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       Isn’t it good - Norwegian wood? 

     The Beatles (1965) 
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Preface 
 
This doctoral thesis is submitted to the Norwegian University of Science and Technology (NTNU) 
for the degree Philosophiae Doctor (PhD). The work has been carried out at the Department of 
Structural Engineering, Faculty of Engineering Science and Technology at NTNU, with Professor 
Kjell Arne Malo as the main supervisor and Professor Kolbein Bell as co-supervisor. The project 
was started in August 2003 and completed for submission in August 2009, including approximately 
one year of leave to conduct external projects. The thesis is presented on an article based form 
containing eight papers and an introductory part with theoretical background and conclusions. 
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Abstract 
 
This thesis reports mechanical properties of clear wood from Norway spruce, comprising each 
orthotropic material direction and plane over the complete loading range till failure. The material 
properties are quantified in a set of linear, nonlinear and failure parameters. In addition, statistical 
distributions and inter-parametric correlations are presented. Several quantities have hardly been 
studied for Norway spruce earlier, and are also scarcely documented for spruce softwood in general. 
 
The properties were determined by means of experimental tests in conjunction with numerical 
analyses. In order to obtain accurate and applicable results suitable for input in numerical 
simulations, the tests were mostly based on non-standardized procedures. Normal stress behaviour 
was investigated by means of compressive and tensile tests, whereas shear properties were based on 
the Arcan method. Constant climatic conditions and loading rates were applied and no effects from 
variation in humidity, temperature, size, loading rate or load duration were studied. The wood 
comprises graded and ungraded material from the spruce subspecies Picea Abies (L.) Karst., with 
provenance Southern Norway. The use of material from the outer part of wooden stems enabled 
suitable specimens of various categories with material axes complying with a Cartesian coordinate 
system. Video extensometry was used for contact free strain measurements. All combinations of 
load directions and orthotropic measurement planes were tested. The 12 linear elastic orthotropic 
parameters were based on both loading and unloading, and were, in general, found to correspond 
relatively well with values reported for other spruce species. Characterization of the upper stress 
ranges was also emphasized, as accurate predictions of ultimate deformations and capacities are 
crucial in many analyses. Nonlinearity and ductility were, as normally assumed, found in 
compression, especially transversely. A more peculiar finding was the observation of a varying 
degree of nonlinearity in tension, and particularly in shear. The nonlinearity was adapted to bilinear 
models for each stress component, and for the case of shear, to exponential Voce models. The 
failure parameters were adapted to the ultimate stress and the Tsai-Wu failure criteria. In order to 
remove configuration and measurement effects, potentially distorting the material parameters, 
numerical FEM models were used to modify nominal values. 
 
The relatively large quantity of parametric observations enabled investigation of statistical 
distributions for each material parameter. Moreover, correlations between values determined from 
the same test could be estimated. Hence, the work constitutes a basis for deterministic and 
probabilistic numerical analyses of spruce softwood on the macro scale level (0.1–1.0 m), suitable 
for general three-dimensional studies of details and joints in timber constructions. 
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Introduction 
 
Wood is historically one of the oldest and most important materials used by humankind. Since 
ancient times, it has been utilized for tools, art, furnishing, handicraft and structural purposes in 
constructions like boats, buildings and bridges. Its extensive use has been governed by good 
mechanical properties, easy workability, carpentry traditions and availability nearly everywhere in 
the world. 
 
Wood is today one of the principal materials with an extraordinarily large amount of consumption. 
The total volume harvested annually, including wood for fuel, pulp and paper, is nearly 3500 
million m3 globally, and exceeds the volume of cement, steel, plastics and aluminium combined. 
Approximately 45% is used for industrial materials, which approximates that of cement and steel. 
Both because of a growing world population, and the many advantages of wood, it is reasonable to 
expect that its use will grow even further (Haygreen and Bowyer 1996, Sasaki and Yamasaki 2004). 
 
The characteristics of wooden material originate from nature since wood is a naturally grown 
material. The behaviour is designed and optimized to meet the demands in the forest, where the 
struggle for light has resulted in stems with a distinct length orientation vertically. Its longitudinal 
direction is stiff and strong in order to withstand vertical gravity loads from branches, stem, ice and 
snow, and to resist bending moment effects from horizontal wind forces, whereas the direction 
perpendicular to grain is considerably weaker. Other adaptations have resulted in more local 
phenomena known as juvenile wood and compression and tension wood. It should be noted that the 
basic material properties are hardly affected by harvesting and industrial processing into wooden 
products and structural components. 
 
Wood as a material is characterized by: 
 

 Orthotropy – directional dependent mechanical properties 
 
 Heterogeneity – significant property variation 

 
 Hygroscopicity – moisture interaction 

 
 Viscoelasticity – time dependent deformations (creep) 

 
 Load duration affecting strengths 

 
 Ductility in compression, brittleness in tension and shear 

 
 High strength and stiffness relative to its own weight 

 
The ratio between longitudinal strength and density is quite remarkable, and ranges from 70–150 in 
compression and 100–300 in tension for clear wood. This is significantly higher than other building 
materials; steel ranges from 50–130 in both tension and compression, whereas the ratio for concrete 
in compression is in the range of 10–50. Even for structural lumber, where natural defects like knots 
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and cracks are present, the ratio compares well with steel. Its low weight, compared to strength, is 
generally advantageous as less structural capacity is required to carry dead load. Moreover, 
foundation systems can in many cases be simplified. Another advantage is low inertia forces, 
making structures less vulnerable to earthquakes. Hence, timber structures have in many cases 
proved to be an economic alternative, with potential for even further cost reductions in lightweight 
building systems (Thelandersson 2003). 
 
Wood is relatively versatile with respect to manufacture and workability. It can be sawn into lumber 
or sliced into veneer, separated into fibre or basic chemical constituents, which again can be 
processed into finished products with relatively little energy consumption (Haygreen and Bowyer 
1996). The aesthetic qualities of wooden surfaces, and the variety of shapes and structural forms for 
instance glulam may be given, offer good architectural possibilities. Worldwide, many large 
buildings and timber bridges are excellent examples of good architecture, as illustrated in Figure 1. 
 

 
 

Figure 1: Evenstad Bridge in Norway (1996) is designed for full traffic load and has a length of 180 m 
 
Apparent drawbacks of wood are low stiffness and strengths perpendicular to grain, and relatively 
high variability in mechanical properties, making accurate predictions of deformations and 
capacities difficult. The influence on mechanical properties from load duration and moisture also 
represent challenges. Other issues are fire safety and sound insulation. The risk of biological decay 
in outdoor surroundings requires treatment with chemical preservatives or, preferably, careful 
detailing. The Norwegian stave churches are excellent examples of wooden buildings for which 
these issues were adequately solved centuries ago, see Figure 2. They prove that wooden 
constructions can endure for hundreds of years if properly designed and maintained. It should also 
be noted that wood used in buildings constitutes a natural material with good influence on human 
health (Thelandersson and Larsen 2003). 
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Figure 2: The stave church in Ringebu is an impressive timber building dating partly back to 1220 
 
Another aspect that will probably be even more important in the future is the environmentally 
friendly properties of wood. Since the carbon dioxide (CO2) that the trees absorb from the 
atmosphere will remain in the material until combustion or decay, any wooden construction will, in 
reality, be storage of carbon. The storage capabilities are considerable when it is taken into account 
that each m3 of spruce absorbs approximately 0.75 tons of CO2, of which the carbon retaining in the 
material constitutes roughly 50% of the dry wood density (CRFR 2008). With a total growth of 
roughly 30 million m3 annually in Norway, approximately 50% of the CO2 emission is absorbed by 
the forests. Although the net effect is lower due to decay and combustion, the remaining storage of 
carbon is considerable. This effect can be enhanced by increasing the standing forest volume, or the 
wood consumption for more permanent applications such as buildings. Moreover, as the energy 
consumption during manufacture of wooden products is low compared to other building materials, 
the positive effects are even higher. If this is taken into account, the CO2 emission is reduced by 
approximately 1 ton per m3 wood replacing brick, steel or concrete, making wood an ecologically 
sound alternative. As a direct consequence, the Norwegian government agreed to increase the wood 
consumption per capita from 0.65 m3 annually in 2006 to 0.75 m3 in 2010 (FOEN 2009, LMD 
2008–2009).
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1. Background 
 

A fundamental requirement for efficient use of wood as a competitive and applicable structural 
material is accurate knowledge of its mechanical behaviour. However, despite extensive and 
worldwide use in many structural applications, the understanding of its general mechanical 
properties remains insufficient. The design and use of timber has traditionally been based on 
inherited experience and craftsmanship instead of engineering principles. Wood has consequently 
been considered as a low-tech material with insufficient control and documentation. Hence, there is 
a need for more knowledge of its mechanical properties. The only way to obtain this is by 
experimental testing, although inhomogeneities, high variability and direction dependency 
complicate experiments on wood. This probably explains why wood has been less scientifically 
studied than other building materials. Most publications are typically focusing on specific structural 
details instead of the general material behaviour. Moreover, research is often limited to linear elastic 
behaviour, or ultimate capacities, without taking nonlinearity or failure criteria into account. Safety 
and reliability assessments are also of increasing interest for a material of high variability such as 
wood. Progress, however, is hampered by the lack of probabilistic material data, although 
probabilistic analyses nowadays can be handled quite effectively by many numerical codes. 
 
Of the studies focusing on the general mechanical behaviour of wood, much has been reported on 
uniaxial longitudinal loading in bending and compression, whereas tension seems to be somewhat 
less studied (Bodig and Jayne 1993). The directions perpendicular to grain are often neglected as 
the longitudinal properties usually are of main interest. The fact that perpendicular specimens can 
be hard to manufacture from sawn lumber can also be a reason for the lack of reported work. 
Regarding shear, the property determination seems somewhat impeded by difficulties in obtaining a 
state of pure and uniform shear in test specimens, making estimation of shear properties 
complicated (Xavier et al. 2004). The fact that many standardized tests incorporate several 
limitations and drawbacks is hampering a more detailed knowledge, see PAPER II and VI (Dahl 
and Malo 2009a, b). It is also interesting to note that most general studies on the orthotropic 
parameters of softwoods are relatively old, and that the subspecies Norway spruce has hardly been 
studied in this sense, see Ch. 3.5. Another topic which deserves more attention is nonlinearity in 
compression; this influences joint ductility and other highly stressed regions. Biaxial and triaxial 
stress situations, which can occur in many real cases, have also, in general, received less attention 
(Yamasaki and Sasaki 2003). 
 

1.1. Motivation 
The use of wood in bigger and more complex structures, and the availability of more sophisticated 
and powerful numerical tools for structural analysis, accentuates the need for an accurate and 
generalized material model for wood. This is particularly true for macro scale analyses (0.1–1.0 m), 
where a three-dimensional material model comprising nonlinearity and failure prediction is 
desirable. However, it appears that no constitutive models have been suggested that comprise the 
complete stress-strain range up to failure in three dimensions of wood. A generalized and robust 
model would enable prediction of the behaviour of numerous applications in timber engineering, 
without the reliance on extensive and costly experiments. This would enable better designs and 
innovative development of details in structural systems of wood and wooden composites. In 
particular, numerical studies of the complex and often highly stressed joints in timber structures are 
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desired. Whereas the free spans of a structure are characterized by a relatively uniform state of 
uniaxial stresses, a complex three-dimensional state of stresses can occur in the joint regions; these 
cannot be analysed with sufficient accuracy by hand calculations alone. In addition to more exact 
predictions of stiffness and strengths, a comprehensive numerical model enables quite detailed 
conceptual studies where, for instance, dowels may be placed in more complex patterns, or the 
geometry and material parameters may be altered. Moreover, problematic capacities perpendicular 
to grain and complicated loading situations resulting from eccentricities or inertia forces can be 
analysed. Hence, through better control and documentation, the potential of more efficient and 
reliable solutions is believed to be significant. Wood could consequently be used more in large scale 
timber systems such as multi storey buildings and large bridges. 
 

1.2. Joints in timber structures 
Joints constitute the connections between various members in a structure. They are located where 
the members are intersecting geometrically, or where splicing is required in members being shorter 
than the span width. The joints comprise the most critical and complex parts of a timber structure. 
Failure and even collapse of buildings are often initiated as a local failure at, or in the vicinity, of a 
joint. In particular, the low tensile capacities perpendicular to grain require special attention (Larsen 
2003). Figure 1-1 shows the dramatic consequences of a joint failure in one of the biggest glulam 
halls in Europe. The collapse occurred two years after erection, and was mainly caused by design 
errors. Several similar catastrophic failures of large structures indicate the need for improved joint 
design in timber constructions. The trend towards bigger and more complex timber structures also 
stresses the necessity of robust joint design (Sjödin 2008). Another aspect is that efficient jointing 
techniques are important for competitiveness of timber structures, both with respect to mechanical 
performance and erection time. 
 

  
Figure 1-1: Siemens Arena in Denmark with free spans of 73 m collapsed in 2003 (Skaug 2004) 

 
The joint stiffness influences on the moment, shear and normal force distributions in statically 
indeterminate frame structures, and thus the stress situation beyond the actual connection areas. A 
good joint model can therefore be important for a realistic load distribution in the global system, 
although this is often treated in a very simplified way (Thelandersson and Larsen 2003).  
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Timber joints are often less effective than joints in steel structures due to low embedding strengths, 
especially perpendicular to grain. As a consequence, relatively large spacing and end distances are 
required to avoid splitting. Load transfer volumes and areas in wooden structures can therefore be 
relatively large, and may be the critical factor defining the sizes of adjacent members. Joints can be 
based on direct compressive transfer, adhesives, glued-in rods, nail plates or dowel-type fasteners. 
The latter constitute the most common type, including nails, staples, drift pins, screws and 
(threaded) bolts. Slotted-in steel plates with dowel fasteners are shown in Figure 1-2. An excellent 
description of the various types is given in Thelandersson and Larsen (2003) and will not be 
repeated here. 
 
 

 
Figure 1-2: Typical dowel joint with slotted in plates used at the Olympic arenas at Lillehammer (1994) 

 

1.3. Design of joints 
Design of joints is normally done by hand-calculation procedures based partly on empirical data, 
and, for the case of dowel type connections, on the Johansen (1949) theory, which considers the 
dowel as a beam embedded in the wood. Plastic hinges and embedding zones are assumed to occur, 
and the theory is therefore not valid for brittle failure caused by wood splitting. The risk of splitting 
is ensured by minimum distances to ends, edges and other fasteners. However, sufficient ductility 
capabilities can be difficult to obtain, especially for large scale joints (Sjödin 2008). The Johansen 
theory has proved to be robust and efficient, but can, in cases where the configuration deviates from 
the empirical basis, give erroneous results. Important issues are bolt group effects, slender dowel 
effects, eccentricities and axial withdrawal and ductility capacities. Nonlinearity, material behaviour 
perpendicular to grain and possible reinforcement of wood based on self-tapping screws are 
therefore important research fields (Larsen 2003, Nielsen 2003). Stress and strain fields caused by 
fluctuating moisture are also relevant. 
 
In numerical models of timber structures, for instance of trusses, the members are typically 
modelled by beam elements with system lines coinciding with the centre of gravity, whereas the 
joints normally are modelled as hinges. In more refined models, eccentricities between system lines 
are included by small auxiliary elements at each joint. Since many joints are capable of transferring 
bending moment, fictitious elements may be introduced to mimic real behaviour. The moment 
capacity and its distribution between the adjacent members are thus directly dependent upon the 
localization and stiffness of the fictitious elements relative to the hinge, see Figure 1-3. 
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Figure 1-3: Truss model with a fictitious element in the joint region (Nielsen 2003) 

 
Many of today’s software programs are based on this approach, although the strategy to determine a 
reasonable stiffness of the fictitious elements, and thus the forces acting on each joint, is somewhat 
obscure. Since the force and stress distributions of the joint are not determined, a correct joint 
deformation can hardly be accounted for in the overall deflection. This may partly be alleviated by 
introducing rotational spring elements, where joint slip and plasticity can be included by nonlinear 
element features. However, reasonable spring stiffness can be hard to determine. Furthermore, 
possible splitting of the wood is not taken into account (Nielsen 2003). 
 
By using three-dimensional models in advanced finite element method (FEM) codes, and dividing 
even small regions into a large number of elements, very detailed models can be obtained. The 
modelling capabilities offered by commercial FEM codes such as ABAQUS and ANSYS are 
overwhelming, and a great challenge lies in user-knowledge and modelling in order to obtain a 
sufficiently realistic model. In principle, any geometry and load configuration can be analysed. 
Figure 1-4 shows the three-dimensional FEM-model of a tensile specimen of spruce subjected to 
bolt loading, representing a simple joint. Models of structural joints may comprise three-
dimensional effects from torsion and out-of-plane bending moments, in addition to eccentricities, 
nonlinearities and contact and friction forces on a detailed level. A direct consequence of model 
refinement is the need for more sophisticated material models on the macro scale level, taking into 
account direction dependency, material nonlinearity and failure criteria. Whereas an isotropic 
assumption is often used for global analysis, a transversal isotropic or orthotropic material law 
should thus be assumed. 
 

 
Figure 1-4: Finite element model of a clear wood tensile specimen loaded by a steel dowel 
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1.4. Objective 
The objective of the thesis is to explore and document the mechanical behaviour of clear wood from 
spruce softwood. This comprises the three-dimensional direction dependency, normally referred to 
as orthotropy, and includes shear and normal stress components in compression and tension over 
the complete loading range up to ultimate capacities. The aim is to quantify the behaviour by a set 
of linear, nonlinear and failure parameters. Moreover, statistical quantification of parameters is 
emphasized. The inherent theory is described in Ch. 3–6. 
 

1.5. Limitations 
Wooden beams from timber normally span 5–7 m, whereas structural timber trusses often are used 
for larger spans. For large structures, engineered wood products are required, of which glue 
laminated timber (glulam) is a competitive product. Norway spruce is often preferred in glulam due 
to its glue-technical properties. With a focus on larger structures, spruce is therefore chosen in this 
study. Additional limitations are summarized below: 
 

 Effects from location in trunk and provenance are not treated.  
 

