex sin(y) on ∂Ω
(4.13)

on the square Ω = [0, 1]× [0, 1] has exact solution u = ex sin(y).

In order to evaluate the performance of the program, it is run several times on
the problem in (4.13) with different values for the polynomial order p and number
of degrees of freedom (DOFs). For each run, the error e between the exact solution
u and the numerical solution uh is evaluated in the energy norm and in the L2

norm.

Algorithm 4.1 Progam outline for the uncoupled Poisson parameterization
method. The Main-sequence can be found in Appendix A.2

1: procedure UncoupledPoisson
2: initialize f = [0, 0], p, q, Ξ,H
3: Solve for x-coordinate:
4: initialize x-parameterization of boundary ∂Ω
5: main

6: ux ← u
7: Solve for y-coordinate:
8: initialize y-parameterization of boundary ∂Ω
9: main

10: uy ← u
11: Parameterization u = [ux, uy]

4.2. UNCOUPLED POISSON USING IGA 41

(a) Convergence rates in energy norm (b) Convergence rates in L2 norm

Figure 4.3: Convergence rates for the Poisson solver. Error as a function of degrees
of freedom for order p = 1, 2, 3, 4 and 5 in the energy and L2 norm.

The energy norm for the Poisson problem is defined as

||e||E(Ω) =

(∫
Ω

(∇e)T (∇e) dΩ

)1/2

(4.14)

while the L2 norm is

||e||L2(Ω) =

(∫
Ω

eT e dΩ

)1/2

. (4.15)

Figure 4.3 shows how the solution converges as a function of DOFs with the error
both in the energy norm and in the L2 norm. Under each convergence plot is a
dashed line. The dashed lines in Figure 4.3a have a slope of −p/2, while the dashed
lines in Figure 4.3b have a slope of −(p+ 1)/2. That is, the rate of convergence is
p/2 in the energy norm and (p + 1)/2 in the L2 norm. In Figure 4.3b, the lower
part of the convergence rate for p = 5 no longer follows the dashed line as closely.
This is because the error has reached machine precision. The convergence rates
are as expected [3], and verifies that the solver works correctly.

4.2.2 Gamma Function

It turns out that the uncoupled Poisson approach has a recurrent problem with
producing invalid parameterizations in which parameterization points are placed
outside of the domain, leading to mesh lines crossing the domain boundary and
inverted elements. In an attempt to remedy this shortcoming, we introduce a
function γ, inspired by the elasticity matrix from linear elasticity theory which
will be introduced more thoroughly in Section 4.3. The function is incorporated

42 CHAPTER 4. PARAMETERIZATION METHODS

(a) γ = 1 (b) γ(x, y) = x · y

Figure 4.4: Effect of introducing γ(x, y) into the uncoupled Poisson method.

in the stiffness matrix A, so that the matrix elements ai,j become

ai,j = γ(x, y) · a(Ni, Nj), (4.16)

where a(Ni, Nj) is the usual bilinear form defined in (3.21). The function varies in
both spatial directions and thus makes it possible to adapt the parameterization
to better fit the domain.

The idea is to use a relatively low γ-value in the geometry areas experiencing
problems with the straight forward uncoupled Poisson method, and a relatively
high γ-value in the areas not experiencing these problems. This way we make
the challenging areas more elastic, and the performance of the algorithm may be
improved.

Figure 4.4 shows the effect of the γ-function for a mesh on the square (x, y) ∈
[0, 1]2. In Figure 4.4a the mesh is uniform as there is no γ-function pulling the
mesh lines. In Figure 4.4b, the mesh lines are distorted compared to the previous
mesh. The function γ(x, y) = x · y makes the mesh lines for high values of x and y
less elastic than those for lower x and y coordinates, and hence the mesh is pulled
away from the lower left corner, while the upper right corner is less affected by the
introduction of γ.

The gamma function must be chosen to the specific geometry in question, i.e.
it is not a general function that works for all geometries.

4.3 Linear Elasticity using IGA

In the third parameterization method we examine the potential of a linear elasticity
approach using IGA to find a domain parameterization. Linear elasticity will,
contrary to the uncoupled Poisson approach, connect the x- and y-coordinates in

4.3. LINEAR ELASTICITY USING IGA 43

a more direct manner. It will also, to some degree, avoid the difficulty of finding
an appropriate γ-function for the geometry in question. We start by providing an
introduction to linear elasticity before looking at the isogeometric formulation of
the parameterization problem.

4.3.1 Introduction to Linear Elasticity

Linear elasticity can be used to study mathematically how solid materials undergo
small deformations when subjected to loading conditions. It is assumed that the
material behaves in a linear manner, that it is only subject to small deforma-
tions, and that no overlaps occur during the deformation [28]. Linear elasticity is
governed by the relationship between different quantities such as stress and strain.
Even though our parameterization problem is not directly related to these physical
quantities, they are heavily incorporated into the linear elasticity problem. It is
therefore important to be somewhat familiar with the concepts before attempting
to develop a parameterization method based on linear elasticity.

Strain

Strain is a measure describing the relative deformation of a body. Under the
assumption of small displacements, the deformation of a body can be described
by three independent variables, corresponding to extensional and shear strain,
denoted by εxx, εyy, and εxy respectively. The extensional strains can be thought
of as the relative displacement in the material compared to a rigid body. That is,
by writing the displacement d in component form [dx, dy], the extensional strains
can be expressed as

εxx = lim
∆x→0

dx(x+ ∆x, y)− dx(x, y)

∆x
=
∂dx
∂x

εyy = lim
∆y→0

dy(x, y + ∆y)− dy(x, y)

∆y
=
∂dy
∂y

.

(4.17)

The shear strain is a measure of the change in angle between unit vectors in the
x- and y-directions, and can be expressed as [28]

εxy =
∂dy
∂x

+
∂dx
∂y

. (4.18)

The extensional strain in (4.17) and the shear strain in (4.18) can be combined to
get a total strain vector,

ε =

εxxεyy
εxy

 =

 ∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x

[dx
dy

]
= ∇S d (4.19)

44 CHAPTER 4. PARAMETERIZATION METHODS

Stress

Stress is used to measure the strength of the forces acting on the body causing the
deformation. In vector form, stress is expressed as

σ =
[
σxx σyy σxy

]T
. (4.20)

Here, σxx and σyy are normal stresses, and σxy is shear stress. The first subscript
denotes the direction of the normal of the plane on which the stress is acting, and
the second subscript denotes the direction of the force. Traction is also normally
involved in linear elasticity, but traction is omitted here as it will not be needed
for the method to be developed.

Hooke’s Law

Strain and stress are related to each other through Hooke’s law. When studying
linear elasticity, the generalized Hooke’s law is given by [28]

σ = D ε. (4.21)

The elasticity matrix D depends on whether plane stress or plane strain is assumed,
but it is always a 3 × 3 symmetric positive definite matrix. The problem to be
considered here assumes plane stress, i.e. it is assumed that the body in question is
a thin plate with stresses action along its plane, with no stress acting perpendicular
to the plane. Then, the matrix D is given as

D =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 , (4.22)

where E is Young’s modulus and ν is Poisson’s ratio [29].

Equilibrium Equation

One more aspect is needed before we are equipped to tackle problems regarding
linear elasticity, namely the equilibrium equation. When considering deformation
of a body, there are forces acting on the body. These body forces, b = [bx, by]

T ,
can for example be gravity or magnetic forces. In order for the body in question
to be in equilibrium, it is required that [29]

∂σx
∂x

+
∂σy
∂y

+ b = 0. (4.23)

In vector form (4.23) becomes

∇σx + bx = 0, ∇σy + by = 0, (4.24)

4.3. LINEAR ELASTICITY USING IGA 45

which by the use of ∇S can be written as

∇T
S σ + b = 0. (4.25)

Thus, for the body to be in equilibrium, equation (4.25) must be satisfied.

4.3.2 Linear Elasticity IGA Formulation

The isogeometric formulation of the linear elasticity problem is based on the same
approach as presented in Section 3.2 for the Poisson problem. The strong form
of the problem is stated before the weak form is derived. Then adjustments are
made to make the problem suitable for IGA. We will attempt to parameterize a
given domain, by treating it as a displacement problem. That is, we solve the
parametereization problem by the linear elasticity approach by setting u = d.

Strong Form

The strong form for the linear elasticity problem arises when the results from the
previous section are combined with a boundary condition. In linear elasticity there
are two kinds of boundary conditions to consider: traction boundary condition and
displacement boundary conditions. As we are using the basis of linear elasticity
to solve a parameterization problem where the domain boundary is given, we will
only be considering the displacement boundary condition. That is, the domain
boundaries ∂Ω1, ∂Ω2, ∂Ω3 and ∂Ω4 will be used as the prescribed displacement
when the boundary condition is enforced, and the strong form of the problem can
be written as [28]

∇σx + bx = 0 and ∇σy + by = 0 in Ω (4.26a)

σ = D∇S u (4.26b)

u = ū on ∂Ω (4.26c)

where the relation σ = D ε = D∇Su has been used to relate strain and stress
in (4.26b).

Weak Form

Following the approach from Section 3.2.2, the strong form of the linear elasticity
problem (4.26a) is multiplied by a test function before we integrate over the domain
Ω. Once again we use spline functions as test functions, but this time in a vector

46 CHAPTER 4. PARAMETERIZATION METHODS

form N = [Nx, Ny], such that the expressions in equation (4.26a) becomes∫
Ω

Nx∇σx dA+

∫
Ω

Nx bx dA = 0∫
Ω

Ny∇σy dA+

∫
Ω

Ny by dA = 0

(4.27)

Here, Nx and Ny are the spline test functions used to find u = [ux, uy]. Then,
Green’s Theorem is applied to (4.27) and the two equations are added together,∫

Ω

(∇Nx σx +∇Ny σy) dA =

∫
Ω

(Nxbx +Nyby) dA. (4.28)

By utilizing the relations (∇S N)Tσ = ∇Nx σx +∇Ny σy and (4.26b) this can be
written more compactly as∫

Ω

(∇S N)T D∇Su dA =

∫
Ω

NTb dA. (4.29)

This can be written as
a(u,N) = l(N), (4.30)

where

a(u,N) =

∫
Ω

(∇S N)T D∇S u dA

l(N) =

∫
Ω

NTb dA.

(4.31)

The observant reader will recognize some similarities between the weak formulation
of the Poisson problem in equation (3.22) and the weak formulation of the linear
elasticity problem in (4.30), with the main difference being that the displacement
u is a vector in the latter case.

It turns out that the assembly of the stiffness matrix can be done in very
similar ways in both cases, but in linear elasticity one must account for the vector
nature of the displacement u. This is done by introducing spline basis functions
Rd
i = Ni(ξ, η) ed, where ed are the unit vectors and Ni(ξ, η) are spline functions

as defined in Chapter 3. Defining

uh =
n∑
i=1

2∑
d=1

udh,iRi(ξ, η). (4.32)

makes it possible to rewrite the weak form as a system of linear equations,

Au = f . (4.33)

4.3. LINEAR ELASTICITY USING IGA 47

The elements of A and f are

ai,j = a(Ri, Rj) =

∫
Ω

(∇S Ri)
T D (∇S Rj) dA

fj = l(Rj) =

∫
Ω

RT
j b dA,

(4.34)

where ∇S is given in (4.19).

4.3.3 Implementation and Verification

When using linear elasticity for parameterization of a domain, the parameteriza-
tion is given by the deformation u found by solving (4.33). The matrix A and right
hand side f with components given by (4.34), is assembled in a similar manner as
in the uncoupled Poisson case, by looping over all elements and evaluating (4.34)
for all the nonzero basis functions.

The boundaries of the domain being parameterized will be used as displacement
boundary conditions. That is, the prescribed displacement on the boundary ū will
be given by ∂Ω. The boundary condition is enforced through a least squares
approach similar to the one used on the Poisson problem, but with extensions to
fit the new, vectorized problem.

The set-up and structure of the procedure have quite a few similarities to
the program solving the Poisson problem presented in Section 4.2.1, but with
modifications in the core of the problem. The full software program for solving
linear elasticity problems can be found in Appendix A.3.

Before using the implemented program to find parameterizations, it is impor-
tant to run it on some problems with known solutions to validate the model and
benchmark the performance. In order to do this, the program is tested on a prob-
lem with known solution

u =

[
ux
uy

]
=

[
cos(x) cos(y)
cos(x) cos(y)

]
, (x, y) ∈ [0, 1]× [0, 1]. (4.35)

By differentiating the exact solution, the right hand side of the elasticity problem

∇σ(u) = −f in Ω

u = 0 on ∂Ω,
(4.36)

becomes

f = − E

2(1− ν2)

[
(ν − 3) cos(x) cos(y) + (1 + ν) sin(x) sin(y)
(ν − 3) cos(x) cos(y) + (1 + ν) sin(x) sin(y)

]
. (4.37)

48 CHAPTER 4. PARAMETERIZATION METHODS

(a) Error in energy norm (b) Error in L2 norm

Figure 4.5: Convergence of the linear elasticity solver. Error as a function of
degrees of freedom for order p = 1, 2, 3, 4 and 5 in the energy and L2 norm.

As a measure of the performance of the program, the error e is evaluated in
the L2 norm and the energy norm, which in the linear elasticity case takes on the
forms [30],

||e||L2(Ω) =

(∫
Ω

eTe dΩ

)1/2

||e||E(Ω) =

(∫
Ω

(eσ)TD−1(eσ) dΩ

)1/2

,

(4.38)

where e = u− uh and eσ = σ − σh.
In order to gain understanding on the performance of the program, it is run

with several polynomial degrees, p = {1, 2, 3, 4, 5}, and with increasing number of
DOFs. The results are presented in Figure 4.5.

Figure 4.5a shows the convergence rates in the energy norm, ||e||E(Ω), as a func-
tion of DOF. The dashed lines beneath the convergence rate for each polynomial
degree has a slope of −p/2. It is clear that the convergence rates follow the dashed
lines closely. Figure 4.5b shows the rate of convergence in the L2 norm, and the
slopes of the dashed lines are −(p+1)/2. Once again the convergence rates closely
follow the dashed lines, except the L2-norm of p = 5 for high number of degrees
of freedom, where the error reaches machine precision.

This confirms that the rate of convergence is p/2 in the energy norm and
(p+ 1)/2 in the L2 norm, which is as expected in isogeometric analysis [3].

4.3.4 Modified Elasticity Matrix

In regular linear elasticity, the elasticity matrix D in (4.22) is constant as it is
related to the material undergoing deformation. However, in our approach towards

4.4. QUASISTATIC METHOD 49

geometry parameterization, this matrix gets a slightly different role. It needs no
longer be constant, but rather it can be dependent on domain location. That
is, D = D(x, y). This is an expansion of the gamma function introduced in
Section 4.2.2. Similarly to the gamma function, D(x, y) is set to have low values
in challenging areas of the domain and higher values in less challenging areas. In
a linear elasticity context this corresponds to having more elastic materials in the
challenging areas and more rigid materials in the more manageable areas. The
matrix has to be tailored for each domain to be parameterized.

4.4 Quasistatic Method

The fourth and final method we are going to look at for parameterizing a domain is
a quasistatic approach. The idea behind this method is, as for the linear elasticity,
to treat the problem as a displacement problem, but instead of solving the dis-
placement simultaneously, it is solved gradually. This is illustrated in Figure 4.6,
where the domain we wish to parameterize is the circle shown in the lower right
corner of the figure. But instead of going straight for this geometry, as in the case
of linear elasticity, the method starts with a domain that is easy to parameterize,
namely the square. Then the domain is gradually transformed into the circle. In
each step the method uses the result from the last step as initial control points.
Thus, the method moves gradually towards the specified geometry, solving several
parameterization problems along the way to improve the final parameterization.

Figure 4.6: Illustration of gradually changing the boundary from a square to a
circle as it is done in the quasistatic method.

50 CHAPTER 4. PARAMETERIZATION METHODS

4.4.1 Implementation and Verification

The program for finding a parameterization of a domain using the quasistatic
approach utilizes the fact that a method based on linear elasticity has already been
implemented: the linear elasticity solver presented in Section 4.3 is used to find a
parameterization in each step of the quasistatic method. Verification of the method
has therefore already been done. Algorithm 4.2 shows an outline for the quasistatic
procedure. The full code implementation can be found in Appendix A.4.

In the second line in Algorithm 4.2 a square is initialized as the domain, and
then a new boundary is set in each step i of the while-loop. The new boundary
[bx, by] is found in each step by performing the procedure

bx(i) = bx(0) +
i

n
(bx(n)− bx(0))

by(i) = by(0) +
i

n
(by(n)− by(0)) .

(4.39)

Here [bx(0), by(0)] is the boundary of the square, and [bx(n), by(n)] is the boundary
of the final domain for which we want to find a parameterization, both of which
are known.

Algorithm 4.2 Program outline of the quasistatic parameterization method.

1: procedure Quasistatics
2: Initialize square boundary
3: Set number of steps n
4: Run linear elasticity solver to get Ũ = [Ũx, Ũy]
5: while i < n do
6: Control points ← [Ũx, Ũy]
7: Set boundary for step i/n

8: Run linear elasticity solver to get new Ũ = [Ũx, Ũy]

9: Parameterization given by final U = [Ux, Uy]

Chapter 5

Numerical Results

In this chapter we will present numerical results from the four methods described in
the previous chapter. We will look at several geometries with different parameter-
ization challenges and compare the performance of each method. The comparison
between the methods will be based on the mesh metrics presented in Chapter 2,
and the methods’ ability to produce valid parameterizations.

For each main geometry under consideration, we will define a parameter κ
as a measure of how challenging the geometry is to parameterize. Then, the
parameterization methods will be applied to see how well they perform on the
given geometry, and compared with each other.

