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Abstract

Acid injection in a chalk oil reservoir can increase oil recovery by dissolving part
of the fractured porous reservoir. Dissolution leads to the formation of conductive
channels (“wormholes™) that can increase the oil production. However, natural
fractures in the reservoir affect the dissolution patterns by directing the flow poten-
tial along the fractures, and affect further acid treatments by creating a favorable
flow path for the acid. Moreover, natural fractures influence the strength of both
rock and wormholes. An eventual rock and wormhole failure would nullify the acid
treatment.

Therefore, it is crucial to predict the contribution of natural fractures to disso-
lution patterns, the wormhole and reservoir strength and their failure threshold in
order to design a successful acid treatment.

For this purpose, a continuum-based computational method is developed. The
model includes flow in the porous chalk reservoir, flow in the wormhole, acid trans-
port in the porous medium and dissolution of the fractured chalk, reversible and
irreversible deformation of chalk and fractures, which are modeled with an equiva-
lent elasto-plastic damage constitutive model. The coupling between the reservoir
flow and the fractured chalk deformation is done by an explicit coupling method.

The results indicate that in a chalk core sample with a vertical fracture plane,
which is orientated parallel to the plane between the inlet and the core, the injected
acid has the best penetration depth through the core sample. However, the vertical
fracture leads to high deviatoric stresses in the core, which can result in an earlier
failure of the material, thus a negative effect on oil recovery. In addition, results
show that the wormhole’s walls failure risk is higher if the natural fractures are ori-
ented along the wormhole; furthermore, natural fractures with larger dip angles and
higher inclinations with respect to the wormhole increase the risk of the rock fail-
ure. The increased fluid production from the wormhole, which can be the result of
the further acid treatments, develops irreversible behaviors of the rock and reduces
the natural fracture asperity at the wormhole’s tip, in addition to increasing the
wormhole’s wall deformation; this eventually leads to the wormhole’s occlusion.
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Chapter 1

Introduction

Oil consumption in the world is going to increase and oil supply declining rapidly
and running out of cheap production. Therefore, there is a need to use a new tech-
nology to recover more oil. Recovery is extracting more oil and gas from existing
reservoir. During drilling, natural pressure within the reservoir causes oil to flows
out. This is primary recovery; however,the reservoir’s pressure declines and extrac-
tion of oil due to the initial pressure stops, but two third of oil is still underground,
thus the secondary recovery is used in the depleted reservoir by utilizing different
technologies such as installing pumps or injection of water and gas into the well.
In low permeability and porosity reservoirs, oil is trapped on the rock and is unable
to be extracted by the initial drilling. In this case, well stimulation techniques such
as fracturing is used to increase the permeability of the rock. Two ways of well
stimulation are fracturing and matrix acidizing. In fracturing stimulation, fluid is
injected in higher pressure than the reservoir pressure, which leads to opening of
new channels. The injected fluid can be oil water or acid. In the matrix acidiz-
ing, acid is injected at a lower pressure than the required pressure for the fracturing
method. In this method acid reacts with the rock, dissolves portion of the rock and
open up the existing spaces that leads to an less restrictive pattern for oil to flow.
This allows more fluid to drain to the well-bore and enhance the oil recovery.

The reservoir acidizing is almost as old as the oil reservoir drilling. The well
stimulation by hydrochloric acid [HCI] was first attempted in 1896 in Ohio oil com-
pany, but acid corroded well casing, and this technique didn’t get used again for 30
years. In 1932, Dr John Grebe, from Dow company found out that arsenic inhibited
the action of HCI on metal, and matrix acidizing is reborn. Three years after that
Halliburton company started developing commercial acidizing [14].

Well stimulation by the acid is getting increasingly important to make drilling
more economical. However, it is important to know that rock dissolution by acid
does not always improve the oil productivity from the reservoir.



2 Introduction

Various factors such as the acid injection rate, diffusion coefficient of the acid
species, concentration of acid, temperature and heterogeneity of the formation in-
fluence the dissolution pattern and affects the production rate and stability of the
well-bore. These dissolution patterns are divided to face dissolution, wormholing,
and uniform dissolution. If the large portion close to the well is completely dis-
solved, it is called face dissolution; conversely, if too much of the chalk is removed
by dissolution, it is called uniform dissolution. There is an optimum condition at
which long channels will be formed. Acid etches the wall of the pores, opens their
walls and creates channels that go through the chalk like a worm, hence the name
“wormhole”. Creation of wormhole pattern increases oil production, because it
has the best penetration depth for the same volume of injected acid [20, 57]. Figure
1.1 illustrates a wormhole patterns from the experimental works has been done by
Bauer et al. [3].

Figure 1.1: Radiographs of wormholes formed during the dissolution of chalk [3].

Counter to the increasing oil production and oil recovery due to the acidizing,
is the increased risk of rock breaking down. The stress states of the rock is changed
in the area where the wormholes and fractures are formed and this influences the
resulting effectiveness of the acid treatment.

From the above discussion, in order to have a successful acid fracturing, it is
important to investigate the effect of the presence of fractures and wormholes on
the rock strength and consequently on the oil production.
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1.1 Objective

In order to understand the physical behavior of the stimulation process, we will use
computer simulation, which is cheaper, more flexible and faster than experimental
works. The objective of this thesis is:

1. Presenting a simulation approach that treats the subject efficiently and in ac-
cordance with physics.

2. Predicting risk of the rock failure due to the presence of the wormhole and
fractures.

3. Understanding the interaction between the acid injection and the formed dis-
solution pattern and the stress states of the rock.

1.2 Method

The case study simulated in this thesis is a core sample representing the near well
bore area of the chalk reservoir. The core sample includes pre-existing fractures.
These fractures can be natural fractures in the rock or fractures created by hydraulic
fracturing or other stimulation treatments such as previous acid injection. The fluid
flow and acid transport in the core sample is modeled by the flow in the fractured
porous media on a Darcy scale. The prediction of the rock failure, wormhole and
damage of the fractures has been done by using a continuum approach and ap-
plying an equivalent constitutive model, which considers both chalk and fracture
deformation.
The thesis is divided into three main parts:

1. The fluid flow model including the acid transport and the rock dissolution,
which is described in Chapters 2 and 3.

2. The geomechanical model including both reversible and irreversible behav-
iors of the rock and fractures, which is explained in Chapter 4.

3. The coupling method between the two models is presented in Chapter 5.

In Chapter 6 a brief discussion of the numerical methods to solve equations repre-
senting the physical behavior of the model is described .
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Chapter 2

Fluid Flow in the Fractured Rock

Carbonate reservoirs as a source of water and oil are fractured system. The frac-
tured reservoirs are divided in two types: fractured reservoirs of single porosity and
fractured reservoirs of double porosity. In both cases the reservoir consists of frac-
tures surrounding the block or matrix. In a single porosity fractured reservoir, the
matrix is impervious and the total porosity is considered as only the matrix poros-
ity, however in double porosity both matrix and fractures porosities are considered
[23]. In this thesis the theory of a single porosity is applied.

2.1 Flow in the Single Porosity Fractured Reservoir

In single porosity reservoirs, flow takes place only through the network of fractures.
The flow can be formulated through the continuum approach. A volume block with
discontinuous fractures is replacing with a continuum block with equivalent proper-
ties. The equation of flow can be formulated by partial differential equations, Flow
through the fracture is primarily laminar and the equation of motion is represented
by Darcy’s law.

2.1.1 Darcy Velocity

From Darcy’s law, the flow discharge through the network of fractures is propor-
tional to the hydraulic gradient and hydraulic conductivity by the following equa-
tion,

Q = —AKVH 2.1

where Q) is the flow discharge vector, A is the cross sectional area of the rock, K
is the second rank tensor, and Vh is the hydraulic gradient vector. By neglecting

5
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the gravity effect, the hydraulic head gradient is replaced by total pressure drop:

Y
Py

Vh (2.2)

In Equation (2.1), K represents the hydraulic conductivity of the heterogeneous
porous medium and is related to a permeability tensor by a scalar factor as follows,

k
K=pg— (2.3)
1

The scalar factor is the fluid physical properties and includes the dynamic viscosity
1, the fluid density p, and the acceleration of gravity g. k is the permeability tensor
and represents the directional resistances of the porous media to the flow.

Darcy velocity vector is obtained by dividing Equation (2.1) over the cross sec-
tion A and substituting Equation (2.2) and (2.3) into Equation (2.1) as:

k
q=——Vp=—kr 2.4)
I
where Vp is the pressure gradient vector. The fluid velocity vector U is related to
the Darcy flux g by porosity () as:

U= (2.5)

q
¥
2.1.2 Flow through an Individual Fracture

Flow through an individual fracture is modeled by the flow through the two parallel
plates with a narrow space between [23]. This is governed by the Navier-Stokes
equation by assuming a small Reynolds number,

2
Y
12 7

(2.6)

where wy is the distance between two parallel plates or the fracture aperture. 7,
is the projection of the pressure gradient parallel with the fracture. According to
the vector difference, the pressure gradient is split into two components, one in the
direction of the fracture plane, 7, and the other in the normal direction,r,, with n
as unit vector.

Tp=T—Thp 2.7

Tp =7~ (T-1)h 2.8)
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on substitution, the velocity given by Equation (2.6) becomes,

U———w]% T — (T -n)n 2.9
12”( ( n)n) (2.9)
or alternatively
w?c
U = —712 (5U —n; nj)T (2.10)

by substituting Equation 2.10 into Equation (2.5) and by comparison with Equation
(2.4), the permeability tensor in Equation (2.4) is defined as:

2

w
4(5@‘ — n; ny)isi; (2.11)

k:
124

Permeability in Equation(2.11) can be written a product of two components, the
permeability scalar and the unit permeability tensor as follows,

k = |k|[K] (2.12)

The permeability scalar can be defined as,

wj
k| = o=~ (2.13)
12p
The unit permeability tensor [K] is defined in a compact form,

where 9;; is the Kronecker delta; n; and n; are components of the normal vector
to the fracture plane 7. 7 and j stand for the orthogonal local references axes 2/,
y" and 2’ on the fracture plane. In order to evaluate the flow discharge from Darcy
law in Equation (2.1), the hydraulic conductivity tensor is obtained by multiplying
the permeability tensor by the cross section area perpendicular to flow (2w x H);
Hydraulic conductivity tensor becomes,

20H

K= W wf’c ((5” — Ny nj)iiij (2.15)

Fracture Orientation

The orientation defines a single fracture plane in space. In Geology, a planar surface
is commonly defined in terms of strike line and dip line. The strike line of a planar
feature, is the line representing the intersection of that fracture with an imaginary
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X
dip /
y

Figure 2.1: An illustration of a Fracture plane with dip angle d and azimuth 90°

horizontal plane. The angle between the strike line and a reference vector, (y) is
called the azimuth. The inclination angle between the inclined fracture and the
horizon is the dip angle d. A fracture plane and its orientation is illustrated in
figure (2.1). In this work the fracture plane is defined with their local coordinate
system with orthogonal axes of 2/, 3/ and 2/, the vector normal to the fracture plane
is in 2’ direction, The block coordinate axes are .,y and z, where z is the vertical
direction and x and y axes are on the horizontal plane.

2.1.3 Continuity Equation

In Darcy equation, there is two unknown parameters, the velocity and pressure
gradient vectors. The velocity vector can be defined by using the mass continuity
equation, which is based on the principle of conservation of mass, and indicates
that the rate at which mass enters a system is equal to the rate at which mass leaves
the system. The continuity equation is described as follows.

909 .U —q (2.16)

ot

where ¢ is the source and sink term, describing reservoir withdrawal or injection,
and ¢ represent porosity of the rock. The continuity equation leads to the Equation
(2.17) for in-compressible flow by making an assumption that the process is in
steady-state and there is no sink and source term.

V-U=0 (2.17)

2.1.4 Species Transport Equation

The transport equation is derived by balancing all mass fluxes across the system.
Here, convection and dispersion determine the transport process of fluid in the
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porous media. The transport equation is applied to all species in the system.

ocC

SOW—FU'VC—V'(QDDe'VC)—qm:O (2.18)

The first three terms in the equation represent accumulation, convection and dis-
persion of the material, respectively. The forth term is defined as a sink or source
term. C'is the species concentration, D, is the dispersion. In this work the ef-
fect of heterogeneity of the porous media for defining the dispersion tensor is not
considered and hence D, = D_I.
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Chapter 3

Acid Injection into the Fractured
Reservoir

As it was mentioned in the Introduction, acid injection is used for stimulation of
carbonate reservoirs to increase the rock permeability and porosity. The process of
carbonate reservoir dissolution is discussing in the following.

3.1 Model for Rock Dissolution

Acid flows by convection into pore spaces. The acid molecules are transferred to
the surface of pores and reacts with the rock and the reaction products transfer back
to the bulk of the flowing acid. As a result of the reaction, porosity evolves and cre-
ates an easier path for the flow leading to increased permeability. However, the
presence of natural fractures or medium heterogeneity leads to an uneven dissolu-
tion. The fractured parts of the medium with higher permeability attract more acid,
which further dissolves the natural fractures, creating channels and travel ahead of
the front. Heterogeneity is required for the channel formation. However, accord-
ing to experimental studies [20, 21], a highly branched channel or "wormhole” is
required to increase in permeability and leading to favorable reservoir stimulation.
The channel structure depends on relative magnitudes of convection, dispersion,
and reaction in the medium [58], which again depend on the local pore structure,
local velocity of the fluid, local diffusion and local reaction rate. If the reaction is
slow, the process is considered in a reaction-rate controlled regime, and the result
is more uniform acid distribution. However, if the reaction is very fast compared to
the mass transfer, the process is known as being in the mass-transfer controlled
regime. The mass transfer and reaction parameters are obtained from the pore
scale modeling. Therefore, the rock dissolution phenomena is a coupling between

11
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processes at two length scales: Darcy scale and pore scales. Since, the channel
structure is not the objective of this work, the pore scale parameters obtained from
studies of Golfier et al. [24] and are inputs to the Darcy scale.

A mathematical description of acid transport in fractured porous medium and
dissolution process is presented by Golfier et al. [25] by considering the following
assumptions.

