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Abstract: Ice formation and related processes in rivers and lakes/reservoirs influence the 

operation of hydropower plants in cold regions. It is a matter of interest to the scientific 

community and hydropower operators alike how existing ice effects and problems will 

manifest themselves in a future changed climate. In this paper, we use different modeling 

results to investigate future freshwater ice conditions. The modeling approaches include 

using temperature derived winter indices, using one-dimensional (1D) hydrodynamic and 

ice cover model on three case study reservoirs, and using a 1D river hydrodynamic and ice 

cover model for a river reach. The analysis shows that changes in river and reservoir ice 

regimes due to climate change scenarios may have both positive and negative consequences 

for hydropower operation. Positive consequences emerge from reduction in ice season and 

reduced static ice loads. Negative consequences or challenges are attributed to unstable 

winters that may lead to increased frequency of freeze-thaw episodes with a shortened 

winter season. These aspects are discussed in more detail in the paper. 
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1. Introduction 

Globally, hydropower is the largest renewable energy source [1], and it produced (in 2009) 

around 16.5% of the world’s total electricity and around 85% of the world’s renewable electricity [2]. 
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Hydropower is a major source of energy in cold region countries too. Some of the countries in cold 

regions that have a large share of hydro in their energy mix include Norway (99%), Canada (59%), 

and Sweden (49%), the statistics showing values for the year of 2010 [2]. Future projections of inflow 

under a changed climate imply a wetter hydrology for most of the cold regions and hence a probable 

increase in hydropower potential [3]. A further important issue that makes hydropower even more 

valuable in the future is the increasing shift to greener energy sources such as wind power. As wind 

power is an intermittent resource, hydropower, with its quick start-stop functions and energy reserve in 

reservoirs, will be ideally suited for load balancing [4]. 

In northern regions where winters are severe with a prolonged period of freezing temperatures, 

river and reservoirs freeze over forming various types of ice. Ice formation poses some special 

problems for hydropower systems [5,6]. Hence, the design and operation of hydropower structures 

must consider ice effects both for the associated project structures and environmental and socio-economic 

effects. The major ice effects/problems on hydropower systems include [5,7]: 

• Intake blockages with frazil ice and anchor ice causing head losses and even complete shutdowns; 

• Flow reductions to the intakes in case of run-of-river intakes causing reduced output and even 

complete shutdowns; 

• Upstream and downstream flooding caused by ice jamming; 

• Icing of structures specially gates (intake gates and spillway gates) that causes operational and 

safety concerns in case of spillway gates; 

• Creating open water reaches downstream of power plant outlets which may lead to extensive 

frazil ice formation and jamming affecting downstream facilities; 

• Operational restrictions on hydro-electric operators to avoid ice problems. 

While hydro-climatic factors are mainly responsible for the problems posed by ice, human actions 

such as reservoir operation strategies employed during the ice season will have important contributions 

in either alleviating or aggravating the problems. For example, regulation for hydropower production 

leads to an increase in discharge at freeze-up, resulting in a more dynamic [8], and prolonged [9] 

freeze-up period than would occur naturally. The prolonged freeze-up period leads to severely 

constrained flow-peaking operations on many regulated rivers resulting in lost revenues in general and 

inability to balance intermittent sources. On the other hand, hydro peaking also results in shorter 

periods with ice cover on reservoirs, especially near the intakes [10]. Hence, continued monitoring and 

mitigation of ice-related effects will be an issue of particular importance for hydropower producers, 

especially those with remote facilities [11]. 

Warming of the climate system in recent decades is unequivocal [12]. This is evident from 

observations of increases in global average air and ocean temperatures, widespread melting of snow 

and ice, and rising global sea levels [13]. Climate has a key influence in winter hydrology including 

the ice regime. Factors that control the ice regime such as river flow and the heat exchange between 

water and the atmosphere are climate-controlled [14]. In the higher latitudes of the Northern 

Hemisphere, significant temperature trends have been observed in recent decades, with most 

pronounced changes occurring during winter and spring [15,16]. The changes in Fennoscandia 

averaged a decadal warming trend between 1961 and 2010 of 0.20 °C (autumn), 0.53 °C (winter) and 

0.38 °C (spring) [15]. Concurrently, a number of other studies using historical observations of ice 
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phenology (for lakes and rivers) have shown consistent evidence of later freezing and earlier breakup 

in the Northern Hemisphere [17–19]. Projections of future climate indicate that ice regimes 

(duration, extent and composition) will gradually change [15,20]. More frequent occurrence of mid-winter 

breakups and associated ice runs and jamming are changes that can be predicted as a result of warming 

of the climate system [20]. Mid-winter breakup events as a result of amplified winter warming may 

increase in the more temperate and maritime environments and also in the colder interior regions. 