 Effects from fluctuating moisture and temperature are not studied. 
 

 Loading rates and elapsed time until ultimate capacity are held steady at levels given by the 
various test standards. Consequently, only short-term static tests with constant deformation 
rates are used, and no effects from creep (viscosity), load cycling (fatigue) or load duration 
are included. 

 
 Size effects and material inhomogeneities are not covered. 

 
 The focus is basically on a quantitative characterization of the mechanical behaviour, and 

anatomical and phenomenological effects governing the mechanical performance are not 
included. 

 
 Only clear wood properties are studied, see Ch. 2.2. and 2.7. 

 

1.6. Outline of the thesis 
The thesis contains eight separate papers on clear wood properties. An introductory part consisting 
of 6 chapters is included as a motivation and theoretical background. Experimental assessments and 
a summary of the publications with conclusions and suggestions for future research are found in Ch. 
7–9. 
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2. Softwood material  
 

2.1. Norway spruce 
 

Norway spruce (Picea Abies) is classified as a softwood (gymnospermae), which differs from the 
hardwoods (angiospermae) in that softwoods produce seeds that lack a covering layer. Both types 
are included in the botanical division spermatophytes. The softwoods have needle-like leaves; they 
are often known as evergreens, of which many bear cones. The softwoods are therefore referred to 
as conifers, and include spruce (Picea) as one of the main groups. Around 500 different softwoods 
are registered (Haygreen and Bowyer 1996). About 35 of these are of commercial importance, of 
which Norway spruce constitutes an important subspecies and is the most dominating in Norway 
today. Its name origins from the Englishmen who imported large quantities from Norway after the 
city fire in London in 1666. It has been used extensively in Norway for housing, boats and crafts, 
and has furthermore been essential for the sawmill industry. It is also well suited for pulpwood 
utilization due to its long cells. The tree can grow 35–50 m tall with a trunk diameter of more than a 
meter. 
 
The geographical distribution of Picea Abies Karst. is shown in Figure 2-1, covering large parts of 
northern Europe, but also mountain areas in central Europe like the Alps and the Carpathians. The 
northern limit in Norway is just north of 70˚N, whereas the eastern limit is given by the Ural 
Mountains. Norway spruce is one of the most widely planted spruces, also outside its native range, 
and can for example be found in North America. 
 

 
 

Figure 2-1: Distribution of Picea Abies Karst. 
 
In addition to glulam, it should be noted that spruce can be used for engineered wood products 
(EWPs) such as Laminated Veneer Lumber (LVL) and I-joists. EWPs possess several advantageous 
features as they can be produced in very large sizes adapted market requirements, with better 
dimensional stability and tolerances, and less defects and variation. EWPs are consequently 
attractive for structural purposes. It can be noted that orthotropic properties documented for clear 
wood are relevant for many EWPs, which in principle are manufactured from clear wood. The 
orthotropic properties may, in fact, be more salient in an EWP than in ordinary timber, where a 
cylindrical coordinate system and more irregularities are present. 
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2.2. Anatomical scales 
Material properties are generally dependent upon the material scale they are determined from, and 
can consequently be observed and systematized on different levels. Since wood is quite 
inhomogeneous, material parameters ought to be determined on a scale which corresponds with the 
structural level of the problem which is to be analysed. The features of wood are often separated 
into four: massive; macro; meso and micro scale (Smith et al. 2003), as illustrated in Figure 2-2. 
The massive scale comprises the global or structural level of a structure, whereas the micro scale 
constitutes the cell level. The term wood refers herein to clear wood corresponding with the macro 
level, whereas timber describes material on the massive scale. The different anatomical levels are 
naturally dependent on each other, and properties at one level govern the other. The division is 
consequently motivated by pragmatic reasons in experimental testing and numerical analyses. 
 

 

 
 

Figure 2-2: Scale differentiation for wood 
 
The main focus herein is given to the macro scale level. Only the timber stem is regarded, i.e. roots, 
bark and crown system (branches) are not included in the consideration. Moreover, the nano scale 
(microfibrils) and the molecular level fall beyond the scope. 
 

2.3. Massive scale 
Massive wood comprises solid wood members produced by sawing or gluing, typically with cross-
section dimensions over 100 mm. Structural timber on the massive (global) scale represents wood at 
its most inhomogeneous, where various defects such as knots, fibre inclination, cracks, reaction 
wood and resin pockets are present. The massive scale properties can therefore not be related 
directly to the clear wood properties, and separate testing on structural timber is consequently 
required. Structural size tests are standardized by i.a. ASTM D198 (1999) and ASTM D3500 
(1990), whereas for instance NS-EN 408 (2003) treats both massive and clear wood bending 
moduli. Global stiffness and strength values are typically given on element level rather than on 
material level, although results are presented in stress units assuming elastic theory. The influence 
of apparent defects is thus implicitly included in structural analyses, and reduction factors on clear 
wood properties are superfluous. This is also the background for different capacities for different 
loading modes, where for example the ultimate bending stress deviates from pure tensile and 
compressive capacities (Thelandersson and Larsen 2003). Due to imperfections, the massive scale 
has typically lower strengths than the macro. Failure in structural wood is often governed by 
localised processes, which makes knowledge of wood behaviour on the lower scales essential 
(Smith et al. 2003). 
 
Visual or machine grading is used to quantify and control timber properties. Both types are non-
destructive, and result in grading classes stated by for instance NS-EN 338 (2003). Machine grading 
is based on expected correlation between a measured indicative property and strength and stiffness 
values. The measurements are typically based on radiation techniques, stress wave speeds or 
flatwise short-span bending. The correlations between the elastic modulus and bending or tensile 

MASSIVE 
 

Global 

MESO 
 

Annual ring

MICRO 
 

Celle 

MACRO 
 

Clear wood 
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strengths are proved to be high (r2 = 0.50–0.70), partly because the measurements are capable of 
picking up disturbing effects from abnormalities such as knots and spiral grain (Thelandersson and 
Larsen 2003). 
 
In spite of grading routines, the general uncertainty in stiffness and strength of wood is high. The 
interrelations between various clear wood parameters are relatively obscure, as are the dependency 
to grading class for many of the orthotropic properties. Furthermore, the relations between clear 
wood and timber properties are absolutely not definite. It can be noted that Foslie and Moen (1968) 
found 31% higher longitudinal elastic modulus with structural size than clear wood bending 
specimens from Norway spruce, and a relatively high correlation of 0.78. 
 

2.4. Macro scale 
Features of wood detectable without microscope are referred to as macroscopic characteristics. By 
observing from the outside, as illustrated in Figure 2-3, a layer of outer bark is followed by an inner 
layer (phloem) surrounding the wood (xylem). The cambium is found between, where the growth of 
phloem and xylem occurs, creating a new layer of annual rings. Water and nutrients move up in the 
outer part of the xylem (sapwood), whereas sugar, as sap, moves down in the phloem. Sap required 
for building xylem travels horizontally from the phloem through radially oriented rays. Due to the 
rays, the radial stiffness is higher than the tangential and the radial drying shrinkage smaller. 
 

 
 

Figure 2-3: Parts of mature stem (Haygreen and Bowyer 1996) 
 
The inner part (50–80%) of the xylem is referred to as heartwood, which continuously starts 
transforming from sapwood when the tree has reached an age of 14–18 years. The heartwood cells 
are dead in the sense that they have lost the ability to carry on metabolic processes, and can no 
longer subdivide. Instead they form thickened and lignified cell walls wherein various extractives 
(polyphenols) evolve. Heartwood is often darker with higher density, lower water content and more 
decay-resistance than sapwood (Haygreen and Bowyer 1996). 
 
The annual rings occurring with certain regularity are salient on the macro level, indicating where a 
piece is cut in the trunk. Similarly they define the principal orientations and planes, designated by 
the directions longitudinally (L) along the fibres, radially (R) toward the annual rings and 
tangentially (T) along the annual rings, see Figure 2-4. The macro scale level (0.1–1.0 m) is 
normally assumed for two and three-dimensional stress analyses of engineered wood components 
(Smith et al. 2003). The relations presented under linear and nonlinear orthotropic behaviour in Ch. 
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3 and 4 assume wood on a macro scale level. In massive scale analyses, the radial and tangential 
directions may be treated as a combined principal direction (perpendicular P), see Ch. 3.3. 
 

 
Figure 2-4: Orthogonal material axis system LRT in wood block (PAPER I - Dahl and Malo 2009f) 

  
The longitudinal stiffness is 10–15 times higher than the radial, and 20–30 times higher than the 
tangential. Due to the thin walls of early wood cells in the radial direction, the shear stiffness in the 
radial-tangential plane is very low for most softwood species, often in the range of 5% of the radial 
stiffness. The ratios between strengths are relatively similar, which is the primary cause of the 
frequently reported failures perpendicular to grain in timber structures. 
 
The arrangement of vertically aligned cells is referred to as grain or fibres. Their length direction 
are normally oriented parallel to the length axis of the stem, although it is not uncommon that fibres 
are arranged at a slight angle, see Figure 2-5. The deviation is often in the range of 4 degrees 
(Dinwoodie 2000). The phenomenon is also known as spiral graining or fibre inclination, and may 
actually be the rule rather than the exception. It affects wood properties significantly through 
reduced strength and stiffness of sawn lumber. Reversed spiral (interlocked) grain can be found 
between different annual layers in certain species, and can be highly valued for its visual qualities 
(Haygreen and Bowyer 1996). 
 

 
Figure 2-5: Two tensile specimens of which the lower shows fibre inclination in the LR-plane (rejected) 

 
Natural macro level variation includes inhomogeneity due to different properties over the distance 
from pith to bark, and variation caused by the annual ring structure. Other sources are 
compression/tension wood, fibre inclination, cracks and resin pockets, damages from frost and 
harvesting, biological attacks and knots. Incorporation of living branches into the stem gives knots 
that constitute an integrated part of the wood, so-called intergrown or tight knots, and do not 
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become loose upon drying, although the grain direction in the vicinity is highly distorted. Knots 
resulting from dead branches, on the contrary, result in loose knots. In both cases, knots represent 
deviation from regular anatomy with direct implications on the mechanical properties of the 
material, and are undoubtedly the most common and serious defect. Whereas tension capacities 
normally are reduced by irregularities, the shear strength will be enhanced by the presence of knots. 
Another peculiar feature is growth stresses, although they normally disappear after felling. 
 

2.5. Meso scale 
The meso scale refers to the annual rings being present where wood growth is seasonal. The growth 
occurs by division of the cambium, which during winter is dormant. During spring, the cells 
subdivide radially by primary walls into new cells, which will partly develop into bark and partly 
into wood. Growth proceeds rapidly during spring and slows down in the summer before it ceases 
in the fall, which can be seen as relatively regular and distinct bands of light earlywood and darker 
latewood with transition wood between. Rapidly grown earlywood consists of relatively large 
diameter cells with thin walls, whereas latewood visa versa is stronger and stiffer with small lumens 
and radial diameters. Earlywood holds densities of 300 kg/m3 whilst latewood can reach as high as 
1000 kg/m3, often with a combined average of approximately 400 kg/m3. 
 

2.6. Micro scale 
Softwood is composed of axially oriented slender cells called tracheids, occupying 90–95% of the 
timber volume. Their cross sections are relatively rectangular with hollow centres (lumen). 
Earlywood tracheids are relatively large with thin walls, facilitating transport of water and nutrients, 
and visa versa for latewood which contributes to material strength and stiffness. Numerous pits are 
located on the radial cell walls for tracheids-to-tracheids linkages. The diameter is 20–40 µm and 
the length is 2–4 mm. The cell wall consists of cellulose, hemicelluloses and lignin which forms and 
glues the so-called micro-fibrils together. Due to varying portion of chemical content and different 
micro-fibril angles (MFA), the cell wall can be divided into four separate layers, as illustrated in 
Figure 2-6. Out of these, the S2-layer is the thickest and has therefore the greatest effect on the 
mechanical properties, including anisotropy and failure properties. A phenomenon like compression 
wood is also very dependent on the S2-layer. 
 

 
Figure 2-6: Schematic drawing of wood cell wall (Ormarsson 1999) 

 
Cells for energy storage and fluid conduction are known as parenchyma cells, and are the last to 
remain functional prior to heartwood transition. They form thin secondary walls, are mainly 
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oriented radially and contribute little to the overall mechanical stiffness. Special parenchyma cells 
can form intercellular resin canals in pine and spruce species. Such resin-secreting cells are known 
as epithelium cells, and are believed to have a function in healing damaged material and to resist 
insect invasions. Rays running radially are either composed by ray parenchyma or ray tracheids. 
They often consist of several cells in height but only one in width, where pitting on the ray 
sidewalls secures connection to longitudinal cells. Rays containing a resin canal are known as a 
fusiform ray. In softwoods, longitudinal tracheids and ray parenchyma constitute the substantial part 
of the structure (Smith et al. 2003). 
 

2.7. Clear wood 
Clear wood refers to macro scale material without apparent defects and irregularities such as knots, 
cracks, decay, resin pockets, juvenile and reaction wood. The specimen size is limited (0.01–0.1 m) 
and represents bulk behaviour averaged over relatively few growth rings. It is normally recognized 
between the principal directions L, R and T, and the property determination is based on the 
assumption that clear wood is homogeneous and continuous, i.e. a smeared annual ring structure 
(Thelandersson and Larsen 2003, Smith et al. 2003). The homogenization is an idealization, but is 
quite adequate for clear wood as long as the considered material is large compared to the cells and 
growth rings. Moreover, it can be reasoned by the Saint Venant’s principle, stating that the effect on 
stresses caused by an irregularity evens out some distance away. 
 
Values derived from clear wood specimens are pertinent for analyses of joints and details in timber 
structures. Their size provide representative volume elements (RVE) corresponding well with 
adequate element sizes in finite element models with reasonable discretization. Moreover, small 
sized pieces collected some distance from the stem pith are required if orthotropic properties are to 
be related to a Cartesian axis system. Small clear wood specimens were originally used for the 
derivation of wood properties, but were during the 1970’s partly superseded by structural size 
timber. Today, the small clear wood material still remains valid for material characterization and for 
comparison between various species and qualities (Dinwoodie 2000). Massive scale specimens 
(structural timber) seem less adequate for detailed analyses, as potential deviation in property values 
may be introduced due to size effects. Moreover, the use of large pieces is more costly.
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3. Linear elastic behaviour 
 
Wood can be assumed to behave linearly elastic up to moderate stress levels for short term loading 
(< 0.1 hours) (Smith et al. 2003). For the macro scale, or clear wood level, the material can be 
considered anisotropic with Cartesian or cylindrical material axes depending on where the material 
is cut in the trunk. If a piece is cut at a sufficient distance from the pith, so that the growth ring 
curvature can be neglected, a Cartesian system can be assumed. The anisotropy implies that the 
mechanical properties depend upon direction. The characteristic directions are defined by three 
mutually perpendicular planes of material symmetry. Thus, wood can be classified as orthotropic, 
referring to the three orthogonal directions L, R and T defining these planes, as described in Ch. 2.4. 
The ratio between the elastic moduli in the L and T direction is approximately 25, which actually 
makes wood the most highly orthotropic material known (Bodig and Jayne 1993). If the R and T 
properties are assumed equal, which is required in many design situations, the material classifies as 
transverse isotropic. 
 

3.1. Anisotropy 
The stress at a point in a general continuum can be represented by nine stress components σqr where 
{q, r} = {1, 2, 3}. The components act on the surface planes of a three dimensional element whose 
planes are defined by the orthogonal reference coordinate system 1, 2, 3 represented by the 
coordinates xi and the base vectors ei, {i} = {1, 2, 3}. The strain is similarly represented by nine 
strain components εqr. The stress and strain is related by Hooke’s law, which in indicial notation can 
be stated as 
 

 
qr qrst st

qr qrst st

S

C

 

 




  {q, r, s, t} = {1, 2, 3}       (3.1) 

 
where Sqrst designate the compliance components and Cqrst the stiffness components. The fourth 
order tensors C and S contain 34 components each. A total number of 81 elastic constants would 
thus be required to characterize a material completely. However, from basic mechanics it is known 
that mutual shear components are equal in magnitude, implying (minor) symmetry: 
 
 qr rq qr rq             (3.2) 

 
which reduces the number of elastic constants to 36, i.e. 
 
     qrst rqst qrtsC C C           (3.3) 

 
The general strain energy function w for any linear elastic material is for a volume unit defined by 
 

 
1

0
2qr qr qrst st qr qrst qr stw d C d C               (3.4) 

 
It is assumed that the w is sufficiently smooth, and it follows that  
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2 2

qrst stqr
qr st st qr

w w
C C

   
 

  
   

       (3.5) 

 
implying (major) symmetry. Combination of major and minor symmetry gives 
 
       qrst rqst qrts stqrC C C C          (3.6) 

 
Consequently, the number of independent elastic constants in an anisotropic material is being 
reduced to 21. In a similar way it can be shown that the major and minor symmetry also holds for 
Sqrst (Daniel and Ishai 2006), which on Voigt matrix form with tensor indices reads  
 

1111 1122 1133 1123 1113 1112

22 2222 2233 2223 2213 2212 22

33 3333 3323 3313 3312 33

23 2323 2313 2312 23

13 1313 1312 13

12 1212 12

S S S S S S

S S S S S

S S S S

S S S

S S

S

sym

 
 
 
 
 
 

      
     
     
     

     
     
     
     
     

     (3.7) 

 

3.2. Orthotropy 
A material plane of symmetry implies that the elastic components must remain unchanged 
(invariant) if the axis is reflected through the symmetry plane. An orthotropic material has three 
mutually perpendicular planes of material symmetry, as illustrated for wood in Figure 3-1. 
 