1. The reaction products, which transfer back to the bulk, are very small thus it
is assumed they do not change their total fluid mass.

2. The interface shape changes are slow, hence the dissolution does not change
the mass flux; continuity equation is considered in steady-state if there is not
any other sink and source term.

3. This model is considered as a mass transfer controlled regime; the reaction
is very fast and the acid concentration at the fluid-solid phase is negligible.

The velocity and pressure field for acid flow is calculated from the equations in the
flow model, which are described in the previous section. The acid concentration at
each point of the reservoir is evaluated from the transport equation.

3.1.1 Acid Transport Equation
The transport equation for acid in the porous media approximated as:

0C,
Ly

The forth term of the Equation (3.1) is defined as a sink or the acid consumption
term and describes the depletion of acid due to the reaction. «. is the local mass
transfer coeflicient. The detailed information are available in [25, 62].

+U - VC, =V (¢De-VCy) — ae(Cy) 3.1)

3.1.2 Rock Dissolution

The amount of solid dissolved, which causes porosity evolution, is equivalent to the
amount of acid consumed; The evolution of the porosity field is defined by using
the stoichmietry of the reaction written in equation(3.2).

do  Bacly
ot pr

(3.2)

where pp is the rock density, 3 represents the stoechiometric coefficient of the
chemical reaction. The resulting acid concentration profile from equation(3.1) is
used to solve the dissolution equation to find the new porosity field.



Chapter 4

Mechanical Behavior of the
Fractured Chalk

As it was mentioned, acid injection into a carbonate reservoir may increase the
reservoir permeability and leads to reservoir productivity enhancement. However,
the injected acid influences the physical behavior of the carbonate reservoirs by
changing some parameters such as the heterogeneity of the media due to the frac-
tures formation or the rock dissolution, and by changing the fluid pressure in the
porous media. Since carbonate reservoirs such as chalk are a group of highly de-
formable geo-materials with significant nonlinearity in their constitutive behavior,
acid injection may lead to reservoir failure due to the change of their constitute
behavior.

In order to model the constitute behavior of the fractured chalk, a coupled con-
stitutive model, which can incorporate both chalk and fracture deformation is re-
quired. The presented model in this work is divided to three parts: intact chalk
constitutive model, fracture constitutive model, and a coupled model for the frac-
tured chalk. Both intact chalk and fracture display reversible and irreversible de-
formations. The linear elastic model represents the reversible deformation of the
chalk and the fracture. The irreversible deformation of the chalk is modeled by
the theory of nonlinear plasticity, and nonlinear damage theory is used to represent
the irreversible deformation of the fracture. Lastly a coupled elasto-plastic-damage
model is developed to demonstrate the constitute behavior of the fractured chalk.

4.1 Linear Elastic Models

The constitutive behavior is expressed mathematically and relates stress tensors
to strain tensor in the following form. The constitutive relationship is written on

13



14 Mechanical Behavior of the Fractured Chalk

matrix form, and hence stress and strain tensors are written as (matrix) vectors.
Because of this, the stress and strain states are often referred to as “vectors” in the
following sections.

4.1.1 Linear Constitutive Model for the Intact Chalk

The linear stress-strain relation of the intact chalk (without discontinues fractures)
is written as:

o = Dyet @.1)

where o is the stress vector, €7 is the elastic strain incremental vector. For the linear
elastic chalk, the constitutive matrix, D; and takes the following form;

1—v 1% 1% 0 0 0
v 1—v 1% 0 0 0
E v v 1—v 0 0 0
Dr=1771 o 0 0 05-—v 0 0 4.2)
0 0 0 0 05—v 0
| 0 0 0 0 0 0.5 —v]

where I and v are Young’s Modulus and Poisson’s ratio, respectively. The linear
constitutive model of intact chalk is assumed as an isotropic and symmetric model.

4.1.2 Linear Constitutive Model for the Fracture Plane

The fracture is modeled as a 2-D plane. The linear stress-strain relation of the single

fracture is written as,
d

e =F;o (4.3)

where o is the stress vector at the local coordinate system, &’ * is the elastic strain
vector of the fracture in its local coordinate system. F; is the elastic compliance
matrix of the single fracture plane in the local coordinate system and takes the

following form:

k 1

0
L0 (4.4)

k!

Fj= k

S O3

0
s
0

ky, is the stiffness normal to the fracture plane, and k; and k; are the shear stiffnesses
of the fracture plane in two orthogonal directions in the local coordinates of the
fracture plane [52].
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4.2 Elasto-plastic Model

If some parts of the intact chalk in response to applied load is undergoing irre-
versible deformation,the material behavior is elasto-plastic. Because the elasto-
plastic behavior of the material depends on the stress history of the material, the
constitutive relations are expressed in incremental form as:

Ao =DAe (4.5)

To build a constitutive model for the chalk, the following concepts and principals
are required;

Strain Additive

The total incremental strain can be split additively into elastic and plastic part.

Ae = Ae® + AeP (4.6)

Yield Surface

The material have certain admissible stress-strain states, at which stress versus
strain can not reach beyond this state. The boundary between admissible and inad-
missible stress state regions is defined by a surface called yield surface. Material
which lies under the yield surface is called elastic, whereas on the yield surface the
material have elasto-plastic behavior. The surface is a function of the stress state,
o, and its size changes as a function of the internal parameters 77, which can be
related to hardening or softening parameters. Hardening and softening parameters
are related to the magnitude of plastic strain or plastic work.

The magnitude of a yield function F' is used to identify the type of the material
behavior. If F'(o,m) < 0, the material is purely elastic, and the material displays
plastic behavior if F'(o,m) = 0, and F'(o,m) > 0 is an inadmissible situation. In
this work, the yield function is calculated from the stress invariant quantities instead
of stress vectors. Stress invariant quantities are useful because they are independent
of the reference axes. The various invariants, which are used here, are listed in the
following section.

Stress and Strain Invariant

The invariants defined for 3-D space are as follows,

1. Mean stress, p,,

1
Pm = g(o-a:x + Tyy + Uccx) 4.7)
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2. Deviatoric stress, J
J =/3Jo (4.8)

where .J5 is the 2nd invariant of deviatoric stress,

1
Jy = 5[S§ + S; + S+ o + ooh. + 02, (49)

where, S; = 0zz — Pm» Se = Oze — Pm»> Sz = Ozz — Pm-
Often +/.J3 is used as a parameter of the yield function.

3. Lode angle, 6
The load angle 6 is defined via

3vV3 J

sin(30) = — 4.10
(30) = = v (4.10)

J3 is the third invariant of deviatoric stress,
J3 = Sz SyS. + 204y0y. 0.0 — S 052 — Sy afz - S, O’iy (4.11)

Plastic Flow Rule

In order to define the direction of plastic strain regarding to the imposed stress, a
flow rule is defined. From the principal of maximum plastic dissipation and Kuhn-
Tucker optimality condition [47], the flow rule can be expressed as follow,

4.12)

where Ae? is the incremental plastic strain vector, QP is the plastic potential func-
tion, and ~? is a plastic scalar multiplier, which is a non-negative value. If the
potential function is equal with the yield function, the plasticity model is called the
associated; otherwise, non-associated [30].

4.2.1 The Elasto-plastic constitutive model of Chalk: The ISAMGEO
Chalk model

Chalk behaves as a frictional material and its ultimate strength is defined with re-
spect to the shear failure, in which the grains of material slide relative to each other.
However, shear failure is not the only failure mechanism that may occurs in chalk;
chalk is a high porous material and under a compressive loading an irreversible de-
creasing in pore volume is observed, which is described as pore collapse yielding.
In this work, the constitutive model of the present mechanical behavior of chalk is
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based on the ISAMGEO chalk model, which has been developed by Plischke [60].
The chalk model includes two independent yields mechanisms: shear failure and
pore collapse. The shear failure have priority over the pore collapse. However,
another failure mechanism in which the chalk grains pull apart is also observed
experimentally, and is often called tensile failure. In this work we neglect the rock
failure due to the tensile.

1. Shear Failure: The yield function is straight line in stress invariant (J, Py,)
space defined by the Mohr-Coloumb function as follows,

P = \/72{005(9) - sm@ﬁ)\/;m@) — ¢ [2cos(20) — 1]} +
— [pm sin(9) + ¢ cos(¢pear)]  (4.13)

and the potential function is expressed as,

QP = \/TQ{COS(Q) - sm(q/;)\/glnw) —( [2cos(20) — 1]} +
— [pm sin(¢)) + ¢ cos(wpeak)] (4.14)

where, ( scales the impact of the intermediate principal stress. ¢ is the fric-
tion angle and c is the cohesion, which are both varying due to hardening
and softening. Note that the plastic potential QP is described by the same
function as the yield. However, the friction angle ¢ is replaced by the di-
latancy angle . In order to have a realistic description of the volumetric
plastic strain changes, a non-associated flow rule is used.

Chalk properties such as cohesion and friction vary during loading, which
harden or soften the Mohr-Coloumb yield function. Hardening of the yield
surface is applied to the model by increasing the friction angle before shear
strength reaches the peak stress. After reaching the peak stress, the material
experiences pronounced softening by decreasing cohesion and friction angle.
For the dilatancy angle ), the hardening and softening are the same as for the
friction angle ¢. Increase of the friction angle from ¢;,,; to @peqr is described
by the following relation.

k k
(Ppeak — ¢im)\/2 ey — (e )
peak
pl

¢ = Gini + (4.15)

3

After reaching the peak strength (specified as: £, = 5;6“’“), there is an ex-
ponential decline to the residual values, ¢ys.

O = (Ppeak — res) €T v Eeak) Lo (4.16)
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Cohesion c is assumed to be constant as the initial value c¢;,;, until the peak
strength is reached. Cohesion then decline linearly until the residual cohesion
Cres 18 reached.

¢ = Cini — N (ep — egleak) 4.17)
where T and 7 are the hardening and softening parameters.

Equivalent plastic strain, €, is defined as:

Eu,pl Ewv,pl Eu,pl
Epl = \/2 (Exapt — U3p )? + (eyypt — U3p )2+ (E2zpl — %)2 + 8iy,pl + 6121271)1 T 83937171
(4.18)

where, €, 5, is the volumetric plastic strain.

2. Pore Collapse: The yield surface for pore collapse is defined by an ellipse in
J — pm space, and the flow rule is assumed as an associated plastic flow. The
pore collapse yield function is expresses as,

FP =33/Jy + M2 (02, — pm pec) (4.19)

M is the parameter of pore collapse function. p.. is related to the hydrostatic
pore collapse strength p,.

e
Pecec = po(ﬂ)b (4.20)
€0

€o is the reference volumetric plastic strain rate and the exponent b is a mate-
rial parameter. p. is a function of plastic volume strain and hardening param-
eters, thus the yield function can harden with progressing the pore collapse.
Moreover, p,. is a time dependent parameter that lead to shrink of the yield
function by time. As a result, the chalk volume is declining as a time while
stresses are constant. This processes is called creep. The strength and stiff-
ness of chalk is depending on the amount of water present in the rock, which
has been mentioned in some studies [59, 64, 29]. By varying the amount of
water both elastic young modulus and ultimate strength vary. In the ISAM-
GEO chalk model, the pore collapse strength is reduced by increasing the
water mass fraction in pore spaces. However, in this work the variation of
water saturation is not modeled and the effect of water on weakening the
chalk is neglected.

4.3 Damage Model

Irreversible behavior of the fracture such as sliding, which leads to the fracture
asperity angle degradation, is modeled by the damage theory. The schematic of a
fracture including asperity and aperture is illustrated in Figure 4.1.
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Aperture

Asperities

Figure 4.1: Fracture with parallel walls, contains asperities

The Fracture opening and the fracture compaction is another types of the ir-
reversible behavior, which are not considered in this work. In order to build a
constitutive model for the fracture including the irreversible behaviors, the princi-
pal of maximum damage dissipation is employed, and by using the Kuhn-Tucker
optimality condition, the damage flow rule is obtained. For more detail about the
theory of damage we refer to the work of Ibrahimbegovi¢ [36].

The constitutive relation for the fracture can be written as the following form,

Ae' = Foy Ao’ 421

The elasto-damage compliance tensor F.; can display the irreversible behavior of
the fracture. A€’ is the total incremental strain of the fracture and similar to the
plasticity theory, is sum of the reversible and irreversible strains.

The stress states in fracture model must lie in an admissible region, the bound-
ary between the admissible and the inadmissible region is defined by slip function,
which has similarity with the yield function in elasto-plastic materials. The slip
function with a negative value corresponds to the reversible behavior of the materi-
als, whereas the zero values indicates the fracture has an irreversible deformation,
that indicates the presence of damage. This produces the damage dissipation, which
ought to be in agreement with the second thermodynamics principle. By using the
principal of the maximum damage dissipation, the damage flow rule to obtain the
incremental irreversible damage strain is:

d
Ay, = vdaaﬁ 422)
(o2

4.3.1 Constitutive model of the Fracture

The constitutive relation of the fracture is defined with respect to the fracture slid-
ing, which is similar to the shear failure in the chalk. The slip F'¢ and potential
functions Q¢ for the single fracture are represented by Mohr-Coloumb function at
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Figure 4.2: Rheological elements: The chalk and the fractured plane are modeled
as two springs in series and experience the same applied load.

the local fracture plane coordinates x’,y/ and 2’ as follows [40],

Nt
Fi= <“y) +< "”) +ol,—c (4.23)
I Ny ‘LLZ xrr f
- -1
o' 2 ’ 27 2
Q! = (”) + <U'””> + o’ sin(a) (4.24)
(- /'Ly //l/z -

» is the stress normal to the fracture plane, and o7, and o7, are shear stresses.

c f is the cohesion of the fracture and i, and . are defined as:

py = tan(P, + o)) (4.25)
p, = tan(®, + o) (4.26)

where @, is the frictional angle and o, and o, are the asperity angles of the frac-
tured chalk in the x and 2 directions. Average asperity angle, a in Equation (4.24)
is the average of o, and o, [52].

During the deformation of the fracture, degradation of the asperity angle is
observed. The asperity degradation is assumed to be a function of the irreversible
portion of the fracture displacement.