Increased trends of mid-winter thaws (MWTs, >+1 °C) have also been observed in the Fennoscandia 

region [15]. Most studies relating to climate change impact have focussed on changes in water balance 

components such as precipitation, river flow and evapotranspiration [12,21]. Very limited studies 

exist that have used process based models to investigate changes in the ice regime of water systems 

(rivers, lakes and reservoirs). There is especially sparse literature on river studies. Large scale studies 

conducted on lakes project a general decrease in the ice cover duration and ice thickness due to 

changes in climate [22–25]. Few studies using detailed numerical modeling conducted on rivers also 

depicted reduction in the duration and extent of ice cover [26,27]. 

Considerable warming and change in precipitation patterns are predicted by General Circulation 

Models (GCMs) as a result of increased greenhouse gas concentrations in the atmosphere. Warming is 

projected to be greatest over land and at most high northern latitudes [12,13] and stronger during the 

winter time [28]. The pronounced warming during winter may imply shorter winter duration and hence 

shorter snow and ice season. In addition, there may also be changes in the seasonality of the river flow 

with more flow in winter and less in summer and spring. This is especially apparent as climate 

projections generally predict a trend towards higher precipitation in northern latitudes [21]. Due to the 

economic and ecological importance of freshwater ice, there is a growing need to forecast how global 

warming will influence the freshwater ice dynamics in cold regions [29,30]. The general impact of 

climate warming in the future is to delay freeze-up, advance break-up and thereby have a shorter 

ice season [31]. But, the detailed effects of a changed ice dynamics within a shortened ice season is 

less clear. A shorter ice season may imply economic savings to hydropower facilities, whereas more 

frequent mid-winter break-ups may lead to increased frazil production [31], and hence more frequent 

problems in a shorter season. Detailed quantitative predictions using process-based numerical models 

will provide better insight into future ice conditions under a changed climate. 

This paper addresses the evaluation of ice effects on hydropower systems in a future climate. 

We accomplish this by making use of two approaches: (1) we evaluate expected ice problems under 

climate change in general using large scale climatology indices; and (2) we make detailed investigations 

using numerical models with case studies. The climatology indices constructed from daily mean air 

temperature data are valuable proxies to freshwater ice phenology (freeze-up and break-up) as well as 

ice thickness and provide a region-wide perspective of future conditions. The case studies, on the 

other hand, are attempts for a detailed evaluation of the sensitivity of river and lake/reservoir ice 

regimes to expected changes in climate. The analyses provide valuable information in assessing 

climate change impacts on existing hydropower infrastructure as well as in the planning of new ones in 

cold regions. 
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2. Data and Methods 

2.1. Data 

We use temperature and precipitation data from the high resolution 1 km × 1 km gridded data set 

from the Norwegian Meteorological Institute (DNMI) for the river ice and reservoir ice case studies. 

For studying the large scale winter climatology using temperature indices the data comes from a 

regional study carried out by Gebre and Alfredsen [15]. The principal tools for investigating potential 

future climate changes are GCMs. Because of the relatively coarse spatial resolution of GCM output, 

applications of GCM climate projections require processing of the GCM output to bring the effective 

spatial scale of the data to a local level. One such method is to dynamically downscale the GCM 

outputs to a higher spatial resolution using Regional Climate Models (RCMs) with more enhanced 

physics and driven by GCM forcing as boundary conditions. 

For the future climate analysis in this study, the data used comes from multiple sources. For the 

winter (climatology) indices and reservoir ice cover studies, future scenarios corresponding to the 

Intergovernmental Panel on Climate Change (IPCC) A1B emissions scenario from two GCMs 

(HadCM3Q3 and ECHAM5) downscaled by the RCA RCM from the Swedish Hydrological and 

Meteorological Institute are used. For the river ice case study in the Orkla basin, we used data from 

two GCMs (HadAm3H, A2 and B2 emissions scenario; and ECHAM4, B2 emissions scenario) 

downscaled to a 25 km resolution by HIRHAM RCM maintained at DNMI, and bias-adjusted and 

interpolated to a 1 km × 1 km grid covering the whole of mainland Norway [32]. As noted above, the 

future scenario data used are not the same for the different studies because the studies were conducted 

in different project settings. Figure 1 shows the locations of the study areas (mainland Norway, and the 

three reservoir sites as well as one river site used as case studies). 