 
Figure 3-1: Principal directions and symmetry planes in clear wood (after Bodig and Jayne 1993) 

 
Hence, there exist three transformations which leave the constitutive equations invariant. The 
transformation can be defined by three sets of base vectors eq and ēi with components eqj and ēij 
related through 
  

 
ij iq qj i iq q

ij qi qj i qi q

e M e M

e M e M

 

 

e e

e e
       (3.8) 

 

T

R

L 
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Miq are here components in a transformation matrix, and do not represent a tensor. Coordinates are 
analogously transformed by 
  

 
i iq q

i qi q

x M x

x M x




  

T





x Mx

x M x
       (3.9) 

 
where the orthotropic transformation matrices are defined by 
 

 1

1 0 0

0 1 0

0 0 1

 
   
  

M ,  2

1 0 0

0 1 0

0 0 1

 
   
  

M ,  3

1 0 0

0 1 0

0 0 1

 
   
  

M                         (3.10) 

 
The stress and strain matrices are correspondingly transformed by 
 
 ij iq jr qrM M    Tσ M Mσ          (3.11) 

 

ij iq jr qrM M       T M Mε ε                          (3.12) 

 
 qr iq jr ijM M    T M Mε ε                          (3.13) 

 
The strain energy potential given by Eq. (3.4) is invariant to transformations, and it follows that 
 

1 1 1

2 2 2qrst qr st ijkl ij kl qrst iq jr ks lt ij klw C C C M M M M            (3.14) 

 
where qrst and ijkl are referring to the different sets of base vectors. Hence 
 
 ijkl iq jr ks lt qrstC M M M M C         (3.15) 

  
Transformations M within the symmetry group of the material imply ijkl ijklC C . The constitutive 

equations will thus be unchanged. For e.g. component 1111C  and the transformation M1, the 

condition is fulfilled since the following equality holds: 
  
 1111 1 1 1 1 1111 11111 1 1 1 0q r s t qrstC M M M M C C C             (3.16) 

  
While for e.g. component C1123 and transformation M2,  
 

1123 1 1 2 3 1123 11231 1 1 1 0q r s t qrstC M M M M C C C             (3.17) 

 
which consequently proves that the equality is satisfied for C1123 = 0 only. Corresponding 
considerations for each of the components and the Mi matrices result in Eq. (3.18), which is 
presented in Voigt matrix form: 
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1111 1122 1133

22 2222 2233 22

33 3333 33

23 2323 23

13 1313 13

12 1212 12

C C C 0 0 0

C C 0 0 0

C 0 0 0

C 0 0

C 0

C

sym

 
 
 
 
 
 

      
     
     
     

     
     
     
     
     

     (3.18) 

 
As long as C satisfies transformation by two of the three Mi matrices, transformation by the third 
will also be satisfied. The same can be shown for the compliance tensor S, writing 
 

1111 1122 1133

22 22 2222 2233 22

33 33 3333 33

23 23 32 2323 23

13 13 31 1313 13

12 12 21 1212 12

S S S 0 0 0

S S 0 0 0

S 0 0 0

S 0 0

S 0

S

sym

  
  
  
   
   
   

         
       
       
       

               
       
       

       

   (3.19) 

 
where it should be noted that the shear strain γqr equals the sum of εqr and εrq, which by definition 
are equal. In distinction to Eq. (3.7), it can be seen that no coupling exists between normal and shear 
components. This implies that application of normal stresses do not produce shear strains and visa 
versa in orthotropic materials when material and reference axes coincide (Hopperstad 2003). 
 
Each of the compliance coefficients Sijkl in Eq. (3.19) can be related to a set of engineering material 
parameters comprising three moduli of elasticity Eii, three shear moduli Gij and six Poisson’s ratios 
vij (Daniel and Ishai 2006). If the relations are set up with the LRT nomenclature normally used for 
clear wood, as illustrated in Figure 3-2 and denoted as 
 
 1 = L 
 2 = R           (3.20) 
 3 = T  

 
Figure 3-2: Reference coordinate system 123 relative to principal material system LRT 

 
the compliance Sijkl {i, j, k, l} = {L, R, T} can be stated as 
 

L

R T

1

2 3
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 (3.21) 

 
It can be seen that the major symmetry enforces the equality  
 

ij ji
iijj jjii

ii jj

v v
S S

E E
     (i ≠ j)       (3.22) 

 
Consequently, only three of the totally six Poisson’s ratios are independent. Hence, an orthotropic 
material is governed by 9 independent elastic constants out of totally 12. Given that the linear range 
prevails, the engineering parameters can be determined experimentally by observation of strain and 
stress increments, writing 
 

 ii
ii

ii

d
E

d




  ij
ij

ij

d
G

d




  jj
ij

ii

dv
d

     (i ≠ j)     (3.23) 

 
Due to the minor symmetry properties of C and S, it can be noted that 
 
 ij jid d   ij ij ji jid d d d         ij jiG G   (i ≠ j)   (3.24) 

 
Figure 3-3 shows measurements from the LR material plane of clear spruce wood loaded 
longitudinally in compression. The active strain (black) and the passive strain (grey) yield ELL and 
vLR estimates, respectively, both visualized with white lines. 

 
 
 

 
 

Figure 3-3: Determination of linear elastic parameters of spruce 
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Transformation of the compliance tensor Sijkl into the inverse elastic modulus tensor Cijkl gives 
(Daniel and Ishai 2006, Bodig and Jayne 1993): 
 

1

1

1
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0 0 0

0 0

0

RT TR RL RT TL TL RL TR
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    (3.25) 

 

 1
 1 2 RL TR LT LT TL RT TR LR RL

LL RR TT

S v v v v v v v v v
E E E

     
 

   (3.26) 

 

3.3. Transverse isotropy 
A material is transversely isotropic if there exist a plane such that every plane perpendicular to it is 
a material symmetry plane. If the characteristic plane is defined by the e2 e3 base vectors, the 
material is restricted by the reflective M2 and M3 matrices stated for orthotropic materials in Eq. 
(3.10) and the rotation M1-rot

 about the e1 axis defined as 
 

 1

1 0 0

0 cosθ sinθ

0 sinθ cosθ

rot

 
   
  

M         (3.27) 

 
Similarly as described in Ch. 3.2, it can be shown that this results in the stiffness matrix 
 

1111 1122 1122

2222 2233

2222

2222 2233

1212

1212

C C C 0 0 0

C C 0 0 0

C 0 0 0

C C
0 0

2

C 0

C

ijklC

sym

 
 
 
 
           
 
 
  

    (3.28) 

 
The transversely isotropic material is thus characterized by 5 independent elastic constants (Daniel 
and Ishai 2006), which appears from the compliance matrix  
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     (3.29) 

 
where the following nomenclature is used 
 
 1 = L 
 2 = 3 = P (transverse / perpendicular to grain)     (3.30) 
 
ELL and EPP are the elastic moduli in the L and P directions, respectively. GLP and vLP are the in-
plane shear modulus and Poisson’s ratio, respectively, and vPP is the out-of-plane Poisson’s ratio 
corresponding to the RT-plane in wood. Note that a transversely isotropic material also is 
orthotropic. The assumption of transversely isotropic materials is used in timber engineering, 
whereas it is normally separated between the radial and tangential directions in testing of clear 
wood (Gustafsson 2003, Smith et al. 2003). Although it can be argued that the radial and tangential 
properties are different, this variation is often lower than variation along the stem and from pith to 
bark. 
 

3.4. Polar orthotropy 
If the timber stem is considered, or a piece is cut relatively near the pith so that the annual ring 
curvature is obvious, a polar/cylindrical coordinate system can be plausible. This is a three-
dimensional system where each point is given by three coordinates, two polar (r, φ) and one axial 
(x). For wood, the two polar coordinates describe the position in the RT-plane and x the plane’s 
position along the stem, with the axis running through the centre (pith) of the perpendicular RT-
plane, see Figure 3-4. 
 

 
 

Figure 3-4: Polar coordinate system 
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A polar system is naturally not capable of comprising local perturbations such as knots or growth 
ring irregularities, but offers a more detailed representation than the transversely isotropic model, as 
it distinguishes between the two perpendicular directions R and T. According to Shipsha and 
Berglund (2007), the clear wood behaviour can be strongly dependent on elastic properties and the 
orientation of annual rings to the load. Despite simple uniaxial loading, shear coupling due to off-
axis effects can cause an inhomogeneous and complex state of stresses. Hence, the assumption of 
polar orthotropy can be important for prediction of stresses in wood. This has also been proved by 
Aicher et al. (2001), who found good correspondence between experimental and numerical results 
in the RT-plane by assuming polar orthotropy. 
 
It should be noted that experimental determination of linear elastic orthotropic parameters from 
polar systems seems complicated, as an inhomogeneous strain field may occur just because of 
orthotropy. Nevertheless, orthotropic parameters obtained in Cartesian systems may be applied in 
numerical analyses based on polar coordinate systems. 
 

3.5. Linear orthotropic parameters 
While the ultimate bending and compressive capacities and the corresponding modulus of elasticity 
are relatively well documented for wood longitudinally, the scarcity of characterization of other 
properties is noteworthy. Standardized tests do not separate between the radial and tangential 
directions, and seem in many cases less suited for an accurate characterization of the transverse 
properties. Tension tests have, partly due to practical problems, received limited use, and 
comparisons between tensile, compressive and bending stiffness properties are rare. Accurate shear 
testing also seems to be a challenge. It is furthermore interesting to note that standardized tests do 
not exist for the Poisson’s ratios and the transverse elasticities, and that most comprehensive studies 
on the 12 linear elastic orthotropic parameters are relatively old, and based on a variety of test 
methods. As regards spruce, these parameters have been investigated in 8–10 independent studies 
on nearly as many subspecies. They are presented in comprehensive publications like Hearmon 
(1948), Kollmann and Côté (1968), Bodig and Jayne (1993), FPL (1999) and Dinwoodie (2000), 
although it should be noted that most of these values are based on earlier studies. The original 
references for spruce are tentatively summarized in Table 1. Except for NS 3470 (1999), it seems 
like the subspecies Norway spruce was investigated by Carrington (1923) only. Statistical analyses 
of the values in Table 1 give relatively high linear correlations with the density ρ (kg/m3) for ELL (r2 

= 0.74) and ETT (r2 = 0.46), and low for the other. However, it should be noted that the values 
constitute averages, and that they consequently are not representative for the true variation in 
experimental data. 
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Table 1: Linear elastic orthotropic parameter values for various spruce species from literature (Eii and Gij in MPa) 
Type Ref.  ρ ELL ERR ETT VLR VLT VRL VRT VTL VTR GLR GLT GRT 

C14 1 350 7000 230 230 - - -   - - - 440 440 - 

C18 " 380 9000 300 300 - - - - - - 560 560 - 

C24 " 420 11000 370 370 - - - - - - 690 690 - 

C30 " 460 12000 400 400 - - - - - - 750 750 - 

C40 " 500 14000 470 470  -  -  -  -  - -  880 880 -  

Engelm. 2 - 10300 690 410 0.76 - 0.08 0.49 - 0.25 620 620 50 

  " 3 314 6887 762 374 0.37 0.34 - 0.42 - 0.36 645 625 54 

  " " 319 6322 780 361 0.47 0.49 0.07 0.47 0.04 0.20 854 788 71 

  " " 330 6046 1301 350 0.49 0.48 0.11 0.88 0.04 0.20 962 873 76 

  " " 318 5605 351 378 0.35 0.54 0.07 0.35 0.09 0.27 618 705 55 

  " 4 350 9790 1253 578 0.42 0.46 0.08 0.53 0.06 0.26 1213 1175 98 

  " 3 320 10438 700 386 - - - - - - 610 590 51 

Black " 380 11527 830 494 - - - - - - 699 663 66 

Red " 380 11506 830 494 - - - - - - 699 663 66 

Sitka " 380 11823 830 494 - - - - - - 699 663 66 

  " 5 390 11600 900 500 0.37* 0.47* 0.03* 0.43* 0.02* 0.25* 750 720 39 

  " 4 350 10890 849 468 0.37 0.47 0.04 0.44 0.03 0.25 697 664 33 

  " 3 362 10748 649 348 0.34 0.40  0.42 - 0.38 533 438 41 

White " 380 10162 830 494 - - - - - - 699 663 66 

Spruce 6 440 15919 686 392 0.43* 0.54* 0.02* 0.42* 0.01* 0.24* 617 760 36 

" " 500 16706 810 633 0.37* 0.56* 0.02* 0.43* 0.02* 0.33* 624 853 35 

" 7 500 16600 850 690 0.36 0.52 0.02 0.43 0.02 0.33 630 840 37 

" " 370 9900 730 410 0.44 0.56 0.03 0.57 0.01 0.29 496 607 21 

" " 390 10700 710 430 0.38 0.51 0.03 0.51 0.03 0.31 500 620 23 

Norway " 390 10900 640 420 0.39 0.49 0.03 0.64 0.02 0.32 580 590 26 

Silver 8 430 13500 890 480 0.45 0.54 - 0.56 - 0.30 717 496 34 

Spruce 9 440 15900 690 390 0.44 0.38 0.03 0.47 0.01 0.25 620 770 36 

Average 390 10991 716 435 0.42 0.48 0.05 0.50 0.03 0.28 682 693 49 

* ) Poisson’s ratios are probably reconciliated by Eq. (3.22). 
 

1. NS 3470 (1999) 

2. Goodman and Bodig (1970) 

3. Bodig and Goodman (1973) 

4. FPL (1999) 

5. Doyle et al. (1945) 

6. Kollmann and Côté (1968) 

7. Carrington (1923) 

8. Jenkin (1920) 

9. Stamer (1935) 
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4. Nonlinear behaviour 
 
It is broadly recognized that wood shows relatively linear elastic behaviour in tension, followed by 
brittle failure, whereas nonlinearity can be observed in compression, and to some extent in shear. 
This applies to a varying degree to each of the three principal material directions and planes of the 
cellular and porous material, permitting substantial compaction in compression and shear. The 
nonlinearity is in the longitudinal direction caused by local cell wall buckling and separation of 
fibres until a defined ultimate load is reached, whereas the mechanisms of the two transverse 
directions are more obscure, with indistinct compressive capacities. Either case results in non-
recoverable (inelastic) strain causing permanent change of shape after removal of the load. On a 
macroscopic level, the deformation occurs relatively homogeneously, whereas it on microscopic 
levels appears localized in single rows of cells. So-called densification can occur for very high 
compressive strains (>30–50%). The behaviour of the various principal directions and planes are 
indicated in Figure 4-1.  

        
Figure 4-1: Stress-strain curves of clear wood in each material direction i and plane ij 

 
Nonlinearity in wood resembles metallic plasticity, although the basic mechanisms in many ways 
are different. For simplicity, and for the lack of more appropriate concepts, the nonlinearity is in the 
following described with terms and theory referring to metallic plasticity. Therein, inelasticity due 
to external loading translates into changes in the inter-atomic spacing. If the post-yield stress-strain 
relation shows a positive slope, the behaviour is defined as elasto-plastic with strain hardening. If 
the slope on the other hand is zero, it is defined as elasto-ideal-plastic. The magnitude of plastic 
deformations before failure defines whether a material can be characterized as brittle or ductile. 
 
The nonlinear zone is generally avoided in design of timber structures. However, in order to model 
highly stressed regions such as the connection points of a structure accurately, macro scale 
nonlinearity should be accounted for. The wood crushing, or plastification, around dowel bolts can 
be of importance for the global behaviour of systems including ductility, redundancy and post 
failure characteristics. If a linear elastic model is assumed, stresses may in certain areas be highly 
overestimated, whereas stress redistribution is not accounted for. An elasto-ideal-plastic model can 
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partly remedy the latter, but is vulnerable to predict too low stresses where hardening in reality is 
present. Some kind of an orthotropic elasto-plastic model may therefore be appropriate for 
modelling nonlinearity on the macro scale of wood (Moses and Prion 1999). A short survey of 
general plasticity theory, as a framework for quantification of nonlinearity in wood, is given in the 
following. 
 

4.1. Theory of plasticity 
A basic assumption in the general theory of plasticity is the existence of a yield surface defined by a 
function f (σ, q), dependent on the 6 stress components in σ and a set of internal variables q 
governing the surface evolution. If the material is assumed elasto-ideal-plastic, the yield function is 
independent of q and the relation reduces to f (σ). A material is defined to be in an elastic state 
when f < 0, and in a plastic state when f = 0. That is, if the stresses exceed a critical value, the 
material will undergo plastic or irreversible deformation, also referred to as yielding. Further 
deformation is restricted by stresses to remain on the yield surface, although the surface itself may 
change shape and size during yielding. The function f depends on material, and can be given by 
well-known criteria like the von Mises or Tresca, or by more advanced variants such as the 
modified anisotropic Hill criterion (ANSYS 2005c) described in PAPER IV (Dahl and Malo 
2009e). 
 
The theory is based on an incremental formulation, where the stress increment is related to strain 
increments separated into elastic and plastic parts, writing 
 
 e p

qr qr qrd d d             (4.1) 

 
The elastic increment can be expressed by Eq. (3.19), whereas the plastic is defined by a flow rule, 
writing  
 

e
qr qrst std S d           (4.2) 
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          (4.3) 

 
where dλ (plastic multiplier) denotes the magnitude of the incremental plastic strain, and rqr denotes 
the yield-gradient. The flow rule is referred to as associative if g = f. For materials with strain 
hardening (not ideal-plastic), material parameters constituting q can be determined by experiments 
as described in PAPER III and VIII (Dahl and Malo 2009d, h). Moreover, the assumption of plastic 
incompressibility is important for the evolution of the plastic strains. It falls beyond the scope of 
this thesis to evaluate this any further. 
 