Qy = Qo exp (—m|AEZ|) (4.27)
a. = oz exp (—m|Ael)) (4.28)

4.4 Coupled Elasto-plastic-damage Model

Neither plasticity nor damage model can present the constitutive behavior of the
fractured chalk, for this reason a coupled model is used to consider both damage and
plasticity process. For this purpose, the equivalent material is introduced. Gerrard
and Pende [22] introduced the rheological scheme for the equivalent material. In
this scheme the chalk and the fractured plane are two elements connected in series in
form of springs (see Figure 4.2). Series models ensure that each spring experiences
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yA
A

Figure 4.3: Two coordinate axes: the block coordinate, zyz and the fracture coor-

dinate, 2"y 2’

the same incremental load, and that the total strain is equal to the sum of the strain
in each spring, thus the total strain can be split additively into elastic, plastic and
damage as,

Ael = Ae® + AeP + Ag? (4.29)

In order to introduce an equivalent constitutive model, both fracture and chalk are
defined in a same coordinate system.

4.4.1 Coordinate system Transformation

The constitutive of the fracture plane is written in its local coordinate plane (z/, 3/, 2’),
in order to couple with the chalk, the local coordinate is transferring to the block
coordinate (z,y, z) by a transfer matrix, The z’ is the axis normal to the fracture
plane, The normal direction in the block coordinate is defined by z axis,

X
yr=A"{Ly (4.30)
z

cos(z',z) my =cos(z’,y) mn, =cos(2,z2)
y =cos(y’,z) my=cos(y,y) ny=cos(y,z2) (4.31)
cos(z/,z) my =cos(z',y) ny =cos(2,z)
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4.4.2 Stress, Strain Transformation

The relationship between stress, strain and constitutive matrix from one coordi-
nate to another coordinate system are explained in the following, more detail are

available in Cook et al. [12].

1. Strain Transformation

Strain transformations are transformations of displacement derivatives. Thus,
to relate & to &, 2% is related to % with the transform matrix T.

’ 817,
LA mzA ngA
T=[l,A myA nyA (4.32)
LA m,A n,A
e = Tet (4.33)
. Stresses Transformation
od=T"To (4.34)
where, T~ is defined in the following
[ l% mg n% 21, My 2My Ny 210, Ny
lé mlé né 21, my 2my ny 21,n,
17T _ lz ms n; 21, m, 2m, n, 20, n,
loly mgmy ngny mgly+1lomy ngmy+meny ngly+l:ny
lyl, mym, nyn, myl, +lym. nym,+myn, nyl.+1lyn.
Uzl meamy, ngn, mgply+lym, ngmy+mgn, ngl,+1lzn,|

(4.35)

The rows and columns of the above are arranged in the order xz, yy, 2z, zy,
yz and xz.

From Equations (4.33) and (4.34), three elements of strain and stress vectors,
which are located in rows of 1, 4 and 6, are taken and used in the constitutive
relation of the fracture in its local coordinate system.

. Constitutive Matrix Transformation
Stress-strain relationship in the block coordinate is
e = Fyol (4.36)
Te'=F;T o (4.37)

For an orthogonal matrix TZ = T~!, thus the fracture constitutive matrix at
the block coordinate becomes,

e=TTF;To (4.38)
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4.4.3 Equivalent Linear Elastic Constitutive Model

Since stress in each element is equal to the total stress, the constitutive relationship
between strain and stress for the equivalent model with a single fracture is written
as follows:

Aef = (FI+TTF;T)Ao (4.39)

The equivalent compliance matrix of elastic fractured chalk F! is written as follows:

Fl=F+T'F,T (4.40)

4.4.4 Equivalent Elasto-plastic-damage Constitutive Model

Above, the coupled constitutive model for elastic fractured chalk is introduced.
However the fractured chalk experience an irreversible deformation that can be ex-
plained by coupling the inelastic behavior of damage with the plasticity theory.
In this section, a 3-D coupled model that accounts for both inelastic behavior of
chalk (plasticity) and fractured (irreversible damage) is introduced. The computa-
tional procedure of the coupled model capable of accounting for all inelastic mecha-
nisms is introduced by Ibrahimbegovi¢ [36]. The coupled equivalent elasto-plastic-
damage constitutive matrix for the fractured chalk is defined according to the series
model as follows:

Dt: (Dep)—1+(Ded)—1 -1 (44])

According to the rheological spring model, both the fracture and the chalk ex-
perience the same stress, thus the two following relations are coupled in order to
obtain the total strains and damage strains in case with a given applied load.

o =Dl (4.42)
D (el — e?) = D &4 (4.43)

4.5 Integration of Nonlinear Constitutive Relations

The constitutive relationship is split into increments. The constitutive relation de-
pends on variables which are depending on the stress-strain state. Since the material
behaves nonlinearly, the stress-strain relationship is not constant and the constitu-
tive matrix varies during the loading. As aresult, if the incremental step is not small
enough, the evaluation of constitutive matrix in each increment lead to large errors.
In addition, as mentioned earlier, the stress must lie on or inside the yield surface
and slip surface in each increment. If in each increment the yield function becomes
greater than zero, it consider as an elasto-plastic condition, if the slip function be-
comes greater than zero, the damage model is considered and if both the yield and
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slip functions are greater than zero the model is the coupled elasti-plastic-damage.
Therefor, the initial applied constitutive matrix in the incremental relation was not
accurate. A numerical method is used to evaluate the correct elasto-plastic con-
stitutive matrix to ensure the stress state lies on both the yield and slip surfaces.
For this reason, the incremental relations must be integrated over an imposed finite
loading step. In integration procedure, the incremental constitutive relation is used
to obtain the unknown quantity for the finite increment of the known quantity.

4.5.1 Integration Method

Many different integration methods such as Taylor series method and Runge-Kutta
methods are available, as well as first order methods such as Euler. The Taylor
series expansion is turned into the Euler method if it is truncated to include only
first order derivative terms. In this work we use the Euler method to solve the
stress-strain relation as describe in the following.

Euler method

The Euler series of a function f at a number of x is

f(zo + Ax) ~ f(zg) + % oo Az (4.44)

According to the Euler method, if the function is the stress function, the incremental
stress defined as:

ol = oo+ F ' Ae (4.45)

where F'™' is the equivalent elastic constitutive matrix obtained from Equation
(4.40).

4.5.2 Return Stress Algorithm

To solve the above constitutive equation, the return algorithm proposed by Simo
and Ortiz written by Potts and Zdravkovi¢ [61] is used. In this approach the strains
are composed of elastic and plastic and damage strains. These are evaluated inde-
pendently and then summed. The loading step in Equation(4.45) is assumed to be
fully elastic. The trail stress increment are applied to the constitutive model of the
chalk and fracture. If the resulting stress increment causes the stress states to lie
outside the initial yield surface, the trial stress is corrected by calculating the Ae?,

ol” = o’ — D;Ae? (4.46)
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The plastic strain are based on the stress conditions from the flow rule,

oQP
P
" oo

AeP = (4.47)

where 7 is defined in the next section.
If the resulting stress increment causes the stress state to lie outside the initial
slip surface, the incremental step is damage.
d
ol = ol —FtAe? (4.48)
The irreversible damage strain is obtained from the damage flow rule,

AEd dan

irr — Do (4.49)

where 7¢ is defined in the next section.
The final stresses, which are supplied by the two models should to be equal,

Aol =’ — ' =0 (4.50)
Thus, an additional iterative procedure is required to enforce the stress equality
supplied by two models.

The Plastic and Damage Multiplier

In order to determine the plastic and damage multiplier, the theory of the consis-
tency condition in plasticity and damage theories is applied, which indicates the
change in the yield function and the change in the slip function must be equal to
zero. By using the chain rule of differentiation, and the Euler expansion method,

0 FP 0 FP

AFP(a? nP) = Tov AoP + EPY AnP (4.51)
oF? R
AFd(O'd,'T]d) = WAO'GZ"' WAnd (452)
where 50P
Ao? = —D;act = DY 4.53)
D

AP = ,yp% (4.54)

and J
Aot = —F1ael = —F-1429 & (4.55)

oo
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(4.56)

By substituting Equation(4.53) and (4.54) into Equation(4.51) and rearranging,
the plastic multiplier 4” can be written as follows,

AFP
y
7= anTD aQr  9FpP dnp (4.57)
oo I 5o onP DeP

By substituting Equation(4.55) and (4.56) into Equation(4.52) and rearranging, the
damage multiplier ¢ becomes,

AF?
d _
T T o T e 0Ql _ orton (459

do J do and oed

Plastic and damage multipliers can be evaluated from two different algorithms:
explicit and implicit. The explicit method evaluates the variables from the initial
conditions. The implicit method evaluates the variables for the final conditions at
the end of the loading interval. In this work an explicit method is used, in which
the values of the variables are known and obtained from the initial stress states.
However, this method may diverge for highly nonlinear functions.

Correction of the Initial Stresses

Because the stress and other variable are determined by first order integration (Euler
method), the final stress points can be estimated with considerable truncated errors.
Consequently the plastic multiplier at this stress states may be evaluated with errors;
although the consistency equation is satisfied, the stress states may lie outside the
yield surface. Thus, an iterative procedure is required to determine the final stress
point and final yield surface and to ensure that the constitutive relation is satisfying
the yield and slip criterion. Figure 4.4 illustrate the stress correction by the explicit
return algorithm
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Figure 4.4
Explicit procedure of the stress correction by the return algorithm
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Chapter 5

Coupled Fluid Flow with
Constitutive Model

As mentioned, chalk is a porous media and pores are filled with fluid. Pore pressure
is incorporated to the constitute equation in such a way that the total stress is divided
into effective stress,o?’, which are acting in the rock structure, and the pore pressure
p. The effective stresses defined in Equation (5.1), are used in the constitutive
relation.

o' =0 — aginp (5.1)

where oo is called Biot’s coefficient. This coefficient represents the ratio of the
volume of water squeezed out of the rock to the total volume change for deformation
at constant fluid pressure. In this work the value of ap;o equals one, which indicates
that the grains compressibility are insignificant.

The coupling between the flow model and the stress states of the solid structure
has been done by a one way coupling; The flow field is a function of position from
the previous increment. Ateach time step the flow field can be solved independently
of the stress field, and the pressure gradients are solved. The stress states can be
evaluated once the flow field has been determined. The known pressure gradients
contributes to the force, and used in the constitute model to calculate the stress
states.

29
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Chapter 6

Numerical analysis

The computational method of the fluid flow is based on the Finite Volume method,
whereas the Finite Element method is used to evaluate the stress states of the rock.

6.1 Finite volume

The continuity and transport equations are solved by finite volume method available
in the in-house software ”Brilliant”. Finite volume methods are described in [19],
and their description is omitted here.

From integrating the continuity and Darcy equations over the finite control vol-
ume, the pressure at the center of each control volume is evaluated. The pressure
differences between centers of two neighboring control volumes is used to deter-
mine the pressure gradients. Pressure gradients acts as forces on the common sur-
face between two control volume (see Figure 6.1). The nodal forces of each element
can be interpolated from the pressure gradient on the surface and by using a shape
function within a finite element.

Af:/ BTAPAV (6.1)
1%

6.2 Finite Element

The finite element formulation is explained in detail in several references such as
[12, 61]. In this work, the nonlinear Finite element code used to analyze the frac-
tured chalk structure is implemented in an in-house C++ software “Brilliant”. The
elements are 3-D hexahedron elements with 8 nodes and 8 integration points re-
ferred to as Gauss points. Strain and stress vectors are evaluated at the integration

31
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Figure 6.1: Two neighboring control volumes: pressure p is stored at their center
and forces f are applied on the common nodes

points, while vectors of displacement and forces are defined at the nodes of each
element. The detailed description of the finite element method is omitted here.

The method to find the initial stresses from the given displacements or loads
is explained in the following. For the structure being analyzed, the vector of in-
cremental nodal displacement is related to the vector of applied incremental nodal
forces by the global stiffness matrix K:

Af =K, Au (6.2)

The global stiffness matrix,K,, is calculated from sum up of all elements stiffness
matrices:

K, = / B'D'BdV =) / BI'D'B.dV (6.3)
14 e—1 e

where D! is the coupled elasto-plastic-damage constitutive matrix at the current
Gauss point. If the material is considered as an elaso-plastic without any damage
(intact chalk without the fractures), the constitutive matrix is replaced by D).

V' is the element volume and B is representing the derivatives of the element
shape function giving the strain-displacement relationship [30].

Ae = BAu (6.4)

The incremental trial stress is assumed to be elastic and defined from the following
equation.
o" =04+ Ac® =" + D! Ae (6.5)

where D! is the equivalent elastic constitutive matrix.
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The stress correction between trail and final stress is converted into a nodal
element force vector:

Afe = / B Aadv (6.6)

where Ao is the difference between the trial stress vector and the final stress vector,
which is obtained by the Return algorithm and lies on both the yield and the slip
surfaces.

t

Ao =o' — o (6.7)

Afe is added to in Equation (6.3) to calculate the displacement vectors and later
strains and stresses vectors. This algorithm is iterating until A f ¢l balances the ap-
plied forces; it indicates that applied external forces on the structure are equal to the
sum of all elements internal forces and the structure is on global force equilibrium.
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Chapter 7

Summary of the papers

7.1 Paper 1

Analysis of Failure in Fractured Chalk by Implementing a Coupled Elasto-
plastic-anisotropic Damage Constitutive Model in Finite Element Model

In this paper, a coupled elasto-plastic-damage constitutive model for the fractured
chalk is developed and implemented in the in-house Finite Element code. The in-
fluence of the fracture orientation on the chalk strength and the overall deformation
is investigated.

7.2 Paper 2

Coupled Fluid Flow and Elasto-plastic Damage Analysis for Fractured Porous
Chalk with Induced Wormhole

In this paper, the fractured chalk including an induced wormhole is modeled. The
geomechanical model including the elasto-plastic-damage constitutive model is
coupled with the flow model in porous media. An anisotropic permeability ten-
sor due to the existence of the natural fractures is introduced. The strength and
deformation of the chalk and wormhole are analyzed during production flow and
effects of the fracture orientation with respect to the wormhole on both the flow
and the chalk strength are studied.
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7.3 Paper 3

Effects of the Natural Fracture Orientations on the Porosity Evolution and
Stress Distribution during the Dissolution of a Porous Media: Computational
Simulation with Coupled Flow and Elastic Fractured Rock

In this paper, the dissolution of the chalk due to the acid injection is modeled by
including the transport and porosity evolution equations to the previous models.
Different dissolution patterns as a result of the different fracture orientation cause
different porosity filed in the chalk, which then influence the stress states of the
chalk.