Figure 1. Location of the three reservoir sites (boxes) and the Orkla River reach used as 

case study as well as the Fennoscandia region used for the index-based regional assessment. 
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2.2. Assessment Methods 

2.2.1. Using Climatology Indices 

Air temperature is the single most important factor that influences the energy balance and ice cover 

regime in rivers and lakes. Changes in temperature derived indices, for example, autumn and spring 0 °C 

isotherm dates, annual accumulated freezing degree days (AFDD), and MWT can be used to infer the 

likely situation of the ice cover regime in the future. The advantage of using these indices is that they 

require only air temperature data that are readily available and are also reasonably predicted using 

GCMs and RCMs. Another advantage is that the indices provide useful proxy information for site-specific 

and regional studies that lack observational ice related data. Figure 2 provides a simplified illustration 

of the relationship between climatology indices and ice phenology dates. 

Figure 2. Figure showing a typical 31-day running mean temperature plot and the 

corresponding temperature indices (AI0—Autumn 0 °C isotherm, SI0—Spring 0 °C isotherm) 

and how they relate to ice phenology (FU—Freeze-up date, BU—Breakup date). ICD and 

ICD* refer respectively to the ice cover duration derived from ice phenology observations 

and the 0 °C isotherm dates. 

 

2.2.2. River Ice Modelling 

The Orkla River in central Norway (Figure 3) is the study site, and it is an example of a typical 

high-head hydropower system. The river system has been regulated with three reservoirs and five 

hydropower plants and a number of water transfers with secondary intakes. The Mike-Ice model 

was setup for the 40 km reach between the outlet of Brattset hydropower plant and the Bjørset dam. 

The analysis in this paper, however, is limited to the 20 km reach between the outlet of Grana power 

plant and Bjørset dam which by experience has the most severe ice. The outflow from Grana power 

plant enters the river in the middle of the study reach. The study reach has an average wetted width of 

45 m, a mean slope of 0.23% and winter flows ranging from 15 m3/s to 55 m3/s (mean of ~35 m3/s). 

Orkla has a long history of frazil production after the regulation, and intake clogging and frazil induced 

head losses are known to appear in the river. 
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Figure 3. Location map showing (A) the hydropower setting and (B) the modeling reach 

for river ice impact case study. 

 

Frazil is a central issue in many hydropower schemes, and to study impacts on frazil formation in 

the current and future climate we used a one-dimensional (1D) process based river ice model, 

Mike-Ice [33]. The ice model is setup as an add-in module to the well-known Mike11 1D hydraulic 

software (Danish Hydraulic Institute, Hørsholm, Denmark). The model simulates water temperature 

with/without supercooling, border ice formation, frazil ice formation and its evolution, transport of 

surface ice, ice cover formation and thermal ice cover retreat. The Mike-Ice model was calibrated on 

the reach from the Grana outlet to the Svorkmo intake. The model was evaluated against observed 

flow at Syrstad gauge, observed water temperature at several locations and observed ice from field 

campaigns, time lapse video and aerial photography. The model was found to provide good results. 

Discharge showed a Nash-Sutchcliffe R2 of 0.79 and water temperature showed an average R2 of 0.71. 

Further, it was observed that the model managed to predict both the development of the ice cover and 

presence of drifting frazil with quite good accuracy. A more detailed description of the model and the 

setup in Orkla can be found in [27,34]. 

The Orkla model is used for two different purposes in this analysis. In the first scenario we 

simulated the Orkla hydropower system with the current climate and several future climate scenarios 

using the data setup presented earlier. In addition we also simulated a modified hydropower system 

consisting only of the Bjørset Dam and intake to evaluate the impacts on a typical run of the river 

system. In the latter case the upstream water temperature boundary conditions were derived from 

observations from an unregulated tributary at the Gisnås gauge. Unregulated flows were constructed 

by scaling from the unregulated gauge at Eggafoss (neighboring catchment) using catchment area and 

specific runoff ratio as the scaling factor. 
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2.2.3. Reservoir Modeling 

Dams in cold regions are designed taking into account static/thermal and dynamic ice loads. 

These loads are traditionally computed using empirical formulae as a function of the maximum ice 

thickness in the reservoir. Changes in the energy balance in the future will cause changes in ice 

thickness thereby leading to changes in ice loads. Ice cover on reservoirs also influences hydropower 

operation by way of reducing the volume of water available during winter as water is converted to ice. 