The results will be presented with geometries of increasing difficulty. We start
with a geometry that is close to being square, with the exception of one boundary
curve which will be a sine function. Then, the difficulty is increased in the second
geometry, where all the boundaries are defined as sine functions. The third ge-
ometry is even more difficult to parameterize, and looks like a piece from a jigsaw
puzzle. We will present all the methods on one geometry before moving on to the
next geometry.

The chapter is concluded with a section on method comparison. We will in-
vestigate how the four parameterization methods perform on the geometries with
different values of the difficulty parameter κ on each geometry, and how the poly-
nomial degree p influences the results.

5.1 Bottom Sine Geometry

The first geometry we are going to consider has a sine function on the bottom
boundary, while the three other edges are parallel to either the x- or y-axis. That

51

52 CHAPTER 5. NUMERICAL RESULTS

is, the domain Ω is defined by the curves

∂Ω1 =

[
x

κ sin(2πx)

]
, ∂Ω3 =

[
x
1

]
, x ∈ [0, 1]

∂Ω2 =

[
1
y

]
, ∂Ω4 =

[
0
y

]
, y ∈ [0, 1].

(5.1)

The difficulty parameter κ is included in the expression for ∂Ω1, and corresponds
to the amplitude of the sine function on the bottom boundary. If κ = 0 the
domain is simply a square, while if κ = 1 the bottom boundary will intersect the
top boundary. Hence, we will be working with κ’s in the half-open interval [0, 1),
with special emphasis on κ = 0.5.

To make comparisons easier, all the methods are set to produce meshes with
equal number of elements. Furthermore, the polynomial degree is set to p =
q = 2, the knot vectors Ξ = H are equal and uniform with n = 20, and the
material properties used in the linear elasticity and quasistatic methods are set to
correspond to an elastic material with E = 0.1 and ν = 0.499.

5.1.1 Gordon-Hall

The Gordon Hall technique generates the parameterization mesh shown in Fig-
ure 5.1a for the sine geometry with κ = 0.5. The blue lines show the grid lines,
while the red lines show the curves defining the physical domain Ω.

This mesh is valid in the sense that no neighboring grid lines intersect and
all parameterization points are inside the domain. This is also confirmed by the
Jacobian in Figure 5.1b, which is strictly positive throughout the entire mesh.

(a) Parameterization mesh (b) Jacobian

Figure 5.1: Gordon-Hall: Mesh and corresponding Jacobian obtained with the
Gordon-Hall algorithm on the bottom sine geometry.

5.1. BOTTOM SINE GEOMETRY 53

(a) Size metric (b) Shape metric (c) Skew metric

Figure 5.2: Gordon-Hall: Size, shape, and skew metrics of the mesh generated
by the Gordon-Hall algorithm on the bottom sine geometry.

Table 5.1: Gordon-Hall: Measure of mesh quality for the mesh obtained by the
Gordon-Hall algorithm on the bottom sine geometry.

k MSize MShape MSkew MSizeShape MSizeSkew

MM(Mk) 0.3212 0.1081 0.3078 0.0590 0.1012
RMS(Mk) 0.7115 0.6787 0.7779 0.4828 0.5351

The size of each grid element varies a throughout the mesh, as does the shape
and skew of the elements. This is illustrated in Figure 5.2. The figure shows the
value of the size, shape, and skew metric of the mesh on the sine geometry.

Figure 5.2a shows how the size metric, MSize, varies over the elements in the
mesh. The metric picks up on the small elements in the area around x = 0.25
and the bigger elements around x = 0.75, where the sine function on the bottom
boundary experience the highest and lowest y-values respectively.

Figure 5.2b shows that the shape metric, MShape, picks up on poorly shaped
elements along the bottom sine boundary. At the same time we see that the
elements around x = 0.25 and x = 0.75 generally have a good shape, and that
elements with high y-values also have a good shape regardless of the x-value.

Finally, the skew metric,MSkew, is shown in Figure 5.2c. It shows similar ten-
dencies as the shape metric, but considers the elements along the bottom boundary
to be slightly better, and it also deems the elements around x = 0.25, x = 0.75
and high y-values as better than the shape metric.

Table 5.1 shows the min-max measure and the root mean square measure of
each of the five mesh metrics presented in Chapter 2 for the mesh in Figure 5.1a.

The min-max measure suggests that there is a variety between the best and
worst elements in all the metrics. Especially the shape metric finds the relative
shape between the best and worst element to be quite different. This is also

54 CHAPTER 5. NUMERICAL RESULTS

reflected in the combination metrics between size and shape, which is particularly
low.

The root mean square measure of the pure metrics are all relatively high,
but once again, the shape metric shows less optimistic results than the other
metrics. The high values in the root mean square measure means that, although
the parameterization resulted in some poor elements, the overall mesh is relatively
good.

It is worth noticing that the combination metrics turn out far worse than the
metrics they are comprised of. This is not surprising since more elements will
consist of poor size or shape or skew or a combination of these, than just poor size
or shape or skew.

5.1.2 Uncoupled Poisson

Next, we apply the uncoupled Poisson solver to the bottom sine geometry defined
in (5.1). The parameter κ signifying the amplitude of the sine curve is once again
set to 0.5, while the γ-function is set to be constantly equal to one. The result is
shown in Figure 5.3.

The domain parameterization is clearly invalid because of the many mesh lines
going outside the domain, that is, there are parameterization points not contained
in the domain and the mesh is inverted. Figure 5.3b shows an enlarged portion of
the mesh around the maximum value of the sine function making up the bottom
boundary, and makes it very clear that the parameterization is invalid. This is also
confirmed by the Jacobian of the parameterization which is shown in Figure 5.4,
where the distance to the z-axis corresponds to the value of the Jacobian.

(a) Parameterization mesh (b) Magnified section

Figure 5.3: Uncoupled Poisson: Mesh obtained by solving the uncoupled Pois-
son problem on the bottom sine geometry with γ(x, y) = 1.

5.1. BOTTOM SINE GEOMETRY 55

Figure 5.4: Uncoupled Poisson: Jacobian of the mesh obtained by solving the
uncoupled Poisson problem on the bottom sine geometry with γ(x, y) = 1.

The red line in this figure shows the outline of the domain at z = 0.

The areas in Figure 5.3a that lies outside the domain correspond to the ar-
eas where the Jacobian becomes negative, and we recall from Section 3.3 that a
negative Jacobian implies that the parameterization is invalid.

In an attempt to remedy the unsatisfactory results, a non-constant γ-function
taking x and y as argument is introduced. The best γ(x, y) we have been able to
find for this geometry is the function

γ(x, y) = y
7
4 ·
(

1− 1

4
x

)
. (5.2)

The mesh resulting from running the uncoupled Poisson solver with the new γ-
function is shown in Figure 5.5a. The parameterization is valid in the sense that
no mesh lines leave the domain, i.e. all parameterization points are contained in
Ω. This is more clearly seen in Figure 5.5b where a section has been magnified.

The Jacobian of the parameterization is shown in Figure 5.6. Although the
Jacobian varies greatly in magnitude, it is strictly positive for the parameterization.

Even though the parameterization is valid, it it not necessarily a good pa-
rameterization, and the mesh metrics highlight several elements as being rather
poor.

Figures 5.7a, 5.7b and 5.7c shows the size, shape and skew metric respectively.

The size metric reveals that the parameterization yields some very small and
very large elements along the bottom boundary. For low x-values, the elements
along the sine boundary are terribly small, while the elements for higher x-values
are terribly large. The metric also reveals some areas where the elements have a
satisfactory size, highlighted by a more yellow color.

56 CHAPTER 5. NUMERICAL RESULTS

(a) Parameterization mesh (b) Magnified section

Figure 5.5: Uncoupled Poisson: Mesh obtained by solving the uncoupled Pois-
son problem on the bottom sine geometry with γ(x, y) = y

7
4 · (1− 1

4
x)

Figure 5.6: Uncoupled Poisson: Jacobian of mesh obtained by the uncoupled
Poisson method when γ is no longer constant.

The shape metric identifies some of the same elements as the size metric to be
poorly shaped. The elements on the lower part of the geometry are generally em-
phasized as being ill-shaped, while the elements on the upper part of the geometry
are viewed as better shaped by the metric.

The skew metric is slightly more optimistic towards the mesh quality compared
with the size and shape metrics. That is, even though many elements are of both
poor size and shape, they are not necessarily bad with regards to skewness.

Table 5.2 accentuates the findings from Figure 5.7. The min-max measure of
the size and shape metrics are particularly low, suggesting that there is a vast
difference in the elements. This is not a surprising result given the larger elements

5.1. BOTTOM SINE GEOMETRY 57

(a) Size metric (b) Shape metric (c) Skew metric

Figure 5.7: Uncoupled Poisson: Metrics of the mesh generated by the uncoupled
Poisson method with γ = γ(x, y).

Table 5.2: Uncoupled Poisson: Measure of mesh quality for the parameteriza-
tion obtained with the uncoupled Poisson method.

k MSize MShape MSkew MSizeShape MSizeSkew

MM(Mk) 0.0325 0.0641 0.2463 0.0021 0.0168
RMS(Mk) 0.6171 0.6945 0.8748 0.4420 0.5198

on the bottom part of mesh and the very small elements visible on the top part of
the sine boundary, shown in Figure 5.5b.

It is also revealed that several elements possess some degree of bad size, skew,
or a combination of the two. That is, the combination metric MSizeSkew shows a
worse outcome in both the min-max measure and the root mean square measure
compared to the metrics of pure size or pure skew. This also holds true for the
MSizeShape combination metric, and this metric shows even less optimistic results
than the size-skew combination.

Regardless of the poor elements detected by the metrics and the difference
in element quality between the best and the worst element, the root mean square
measure still finds the mesh to be adequate in some metrics. The skew metric shows
an especially high value of the root mean square measure, while the combination
size-shape has the lowest value.

5.1.3 Linear Elasticity

We will now attempt to find a parameterization of the bottom sine geometry
with the linear elasticity method. We start by letting the elasticity matrix D be
as defined in (4.22), constant over the entire domain. Then the linear elasticity
methods yields the mesh in Figure 5.8a.

The parameterization is not valid because parameterization points are placed
outside the domain, as clearly seen in Figure 5.8b. This results in a negative

58 CHAPTER 5. NUMERICAL RESULTS

(a) Parameterization mesh (b) Magnified section

Figure 5.8: Linear Elasticity: Mesh obtained with the linear elasticity method
on the bottom sine geometry with constant elasticity matrix.

Figure 5.9: Linear Elasticity: Jacobian of the mesh obtained with the linear
elasticity method on the bottom sine geometry with constant elasticity matrix.

Jacobian, as shown in Figure 5.9.
In an attempt to make the method produce a valid parameterization, the elas-

ticity matrix is modified. The best D(x, y)-matrix we have been able to find for
this geometry is

D(x, y) =
E
(
y

5
8 + 0.3

)(
1− 1

4
x
)

(1− ν2)

1 ν 0
ν 1 0
0 0 1−ν

2

 . (5.3)

With D(x, y) as in (5.3), the results in Figure 5.10 are obtained. Figure 5.10b
shows that all the mesh lines are contained inside Ω, and the Jacobian of the

5.1. BOTTOM SINE GEOMETRY 59

(a) Parameterization mesh (b) Magnified section

Figure 5.10: Linear Elasticity: Mesh obtained with the linear elasticity method
on the bottom sine geometry with D(x, y) given by (5.3).

Figure 5.11: Linear Elasticity: Jacobian of the mesh obtained with the linear
elasticity method with D(x, y) given by (5.3).

parameterization, shown in Figure 5.11, is strictly positive. Hence we can conclude
that the parameterization is valid.

The magnified section of the parameterization in Figure 5.10b also show that
the mesh lines intersect the boundary perpendicularly. This was not obtained with
neither the Gordon-Hall method nor the Uncoupled Poisson method.

Figure 5.12 shows the size, shape, and skew metrics of the obtained param-
eterization. They all show a mix of both good and bad elements. Upon closer
inspection, it is revealed that all the metrics picks up on elements with almost
perfect size, shape, and skew, that is, elements for which MSize ≈ 1, MShape ≈ 1
or MSkew ≈ 1. However, it is also revealed that the metrics find elements for

60 CHAPTER 5. NUMERICAL RESULTS

(a) Size metric (b) Shape metric (c) Skew metric

Figure 5.12: Linear elasticity: Metrics of the mesh generated by the linear
elasticity method.

Table 5.3: Linear elasticity: Metric measures for the mesh generated by the
linear elasticity method on the sine geometry.

k MSize MShape MSkew MSizeShape MSizeSkew

MM(Mk) 0.0363 0.0059 0.0081 0.0002 0.0003
RMS(Mk) 0.7195 0.7619 0.8670 0.5628 0.6234

which MSize,MShape,MSkew ≈ 0. It turns out that they all highlight the same
element as being the worst, and that this element is very close to being degenerate.

This nearly degenerate element makes an impact on the mesh metric measures
in Table 5.3. Particularly the min-max measure is affected by having elements
with such low values in the different metrics.

The root mean square measure is quite high for all metrics despite some poor
elements. This suggest that even though the mesh contains some rather poor
elements, the overall mesh quality is still high.

5.1.4 Quasistatic

Finally, the quasistatic method is applied to the bottom sine geometry. As the
quasistatic method consists of solving the parameterization problem in stages, we
also have to set the number of steps used to arrive at the final geometry. We set
the number of iterations to be 15 and let the elasticity matrix D be constant. The
resulting parameterization is shown in Figure 5.13.

All the parameterization points are contained in Ω, and the Jacobian, shown
in Figure 5.14, is strictly positive.

It is not surprising that the quasistatic approach is able to solve the param-
eterization problem with a constant elasticity matrix even if the linear elasticity
method failed on the same. The linear elasticity method assumes that we only
have small deformations, and it is in general unable to accurately model the prob-

5.1. BOTTOM SINE GEOMETRY 61

(a) Parameterization mesh (b) Magnified section

Figure 5.13: Quasistatic: Mesh obtained with the quasistatic method on the
bottom sine geometry.

Figure 5.14: Quasistatic: Jacobian of the parameterization obtained with the
quasistatic method.

lem when the deformations become too large. The quasistatic approach eliminates
this problem by solving the deformation in steps. By increasing the number of
iterations, we can control that the deformations always are small enough for the
method to be accurate for each iteration.

Figure 5.15 shows illustrations of the metrics of the mesh. The figures show that
some elements are of a lesser quality, especially along the bottom boundary, and
some elements are of good quality regardless of which metric is being considered.

When comparing the metrics with the metrics for the Gordon-Hall algorithm,
Figure 5.2, the uncoupled Poisson method, Figure 5.7, and the linear elasticity
approach, Figure 5.12, we see that the quasistatic method produces more elements

62 CHAPTER 5. NUMERICAL RESULTS

(a) Size metric (b) Shape metric (c) Skew metric

Figure 5.15: Quasistatic: Metrics of the mesh generated by the quasistatic
method.

Table 5.4: Quasistatic: Measure of mesh quality for the mesh obtained through
the quasistatic method.

k MSize MShape MSkew MSizeShape MSizeSkew

MM(Mk) 0.1464 0.0689 0.0902 0.0102 0.0132
RMS(Mk) 0.8254 0.7767 0.8684 0.6801 0.7383

of a higher quality than any of the other methods.
This is also reflected in the metric measures given in Table 5.4. By compar-

ing the min-max and root mean square measure for the metrics in the quasistatic
method with the measures for the Gordon-Hall, uncoupled Poisson and linear elas-
ticity, cf. Table 5.1, 5.2 and 5.3 respectively, we see that the quasistatic approach
produces a parameterization with better mesh quality in all metric measures, with
the only exception being the min-max measure of the parameterization obtained
with the Gordon-Hall algorithm. Even so, the quasistatic method performs better
in the root mean square measure than any other method. Hence we can say that
on this problem, with κ = 0.5, the quasistatic method produces the best parame-
terization overall.

As opposed to the uncoupled Poisson and the linear elasticity method, the qua-
sistatic approach avoids the effort and uncertainty of having to find a suitable
γ(x, y) or D(x, y). Instead we have to decide in how many iterations we wish to
solve the parameterization problem. We do not wish to use too few iterations, as
this may compromise the final result, and at the same time we wish to avoid using
more iterations than necessary, as this is time consuming and computationally
intensive.

Figure 5.16 shows how the min-max and root mean square measures are affected
by the number of iterations used to find a parameterization of the bottom sine
geometry with κ = 0.5. Figure 5.16a shows that the min-max measure improves

5.1. BOTTOM SINE GEOMETRY 63

(a) Min-max measure (b) Root mean square measure

Figure 5.16: Quasistatic: Min-max and root mean square measure as functions
of iterations used to find the parameterization of the sine geometry using the
quasistatic approach. The size metric is shown in blue, while the shape and skew
metric is shown in red and yellow respectively.

as the number of iterations is increased. The steepest improvement is found in the
interval between 1 and 10 iterations, and then a plateau is reached. The figure
also shows that if the geometry is parameterized with three iterations or less, the
resulting mesh contains degenerate elements.

The dependency on number of iterations for the root mean square measure in
Figure 5.16b shows less sign of improvement with increasing number of iterations.
It holds a high value regardless of metric and number of iterations.

Both measures suggest that the quasistatic approach is unable to find a valid
parameterization of the bottom sine geometry with only one iteration. This is not
surprising since the quasistatic method with one iteration essentially is the linear
elasticity method with constant elasticity matrix.

Furthermore, the relatively constant root mean square measures and the flat-
tening of the improvements of the min-max measure suggest that it is unnecessary
to do more than about 15 iterations. That is, our choice of 15 iterations to solve
the parameterization problem on the bottom sine geometry seems optimal.