Chapter 8

Conclusion

Presence of the pre-exsiting fractures in the chalk such as natural fractures and cre-
ated fractures during the previous acid treatments or hydraulic fracturing influence
the overall deformation and stress states of the chalk. Chalk tends to deform along
the fracture plane, thus in the uniaxial simulation, high deviatoric stresses are lo-
calized along the fracture, which facilitate the chalk failure. Results from the com-
putational simulations demonstrate that the plastic deformation along the fracture
increases if the fracture dip angle increases. For example, in cases include fracture
planes with dip angles of 20° and higher, a high plastic deformation is captured.

Fractures change the permeability of the rock and creates paths of less resis-
tance for the flow along the fractures. If the fractures and wormhole are located
along the well, production can improve. However, the direction of the wormhole
and fractures in respect to other fractures affect the recovery. Presence of horizon-
tal fractures increase the chalk vertical deformation under compression load and
occlude the horizontal wormhole and neutralize its effect on the recovery. On the
other hand, inclined fractures from the horizon increase the risk of the shear failure
and damage around the wormhole.

Permeability changes due to existence of fractures influence the heterogeneity
of the media and affect the further acid treatment by creating a favorable flow path
for the acid, therefore it leads to a specific dissolution pattern and porosity field in
the chalk. The fracture plane orientated parallel to the plane between the well and
reservoir has the best penetration depth through the chalk core sample, therefore
it can improve the fluid production: for example a core sample includes a fracture
plane with a dip of 90° and azimuth 90° and acid is injecting from the inlet on top
of the core.
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Chapter 9

Recommendations for Future
Studies

It has been shown that the chalk porosity is evolving during the acid injection and
the rock heterogeneity is one factor that affect the porosity profile. As mentioned,
the chalk may fail due to the pore collapse. The pore collapse strength of the chalk
depends on the porosity parameters. Therefore, porosity development during the
acid injection leads to changes of the pore collapse strength and increase the risk of
the rock failure due to the pore collapse. For the future study, the parameter of pore
collapse yield function during the porosity development can be updated and the risk
of the pore collapse for different dissolution patterns investigated. Moreover, the
model can be improved by implementing several natural or pre-existing fractures
with random orientations. In addition, the detailed model of the reaction of acid
with the rock can be included in this model in order to relate the created dissolution
patterns to the acid parameters.
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Analysis of Failure in Fractured
Chalk by Implementing a
Coupled
Elasto-plastic-anisotropic
Damage Constitutive Model in
Finite Element Model

By Nazanin Jahani, Bjgrn Haugen and Geir Berge; submitted to Computers and
Geotechnics.

Abstract

Rock is a natural geological material with discontinuities. Discontinuities include
natural fractures and fractures created by chemical reactions as well as hydraulic
fracturing. These discontinuities weaken the rock and have significant effects on
the deformations and strength of the rock. A numerical constitutive model can
give understanding of the physical behavior of the rock and is an effective tool to
describe the behavior of the fractured rock for large models.

In this work a computational continuum model is developed and implemented
in a multi-physics finite element code. The model is able to predict the elastic and
inelastic deformations of rock and fractures simultaneously. The model accounts
for plasticity in combination with damage for the fracture. The coupled elastic-
plastic-damage constitutive model for the fractured rock is introduced based on
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decomposition of deformation in both intact rock and fracture. The rock material
in this work is a porous chalk. The intact chalk is assumed to be isotropic whereas
the fracture has an anisotropic constitutive model.

Numerical results show that the fracture and its orientation influences the de-
formation of the chalk both for elastic and plastic deformation, and that fractured
chalk is weaker compared to its corresponding intact chalk. Strength of the chalk
depends on the fracture dip angle and the fracture orientation.

A.1 Introduction

Rock is a natural geological material; anisotropic, inhomogeneous, inelastic and
naturally fractured. The physical behavior of rock under different distributed stress
states is complex. Using a computational model is an effective way to capture the
rock’s physical behavior and enhance understanding of the processes involved by
studying the effect of changing boundary conditions and input parameters on out-
put results. Different numerical methods have been developed for rock mechanics
problems for different purposes. The most commonly applied numerical methods
can be classified as continuum and discontinous methods. Several good review
papers, such as Jing and Hudson [39], Jing [38], presents current techniques in nu-
merical modeling and their application in rock mechanics. Discontinous methods
are mostly used in cases with large deformations or complete detachments, such as
a fracture opening during hydraulic fracturing in oil reservoirs. In contrast, con-
tinuum methods are applied when materials are not broken apart, such as naturally
fractured rock mass.

The most commonly used continuum based computational method for fractured
rock masses is the Finite Element Method (FEM). In this method, the discontinuity
is introduced by a joint or fractured plane in the rock material, and an equivalent
constitutive matrix is implemented in the FEM code. In the approaches presented
in the available literature [52, 40, 2, 66, 67, 56, 10, 22], the sliding of the fracture
plane is modeled by anisotropic damage in a way similar to classic plasticity theory,
and intact rock is assumed to be elastic. However, chalk has significant plastic
deformation in cases of shear failure or pore collapse: a model is therefore needed
to couple plasticity and damage.

Several authors [41, 65, 9] used an equivalent constitutive model in the finite
element (FE) code that couples the elasto-plastic deformation of rock with the de-
formation of the fracture plane; fracture deformation is modeled by damage theory.
This has been done using the scalar damage parameter introduced by Kachanov
[42]. Their model of damage maintains isotropy, and all stress components are
modified equally. However, in reality, the fracture plane deforms very differently
in the normal and shear directions.
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In the work of Rafeh et al. [63], fractured chalk is modeled by proposing an
anisotropic constitutive damage formulation in analogy to plasticity [7, 8]. In this
model, failure of intact rock is decoupled from the damage model: the calculated
stress from the plasticity model is applied to each fractured plane, which results in
underestimation of the deformation of the fractured plane.

In our model, fractured chalk is modeled by introducing an equivalent coupled
elasto-plastic-damage constitutive model considering anisotropic damage. It is as-
sumed that each fracture plane experiences the same stress as the rock material. The
model shows that the presence of fractures increase the deformation of the chalk
and accelerates shear failure.

A.2 Methods

The coupled elasto-plastic and damage model that we employ is based on the model
presented by Ibrahimbegovic et al. [35]. Damage and plasticity constitutive models
and their coupling are defined based on three hypotheses:

1. Linear decomposition of the total strain into elastic, plastic and damage strains.

2. Strain stored in a body due to the deformation as sum of the elastic, plastic
and damage parts

3. Yield criteria and flow rules for both plasticity and damage

The parameters for the yield function for the plasticity model were provided by
ISAMGEO GmbH [60] (see A.B). The parameters for the slip function for damage,
which delimits reversible damage deformation, are as reported by Jing et al. [40].

A.2.1 Elasto-plastic-damage Modeling of Chalk with Fractured Plane

Deformation of intact chalk is modeled by an elasto-plastic constitutive model. Dis-
continuous fracturing phenomena are then presented by introducing the continuum
model for damage, and at the end, a coupled elasto-plastic-damage constitutive
model is presented to demonstrate deformation of the fractured chalk.

Deformation of intact chalk is composed by elastic and plastic deformation.
The elasto-plastic constitutive relation for intact chalk consists of the elastic and
elasto-plastic models described in the following sections.

Elastic Model
The constitutive relation for the linear elastic material is:

Ao = D[AEe (A-l)
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D; is the constitutive matrix as defined in A.A, and Ae¥ is the incremental elastic
strain.

Plastic Model for Intact Chalk

Chalk fails due to high shear stresses defined by the modified Mohr-Coulomb yield
surface FP and the potential function @, and due to pore collapse. The yield sur-
faces for shear failure are expressed in terms of stress invariant through the modified
Mohr-Coulomb yield surface FP and potential QP as:

FP = @{cos(@) — smw)\/;)mw) —( [2cos(20) — 1]} +
— [pm sin(¢) + ¢ cos(qbpeak)] (A.2)

Q" =+/J» {cos(&) - sm(lp)\/gmw) —( [2cos(26) — 1]} +
- [pm sin(¢)) + ¢ cos(i/mek)] (A.3)

where J5 is the second invariant of deviatoric stress, p,, is the mean stress (one third
of the first stress invariant; the trace of the stress tensor), 6 is the Lode’s angle and
( scales the impact of the intermediate principal stress. ¢ is the friction angle and ¢
is the cohesion, which are both varying due to hardening and softening. Note that
the plastic potential QP is described by the same function as the yield. However,
the friction angle ¢ is replaced by the dilatancy angle . In order to have a realistic
description of the volumetric plastic strain changes, a non-associated flow rule is
used.

Hardening of the yield surface is applied to the model by increasing the fric-
tion angle before shear strength reaches the peak stress. After reaching the peak
stress, the material experiences pronounced softening by decreasing cohesion and
friction angle. For the dilatancy angle ), the hardening and softening are the same
as for the friction angle ¢. The incremental plastic strain Ae? and the elasto-plastic
constitutive matrix D, are defined with a plastic flow rule and implementing an
iterative algorithm in the FE code. The iterative algorithm proposed by Ortiz and
Simo [54] brings the stress state back towards the yield surface until the yield func-
tion is satisfied.

The yield surface for pore collapse is defined by an ellipse in the Jo —p;, space,
and it is assumed that the shear failure has priority over pore collapse. The model
is developed by Plischke [60].
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A.2.2 Anisotropic Damage Model for Fractured Chalk

Deformation of fractures is modeled by damage theory. The damage model used in
this work was introduced by Ortiz and Simo [54] and further explained by Ibrahim-
begovi¢ [36]. In this approach, the fracture plane’s constitutive relation is formu-
lated in the framework developed for the elasto-plastic chalk material with the fol-
lowing assumptions:

1. The fractured surface is planar.

2. The orientation of the fracture is fixed during the entire computational pro-
cess.

3. The elastic constitutive matrix for fractures is anisotropic.

The normal displacement of the fracture is represented by tension or crack
opening, while compressive deformation is represented by frictional sliding or shear
deformation. In this work only the sliding displacement or shearing of the fracture
plane is implemented.

Elastic Constitutive Equation of a Single Fracture

From the second principle of thermodynamics and the principle of maximum dam-
age dissipation, which for an elastic process is equal to zero, the elastic compliance
matrix of the single fracture in the local coordinate takes the following form:

Ae? = F;Ao (A.4)

where Ao is the stress incremental of the fracture and Ae is the strain incremental
vector of the fracture or damage strain and F; is the compliance matrix of the
fracture plane written as below:

—1 0
Fr=10 k' 0 (A.5)
0 0

where k,, is the stiffness normal to the fracture plane, and ks and k; are the shear
stiffness of the fracture plane in two orthogonal directions in the local coordinates
of the fracture plane [52].

Irreversible Deformation of the Fracture Plane

Frictional sliding in the fracture is an irreversible deformation, which is represented
by irreversible damage in a way similar to developing plasticity in chalk material
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[36]. Jing et al. [40] proposed yield and potential functions for a single fracture as
shown below:

N[

d [ Uéy 2 o'\ 2]
=) + <x> +o —c (A.6)
_< Mz > Hz | o !
i O_/ 2 O_/ 2] %
QY= (Zy) + ( “) + o’ sin(a) (A7)
L Mo Mz |

where cy is the cohesion of the fracture and i, and p., are defined as:

o = tan(®, + o) (A.8)
wy = tan(®, + ) (A9)

where @, is the frictional angle and o, and o, are the asperity angles of the frac-
tured chalk in the = and z directions. Average asperity angle, « in equation A.7 is
the average of o, and a, [52].

During the deformation of the fracture, degradation of the asperity angle is
observed. The asperity degradation is assumed to be a function of the irreversible
portion of the fracture displacement.

Oy = 00 exp(—m\eg\) (A.10)

o, = a exp (—mled|) (A.11)

The elastic-irreversible damage constitutive equation represents the deforma-
tion of a fracture in analogy to the plasticity model of the intact chalk. The damage
constitutive matrix is D@ and the incremental damage deformation is Ae?. See
A.B.

A.2.3 The Equivalent Coupled Elasto-Plastic-Damage Constitutive Model
for the Fractured Chalk

In order to analyze the deformation of the fractured chalk, neither the plastic nor
the damage theory are sufficient to describe the physical behavior of the material:
therefore, an equivalent constitutive model is needed to describe both processes. In
this model, a coupled constitutive model is introduced, assuming that each fracture
plane experiences the same stress as the chalk, and that the total strain is the sum of
the strains in fracture and chalk. The coupled constitutive model is divided into two
parts: an elastic-damage model and an elasto-plastic irreversible damage model, as
explained in the following sections.
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Figure A.1: Rheological elements: chalk and the fractured plane are modeled as
two springs in series and experience the same applied load.