Another is the effect of ice on rip-rap stability as well as bank erosion during draw-down. Releases from 

dams can also cause environmental problems since deep water intakes can change the natural 

temperature regime. We use results from reservoir modeling case studies for current and future climate 

to discuss the likely situation of reservoir related effects in a future climate. The model used is a 

modified version of the 1D lake thermal and ice cover simulation model, MyLake [35] which was 

adapted for reservoir application and calibrated with historical data prior to use for analysis with future 

climate scenarios. The model uses the following input data with daily time step: temperature, 

precipitation, wind speed, relative humidity, cloud cover and air pressure in addition to empirically 

computed solar radiation. 

Future inflows for both the river ice and reservoir study applications were derived using the 

Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model [36] which was well-calibrated 

using historical data. Pertinent weather data for the future climate were constructed by perturbing 

historical data with monthly climate change signals using the delta-change approach [37]. 

3. Results and Discussion 

Based on the results from the climatological analysis and the detailed simulations of river and 

reservoir ice we have evaluated how currently reported problems might be influenced in the future. 

There are cases where the future changes pull in both directions with both positive and negative 

impacts on the ice, and in this case we have reported both and if possible made an assessment of which 

is the most important. Current issues where ice processes can interact negatively with hydropower 

structures or hydropower production are listed in Columns 1 and 2 in Table 1, based on the review by 

Gebre et al. [7]. The general evaluations outlined in the following sections are based on an average 

assessment of the changes in ice conditions. It is worth noting that the spatial variability is high (as seen 

in Figures 4 and 5), and the magnitude of the changes will vary with the location of the hydropower plant. 

In general, lower and more coastal plants will see the largest changes from the current conditions and 

therefore it is necessary to scale the impacts discussed to the location of the plant or reservoir. 

3.1. Hydropower Operation and General Winter Conditions 

During the winter several hydropower companies will experience operational constraints to prevent 

negative ice conditions in rivers. This can be restrictions on magnitude and variability of turbine flow 

to keep stable ice covers and to prevent accidental ice releases (particularly evident in hydro 

peaking rivers), and it can be demands for stable production during early winter freeze-up to develop a 

stable ice cover. 
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Table 1. Evaluation of climate impacts on hydropower production, table summarizes 

discussion above. The items and current effects are adapted from Gebre et al. [7]:  

(+) effects denote situations where current ice effects are relieved or removed; and  

(−) effects where current ice negative impacts are getting stronger or where new ice related 

impacts may appear. 

Hydropower 

component 
Current effects Climate impact (+) Climate impact (−) 

Dams 
Ice loads on dams and  

dam faces. 

Reduced ice loads on dams. 

Reduced floe size. 

More frequent river breakups—more 

dynamic load on river constructions. 

Spillways 
Frozen gates, ice formation  

in spillway tunnels. 
Shorter winter season. - 

Reservoirs Ice forces on banks. Transport. Reduced ice thickness. Reduced transport potential. 

Trash racks 
Clogging by frazil and 

drifting ice. 

Reduced winter season and 

reduced frazil production—less 

need for operational constraints 

and ice removal. 

Potential for more ice runs, clogging of 

intakes. More frazil in rivers with run of 

the river plants—potential intake 

problems. 

Intake gates Frost and ice loads on gate. 
Shorter season and less ice 

reduce load. 

More mechanical breakups—increased 

dynamic load. 

Water outlets 
Stability in reservoirs. 

Accumulation in river outlets. 
Less ice in river outlets. 

Further decrease of stability due to 

lessened ice thickness. 

Rivers 
Unstable winter ice conditions 

downstream of outlets. 

Reduced length of winter 

season. Reduced ice formation. 
More unstable regime. 

Operational 
Limits flow variability during 

ice season. 

Reduced ice season—more 

unrestricted production. 

More unstable conditions, blocking by 

breakups and restraints on operation. 

The ice cover/winter duration as designated by the number of days between the autumn and spring 

0 °C isotherm dates (see Figure 2) shows a marked reduction in the future climate. At the same time 

the ice cover season will be unstable due to the significant increase in MWT frequency (defined here 

as number of days with mean daily temperature greater than +1 °C) (Figure 4). Whereas the shorter ice 

covered season generally implies a reduced period where hydropower operators have to deal with ice 

related problems and therefore a reduced need to observe ice related restrictions, a more unstable ice 

cover season may result in a more dynamic ice regime with mid-winter breakups and freeze-ups. This 

can indicate a less stable ice cover, which could lead to even stricter restrictions on flow changes due 

to break-up risk [20] and the increased number of thaws may lead to more breakups and potential 

blocking of intakes and reduced production [11]. This could particularly be a problematic issue for 

brook intakes, which are often located in mountainous areas, which in winter can be difficult to access. 