64 CHAPTER 5. NUMERICAL RESULTS

5.2 Clover Geometry

The next geometry we are exploring is defined by the curves

∂Ω1 =

[
x

−κ sin(πx)

]
, ∂Ω3 =

[
x

1 + κ sin(πx)

]
, x ∈ [0, 1]

∂Ω2 =

[
1 + κ sin(πy)

y

]
, ∂Ω4 =

[
−κ sin(πy)

y

]
, y ∈ [0, 1].

(5.4)

For this geometry the difficulty parameter κ does not have the same natural range
limitations as for the bottom sine geometry. The boundary curves will never
intersect regardless of the value of κ, as long as it is larger than 0. However, we
will mainly focus on κ in the range [0, 1]. If κ = 0, the domain is simply the
square (x, y) = [0, 1]2. For higher values of κ, the angle between two neighboring
domain defining curves become sharper, and the geometry becomes more difficult
to parameterize.

Figure 5.17 shows the geometry when κ = 0.5. Once again, we will be using the
same polynomial order, p = q = 2 and uniform knot vectors Ξ = H with n = 20
in all the methods. The material constants are set to E = 1200 and ν = 0.2 to
reflect a more rigid material compared with the previous geometry. This setting
proved to give better results.

Figure 5.17: Curves defining the physical domain Ω of the clover geometry with
κ = 0.5.

5.2.1 Gordon-Hall

When the Gordon-Hall algorithm is applied to the clover geometry with κ = 0.5
it generates the parameterization shown in Figure 5.18.

5.2. CLOVER GEOMETRY 65

(a) Parameterization mesh (b) Magnified upper right corner

Figure 5.18: Gordon-Hall: Parameterization obtained with the Gordon-Hall al-
gorithm on the clover geometry when κ = 0.5.

Figure 5.19: Gordon-Hall: Jacobian of the mesh obtained with the Gordon-Hall
algorithm on the clover geometry when κ = 0.5.

The parameterization is invalid because of the several parameterization points
that lie outside the domain given by the red lines. Figure 5.18b shows an enlarged
portion of the geometry where the parameterization is invalid, namely the upper
right corner where the curves ∂Ω2 and ∂Ω3 meet. This is also clearly confirmed
by the Jacobian in Figure 5.19, which is negative in all the four corners of the
geometry.

In fact, it turns out that the Gordon-Hall algorithm is only capable of producing
valid meshes on this geometry for κ in the range [0, 0.315]. Figure 5.20 shows the
results when Gordon-Hall is applied to the problem with κ = 0.315, with the
corresponding Jacobian in Figure 5.21.

66 CHAPTER 5. NUMERICAL RESULTS

(a) Parameterization mesh (b) Magnified upper right corner

Figure 5.20: Gordon-Hall: Parameterization obtained through the Gordon-Hall
algorithm on the clover geometry when κ = 0.315.

Figure 5.21: Gordon-Hall: Jacobian of the mesh obtained with the Gordon-Hall
algorithm on the clover geometry when κ = 0.315.

Although the parameterization in this case is valid in the sense that all param-
eterization points are inside the domain and the Jacobian is positive, it still has
some problem areas.

In the magnified version of the parameterization in Figure 5.20b we see that
several of the elements are quite poor and some are even close to being degenerate.

Figure 5.22 shows illustrations of the distribution of the value of the size, shape
and skew metric on the parameterization. It is not surprising to see that the
elements around the areas where the boundary curves meet are particularly poor,
while the elements in the middle of the geometry are of a much higher quality.

5.2. CLOVER GEOMETRY 67

(a) Size metric (b) Shape metric (c) Skew metric

Figure 5.22: Gordon-Hall: Metrics of the parameterization generated by the
Gordon-Hall algorithm on the clover geometry with κ = 0.315.

Table 5.5: Gordon-Hall: Measure of mesh quality for the Gordon-Hall parame-
terization on the clover geometry with κ = 0.315.

k MSize MShape MSkew MSizeShape MSizeSkew

MM(Mk) 0.1656 0.0352 0.0352 0.0061 0.0058
RMS(Mk) 0.8251 0.8464 0.8699 0.7227 0.7443

This is emphasized in Table 5.5, which shows the value of the min-max and
root mean square measures of each metric.

The measures reveal that even though the parameterization mostly consists of
elements of a high quality, the elements around each of the four corners are poor.
This is especially evident in the min-max measure, which takes on a low value for
all the metrics. The root mean square measure are quite high for all the metrics,
implying that the mesh overall holds a high quality.

5.2.2 Uncoupled Poisson

Next, we use the uncoupled Poisson method with constant gamma function on the
clover geometry with κ = 0.5. The results are shown in Figure 5.23.

It can be seen clearly in the magnified version of the parameterization in Fig-
ure 5.23b that the parameterization is invalid. This is also confirmed by the
Jacobian, shown in Figure 5.24, which becomes negative around the areas where
the boundary curves meet.

We modify the function γ(x, y) in the assembly of the stiffness matrix to see if
this can help produce a valid parameterization of the domain. The best version of
γ we have been able to find is

γ(x, y) = (y − y2)(x− x2). (5.5)

68 CHAPTER 5. NUMERICAL RESULTS

(a) Parameterization mesh (b) Magnified upper right corner

Figure 5.23: Uncoupled Poisson: Parameterization obtained with the uncoupled
Poisson method on the clover geometry when γ = 1 and κ = 0.5.

Figure 5.24: Uncoupled Poisson: Jacobian of the parameterization obtained
with the uncoupled Poisson method on the clover geometry using a constant γ.

When this modification is incorporated in the parameterization procedure the
results illustrated in Figure 5.25 are obtained. The Jacobian of this parameteriza-
tion is shown in Figure 5.26.

The figure shows that although there are no longer parameterization points
located outside the domain, the Jacobian is not strictly positive for all points in
the domain. The Jacobian is mainly positive, except it becomes negative in the
four points (x, y) = {(0, 0), (0, 1), (1, 0)(1, 1)}, i.e. at the points in which the
domain boundary curves meet. One of the four elements containing such a point
can be seen in Figure 5.25b. The element is arrow-shaped, and such elements will
always result in a negative Jacobian.

5.2. CLOVER GEOMETRY 69

(a) Mesh (b) Magnified upper right corner

Figure 5.25: Uncoupled Poisson: Parameterization obtained with the uncoupled
Poisson method on the clover geometry when γ is given by (5.5) and κ = 0.5.

Figure 5.26: Uncoupled Poisson: Jacobian of the parameterization obtained
with the modified uncoupled Poisson method.

As discussed in Chapter 2, arrow-shaped elements are not contained in the
domain of the mesh metrics we are operating with. Elements of this kind need
special handling. For techniques on how to handle such elements, the reader is
referred to [31]. Handling of special elements is beyond the scope of this thesis,
and we will simply define the metrics of such elements to be zero, that is, they
are considered degenerate. The metrics of the parameterization are shown in
Figure 5.27.

Figure 5.27a shows that a large amount of the elements are considered too
large or too small by the size metric. The shape metric in Figure 5.27b shows
that the elements in the middle of the geometry have a good shape, while the

70 CHAPTER 5. NUMERICAL RESULTS

(a) Size metric (b) Shape metric (c) Skew metric

Figure 5.27: Uncoupled Poisson: Metrics of the parameterization generated by
the uncoupled Poisson method.

Table 5.6: Uncoupled Poisson: Measure of mesh quality for the mesh resulting
from running the uncoupled Poisson method on the clover geometry with κ = 0.5
and γ as given in (5.5).

k MSize MShape MSkew MSizeShape MSizeSkew

MM(Mk) 0 0 0 0 0
RMS(Mk) 0.4252 0.8267 0.9858 0.3263 0.4211

elements along the boundaries are considered badly shaped. Finally, the skew
metric in Figure 5.27c reveals that the parameterization produces elements with
a good skew. The only elements showing bad skew are the ones at the boundary
corners, which by definition are degenerate.

Table 5.6 shows the measures of the different metrics. Logically, the min-max
measure is zero for all the metrics because of the four degenerate elements in the
corners. The root mean square measure corresponds nicely with what we have
just observed from Figure 5.27, that is, the parameterization is quite poor from
a size perspective, but is better from a shape perspective and very good when
considering the skew.

5.2.3 Linear Elasticity

We are now ready to test how the linear elasticity approach perform on the clover
geometry. We start by letting κ = 0.5, and once again leaving the elasticity matrix
constant as given in (4.22), to yield the results illustrated in Figure 5.28.

The magnified version of the parameterization in Figure 5.28b and the Jacobian
in Figure 5.29 leave no doubt that the parameterization is invalid. We therefore
modify the elasticity matrix to be a function of x and y in order to try to force
the parameterization to stay inside the domain.

5.2. CLOVER GEOMETRY 71

(a) Parameterization mesh (b) Magnified upper right corner

Figure 5.28: Linear elasticity: Parameterization obtained with the linear elas-
ticity methodon the clover geometry with constant elasticity matrix.

Figure 5.29: Linear elasticity: Jacobian of the parameterization obtained with
the linear elasticity method on the clover geometry with constant elasticity matrix.

The best expression of the elasticity matrix for the clover geometry is given by

D(x, y) =
E
(
(x− x2) + (y − y2)

)
1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 . (5.6)

With this modification, the linear elasticity method produces the mesh in Fig-
ure 5.30. The Jacobian of this parameterization is shown in Figure 5.31.

From the figure we make the same observation as in the previous section about
the positivity of the Jacobian, namely that it is generally positive, with the sole ex-
ception of the four corner points where the boundary curves meet. This problem is
rooted in the geometry itself, and therefore it occurs also in this parameterization.

72 CHAPTER 5. NUMERICAL RESULTS

(a) Parameterization mesh (b) Magnified upper right corner

Figure 5.30: Linear elasticity: Parameterization obtained with the linear elas-
ticity method on the clover geometry when D(x, y) is given by (5.6).

Figure 5.31: Linear elasticity: Jacobian of the parameterization obtained with
the linear elasticity method with non-constant elasticity matrix.

We handle it in the same way as before by defining the arrow shaped element
containing the point with the negative Jacobian value to be degenerate and in
requirement of special handling.

We proceed to find the metrics of the parameterization. These are shown in
Figure 5.32. The figures show that the four corner elements are degenerate in
all metrics. The size metric finds most elements to be of a satisfactory size, with
exception of the elements along the boundary. The shape metric reveals that
the elements at the very center of the domain has a good shape, with decreasing
quality outward towards the boundary. The skew metric shows that, aside from the
elements around the corner points, the mesh consists of elements of a satisfactory

5.2. CLOVER GEOMETRY 73

(a) Size metric (b) Shape metric (c) Skew metric

Figure 5.32: Linear elasticity: Metrics of the parameterization generated by the
linear elasticity method with modified elasticity matrix.

Table 5.7: Linear elasticity: Measure of mesh quality for the mesh given by the
linear elasticity method with non-constant elasticity matrix.

k MSize MShape MSkew MSizeShape MSizeSkew

MM(Mk) 0 0 0 0 0
RMS(Mk) 0.8344 0.7455 0.8659 0.6184 0.7199

skew.
These results are also reflected in the measures presented in Table 5.7. The

root mean square measure show that even though some elements are degenerate,
the mesh as a whole is of a quite high quality in all metrics. The root mean square
measure holds a high value for all the metrics, and especially for the size and
skew metric. Since the pure metrics contain high values, this is transferred to the
combination root mean square measures, which also show high values.

Since we have four degenerate elements, the min-max measure becomes zero
for all the metrics.

5.2.4 Quasistatic

Finally, we test the performance of the quasistatic method on the clover geometry.
The results when the quasistatic method is applied with 15 steps and κ = 0.5
are shown in Figure 5.33. Figure 5.33a shows the parameterization of the entire
geometry, while Figure 5.33b shows the parameterization enlarged around the
upper right corner of the geometry.

We can see that the parameterization does not experience any of the problems
that occurred in the previous methods with parameterization points on the outside
of the domain. However, as shown in Figure 5.34, the parameterization includes
elements for which the Jacobian is negative. Based on the results from the previous
methods, it is not surprising that these elements are in the corners where two

74 CHAPTER 5. NUMERICAL RESULTS

(a) Parameterization mesh (b) Magnified upper right corner

Figure 5.33: Quasistatic: Parameterization obtained with the quasistatic method
on the clover geometry through 15 iterations.

Figure 5.34: Quasistatic: Jacobian of the parameterization obtained with the
quasistatic method on the clover geometry.

boundaries meet.
Proceeding in the same fashion as before, we define the four corner elements as

degenerate, and find the metrics of the mesh. These are presented in Figure 5.35.
The size metric in Figure 5.35a shows that the parameterization results in a

mesh where the vast majority of the elements have a satisfactory size. The only
poor elements are located at or in the immediate vicinity of the four corner points.

The shape metric in 5.35b implies that a relatively large amount of elements
have a good shape, although the overall profile is not as good as that of the size
metric. The elements of best shape are located in the middle of the geometry,
while the worst elements once again are located around the corner points.

5.2. CLOVER GEOMETRY 75

(a) Size metric (b) Shape metric (c) Skew metric

Figure 5.35: Quasistatic: Metrics of the parameterization generated by the qua-
sistatic method on the clover geometry.

Table 5.8: Quasistatic: Measure of mesh quality for the mesh generated by the
quasistatic method on the clover geometry.

k MSize MShape MSkew MSizeShape MSizeSkew

MM(Mk) 0 0 0 0 0
RMS(Mk) 0.9304 0.7552 0.8429 0.7211 0.7980

Lastly, the skew metric in Figure 5.35c also gives good results for most of the
elements, excluding the corner points and their closest surroundings.

Table 5.8 displays the min-max measure and the root mean square measure of
the parameterization. The root mean square measures show that the parameteri-
zation generally consists of high quality elements. The min-max measures become
zero due to the degeneracy of the elements located in each of the four boundary
corners.

The parameterization generated by the quasistatic method was obtained through
15 iterations. In order to evaluate what the optimal number of iterations is, the
problem is solved several times with different number of iterations. Figure 5.36
shows how the root mean square measures change with the number of iterations
used to make the parameterization.

We can see that the root mean square measure holds a relatively steady value,
independent of the number of iterations, as long as we perform more than three
iterations. This means that if we attempt to parameterize the clover geometry
in less than three iterations, we will end up with an invalid parameterization, i.e.
with mesh lines outside the domain.

The min-max measures of the parameterizations remained zero for all the met-
rics regardless of the number of iterations performed. This is a result of the
degeneracy of the arrow shaped elements in the boundary corners.

Based on the iteration results in Figure 5.36 we conclude that we could have

76 CHAPTER 5. NUMERICAL RESULTS

Figure 5.36: Quasistatic: Root mean square measures as functions of iterations
used to find the parameterization of the clover geometry with κ = 0.5 using the
quasistatic method. The size metric is shown in blue, while the shape and skew
metric are shown in red and yellow respectively.

used far less than 15 iterations to obtain the parameterization in Figure 5.33a.

5.3 Jigsaw Geometry

The final geometry we are going to test is shaped as a piece from a jigsaw puzzle.
The geometry is the same as Gravesen et al. used in [7]. The geometry is obtained
through a spline representation with suitable control points.

Figure 5.37 shows the geometry and the control points we are going to use to
test the methods. Figure 5.37a shows how the boundary of the geometry is divided
into four edges and Figure 5.37b shows the control polygon in black with control
points in red. The control points and further specifications of this geometry can
be found in Appendix B.

As for the previous geometries, we will also be operating with a difficulty
parameter κ for this geometry, but contrary to the other two geometries we have
studied, this parameter is not as straight forward to define for the jigsaw geometry.
Instead of simply having a κ connected to the amplitude of a sine function, the
parameter is connected with the placement of the control points.

The geometry in Figure 5.37a is defined as having κ = 1, and any other geome-
try is defined by the control points found by multiplying the associated κ-value to
the difference between the control points shown in Figure 5.37b and points giving
a square.

Figure 5.38 shows the geometry and associated control points for κ = 0.5. This
geometry is obviously easier to parameterize compared to the geometry with the
higher κ-value.

5.3. JIGSAW GEOMETRY 77

(a) Jigsaw geometry (b) Control polygon

Figure 5.37: Jigsaw geometry in spline representation and control points with
κ = 1.

(a) Jigsaw geometry (b) Control polygon

Figure 5.38: Jigsaw geometry in spline representation and control points for κ =
0.5.

When testing the different methods on the jigsaw geometry we will use the
geometry shown in Figure 5.37. Unless otherwise stated, we use the specifications
p = q = 2, Ξ = H with n = 20, E = 1200, and ν = 0.2 for all the methods.

5.3.1 Gordon-Hall

The first method to be tested on the jigsaw geometry is the Gordon-Hall method.
The results are presented in Figure 5.39.

78 CHAPTER 5. NUMERICAL RESULTS

(a) Parameterization mesh (b) Jacobian

Figure 5.39: Gordon-Hall: Parameterization and corresponding Jacobian ob-
tained with the Gordon-Hall algorithm on the Jigsaw geometry.

Figure 5.39b shows the Jacobian of the parameterization, which contains sev-
eral negative areas. It is evident that the Gordon-Hall algorithm is unable to find
a valid parameterization of this geometry.

In fact, the method is unable to parameterize the domain in a satisfactory way
for any κ ≥ 0.4. The geometry needs to be much easier for the method to be able
to produce a valid parameterization. We conclude that the Gordon-Hall algorithm
is not suitable to parameterize geometries of this kind.

5.3.2 Uncoupled Poisson

Next, we investigate if the uncoupled Poisson method performs better on the jigsaw
geometry. The results are presented in Figure 5.40.

Although the resulting mesh is not as bad as the one obtained with the Gordon-
Hall approach, it is still invalid due to the parameterization points outside the
domain, occurring around all the jigsaw joints. This is clearly shown in the enlarged
portion of the mesh shown in Figure 5.40b, and is confirmed by the Jacobian in
Figure 5.41, which becomes negative in several areas.