4.2. Nonlinear parameters 
Experimental data for the nonlinear range of wood are hard to find in the literature. Moreover, it 
does not seem like any general constitutive law comprising nonlinearity exists for wood. 
Comprehensive publications like Kollmann and Côté (1968), Bodig and Jayne (1993), Dinwoodie 
(2000) and Smith et al. (2003) all state that wood behaves nonlinearly in the upper stress range, but 
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quantifications of the behaviour are scarce. Nonlinear behaviour in compression and shear was 
presented by tri-linear stress-strain relationships by Patton-Mallory et al. (1997), although coupling 
between the principal directions was ignored. Constitutive laws for continuous materials were hence 
not obeyed (Kharouf 2001, Smith et al. 2003). Elasto-plastic models based on the modified Hill 
criterion (Hill 1956, Shih and Lee 1978), in conjunction with bilinearity or trilinearity, has been 
used by Moses (2000), Kharouf (2001), Clouston and Lam (2001) and Hong and Barrett (2006, 
2008) to estimate three-dimensional stress states in wood and wooden composites. These models 
are originally developed for anisotropic metals, and allow different yield stresses and tangent 
moduli for each stress component in tension and compression. However, it seems like 
simplifications have been necessary in several cases for the lack of parametric data. Moreover, 
experimentally based parameters for spruce violate the inherent plastic incompressibility 
assumption (ANSYS 2005c), and thereby a set of consistency equations, making it less suited for a 
general representation of nonlinear wood behaviour (PAPER IV - Dahl and Malo 2009e). 
 
Several studies have been focusing on nonlinear uniaxial compression. Thelandersson and Larsen 
(2003) refer to an empirically based power law for the longitudinal direction, although species is not 
assigned. Likewise, Ramberg and Osgood (1943) and O´Halloran (1973) fitted continuous power 
functions for spruce in compression, presumably in the longitudinal direction. Yoshihara and Ohta 
(1992, 1994, 1997) found power and exponential functions for uniaxial compressive behaviour of 
specimens with varying fibre inclination angles in the LR-plane, including the longitudinal and 
radial directions. Tabiei and Wu (2000) used these power functions, together with similar shear 
results, to obtain correspondence between numerical and experimental nonlinear data for shear and 
compression in the LR-plane. Dumail and Salmén (1997) investigated water saturated Norway 
spruce loaded perpendicularly in compression. A rather distinct proportional limit was found, 
followed by relatively low strain hardening up to 30% strain, from where a rise in the hardening 
was observed. The latter was probably caused by cell voids reaching a minimum, and is referred to 
as densification. Mackenzie-Helnwein et al. (2003) included both strength degradation (strain 
softening) and subsequent densification (strain hardening) for compression in the longitudinal 
direction of spruce by exponential and a power functions, respectively. No degradation could be 
substantiated radially, and strain hardening followed by densification (increased strain hardening) 
was modelled in the radial direction. Parameters originating from different studies were used 
(Faessel et al. 1999, Lucena-Simon et al. 2000, Eberhardsteiner 2002, Adalian and Morlier 2002). 
 
As regards tension and shear, nonlinear shear behaviour was documented by means of torsion tests 
by Yoshihara and Ohta (1995a, c, 1996), Yoshihara et al. (1997) and Yamasaki and Sasaki (2003, 
2004). Similar results were found by means of the Iosipescu shear test by Yoshihara et al. (1999, 
2001) and Yoshihara and Matsumoto (2005). Ukyo and Masuda (2006) used the ASTM D143 
(1984) shear block test to document nonlinearity. It does not seem like any of the aforementioned 
studies have focused on nonlinearity in tension. Moreover, tangentially oriented compression, as 
well as rolling shear seem to be neglected. It may consequently be concluded that the experimental 
basis is not sufficient for a general nonlinear description of spruce. This is also due to the fact that 
many studies are focusing on other species, and that quite different experimental tests and adaption 
models have been used in the various studies. As stated by many of the aforementioned references, 
it is thus a need for a more thorough description of the nonlinear range of wood, including 
development of a generalized constitutive model.
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5. Failure prediction  
 

Wood is characterized by quite different strengths in tension and compression in the three material 
directions, and for the case of shear, between the three material planes. A major concern in timber 
engineering is the low tensile capacities in the two transverse directions. In real structures, more 
failures have probably occurred due to stresses perpendicular to grain than parallel, although the 
latter is the principal direction of stresses in most structural members, except in joint regions. 
Among several others, Gustafsson (2003) states the basis for engineering strength analyses in 
timber constructions to be somewhat crude, both with respect to failure theory and strength 
parameters. Because of direction dependency, traditional criteria like von-Mises and Tresca will not 
provide useful predictions. A short survey of more appropriate strength theories for wood is 
summarized in the following. 
 

5.1. Failure theory 
A stress-based failure criterion may generally be written as  
 

  , 1ijF              (5.1) 

 
where F < 1 predicts sufficient capacity, whereas F ≥ 1 predicts an instable condition of failure, 
wherein λ is a set of material parameters typically comprising the uniaxial strength(s). Hence, the 
criterion is phenomenological in the sense that the structural component is assumed to fail as soon 
as the state of stresses in some point of the geometry fulfils the criterion, although it does not 
distinguish between brittle and ductile failures. It should be noted that F can be formulated on a 
strain basis instead of stresses. It is also important to recognize that F is empirically based, 
assuming a homogeneous and continuous material. Hence, it will not work properly in regions with 
steep stress gradients or where irregularities are present. Moreover, the criteria are incapable of 
representing stress redistribution occurring on meso and micro levels (Smith et al. 2003). 
 
Eq. (5.1) describes a single failure surface in stress space. It should be noted that Mackenzie-
Helnwein et al. (2003) made use of a multi-surface model with four surfaces for the two-
dimensional LR case. This was mainly motivated by the need of distinguishing the failure mode 
with respect to subsequent softening or hardening rules, see Ch. 4.2. Eberhardsteiner (2002) found 
that a single surface model based on the Tsai-Wu criterion fitted the same experimental failure data 
well (Mackenzie-Helnwein et al. 2003). 
 

5.2. Ultimate stress criterion 
The ultimate (or maximum) stress criterion FMAX is probably the most intuitive failure criterion, as 
normal and shear stresses in each principal direction and plane, respectively, are limited to the 
corresponding strength values, writing (not sum over indices) 
 

 max , ,
ijMAX ii ii

ult ult ult
ii ii ij

F
 

   

      
  {i, j} = {L, R, T}, i ≠ j  (5.2) 



CHAPTER 5   Failure prediction 
 
 

 28

 
Here, ult

ii denotes the orthotropic strengths in tension (+) and compression (–) and ult
ij  

correspondingly in shear. Totally 3 shear capacities and 6 normal capacities are thus required to 
comprise the compressive and tensile sides of an orthotropic material (σ-ii

ult handled positive). All 
can be determined experimentally, although the shear and particularly transverse strengths can be 
somewhat cumbersome to obtain for wood. Any effect from interaction between the stresses is not 
included, which in certain cases may lead to non-conservative design. 
 

5.3. Hankinson formula 
The first formula for the compressive strength of wood at an arbitrary angle ψ to the grain was 
proposed by Hankinson (1921) for a two-dimensional case: 
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Later, Kollmann and Côté (1968) found that the relation, in a modified form, also is suitable for 
evaluating the tensile strength: 
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       (5.4) 

 
where ult

LL  and ult
PP  denote the normal strengths in the longitudinal (L) and perpendicular (P) to 

grain directions, respectively, analogously to the indices in Ch. 3.3 for transverse isotropy. Values 
of n from 1.5–2.0 were found to give satisfactory agreement with experimental data. The Hankinson 
formulas, although strictly empirical, have according to Liu (1984) proved to fit experimental data 
for wood reasonably well in several studies. However, Thelandersson and Larsen (2003) state that 
the criterion (with n = 2) is generally on the unsafe side, especially for small angles ψ. 
 

5.4. Norris criterion 
Norris (1962) developed a strength theory for orthotropic materials based on the Henky-von-Mises 
isotropic theory, assuming a plane state of stresses and no distinction between radial and tangential 
properties: 
 

 
2 2 2

N LL PP PL
ult ult ult

LL PP PL

F
  
    

     
       

     
      (5.5) 

 
where the strength denotation is as described in Ch. 5.3, and ult

PL  is the shear strength in the PL 

plane. Gustafsson (2003) states a tripartite variant including an extra term, comprising each 
combination of the three orthotropic directions. The criterion has been verified for wood by off-axis 
compressive and tensile tests. It is an obvious drawback that the criterion does not separate between 
tensile and compressive capacities, and consequently must be applied in a piecewise manner (Smith 
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et al. 2003). Nevertheless, Liu (1984) states that the Norris criterion and the Hankinson formula 
have enjoyed more popularity in the wood industry than any other criteria. 
 

5.5. Tsai-Wu criterion 
The failure criterion suggested by Tsai and Wu (1971) seems particularly suited for wood, as it 
includes both orthotropy and interaction effects, and moreover allows different tensile and 
compressive capacities, writing 
 

TW
ii ii ijkl ij klF F F     {i, j, k, l} = {L, R, T}     (5.6) 

 
where Fii and Fijkl are strength tensors of 2nd and 4th order, respectively. Higher order terms (Fijklmn 

σij σkl σmn) are ignored, since the number of components in a 6th order tensor would run into the 
hundreds, and the failure surface then would become open-ended in stress space (Tsai and Wu 
1971). Given that the axis system is unidirected with the principal material orientations LRT, 
components Fiikl (k ≠ l) vanish, i.e. no coupling exists between normal and shear stress components. 
With the indices given in Eq. (3.20), Eq. (5.6) reads (in Voigt matrix form)  
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Due to symmetry, the function involves twelve non-zero parameters. Nine can be related directly to 
the respective failure stresses by (not sum over indices) 
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  (i ≠ j)   (5.8) 

 
wherein compressive strengths σ-ii

ult are handled as positive numbers. Fii accounts for differences in 
compressive and tensile strengths, which distinguishes the criterion from the criterion by Hill 
(1956). The three remaining components Fiijj (i ≠ j) are so-called coupling or strength interaction 
coefficients between normal stress components, which must be determined experimentally by 
biaxial or off-axis uniaxial tests (Tsai and Wu 1971). However, in order to define an elliptic (closed, 
not hyperboloid) surface in the plane of normal stress components, they must satisfy 
 
 2 0iiii jjjj iijjF F F        (i ≠ j)   (5.9) 

 
Geometrically, this insures that the failure surface will intercept each stress axis. By using the 
default value stated in Eq. (5.10), it can be shown that the Tsai-Wu criterion is a generalization of 
the von-Mises criterion (Tsai and Hahn 1980), writing (not sum over indices) 
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1

2
1 1

2 2
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            (i ≠ j)   (5.10) 

 
For wood in a biaxial state, Cowin (1979) used a strength interaction coefficient of 
 

 
1

2iijj iiii jjjj ijijF F F F       (i ≠ j)   (5.11) 

 
Eberhardsteiner (2002) documented the LR interaction coefficient (FLLRR) of spruce by means of 
biaxial tests, whereas Clouston et al. (1998) used off-axis tests to document one of the interaction 
coefficients in laminated veneer from Douglas fir. 
 

5.6. Strength parameters 
Except for the Tsai-Wu interaction coefficients, all criteria in Eq. (5.2)–(5.6) can be fully described 
by means of the orthotropic failure stresses, where it is distinguished between tension and 
compression. There are numerous studies reporting the longitudinal compressive and tensile 
strengths of wood, although the tensile references are fewer. Strength values of the two transverse 
directions are scarce, and seem to be vulnerable to distorted values in standardized testing, see 
PAPER VI (Dahl and Malo 2009b). Moreover, it is seldom distinguished between the radial and 
tangential directions. Shear strengths also seem to be vulnerable to test configuration effects, as 
outlined in PAPER III and V (Dahl and Malo 2009d, g), and especially rolling shear is neglected in 
experimental testing. Other aspects of pertinent interest are possible size effects, especially for 
brittle failure modes. Out of studies focusing on orthotropic strength parameters, relatively few refer 
to Norway spruce, and particularly to the subspecies Picea Abies L. Karst. Hence, no known study 
exists that comprise all orthotropic strength values of Norway spruce. 
 
It is beyond the scope of this thesis to summarize strength values for spruce from the various 
studies, and only some references pertaining to Picea Abies L. Karst. from Norway will be 
referenced: Okstad and Kårstad (1985) tested clear wood specimens from Northern Norway and 
found an average longitudinal compression strength of 40.5 N/mm2 and a tangential compression 
strength of 4.65 N/mm2, although the latter presumably was tested laterally with strengths referring 
to the proportional limit stress (NTI 1966), and thus not necessarily reflects real properties. 
Similarly, Foslie (1971) found a longitudinal compressive strength of 41.7 N/mm2. NS 3470 (1999) 
states lower 5–percentils for compression from 16–27 N/mm2 longitudinally and 4.3–5.7 N/mm2 
transversely for grading class C14–C30. For tension, the corresponding values range from 8–18 
N/mm2 and 0.3–0.4 N/mm2. The shear strengths lie between 1.7–3.0 N/mm2 for ordinary shear, 
whereas it is stated that rolling shear hold 50% of these values. Some values in NS-EN 338 (2003) 
vary somewhat from NS 3470 (1999); this might be caused by other provenances.
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6. Probabilistic properties  
 

As wood is an inhomogeneous material with highly variable properties, even over moderate sizes, it 
is pertinent to document the probabilistic properties on massive and macro scale levels. This is 
underpinned by the fact that wood often fails in a brittle mode, with little or no redundant capacity 
from ductility such as steel exhibits. Distributional parameters can be applied directly in 
probabilistic analyses in modern FEM packages in conjunction with orthotropy, nonlinearity and 
failure prediction (ANSYS 2005a, b). This is a fascinating approach which allows more thorough 
analyses comprising sensitivity studies between input and output, serviceability, overall structural 
redundancy and general reliability assessments. Especially effects from uncertainties in material 
parameters may be quantified with a higher degree of accuracy. However, the scarcity of statistical 
input is to some extent hampering probabilistic analyses in timber engineering, particularly in 
macro scale analyses where more material parameters definitively are required. The lack of 
statistical data for proper quantification of variability in wood is among others discussed by 
Isaksson (2003). Köhler et al. (2007) state that it is of utmost importance to develop consistent 
probabilistic models for solid wood and wood based materials, with a particular focus on timber 
connections in order to improve competitiveness to other building materials. In this sense, 
probabilistic methods may facilitate innovations in application and manufacture of wood and wood-
based products for structural use (Foschi 2003). 
 
Many factors may influence property variation in clear wood, such as moisture content, 
temperature, specimen size and loading time. These factors are due to the scope not studied herein. 
Moreover, it is assumed that that the probabilistic properties are constant within the macro scale 
specimens, which hence can be regarded as the representative volume elements (RVE). 
 
In addition to distributional characteristics, investigation of parametric interrelationships 
(correlation) is aspired. Correlations can be utilized in probabilistic analyses to narrow output 
variability, and may hence be important for a highly variable material like wood. Moreover, as 
timber is a graded material with certain indicative material properties documented, such as density 
and longitudinal (bending) modulus, interrelationships can be used to estimate undocumented 
orthotropic parameters. 
 

6.1. Probabilistic analyses 
Among the most efficient methods to calculate probabilities in structural problems are approximate 
methods referred to as FORM and SORM (First/Second Order Reliability Methods). These are 
based on the calculation of a reliability index, which can be understood by a geometrical approach 
excellently described by Foschi (2003). 
 
A more straightforward variant is Monte Carlo analyses. By repeating a calculation N times, for 
which stochastic input values xi are drawn from statistical distributions, a set of deterministic output 
values are generated. If N is sufficiently large and Nf designates the number of non-performance 
events, the probability of failure Pf will simply be Nf / N. Hence, the method is relatively intuitive 
from an engineering viewpoint, and can easily be undertaken by means of sequential FEM 
simulations in commercial software, see PAPER VII (Dahl and Malo 2009c). It should be noted that 
in cases where Pf in reality is small, a very large number of simulations must be undertaken to attain 
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a reasonable approximation. This can consequently cause time-consuming analyses for complex and 
nonlinear problems. To remedy this, adaptive sampling methods can be used, mainly drawing xi 
values from regions of importance. For very efficient analyses required for instance in dynamic 
problems, response surfaces may be produced, based on a sufficient set of distinct points with 
mathematical fitting between (Foschi 2003). 
 

6.2. Statistical distributions 
Based on assignments for timber by JCSS (2006), the normal, lognormal and Weibull distributions 
were assessed as most pertinent for characterization of the clear wood properties. The distributions 
can be found in any introductory book to statistics, but are briefly presented in the following for 
consistency and symbol definition. 
 
The normal distribution 
The normal probability density function for x is given by 
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where μ is the mean and σ is the standard deviation. The function is symmetrical about μ. If 
experimental data gives a distribution with left dominance, its skewness g is said to be positive, and 
visa versa for right dominated data, and may indicate that another distribution is more appropriate. 
The normal (Gaussian) distribution comprises both positive and negative values of x, which may 
give erroneous results in probabilistic analyses where stiffness and strength cannot attain negative 
values, particularly for low μ and relatively high σ values. 
 
Lognormal distribution 
A continuous random variable x is lognormal distributed if ln(x) follows a normal (Gaussian) 
distribution. The lognormal probability density function for x is given by 
 

 
  2

2

ln

21
, ,

2

x

f x
x

e




 

 

  
  
 



 
 

    for 0x   

           (6.2) 

 , , 0f x          for 0x   

 
where ξ is the logarithmic mean value equal to the mean value of ln(x), and δ is the logarithmic 
deviation equal to the standard deviation of ln(x). A lognormal distribution is specified either by ξ 
and δ, or the mean value and the standard deviation of the random input variable x (Walpole 2002, 
ANSYS 2005a, b). The parameters are related to the mean E(x) and the variance Var(x) by 
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The fact that f = 0 for negative x-values makes the lognormal distribution well suited for 
representing strength and stiffness parameters. A three-parameter lognormal distribution is defined 
by replacing x by (x–x0) in Eq. (6.2), where x0 is denoted the location (threshold) parameter, 
defining the lower limit of x (Minitab 2006). A negative x0 value is unphysical for strength and 
stiffness values, although a positive value also can be hard to substantiate, which all in all makes the 
two-parametric variant more pertinent for this purpose. 
 