Equivalent Elastic Constitutive Model

Gerrard and Pende [22] introduced the rheological scheme of Figure A.1 for the
equivalent material. In this scheme chalk and the fractured plane are two elements
connected in series in form of springs. Series models ensure that each spring ex-
periences the same incremental load, and that the total strain is equal to the sum of
the strain in each spring:

Aet = Ae® + AeP + Ae? (A.12)

Since stress in each element is equal to the total stress, the constitutive rela-
tionship between strain and stress for the equivalent model with a single fracture is
written as follows:

Aet = (Fr+THF; T)Ao! (A.13)

where F7 is the elastic compliance matrix of the chalk without fracture and F ; is the
compliance matrix of elastic fracture plane in its local coordinates. The equivalent
compliance matrix of elastic fractured chalk F! is written as follows:

Fl=F+T'F,T (A.14)

T is a 6 x 3 transformation matrix [10? ] (defined in A.C) that transforms the stress
vector of each block into the stress vector at the local coordinates of the fracture
plane as follows:

T T
{0y Ohy b} =T{0w 0Oy 02 Ouy 0y Ouzl (A.15)

the corresponding strain coordinate transformation is:

T T T
T {52633 5;31 Eécz :{Emc Eyy Ezz Exy Eyz E;pz} (A.16)

where the strain vector on the right-hand side is the deformation of the fracture
plane.
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Equivalent Elasto-plastic-damage Constitutive Model

Above, the coupled constitutive model for elastic fractured chalk is introduced.
However the fractured chalk experience an irreversible deformation that can be ex-
plained by coupling the inelastic behavior of damage with the plasticity theory.
In this section, a 3-D coupled model that accounts for both inelastic behavior of
chalk (plasticity) and fractured(irreversible damage)is introduced. The computa-
tional procedure of the coupled model capable of accounting for all inelastic mecha-
nisms is introduced by Ibrahimbegovi¢ [36]. The coupled equivalent elasto-plastic-
damage constitutive matrix for the fractured chalk is defined according to the series
model (Figure A.1) as follows:

Dt — [(Dep)—l + (Ded)fl]’l (A.17)

When both plasticity and irreversible damage are active, each model modifies stress
component in two separate computations and independent of each other. We must
make sure that the final stress values produced by the two stress return algorithms
produce the same stress to satisfy our rheological spring model. The return algo-
rithm described by Ortiz and Simo [54] is used to modify stresses and return them
back on to the yield and slip surfaces. At the end of each computation, stresses
provided by the two models will be enforced to be equal by using an additional
iterative loop. The computational procedure used to find the stress state of the frac-
tured chalk using the coupled model is :

1. Calculate the equivalent constitutive matrix D and assemble the global sys-
tem constitutive matrix K .

At the beginning of the solution an elastic constitutive matrix is used.

2. Solve K Au = AF by the FEM to find the first estimate of nodal displace-
ments. Au is the vector of incremental nodal displacements and AF is the
vector of nodal incremental loads.

3. Calculate the incremental elastic nodal strains for each integration node, Ae

4. Obtain the trial stress at time m:

of" = o™ 1 £ D! Ael (A.18)

n

where m is the current time m. n is the number of iteration in the return
algorithm at the current time m. k is the number of iteration through the
coupling of the plastic and damage algorithm. According to the rheologi-
cal spring model, stresses are equal at each element(spring) and strains of
elements(springs) are additive. Stresses at each time step formulated as:

ok = D! el =D (e —el) =D&l (A.19)
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5. Obtain the irreversible deformations and update the stress vector and the con-
stitutive matrix by using the coupled elasto-plastic-damage computational
procedure as it is displayed in Table A.1.

The procedure in Table A.1 is an iterative algorithm until equal stresses are
produced by the damage and plastic sub-algorithms.

6. Repeat the procedure until the internal forces are equal to the external forces.

A.2.4 Input parameters and geometry

In this section the proposed 3-D model is applied to a chalk core plug under uni-
axial compression load. The choice of chalk strength parameters and fracture pa-
rameters is listed in Table A.2.

A.3 Numerical Results and Discussion

The numerical results are obtained with an in-house FEM code [5] presented in this
section. First the presented model is analytically verified and then results for the
elasto-plastic-damage model for the fractured chalk under uni-axial compression
load are demonstrated.

A.3.1 Model Verification

In this section the 3-D finite element code for the elastic fractured chalk is verified.
In the elastic part, the overall compliance matrix is constant.

Elastic Deformation

Since the constitutive matrix is constant, in the elastic part a single time step is
sufficient to find deformations. The test case presented here is rectangular volume
Im x 1m x 2m, see Figure A.2. Three faces of the cube (the bottom face and
two horizontal faces in x and y directions) have zero displacements in their normal
directions , the rest of three faces are free to move. 1 MPa pressure load applied to
the upper surface. The fracture is on the horizontal plane intersect the intact rock.
Young modulus E of intact rock is 100 GPa and the normal fracture stiffness, K,
is 20 GPa/m.
Vertical displacements are calculated from:

e =Flo (A.20)
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Table A.1: Computational procedure for obtaining the constitutive model of the

anisotropic coupled-plasticity-damage model

Take the trial stress, a'fi, from equation (A.18)

Find stresses and strains on the fracture plane coordinates by using the matrix transforma-
tionse? =TT F; Tof ando’F = Tok

Plasticity model
1.

Give the trial stress, crﬁ, to the plas-
ticity model.

Check the yield surface of the plastic-
ity model, using the iterative return
algorithm until stresses return back
onto the yield surface.

3. Calculate the plastic deformation.

Update the elasto-plastic constitutive
. Nep
matrix, D}7, ;.

Update the stress vectors, oh ;.

Damage model

1.

Give the trial stress on fracture coor-
dinates, a';f“, to the damage model.

Check the slip surface of the damage
model, using the iterative return algo-
rithm until stresses return back onto
the slip surface.

. Calculate the irreversible deforma-

tion.

Update the damage constitutive ma-
trix, D4 ;.

. Update stress vectors on fractured

plane coordinates, aiﬂl.

Calculate damage strain on fractured
plane coordinates, €}, 1 = Fy o, 1

. Update the given damage strain in the

block coordinates, €2 = T €',

Calculate the difference of the dam-

age strain in the block coordinates
d d d

A€7L+1 =&p — Enpt1-

Note: If the AEZH = 0 the stress produced by plasticity and damage model are equal

and the calculation continues to the next time step (m + 1), otherwise:

Update the given trial stresses, o

k+1 __ ep
n+1 — D

n+1

ep

t d k d
(Eny1 —€ng1) = on + D7 Aen g

Repeat the calculation from the beginning of this table

Figure A.2: The sketch of the single horizontal fracture plane
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Table A.2: Chalk and fracture parameters assumed for analyses

Young’s modulus, £/ 4000 MPa
Poisson’s ratio, v 0.22

Angle of friction for yield (initial, peak, residual), 37.5°,38°, 37.7°
Angle of friction for potential surface, ¥ 19°

Cohesion (initial, peak, residual), ¢ 0.8 MPa, 0.8 MPa, 0.7 MPa
Fracture normal strength, k,, 30MPa/m
Fracture shear strength, ks, k¢ 15MPa/m, 15 MPa/m
Fracture cohesion, cy 0

Fracture asperity angle (initial), o, . 10°, 10°

Fracture angle of friction, @, 37.5°

In this model, only one normal element of stress, o, is non-zero, then only
the third column of the total compliance matrix is needed to calculate strains, and
vertical displacements are calculated from:

1 1
AU, =o0,, </€n + E> H (A.21)
where H is the volume height. The numerical results and analytical give us a ver-
tical displacement of 6 mm.

The fracture plane orientation is defined by the dip and strike angles ( See A.C
for definition of the dip and strike angles) . When the fracture plane has an angle
with the horizontal plane(xy plane), which means a dip angle greater than zero,
the applied normal stress induces shear stresses as a results of the non-symmetric
and anisotropic constitutive matrix, which represents the anisotropic nature of the
fractured chalk. In the following, the computational results of the coupled elasto-
plastic-damage model including a fracture plane with different orientations are pre-
sented.

A.3.2 Numerical Simulation of the Coupled Elasto-plastic-damage model

In this section, the FEM results of the coupled elasto-plastic-damage model for a
chalk plug with induced fractured plane are presented.

The model geometry consists of a rectangular volume of 2 m in vertical direc-
tion, z, and 1 m in horizontal,  and y directions. The simulation has been done for
the chalk includes a single fracture with different dip angles increasing from 0° to
90°.

Displacement for faces normal to x and y directions are zero in their normal
directions. The bottom surface has zero displacement in z direction, and vertical
compression load is applied on the top surface. Boundary load is changed from
0MPa to 11 MPa in 80 seconds.
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Figure A.3: Vertical displacements [mm] in the middle of the loading (time 25
seconds) for the intact chalk (Fig. A.3e) and the fractured chalk with different dip
angles (Fig. A.3a, A.3b, A.3c, A.3d, A.3f) : chalk deforms along the fracture

The results demonstrate the presence of the fracture in the chalk and its ori-
entation has a strong effect on the stress distribution and deformation of the chalk
sample. In Figure A.3, vertical deformation of the fractured chalk with different dip
angles are compared and compared with the intact chalk. The horizontal fracture
(dip angle=0°) shows the highest vertical displacement, while the chalk with the
vertical fracture plane (dip angle = 90°) deforms as the same as the intact chalk.
From Figure A.3 can be seen the chalk tends to deform along the fracture plane.

The fractured plane induces anisotropy and increases the non-symmetric na-
ture of the constitutive matrix, which induces higher shear stresses. Shear stresses
change with the change of the fracture orientation. Higher shear stresses facilitate
the shear failure of the chalk. In this work, fracture plane with dip angles of 0°,
15°, 30°, 45° and 90° are compared. Results shows that at dip angles 30° and 45°,
the shear stresses are significant and chalk experiences a higher and an earlier plas-
tic deformation in compare with the intact chalk. In Figure A.4, the accumulated
plastic strain for the fractured chalk with dip angles of 30° and 45° at the time 25



A.3. Numerical Results and Discussion 53

0.0024

0.0015

0.001

0.0005

(a) (b)

Figure A.4: The equivalent accumulated plastic strain for the fractured chalk with
dip angles of 30° (Fig. A.4a), and 45° (Fig. A.4b).

second are shown, while at this time the intact chalk has an elastic behavior.

High shear stresses cause damage and sliding of the fracture. Fracture sliding
degrades the asperity angle and causes dilation (see equation A.10). Changes of
the asperity angle versus time for fractures with four different dip angles is shown
in Figure A.5. For fracture planes with a dip angle of 0° and 15°, the asperity
angles does not change, which indicates shear stresses are small and there is no
fracture sliding. At higher dip angles, increased load causes the asperity angle to
decrease from its initial value of 10° to its residual value. Decreasing of the asperity
angle shows the occurrence of fracture sliding and irreversible damage deformation,
which is higher for materials with higher fracture dip angles.

In Figure A.6, diagram of the deviatoric stress versus the mean stress for the
chalk includes a fracture with a dip angle of 30°, shows development of the stress
states of the fractured chalk. The asperity angle’s changes versus mean stress is in-
cluded in the plot. Decreasing the asperity angle from its initial value indicates the
irreversible damage progress in the fractured chalk. The behavior of the curve is
elastic in the beginning. Then the slope of the curve is decreasing, which indicates
the plastic deformation, while the irreversible damage(inelastic), has not started. At
the point, where the irreversible damage occurs, the curve has an inflection point,
at which the equivalent constitutive matrix has a sudden decrease due to the dam-
age. When the asperity angle and consequently the irreversible damage deformation
reaches to the residual value, the damage constitutive matrix does not change and
the coupled constitutive model follows the trend of the elasto-plastic model. By
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Figure A.S5: Fracture asperity degradation caused by high shear stress for the frac-
ture plane with dip angles of 0°, 15°, 30° and 45°.

increasing the compression load, subsequently the mean stress increases and this
limits further shear failure. The slope of the curve then approaches the elastic curve
again.

The deviatoric stresses for the chalk sample with a single fracture oriented with
dip angles of 30°, 45° are demonstrated in Figure A.7. Numerical results show the
deviatoric stresses are localized in the fractured plane orientation and by increasing
the fracture’s dip angle, the deviatoric stress increases.

A.4 Conclusion

The objective of this study was to analyze failure of fractured chalk using a con-
tinuum computational numerical model. For this purpose, a coupled elasto-plastic-
anisotropic damage constitutive relation is developed and implemented to the model
to describe the behavior of the fractured chalk under uni-axial loading condition.
Deformation of the fracture plane is modeled with a theory of anisotropic damage
model.

Plastic deformation of the chalk and irreversible deformation of the fracture are
treated in a similar way by defining the plastic and damage flow rules, and using
a stress return algorithm. The coupling of the plasticity and the damage models is
done by making an equivalent constitutive matrix based on the total deformation
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Figure A.7: Deviatoric stress [MPa] for the fractured chalk with a dip angle of 30°
(Fig. A.7a) and a dip angle of 45° (Fig. A.7b) : a higher dip angle creates a higher
stress deviator
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of the material is sum of the deformation of the intact chalk and deformation of the
fracture, and both of them experience same stresses.

The developed model is validated by comparing with an analytical solution for
an elastic rectangular volume with a single horizontal fracture.

Computational simulations of the coupled elasto-plastic damage show the effect
of the fracture and its orientation on the overall deformation and stress distribution
of the fractured chalk. Chalk tends to deform along the fracture plane, therefore
in the uni-axial simulation, high deviatoric stresses are localized along the fracture
plane, which facilitate the failure of the chalk.

Coupling the elasto-plastic constitutive model with the damage model shows a
inflection point in the diagram of the deviatoric stress versus mean stress, at which
the fracture sliding or irreversible damage started. By decreasing the asperity angle
to its residual value, the slope of the curve approaches the elastic curve.

High plastic deformation along the fracture orientation, fracture sliding and
decreasing of the asperity angle, can be seen for the fracture plane with dip angles
of 30° and 45°.
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A.A Elasto-plastic Constitutive Matrix for Intact Mate-
rial

Elastic constitutive matrix written as:

1 —v v v 0 0 0
v 1—v 1% 0 0 0
E v v 1—v 0 0 0
Dr=1701 o 0 0 05—v 0 0 (A.22)
0 0 0 0 0.5—v 0
0 0 0 0 0 05-—v]

where E' and v are Young’s Modulus and Poisson’s ratio respectively. The consti-
tutive model of intact chalk is isotropic and symmetric.
To evaluate the irreversible part of displacement (plastic strain) a non-associated
flow rule is used as follows:
QP

AeP — ~P
€ 780’

(A.23)
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where 4” is a non-negative scalar. From the theory of plasticity and consistency
condition, v” can be found as follows [61]:

oFT
=" DrAe
W= 0o ~1 (A.24)
OF' [, 0Q OF 0k
do "1 9o~ 9k Der
And the elasto-plastic constitutive relation is,
Ao =D Ae (A.25)

where D, is elasto-plastic constitutive matrix. and the incremental total strain Ae
can be split into reversible elastic and irreversible plastic strains

Ae = Ae® + AgP (A.26)

From mathematical manipulation and theory of plasticity, the elasto-plastic consti-
tutive matrix [DP] is obtained as the following form.