The natural next step is to try to find a γ(x, y)-function that can enable a valid
parameterization. However, despite persevere attempts, we are not able to find
such a function for this specific parameterization problem, and thus the method is
unable to obtain a valid mesh.

5.3. JIGSAW GEOMETRY 79

(a) Parameterization mesh (b) Right jigsaw joint

Figure 5.40: Uncoupled Poisson: Parameterization obtained with the uncoupled
Poisson method on the jigsaw geometry with constant γ.

Figure 5.41: Uncoupled Poisson: Jacobian of the parameterization obtained
with the uncoupled Poisson method on the jigsaw geometry.

5.3.3 Linear Elasticity

The penultimate method for the jigsaw geometry is the linear elasticity method.
The resulting parameterization when the elasticity matrix is kept constant is pre-
sented in Figure 5.42, and the Jacobian is presented in Figure 5.43.

Once again the parameterization is not valid due to parameterization points
laying outside of the boundary in the neighborhood of the four jigsaw joints. Fig-
ure 5.43 confirms this by exposing negative values in the Jacobian in these areas.

80 CHAPTER 5. NUMERICAL RESULTS

(a) Parameterization mesh (b) Right jigsaw joint

Figure 5.42: Linear elasticity: Parameterization obtained with the linear elas-
ticity method on the jigsaw geometry with constant elasticity matrix

Figure 5.43: Linear elasticity: Jacobian of the parameterization obtained with
the linear elasticity method on the jigsaw geometry with constant elasticity matrix.

We proceed by attempting to modify the elasticity matrix in order to obtain
a valid parameterization. Our usual approach of finding an expression for D(x, y)
dependent on the x- and y-coordinates of the geometry proves to be fruitless.

Instead we try to utilize the Jacobian of the parameterization of the geometry.
That is, after attempting to parameterize the geometry by the linear elasticity
method with constant elasticity matrix, we use the Jacobian of this parameteriza-
tion in the elasticity matrix so that D = D(det(J)), and try to solve the problem
again. The elasticity matrix is set to correspond to a rigid material where det(J)
has a high value, and to a more elastic material for lower values of det(J).

The results are shown in Figure 5.44. The parameterization, although more

5.3. JIGSAW GEOMETRY 81

(a) Parameterization mesh (b) Right jigsaw joint

Figure 5.44: Linear elasticity: Parameterization obtained with the linear elas-
ticity method on the jigsaw geometry when D is no longer constant.

Figure 5.45: Linear elasticity: Jacobian of the parameterization obtained with
the linear elasticity method on the jigsaw geometry when the elasticity matrix is
no longer constant.

restricted to the inside of the domain Ω, is still not valid as the parameterization
results in mesh lines outside of the domain and negative Jacobian values as shown
in Figure 5.45.

The fact that we are not able to produce valid parameterizations with neither
the uncoupled Poisson nor the linear elasticity methods, emphasizes these methods’
dependence on finding good expressions for γ(x, y) and D(x, y).

82 CHAPTER 5. NUMERICAL RESULTS

5.3.4 Quasistatic

Finally, we apply the quasistatic approach to the jigsaw geometry. The param-
eterization result when the quasistatic method is run on the geometry with 15
iterations is presented in Figure 5.46.

Figure 5.46a shows the entire mesh, while Figure 5.46b shows a magnified ver-
sion of the right jigsaw joint. This parameterization does not encounter problems
with parameterization points outside of the domain. However, the Jacobian is
still negative at a few points along the left and right joints. This is shown in
Figure 5.47a.

The Jacobian drops just below zero for two elements on each side of the left
and right jigsaw joints. Figure 5.47b shows the two elements containing a negative
Jacobian on the lower side of the right joint in yellow.

Upon closer inspection it is revealed that all the eight elements containing
points resulting in a negative Jacobian are actually arrow shaped and thus quite
similar to the elements causing problems in the clover geometry.

We want to avoid getting these negative elements, and instead get an all positive
Jacobian. We try to elevate the polynomial degree by one, so that p = 3. Then,
the knot vectors get two more elements each, and the number of degrees of freedom
is also increased. The results from this order elevation are shown in Figure 5.48,
with the full mesh to the left and a magnified version to the right.

This parameterization is valid, since all mesh lines are contained inside the
domain, and the Jacobian is strictly positive, as can be seen in Figure 5.49.

(a) Parameterization mesh (b) Right jigsaw joint

Figure 5.46: Quasistatic: Parameterization obtained with the quasistatic ap-
proach on the jigsaw geometry.

5.3. JIGSAW GEOMETRY 83

(a) Jacobian (b) Elements causing negative Jacobian

Figure 5.47: Quasistatic: Jacobian of the parameterization obtained with the
quasistatic method and mesh zoomed in on the elements resulting in a negative
Jacobian. The problem elements are shown in yellow.

(a) Parameterization mesh (b) Magnified right joint.

Figure 5.48: Order elevated quasistatic: Parameterization obtained with the
quasistatic method on the jigsaw geometry when the polynomial order is set to
p = 3.

Figure 5.49: Order elevated quasistatic: Jacobian of the parameterization
obtained with the quasistatic method on the jigsaw geometry when the polynomial
order is set to p = 3.

84 CHAPTER 5. NUMERICAL RESULTS

(a) Size metric (b) Shape metric (c) Skew metric

Figure 5.50: Order elevated quasistatic: Metrics of the parameterization gen-
erated by the quasistatic method when p = 3.

Table 5.9: Order elevated quasistatic: Measure of mesh quality for the param-
eterization obtained on the jigsaw geometry with the quasistatic method when
p = 3.

k MSize MShape MSkew MSizeShape MSizeSkew

MM(Mk) 0 0 0 0 0
RMS(Mk) 0.7462 0.6816 0.8815 0.5322 0.6661

Now that we have a valid parameterization, we use the mesh metrics defined
in Chapter 2 to obtain the characteristics of the mesh. The metrics of the mesh
in Figure 5.48a are presented in Figure 5.50.

Unsurprisingly, the large elements in each corner of the mesh is labeled poor
by the size metric, shown in Figure 5.50a, but aside from these elements, it seems
that the mesh is deemed rather good in the rest of the geometry. The shape metric
in Figure 5.50b shows that generally only two areas in the interior of the geometry
and the areas the very end of the outward joints are considered satisfactory from
a shape point of view. The rest of the mesh is considered to have a lower quality.
The skew metric, shown in Figure 5.50c, shows that apart from the four areas along
the boundary connecting the jigsaw joints, the parameterization is quite good with
regards to skewness.

Table 5.9 contains the measure of each metric for the parameterization. The
min-max measure tells us that even though the parameterization is valid, it con-
tains elements that are degenerate from a mesh metric point of view, specifically
they have three collinear nodes.

The root mean square measure on the other hand, reveals that the parame-
terization is relatively good, especially from a size and skew point of view, and
consequently also the combination of these. The shape metric is lower than the
other pure metrics, and this also influences the size-shape metric. All things con-

5.3. JIGSAW GEOMETRY 85

sidered, the mesh holds a high quality.

We are interested in the number of iterations needed to arrive at the best pos-
sible parameterization of the geometry. This is done in exactly the same way as
for the previous quasistatic method cases, namely by using different number of
iterations and compare the measures of each parameterization. The results are
presented in Figure 5.51.

We can read from the figure that if the quasistatic method is applied to the
jigsaw geometry with less than four iterations, the resulting parameterization be-
comes invalid. That is, a minimum of four iterations are needed to get a valid
parameterization implying that more iterations are required for the jigsaw geom-
etry than the bottom sine and clover geometries.

We see that there is a small improvement in all the measures for increasing
number of iterations, but the measure rapidly cease to improve with increasing
number of iterations.

The min-max measure became zero for all the metrics regardless of the number
of iterations. This means that we can not avoid getting degenerate elements by
increasing the number of iterations.

As the improvements are minimal for higher number of iterations, we conclude
that the 15 iterations used to obtain the parameterization in Figure 5.48a are
sufficient for the quasistatic method on the jigsaw geometry.

Figure 5.51: Order elevated quasistatic: Root mean square measure of the
parameterization meshes obtained with the quasistatic method as a function of
number of iterations. The size metric is shown in blue, shape metric in red and
skew metric in yellow.

86 CHAPTER 5. NUMERICAL RESULTS

5.4 Method Comparison

Now that we have seen how all the methods perform on the three different geome-
tries, it is time to see how they compare with each other overall. The methods
can already be compared to some degree on each geometry through the measures
presented in the tables under each method. To provide a more comprehensive
basis for comparing the methods we have performed additional calculations by
varying the difficulty parameter κ and the polynomial degree p to see under which
conditions each method is effective.

5.4.1 Performance with respect to κ

We start by examining how the methods perform on the geometries with different
κ values. On the bottom sine geometry with amplitude κ = 0.5 the quasistatic
method provided the best mesh in the root mean square measure for all the met-
rics. That is, the quasistatic mesh had the highest RMS(Mk), regardless of the
metric k. The Gordon-Hall method and uncoupled Poisson method had the worst
performance in this measure. At the same time, the Gordon-Hall parameterization
provided the highest results in the min-max measure.

In order to get a better impression on how well the methods perform on the
bottom sine geometry, they are set to parameterize the domain with different
κ-values, ranging from 0 to 1. The results are presented in Figure 5.52.

The figures show that the quasistatic approach has the best general perfor-
mance as long as this method is able to produce a valid parameterization. For
κ > 0.65, only the Gordon-Hall method is able to provide a valid parameteriza-
tion, but this is of low quality in the root mean square measure compared with
the quasistatic method as long as κ < 0.65.

From the figure, we see that the min-max measure of the size metric is superior
for the Gordon-Hall algorithm, while the min-max measures of the shape and skew
metrics are quite similar for all the methods for as long as they are applicable.
This is with the exception of the modified uncoupled Poisson and modified linear
elasticity methods. These are inferior for all κ 6= 0.5 in the min-max measures.

This is as expected as the modification functions, γ(x, y) and D(x, y) respec-
tively, have both been optimized for the case κ = 0.5. They therefore perform
poorly on any other geometry specified by a different κ. This is also the reason
why these methods produce lower quality meshes on the unit square when κ = 0,
since we no longer have the identity mapping on this geometry.

On the clover geometry with κ = 0.5 we have already seen that the quasistatic
method provide strong results in the root mean square measure, and that the mod-
ified uncoupled Poisson method also performs well in the shape and skew metrics.

5.4. METHOD COMPARISON 87

The clover geometry turned out to be too challenging for the Gordon-Hall method,
which was unable to parameterize the domain for this κ-value.

For a more complete comparison of the performance of the methods on this
geometry, they are set to parameterize the clover domain for κ ∈ [0, 1]. The results
when we consider the root mean square and min-max measure of the size, shape,
and skew metrics of the produced meshes are shown in Figure 5.53.

The figure shows that the Gordon-Hall method has the worst performance,
closely followed by the uncoupled Poisson and linear elasticity methods with con-
stant γ and D. These three methods are all unable to produce a valid parameter-
ization of the clover geometry when κ becomes larger than approximately 0.315.
This is also the point at which the angle between two neighboring boundary curves
becomes too large, causing the arrow shaped elements that destroy the parame-
terization to occur.

The modified linear elasticity method has a relatively good performance for
κ < 0.65, and actually improves its min-max measure as long as there are no
arrow-shaped elements. This is also the case for the modified uncoupled Poisson
method, although the improvements in the min-max measure is not as large as for
the linear elasticity method.

The modified uncoupled Poisson method is the sole method able to produce
valid parameterizations of the geometry with κ = 0.8, and the root mean square
measures of the shape and skew metrics imply high quality meshes from this
method. The size metric is however the lowest of all the methods.

Finally, the quasistatic method performs very well on geometries up until
κ = 0.75, after which it is unable to produce valid parameterizations. As long
as the method is valid, the meshes it produces performs on a high level in all the
metrics, both in the root mean square measure and in the min-max measure.

The jigsaw geometry proved to be too much of a challenge for most of the param-
eterization methods. If we had been able to find suitable functions for γ(x, y) and
D(x, y), it is possible that the uncoupled Poisson method and the linear elasticity
method would have been able to produce valid parameterizations. The quasistatic
approach is the only method capable of parameterizing this domain when κ = 1.

The performance of the methods for different values of κ on the jigsaw geometry
is shown in Figure 5.54. The plots are produced using the same specifications as
for the results presented in Section 5.3, i.e. p = 2, and n = 20 on uniform knot
vectors, and material constants corresponding to a quite rigid material.

The figure shows that the Gordon-Hall algorithm is the least persevering and
is the first method to become unable to produce a valid mesh of the geometry.
With the exception of the skew metric, its performance is also the worst, both in
the root mean square measure and the min-max measure.

88 CHAPTER 5. NUMERICAL RESULTS

The uncoupled Poisson and linear elasticity methods have a quite similar per-
formance in the root mean square measure, but the uncoupled Poisson shows better
results in the min-max measure.

None of the other methods can compete with the endurance of the quasistatic
method. It is capable of parameterizing the domain for far larger values of κ
than any of the other methods, and the meshes it produces is of a high quality.
The min-max measure reveals that for large κ-values, the shape and skew metrics
pick up on some degenerate elements, but the parameterization is still valid until
κ exceeds approximately 0.85, at which point we have to elevate the polynomial
degree for the method to be able to produce valid parameterization.

5.4. METHOD COMPARISON 89

(a) Root mean square of size metric (b) Min-max of size metric

(c) Root mean square of shape metric (d) Min-max of shape metric

(e) Root mean square of skew metric (f) Min-max of skew metric

Figure 5.52: Method comparison on bottom sine geometry: Root mean
square measure (left) and min-max measure (right) with respect to κ for the dif-
ferent methods on the bottom sine geometry in the size, shape, and skew metric.
The blue lines belong to the Gordon-Hall method, the red and yellow belong to
the uncoupled Poisson without and with a γ-function respectively, the purple and
green belong to the linear elasticity method without and with a modified elasticity
matrix, and the turquoise belong to the quasistatic method.

90 CHAPTER 5. NUMERICAL RESULTS

(a) Root mean square of size metric (b) Min-max of size metric

(c) Root mean square of shape metric (d) Min-max of shape metric

(e) Root mean square of skew metric (f) Min-max of skew metric

Figure 5.53: Method comparison on clover geometry: Root mean square
measure (left) and min-max measure (right) with respect to κ for the different
methods on the clover geometry in the size, shape, and skew metric. The blue
lines belong to the Gordon-Hall method, the red and yellow belong to the un-
coupled Poisson without and with a γ(x, y)-function respectively, the purple and
green belong to the linear elasticity method without and with a modified elasticity
matrix, and the turquoise belong to the quasistatic method.

5.4. METHOD COMPARISON 91

(a) Root mean square of size metric (b) Min-max of size metric

(c) Root mean square of shape metric (d) Min-max of shape metric

(e) Root mean square of skew metric (f) Min-max of skew metric

Figure 5.54: Method comparison on the jigsaw geometry: Root mean square
measure (left) and min-max measure (right) with respect to κ for the different
methods on the clover geometry in the size, shape, and skew metric. The blue
lines belong to the Gordon-Hall method, the red to the uncoupled Poisson with a
constant γ(x, y)-function, the purple to the linear elasticity method with a constant
elasticity matrix, and the turquoise belong to the quasistatic method.

92 CHAPTER 5. NUMERICAL RESULTS

5.4.2 Performance with respect to polynomial degree

Now that we have seen how the methods perform on the three geometries with
different values of the difficulty parameter κ, it is time to see how the polynomial
degree, p, influence the parameterization ability of the methods. As we saw in
Section 5.3.4, the polynomial degree influenced the quasistatic method’s ability to
generate a valid parameterization.

The dependence on choice of polynomial degree is explored further by running
the methods several times with different choices of p. To get a complete picture
of the performance of the methods, κ is also varied, and we consider the results
of the root mean square measure and the min-max measure of each of the metrics
relative size, shape, and skew.

The results presented here are obtained on the jigsaw geometry. Similar results
were obtained on the bottom sine geometry and the clover geometry.

Figure 5.55 shows the dependence of the Gordon-Hall algorithm on the polyno-
mial order for p = 1, 2, 3, 4 and 5 when parameterizing the jigsaw geometry. The
figure shows that the polynomial order has some effect on the min-max measure
of the relative size and shape metric, and the root mean square measure of the
size metric. The parameterizations obtained with p = 1 and 2 contain degenerate
elements in the skew metric for lower κ’s than for parameterizations for higher
polynomial degree, as can be seen in Figure 5.55f. Aside from the early intro-
duction of the degenerate elements, the skew metric seems less affected by the
polynomial degree.

The figures also shows that elevating the polynomial degree p does not affect
the durability of the Gordon-Hall algorithm. The method is still unable to produce
valid parameterizations on the jigsaw geometry for any κ > 0.4.

The dependence on p for the uncoupled Poisson method on the jigsaw geometry
is illustrated in Figure 5.56. The figure shows that p = 1 and p = 2 yield the exact
same values in the root mean square measure, regardless of which metric is being
considered. As is the case for p = 3, 4 and 5, but with higher polynomial degree,
the method is able to produce valid parameterization for slightly higher values of
κ. In the min-max measures the polynomial degrees yield slightly different values,
but they follow the same trends.

The results for the linear elasticity method is illustrated in Figure 5.57, and
it shows more distinction between the lower polynomial degrees. For p = 1 the
method is able to produce a valid parameterization for very low κ-values only, but
once the degree is increased to p = 2 it is able to find valid parameterizations up
until κ = 0.4. Further elevation of the polynomial degree makes the method able
to tackle slightly higher κ’s, but it is not able to produce a valid mesh for κ > 0.5
regardless of the polynomial degree. The figure shows that the root mean square
measure values for p = 3, 4 and 5 are identical, and only small value differences

5.4. METHOD COMPARISON 93

are visible in the min-max measures.
Finally, the results for the quasistatic method are presented in Figure 5.58.