Weibull distribution 
The Weibull probability density function for x is given by 
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where k (> 0) is the so-called shape parameter, m (> 0) is the scale parameter and x0 is the location 
(threshold) parameter defining the lower limit of x. When x0 = 0 it reduces to a two-parameter 
Weibull distribution, which may be more physical meaningful, analogous to the lognormal 
distribution. It can be shown that the Weibull is an asymptotic representation of the distribution 
corresponding to the minimum value among a large number of samples of the variable x. This 
makes the Weibull distribution suited for representing strengths, especially for brittle materials such 
as wood loaded in shear and tension (Foschi 2003). 
 

6.3. Probabilistic parameters 
The Wood Handbook by FPL (1999) states coefficients of variation (CV) for the basic strength 
parameters of wood between 0.14–0.28, with highest variation transversely. Similarly, the 
probabilistic model code by JCSS (2006) states CVs of European solid softwoods between 0.1–0.3 
for strength and stiffness parameters used in timber engineering (massive scale). It is moreover 
given correlation coefficients between 0.2–0.8, inter-parametric relationships (linear or power 
functions) and statistical distribution types for the various properties. Orthotropic clear wood 
properties are not treated, although it should be noted that some can be related to the stated values. 
Köhler and Faber (2006) assert that more experimental data should be culled and assessed in order 
to develop the JCSS (2006) code for timber further.  
 
Okstad and Kårstad (1985) found relatively normal distributed longitudinal modulus (ELL) with μ = 
9700 N/mm2, CV = 0.18 and g = 0.58 by means of bending tests of small clear specimens from 
Norway spruce. Similarly, the compressive strength longitudinally ( ult

LL ) resulted in μ = 40.5 

N/mm2, CV = 0.14 and g = 0.31, whereas the tangential strength ( lin
TT ) gave μ = 4.65 N/mm2, CV 

= 0.20 and g = 0.75, all with left dominance. Foslie (1971) found ELL with μ = 9 807 N/mm2 and 
CV = 0.16, and ult

LL  with μ = 41.7 N/mm2 and CV = 0.21, both normal distributed with left 

dominances (g not given).
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7. Experimental assessments 
 
As stated in Ch. 3.5 and 5.6, many standardized tests seem less appropriate for determination of 
representative material properties, and are apparently historically based in several cases. Moreover, 
many macro scale parameters lack standardized experimental procedures. The tests used herein are 
therefore based on so-called exploratory methods, where the following is emphasized: 
 

 Specimens are tentatively designed to yield a uniform and pure state of stresses in the 
measured and critical parts. Stress and strain gradients are consequently sought minimized. 

 
 Configurations effects are sought reduced to a minimum. For example, tensile specimens are 

loaded by means of bolts instead of clamping to avoid introduction of bending moments.  
 

 Although specimens are designed to yield realistic material data, it is generally recognized 
that experimental data can hardly yield the true material characteristics due to inevitable 
configuration and measurement effects. Numerical analyses of experimental results are 
therefore emphasized for possible parameter modification. 

 
 Specimens are given a size which corresponds with finite elements pertinent for meso scale 

problems (0.01–0.1 m). 
 

 In order to obtain consistency between the various parameters, the tests are organized so that 
the linear, nonlinear and failure parameters governing the behaviour of a stress component 
can be determined from the same specimen. Moreover, the same specimen type and size is 
tentatively used for all principal material directions and planes, although some compromises 
are necessary in tension and shear due to very different strengths. Hence, configuration and 
size effects ought to be relatively congruent. 

 
 Material inhomogeneity is minimized by the use of clear wood, partly from graded material, 

and partly from logs taken directly from the forest, see Figure 7-1. 
 

 Specimens are tentatively produced with a Cartesian coordinate system instead of a polar 
system, as discussed in Ch. 3.4, so as to facilitate plane strain measurements with reference 
to material axes. It should be noted that this requires specimens to be taken predominantly 
from the outer part of the wooden stems, implying that sapwood is overrepresented, and 
heartwood visa versa. According to Sunde (2005), this may cause the longitudinal elastic 
modulus to be lower, although Bengtson (2000) and Dahlblom et al. (2000) contrarily 
reported increasing modulus from the pith and outwards in spruce. Foslie (1971) found that 
material from the top has generally better quality than from the lower end in Norway spruce. 

 
 The three in-plane strain components are measured in all experiments, allowing 

investigation of both elastic moduli and Poisson’s ratios in tensile and compressive testing, 
and shear moduli in shear testing. Moreover, the inclusion of shear strain may provide useful 
information also in compressive and tensile tests, as it indicates fibre inclination in 
orthotropic materials; see PAPER VII (Dahl and Malo 2009c). 
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 A minimum of 30 tests are tentatively used for determination of each parametric value, in 
order to obtain estimates with an acceptably low spread. The number is stipulated by 
rearrangement of the 95% confidence interval formula, writing 

 

 
2 1,96

100
n CV

TOL


 


         (7.1)  

 
With a tolerance (TOL) of 15%, limiting the confidence interval to ±15% of the average 
value, and an assumed coefficient of variation (CV) of 20% for the various parameters (FPL 
1999), the number equals n = 27. A CV of 30% results in n = 62, whereas a TOL of 5% 
gives n = 246, which definitively is too many tests from a practical point of view. A 
minimum of 30 tests gives an estimated tolerance somewhat lower than ±15%, which is 
assessed acceptable for a highly variable material such as wood. 
 

 The material is conditioned to a reference climate of 12% moisture and 20˚C in order to 
correspond with test standard specifications. Similarly, loading rates are chosen so as to 
comply with the various specifications. Determined values should consequently be 
comparable to similar studies. 

 
 

 
 

Figure 7-1: Timber logs with large diameters (0.6–0.8 m) during conditioning 
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8. Summary of publications 
 

8.1. Appended papers 
 

PAPER I PLANAR STRAIN MEASUREMENTS ON WOOD SPECIMENS 
  K.B. Dahl, K.A. Malo 

Experimental Mechanics (2009) 49 (4): 575–586 © Springer 
DOI: 10.1007/s11340–008–9162–0 
Description of the experimental method used for measurement and calculation of the 
three in-plane strain components. 

 
PAPER II LINEAR SHEAR PROPERTIES OF SPRUCE SOFTWOOD 
  K.B. Dahl, K.A. Malo 

Wood Science and Technology (2009) 43 (5): 499–525 © Springer 
DOI: 10.1007/s00226–009–0246–5 
Experimental and numerical determination of the 3 orthotropic shear moduli tested 
by means of the Arcan shear test, including probabilistic properties. 

 
PAPER III NONLINEAR SHEAR PROPERTIES OF SPRUCE SOFTWOOD: 

EXPERIMENTAL RESULTS 
  K.B. Dahl, K.A. Malo 

Wood Science and Technology (2009) 43 (7): 539-558 © Springer 
DOI: 10.1007/s00226–009–0247–4 
Experimental characterization of apparent nonlinear shear properties and strengths in 
each orthotropic plane, tested by means of the Arcan shear test. 

 
PAPER IV NONLINEAR SHEAR PROPERTIES OF SPRUCE SOFTWOOD: 

NUMERICAL ANALYSES OF EXPERIMENTAL RESULTS 
  K.B. Dahl, K.A. Malo 

Composites Science and Technology (2009) 69 (13): 2144–2151 © Elsevier 
DOI: 10.1016/j.compscitech.2009.05.011 
Numerical analyses of nonlinear shear behaviour reported in PAPER III, based on 
the modified Hill criterion, bilinearity in shear and optimization procedures. 

 
PAPER V SHEAR STRENGTHS OF SPRUCE SOFTWOOD: NUMERICAL 

ANALYSES OF EXPERIMENTAL RESULTS 
  K.B. Dahl, K.A. Malo 

To be submitted 
Numerical analyses of the 3 orthotropic shear strengths reported in PAPER III and 
PAPER IV based on the ultimate stress and the Tsai-Wu failure criteria. 

 
PAPER VI LINEAR TENSILE AND COMPRESSIVE PROPERTIES OF SPRUCE 

SOFTWOOD: EXPERIMENTAL RESULTS 
  K.B. Dahl, K.A. Malo 

To be submitted 
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Experimental characterization of the 3 linear elastic moduli and the 6 Poisson’s 
ratios tested in tension and compression in each orthotropic direction and plane. 
 

PAPER VII LINEAR TENSILE AND COMPRESSIVE PROPERTIES OF SPRUCE 
SOFTWOOD: NUMERICAL ANALYSES OF EXPERIMENTAL RESULTS 
AND FIBRE INCLINATION EFFECTS 

  K.B. Dahl, K.A. Malo 
To be submitted 
Numerical analyses comprising Monte-Carlo simulations, of configuration and fibre 
inclination effects on results presented in PAPER VI, including probabilistic data. 

 
PAPER VIII STRENGTHS AND NONLINEAR PROPERTIES OF SPRUCE SOFTWOOD 

TESTED IN TENSION AND COMPRESSION: EXPERIMENTAL RESULTS 
  K.B. Dahl 

To be submitted 
Experimental characterization of strengths and small-strain nonlinear behaviour in 
tension and compression, in each orthotropic direction and plane. 

 
K.B. Dahl planned and conducted most experimental tests, and evaluated the experimental data in 
conjunction with numerical analyses. The first versions of the papers were written by K.B. Dahl, 
whereupon modifications from K.A. Malo were added. The papers are appended as finally 
submitted to the journals. 

8.2. Other publications 
In addition to the appended papers, the following works have been prepared:  
 
I DESIGN AND MODELLING OF CONNECTIONS IN TIMBER STRUCTURES  

K.B. Dahl 
Project completion of TRE|UND at Britannia, Trondheim, Norway, November 2005 

 
II EVALUATION OF STRESS LAMINATED BRIDGE DECKS BASED ON FULL 

SCALE TESTS 
K.B. Dahl, N.I. Bovim, K.A. Malo 
9th World Conference on Timber Engineering, Portland, OR, USA, 2006 

 
III NUMERICAL MODELLING OF WOOD 

K.B. Dahl 
Project meeting at the Norwegian Institute of Wood Technology (NTI), Oslo, Norway, 2008 

 
IV TESTING OF SHEAR PROPERTIES OF SPRUCE SOFTWOOD -  

REPORT R-14-08 
K.B. Dahl 
Dept. of Structural Engineering, NTNU, Trondheim, Norway, 2008 

 
V SHEAR TESTING OF NORWAY SPRUCE – LINEAR – NONLINEAR - 

PROBABILISTIC PROPERTIES 
K.B. Dahl 
COST E55 meeting at NTNU, Trondheim, Norway, March 2009
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9. Conclusions and further work 
 

9.1. Conclusions 
The present study provides linear, nonlinear and failure parameters for each orthotropic material 
direction and plane of clear wood from Norway spruce. Moreover, statistical distributions and inter-
parametric correlations are presented. Several quantities have hardly been documented for Norway 
spruce earlier, and are also scarcely documented for spruce softwood in general. The values enable 
a basis for deterministic and probabilistic three-dimensional numerical analyses of spruce softwood 
on the macro scale level, suited for studies of details and joints in timber structures. Norway spruce 
is extensively used in the glulam industry, and the results are thus pertinent also for larger glulam 
constructions, wherein less irregularities and defects are found than in sawn lumber. The stress-
strain relations in the upper stress ranges are also emphasized, as accurate predictions of ultimate 
deformations and capacities are crucial in many analyses. The parameters are determined by 
experimental testing under constant climatic conditions and loading rates in accordance with 
standardized procedures. Non-standardized specimens and test configurations were applied in order 
to improve the accuracy and the applicability of the findings, suitable for input in numerical 
simulations. It is shown in PAPER VII (Dahl and Malo 2009c) that the influence from configuration 
and measurement effects in tensile and compressive specimens was small, as opposed to the Arcan 
shear test where modifications were found required. In order to remove distorting effects, numerical 
(FEM) analyses were utilized to modify parameter values, and numerical reproducibility of most 
experimental findings can thus be asserted. 
 
It is in PAPER I (Dahl and Malo (2009f) concluded that the applied video extensometry technique 
provides reasonable parametric results. Moreover, the bidimensional and noncontacting 
measurements over relatively large areas were found advantageous for characterization of the 
inhomogeneous wood material over the complete loading ranges. The three in-plane strain estimates 
are furthermore suitable for investigation of orthotropic materials, where non-zero shear strain may 
indicate fibre inclination, i.e. deviation between material axis and the uniaxial loading axis. This 
was investigated in PAPER VII (Dahl and Malo 2009c), where the linear elastic moduli and the 
Poisson’s ratios reported in PAPER VI (Dahl and Malo 2009b) from tensile and compressive tests 
were modified for unintentional fibre inclination. Although the effects turned out to be relatively 
low for a highly variable material like wood, this error source is worth recognizing, especially as 
more detailed measurement techniques are likely to yield shear strain in wood due to fluctuating 
material directions and inaccurate carpentry. It can be argued that such irregularities generally are 
present, and it may consequently be discussed whether the modified or unmodified data set is most 
representative. Nevertheless, such deviations may be interpreted as material perturbations, which 
deliberately can be included in numerical simulations. 
 
The relatively high Poisson’s ratios reported in PAPER VI can indicate that a noncontacting 
measurement technique is important for wood, as inherent stiffness in conventional strain gages 
may introduce significant errors in the passive and relatively soft orientations. This is also pointed 
out by Yoshihara and Ohta (1995b). It should be noted that the two minor Poisson’s ratios (vRL, vTL) 
were generally difficult to measure, and that they apparently violate compliance symmetry. This 
may indicate that the material is not behaving purely orthotropic, or that the resolution of the 
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measured data is somewhat coarse. It is also interesting to note, that significant differences in 
Poisson’s ratios emerge between positive and negative strain rates. 
 
PAPER II – V (Dahl and Malo 2009a, d, e, g) report findings from the Arcan shear test, which in a 
somewhat modified form was found applicable for testing of the three orthotropic shear stresses, 
including rolling shear. However, numerical calculations proved that modifications of nominal 
stiffness and strength values were required. As opposed to the general assumption, nonlinearity was 
observed in the upper stress ranges, which was quantified by means of Voce and bilinear models, 
the latter comprising linear/proportional stress limits and tangent moduli. The linear limit stresses 
were found to lie between 35–55% of the corresponding shear strengths, whereas the tangent 
moduli were 50–70% of the initial moduli for the longitudinal planes, and around 30% for rolling 
shear. Compared to completely linearized (secant) models, the bilinearity improves the stress 
prediction accuracy by a factor of approximately two. Numerical analyses assuming the three-
dimensional Tsai-Wu criterion showed that the nominal strengths were measured 15–25% too low. 
Moreover, some test configurations were found to be preferred in the determination of strengths due 
to differences in strain field homogeneity. 
 
PAPER VIII (Dahl and Malo 2009h) treats nonlinear properties and strengths in tension and 
compression in each orthotropic direction. As normally assumed, it was found that clear wood 
behaves relatively linear and brittle in tension, although slight deflections could be found for many 
configuration types. Nonlinearity and ductility were observed in compressive tests, particularly 
transversely, which due to practical reasons were limited to small strains (<2% at maximum). The 
nonlinear ranges were adapted to bilinear models analogously as shear. Linear limit stresses were 
found to lie at 65–70% of tensile strengths, and at 63–80% of compressive. The tensile tangent 
moduli range from 58–74% of the initial moduli, whereas all compressive lie at approximately 30%. 
Compared to completely linearized models in tension, the bilinear models improve the stress 
prediction accuracies by 10–50%, with linearized (secant) moduli being 5–10% lower than the 
initial moduli. It is emphasized that a generalized constitutive law comprising the nonlinear 
behaviour is not included in the thesis. 
 
In total, the determined parameters comprise 12 linear elastic orthotropic values, 9 linear elastic 
stress limits, 9 tangent moduli, 6 tangent Poisson’s ratios and 9 ultimate stresses, i.e. a total number 
of 45 macro scale parameters. 3 of these are given by the other due to compliance symmetry. As the 
number of parameters is relatively high, simplifications may be necessary for practical design. If the 
radial and tangential properties are set equal, i.e. a transversely isotropic model is assumed, the 
number is reduced to 27. It will naturally be further reduced if the material is assumed linear elastic 
in tension and/or shear, and if symmetry in the bilinear tangent values can be assumed. By way of 
comparison, NS 3470 (1999) states 10 massive/global scale parameters. It can be noted that 
commercial FEM codes such as ANSYS 10.0 allows direct use of most parameters documented 
herein, including orthotropy, bilinearity and the Tsai-Wu failure criterion in addition to probabilistic 
values. However, it seems like models for the nonlinear range should still be improved. 
 
Paper II, IV, V, VII and VIII (Dahl and Malo 2009a, c, e, g, h) report statistical distributions of the 
documented parameters. The lognormal distribution gave best fit both for the shear moduli and the 
elastic moduli, which corresponds to assignments given by JCSS (2006). The Poisson’s values are 
in general sufficiently fit by normal distributions. Whereas the linear shear stress limits and shear 
strengths are well represented by normal distributions, the bilinear normal stress parameters and 
strengths were harder to adapt. Generally, the three-parametric Weibull distribution gave best 
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adaption for these values. JCSS (2006) states three different distribution types for the various 
massive scale strengths. In total, this may indicate that no general conclusion can be drawn 
regarding distribution type for normal strength parameters, although the assessments herein can be 
vulnerable to somewhat few observations. Nevertheless, averages and coefficients of variation are 
documented for all parametric values. Moreover, correlations to density and correlations between 
parameters determined from the same specimen type are given. It is interesting to note that the 
inter-parametric correlations in many cases are significant. Similar correlation coefficients are given 
by JCSS (2006) for massive scale properties. Such parametric interrelationships can be utilized in 
probabilistic analyses, and will consequently narrow output variability. All in all, the documented 
properties should give an improved basis for deterministic and probabilistic analyses of macro scale 
details in timber constructions of Norway spruce. 
 