Removal ice from such events can therefore be a challenge and periods with water loss can be prolonged. 

Reduced duration of winter will also generally reduce concerns in river reaches downstream of the 

hydropower system, and reduce the length of season when ice is an environmental concern for the operator. 

But on the other hand unstable ice conditions during the shortened winter will still provide challenges 

and risk of hydropower induced ice problems in receiving waters. 
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Figure 4. Mean changes in winter duration and mid-winter thaw (MWT) frequency  

(in the three months of December, January and February) in the two future time periods: 

(A) 2041–2070; and (B) 2071–2100 compared to the control period of 1961–1990. The climate 

change signals used were the average of the two General Circulation Models (GCMs) 

(ECHAM5 and HadCM3Q3) downscaled using the Swedish RCA Regional Climate 

Model (RCM). Reproduced from [15] with permission from IWA Publishing. 

 
(A) (B) 

Figure 5. Mean changes in ice thickness of three hydropower reservoirs between the 

current period and four future scenarios: (A) Tesse reservoir; (B) Follsjoe reservoir; 

and (C) Alta reservoir. Ech and Had refer to the GCMs ECHAM5, respectively; and 

HadCM3Q3 whereas 4170 and 7100 refer to the future time periods 2041–2070 and 

2071–2100, respectively. Reproduced from [38] with permission from Elsevier. 

 
(A) (B) (C) 

Over the latest years a large number of small hydro plants have been built in Norway, and ice is 

reported as a significant source of operational problems. These are typically run-of-the river type 

plants with low storage capacity and also very often located in steep streams and rivers. Vaskinn [39] 
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reported that ice problems exceeded flood damages, and that reduced production capacity due to frazil 

accumulation at trash racks and ice runs blocking intakes were the dominating issues. In addition, 

total shutdown due to frost blocking inflow or intakes are reported. As for all other issues related to ice, 

small hydro operators will also experience a shorter ice season in the future. On the other hand, a more 

unstable winter will probably exacerbate frazil problems in steep streams due to a lack of ice cover. 

The current scenarios for winter stability also points in the direction of more winter ice runs which also 

will increase potential problems for small hydropower plants. 

3.2. Effects of Frazil Ice 

For the high head system (the existing Orkla setup), the simulated number of days with frazil ice in 

the reach from Grana outlet to Bjørset Dam (Figure 6) is considered. This is the section which is 

known as the main frazil generator in the river. Results in Figure 6 show that frazil production 

generally increases going downstream from the outlet, and also a high production in steeper areas of 

the river. We also observe reduced production at the Bjørset intake, which is due to a stable ice cover 

formed on the intake pond. The hydropower operator will run stable production during freeze-up to 

establish the ice cover to prevent super-cooled water and frazil mix to reach the Bjørset intake. 

Figure 6. Change in frazil production in the 2080s compared to the current period 

(2002–2009) for the Grana outlet–Bjørset reach for three different climate scenarios. 

 

In all three future climate scenarios, the volume of frazil production is considerably reduced in all 

cross sections except the intake pond at Bjørset where we see a slight increase in the future. This reduction 

may be attributed to an increase in winter flow and increased water temperature in the future climate. 

The increased frazil production at Bjørset intake can be explained by a reduced duration of ice cover 
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and hence a higher chance for generation and transport of frazil. A minimal variability between scenarios 

is observed. 

These results indicate a reduced frazil load in the river, which will relieve the need for measures to 

prevent intake clogging and frazil induced head loss. On the other hand, a reduced ice cover at the 

intake pond might reduce the collection of frazil in the pool. This could potentially increase the load 

on the intake, but since surface ice removal from the pond is not expected to happen during cold 

periods it might not be a serious problem. Currently in Orkla a combination of operational constraints 

(flow restrictions) and mechanical removal of frazil from the gate area is employed, and based on the 

climatological and simulated results it is reasonable to believe that the need for such measures will be 

reduced in the future. 