D, if vP =0

0 T ) (A.27)
D; — ify? >0
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A.B Damage Constitutive Matrix
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(A.28)

if v >0

do op OeP

The above equations are obtained from the theory of maximum damage dissi-
pation and consistency condition, which are equivalent to the one in the plasticity
model [36]. Irreversible strain of the fracture plane is obtained by using the damage
flow rule and damage multiplier v%:

Ag? =122 (A.29)

A.C Transformation Matrix

lg 326 n% 210, my 2Myg Ny 20:ng
lely mgmy ngny mgly+1lomy ngmy+meny ngly+l:ny
Lol mem, ngn, mgl,+lzm, ngms+men. ngl,+1:n,

(A.30)

m
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and,
l, = sin(d)cos(a) my = —sin(d)sin(a) n, = cos(d)
l, = sin(a) my = cos(a) ny =0 (A31)
l, = —cos(d)cos(a) m, =cos(d)sin(a) n, = sin(d)

A single fracture in a 3 -D space is defined by the dip d and strike a angles as
follows:

Strike angle is the angle between true north and the line formed by intersection
of the fracture plane and a horizontal plane. True north is defined by the azimuth
system. In the azimuth system true north has an azimuth 0° and east has azimuth
of 90°. In this work we defined azimuth of 90°.

Dip angle is angle of the inclined fracture below the horizontal plane. The dip
is always measured perpendicular to the strike line.
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Abstract

Acid injection in a carbonate oil reservoir can increase oil recovery by etching a
part of the fractured porous reservoir and generating conductive channels (“‘worm-
holes™), which creates an easier path for oil production. However, it is crucial to
predict the wormhole and reservoir strength and their failure for a successful acid
treatment. For this purpose, a continuum-based computational method is devel-
oped. The model includes flow in the porous chalk reservoir, flow in the wormhole
and reversible and irreversible deformation of chalk and fractures, which are mod-
eled with an equivalent elasto-plastic damage constitutive model. The coupling
between the reservoir flow and the fractured chalk deformation is done by explicit
coupling method. The results found that the risk of the wormhole’s walls failure is
higher if the natural fractures are oriented along the wormhole; however, natural
fractures with larger dip angles and higher inclinations in respect to the wormhole
increase the risk of the rock failure. Results shows that increased fluid production
from the wormhole, which can be the result of the further acid treatments, devel-
oping irreversible behaviors of the rock and reduces the natural fracture asperity
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at the wormbhole’s tip, in addition to increasing the wormhole’s wall deformation,
eventually leading to the wormhole’s occlusion.

B.1 Introduction

Oil consumption in the world is going to increase dramatically while oil supply is
rapidly declining. In low-permeability and low-porosity reservoirs, oil is difficult
to extract by primary recovery. In this case, well stimulation techniques such as
matrix acidizing are used to increase rock permeability. In matrix acidizing, acid
is injected into the near-wellbore zone and reacts with the rock reservoir including
natural fractures, dissolving portions of the rock and opening up existing pores and
fractures [17, 18], leading to an easier oil flow by increasing the rock permeability
and porosity: this allows more fluid draining to the well-bore and enhances oil
production. Near-wellbore stimulation by acid is becoming increasingly important
to make drilling methods more economical; however, many acidizing treatments
do not produce the expected increase in reservoir productivity.

Several studies [20, 72, 24, 57] have addressed a dissolution process, leading
to the formation of long, conducting and branching channels between the reservoir
and the well, that can improve the porosity and permeability of carbonate reser-
voirs and consequently their productivity; these channels go through the rock like
a worm, hence the name wormhole [20]. Different parameters such as the acid
injection rate, fluid velocity, surface reaction rate and heterogeneity of the porous
medium influence wormhole formation, and as a result the reservoir productivity
[15, 31, 4, 33, 48, 58]. Such an increase in oil production due to acidizing has
the negative effect of increasing the risk of rock collapse [3, 37]. In addition, stress
levels around the wormhole vary during production, which can cause wormhole oc-
clusion and wormhole failure, and influence the resulting achievement of the acid
treatment. Therefore, for successful acidizing, it is crucial to predict the reservoir
and wormhole strength under loading and during flow production.

For this purpose, we used a multi-physics computational model to predict the
coupled phenomena that occur in the near well-bore zone of the fractured reservoir,
including induced wormholes, during flow production. The schematic of the near
well-bore zone is illustrated in Figure B.1. Coupling methods between reservoir
flow and the rock deformation can be found in the literature [73, 55, 32, 49, 50, 71].

In this computational model the flow velocity inside the fractured porous reser-
voir is defined by Darcy’s model, including anisotropic permeability [53, 45, 69].
To predict the reversible and irreversible deformation of the fractured chalk and
wormbhole, natural fractures are introduced as fractured planes in the rock mate-
rial, and a continuum model [52, 51, 40, 2, 66, 67, 56, 10, 22, 13] (an equivalent
constitutive model coupling reversible and irreversible deformation of chalk with
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Figure B.1: Schematic of the modeled near well-bore zone, including induced
wormholes and natural fractures

the reversible and irreversible deformation of the fracture plane) is applied to the
computational model.

Irreversible deformation of the chalk is modeled by elasto-plastic theory [60,
59, 28] and irreversible or nonlinear deformation of the natural fractures is de-
scribed by anisotropic damage theory or fracture sliding. The coupling between
elasto-plastic behavior of the chalk and the nonlinear of the fracture is implemented
with elasto-plastic-damage theory [36, 35, 34].

A pre-existing wormhole is introduced into the model as a channel with fluid
flow. The interaction between the reservoir fluid flow and the fractured chalk defor-
mation is done by explicit coupling method [49]. The computational method of the
fluid is based on the finite-volume method, available in the in-house computational
fluid dynamics (CFD) software “Brilliant”, whereas the non-linear finite-element
(FE) method is used to evaluate the deformation and strength of the fractured chalk,
and is implemented into the “Brilliant” software [5].

B.2 Methods

This study models a part of the near well-bore area of the chalk reservoir, including
one induced wormhole and natural fractures. The model for simulation study is
presented in Figure B.2.

In the model, the chalk reservoir is a porous medium includes natural fractures,
which are defined by their orientation in terms of azimuth and dip angles [23]. The
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Figure B.2: Idealized representation of the near well-bore zone including worm-
hole and two fracture planes: the fractures and the intact chalk are modeled as an
equivalent continuum model, while the wormhole is separately defined as a flow

channel.
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Figure B.3: Representation of one fracture plane oriented with an azimuth of 0°
and a dip angle of 6.

fracture plane with a dip angle of # and azimuth of 0° is presented in Figure B.3.
The fracture plane with dip and azimuth angles of 0° is defined as a horizontal
plane. The block coordinate axes are X, Y and Z, where Z is the vertical direction
and X and Y axes are on the horizontal plane.

The computational model used in this study is divided into three parts:

e The fluid flow in the fractured porous medium and the wormhole;

* The geomechanical model, including both reversible and irreversible behav-
iors of chalk, fractures and wormhole’s walls;

* The coupling between the flow and geomechanics models.



B.2. Methods 63

B.2.1 Flow in the Fractured Porous Rock

The flow in the fractured reservoir is modeled on Darcy scale and is formulated
through the continuum approach. The Darcy velocity vector is represented by
Darcy’s law. By neglecting the gravity effect the Darcy velocity vector becomes:

q= —KVP (B.1)
I
where VP is the pressure gradient vector, u is the fluid viscosity and K is the
permeability of the medium and represents the directional resistance of the porous
medium to the flow [23]. The permeability K can be written as a product of two
components [69], the permeability scalar and the unit permeability tensor:

K = [K|[K] (B.2)

The permeability scalar |k| can be defined from the theory of laminar flow through
two parallel plates separated by a narrow space:

b = B3

k| = D) (B.3)
where wy is the distance between the two parallel plates, or the fracture aperture.
The unit permeability tensor [k] is defined in compact form as:

[k] = 51']' — Ny ’I”Lj (B4)

where 0;; is the Kronecker delta; n; and n; are components of the normal vector to
the fracture plane, n. For more details see Gupta et al. [27].

The fluid velocity vector U is related to the Darcy velocity g by the chalk poros-
ity (¢):

U=- (B.5)
¥

In the Darcy equation, there are two unknown parameters: the velocity and the
pressure gradient vectors. The velocity vector can be defined by using the mass
continuity equation, which is based on the principle of conservation of mass [23].

B.2.2 Geomechanics

The geomechanical model predicts the strength and failure of the fractured chalk.
In this model, the natural fractures and the intact chalk are considered as a single
medium with an equivalent constitutive model, which includes both reversible and
irreversible behavior of the intact chalk and natural fractures. The irreversible de-
formation of the intact chalk is caused by shear failure and pore collapse, and is
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modeled by the theory of nonlinear plasticity; the irreversible deformation of nat-
ural fractures is modeled by the shear-dominant damage theory, and is caused by
fracture sliding and fracture asperity degradation.

In this model, the constitutive models of intact chalk and natural fractures are
considered separately, and a coupling method is applied to construct the equivalent
constitutive model. The coupling is based on the elasto-plastic-damage model by
Ibrahimbegovié [36].

The equivalent constitutive Model of the Fractured Chalk

In this section the constitutive model of the intact chalk, natural fractures and their
coupling are described.

Constitutive model of the intact chalk The elasto-plastic constitutive relation
for the intact chalk is:
Ao = D? Ae (B.6)

where Ao is the incremental stress vector and Ae is the total incremental strain,
which is divided into elastic (reversible) and plastic (irreversible) parts:

Ae = Ae® + AP (B.7)

D¢? is the elasto-plastic constitutive matrix of the chalk; for an elastic chalk, D is
equal to the elastic constitutive matrix, Dy, which is a function of Young’s Modulus
E and Poisson’s ratio v.

DP is defined from the classical theory of plasticity [47]. The yield and poten-
tial functions of the chalk are based on the ISAMGEO chalk model presented by
Plischke [60]. The chalk model includes two independent yield mechanisms: shear
failure and pore collapse, where shear failure has priority over pore collapse. The
shear failure yield and potential surface are defined by the Mohr-Coloumb function
in stress-invariant space and as a function of chalk properties, such as cohesion ¢
and friction angle ®. For the potential surface, the friction angle ® is replaced by
the dilatancy angle W. Chalk properties such as cohesion and friction vary during
loading, which harden or soften the Mohr-Coloumb yield function. Hardening of
the yield surface is applied to the model by increasing the friction angle to the peak
value. After that, the material experiences pronounced softening by decreasing the
cohesion and friction angles to the residual values. For the dilatancy angle W, the
hardening and softening are the same as for the friction angle ®. The yield surface
for pore collapse is defined by an ellipse in stress-invariant space, assuming an as-
sociated plastic flow. The parameters used in the constitutive of the chalk are listed
in Table B.2.
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Constitutive model of the fracture plane The fracture is modeled as a 2-D plane
with a local coordinates x, i and z. The constitutive relation of the single fracture
is:

Ae"” = Fd Ag’ (B.8)

where Ao’ is the incremental stress of the fracture in its local coordinates, Ae’ s
the incremental strain of the fracture (analogously to plasticity theory, it is a sum
of reversible and irreversible strains), and Fed is the nonlinear compliance matrix
of the single fracture plane at its local coordinate. For linear deformation, F¢¢ is
replaced by the linear compliance matrix F'; of the fracture plane, which takes the
form:

EZL0 0
Fr=]10 k' 0 (B.9)
0 0 Kk

where k,, is the stiffness normal to the fracture plane, and ks and k; are the shear
stiffness of the fracture plane in two orthogonal directions in the local coordinates
of the fracture plane [52]. The parameters used in the constitutive model of the
fracture plane are listed in Table B.2.

The nonlinear constitutive model of the fracture is modeled by assuming that
its irreversible deformation is due to the frictional sliding and represented by irre-
versible damage theory [36, 35] in a way similar to plasticity development in chalk
material by replacing the yield function with the slip function. Jing et al. [40] pro-
posed slip and potential functions for a single fracture as follows:

i 0_/ 2 O_/ 27 %
Pt = (ﬁ) + ( :j) + o, —cf (B.10)

I L1

O_I 2 / 212
Q7 = <:y> + (2“) + o' sin(a) (B.11)

x z
where cy is the cohesion of the fracture and yi, and fi, are defined as:

ty = tan(P, + o) (B.12)
Wy = tan(®, + ;) (B.13)

where @, is the frictional angle and «,, and «, are the asperity angles of the frac-
tured chalk in the « and 2 directions. Average asperity angle, o in Equation (B.11),
is the average of o, and v, [52].

During the irreversible deformation of the fracture, degradation of the asperity
angle is observed. The asperity degradation is assumed to be a function of the
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irreversible portion of the fracture displacement, which is presented in Equation
(B.14).
0y = Qg exp (—m e ) (B.14)

x,irreversible

d
Qy = Qz0 €Xp (_m ‘Ez,irreversible’) (B.15)
and average asperity angle, o, expressed in Equation (B.16):

o= W (B.16)

The equivalent coupled elasto-plastic-damage model The equivalent coupled
elasto-plastic-damage constitutive model is presented to demonstrate both reversible
and irreversible deformation of the fractured chalk. In the equivalent coupled model
the chalk and the fractured plane are modeled as two elements connected in series
[56, 10]. Series models ensure that each element experiences the same incremental
load, and that the total strain is equal to the sum of the strain in each element. In
order to introduce an equivalent constitutive model, both fracture and chalk are de-
fined in a same coordinate system by using a coordinate transformation [? ]. The
stress vector in each element of the series model is equal to the total stress; the
linear constitutive relationship between strain and stress for the equivalent model
with a single fracture is:

Aef = (D' +TTF Ao (B.17)

where T is a transformation matrix [? 10], which transforms the stress vector of
each block in X, Y and Z coordinate into the stress vector at the local coordinates
of the fracture plane z, y and z. The equivalent compliance matrix of the elastic
fractured chalk, F, is introduced in Equation (B.18).

Fl=D/'+T'F,T (B.18)

The coupled equivalent elasto-plastic-damage constitutive matrix, D, which con-
siders both reversible and irreversible behaviors of the fractured chalk is presented
in Equation (B.19).