Similarly to the linear elasticity method, the quasistatic method performs poorly
for p = 1, however, just by raising the polynomial order by one, to p = 2, it is able
to produce valid parameterizations for higher κ’s than any of the other methods.
However, as we saw in Section 5.3.4, it is not able to handle κ’s all the way up
to 1 with p = 2. By raising the degree to p = 3, the method is able to produce
a valid mesh for this κ-value, but as seen in Figures 5.58d and 5.58f, the mesh
contains degenerate elements in the shape and skew metric respectively. This can
be avoided by raising the degree further to p = 4. Then, the quasistatic method
is able to produce a valid parameterization on the jigsaw geometry for κ = 1,
without any degenerate elements.

We observe that all the methods require more time to perform the computations
and produce the parameterization with increasing polynomial degree. For the
least complex method, this is hardly noticeable on the geometries we have been
examining, but for the more complex methods the slow-down is significant.

94 CHAPTER 5. NUMERICAL RESULTS

(a) Root mean square of size metric (b) Min-max of size metric

(c) Root mean square of shape metric (d) Min-max of shape metric

(e) Root mean square of skew metric (f) Min-max of skew metric

Figure 5.55: Polynomial order dependency, Gordon-Hall: Dependence on
polynomial order p for the Gordon-Hall algorithm when parameterizing the jigsaw
geometry with different values of κ.

5.4. METHOD COMPARISON 95

(a) Root mean square of size metric (b) Min-max of size metric

(c) Root mean square of shape metric (d) Min-max of shape metric

(e) Root mean square of skew metric (f) Min-max of skew metric

Figure 5.56: Polynomial order dependency, uncoupled Poisson: Depen-
dence on polynomial order p for the uncoupled Poisson method when parameter-
izing the jigsaw geometry with different values of κ.

96 CHAPTER 5. NUMERICAL RESULTS

(a) Root mean square of size metric (b) Min-max of size metric

(c) Root mean square of shape metric (d) Min-max of shape metric

(e) Root mean square of skew metric (f) Min-max of skew metric

Figure 5.57: Polynomial order dependency, linear elasticity: Dependence
on polynomial order p for the linear elasticity method when parameterizing the
jigsaw geometry with different values of κ.

5.4. METHOD COMPARISON 97

(a) Root mean square of size metric (b) Min-max of size metric

(c) Root mean square of shape metric (d) Min-max of shape metric

(e) Root mean square of skew metric (f) Min-max of skew metric

Figure 5.58: Polynomial order dependency, quasistatic: Dependence on
polynomial order p for the quasistatic method when parameterizing the jigsaw
geometry with different values of κ.

Chapter 6

Summary and Concluding
Remarks

6.1 Summary and Conclusion

In this thesis we have looked at four distinct methods for parameterization of the
interior of a physical domain, given its boundary. All the methods use B-splines
as basis functions, but they differ in computational complexity and sophistication.

We have seen that the least complex method, the Gordon-Hall algorithm, per-
forms well on simple geometries, but quickly unravels and becomes unable to
produce valid parameterizations for more challenging geometries, regardless of the
polynomial degree p.

The uncoupled Poisson method persists longer for increasingly challenging ge-
ometries, compared with the Gordon-Hall method, especially if we are able to find
a suitable gamma function, γ(x, y), for the geometry in question. We have seen
that if we are able to find such a function, the method is able to produce valid
meshes of geometries it otherwise would be unable to parameterize.

The quality of the mesh is strongly connected with γ(x, y), as an optimal γ-
function may enable the method to produce superior meshes, while a suboptimal
function may not improve the method at all. Furthermore, we wish to find a
general, automatic method for finding optimal parameterizations. It is then unde-
sirable to be dependent on finding a suitable γ(x, y) for the geometry in question.

The polynomial degree has minor impact on the results of the uncoupled Pois-
son method.

The linear elasticity approach has proved to be more tenacious than the Gordon-
Hall and uncoupled Poisson methods, but even this approach has to surrender
when used on the most challenging geometries. For more complex geometries, also
the linear elasticity method becomes dependent on finding an appropriate expres-

99

100 CHAPTER 6. SUMMARY AND CONCLUDING REMARKS

sion for the elasticity matrix, D(x, y). This means that the performance of the
method, as with the uncoupled Poisson method, is governed by our ability to find
an appropriate expression for this matrix. We have seen that it can be challenging
to find a suitable modification of the elasticity matrix, and for some geometries
we are unable to find an expression of D(x, y) for the method to produce a valid
parameterization.

When applying the linear elasticity method, we have to choose values for the
material properties of Young’s modulus, E, and Poisson’s ratio, ν. This, combined
with the need to customize the elasticity matrix, D(x, y), makes automation more
difficult, and requires the method to be specifically adapted to each geometry
before it can be applied.

We have seen that the linear elasticity method can be enhanced, to some extent,
by increasing the polynomial degree, and thereby making the method capable of
parameterizing slightly more complex geometries.

The most complex method we have examined, the quasistatic method, has
proven to give the best overall performance, and to be the most versatile. We have
seen that the method performs on a high level, producing valid parameterizations
even on the most challenging geometries, where the other methods have failed.

Except for the specification of Young’s modulus and Poisson’s ratio, this method
also avoids dependency on finding geometry specific adaptations like the γ(x, y)
or D(x, y) for the uncoupled Poisson and linear elasticity methods.

The quasistatic method responded very well when the polynomial degree was
elevated, enabling the method to achieve high quality meshes on even more chal-
lenging geometries.

However, the results from a complex procedure such as the quasistatic method
comes with a trade off. Several iterations need to be performed to obtain the
parameterization meshes. As each iteration essentially solves an elasticity problem,
the computing multiplies proportional with the number of iterations as compared
with the second most complex method which was the linear elasticity method.
This may not be of large importance for small problems, but it may become a
limiting factor for larger problems.

Ultimately, the parameterization method to be used needs to be decided based
on the problem at hand and the requirements associated with the given geometry.

On a simple geometry, it may be sufficient to employ one of the less compu-
tationally intensive and time consuming methods, without standing the risk of
sacrificing the parameterization quality. The quasistatic method will in general
produce the mesh with the best overall performance, but this method may be un-
necessary complex for simple geometries. On simple geometries the other methods
may also produce parameterizations of sufficient quality with less computing and
in less time.

6.2. FURTHER WORK 101

6.2 Further Work

A natural continuation of the work done in this thesis would be to incorporate the
handling of the arrow shaped elements in the clover geometry for κ’s larger than
approximately 0.315, found in Section 5.2. Then, we would not have to disregard
these elements in the same way, and we would get a more complete impression of
the different parameterizations.

The scope of this thesis has been limited to consider parameterizations of pla-
nar geometries on non-convex domains. It would have been interesting to consider
more complex domains, but the methods we have presented are, for example, un-
able to parameterize domains with holes. By, for instance, introducing different
mappings between the parametric and physical domain, the methods can be ex-
tended to be able to handle such geometries as well.

Incorporating multipatch is also a possible extension to the work carried out
in this thesis. A possible application of multipatch is to make it possible to use
different parameterization methods on different parts of a geometry. That is, if one
method is best suited on one part of the geometry, and an other method on another
part of the geometry, these areas may be parameterized almost independently,
provided that their boundaries coincide.

Bibliography

[1] A. Quarteroni. Numerical Models for Differential Problems. Springer, 2009.

[2] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric Analysis Toward
Integration of CAD and FEA. John Wiley & Sons, 2009.

[3] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement. Comput. Meth-
ods Appl. Mech. Engrg., 194(39-41):4135–4195, 2005.

[4] T. Dokken, T. Lyche, and K. F. Pettersen. Polynomial splines over locally
refined box-partitions. Comput. Aided Geom. Design, 30(3):331–356, 2013.
ISSN 0167-8396.

[5] K. A. Johannessen, T. Kvamsdal, and T. Dokken. Isogeometric analysis using
LR B-splines. Comput. Methods Appl. Mech. Engrg., 269:471–514, 2014. ISSN
0045-7825.

[6] K. A. Johannessen, F. Remonato, and T. Kvamsdal. On the similarities and
differences between classical hierarchical, truncated hierarchical and LR B-
splines. Comput. Methods Appl. Mech. Engrg., 291:64–101, 2015.

[7] J. Gravesen, A. Evgrafov, N. D. Manh, and P. Nørtoft. Planar parametriza-
tion in isogeometric analysis. In Mathematical methods for curves and sur-
faces, volume 8177 of Lecture Notes in Comput. Sci., pages 189–212. Springer,
Heidelberg, 2014.

[8] N. D. Manh, A. Evgrafova, A. R. Gersborgb, and J. Gravesen. Isogeometric
shape optimization of vibrating membranes. Comput. Methods Appl. Mech.
Engrg., 200:1343 – 1353, 2011.

[9] Knut Nordanger, Runar Holdahl, Trond Kvamsdal, Arne Morten Kvarving,
and Adil Rasheed. Simulation of airflow past a 2d {NACA0015} airfoil using
an isogeometric incompressible navier-stokes solver with the spalarrt-allmaras
turbulence model. Comput. Methods Appl. Mech. Engrg., 290:183 – 208, 2015.

103

104 BIBLIOGRAPHY

[10] K. Nordanger, R. Holdahl, A. M. Kvarving, A. Rasheed, and T.Kvamsdal.
Implementation and comparison of three isogeometric navier-stokes solvers
applied to simulation of flow past a fixed 2d {NACA0012} airfoil at high
reynolds number. Comput. Methods Appl. Mech. Engrg., 284:664 – 688, 2015.
Isogeometric Analysis Special Issue.

[11] D.A. Field. Qualitative measures for initial meshes. Int. J. Numer. Meth.
Engng., 47:887–906, 2000.

[12] P. M. Knupp. Algebraic mesh quality metrics for unstructured initial meshes.
Finite Elem. Anal. Des., 39:217–241, 2003.

[13] P. M. Knupp. Algebraic mesh quality metrics. SIAM J. Sci. Comput, 23:
193–218, 2001.

[14] L. Piegl and W. Tiller. The NURBS Book. Springer, 1995.

[15] T. Lyche and K. Mørken. Spline methods. lecture notes in MAT-INF4170,
spring 2014. Lecture Notes, 2011.

[16] V. P. Nguyen, R. N. Simpson, S. P. A. Bordas, and T. Rabczuk. An introduc-
tion to isogeometric analysis with matlab implementation: FEM and XFEM
formulations. Lecture Notes, 2012.

[17] E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, 2006.

[18] J. Gravesen and P. Nørtoft. Isogeometric analysis: A practical primer. Lecture
Notes, 2014.

[19] L. C. Evans. Partial Differential Equations. American Mathematical Society,
2009.

[20] S. S. Sastry. Introductory Methods of Numerical Analysis. PHI Learning,
2012.

[21] E. Süli and D. Mayers. An Introduction to Numerical Analysis. Cambridge
University Press, Cambridge, 2006.

[22] Gaussian quadrature weights and abscissae, september 2014. http://pomax.
github.io/bezierinfo/legendre-gauss.html.

[23] P. Holoborodko. Numerical integration, 2014.
www.holoborodko.com/pavel/numerical-methods/numerical-integration.

http://pomax.github.io/bezierinfo/legendre-gauss.html
http://pomax.github.io/bezierinfo/legendre-gauss.html
w

BIBLIOGRAPHY 105

[24] V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot. Meshless methods: A
review and computer implementation aspects. Math. Comput. Simulation, 79
(3):763–813, 2008.

[25] D. Wang and J. Xuan. An improved NURBS-based isogeometric analysis
with enhanced treatment of essential boundary conditions. Comput. Methods
Appl. Mech. Engrg., 199(37-40):2425–2436, 2010.

[26] W. J. Gordon and C. A. Hall. Construction of curvilinear co-ordinate systems
and applications to mesh generation. Internat. J. Numer. Methods Engrg., 7:
461–477, 1973.

[27] E. Rønquist. Deformed geometries - part 2. Lecture Notes, 2012.

[28] J. Fish and T. Belytschko. A First Course in Finite Elements. John Wiley
& Sons, 2007.

[29] G. T. Mase and G. E. Mase. Continuum Mechanics for Engineers. CRC
Press, 1999.

[30] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive
procedure for practical engineering analysis. Internat. J. Numer. Methods
Engrg., 24:337–357, 1987.

[31] S. Lipton, J.A. Evans, Y. Bazilevs, T. Elguedj, and T.J.R. Hughes. Robust-
ness of isogeometric structural discretizations under severe mesh distortion.
Comput. Methods Appl. Mech. Engrg., 199:357 – 373, 2010.

Appendices

107

Appendix A

Source Code

The most important source codes for the four parameterization methods presented
in this thesis is included here. The code is presented in the same order as the
methods in Chapter 4. Functions and scripts used by all the parameterization
procedures are presented in the last section of this appendix, Appendix A.5.

A.1 Gordon Hall Solver

The Gordon-Hall algorithm is executed by initializing the values for p, n, and
κ and running GordonHallAlgorithm.m. The geometry also needs to be speci-
fied in DomainCurves.m. The GordonHallAlgorithm.m script makes a call to the
function GetNewBasis.m, which returns the control points after performing linear
interpolation on the domain curves. The control points are found through order
elevation in OrderElevation.m, and knot insertion in KnotInsertion.m. The
procedure also involves a function that evaluates spline functions in their associ-
ated Greville points, EvaluateGreville.m, and some functions that are common
for all the methods which is included in Appendix A.5.

GordonHalAlgorithm.m

1 geometry = ’ s i n e ’ ;
kappa = 0 . 5 ;
p = 2 ;
n = 22 ;

6 [KnotVec , BottomTop , LeftRight , CornerPoints] = GetNewBasis (p , n , kappa) ;

F = BottomTop + LeftRight − CornerPoints ;
UU = F;

11 KnotVecX = KnotVec ;
KnotVecY = KnotVec ;

109

110 APPENDIX A. SOURCE CODE

q = p ;
NoDofs = length (UU) ;

16 Sx = reshape (F (: , 1) , [n , n]) ’ ;
Sy = reshape (F (: , 2) , [n , n]) ’ ;

GetGeometry
GenerateMesh

21

[N, dN] = PlotBas i s (KnotVec , p , nv iz) ;

ux = N∗Sx∗N’ ;
uy = N∗Sy∗N’ ;

26

f i g u r e ;
hold on
p lo t (ux , uy , ’ Color ’ , [0 0 .447 0 . 7 4 1]) ;
p l o t (ux ’ , uy ’ , ’ Color ’ , [0 0 .447 0 . 7 4 1]) ;

31 t i t l e (’Mesh ’)
a x i s equal

JacobianTest

36 i f JacobianMinimum < 0
d i sp (’ Negative Jacobian ’)

e l s e
Metr ics

end %i f

DomainCurves.m

f unc t i on po int = DomainCurves (s , x , kappa)
% Bottom s i n e geometry :
n = length (x) ;

4 i f strcmp (s , ’b ’)
po int = [x ; kappa∗ s i n (2∗ pi ∗x)] ;

e l s e i f strcmp (s , ’ t ’)
po int = [x ; ones (1 , n)] ;

e l s e i f strcmp (s , ’ l ’)
9 point = [z e r o s (1 , n) ; x] ;

e l s e i f strcmp (s , ’ r ’)
po int = [ones (1 , n) ; x] ;

end
end

GetNewBasis.m

f unc t i on [t , BottomTop3 , LeftRight3 , CornerPoints3] = GetNewBasis (p , n , kappa)
2 addpath . . / SharedFunctions /

% Ful l b a s i s
t = l i n s p a c e (0 , 1 , n+1−p) ;
o = ones (1 , p) ;
z = ze ro s (1 , p) ;

7 t = [z t o] ;
x = l i n s p a c e (0 , 1 , n) ;

A.1. GORDON HALL SOLVER 111

c = [x ; 0 .5∗ s i n (2∗ pi ∗x)] ’ ;

% Linear b a s i s
12 tau1 = [0 0 1 1] ;

p l = 1 ;
e l e v a t i o n = p−p l ;

% bottom and top boundar ies :
17 x = l i n s p a c e (0 , 1 , n) ;

c1 = DomainCurves (’b ’ , x , kappa) ’ ;%[x ; 0 .5∗ s i n (2∗ pi ∗x)] ’ ;
c2 = DomainCurves (’ t ’ , x , kappa) ’ ;%[x ; o] ’ ;
j = 1 ;
BottomTop1 = [] ;

22 f o r i = 1 : n
BottomTop1 (j , :) = c1 (i , :) ;
BottomTop1 (j +1 , :) = c2 (i , :) ;
j = j +2;

end %i
27 c l e a r c1 c2

% l e f t and r i g h t boundar ies :
x = l i n s p a c e (0 , 1 , n) ;
c1 = DomainCurves (’ l ’ , x , kappa) ’ ;

32 c2 = DomainCurves (’ r ’ , x , kappa) ’ ;
j = 1 ;
LeftRight1 = [] ;
f o r i = 1 : n

LeftRight1 (j , :) = c1 (i , :) ;
37 LeftRight1 (j +1 , :) = c2 (i , :) ;

j = j +2;
end %i
c l e a r c1 c2

42 % Corner po in t s :
x = l i n s p a c e (0 , 1 , 2) ;
c1 = DomainCurves (’ l ’ , x , kappa) ’ ;
c2 = DomainCurves (’ r ’ , x , kappa) ’ ;
CornerPoints1 = [c1 ; c2] ;

47 c l e a r c1 c2

%Order Elevat ion botton−top and l e f t −r i gh :
[tau2 , BottomTop2] = OrderElevat ion (tau1 , p l , BottomTop1 , e l eva t i on , n) ;
[tau2 , LeftRight2] = OrderElevat ion (tau1 , p l , LeftRight1 , e l eva t i on , n) ;