In the second scenario, the ice model is run without the upper reservoirs to investigate the impacts 

on a run-of-river hydropower system. The portion of the reach covered by ice is significantly increased 

compared to the regulated case, and an ice cover of 50% is observed in the reach compared to a 

maximum of about 12% in the fully regulated case. In the future scenarios, the ice cover extent is 

reduced (with minimal inter-scenario variability) a scenario average of 35%. This reduction in ice 

cover translates into an increase in frazil production due to more open water areas in the middle 

locations in the study reach (Figure 7). In this case we observe an increased frazil production due to a 

more unstable ice regime (as the climatological study also indicates), which could increase the 

potential frazil problems at the intake site. The simulated variability of complete ice cover also 

supports the notion of a more unstable ice regime in the future, which could further exacerbate intake 

problems such as clogging and dynamic load on gates. 

Figure 7. Change in frazil quantity in the 2080s compared to the current period (2002–2009) 

for a run-of-river scheme with intake at Bjørset for three different climate scenarios. 
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3.3. Ice Conditions in Reservoirs 

Climate change also impacts the ice regime on regulated reservoirs. Case study on three reservoirs 

located in different geographic/climatic regions in Norway (subarctic-mountainous, subarctic-coastal, 

and arctic) using a 1D process-based reservoir model shows a marked reduction in the seasonal ice 

thickness progression (Figure 5). The simulated reduction is much higher in the coastal reservoir 

compared to the other two reservoirs, signaling that coastal environments might be more sensitive to 

climate change. The reduction in ice thickness due to overall warming in the future climate may 

compromise the use of reservoir ice cover as a means of winter transportation. Operational strategies 

such as peaking operations also influence the ice strength on regulated reservoirs. Another effect of 

reservoir ice is the loss of storage due to grounded ice. Reductions in ice thickness generally imply 

reductions in the loss of storage due to grounded ice. The consistent trends of reduced ice thickness 

found in all the studied reservoirs in the future scenarios would decrease the ice loads on rigid 

structures such as concrete dams and spillways and thereby reduce the potential damages and future 

design requirements. Thinner ice cover could, on the other hand, lead to more frequent ice break-ups 

and contribute to a higher dynamic load on structures. It is also worth looking into the potential effect 

of several break-ups and refreezes of the ice cover over the winter. 

An issue that is raised in some reservoirs is the local reduction in ice strength in the vicinity of 

outlets in reservoirs that receive discharge from upstream power plants. With decreased ice thickness 

and a potential for increased winter production due to increases in winter discharge, this is expected to 

be of larger importance in the future. 

4. Conclusions 

Among climate change effects pertinent to hydropower operation is the expected change in the ice 

regime due to changes in climate forcings. This paper has analysed possible future consequences to the 

ice-hydropower interaction in a future climate using regional climatological indices as well as case 

studies using process based models for a river system and three reservoirs on a detailed level. 

Our analysis has shown that changes in river and reservoir ice regimes may have both positive and 

negative consequences for the operation of hydroelectric stations. All indicators show that the season 

where ice is an issue will be shortened in the future, thereby reducing the period with a need for 

operational constraints and ice mitigation. The detailed simulations show a similar pattern with a 

reduced ice load in the future compared with the current situations. On the other hand, the results show 

that for the winter period ice will still be a factor to consider, and the predicted instability in winter 

conditions could create new challenges in the future climate. 

Acknowledgments 

The authors would like to thank the Norwegian Research Council through the Norwegian 

University of Science and Technology for the financial support. The work is undertaken as part of the 

Institution Based Strategic Project (subproject Sustainable Infrastructure) and the Centre for 

Environmental Design of Renewable Energy (CEDREN) projects. The authors would like to thank 

the data sources mentioned under data section for data access and use. They owe gratitude for 



Energies 2014, 7 1653 

 

 

developers of the models used for simulations. They also would like to thank the three anonymous 

reviewers for the comments and suggestions that helped improve the quality of the paper. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Kumar, A.; Schei, T.; Ahenkorah, A.; Rodriguez, R.C.; Devernay, J.-M.; Freitas, M.; Hall, D.; 

Killingtveit, Å.; Liu, Z. Hydropower; Cambridge University Press: Cambridge, UK; New York, 

NY, USA, 2011. 

2. International Renewable Energy Agency (IRENA). Power Sector, Hydropower. In Renewable 

Energy Technologies: Cost Analysis Series; IRENA: Abu Dhabi, United Arab Emirates, 2012; 

Volume 1. 

3. Hamududu, B.; Killingtveit, A. Assessing climate change impacts on global hydropower. 

Energies 2012, 5, 305–322. 

4. Benitez, L.E.; Benitez, P.C.; van Kooten, G.C. The economics of wind power with energy storage. 

Energy Econ. 2008, 30, 1973–1989. 