Dt = [(Def’)—1 + (D“l)—l]_1 (B.19)

The Permeability Update

As presented in Equation (B.3), the permeability scalar is a function of the frac-
ture aperture. The fracture aperture varies over time because the fracture walls
are not flat and parallel smooth surfaces, but contain irregularities called asperities
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Figure B.4: Representation of a natural fracture with parallel walls with asperities.

Table B.1: Chalk parameters for fluid flow calculation.

Initial porosity of the medium, ¢3¢ 0.4
Initial scalar value for permeability, || 3.5 x 10~° m?

(see Figure B.4). Asperities reduce the fluid flow and make flow velocities irregu-
lar [68]. During the shear-dominant damage of the fracture (fracture sliding), the
asperity angle « degrades and aperture varies. Change of the asperity angle is a
function of nonlinear fracture deformation as defined in equation (B.16). Fracture
aperture variation due to the asperity angle degradation can be defined as:

wy = wy, (1 — tanh(cx)) (B.20)

where wy, is the fracture aperture at the initial state and wy is the fracture aperture
at the current state, which is increased due to the asperity angle degradation. In
this work, we have one fracture, and the initial value for its aperture is chosen to be
wy, = 0.25 mm.

The Porosity Update

As mentioned earlier, the nonlinear deformation of the fracture is shear-dominant;
the effect of the fracture’s volume change on the fracture’s porosity is neglected,
hence a single-porosity approach [1] is used in the model. However, the nonlin-
ear model of chalk considers the dilatancy effect due to shear failure and volume
changes due to pore collapse. Therefore, the single porosity is updated to provide
a more realistic pressure to the geomechanical model:

P8 = Yo + €y (B.21)

where @5 and g are the current and the initial porosity respectively, and €, is the
volumetric strain (compression strain is negative).
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Table B.2: Chalk and fracture parameters assumed for elasto-plastic damage con-
stitutive model.

Young’s modulus, £ 4000 MPa
Poisson’s ratio, v 0.22

Angle of friction for yield (initial, peak, residual), 37.5°, 38°, 37.7°
Angle of friction for potential surface, ¥ 19°

Cohesion (initial, peak, residual), ¢ 0.8 MPa, 0.8 MPa, 0.7 MPa
Fracture normal strength, k., 30 MPa / m
Fracture shear strength, ks, k¢ 15MPa/m, 15 MPa/m
Fracture cohesion, cy 0

Fracture asperity angle (initial), oz, o 10°, 10°

Fracture angle of friction, @, 37.5°

B.2.3 Coupling Flow and Geomechanical Models

Chalk is a porous medium and pores are filled with fluid. Pore pressure is incorpo-
rated into the constitutive equation so that the total stress is subdivided into effective
stress o°T, which acts on the rock structure, and the pore pressure p [70].

o = o — apjup (B.22)

where agio is called Biot’s coefficient [6], which represents the ratio of the volume
or water squeezed out of the rock to the total volume change for deformation at
constant fluid pressure. In this work the value of apjo is constant and is equal
to one. The effective stresses from Equation (B.22) are used in the constitutive
relation.

The coupling between the flow model in the reservoir and solid deformation
has been done by explicit or one-way coupling [49]; the flow field is a function
of position, porosity and permeability from the previous increment. At each time
step the flow field can be solved independently of the stress field, and the pressure
gradients are solved. The stress states are evaluated once the flow field has been
determined. The known pressure gradients are converted into force and used in the
constitutive model to calculate the stress states.

B.2.4 Numerical Methods

In order to solve the above constitutive relations, the explicit Euler integration algo-
rithm is applied to the nonlinear constitutive equation of the chalk and the fracture,
then the return stress algorithm, proposed by Ortiz and Simo [54], is used to calcu-
late the irreversible deformations and modify stresses and return them to the yield
and slip surfaces. The return algorithm is applied separately to the constitutive
models of the chalk and the fracture plane, and the irreversible deformation of each
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model is calculated in two separate computations, independently of each other. At
the end of each computation, stresses provided by the two models will be enforced
to be equal with an additional iterative loop. The computational procedure is ex-
plained by Ibrahimbegovié [36].

B.3 Model Description

The above model is applied to the section of the near well-bore area that was illus-
trated in Figure B.2. The geometry and boundary conditions for the computational
calculations are explained in the following.

B.3.1 Geometry

Figure B.5 demonstrates the geometry and meshes for finite-element and finite-
volume calculations. This computational model includes quadrilateral meshing
with constant size, which are the same for finite-element and finite-volume cal-
culations. The geometry of the model is a 3-D cuboid extending 50 cm in the X
and Z directions, and 10 cm in the Y direction. The Z axis is oriented vertically.
The wormhole is induced in X Z plane. The wormhole length is 25 cm and its width
at the outlet is 2 cm. The natural fractures are described by their dip and azimuth
angles. The case study includes two natural fractures with dip angles of 8 and —6.
In this study, fractures have azimuth angle 0°, and dip angles 0°, 5°, 10° and 20°.

B.3.2 Initial and Boundary Conditions

The model is under uni-axial compression loading, which represents the overburden
pressure, applied on the upper surface and increasing from 1.5 MPa to 1.6 MPa in
5 seconds. The chosen time step is 0.002 seconds. The choice of the time step does
not have any effects on the geomechanics simulation results; however, a larger time
step impairs the stability of the flow simulation. The back-pressure at the outlet
of the wormbhole is assigned as a boundary condition, and the production rate is
increased by reducing the back-pressure from 1.5 MPa to 1.48 MPa during the 5
seconds of the loading. The initial fluid pressure of the reservoir is 1.5 MPa.

B.4 Computational Results

In this section, the results of the finite-element and finite-volume calculations for
the above model are presented. The results show the wormhole’s wall and reservoir
deformation and their strength during the loading and fluid production. The effect
of natural fractures orientations on the stress distribution in the model are described.
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Figure B.5: The mesh used in finite-element and finite-volume calculations: the
model of the fractured chalk includes a wormhole under uniaxial compressive load-
ing.

B.4.1 Wormhole’s Wall Displacement

Figure B.6 shows the vertical displacements for the fractured chalk and wormhole
at time 1.5 seconds. Fractures have an azimuth of 0° and dip angles are chosen as
0°, 10° and 20°. Results indicate that the case with the fracture with a dip angle
of 0° (i.e. oriented horizontally and parallel to the wormhole’s axial axis) has the
largest vertical displacement. By increasing the dip angle, the vertical displacement
is reduced and the rock tends to move toward the fracture dipping direction. The
vertical displacement causes the downward movements of the upper wormhole’s
wall, which is higher for the case with a lower dip angle. With time, the downward
movement of the upper wormhole’s wall leads to occlusion of the wormhole tip,
resulting in reduced production.

B.4.2 Chalk and Wormhole Strength

Deviatoric stresses for cases with different fracture dip angles are presented in Fig-
ure B.7.

It can be seen that the deviatoric stresses are concentrated around the worm-
hole’s walls in the case with a dip angle of 0°. The deviatoric stresses increase with
the dip angle. Deviatoric stresses are concentrated around the wormhole’s tip, not
along the wormbhole itself, but rather inclined toward the fracture dipping direc-
tion, which indicates that the fracture with higher dip angle has a dominant effect
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(a) Dip angle 0° (b) Dip angle 10° (c) Dip angle 20°

Figure B.6: Displacement (in mm) for the fractured chalk with various dip angles
after 1.5 seconds of loading. The chalk with the fracture with a dip angle of 0° has
the highest vertical displacement of the wormhole’s walls, which leads to an earlier
occlusion of wormhole during production.

on weakening the rock instead of the horizontal wormhole, and that the fracture
oriented along the wormhole contributes to the wormhole’s walls failure.

Figure B.8 shows the accumulated equivalent plastic strains for cases with frac-
ture orientation with dip angle of 0°, 10° and 20° at time 4.6 seconds. The plastic
deformation occurs earlier in the sample with a dip angle of 0° (after 3 seconds)
than with a dip angle of 20° (after 4.5 seconds). Plastic deformation is concentrated
around the wormhole wall at its outlet for the case including the horizontal fracture.

Figure B.9 depicts the variation of the asperity angle at the wormhole tip versus
time. The asperity degrades during loading due to fracture sliding and decreases to
the residual value. The plot indicates that asperity degradation occurs faster in the
case with a fracture with a dip angle of 10° than in the case with zero dip angle.

B.4.3 Reservoir Depletion and Wormhole Strength

This section discusses the effect of the reservoir depletion on the wormhole’s strength
in a chalk with a fracture plane oriented with dip angle of 5° and azimuth angle of
0°.

Reservoir depletion is modeled by setting the back-pressure at the wormhole
outlet boundary condition. The pressure difference between the wormhole outlet
and the reservoir drives fluid flow out from the wormhole. The initial pressure in
the chalk reservoir is 1.5 MPa. Two cases with are considered, in which the back-
pressure declines over 1.5 seconds with 30 kPa and 6 kPa respectively.

The results for deviatoric stresses at simulation time of 1.5 seconds for two
cases are shown in Figure B.10. Faster pressure drop in the porous chalk, which
indicates faster reservoir depletion, leads to higher pressure gradients and hence
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Figure B.7: Deviatoric stresses (MPa) for the fractured chalk with various dip
angles after 1.5 seconds of loading: stress concentrates along the fracture dipping
direction.
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Figure B.8: Equivalent plastic strain (x 10?) for the fractured chalk: The accumu-
lated plastic deformation is higher in the sample with a lower dip angle.
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Figure B.9: Asperity variation versus time at the wormhole tip: Degradation is
faster for the case with a larger dip angle.
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(a) Slow reservoir depletion: 6 kPa (b) Fast reservoir depletion: 60 kPa
pressure drop at the boundary outlet pressure drop at the boundary outlet
in 1.5 seconds. in 1.5 seconds.

Figure B.10: Deviatoric stresses (MPa) at time 1.5 seconds, seconds for two cases
with different back-pressure boundary conditions.

higher stresses in the porous medium. As a result of the high deviatoric stresses,
damage and asperity degradation grow faster. The asperity angle distribution in
Figure B.11 indicates a higher degradation around wormhole’s tip in the case with
faster pressure drop. The initial asperity angle is 10° and the lower angles around
the wormhole indicate asperity degradation.

As mentioned, degradation of the asperity angle increases the permeability by
opening the fracture aperture; however, simulation results indicate that the flow
flux enhancement from the wormhole’s outlet due to the asperity degradation is
insignificant, and for the cases including a fracture with dip angles of 0° and 5° the
flow flux enhancement is less than 1 %.

B.5 Conclusion

In this work, an equivalent coupled elasto-plastic damage model for fractured chalk
including wormholes is developed and coupled with fluid flow and implemented in
CFD-FE code. This is done to study the effects of the loading and existence of
natural fractures on the strength and deformation of wormholes and chalk during
production from naturally fractured reservoirs. Although wormholes can make an
easier path for the flow, they might also collapse and thereby neutralize their effect
on recovery.

Results show that the orientation of the wormhole plane with respect to the
orientation of the natural fracture planes plays an important role on rock strength
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(a) Slow reservoir depletion: 6 kPa (b) Fast reservoir depletion: 30 kPa
pressure drop at the boundary outlet pressure drop at the boundary outlet
in 1.5 seconds. in 1.5 seconds.

Figure B.11: Asperity angle (degree) distribution in the porous chalk at time 1.5
seconds for two cases with different back-pressure boundary conditions.

and, consequently, flow production. The orientation of natural fractures has a strong
effect on overall reservoir deformation. In the case of uni-axial compressive load,
the high vertical deformation of the chalk with a horizontal fracture plane causes
high downward movement of the wormhole’s wall, which can lead to wormhole
occlusion. Furthermore, the fracture orientation relative to the wormhole has a
strong impact on the wormhole’s failure and damage around it; the wormhole’s wall
experiences high irreversible deformations in the case with the horizontal fracture.

In contrast, damage development and the fracture’s asperity degradation around
the wormhole increases permeability by opening the fracture aperture; however,
results indicate an insignificant effect on the production rate.

Increasing the pressure differences between the outlet boundary and the reser-
voir increases the overall deformation of the chalk, increases the risk of the chalk
and wormhole failure, and thereby wormhole occlusion.
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Abstract

Acid injection in a low permeability carbonate oil reservoir can increase the oil
recovery by etching a part of the medium; creating a conductive channel and con-
sequently increasing the mass transfer and oil production. Heterogeneity of the
porous carbonate reservoir influences the dissolution pattern and formation of the
conductive channel, which is called a wormhole. In order to understand these ef-
fects, a computational model has been developed to simulate the acid transport in
the porous media and dissolution of the fractured chalk. The natural fractures af-
fect the dissolution pattern by directing the flow potential along the fractures. The
results found that in a chalk core sample with a vertical fracture plane, which is
orientated parallel to the plane between the inlet and the core, the injected acid has
the best penetration depth through the core sample. However, the vertical fracture
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leads to high deviatoric stresses in the core, which can result in an earlier failure of
the material, thus a negative effect on the oil recovery.