52

%Knot i n s e r t i o n botton−top and l e f t −r i gh :
[tau3 , BottomTop3] = KnotInser t ion (t , tau2 , p , BottomTop2 , n) ;
[tau3 , LeftRight3] = KnotInser t ion (t , tau2 , p , LeftRight2 , n) ;

57 BT3 = [] ;
m = [1 : n] ;
k = [1 : n : nˆ2−n+1] ;
f o r i = 1 : n

BT3(m, :) = BottomTop3 (k , :) ;
62 m = m+n ;

k = k+1;
end %i

BottomTop3 = BT3;
67

%Order e l e v a t i o n and knot i n s e r t i o n corner po in t s :
[tau2 , CP2] = OrderElevationXiEta (tau1 , p l , CornerPoints1 , e l e v a t i o n) ;
[tau3 , CP3] = KnotInsert ionXiEta (t , tau2 , p , CP2, n) ;

112 APPENDIX A. SOURCE CODE

cpts3 = [] ;
72 counter = 1 ;

f o r i = 1 : n
cpts3 (counter , :) = CP3(i , :) ;
cpts3 (counter +1 , :) = CP3(i+n , :) ;
counter = counter + 2 ;

77 end %i
[tau2 , CornerPoints2] = OrderElevat ion (tau1 , p l , cpts3 , e l eva t i on , n) ;
[tau3 , CornerPoints3] = KnotInser t ion (t , tau2 , p , CornerPoints2 , n) ;

end

OrderElevation.m

f unc t i on [KnotVec , con t ro lPt s] = OrderElevat ion (KnotVecOriginal , p , . . .
c on t ro lPt sOr i g ina l , e l eva t i on , n)

4 % Order e l e v a t i o n o f knot vec to r
uniqueKnots = unique (KnotVecOriginal) ;
KnotVec = KnotVecOriginal ;
f o r i = 1 : e l e v a t i o n

KnotVec = [KnotVec uniqueKnots] ;
9 end

KnotVec = s o r t (KnotVec) ;

% Finding appro r i a t e c o n t r o l po in t s
[N p , N pe] = e v a l u a t e G r e v i l l e (KnotVecOriginal , KnotVec , p , p+e l e v a t i o n) ;

14

h = length (c o n t r o l P t s O r i g i n a l) ;
t e l l e r = [1 : p+e l e v a t i o n +1] ;
con t ro lPt s = [] ;
f o r i = 1 : 2 : 2∗ n

19 cont ro lPt s (t e l l e r , :) = N pe\N p∗ c o n t r o l P t s O r i g i n a l (i : i+p , :) ;
t e l l e r = t e l l e r + p + e l e v a t i o n + 1 ;

end
end

KnotInsertion.m

f unc t i on [KnotVec , con t ro lPt s] = KnotInser t ion (t , tau , p , c o n t r o l P t s O r i g i n a l , n)

3 cont ro lPt s = [] ;
m = length (t) − (p+1) ;

counter = [1 : p+1] ;
f o r j = 1 : n

8 b = [] ;
c = c o n t r o l P t s O r i g i n a l (counter , :) ;
f o r i = 1 :m

mu = FindMu(tau , t (i)) ;
cp = c (mu−p :mu, :) ;

13 i f p == 0
b(i , :) = cp (mu) ;

e l s e
b(i , :) = getB (t (i +1: i+p) , mu, tau , p) ∗ cp ;

A.2. UNCOUPLED POISSON SOLVER 113

end
18 end

cont ro lPt s = [cont ro lPt s ; b] ;
counter = counter + p + 1 ;

end

23 KnotVec = t ;
end

A.2 Uncoupled Poisson Solver

The procedure for the uncoupled Poisson method starts by running UncoupledPoisson.m.
Here, the physical domain boundaries are parameterized, and the function Main.m

is run twice, once for the x-coordinate and once for the y-coordinate of the final
parameterization u = [x, y]. The function Main.m makes calls to several other
functions in order to set up and solve the Poisson problem.

Figure A.1 schematically shows the calls the main function makes each time
it is run. First, knot vectors, control points, boundary conditions and external
loads are specified in GetGeometry.m. Then, the elements are defined and the
connectivity between the basis functions are found inGenerateMesh.m. These two
functions make up the pre-processing part of the solver.

Next comes the processing part. It consist of the functions AssembleSystem.m
and BoundaryConditionApplication.m, as well as the actual solving of the sys-
tem AU = f . The system is solved by using MATLAB’s built-in operator.

The solution U is not the ”real” solution to the problem, but rather it contains
the value of the control variables. In order to get the actual solution we need to
post-process. This is done in postProcessing.m, where the spline basis functions
are used in combination with the control variables to represent the solution in the
same way as in equation (3.8) and (3.11). Once the post-processing is done, the
main sequence returns the solution to UncoupledPoisson.m where it is interpreted
as either the x- or y-coordinate.

Some of the functions used by the Main-sequence is used by the uncoupled Pois-
son solver, as well as the linear elasticity and quasistatic solver. These functions
can be found collectively in Appendix A.5.

UncoupledPoisson.m

1 alpha = @(x , y) ((y ˆ(7/4)) ∗(1−0.25∗x)) ;
kappa = 0 . 5 ;

% Solve f o r x−coord inate :
BottomBoundary = @(x , y) x ;

6 TopBoundary = @(x , y) x ;
LeftBoundary = @(x , y) 0 + (y−y) ;

114 APPENDIX A. SOURCE CODE

RightBoundary = @(x , y) 1 + (y−y) ;

Main
11 ux = u ;

Ux = U;

% Solve f o r y−coord inate :
BottomBoundary = @(x , y) kappa ∗ s i n (2∗ pi ∗x) ;

16 TopBoundary = @(x , y) 1 + (x−x) ;
LeftBoundary = @(x , y) y ;
RightBoundary = @(x , y) y ;

Main
21 uy = u ;

Uy = U;

% Test i f | J | > 0
JacobianTest

26

i f min (min (Jacobian)) < 0
d i sp (’ Negative Jacobian ’)

e l s e
Metr ics

31 end

Main.m

% I n i t i a l i z a t i o n
GetGeometry

4 GenerateMesh

% Assemble the system Au = f
AssembleSystem

9 % Applying boundary c o n d i t i o n s to A and f
BoundaryCondit ionAppl icat ion

% Solve system
U = A\ f ;

14

pos tProce s s ing

p l o t t i n g

A.2. UNCOUPLED POISSON SOLVER 115

main

GetGeometry

GenerateMesh

AssembleSystem

ApplyBC

Solve system

PostProcessing

Solution u

Connectivity

GetBasisAndDerivatives

GaussQuadrature

GetBasis

System
specifications

Specifies elements
and connectivities

Assembles A and f

Solve system
AU = f using

built-in functions

Process U and
groom for vi-
sualization

Figure A.1: Overview of the code implementation. The main function makes a
call to all the functions in the central column. Each of these utilizes the functions
in the right column, and some additional minor functions.

116 APPENDIX A. SOURCE CODE

GetGeometry.m

func = @(x , y) 0 ;
startX = 0 ; endX = 1 ;

3 startY = 0 ; endY = 1 ;

% Sp l ine s p e c i f i c a t i o n
n = 20 ;
KnotVecX = l i n s p a c e (0 , 1 , n+1) ;

8 KnotVecX = [0 0 KnotVecX 1 1] ;
p = 2 ;
KnotVecY = KnotVecX ;
q = p ;

13 NoPtsX = FindMu(KnotVecX , KnotVecX(end)) ;
NoPtsY = FindMu(KnotVecY , KnotVecY(end)) ;
NoGaussPts = max(p , q) + 1 ;
NoCtrlPts = NoPtsX ∗ NoPtsY ;

18 GetControlPts

% V i s u a l i z a t i o n s p e c i f i c a t i o n
NoPx = p+1;
NoPy = q+1;

23 uniqueX = unique (KnotVecX) ;
uniqueY = unique (KnotVecY) ;
NoElemX = length (uniqueX) − 1 ;
NoElemY = length (uniqueY) − 1 ;
nv iz = NoPx∗NoElemX ;

28 mviz = NoPy∗NoElemY ;

AssembleSystem.m

% Assemble s t i f f n e s s matrix A and r i g h t hand s i d e vec to r f
2

% I n i t i a l i z e A and f
A = ze ro s (NoCtrlPts , NoCtrlPts) ;
f = ze ro s (NoCtrlPts , 1) ;

7 % Gauss quadrature po in t s and weights
[P, W] = GaussQuadrature (NoGaussPts , 2) ;

f o r e = 1 : NoElem
% Element i n t e r v a l (x i i , x i (i +1))

12 Xi e = ElemRange (e , 1 : 2) ;
Eta e = ElemRange (e , 3 : 4) ;

% C o n n e c t i v i t i e s on element e
Conn = ElemConn(e , :) ;

17

f o r g = 1 : s i z e (W, 1)
x i h a t = P(g , 1) ;
e ta hat = P(g , 2) ;
w = W(g) ;

22

% Coordinates in parametr ic space :
Xi = 0 .5 ∗ ((Xi e (2) − Xi e (1)) ∗ x i h a t . . .

+ (Xi e (2) + Xi e (1))) ;

A.2. UNCOUPLED POISSON SOLVER 117

Eta = 0 .5 ∗ ((Eta e (2) − Eta e (1)) ∗ e ta hat . . .
27 +(Eta e (2) + Eta e (1))) ;

% Jacobian un i t square − parametr ic :
J2 = 0.25 ∗ (Xi e (2) − Xi e (1)) ∗(Eta e (2) − Eta e (1)) ;

32 % Bas i s f u n c t i o n s and d e r i v a t i v e s
[N, dNdxi , dNdeta] = GetBasisAndDerivat ives (Xi , Eta , p , q , . . .

KnotVecX , KnotVecY) ;

% Jacobian parametr ic − p h y s i c a l :
37 jacob = cont ro lPt s (Conn , :) ’∗ [dNdxi ’ dNdeta ’] ;

J1 = det (jacob) ;
invJacob = inv (jacob) ;

% Use the d e r i v a t i v e wrt x and y in s t ead o f x i and eta
42 dNdx = [dNdxi ’ dNdeta ’] ∗ invJacob ;

Alpha = alpha (Xi , Eta) ;
A(Conn , Conn) = A(Conn , Conn) + dNdx ∗ Alpha ∗ dNdx ’ ∗ J1 ∗ J2 ∗ w;
x = N∗ cont ro lPt s (Conn , 1) ; y = N∗ cont ro lPt s (Conn , 2) ;

47 f (Conn) = f (Conn) + (func (x , y) ∗ N’ ∗ J1 ∗ J2 ∗ w) ;

end %g
end %e

BoundaryConditionApplication.m

% Solves l e a s t squares problem on boundary

% Find b a s i s f u n c t i o n s at boundary
r ightNodes = f i n d (cont ro lPt s (: , 1) == endX) ’ ;

5 topNodes = f i n d (cont ro lPt s (: , 2) == endY) ’ ;
l e f tNode s = f i n d (cont ro lPt s (: , 1) == startX) ’ ;
bottomNodes = f i n d (cont ro lPt s (: , 2) == startY) ’ ;

NoP = 10 ;
10

NobottomNodes = length (bottomNodes) ;
NoleftNodes = length (l e f tNode s) ;
NorightNodes = length (r ightNodes) ;
NotopNodes = length (topNodes) ;

15

% Used f o r l o c a l element index ing
bottomElement = ze ro s (NoElemX , p+1) ;
l e f tE l ement = ze ro s (NoElemY , q+1) ;
r ightElement = ze ro s (NoElemY , q+1) ;

20 topElement = ze ro s (NoElemX , p+1) ;

% Used to keep track on the a c t i v e b a s i s f u n c t i o n s and
% c o n t r o l po in t s on each element boundary
bottomEdgeMesh = ze ro s (NoElemX , p+1) ;

25 leftEdgeMesh = ze ro s (NoElemY , q+1) ;
rightEdgeMesh = ze ro s (NoElemY , q+1) ;
topEdgeMesh = ze ro s (NoElemX , p+1) ;

f o r i = 1 :NoElemX
30 bottomEdgeMesh (i , :) = bottomNodes (i : i+p) ;

topEdgeMesh (i , :) = topNodes (i : i+p) ;

118 APPENDIX A. SOURCE CODE

bottomElement (i , :) = (i : i+p) ;
topElement (i , :) = (i : i+p) ;

end %i
35

f o r i = 1 :NoElemY
leftEdgeMesh (i , :) = l e f tNode s (i : i+q) ;
rightEdgeMesh (i , :) = rightNodes (i : i+q) ;
l e f tE l ement (i , :) = (i : i+q) ;

40 r ightElement (i , :) = (i : i+q) ;
end %i

B = ze ro s (NoCtrlPts , 1) ;
C = ze ro s (NoCtrlPts , NoCtrlPts) ;

45

bottomC = ze ro s (NobottomNodes , NobottomNodes) ;
l e f t C = ze ro s (NoleftNodes , NoleftNodes) ;
r ightC = ze ro s (NorightNodes , NorightNodes) ;
topC = ze ro s (NotopNodes , NotopNodes) ;

50

bottomB = ze ro s (NobottomNodes , 1) ;
l e f t B = ze ro s (NoleftNodes , 1) ;
r ightB = ze ro s (NorightNodes , 1) ;
topB = ze ro s (NotopNodes , 1) ;

55

% Bottom boundary
f o r e = 1 :NoElemX

s c t r = bottomEdgeMesh (e , :) ;
sctrC = bottomElement (e , :) ;

60 Xi e = ElemRangeX(e , :) ;
xiC = l i n s p a c e (Xi e (1) , Xi e (2) , NoP) ;

N = GetBasisBoundary (KnotVecX , p , xiC) ;
bottomC (sctrC , sctrC) = bottomC (sctrC , sctrC) + N’∗N;

65 x = N∗ cont ro lPt s (s c t r , 1) ; y = N∗ cont ro lPt s (s c t r , 2) ;
f f = BottomBoundary (x , y) ;
bottomB (sctrC) = bottomB (sctrC) + N’∗ f f ;

end %e
70

C(bottomNodes , bottomNodes) = C(bottomNodes , bottomNodes) + bottomC ;
B(bottomNodes) = B(bottomNodes) + bottomB ;
fBottom = bottomC\bottomB ;

75 % Lef t boundary
f o r e = 1 :NoElemY

s c t r = leftEdgeMesh (e , :) ;
sctrC = le f tE l ement (e , :) ;
Eta e = ElemRangeY(e , :) ;

80 etaC = l i n s p a c e (Eta e (1) , Eta e (2) , NoP) ;

M = GetBasisBoundary (KnotVecY , q , etaC) ;
l e f t C (sctrC , sctrC) = l e f t C (sctrC , sctrC) + M’∗M;
x = M∗ cont ro lPt s (s c t r , 1) ; y = M∗ cont ro lPt s (s c t r , 2) ;

85 f f = LeftBoundary (x , y) ;
l e f t B (sctrC) = l e f t B (sctrC) + M’∗ f f ;

end %e

C(le f tNodes , l e f tNode s) = C(le f tNodes , l e f tNode s) + l e f t C ;
90 B(l e f tNode s) = B(l e f tNode s) + l e f t B ;

f L e f t = l e f t C \ l e f t B ;

% Right boundary

A.2. UNCOUPLED POISSON SOLVER 119

f o r e = 1 :NoElemY
95 s c t r = rightEdgeMesh (e , :) ;

sctrC = rightElement (e , :) ;
Eta e = ElemRangeY(e , :) ;
etaC = l i n s p a c e (Eta e (1) , Eta e (2) , NoP) ;

100 M = GetBasisBoundary (KnotVecY , q , etaC) ;
r ightC (sctrC , sctrC) = rightC (sctrC , sctrC) + M’∗M;
x = M∗ cont ro lPt s (s c t r , 1) ; y = M∗ cont ro lPt s (s c t r , 2) ;
f f = RightBoundary (x , y) ;
r ightB (sctrC) = rightB (sctrC) + M’∗ f f ;

105 end %e

C(rightNodes , r ightNodes) = C(rightNodes , r ightNodes) + rightC ;
B(r ightNodes) = B(r ightNodes) + rightB ;
fRight = rightC \ r ightB ;

110

% Top boundary
f o r e = 1 :NoElemX

s c t r = topEdgeMesh (e , :) ;
sctrC = topElement (e , :) ;

115 Xi e = ElemRangeX(e , :) ;
xiC = l i n s p a c e (Xi e (1) , Xi e (2) , NoP) ;

N = GetBasisBoundary (KnotVecX , p , xiC) ;
topC (sctrC , sctrC) = topC (sctrC , sctrC) + N’∗N;

120 x = N∗ cont ro lPt s (s c t r , 1) ; y = N∗ cont ro lPt s (s c t r , 2) ;
f f = TopBoundary (x , y) ;
topB (sctrC) = topB (sctrC) + N’∗ f f ;

end %e

125 C(topNodes , topNodes) = C(topNodes , topNodes) + topC ;
B(topNodes) = B(topNodes) + topB ;
fTop = topC\topB ;

% So lv ing l e a s t−mean−square
130 Fix = [bottomNodes l e f tNode s r ightNodes topNodes] ;

FixedNodes = unique (Fix) ;
f o r i = s i z e (C, 1) : −1 :1 ;

i f not (ismember (i , FixedNodes))
C(i , :) = [] ;

135 C(: , i) = [] ;
B(i) = [] ;

end %i f
end %i f

140 % Apply to boundary
Fixed = (C\B) ’ ;
f = f − A(: , FixedNodes) ∗Fixed ’ ;
f (FixedNodes) = Fixed ;
A(FixedNodes , :) = 0 ;

145 A(: , FixedNodes) = 0 ;

f o r i = 1 : l ength (FixedNodes)
A(FixedNodes (i) , FixedNodes (i)) = 1 ;

end %i

120 APPENDIX A. SOURCE CODE

PostProcessing.m

k = 1 ;
2 S = ze ro s (NoPtsY , NoPtsX) ;

f o r i = 1 : NoPtsY
S(i , :) = U(k : i ∗NoPtsX) ;
k = k + NoPtsX ;

7 end %i

[N, dN] = PlotBas i s (KnotVecX , p , nv iz) ;
[M, dM] = PlotBas i s (KnotVecY , q , mviz) ;

12 % So lut i on :
u = N∗S∗M’ ;
u x = dN∗S∗M’ ;
u y = N∗S∗dM’ ;

17 x = ze ro s (NoPtsY , NoPtsX) ;
y = ze ro s (NoPtsY , NoPtsX) ;

d = 1 ;
f o r i = 1 : NoPtsY

22 f o r j = 1 : NoPtsX
x (i , j) = cont ro lPt s (d , 1) ;
y (i , j) = cont ro lPt s (d , 2) ;
d = d + 1 ;

end %j
27 end %i

X = N∗x∗M’ ;
Y = N∗y∗M’ ;

A.3 Linear Elasticity Solver

The frame of the linear elasticity solver is relatively similar to the uncoupled Pois-
son solver, with some minor differences. In the linear elasticity case the solver is
run directly from the Main.m script and the geometry is defined in GetGeometry.m

in stead of being defined before running the Main.m. Aside from this, the basic
structure of the solvers are the same. Some differences occur in the way the sys-
tem is assembled and how the boundary conditions are enforced. In addition, the
elasticity matrix is included in the assembly of the stiffness matrix. Here, we have
only included the functions and scripts that have changed. That is, if a script is
the same as in the uncoupled Poisson solver it is not included here and the reader
is referred to the previous section.