5. Gosink, J.P.; Osterkamp, T.E. Evaluation of Ice Problems Associated with Hydroelectric 

Power Generation in Alaska; Final Report to the State of Alaska, Department of Commerce and 

Economic Development; University of Alaska: Fairbanks, AK, USA, 1981. 

6. Wigle, T.; Doyle, P.; Fonseca, F.; Mark, H.; Parmley, L.; Raban, R.; Robert, S. Optimum Operation 

of Hydroelectric Plants during the Ice Regime of Rivers—A Canadian Experience. In Prepared by 

a Task Force of the Subcommittee on Hydraulics of Ice-Covered Rivers; National Research 

Council of Canada (NRCC): Ottawa, ON, Canada, 1990; p. 81. 

7. Gebre, S.; Alfredsen, K.; Lia, L.; Stickler, M.; Tesaker, E. Review of ice effects on 

hydropower systems. J. Cold Reg. Eng. 2013, 27, 196–222. 

8. Andres, D.; Vinne, G.V.D. Ice Consolidation on the Peace River: Release Patterns and 

Downstream Surge Characteristics. In Proceedings of the 12th Workshop on the Hydraulics of 

Ice Covered River, CGU HS Committee on River Ice Processes and the Environment (CRIPE), 

Edmonton, AB, Canada, 19–20 June 2003. 

9. She, Y.; Hicks, F.; Andrishak, R. The role of hydro-peaking in freeze-up consolidation events on 

regulated rivers. Cold Reg. Sci. Technol. 2012, 73, 41–49. 

10. Tjomsland, T.; Bakken, T.H. Hydro-Peaking at Tonstad Power Plant in Norway—Modelled 

Effects on Currents, Temperatures and Ice Cover; Report No. 6326-2012; Norwegian Institute for 

Water Research: Oslo, Norway, 2012; p. 57. 

11. Prowse, T.; Alfredsen, K.; Beltaos, S.; Bonsal, B.R.; Bowden, W.B.; Duguay, C.R.; Korhola, A.; 

McNamara, J.; Vincent, W.F.; Vuglinsky, V.; et al. Effects of changes in arctic lake and river ice. 

AMBIO 2011, 40, 63–74. 

12. Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water; 

Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2008; p. 210. 



Energies 2014, 7 1654 

 

 

13. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical 

Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., 

Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, 

UK; New York, NY, USA, 2007. 

14. Beltaos, S.; Burrell, B.C. Climatic change and river ice breakup. Can. J. Civ. Eng. 2003, 30, 145–155. 

15. Gebre, S.; Alfredsen, K. Contemporary trends and future changes in freshwater ice conditions: 

Inference from temperature indices. Hydrol. Res. 2013, doi:10.2166/nh.2013.213. 

16. Serreze, M.C.; Walsh, J.E.; Chapin, F.S.; Osterkamp, T.; Dyurgerov, M.; Romanovsky, V.; 

Oechel, W.C.; Morison, J.; Zhang, T.; Barry, R.G. Observational evidence of recent change in the 

northern high-latitude environment. Clim. Chang. 2000, 46, 159–207. 

17. Benson, B.; Magnuson, J.; Jensen, O.; Card, V.; Hodgkins, G.; Korhonen, J.; Livingstone, D.; 

Stewart, K.; Weyhenmeyer, G.; Granin, N. Extreme events, trends, and variability in northern 

hemisphere lake-ice phenology (1855–2005). Clim. Chang. 2012, 112, 299–323. 

18. Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; 

Assel, R.A.; Barry, R.G.; Virginia Card, E.K.; Granin, N.G.; et al. Historical trends in lake and 

river ice cover in the northern hemisphere. Science 2000, 289, 1743–1746. 

19. Yoo, J.; D’Odorico, P. Trends and fluctuations in the dates of ice break-up of lakes and rivers in 

northern europe: The effect of the north atlantic oscillation. J. Hydrol. 2002, 268, 100–112. 

20. Beltaos, S.; Prowse, T. River-ice hydrology in a shrinking cryosphere. Hydrol. Process. 2009, 23, 

122–144. 

21. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Impacts, Adaptation 

and Vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of  

the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P.,  

van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007. 

22. Brown, L.C.; Duguay, C.R. The fate of lake ice in the north american arctic. Cryosphere 2011, 5, 

869–892. 