C.1 Introduction

With low permeability and porosity reservoirs, oil is trapped in the rock and can-
not be extracted by initial drilling. Therefore, well stimulation techniques such as
fracturing is used to increase the permeability of the carbonate rock. Two ways of
well stimulation are fracturing and matrix acidizing. During the fracturing, fluid is
injected at higher pressure than reservoir pressure. The high reservoir’s pressure
leads to the fracture opening new channels. In matrix acidizing, acid is injected at a
lower pressure than the matrix pressure and acid reacts with the carbonate rock, dis-
solving portion of the rock and opening up the existing spaces which leads an easier
oil flow by increasing the rock permeability and porosity. This allows more fluid
draining to the well-bore and enhances oil production. Well stimulation by acid
is becoming increasingly important to reduce the drilling costs. However, many
acidizing treatments do not produce the expected increase in reservoir productiv-
ity. Several studies [24, 57] have addressed a dissolution process, which leads to
the formation of a long, conducting and branching channel between the reservoir
and the well, can improve the porosity and permeability of the carbonate reservoir
and consequently its productivity. This channel goes through the rock like a worm,
hence the name “wormhole”. Several experimental works [15, 31, 20, 4, 33, 48],
and numerical studies such as [25, 26, 43, 44, 58, 57, 11, 46] have been conducted
to understand the effect of parameters such as the acid injection rate, fluid velocity,
surface reaction rate and properties of the media on the channel structure. However,
the effect of the heterogeneity of the porous media due to the random orientation
of its natural fractures have not been related to the rock dissolution processes. In
addition, the dissolution process impacts on the overall deformation and strength of
the rock due to the changes to the fluid pore pressure, which affect the flow produc-
tion and again influences the overall effect by the acid treatment. The goal in this
work is to relate the effect of the fracture orientations to the dissolution pattern and
understand the effects of different dissolution patterns on the rock strength. For this
purpose a continuum multi-physics computational model is developed to describe
the acid flow into the porous chalk core sample including natural fractures. Sim-
ulation predicts the porosity evolving due to the chalk dissolution by the injected
acid and relates the dissolving pattern to the fracture orientations. In addition, the
influences of the dissolution pattern on the stress distribution in the chalk core are
investigated.
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C.2 Physical Model

The first part of this section describes a physical model that accounts for the acid
flow and chalk dissolution. The model is based on continuum equations written
on Darcy scale [16]. The second part, describes a geomechanical model integrated
with a flow model that accounts for the strength of the acidized fractured rock.

C.2.1 Model for Chalk Dissolution

Acid flows by convection into pore spaces. The acid molecules are transfered to
the surface of pores and acid reacts with the rock and the reaction products transfer
back to the bulk of the flowing acid. As a result of the reaction, porosity evolves
and causes an easier path for the flow. A mathematical description of acid transport
in fractured porous medium is presented by Golfier et al. [25] by considering the
following assumptions.

1. The reaction products, which transfer back to the bulk, are very small thus it
is assumed they do not change the total fluid mass.

2. The interface shape changes is slow.

3. This model is considered as a mass transfer controlled regime; it is assumed
the reaction is very fast and the acid concentration at the fluid-solid phase is
negligible.

Flow Processes

Darcy velocity is defined according to Darcy’s law. Darcy velocity for a laminar
single-phase fluid flow with neglecting the gravity effect is presented in Equation
(C.1).

1 -

q=—K- VP (C.1)

I
where P is the pressure and VP is the pressure gradient; K is permeability tensor
[27] and defined in Equation (C.3). The fluid velocity vector U is related to the
Darcy velocity ¢ by the porosity (¢)

U= (C.2)

g
2

K = |k| kij (C.3)
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X
dip
y

Figure C.1: An illustration of a Fracture plane with dip angle d and azimuth 90°

The permeability tensor K is the product of two components: the tensor part £;;
and permeability scalar |k|. The tensor k;; shows the directional effect in the fluid
flow due to the existence of the fractures in the porous medium and defined as:

kij = 5ij — Ny nj (C4)

where, n; and n; are the components of the vector normal to the fracture plane,
projected to the fracture plane coordinate axes; d;; is the Kronecker delta.

Fracture orientation is determined by the azimuth « and dip angles d. The dip
angle is the angle of the inclined fracture below the horizontal plane and the azimuth
angle is the angle of the intersection line of the fracture plane and a horizontal plane
with the positive x axis. A fracture plane with an azimuth of 90° and a dip angle is
illustrated in figure (C.1).

The permeability scalar |k| accounts for the intensity of the anisotropy due to
the presence of fractures in the porous medium. The permeability scalar |k | can be
expressed as:

2
k] = 3 fw} (C.5)

where f is the number of the fracture in a sample and wy is half of the fracture
aperture and is the perpendicular distance between the parallel walls of a fracture.

Continuity Equation

The continuity equation is based on the principle of conservation of mass,

oy =
V-U=0 C.6
5 T (C.6)
where ¢ represent porosity of the rock.The continuity equation leads to the follow-
ing form for incompressible flow by making an assumption that the process is in

steady-state due to the slow change in the interface shape.

V-U=0 (C.7)
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Table C.1: Pore scale data, used in the Darcy model

Stoechiometric coefficient, 5 1.37
Local mass transport, o 10s~!
Chalk density, pr 2499 kgm 3
Scalar value of permeability, |k| 10710m?

Initial porosity, ¢ 0.4

Transport Equation

The transport equation is derived by balancing of all mass fluxes across the sys-
tem. Here, convection and dispersion determine the transport process of fluid in
the porous media. The transport equation is applied to all materials in the system.
For example, the transport equation for acid in the porous media is approximated

as:
oC,

7o
The first three terms in the equation represent accumulation, convection and dis-
persion of the acid, respectively. The forth term is defined as a sink or the acid
consumption term and describes the depletion of acid due to the reaction; D, is the
dispersion tensor and .. is the local mass transfer coefficient, which are obtained
from the pore scale models and used as inputs to the Darcy model. The pore scale
parameters obtained from Golfier et al. [24] and listed in Table C.1 (for more de-
tail see: [25, 62]). In this work the effect of heterogeneity of the porous media for
defining the dispersion tensor is not considered.

+U-VC, =V - (¢De - VCq) — ae(Cy) (C.8)

Dissolution

The amount of solid dissolved, which causes porosity evolution, is equivalent to the
amount of acid consumed; The evolution of the porosity field is defined by using
the stoichmietry of the reaction as:

Jp  Bacly
ot pr

(C.9)

where pp is the rock density, S represents the stoechiometric coefficient of the
chemical reaction. The resulting acid concentration profile from Equation(C.38) is
used to solve the dissolution equation to find the new porosity field.

C.2.2 Model for Prediction of Chalk Strength

The concept of equivalent continuum is used in order to model the fractured chalk.
In this method the chalk including discontinuity is treated as a single medium with
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an equivalent constitutive model.

Constitutive Model for Fractured Chalk

The equivalent constitutive model for the chalk with a single fracture is written as
follows:
Ae' =F'Ac’ (C.10)

where, ' is the total strain vector and is equal to the sum of the strain in the fracture
and the intact chalk. o is the total stress vector and is equal to the stress of the
fracture and the intact chalk [22]. F! is the equivalent compliance matrix of the
elastic fractured chalk:

FleFr+TYF,T (C.11)

where F7 is the elastic compliance matrix of the chalk without fracture and F ; is
the compliance matrix of the elastic fracture plane in its local coordinates:

Fr=D;! (C.12)
[1—-v v v 0 0 0
v 1—v v 0 0 0
E v v 1—-v 0 0 0
b= o 0 0 05-v 0 0 (€13)
0 0 0 0 0.5—v 0
.| 0 0 0 0 0 0.5 -]
where E and v are Young’s Modulus and Poisson’s ratio respectively.
kb0 0
Fo=| 0 k' 0 (C.14)
0 0 k!

where k,, is the stiffness normal to the fracture plane, and ks and k; are the shear
stiffness of the fracture plane in two orthogonal directions [52]. The constitutive of
the fracture plane is written in its local coordinate plane (z’, v/, z’) and the axis of 2’
is the axis normal to the fracture plane. The block coordinate systems is defined by
axes of x, y and z, which is illustrated in figure (C.1)). T is a 6 x 3 transformation
matrix [10? ] that transforms the stress vector of the fracture plane into the stress
vector at the block coordinates as follows:

T T
/ / /
{Um Ty O'IZ} =T {Um Oyy Oz Ogzy Oy am} (C.15)
l?c m% nfc 210, my 2Mmy Ny 210 Ny
T=|lzly mamy ngny mgly+Ilamy ngmy+meny ngly+1l:ny
loly, mem, ngn, mgl,+lm, ngm,+mgn, ngl,+Il;n,

(C.16)
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Table C.2: Chalk and fracture parameters used for analyses

Young’s modulus, £/ 4000 MPa
Poisson’s ratio, v 0.22

Fracture normal strength, k,, 30 MPa / m
Fracture shear strength, ks, k¢ 15MPa/m, 15MPa/m
Biot’s coeflicient agior 1

and

l, =cos(a’,x) my, =cos(z’,y) n, =cos(z,2)
ly=cos(y,x) my=cos(y,y) ny=cos(y,z) (C.17)
I, =cos(z',x) my =cos(z,y) ny=cos(<,z2)

For the porous chalk including flow with pore pressure p, o' is replaced by the
effective stress o/ as follows:

o' =o' — aginp (C.18)
where agiot 18 the Biot’s coefficient. Parameters of the constitutive model are listed
in Table C.2.

C.3 Computational Simulation

The above physical model is implemented to an in-house computational code [5].
The computational method of the fluid is based on Finite-Volume method, whereas
the Finite Element method is used to evaluate the stress states of the rock. The
known pressure gradients from the fluid flow model converts to the force and used
in the constitute model to calculate the stress states. The fluid pore pressure is used
to calculate the effective stresses.

C.3.1 Results

The chalk heterogeneity due to the random orientation of the natural fractures af-
fects the dissolution pattern and influences the rock strength. The aim of this study
is to understand the effect of the fracture orientation on the dissolution pattern,
porosity development and stress states of the acidized chalk. For this reason com-
putational simulations for the three chalk cores including a single fracture of dif-
ferent orientations have been done. The coordinate axes are depicted in figure C.1.

1. Case 1: azimuth 90° and dip 0°; the fracture plane is parallel to the horizontal
plane zy.
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2. Case 2: azimuth 90° and dip 15°, which is inclined 15° from the horizon.

3. Case 3: azimuth 90° and dip 90°, which is oriented vertically and parallel to
the zz plane.

The model consists of a rectangular volume of 2 cm in vertical direction, z, and
1 cm in horizontal, z and y directions. Displacement for faces normal to x and
y directions are zero in their normal directions. The bottom surface has zero dis-
placement in z direction.

Acid is injecting for 10 seconds from the middle of the top surface of the chalk
core. The initial pore pressure is 0.08 MPa. Acid mass fraction is given as an inlet
boundary conditions. The simulation runs for 15 seconds, under uniaxial compres-
sion load; compression boundary load is applied on the top surface and is increasing
linearly from 0.09 MPa to 0.45 MPa for 8 seconds and they remains constant from
8 to 15 seconds.

The injected acid is at low concentrations, therefore physical properties of water
is used for the numerical simulation.

Dissolution Pattern

For the same amount of the injected acid, the acid mass fraction distribution (see
Figure C.2) and the porosity development (see Figure C.3) are evaluated for the
chalk samples with mentioned fracture orientations; The acid concentration profile
is related to the directional effect of the fractures on the flow and is characterized
in the following.

In Figure C.2a, the acid spread over the surrounding of the core sample in the
horizontal directions. The penetration depth of acid is restricted to the region close
to the inlet. The porosity field at the specific time is depicted in Figure C.3a.

In Figure C.2b, the acid penetrates into the core sample, however with orien-
tation toward the surrounding. The resulting porosity fields is illustrated in Figure
C.3b.

Figure C.2c illustrates that the acid penetrates into the core sample and a longer
and deeper channel in compare to case 1 and 2 is formed. The porosity is evolved
along the core sample, (see Figure C.3c).

Vector of Velocity and Pressure Distribution

Figure C.4 shows the velocity vectors and the pressure distribution for the men-
tioned three cases. As it can be seen the vector of velocity is along the fracture
plane. In case 1 including the horizontal fracture, fluid remains close to the inlet,
thus the fluid pressure is increasing around the inlet, which leads to a high pressure
gradient around the inlet. In case 2 including the inclined fracture plane, the fluid
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(a) case 1 includes a (b) case 2 includes a (c) case 3 includes a
horizontal fracture 15° inclined fracture vertical fracture

Figure C.2: Acid mass fraction distribution in the middle of the core samples, yz
plane, at time 8 seconds

(a) case 1 with a hori- (b) case 2 with a 15° (c) case 3 with a verti-
zontal fracture inclined fracture cal fracture

Figure C.3: Porosity profiles in the middle of the core samples, yz plane, at time
8 seconds
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(a) case 1 with a hori- (b) case 2 with a 15° (c) case 3 with a verti-
zontal fracture inclined fracture cal fracture

Figure C.4: Pressure profiles and velocity vectors in the middle of the core samples,
yz plane, at time 8 seconds

can flow through the core along the fracture direction, which leads the inclined flow
direction. In case 3, the fluid flows along the vertical fracture plane, resulting to a
deep penetration inside the core and a homogeneous pressure distribution.

Stress Distribution

In Figure C.5, deviatoric stresses, .J, for a plane in the middle of the core sample,
parallel to yz plane, at time 8 seconds is depicted. In cases 1 and 2, the stresses are
lower around the inlet. Because the higher pressure around the inlet leads to a lower
effective stresses. In case 2, high deviatoric stresses are concentrated along the
fracture plane at the bottom of the core sample. In case 3, the stress distribution is
uniform, however the core sample experiences an overall higher stresses in compare
to case 1 and 2.

C.4 Conclusion

A 3-D computational coupled flow and stress model has been presented in this pa-
per in order to relate the effect of the natural fractures on the dissolution patterns,
which is formed by the acid injection into the chalk core sample. Also the impact
of different dissolution patterns on the chalk strength is studied. In this model the
transport and reaction on Darcy scale are included in the flow model. An Equiv-
alent continuum model, which includes the constitutive model of the both intact
chalk and fracture plane is applied into the stress model. Several simulations have
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Figure C.5: Deviatoric stresses J in the middle of the core samples, yz plane, at
time 8 seconds

been performed on the acidized chalk core sample including the different oriented
fracture plane. Results show the chalk sample with the fracture plane oriented with
azimuth 90° and dip of 90°, which is orientated parallel to the vertical plane has the
best penetration depth through the chalk core sample, therefore it can improve the
fluid production. In contrast, the deviatoric stresses for the case includes a vertical
fracture is higher than cases with horizontal fracture and with a low dip angle frac-
tures. This can cause an earlier shear failure in the chalk and neutralize their effect
on having an improved flow production. The deviatoric stress is lower in the core
sample with a dip angle of 0°, however the acid remains around the inlet and cannot
flow inside the core results high acid concentration around the inlet and etching a
large portion of the chalk around the inlet area, which leads to a weaker structure
and increase the risk of the failure.
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