A.3. LINEAR ELASTICITY SOLVER 121

LinearElasticity.m

GetGeometry

GenerateMesh

5 LinearE las t i c i ty AssembleSystem

LinearE la s t i c i ty BoundaryCond i t i onApp l i ca t i on

U = A\ f ;
10

Ux = U(1 : NoCtrlPts) ;
Uy = U(NoCtrlPts +1:end) ;

po s tProce s s ing
15

p l o t t i n g

JacobianTest

20 i f min (min (Jacobian)) < 0
d i sp (’ Negative Jacobian ’)

e l s e
Metr ics

end %i f

LinearElasticity AssembleSystem.m

1 % Assemble s t i f f n e s s matrix A and r i g h t hand s i d e vec to r f
% I n i t i a l i z e A and f
A = ze ro s (NoDofs , NoDofs) ;
f = ze ro s (NoDofs , 1) ;

6 % Gauss quadrature po in t s and weights
[P, W] = GaussQuadrature (NoGaussPts , 2) ;

f o r e = 1 : NoElem
% Element i n t e r v a l (x i i , x i (i +1))

11 Xi e = ElemRange (e , 1 : 2) ;
Eta e = ElemRange (e , 3 : 4) ;

% C o n n e c t i v i t i e s on element e and matrix B
Conn = ElemConn(e , :) ;

16 ConnB = [Conn Conn+NoCtrlPts] ;

nn = length (Conn) ;
B = ze ro s (3 , 2∗nn) ;
pts = cont ro lPt s (Conn , :) ;

21 R = ze ro s (2 ,2∗nn) ;

f o r g = 1 : s i z e (W, 1)
x i h a t = P(g , 1) ;
e ta hat = P(g , 2) ;

26 w = W(g) ;

% Coordinates in parametr ic space :
Xi = 0 .5 ∗ ((Xi e (2) − Xi e (1)) ∗ x i h a t . . .

122 APPENDIX A. SOURCE CODE

+ (Xi e (2) + Xi e (1))) ;
31 Eta = 0 .5 ∗ ((Eta e (2) − Eta e (1)) ∗ e ta hat . . .

+(Eta e (2) + Eta e (1))) ;

% Jacobian un i t square − parametr ic :
J2 = 0.25 ∗ (Xi e (2) − Xi e (1)) ∗(Eta e (2) − Eta e (1)) ;

36

% Bas i s f u n c t i o n s and d e r i v a t i v e s
[N, dNdxi , dNdeta] = GetBasisAndDerivat ives (Xi , Eta , p , q , . . .

KnotVecX , KnotVecY) ;

41 % Jacobian parametr ic − p h y s i c a l :
jacob = cont ro lPt s (Conn , :) ’∗ [dNdxi ’ dNdeta ’] ;
J1 = det (jacob) ;
invJacob = inv (jacob) ;

46 % Use the d e r i v a t i v e wrt x and y in s t ead o f x i and eta :
dNdx = [dNdxi ’ dNdeta ’] ∗ invJacob ;

% B−matrix :
B(1 , 1 : nn) = dNdx (: , 1) ’ ;

51 B(2 , nn+1:2∗nn) = dNdx (: , 2) ’ ;
B(3 , 1 : nn) = dNdx (: , 2) ’ ;
B(3 , nn+1:2∗nn) = dNdx (: , 1) ’ ;

R(1 , 1 : l ength (Conn)) = N’ ;
56 R(2 , l ength (Conn) +1:end) = N’ ;

Dmat = E l a s t i c i t y M a t r i x (Xi , Eta , Youngs , po i s s on s) ;

A(ConnB , ConnB) = A(ConnB , ConnB) + B’∗Dmat∗B∗J1∗J2∗w;
61 x = N∗ cont ro lPt s (Conn , 1) ; y = N∗ cont ro lPt s (Conn , 2) ;

f (ConnB) = f (ConnB) + (func (x , y) ∗ R ∗ J1 ∗ J2 ∗ w) ’ ;
end %g

end %e

ElasticityMatrix.m

1 f unc t i on D = E l a s t i c i t y M a t r i x (x , y , Y, v)
E = Y∗(y ˆ(5/8) +0.3) ∗(1−0.25∗x) ;
d = [1 v 0 ;

v 1 0 ;
0 0 (1−v) / 2] ;

6

D = E/(1−v ˆ2) ∗ d ;
end

LinearElasticity BoundaryConditionApplication.m

% Solves l e a s t squares problem on boundary
2 % Find b a s i s f u n c t i o n s at boundary

r ightNodes = f i n d (cont ro lPt s (: , 1) == endX) ’ ;
topNodes = f i n d (cont ro lPt s (: , 2) == endY) ’ ;
l e f tNode s = f i n d (cont ro lPt s (: , 1) == startX) ’ ;
bottomNodes = f i n d (cont ro lPt s (: , 2) == startY) ’ ;

A.3. LINEAR ELASTICITY SOLVER 123

7

NoP = 10 ;
NobottomNodes = length (bottomNodes) ;
NoleftNodes = length (l e f tNode s) ;
NorightNodes = length (r ightNodes) ;

12 NotopNodes = length (topNodes) ;

% Used f o r l o c a l element index ing
bottomElement = ze ro s (NoElemX , p+1) ;
l e f tE l ement = ze ro s (NoElemY , q+1) ;

17 r ightElement = ze ro s (NoElemY , q+1) ;
topElement = ze ro s (NoElemX , p+1) ;

% Used to keep track on the a c t i v e b a s i s f u n c t i o n s and
% c o n t r o l po in t s on each element boundary

22 bottomEdgeMesh = ze ro s (NoElemX , p+1) ;
leftEdgeMesh = ze ro s (NoElemY , q+1) ;
rightEdgeMesh = ze ro s (NoElemY , q+1) ;
topEdgeMesh = ze ro s (NoElemX , p+1) ;

27 f o r i = 1 :NoElemX
bottomEdgeMesh (i , :) = bottomNodes (i : i+p) ;
topEdgeMesh (i , :) = topNodes (i : i+p) ;
bottomElement (i , :) = (i : i+p) ;
topElement (i , :) = (i : i+p) ;

32 end %i

f o r i = 1 :NoElemY
leftEdgeMesh (i , :) = l e f tNode s (i : i+q) ;
rightEdgeMesh (i , :) = rightNodes (i : i+q) ;

37 l e f tE l ement (i , :) = (i : i+q) ;
r ightElement (i , :) = (i : i+q) ;

end %i

Bx = ze ro s (NoCtrlPts , 1) ;
42 By = ze ro s (NoCtrlPts , 1) ;

C = ze ro s (NoCtrlPts , NoCtrlPts) ;

bottomC = ze ro s (NobottomNodes , NobottomNodes) ;
l e f t C = ze ro s (NoleftNodes , NoleftNodes) ;

47 r ightC = ze ro s (NorightNodes , NorightNodes) ;
topC = ze ro s (NotopNodes , NotopNodes) ;

bottomBx= ze ro s (NobottomNodes , 1) ;
l e f tBx = ze ro s (NoleftNodes , 1) ;

52 r ightBx = ze ro s (NorightNodes , 1) ;
topBx = ze ro s (NotopNodes , 1) ;

bottomBy= ze ro s (NobottomNodes , 1) ;
l e f tBy = ze ro s (NoleftNodes , 1) ;

57 r ightBy = ze ro s (NorightNodes , 1) ;
topBy = ze ro s (NotopNodes , 1) ;

% Bottom boundary
f o r e = 1 :NoElemX

62 s c t r = bottomEdgeMesh (e , :) ;
sctrC = bottomElement (e , :) ;
Xi e = ElemRangeX(e , :) ;
xiC = l i n s p a c e (Xi e (1) , Xi e (2) , NoP) ;

67 N = GetBasisBoundary (KnotVecX , p , xiC) ;

124 APPENDIX A. SOURCE CODE

bottomC (sctrC , sctrC) = bottomC (sctrC , sctrC) + N’∗N;

x = N∗ cont ro lPt s (s c t r , 1) ; y = N∗ cont ro lPt s (s c t r , 2) ;
72 f f = BottomBoundary (x , y) ;

bottomBx (sctrC) = bottomBx (sctrC) + N’∗ f f (: , 1) ;
bottomBy (sctrC) = bottomBy (sctrC) + N’∗ f f (: , 2) ;

end %e
C(bottomNodes , bottomNodes) = C(bottomNodes , bottomNodes) + bottomC ;

77 Bx(bottomNodes) = Bx(bottomNodes) + bottomBx ;
By(bottomNodes) = By(bottomNodes) + bottomBy ;

% Le f t boundary
f o r e = 1 :NoElemY

82 s c t r = leftEdgeMesh (e , :) ;
sctrC = le f tE l ement (e , :) ;
Eta e = ElemRangeY(e , :) ;
etaC = l i n s p a c e (Eta e (1) , Eta e (2) , NoP) ;

87 M = GetBasisBoundary (KnotVecY , q , etaC) ;

l e f t C (sctrC , sctrC) = l e f t C (sctrC , sctrC) + M’∗M;

x = M∗ cont ro lPt s (s c t r , 1) ; y = M∗ cont ro lPt s (s c t r , 2) ;
92 f f = LeftBoundary (x , y) ;

l e f tBx (sctrC) = l e f tBx (sctrC) + M’∗ f f (: , 1) ;
l e f tBy (sctrC) = l e f tBy (sctrC) + M’∗ f f (: , 2) ;

end %e
C(le f tNodes , l e f tNode s) = C(le f tNodes , l e f tNode s) + l e f t C ;

97 Bx(l e f tNode s) = Bx(l e f tNode s) + l e f tBx ;
By(l e f tNode s) = By(l e f tNode s) + l e f tBy ;

% Right boundary
f o r e = 1 :NoElemY

102 s c t r = rightEdgeMesh (e , :) ;
sctrC = rightElement (e , :) ;
Eta e = ElemRangeY(e , :) ;
etaC = l i n s p a c e (Eta e (1) , Eta e (2) , NoP) ;

107 M = GetBasisBoundary (KnotVecY , q , etaC) ;

r ightC (sctrC , sctrC) = rightC (sctrC , sctrC) + M’∗M;

x = M∗ cont ro lPt s (s c t r , 1) ; y = M∗ cont ro lPt s (s c t r , 2) ;
112 f f = RightBoundary (x , y) ;

r ightBx (sctrC) = rightBx (sctrC) + M’∗ f f (: , 1) ;
r ightBy (sctrC) = rightBy (sctrC) + M’∗ f f (: , 2) ;

end %e
C(rightNodes , r ightNodes) = C(rightNodes , r ightNodes) + rightC ;

117 Bx(r ightNodes) = Bx(r ightNodes) + rightBx ;
By(r ightNodes) = By(r ightNodes) + rightBy ;

% Top boundary
f o r e = 1 :NoElemX

122 s c t r = topEdgeMesh (e , :) ;
sctrC = topElement (e , :) ;
Xi e = ElemRangeX(e , :) ;
xiC = l i n s p a c e (Xi e (1) , Xi e (2) , NoP) ;

127 N = GetBasisBoundary (KnotVecX , p , xiC) ;

topC (sctrC , sctrC) = topC (sctrC , sctrC) + N’∗N;

A.4. QUASISTATIC SOLVER 125

x = N∗ cont ro lPt s (s c t r , 1) ; y = N∗ cont ro lPt s (s c t r , 2) ;
132 f f = TopBoundary (x , y) ;

topBx (sctrC) = topBx (sctrC) + N’∗ f f (: , 1) ;
topBy (sctrC) = topBy (sctrC) + N’∗ f f (: , 2) ;

end %e
C(topNodes , topNodes) = C(topNodes , topNodes) + topC ;

137 Bx(topNodes) = Bx(topNodes) + topBx ;
By(topNodes) = By(topNodes) + topBy ;

% So lv ing l e a s t−mean−square
Fix = [bottomNodes l e f tNode s r ightNodes topNodes] ;

142 FixedNodes = unique (Fix) ;
f o r i = length (Bx) : −1 :1 ;

i f not (ismember (i , FixedNodes))
C(i , :) = [] ;
C(: , i) = [] ;

147 Bx(i) = [] ;
By(i) = [] ;

end %i f
end %i f

152 % Apply to boundary
Fixedx = (C\Bx) ;
Fixedy = (C\By) ;
FixedNodesX = FixedNodes ;
FixedNodesY = FixedNodes + NoCtrlPts ;

157 f = f − A(: , FixedNodesX) ∗Fixedx ;
f = f − A(: , FixedNodesY) ∗Fixedy ;
f (FixedNodesX) = Fixedx ’ ;
f (FixedNodesY) = Fixedy ’ ;
A(FixedNodesX , :) = 0 ;

162 A(FixedNodesY , :) = 0 ;
A(: , FixedNodesX) = 0 ;
A(: , FixedNodesY) = 0 ;

f o r i = 1 : l ength (FixedNodesX)
167 A(FixedNodesX (i) , FixedNodesX (i)) = 1 ;

A(FixedNodesX (i)+NoCtrlPts , FixedNodesX (i)+NoCtrlPts) = 1 ;
end %i

A.4 Quasistatic Solver

As explained in Section 4.4 of the report, the quasistatic method is basically solving
the linear elasticity problem iteratively.

Quasistatic.m

1 geometry = ’ s i n e ’ ;
BottomBoundary = @(x , y) [x , (y−y)] ;
TopBoundary = @(x , y) [x , 1+(y−y)] ;
LeftBoundary = @(x , y) [(x−x) , y] ;
RightBoundary = @(x , y) [1+(x−x) , y] ;

6 Main ;

r = 0 . 0 ;

126 APPENDIX A. SOURCE CODE

kappa = 0 . 5 ;
i t e r e t i o n s = 10 ;

11

whi le r <= kappa
cont ro lPt s = [Ux ’ ; Uy ’] ’ ;
BottomBoundary = @(x , y) [x , r ∗ s i n (2∗ pi ∗x)] ;
TopBoundary = @(x , y) [x , 1+(y−y)] ;

16 LeftBoundary = @(x , y) [(x−x) , y] ;
RightBoundary = @(x , y) [1+(x−x) , y] ;

L in ea rE l a s t i c i t y Ma in
r = r + kappa/ i t e r a t i o n s ;

21 end %whi le

i f min (min (Jacobian)) < 0
d i sp (’ Negative Jacobian ’)

e l s e
26 Metr ics

end %i f

A.5 Shared Functions

The following functions and scripts are used in two or more of the solvers presented.