9.2. Future work 
The topics assessed as most pertinent for future work are: 
 

 Investigation of the effect from grading class on strength and stiffness values presented in 
PAPER VIII (Dahl and Malo 2009h). 

 

 Increase the basis for statistical distributions presented herein by identical or similar tests, 
preferably from graded material so that effects from grading on distributions can be 
quantified and utilized in design. Moreover, the lower tails of distributions should be 
investigated, especially for strengths. 

 

 Investigation of spatial correlation fields between parameters, by deliberate treatment of 
specimen location in the lumber 

 

 Experimental tests with video extensometry measurements on two surfaces instead of one, 
enabling more correlation coefficients to be determined, and generally increasing the 
experimental parameter basis. Moreover, shear strains, and thus fibre inclination on the 
various planes, can be better controlled. 

 

 Further studies on large strain nonlinearity in radial and tangential compression. 
 

 Investigation of nonlinear properties under repeated loading, including whether the material 
behaves plastic or partly hyperelastic, and whether material damage may influence on the 
behaviour. 

 

 Investigation of the three interaction coefficients in the Tsai-Wu strength criterion by means 
of off-axis or biaxial tests. 

 

 Experimental testing of failures initiated by a combination of shear and normal stresses by 
means of off-axis Arcan shear tests, so as to investigate the applicability of various criteria. 

 

 Investigation of size effects, especially on strength values, by experimental testing of 
various specimen sizes, where defects and irregularities may be included by a weakest link 
theory. 

 

 Implementation of a generalized material model for clear wood from spruce softwood, 
taking into account nonlinearity, size effects, moisture and failure prediction. 
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Abstract 
Wood specimens have been tested for compressive loading in the longitudinal direction. Planar deformation was 
recorded by means of video extensometry on the specimen surfaces. A post processing routine was developed to 
calculate stress and strain values from the sampled data. The routine made use of mathematical framework used in the 
finite element method. Material parameters were detected by means of an optimization algorithm, and the determined 
linear elastic parameters were in general found to be in good agreement with values given in literature. The utilized 
method offers simultaneous average values for active, passive and shear strains from the measured area. Moduli of 
elasticity, Poisson’s ratios and shear deformation can thus be evaluated. In addition, the variation of the three strain 
components over the area is measured. The results can therefore be used for quantification of material inhomogeneity 
and are further suitable for direct comparison with numerically computed strains comprising nonuniform strain fields. 
Since video extensometry does not require any physical contact with the specimen, measurements can be undertaken 
until failure. The present method offers thus an efficient and relatively accurate way to measure and evaluate the 
material characteristics of anisotropic and inhomogeneous materials like wood. 
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Introduction 
Wood is an anisotropic material, i.e. its mechanical properties differ in the various spatial 
directions. The number of different directions is confined by the assumption of three mutually 
perpendicular planes of elastic symmetry. Wood may thus be regarded orthotropic, referring to the 
three orthogonal directions defining these planes. The directions are the longitudinal direction (L) 
along the fibres, the radial direction (R) toward annual rings, and the tangential direction (T) 
directed along the annual rings. 
 
Despite of extensive use in many structural applications, numeric and analytic modelling of wood 
as well as general understanding of the mechanical behaviour remains insufficient. There are in 
general palpable few studies focusing on the behaviour of this widely used material. Studies are 
typically limited to the initial elastic behaviour without taking any nonlinearity into consideration, 
and are often focusing on specific structural details. There is thus a need for more accurate and 
generalized mechanical models for wood.  
 
In order to characterize the mechanical properties, knowledge of the stress-strain relationships in the 
different directions is required. A reasonable way to obtain such information is mechanical 
experiments, although natural variability and inhomogeneity of wood complicate the testing 
considerably. The fact that the experience and routines within this field still is rather limited is also 
a challenge. In addition, the direction dependency requires much more tests to be undertaken 
compared to isotropic materials. 
 
Strain measurement on wood and other materials has traditionally been performed with either 
electrical strain gages or mechanical extensometers. A typical challenge related to such 
measurements is the potential development of fracture causing abrupt change in the configuration. 
Furthermore, the unit cost and installation work makes strain gages a rather expensive alternative. 
Other test methods typically comprise the Moiré method and laser speckle interferometry, of which 
both has been used to some extent [1]. The drawback with these methods is however that they 
require treatment of the surface, which also can interfere with the mechanical behaviour of the 
material during testing.  
 
Measurement by means of optical devices and computerized photogrammetry is a relatively new 
method, which to some extent has been used for strain measurement on wood earlier. The fast data 
acquisition and the capability of measuring large deformations make such equipment advantageous. 
Another advantage is that no testing apparatus is physically attached to the test specimen, and 
mechanical influence from the equipment is thus avoided. The fact that it can be used beyond 
component failure is also beneficial. The cost per specimen is moreover low since little labour effort 
is required and no test equipment is expended during testing. A great advantage is the bi-
dimensionality which allows simultaneous strain measurement in the axial and the transverse 
direction over a moderate sized area. Since direction-dependant material behaviour does not affect 
the method’s capability, the method is well suited for testing orthotropic and inhomogeneous 
materials like wood. Care must however be taken when interpreting results from video 
extensometry. Since the measuring system is fixed while the material is free to move, rigid body 
movement can result in spurious strains. Compared to observations from strain gages following the 
material deformation and thereby avoiding spurious strain contributions, a more comprehensive 
processing of data can be crucial. 
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Choi et al. [1] (1991) used a digital image correlation technique for in-plane strain measurements on 
wood and paper for determination of normal, shear and Poisson’s ratio properties. Pine wood was 
loaded longitudinally in compression with observations in the longitudinal – tangential plane (LT) 
by means of 54 dots in a regular array system. In-plane engineering strain components were 
calculated with basis in dot displacement assuming small strains. They found that the method 
provided accurate observations which also allowed study of strain profiles and local strain 
concentrations with good correspondence to FEM results and independent strain measurements. 
 
Reiterer et al. [2] (2001) made use of video extensometry to determine two-dimensional strain in 
compression tests on clear spruce wood marked with a grid of target dots. Specimens with five 
different orientations in the longitudinal – radial plane (LR) were tested in the study. Linear elastic 
orthotropic theory was used to assess stiffness values while failure capacities were compared to the 
so-called Tsai-Hill criterion [2]. Behaviour in the elastic as well as the large-strain area was 
observed. Good correspondence with hand calculated values in literature were found for the moduli 
of elasticity as well as the ultimate compressive loads for the different grain angles tested. The 
observed Poisson’s numbers varied however somewhat from theoretical values.  
 
Ukyo and Masuda [3,4] (2006) used a digital image correlation technique to measure shear strain on 
shear block specimens of birch and spruce loaded parallel to grain in the LR and LT planes. Two 
cameras simultaneously measuring the two planes were used. By means of an iteration scheme 
redistributing the load, a nonlinear stress-strain relationship for shear followed by strain softening 
was documented. Important in this work was the system’s ability to measure nonuniform 
distribution of shear and normal strain components. 
 
Sinha et al. [5] (2006) made use of digital image correlation in destructive testing of wood frame 
shear walls under monotonic and cyclic loading to describe behaviour during seismic loading. Two 
cameras, both in an angle to the specimen surface, provided stereoscopic images. The system 
allowed full field 3D displacement and strain data beyond the elastic limit of the system. Failure 
initiation and post failure strain could thereby be observed.  
 
Franke et al. [6] (2007) also made use of video extensometry on wood components for observation 
of general deformation and for determination of fracture mechanics parameters. The tests comprised 
three and four point bending of specimens with notches and were performed on i.a. spruce with 
strain measurements over the whole cross section. Experimental observations were transferred to a 
finite element method (FEM) program and held together with results from numerical simulations. 
 

Experimental apparatus  
In the present study, specimens made of softwood were tested for compressive loading in the 
longitudinal direction (L) with measurements on the LR and LT planes. The data acquisition was 
performed by means of a video extensometer (ME–46 Full Image Video extensometer) 
manufactured by Messphysik GmbH. The extensometer works by continuously measuring the in-
plane coordinates x and y of marked target dots on the surface of the test specimen subjected to 
loading. The change in decomposed length ∆x and ∆y between two points expresses the 
deformation. Strain in, say the x-direction, can then in principle be calculated as 
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where X0 is the initial x-projected length between the two points.  
 
The software assigns a gray scale value ranging from 0 to 255 to each pixel in the digitized picture. 
The data is stored in a so-called frame buffer and contrast diagrams for each scanned pixel line and 
column is subsequently processed. A rapid change in values indicates a distinct contrast peak. The 
peak pattern is interpreted by the software as targets whose coordinates are observed. In order to 
save processing cost, a measuring zone around each detected target is defined in the frame buffer. 
The algorithm will subsequently search and process data within these zones.  
 
The camera scans the marked specimen with a certain frequency followed by the measurement 
process. The time between each sampling cycle depends on the hardware speed and on the amount 
of data to be processed. According to the instructions a maximum frequency of 25 Hz can be 
achieved. In this study a scanning rate of approximately 8 Hz was used.  
 
A typical experimental setup using optical measurements is visualized in Figure 1, while a close-up 
of an actual test showing specimen and camera is shown in Figure 2. 
 
 
 

 
Figure 1: Testing apparatus used in the study consisting of computer, camera and loading unit.  

 
Characteristics of the acquisition equipment used are:  
 

 A monochrome video camera fitted with a high precision Charge Coupled Device (CCD) 
chip with photosensitive cells arranged in a grid system. 

 High precision focal lenses which can be adjusted to a wide range of specimen sizes. 
 An interface card connected to the camera with cables, converting the video signal into 8 Bit 

digital format whilst simultaneously generating 768  576 pixel images on the PC monitor. 
The grey scale level of each pixel is resolved in 256 shades.  

 Special video-extensometer software which automatically detects the targets and follow 
them during testing. 

 

P



PAPER I  
 
 

 51

Hence, the system offers a maximum theoretical displacement resolution of 1:196 608 and 1:147 
456 in the two orthogonal directions. The measurement area is in practise smaller than the entire 
field of view, and the utilized resolution will consequently be somewhat lower.  
 

Experimental procedure 
The specimen was fixed in a universal loading frame with the camera mounted on a rigid tripod 
localized approximately 2 m away. The distance between the camera and the specimen was thereby 
kept constant, which was crucial since any change in normal distance would affect the measured dot 
coordinate values. A predetermined length between two target dots was assigned prior to the tests in 
order to calibrate the coordinate system values in the camera setup. The camera was intentionally 
aligned at the centre of the specimen and positioned horizontally by means of a tripod bull eye since 
any deviation between camera axes and specimen geometry axes would result in measurement 
errors. 
 
The measurement algorithm used by the video extensometer evaluates the grey contrast transition 
between targets and specimen surface. To secure adequate contrast on the yellowish wood, equally 
sized circular target dots with an approximate diameter of 0.5 mm were applied to the specimen 
surface with a black felt pen. The dots proved to give sufficient grey contrast for target detection 
and no inverse painting of the specimen was needed. A light source with evenly distributed halogen 
light was used to provide sufficient illumination conditions and to reduce the effect of backlight. 
 
A total number of 49 dots were applied in an approximately quadratic 7  7 grid system by means 
of metal stencils with holes. The vertical and horizontal distances between the dots varied between 
3 and 5 mm depending on the specimen size. There was no need of precisely equal distances 
between the dots since the system measured length relative to the preset calibration value.  
 
 

 
 

Figure 2: Camera and compression specimen in the loading unit 
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Post processing of data 
The log files from the experiments contain the load level P and discrete deformation data as target 
dot coordinates for each timestep. The resemblance between the sampled coordinate data and node 
displacement data in finite element analysis (FEA) is apparent. This motivated the development of 
an algorithm for post processing experimental data similar to the formulation used in FEA. This was 
advantageous from two perspectives. Firstly, the mathematical framework of FEA could be 
exploited; secondly it enabled a direct and fairly detailed comparison basis to results from 
numerical models. 
 
Since the deformation data was measured in two dimensions, a plane element type formulation was 
chosen. Four adjacent target dots were interpreted as a four noded quadrilateral element. The 49 
target dots gave thus 36 elements, confer Figure 3, and covered a nearly quadratic area with side 
lengths between 18 and 30 mm depending on specimen size. 
 

    
Figure 3: Grid of target dots on specimen surface, interpreted as 36 elements with four nodes each 

 
The dot locations did in general not fulfil an exact geometrical pattern with rectangular elements 
between. An isoparametric formulation accommodating nonrectangular element shapes was thus 
convenient to use, confer Figure 4. This corresponds to the so-called bilinear quadrilateral element 
(Q4) formulation with a dimensionless natural coordinate system . Lagrangian interpolation 
functions were applied for the element geometry given by the nodal coordinates x and y, and for u 
and v displacement fields in the x and y-direction, respectively.  
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Using the isoparametric formulation, shape functions Ng for geometry mapping and Nu for 
displacement field were set equal, reading 
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Figure 4: Mapping between physical coordinates and the natural coordinate system 

 
Since the strain fields are first derivatives of the deformation u and v, the formulation gives constant 
normal and shear strain values within each element. This was however assumed sufficient due to 
relatively high resolution of target dots on the specimen surface. 
 
Coordinate values (x, y) and displacements (u, v) at each of the four nodes defining an element are 
then  
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Xj and Yj are here the initial coordinates of node j at time t = 0, while the other variables are defined 
at an arbitrary timestep t. In order to calculate the strain, the derivates u,x , u,y , v,x and v,y of the 
displacement fields must be computed. These expressions are not available directly, but may be 
derived using the natural coordinates and the chain rule: 
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where J assigns the Jacobian matrix. The inverse expression can be written 
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where J assigns the determinant of the Jacobian matrix. A total Lagrangian formulation was chosen, 
implying that the Jacobian matrix is referring to the initial configuration. The Jacobi determinant for 
each of the quadrilateral elements could then be calculated as 
 

, , , ,detJ        J N X N Y N Y N X       (7) 
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Thus, for the total Lagrangian formulation, J was calculated for the initial element geometry and 
used for all time steps t. The derivates of the isoparametric functions are given below, with values 
calculated for the element midpoint (,) = (0, 0): 
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A set of expressions for the derivates of the displacements could then be established. These were 
calculated directly from the experimental data for each timestep and element e as 
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Based on the derivates, the Green strain components were finally calculated for each timestep and 
element e as 
 

2 2

2 2

1 1

2 2

1 1

2 2

e e e

e
xx e e e

e e
yy
e

xy e e e e e e

du du dv

dx dx dx

dv du dv

dy dy dy

du dv du du dv dv

dy dx dx dy dx dy





    
     

    
   

                        
     

  

ε  e = {1… 36}   (15) 

 
where εxx is strain in the passive direction, εyy in the active (loading) direction and γxy is shear strain 
in the plane defined by the active and passive directions. 
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The selection of Green strain instead of e.g. engineering strain was motivated from the fact that the 
video extensometer measures coordinates in a fixed system. Any rigid body rotation without 
corresponding transformations would thus generate spurious contributions to engineering strain. 
Such contributions are efficiently eliminated by use of Green strain. 
 
Wood is an inhomogeneous material, and the strains may vary considerably from one location to 
another although the stress distribution is assumed to be nearly constant. In order to extract 
parameters useful for calculations, a homogenization over some representative volume element 
(RVE) must be performed. The size of the RVE may be discussed, but here the dimension of the 
measurement area containing the 7  7 dot system was chosen. Mean values for each strain 
component over all elements were thus calculated in the homogenization procedure. Since each of 
the measured elements was of unequal geometrical size, weighting of the individual element strain 
value contributions was pertinent. This was done by calculating mean length values ΔXe and ΔYe 
and mean area ΔAe for each element e = {1… 36} at the initial configuration; 
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The weighting factors for each element for passive, active and shear strain were then calculated as 
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The weighted mean strain values over the observed area (RVE surface) were finally calculated for 
each timestep as 
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ε         (18) 

 
In order to quantify typical strain variation over the measured area, relative values for element 
strains to mean strains were calculated for each element. This was done for each of the m timesteps 
with load levels between 30% and 70% of ultimate load Pult, and covered typically between 500 and 
3000 timesteps in the elastic domain. The selection was done to avoid inevitable disturbances 
caused by initial loading, material nonlinearity and failure. Average ratio values rε

e over the 
timesteps were subsequently calculated for each element e. 
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εr   e = {1… 36}     (19) 

 
Strain ratio values for the defined range could thus be calculated and plotted for each element over 
the measured area. This enabled a quantification of the variation of the strain fields which can be 
visualized in plots and used in further evaluations. 
 
The experimental nominal stress ̂  for each timestep t was 
calculated as  
 

 0 2 3

ˆ
P P

A l l
  


   (20) 

 
where l2 and l3 are cross section dimensions at the initial 
configuration and P is the load level at time t, confer Figure 5. 
Three different specimen sizes were tested, namely l2 = l3 ≈ 30 
mm, l2 = l3 ≈ 40 mm and l2 = l3 ≈ 50 mm. The height l1 was 
consequently kept as three times the side lengths, i.e. 90 mm, 
120 mm and 150 mm, respectively. The post-processing 
procedure resulted thus in experimental relationships between 
each of the average in-plane Green strain components xx , yy , 

xy and the nominal stress ̂ , typically comprising between 

1000 and 5000 timesteps per test. 
 

Experimental results 
Specimens were made of clear wood from Norway spruce (Picea Abies (L.) Karst.) and were partly 
taken directly from forest, partly from graded lumber with strength classes C14, C18, C24 and C30 
according to European Standard NS-EN 338 [7]. The material was conditioned for several months 
to approximately 12% moisture content and tested at a constant loading rate of 0.005 mm/s 
according to European Standard NS-EN 408 [8] part 16.2. Moisture content and density of each 
specimen were measured.  