23. Dibike, Y.; Prowse, T.; Saloranta, T.; Ahmed, R. Response of northern hemisphere lake-ice cover 

and lake-water thermal structure patterns to a changing climate. Hydrol. Process. 2011, 25, 

2942–2953. 

24. Dibike, Y.; Prowse, T.; Bonsal, B.; Rham, L.D.; Saloranta, T. Simulation of North American 

lake-ice cover characteristics under contemporary and future climate conditions. Int. J. Climatol. 

2012, 32, 695–709. 

25. Gebre, S.; Boissy, T.; Alfredsen, K. Sensitivity of lake ice regimes to climate change in the 

nordic region. Cryosphere Discuss. 2013, 7, 743–788. 

26. Andrishak, R.; Hicks, F. Simulating the effects of climate change on the ice regime of the 

peace river. Can. J. Civ. Eng. 2008, 35, 461–472. 

27. Timalsina, N.P.; Gebre, S.B.; Alfredsen, K.T. Climate Change Impact on the River Ice Regime 

in a Norwegian Regulated River. In Proceedings of the 17th Workshop on River Ice, CGU HS 

Committee on River Ice Processes and the Environment (CRIPE), Edmonton, AB, Canada, 

21–24 July 2013. 



Energies 2014, 7 1655 

 

 

28. Benestad, R.E. Climate change scenarios for northern Europe from multi-model IPCC AR4 

climate simulations. Geophys. Res. Lett. 2005, 32, doi:10.1029/2005GL023401. 

29. Fitzharris, B.N.; Allison, I.; Braithwaite, R.J.; Brown, J.; Foehn, P.M.B.; Haeberli, W.; Higuichi, K.; 

Kotlyakov, V.M.; Prowse, T.D.; Rinaldi, C.A.; et al. The Cryosphere: Changes and Their Impacts. 

In Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Contribution 

of Working Group II to the Second Assessment Report of the Intergovernmental Panel on 

Climate Change; Cambridge University Press: Cambridge, UK, 1996; pp. 241–266. 

30. Anisimov, O.A.; Vaughan, D.G.; Callaghan, T.V.; Furgal, C.; Marchant, H.; Prowse, T.D.; 

Vilhjálmsson, H.; Walsh, J.E. Polar Regions (Arctic and Antarctic). In Climate Change 2007: 

Impacts, Adaptation and Vulnerability; Parry, M.L., Canziani, O.F., Palutikof, J.P.,  

van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK; New York, 

NY, USA, 2007; Chapter 15, pp. 653–685. 

31. Prowse, T.D.; Beltaos, S. Climatic control of river-ice hydrology: A review. Hydrol. Process. 

2002, 16, 805–822. 

32. Engen-Skaugen, T.; Haugen, J.E.; Hanssen-Bauer, I. Dynamically Downscaled Climate Scenarios 

Available at the Norwegian Meteorological Institute; Report No. 24/08; Norwegian Meteorological 

Institute: Oslo, Norway, 2008. 

33. Thériault, I.; Saucet, J.-P.; Taha, W. Validation of the Mike-Ice Model Simulating River Flows in 

the Presenceof Ice and Forecast of Changes to the Ice Regime of the Romaine River due to 

Hydroelectric Project. In Proceedings of the 20th IAHR International Symposium on Ice, Lahti, 

Finland, 14–18 June 2010. 

34. Timalsina, N.P.; Charmasson, J.; Alfredsen, K.T. Simulation of the ice regime in a norwegian 

regulated river. Cold Reg. Sci. Technol. 2013, 94, 61–73. 

35. Saloranta, T.M.; Andersen, T. Mylake—A multi-year lake simulation model code suitable for 

uncertainty and sensitivity analysis simulations. Ecol. Model. 2007, 207, 45–60. 

36. Bergström, S. Development and Application of A Conceptual Runoff Model for Scandinavian 

Catchments; University of Lund: Lund, Sweden, 1976. 

37. Xu, C.Y. From GCMs to river flow: A review of downscaling methods and hydrologic 

modelling approaches. Prog. Phys. Geogr. 1999, 23, 229–249. 

38. Gebre, S.; Boissy, T.; Alfredsen, K. Sensitivity to climate change of the thermal structure and ice 

cover regime of three hydropower reservoirs. J. Hydrol. 2014, 510, 208–227. 

39. Vaskinn, K.A. Surveying Flood and Ice Damages on Small Hydropower Plants. In Proceedings of 

the Produksjonsteknisk Konferanse (PTK), Gardermoen, Norway, 4–6 March 2013. (in Norwegian) 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