GenerateMesh.m

% Unique knots in x i and eta d i r e c t i o n
uniqueX = unique (KnotVecX) ;

3 uniqueY = unique (KnotVecY) ;

% Number o f e lements in x i and eta d i r e c t i o n , and in t o t a l
NoElemX = length (uniqueX) − 1 ;
NoElemY = length (uniqueY) − 1 ;

8 NoElem = NoElemX ∗ NoElemY ;

% Element c o n n e c t i v i t i e s and range
ElemConn = ze ro s (NoElem , (p+1)∗(q+1)) ;
ElemRange = ze ro s (NoElem , 4) ;

13

chan = ze ro s (NoPtsY , NoPtsX) ;
counter = 1 ;

f o r i = 1 : NoPtsY
18 f o r j = 1 : NoPtsX

chan (i , j) = counter ;
counter = counter + 1 ;

end %j
end %i

23

[ElemRangeX , ElemConnX] = Connect iv i ty (p , KnotVecX , NoElemX) ;
[ElemRangeY , ElemConnY] = Connect iv i ty (q , KnotVecY , NoElemY) ;

e = 1 ;
28 f o r y = 1 :NoElemY

yConn = ElemConnY(y , :) ;
f o r x = 1 :NoElemX

A.5. SHARED FUNCTIONS 127

c = 1 ;
xConn = ElemConnX(x , :) ;

33 f o r i = 1 : l ength (yConn)
f o r j = 1 : l ength (xConn)

ElemConn(e , c) = chan (yConn(i) , xConn(j)) ;
c = c + 1 ;

end %j
38 end %i

e = e + 1 ;
end %x

end %y

43 e = 1 ;
f o r i = 1 : s i z e (ElemRangeY , 1)

f o r j = 1 : s i z e (ElemRangeX , 1)
ElemRange (e , 1 : 2) = ElemRangeX(j , :) ;
ElemRange (e , 3 : 4) = ElemRangeY(i , :) ;

48 e = e + 1 ;
end %j

end %i

Connectivity.m

f unc t i on [ElemRange , ElemConn] = Connect iv i ty (p , KnotVec , NoElem)
% The func t i on f i n d s the range and c o n n e c t i v i t i e s
% f o r each element in 1D

5 ElemRange = ze ro s (NoElem , 2) ;
ElemConn = ze ro s (NoElem , p+1) ;
ElemKnotInd = ze ro s (NoElem , 2) ;

element = 1 ;
10 prev ious = KnotVec (1) ;

f o r i = 1 : l ength (KnotVec)
cur rent = KnotVec (i) ;
i f KnotVec (i) ˜= prev ious

15 ElemRange (element , :) = [prev ious , cur r ent] ;
ElemKnotInd (element , :) = [i −1, i] ;
e lement = element + 1 ;

end %i f
prev ious = cur rent ;

20 end %i

NoRepeated = 0 ;
f o r i = 1 : NoElem

ind = (ElemKnotInd (i , 1) − p + 1) : ElemKnotInd (i , 1) ;
25 prev ious = KnotVec (ind) ;

cur r ent = ones (1 , p) ∗ KnotVec (ElemKnotInd (i , 1)) ;

i f i s e q u a l (prev ious , cur r ent) && (length (nonzeros (prev ious)) > 1) ;
NoRepeated = NoRepeated + 1 ;

30 end %i f

ElemConn(i , :) = (ElemKnotInd (i , 1) − p) : ElemKnotInd (i , 1) ;
end %i

end

128 APPENDIX A. SOURCE CODE

FindMu.m

1 f unc t i on mu = FindMu(KnotVec , x)
% mu = the value f o r which xi mu <= x < x i (mu+1)

i f abs (x − KnotVec (end)) < eps
x = KnotVec (end) − eps ;

6 end %i f

M = length (KnotVec) ;
f o r i = 1 :M−1

i f KnotVec (i) <= x && KnotVec (i +1) > x
11 mu = i ;

end %i f
end %i

end

GetBasisAndDerivatives.m

f unc t i on [bas i s , dNdxi , dNdeta] = GetBasisAndDerivat ives (xi , eta , p , q , KnotVecX ,
KnotVecY)
% The func t i on r e tu rn s the b a s i s and f i r s t d e r i v a t i v e s
% with r e s p e c t to the po in t s x i and eta .

5 i f abs (x i − KnotVecX(end)) < eps
x i = KnotVecX(end) − eps ;

end %i f
i f abs (eta − KnotVecY(end)) < eps

eta = KnotVecY(end) − eps ;
10 end %i f

% Get Bas i s :
[N, dN] = GetBasisAndDerivatives1D (KnotVecX , p , x i) ;
[M, dM] = GetBasisAndDerivatives1D (KnotVecY , q , eta) ;

15

k = 1 ;
f o r j = 1 : (q+1)

f o r i = 1 : (p+1)
b a s i s (k) = N(i) ∗M(j) ;

20 dNdxi (k) = dN(i) ∗M(j) ;
dNdeta (k) = dM(j) ∗N(i) ;
k = k + 1 ;

end %i
end %j

25

end

GetBasisAndDerivatives1D.m

f unc t i on [N, dN] = GetBasisAndDerivatives1D (KnotVec , p , x)

mu = FindMu(KnotVec , x) ;
4

% Bas i s :

A.5. SHARED FUNCTIONS 129

N = 1 ;
f o r k = 1 : p

R = 0 ;
9 f o r i = 1 : k

R(i , i) = (KnotVec (mu+i) − x) /(KnotVec (mu+i)−KnotVec (mu+i−k)) ;
R(i , i +1) = (x−KnotVec (mu+i−k)) /(KnotVec (mu+i)−KnotVec (mu+i−k)) ;

end %i
N = N ∗ R;

14 end %k

% Der iva t i ve :
dN = 1 ;
f o r k = 1 : (p−1)

19 R = 0 ;
f o r i = 1 : k

R(i , i) = (KnotVec (mu+i) − x) /(KnotVec (mu+i)−KnotVec (mu+i−k)) ;
R(i , i +1) =(x−KnotVec (mu+i−k)) /(KnotVec (mu+i)−KnotVec (mu+i−k)) ;

end %i
24 dN = dN∗R;

end %k

f o r k = (p−1+1) : p
dR = 0 ;

29 f o r i = 1 : k
dR(i , i) = (−1) / (KnotVec (mu+i) − KnotVec (mu+i−k)) ;
dR(i , i +1) = (1) / (KnotVec (mu+i) − KnotVec (mu+i−k)) ;

end %i
dN = dN∗dR;

34 end %k

dN = (f a c t o r i a l (p) / f a c t o r i a l (p−1)) ˆ(1) ∗dN;

end

GetControlPts.m

xpts = Contro lPo ints (p , startX , endX , KnotVecX) ;
2 ypts = Contro lPo ints (q , startY , endY , KnotVecY) ;

k = 1 ;
cont ro lPt s = ze ro s (NoCtrlPts , 2) ;
f o r i = 1 : NoPtsY

7 f o r j = 1 : NoPtsX
cont ro lPt s (k , 1) = xpts (j) ;
c on t ro lPt s (k , 2) = ypts (i) ;
k = k + 1 ;

end %j
12 end %i

JacobianTest.m

%%% Get the Jacobian o f the paramete r i za t i on
Jacobian = ze ro s (NoElemY∗NoPy , NoElemX∗NoPx) ;

3 UU = [Ux Uy] ;
xxx = 1 ;

130 APPENDIX A. SOURCE CODE

yyy = 1 ;

f o r e = 1 : NoElem
8 % Element i n t e r v a l (x i i , x i (i +1))

Xi e = ElemRange (e , 1 : 2) ;
Eta e = ElemRange (e , 3 : 4) ;

x i = l i n s p a c e (Xi e (1) , Xi e (2)−eps , NoPx) ;
13 eta = l i n s p a c e (Eta e (1) , Eta e (2)−eps , NoPy) ;

Conn = ElemConn(e , :) ;
D = ze ro s (NoPy , NoPx) ;

18 f o r i = 1 :NoPx
Xi = x i (i) ;
f o r j = 1 :NoPy

Eta = eta (j) ;

23 [N, dNdxi , dNdeta] = GetBasisAndDerivat ives (Xi , Eta , p , q , . . .
KnotVecX , KnotVecY) ;

jacob = UU(Conn , :) ’∗ [dNdxi ’ dNdeta ’] ;
detJ = det (jacob) ;

28 D(j , i) = detJ ;

end %j
end %i

33 i f mod(e , NoElemY) == 1 && e˜=1
yyy = yyy + NoPy ;

end %i f

Jacobian (yyy : yyy+NoPy−1,xxx : xxx+NoPx−1) = D;
38 xxx = NoPx∗mod(e , NoElemX) + 1 ;

end

Metrics.m

1 x = reshape (ux ’ , [1 , 3 6 0 0]) ;
y = reshape (uy ’ , [1 , 3 6 0 0]) ;
NoElemX = length (xx)−1;
NoElem = NoElemXˆ2 ;
geometry = ’ s i n e ’ ;

6

[s i z eMet r i c , shapeMetric , skewMetric]= GetMetrics (x , y , NoElem , NoElemX , geometry)

SizeShape = s i z e M e t r i c .∗ shapeMetr ic ;
SizeSkew = s i z e M e t r i c .∗ skewMetric ;

11

% Root−Mean−Square :
sizeRMS = s q r t ((1/NoElem) ∗ (s i z eMet r i c ’ ∗ s i z e M e t r i c)) ;
shapeRMS = s q r t ((1/NoElem) ∗ (shapeMetric ’ ∗ shapeMetr ic)) ;
skewRMS = s q r t ((1/NoElem) ∗ (skewMetric ’ ∗ skewMetric)) ;

16 SizeShapeRMS = s q r t ((1/NoElem) ∗ (SizeShape ’ ∗SizeShape)) ;
SizeSkewRMS = s q r t ((1/NoElem) ∗ (SizeSkew ’ ∗SizeSkew)) ;

% MinMax :
sizeMM = min (s i z e M e t r i c) / max(s i z e M e t r i c) ;

21 shapeMM = min(shapeMetr ic) / max(shapeMetr ic) ;

A.5. SHARED FUNCTIONS 131

skewMM = min (skewMetric) / max(skewMetric) ;
SizeShapeMM = min(SizeShape) / max(SizeShape) ;
SizeSkewMM = min(SizeSkew) / max(SizeSkew) ;

26 RMS = [sizeRMS shapeRMS skewRMS SizeShapeRMS SizeSkewRMS] ;
MM = [sizeMM shapeMM skewMM SizeShapeMM SizeSkewMM] ;

GetMetrics.m

f unc t i on [s i z eMet r i c , shapeMetric , skewMetric] = GetMetrics (x , y , NoElem , NoElemX ,
geometry)
%(x , y) are the paramete r i za t i on po in t s

3

to ta lArea = ze ro s (NoElem , 1) ;
shapeMetr ic = ze ro s (NoElem , 1) ;
skewMetric = ze ro s (NoElem , 1) ;
index = ze ro s (NoElem , 4) ;

8

index (1 , 1 : 2) = [1 2] ;
index (1 , 3 : 4) = [NoElemX+2 NoElemX+3] ;

t e l l e r = 1 ;
13 f o r i = 2 : NoElem

i f mod(t e l l e r , NoElemX) == 0
index (i , :) = index (i −1 , :) + 2 ;

e l s e
index (i , :) = index (i −1 , :) + 1 ;

18 end %i f
t e l l e r = t e l l e r + 1 ;

end %i

f o r i = 1 : NoElem
23 ind1 = index (i , 1) ;

ind2 = index (i , 2) ;
ind3 = index (i , 3) ;
ind4 = index (i , 4) ;

28 A1 = [x (ind2)−x (ind1) x (ind3)−x (ind1) ;
y (ind2)−y (ind1) y (ind3)−y (ind1) ;] ;

AA1 = A1’∗A1 ;

A2 = [x (ind4)−x (ind2) x (ind1)−x (ind2) ;
33 y (ind4)−y (ind2) y (ind1)−y (ind2)] ;

AA2 = A2’∗A2 ;

A3 = [x (ind3)−x (ind4) x (ind2)−x (ind4) ;
y (ind3)−y (ind4) y (ind2)−y (ind4) ;] ;

38 AA3 = A3’∗A3 ;

A4 = [x (ind1)−x (ind3) x (ind4)−x (ind3) ;
y (ind1)−y (ind3) y (ind4)−y (ind3)] ;

AA4 = A4’∗A4 ;
43

to ta lArea (i) = (det (A1) + det (A3)) /2 ;

i f to ta lArea (i) < 0 | | . . .
norm ((det (A1)+det (A3))−(det (A2)+det (A4)))>2∗eps

48 to ta lArea (i) = 0 ;
end %i f

132 APPENDIX A. SOURCE CODE

shapeMetr ic (i) = 8/((AA1(1 , 1) + AA1(2 , 2)) / det (A1) + . . .
(AA2(1 , 1) + AA2(2 , 2)) / det (A2) + . . .

53 (AA3(1 , 1) + AA3(2 , 2)) / det (A3) + . . .
(AA4(1 , 1) + AA4(2 , 2)) / det (A4)) ;

i f shapeMetr ic (i) < 0 | | shapeMetr ic (i) > 1
shapeMetr ic (i) = 0 ;

58 end %i f

skewMetric (i) = 4 / (s q r t (AA1(1 , 1) ∗AA1(2 , 2)) / det (A1) + . . .
s q r t (AA2(1 , 1) ∗AA2(2 , 2)) / det (A2) + . . .
s q r t (AA3(1 , 1) ∗AA3(2 , 2)) / det (A3) + . . .

63 s q r t (AA4(1 , 1) ∗AA4(2 , 2)) / det (A4)) ;

i f skewMetric (i) < 0 | | skewMetric (i) > 1
skewMetric (i) = 0 ;

end %i f
68

end %i

NoElemY = NoElem / NoElemX ;

73 r e f e r e n c e S i z e = (1/NoElemX) ∗(1/NoElemY) ;
tau = tota lArea . / r e f e r e n c e S i z e ;
s i z e M e t r i c = min (tau , 1 . / tau) ;

end

Appendix B

Jigsaw Geometry Specifications

The jigsaw geometry presented in Section 5.3 is defined by four curves, ∂Ω1, ∂Ω2,
∂Ω3 and ∂Ω4, with a spline representation. As stated in Section 3.1.5, a spline
representation of a curve is given as

C =
∑
i

Ni,p(ξ)Bi.

When defining the curves in the jigsaw geometry, the Ni’s are the splines defined
by the knot vector Ξ = [0

8
, 0

8
, 0

8
, 1

8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
, 8

8
, 8

8
, 8

8
] and polynomial order

p = 2. The control points Bi = [∂Ωj(xi), ∂Ωj(yi)] for each of the four boundary
curves ∂Ωj, j = 1, 2, 3, 4 are given in Table B.1.

Table B.1: Control points for the jigsaw geometry shown in Figure 5.37a.

∂Ω1(x) ∂Ω1(y) ∂Ω2(x) ∂Ω2(y) ∂Ω3(x) ∂Ω3(y) ∂Ω4(x) ∂Ω4(y)
0 0 10 0 0 10 0 0
3 0 10 3 3 10 0 3
4 1 11 4 4 9 -1 4
3 1.5 11.5 3 3 8.5 -1.5 3
4 3 13 4 4 7 -3 4
6 3 13 6 6 7 -3 6
7 1.5 11.5 7 7 8.5 -1.5 7
6 1 11 6 6 9 -1 6
7 0 10 7 7 10 0 7
10 0 10 10 10 10 0 10

133

Appendix C

List of symbols

Ai Jacobian matrix of element, wrt node i.
αi Determinant of Jacobian matrix Ai
a Area of reference element
Atot Total area of a domain
A Stiffness matrix
ai,j Element (i, j) of stiffness matrix A
Bi, Bij Control points
b, c∗ Vector for imposing boundary conditions
C Spline curve

C̃, C Mappings between spaces
D Elasticity matrix
e Error, e = u− uh
E Young’s modulus
ε, εxx, εyy, εxy Strain
f Force vector
fj Element of force vector
F Mapping
G Matrix for imposing boundary conditions
ΓD Dirichlet boundary
ΓN Neumann boundary
ΓR Robin boundary
γ(x, y) Function used in the uncoupled Poisson method
Jξ, Jξ̃ Jacobian of mappings

κ Parameter of problem difficulty

135

136 APPENDIX C. LIST OF SYMBOLS

λikl Element kl of the matrix product ATi Ai
MSize Size metric
MShape Shape metric
MSkew Skew metric
MSizeShape Combination metric size-shape
MSizeSkew Combination metric size-skew
mk
i The k-metric of element i

MM(·) Min-Max measure
m Multiplicity of a knot
Mj,q(η) Spline j induced by H with polynomial degree q
n, m Number of splines induced by Ξ, H
N Number of mesh elements
Ni,p(ξ) Spline i induced by Ξ with polynomial degree p
n Normal vector
ν Poisson’s ratio
Ω Physical domain

Ω̂ Parametric domain

Ω̃ Unit square (x, y) ∈ [−1, 1]2

∂Ω Physical domain boundary
p, q Polynomial degree
ϕi(·) Polynomials
RMS(·) Root-Mean-Square measure
R Set of all real numbers
R B-spline matrix
σi (αi + αi+2)/2a
Sp,Ξ Space spanned by Ni,p defined by Ξ
σ, σxx,σyy,σxy Stress
u Solution vector
uh Numerical solution
walpha,β Weight of Gauss point
Ξ, H Knot vectors
ξi, ηi Knot i in Ξ and H
Z Set of all integers
|| · ||L2(Ω) The L2-norm on Ω
|| · ||E(Ω) The energy norm on Ω

	Abstract
	Sammendrag
	Preface
	Acknowledgements
	Introduction
	Background
	Aim and Outline

	Mesh Metrics
	Quadrilateral Elements
	Metrics
	Relative Size Metric
	Shape Metric
	Skew Metric
	Combination Metrics

	Measure of Mesh Quality
	Min-Max Measure
	Root Mean Square Measure

	Spline Theory and IGA
	B-Splines
	Knot Vectors
	B-Splines
	Example
	General Properties
	Splines as a Basis for Curves
	2D Surfaces
	Derivatives
	Refinement
	Matrix Representation

	Isogeometric Analysis
	Strong Form Poisson Problem
	Weak formulation
	Elements
	Spaces and Mappings
	Numerical Integration
	Imposing Boundary Conditions

	Validating a B-spline Parameterization

	Parameterization Methods
	Gordon-Hall Algorithm
	Uncoupled Poisson using IGA
	Implementation and Verification
	Gamma Function

	Linear Elasticity using IGA
	Introduction to Linear Elasticity
	Linear Elasticity IGA Formulation
	Implementation and Verification
	Modified Elasticity Matrix

	Quasistatic Method
	Implementation and Verification

	Numerical Results
	Bottom Sine Geometry
	Gordon-Hall
	Uncoupled Poisson
	Linear Elasticity
	Quasistatic

	Clover Geometry
	Gordon-Hall
	Uncoupled Poisson
	Linear Elasticity
	Quasistatic

	Jigsaw Geometry
	Gordon-Hall
	Uncoupled Poisson
	Linear Elasticity
	Quasistatic

	Method Comparison
	Performance with respect to
	Performance with respect to polynomial degree

	Summary and Concluding Remarks
	Summary and Conclusion
	Further Work

	Bibliography
	Appendices
	Source Code
	Gordon Hall Solver
	Uncoupled Poisson Solver
	Linear Elasticity Solver
	Quasistatic Solver
	Shared Functions

	Jigsaw Geometry Specifications
	List of symbols