 

Figure 5: Compression specimen 
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Figure 6: Orthogonal axis system in compression specimen of wood 

 
The longitudinal direction (L) constituted the loading (active) direction, while the passive direction 
was oriented either radially (R) or tangentially (T), as depicted in Figure 6. A total number of 56 
specimens were tested of each category LR and LT. Figure 7 shows active, passive and shear strain 
plotted against nominal stress ̂ , resulting from a single compression test with the passive direction 
oriented radially. The strain component values are mean values over the measured area, i.e. the 36 
elements according to equation (18). The graphs show that the active strain is larger than the 
passive, which corresponds to a Poisson’s ratio less than 1.0. Moreover, the active strain 
demonstrates a nonlinear behaviour when approaching the ultimate stress level. The shear strain 
levels are relatively low, which is reasonable for on-axis loading of orthotropic materials. It can 
however be noted that the shear tends a little to the negative side, which may indicate some 
deviation between fibre and loading orientation in the assumed orthotropic system. The overall 
trend is quite representative for the typical behaviour of the tests, even if variation naturally occurs 
between the different specimens due to i.a. material inhomogeneity.  
 

 
Figure 7: Stress and in-plane strains measured on LR-plane of longitudinally loaded wood in compression 

 
An optimization algorithm was developed to fit material parameters to the observed stress-strain 
relationships. The algorithm was based on a Sum Square Error (SSE) strategy in which the 
difference between experimental stress and modelled stress for experimental strain values constitute 
the so-called error. Parameters were determined from the stress-strain path upward confined by 
approximately 40% of the ultimate stress observed. The determined values for the modulus of 
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elasticity and the Poisson’s ratio are illustrated in Figure 7 as white lines with linear slopes ELL and 
ELL/vLR for active and passive strain, respectively.  
 
Modulus of elasticity values ELL measured on the two respective planes are plotted against density 
in Figure 8. The average of the LT sample is about 4% higher than the average LR, but not 
significantly different. The overall correlation with density is 0.33, which is relatively low 
compared to values given in e.g. Dinwoodie [9], who states a correlation of 0.88 for wood in 
general. It should however be noted that the range of density tested herein is rather narrow, making 
the sample more vulnerable to random variation and consequently lower correlation. 
 
 

 
Figure 8: Modulus of elasticity ELL measured on ij-planes and plotted against density 

 
 
The Poisson’s ratios are in the following defined as 

 

jj
ij

ii
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             (21)  

 
where εjj is passive strain and εii is active strain. Modulus and Poisson average values are given in 
Table 1 together with corresponding literature values for Norway spruce (Picea Abies) published in 
Dinwoodie [9]. It should be noted that the literature values not necessarily are based on the same 
provenience and subspecies Picea Abies (L.) Karst., which naturally can affect deviation in sample 
values. 
 

Table 1: Linear elastic material parameters for spruce from compression tests and literature 

Experimental  Literature Unit          Parameter 

All Sorted 95% C.I.   

ELL        Modulus of elasticity 9 347 9 950 [8 626 , 10 067] 10 700 MPa 

vLR       Poisson’s ratio 0.468  0.451 [0.431 , 0.506] 0.38 - 

vLT     Poisson’s ratio 0.608  0.575 [0.566 , 0.651] 0.51 - 
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The experimental average modulus is somewhat lower and the Poisson’s ratios somewhat higher 
than the literature values. This can be a result of slight fibre deviation affecting the measured 
values, as indicated by corresponding shear deformation being observed on many specimens, as 
illustrated in Figure 7. To investigate this effect, specimens with zero observed shear deformation 
were sorted out and averages for these specimens are given separately in the table. It can be seen 
that the modulus value is somewhat higher (6%) and the Poisson’s ratios lower, and that the overall 
agreement to literature values is better than for values based on the whole sample. It is noteworthy 
that the sum of vLT and vLR is close to 1.0 for the sorted values, being more physically admissible. It 
can be noted that Reiterer et al. [2] (2001) also found relatively high vLR values for spruce by means 
of video extensometry, deviating from literature and orthotropic theory. Moreover, the mean moduli 
of elasticity assigned by the European Standard NS-EN 338 [7] for strength classes C18, C20 and 
C22 fall within the 95% confidence interval for ELL, also substantiating the reasonability of the 
experimental results and the test method. 
 

Measurement accuracy 
Any difference between a measured parameter and the actual parameter characterizing material 
behaviour constitutes a measurement error. Apparent error sources in the system used herein 
comprise insufficient optical and load accuracy, and incorrectly measured side lengths l2 and l3. The 
actual and measured modulus value determined from the tests can be given as 
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where Δ denotes the various measurement errors, s0 and s1 denote the initial and final lengths 
between two measurement dots, and where the cross section dimensions l2 and l3 both are set equal 
l. By evaluating equation (23) and neglecting the 2nd order terms of the error variables Δ, it can be 
shown that the extreme ratio between measured and actual modulus value equals 
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and ε typically equals 2‰ for the current test type. Equation (24) can then be interpreted as the 
upper and lower bounds for the relative error of the modulus of elasticity.  
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The resolution for optical coordinate measurements is given by the number of pixels and the 
number of grey tone levels as well as the utilized field of view. In general, the nearly quadratic 
measurement area comprised approximately 80% of the smaller dimension of the rectangular field. 
The resolution error relative to the measurement length for the total measurement area (s0 = 18 mm) 
may then be estimated by  
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The corresponding resolution error for a separate element (s0 = 3 mm) is 0.000051. In both cases, 
the smaller specimen size is conservatively assumed.  
 
The measurements of the applied load was digitized by a 16 bits AD converter, resulting in a load 
resolution of 7.6 N for the load range of ±250 kN being used. However, this value will probably be 
exceeded by the repeatability and linearity properties of the load cell. In general, the load cell 
reading will give accuracy better than 0.2% of the measured values. Nevertheless, for small forces 
in the range around zero an accuracy of only 0.5% has been verified by accurate calibration. 
Consequently, the relative force error is bounded by  
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Manufacturing and measurement errors of the geometry dimensions has herein been estimated to 
less than 0.1l   mm, leading to a relative error of 
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which conservatively is based on the smallest specimen type with side lengths l = 30 mm. 
 
By introducing these error estimates into the procedures used for determination of the material 
parameters, the relative errors bounds for the modulus of elasticity are estimated to ±2% for the 
modulus value ELL determined from the total measurement area (s0 = 18 mm). For a separate 
element (s0 = 3 mm) within the measurement area, the corresponding estimate bounds are ±7%. 
Consequently, more variation must be expected in values from separate elements, even if these also 
should result in moderately accurate ELL values. 
 
The Poisson value vij constitutes according to equation (21) the ratio between passive and active 
strain. The measured passive strain can be assumed to be encumbered with optical resolution errors 
Δs, writing  
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where 



PAPER I  
 
 

 61

 

0 0 0j1 j jj j ij ii js s s v s              (30) 

 
The measured active strain m

ii  can be expressed analogously to equation (29). The upper and lower 

bounds for the relative error of the Poisson’s ratio vij can by means of the calculated value in 
equation (26) then be estimated by 
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The bound values turn out to be strongly dependent on both the size of the measurement area and 
the actual value of vij in equation (31). Using the values from the total measurement area (s0 = 18 
mm), the error estimate bounds read ±3% and ±18% for Poisson’s ratios vij of 0.5 and 0.05, 
respectively. Values based on separate elements (s0 = 3 mm) are hardly useful since the error 
bounds in this case are estimated to ±16% and ±220%, respectively. The tested Poisson values in 
this study are according to Table 1 around 0.5, which then should give relatively accurate results of 
±3% for values based on the total measurement area. 
 
It is quite complicated to assess how the utilized sum square error strategy affects the accuracy of 
the determined parameters. The determined values should however be less vulnerable of single 
values possessed by errors since the sum includes hundreds of singular stress and strain points. One 
should therefore believe that the procedure should improve the accuracy instead of aggravating it, 
and that the aforementioned upper and lower bounds are conservative accuracy estimates.  
 

Specimen and loading 
As in any material parameter test, it can be questioned to what extent the configuration and 
measurements are capable of procuring correct material characteristics. The specimen and test setup 
used herein is based on assignments from the Norwegian Dept. of Forestry [10] where a ratio 
between specimen length and width of 3:1 is prescribed. No lubricants or other efforts were used to 
reduce transverse friction forces between steel and wood at the specimen ends. While the friction 
forces on one hand can restrict the transverse deformation, the relatively short specimen can be 
vulnerable to develop a barrelled shape when compressed, resulting in higher Poisson values and 
lower moduli values than determined from other tests. A related aspect in this is the reasonability of 
comparing parameters resulting from different test setups and specimen types. Traditionally, the 
longitudinal modulus ELL of wood is measured by means of bending tests, assuming fulfilment of 
conventional linear elastic bending behaviour. Whether a direct comparison is plausible is not 
necessarily given. 
 
It can also be commented that a relatively low ELL value can be expected from the tests since 
specimens partly were taken from ungraded material which probably would have been rejected by 
normal grading criteria. This effect is further amplified by the fact that ungraded material 
consequently was taken from the lower and outer section of the stems, holding significantly lower 
modulus than material from the inner part [11]. Whether this also affects the Poisson values is not 
reported. 
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The non-zero shear strain observed at the measurement plane is typically indicating in-plane or out-
of plane deviation between material axis and load orientation in orthotropic materials. It should be 
recognized that such deviation in wood not necessarily is visible or measurable on the specimen 
surfaces, and consequently is hard to avoid during carpentry. Internal variation and micro effects in 
combination with inhomogeneity and possible non-orthogonal axes can furthermore encumber 
parameter evaluation based on orthotropic theory.  
 

Strain distribution 
Strain ratio values rε

e for active and passive strain were calculated according to equation (19) for 
each element and specimen. The variation between the 36 specimen specific element values can be 
understood as the sum of variation due to material inhomogeneity, measurement errors and strain 
profiles. Strain profiles comprise in this sense variation governed by the configuration, i.e. effects 
from geometry, boundary conditions and homogeneous material properties. The variation between 
corresponding element ratio values from different specimens of the same test type ij can on the 
other hand be interpreted as an expression of material inhomogeneity and measurements errors. 
Strain ratio values for a randomly chosen specimen are shown in Figure 9, which shows that the 
active strain field has considerably less variation than the passive.  
 
 

       
 

Figure 9: Experimental strain ratios on LR plane from a single compression specimen 
 
In order to detect any strain profile tendencies, the corresponding ratio values were averaged 
between ij specimens to eliminate as much variation from errors and inhomogeneity as possible. 
Analysis of variance (ANOVA) of the 36 element ratio means were run in statistical software 
MINITAB [12] with the hypotheses 
 

H0: μe = μg (no detectable strain profiles)  H1: μe ≠ μg (strain profiles are detectable) 
 
where μe is the expected ratio value of element e, with {e, g} = {1…36} and e ≠ g. ANOVA 
separates the total observed variance SSTOT into SSTR and SSE, where SSTR is variance which can 
be removed by the explanatory variables μe. SSE is the remaining variance, which will be low if the 
observed data is well correlated with the explanatory variables. H0 is consequently rejected if  
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where F follows the Fisher distribution [13], k = 36 and n is the number of observations within each 
group. That is, if the variance which can be removed by explanatory variables is low compared to 
the total variance in the data, the H0 hypothesis can not be rejected, i.e. no difference between the μe 
can be asserted. F is indirectly assigned through the corresponding p–value in MINITAB, i.e. the 
probability of incorrectly rejecting H0. The one-way ANOVA was used since the specimen number 
should not play any role in this aspect. Normality and variance checks were run for some of the 
groups which proved that it is reasonable to assume normality and equal variances within each 
group ij, which is a requirement for the analysis. ANOVA results are presented in Table 2 with p–
values and pooled standard deviations. 
 
Table 2: ANOVA for experimental strain ratios for measurement plane ij 

Active strain Passive strain  

ij p–value StDev p–value StDev n 

LR 0.604 1.057 0.953 4.439 56 

LT 0.221 3.076 0.232 5.264 56 

 
It can be seen that all groups are nonsignificant (p > α = 0.05) and H0 is thus confirmed with 
relatively high margin for both active and passive strain. That is, when specimens are observed as a 
whole, no significant strain profiles can be asserted to occur for any observations planes measured, 
and it is thus evident that the observed variation mainly stems from inhomogeneity and possible 
measurement errors. It can further be concluded that the LT plane demonstrates more variation than 
the LR, and that the passive strain in general varies more than the active.  
 

Size dependent inhomogeneity 
Inhomogeneity can be quantified by the variation in corresponding element ratio values rε

e between 
specimens of the same type ij. Since no strain profiles can be asserted to exist in the experimentally 
based ratios, this can be investigated by looking into the variation between all element ratio values 
for the same ij’s. This is advantageous since it alternatively would have resulted in quite 
comprehensive statistical testing. The calculated variance is thus the sum of variation governed by 
inhomogeneity, configuration and errors. Even if the magnitude of the variance itself is not too 
expressive, comparison of variance turns out to be a more interesting aspect since the effect of 
varying length s0 between measurements dots can be analysed on a relative scale. 
 
Bonferroni confidence intervals were used to test equal variances between the m = 3 different 
specimen sizes l = 30 mm, 40 mm and 50 mm with element side lengths s0 = 3 mm, 4 mm and 5 
mm, respectively. The intervals are supplied with p–values for the hypotheses 
 

H0: Se = Sg  H1: Se ≠ Sg  
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Here, Se is the standard deviation of element group e, e ≠ g and H0 is rejected if p < α = 0.05, where 
p–values from Bartlett’s test can be used since the data come from normal distributions [12]. 
Confidence intervals are shown in Figure 10 for measurements at the LR surface. The plots clearly 
indicate the effect of specimen size where the large specimen type holds very low variation in both 
active and passive strain fields compared to the smaller types. The zero p–values document that the 
standard deviations significantly differ between the specimen sizes. Measurements from the LT 
plane show a similar trend. It can thus be concluded that the variation in strain within the 
measurement area increases considerably with decreasing length s0 between the measurement dots. 
Hence, the correspondence between the assumption of homogeneity and real behaviour is 
considerably improved by increasing the representative material volume (RVE) from say, 30 mm 
cubes to 50 mm. 
 

      
 

Figure 10: Confidence intervals for standard deviation Se of strain ratio rε
e (hor.) against specimen size (vert.) 

 

Concluding remarks 
Comparison of values for modulus of elasticity and Poisson’s ratios demonstrates in general good 
agreement between experimentally based quantities and literature values. The method is therefore 
assessed to be applicable for mechanical testing of materials with a high degree of anisotropy and 
inhomogeneity like wood.  
 
Deviation between material axis and load orientation produce a strain combination with non-zero 
shear strain in anisotropic materials. Since the test method efficiently returns the three simultaneous 
in-plane strain components, the method seems particularly advantageous for such materials. 
Compression and tension tests with intended or unintended deviation between material and loading 
axes can thus be evaluated more carefully. The method is moreover capable of returning appropriate 
characteristics for nonlinear material behaviour since the contact free measurements and the post 
processing procedure are independent of the material behaviour. Furthermore, the post processing 
formulation based on Green strain removes any effects from rigid body movement, and offers thus a 
practical and robust way to evaluate the strain fields. 
 
Another advantage of the method is its capability to quantify inhomogeneity and nonuniform strain 
fields. While an ordinary strain gauge would measure strain as an average value over the gauge 
length, the method comprises separate strain component values for each of the measurement 
elements. Strain distribution and strain uniformity can thus be detected and assessed for active, 
passive and shear strain over the observed area, although plots showed strain fields with rather 
random variation in this study. The latter is probably due to inhomogeneity, and might also be 
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amplified by the relatively small measurement elements being used with side lengths between 3–5 
mm depending on specimen size. This is approximately the same as the typical annual ring width 
for low density wood, which means that one element can contain a rather high amount of stiff 
latewood, while the neighbouring elements mainly consist of soft early wood. This will 
consequently cause the elements to return quite different strain magnitudes, resulting in highly 
varying strain fields. This can be the case even if the mean strain values returns reasonable results, 
since the total measurement area is more representative for the overall behaviour. The fact that 
variation in element strains within the measurement area decreased considerably by increasing the 
element side lengths, indicates that small measurement lengths and areas should be avoided. The 
size of wood specimen is therefore crucial in order to determine reasonable values for representative 
volume elements. Emphasis must also be put on the size of the measurement area in relation to the 
resolution and measurement accuracy and the parameters to be measured. 
 
Finally, it can be mentioned that the method offers a good basis for development of constitutive 
relations for wood. The experimental results are collected and processed in a way that resembles the 
formulation of the finite element method. Results from numerical analysis with constitutive laws 
implemented can thus be compared more directly to experimentally based quantities. Furthermore, 
the method has a potential in describing statistical distributions for material properties and might 
thus be useful for more probabilistic approaches to material characterization. Altogether, this ought 
to be valuable for assessment of material parameters for wood applied in numerical codes. 
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Abstract 
The shear test described by Arcan was used to investigate orthotropic shear properties of clear softwood from Norway 
spruce. The test was chosen on the basis of a thorough literature study, although the experimental setup was somewhat 
modified compared to the original. A total number of 85 specimens were tested for loading and unloading in 6 different 
configurations. Manufacturing and mounting of specimens as well as testing worked well. Video extensometry was 
used to measure strain in the critical specimen section, and the determined moduli were evaluated by means of FEM 
calculations. The average shear moduli were found to equal GLR = 640 MPa, GLT = 580 MPa and GRT = 30 MPa, which 
correspond well with values reported in literature for various spruce species. No significant differences in shear moduli 
could be found for configurations comprising the same material plane. Moduli determined from unloading generally 
showed higher values than those obtained in loading, but only the rolling shear RT demonstrated a significant 
difference. Each of the three shear moduli was found to be significantly different from each other, with GLR about 10% 
higher than GLT, and approximately 20 times higher than GRT. The coefficient of variation equalled 0.24, 0.37 and 0.28, 
respectively. The correlation with density was in general low. It was found that the 3-parameter Weibull distribution is 
most appropriate for a probabilistic description of the three orthotropic shear moduli of wood. 
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Introduction 
Determination of shear strength and stiffness of wood has long been impeded by difficulties in 
obtaining a state of pure and uniform shear in test specimens. In most specimen types, a 
combination of normal and shear stresses occur, which makes it difficult to interpret the pure shear 
behaviour. So far, the shear properties of wood have mainly been based on the notched shear block 
described by e.g. ASTM D143 (1984) and SKOGFORSK (1992). This is a longitudinally oriented 
cubical block with notches. The portion with the raised step is sheared off with a vertical load P 
applied to the top surface, while the other portion is resting on a fixed support, see Fig. 1. 
 

 

 
 

Fig. 1   The notched shear block test for wood 
 

Even if the method has been severely criticized by several authors (Liu 1984, Moses 2001), the 
ASTM test and modified versions have been extensively used, and are still the basis for determining 
the shear strength of wood and wood products. The specimen is not capable of producing a state of 
pure shear since a bending moment caused by the eccentric loading is inevitable, resulting in normal 
stresses perpendicular to the shear plane. The system stiffness and failure load is thus influenced by 
material properties perpendicular to grain, yielding incorrect results (Liu et al. 1999). The failure 
stress, in particular, is vulnerable since the low tensile capacity perpendicular to grain can govern 
the failure load. In addition, neither the normal stresses nor the shear stresses are uniform over the 
failure surface. According to Liu (1984), both photo-elastic analysis and measurements with strain 
gauges have shown rather unsymmetrical strain distribution, with strain concentrations in areas 
where pure shear is assumed to exist. A three-dimensional finite element model revealed a high 
stress concentration factor, resulting in underestimated shear strengths (Moses 2001). Moreover, it 
seems that the method has been confined to specimens oriented parallel to the grain, i.e. rolling 
shear has probably not been studied. 
 
The plate twist test described in ASTM D3044 (1986) for determining shear moduli of plywood has 
also been used to some extent for wood, even if errors are easily introduced if grain is inclined to 
the plate geometry. Doyle et al. (1945) determined the three shear moduli by tests utilizing this 
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principle, and shear values presented in the Wood Handbook (FPL 1999) are based on this study. 
The results showed high variation for each of the shear moduli, and no correlations with densities or 
elastic moduli were found. 
 
The European Standard NS-EN 384 (2004) states that the shear modulus can be calculated as 6.25% 
of the (longitudinal) modulus of elasticity, while NS-EN 408 (2003) assigns two bending test 
methods with sufficient accuracy for conventional structural design. The rolling shear is presumably 
not included in the methods. It is suggested to measure the shear strength in a fixture consisting of 
the wood specimen glued between two steel plates. By displacing one plate relative to the other, the 
wood will be subjected to shear forces. It is not known to what extent this setup has been used, and 
rolling shear does not seem to be covered by the method, although ASTM D2718 (1995) describes a 
similar method for testing of rolling shear in wood-based structural panels like plywood. 
 
Shear tests by means of short beams have been proposed by e.g. Kollmann and Côté (1968), 
comprising beam specimens subjected to a uniformly distributed load over the midspan, with the 
ends either freely supported or clamped. It should be noted that normal stresses are inevitable due to 
the bending moment developing, resulting in an impure stress situation which can easily initiate 
fracture. This is visualized in Fig. 2, showing observations from preliminary tests of the present 
study. 
 

Fig. 2   Short beams for testing of shear properties, marked with dots for video extensometry 

 
Short beam shear tests have been investigated by Yoshihara and Kubojima (2002), Yoshihara and 
Furushima (2003) and Yoshihara and Ohhata (2003) for different configurations and wood species. 
For certain span widths, the asymmetric four-point bending proved to be applicable for testing of 
the shear modulus when combined with numerical analysis, although it was found that neither the 
three-point loading nor asymmetric four-point loading were suitable for determining shear 
strengths. A somewhat related method is the determination of the shear modulus by flexural 
vibration tests and Timoshenko’s theory of bending. This method was used by Kubojima (1997), 
who, for certain beam depths and resonance mode numbers, found reasonable values for the moduli. 
However, the method is probably not suited for the determination of ultimate shear stresses. 
 
Shear properties of composite materials are often determined by means of off-axis tension tests. 
Here the shear moduli are deduced from the shear strain developing from coupling between axial 
stress and shear strain in orthotropic materials loaded off-axis. The same principle can be used for 
wood, although nonuniform and impure strain fields make it difficult to assess the shear moduli, 
and particularly the ultimate shear stress capacities, with a high degree of accuracy. Off-axis testing 
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of wood comprises studies by Sliker and Yu (1993), Liu (2002), Yoshihara and Ohta (2000), 
Yoshihara and Satoh (2003) and Xavier et al. (2004). 
 
Torsion tests have, to a limited extent, also been used, even if the underlying theory for obtaining 
the orthotropic shear characteristics is quite complex. Moreover, nonuniform strain fields and the 
presence of normal stress components complicate the assessment of shear moduli and ultimate shear 
stresses even further. Earlier studies undertaken by Carrington (1923) and Bodig and Goodman 
(1973) were based on torsion. Later studies comprise Yoshihara and Ohta (1995a, b, 1996) who 
investigated the elastoplastic shear behaviour of Sitka spruce in torsion around the L and R axes, 
and Yamasaki and Sasaki (2003) who studied the elastic properties of different wood species under 
combined axial force and torque around the L axis. 
 
The so-called Iosipescu shear test consists of a beam with a 90˚ notch at the top and bottom of the 
central portion, as shown in Fig. 3. The loads are applied such that the bending moment is zero, 
whereas the shear is nonzero over the critical section. The failure can thus be regarded as purely 
shear induced. By orienting the specimen within the material, all shear types of an orthotropic 
material can in principle be investigated. Liu et al. (1999) and Liu (2000) found that the variant 
adopted in ASTM D5379 (1998) was unsatisfactory due to twisting and large transverse normal 
strains developing, although a slightly modified version gave reasonable values for wood. Other 
known studies of the Iosipescu test applied to wood are by Yoshihara et al. (1999, 2001), Dumail et 
al. (2000), Xavier et al. (2004) and Yoshihara and Matsumoto (2005). It can be noted that Xavier 
found about 20% higher shear modulus values with the Iosipescu test than the off-axis test. The 
overall conclusion is that the Iosipescu test gives adequate shear moduli, but that the shear failure 
stress can be somewhat corrupted by improper failure due to bending moment beside the crucial 
section. In particular, radially and tangentially oriented specimens are vulnerable to improper failure 
due to low tensile capacities in these directions. 

 
 

 

Fig. 3   Iosipescu shear test Fig. 4   Arcan shear test 
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Arcan et al. (1978) developed a butterfly shaped specimen for shear testing of isotropic and 
orthotropic materials. The mechanical principle resembles the aforementioned Iosipescu test, but 
the fixture is somewhat simplified. The specimen is mounted in two separate stiff brackets which, 
during testing, are drawn apart so that the line of loading passes through the centreline of the 
butterfly, resulting in a plane and pure shear stress situation. Due to the butterfly shape, the failure 
will be located at the centre section of the specimen, enabling estimation of the pure shear strength. 
By altering the configuration with respect to the material axes, all three shear types in an orthotropic 
material can in principle be investigated. Furthermore, by varying the angle φ in Fig. 4, the material 
can be investigated for a combination of shear and normal stresses. By means of photo-elastic 
results, Arcan (1984) showed that the shear stress distribution is nearly uniform over the critical 
cross section, a fact that has been confirmed by subsequent finite element analyses (Liu and Floeter 
1984). Liu (1984) and Liu and Floeter (1984) were the first to investigate shear properties of wood 
by means of the Arcan method. Specimens were glued with epoxy to aluminium plate brackets, and 
tested for pure shear and a combination of shear and normal stresses within the LT material plane, 
resulting in reasonable values. A modified variant, with bolts instead of glue, was used by Liu et al. 
(1996) on solid wood specimens of spruce species, with strain gauges mounted at the critical 
section. Somewhat lower shear strengths than those resulting from the ASTM D143 (1984) shear 
block test were found, while the shear modulus GLT agreed well. In later studies by Liu and Ross 
(1998) and Liu et al. (1999), shear tests were carried out for different angles in the LR plane, also 
showing good agreement with orthotropic theory. It was concluded that the Arcan test is the most 
reliable shear test for wood, but only shear strengths parallel to grain can be determined because of 
the low tension capacity perpendicular to grain. However, Oliveira (2004) tested shear strength and 
stiffness in each of the three orthotropic material planes of maritime pine wood by the Arcan 
method, and found reasonable results. Yoshihara and Matsumoto (2005) also tested shear by a 
slightly modified Arcan test formed as a tension test with notches, and found shear modulus values 
GLT that compared well with results from the Iosipescu test. 
 
Based on the various references, it was concluded that the Arcan test seemed most appropriate for a 
general study of the shear properties of wood. The ability to produce a relatively uniform plane 
stress state seemed particularly desirable. Moreover, the test enables determination of parameters 
characterizing both linear and possible nonlinear behaviour, in addition to failure. The simplicity of 
both the setup and the estimation of parameters was also appealing. The fact that all material planes 
can easily be tested with the same configuration was also important, since it enables an equal 
assessment basis for all shear types. 
 

Experimental work 
Arcan specimens were produced out of clear softwood from Norway spruce (Picea Abies (L.) 
Karst.). The tests were part of a more comprehensive test program which also involved on-axis and 
off-axis tension and compression tests in each of the three material planes. The material was taken 
directly from the forest at four different locations in southern Norway, comprising 8 different trees 
with a log length of approximately 0.5 m. The logs were chosen with diameters as large as possible 
in order to obtain material with a minimum of annual ring curvature. Confined by natural growth 
conditions, the log diameters ranged between 0.5 and 0.8 m. Since it is hard to obtain sawn and 
graded lumber without a high degree of curvature, such material was not included in the study. The 
material was conditioned in a climate room with 65% relative humidity and 20˚C for several 



PAPER II  
 
 

 74

months to obtain approximately 12% moisture content. The densities ranged between 300 and 500 
kg/m3 with an average conditioned density of 398 kg/m3 and a coefficient of variation of 9%. 
 

Specimens 
Three plate types corresponding to each of the three material planes LR, LT and RT were produced. 
The plates were cut from the outer part of the stems to obtain specimens with Cartesian material 
axes coinciding with the specimen geometry axis, see Fig. 5. Fibre inclination to load orientation 
was thus minimized.  Specimens were in general chosen so as to keep apparent inhomogeneities and 
macroscopic defects like knots at a minimum. 
 

 
 

Fig. 5   Specimen for testing of ij shear, with measurement dots and local axes xy 
 
Specimens were made with the geometry shown in Fig. 5. Six different specimen types were 
produced, each designated by ij, where {i, j} = {L, R, T} and i ≠ j, as shown in Fig. 6. The first 
index i assigns the direction of the test load P relative to the material orientation, while the second 
index j denotes the normal vector of the loaded plane. Specimen type ij corresponded thus to testing 
of σij - γij shear. Six configurations were chosen instead of three in order to investigate if i or j 
oriented load could possibly affect the ij shear properties, a factor which according to orthotropic 
theory should not play any role. 
 

Fig. 6   The six specimen types ij used for shear testing, oriented as taken out of the wood stem 
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Tentative testing revealed that the different specimen types should be given somewhat different 
geometry in order to obtain the desired failure. Specimen thicknesses t and cross section heights h 
for each type are specified in Table 1 with reference to Fig. 5. The tabulated values are approximate 
values used for carpentry, and a digital slide calliper was used to obtain accurate values of the 
critical geometry dimensions prior to testing. Between 20 and 30 specimens within each material 
plane were considered sufficient for reliable estimates of the parameters. A total number of 85 
specimens were tested. 
 

     Table 1   Specimen type geometries 

Height  Thickness Type 

ij h (mm) t  (mm) 

Number  

of tests 
Sum Total 

LR 

RL 

30 

25 

17 

12 

12 

23 
35 

LT 

TL 

30 

25 

12 

12 

12 
15 27 

RT 

TR 

25 

25 

17 

17 

11 
12 23 

85 

 

Fixture 
The specimens were attached to the loading brackets by adhesives rather than bolts, partly because 
Liu et al. (1996) reported specimens to be vulnerable to fracture near the bolt groups instead of the 
critical section. Brackets were produced out of 5 mm aluminium plates with a hole for bolt loading 
in the loading jig, and glued onto the specimens by means of hot melt adhesives applied with an 
electrical glue pistol. In order to secure on-axis loading, the specimens were deliberately glued onto 
the plates so that the line of loading would pass exactly through the critical section. Clamps were 
used to strengthen the fixture. To ensure efficient testing and reduce the turnaround time, 15 sets of 
brackets, each consisting of 4 L-shaped aluminium plates, were produced. Test programs of 15 
specimens per sequence could thus be undertaken before the brackets were cleaned and ready for 
reuse. This was important since the preparation of each specimen for testing was quite time-
consuming, as the adhesives required several days of drying in order to attain full strength. 
 

Testing 
The European Standard NS-EN 408 (2003) states that failure in shear tests shall be reached within 
300 ± 120 s., whereas SKOGFORSK (1992) specifies 105 ± 15 s. ASTM D143 (1984) states that 
the notched shear block shall be loaded continuously at 0.6 mm/min. As a compromise between the 
various configurations ij, a rate of 0.3 mm/min was chosen for all tests, resulting in maximum 
capacities reached after 200 to 400 s. The specimen and fixture are shown in Fig. 7 and Fig. 8 
before and after failure, respectively. 
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Fig. 7   Shear test configuration for clear wood Fig. 8   Specimen after failure (RT-configuration)

 
The tests were run in an acclimatized atmosphere of 20˚C and 65% relative humidity. Each 
specimen was exposed to a loading sequence as shown in Fig. 9. The first loading was up to 
approximately 40% of the assumed component capacity, followed by unloading and reloading until 
failure for investigation of ultimate capacities and possible elastoplastic behaviour. The linear 
behaviour is treated herein, while the nonlinear and ultimate stresses will be discussed in a later 
study. 
 

 
Fig. 9 Loading sequence used for shear testing 

 
After failure and dismounting, the glue was removed from the specimen and one of the pieces was 
weighed to determine the acclimatized mass mw. The piece was subsequently submerged into water 
and the corresponding weight increase was measured. Archimedes law implies that the altered 
weight of the water tub can be related directly to the acclimatized volume Vw. The volumes of the 
irregular specimen pieces could thus be estimated. The pieces were subsequently dried at 105˚C for 
2 days and then weighed a second time to determine dry substance mass m0. Moisture content and 
density could finally be calculated for each specimen as: 
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    12 1 0.005 0.12 ww         (1) 

 
where  w is moisture content (%) 
 ρw is density at the observed moisture content w (kg/m3) 
 ρ12 is density at 12% moisture content (kg/m3)  
 
The moisture content was in general found to equal approximately 12%, nevertheless the densities 
were modified by means of the empirically based formula for ρ12, which is valid for 7% < w < 17%, 
a requirement which was fulfilled by all specimens tested (SKOGFORSK 1992). 
 

Stress and strain observations 
Deformation was measured by means of video extensometry described by Dahl and Malo (2009) 
and briefly summarized in the following. Prior to the test, a quadratic 18 mm  18 mm grid of 
target dots was applied on the wood surfaces at the critical section as illustrated in Fig. 10.  
 

 
 

Fig. 10   Arcan specimen marked with an array of dots for deformation measurements 
 
The in-plane xy coordinates of the dots were continuously measured by the camera throughout 
loading. Based on the coordinate values, a post-processing routine calculated normal and shear 
strain over the measured area (Dahl and Malo 2009). Simultaneous estimates for the three in-plane 
strain components εii, εjj and γij could thus be held together with the nominal shear stress ˆij for 

evaluation of the overall material behaviour, estimated for each timestep by  
 

ˆ ij

P

h t
 


  (i ≠ j)        (2) 

 
where h and t are the measured cross section dimensions at the initial configuration, and P is the 
load level. It can be noted that the stress estimate is calculated analogously as for the Iosipescu 
shear test on wood described by e.g. Dumail et al. (2000) and Yoshihara et al. (1999). 
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Shear stress σij is plotted against the average shear strain ij over the measurement area for each 

configuration ij in Fig. 11. It can be seen that the shear moduli as well as the nonlinear behaviour 
and ultimate shear stresses vary considerably between the three different shear types. 
 
 

Fig. 11   Experimental stress-strain curves for the various configuration types ij 
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Experimental data analysis 
The linear trend was obtained by extracting a set of q timesteps from the experimental stress-strain 
relationship. The set was upward confined by the timestep corresponding to approximately 40% of 
the ultimate stress observed. Initial disturbances were deliberately removed in the lower part. 
Typically, the remaining linear set contained between 500 and 1000 timesteps. 
 
A least sum square error (SSE) optimization algorithm was used to fit the linear elastic shear moduli 
estimate Ĝij to the observed stress-strain relationships as indicated by Eq. (3).  
 

  
2 2

mod

1 1

ˆˆ ˆ
q q

ij t ij t ij t g ij ij t
t t

SSE A G      
 

              {i, j} = {L, R, T} i ≠ j (3) 

 
Hence, the mean shear strain ij  is used as explanatory variable, while Ag is correcting for nonzero 

experimental stress for zero experimental strain. The parameterized relationship was automatically 
plotted together with the experimental data as a check of reasonability, see Fig. 12. It can be seen 
that the shear strain follows a nonlinear progress to ultimate stress, while the two normal strain 
components remain relatively steady at zero strain. 
 

 
Fig. 12   Experimental strain (ij = LR) plotted with the estimated shear modulus Ĝij 
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Test results 
Experimental mean values of the shear moduli estimates Ĝij are given in Table 2 for each 
configuration type ij. Coefficients of variation CV are also tabulated; in addition to correlation r to 
density, and the number of tests n which enters into each of the estimates. It can be noted that n 
varies somewhat between the three loading sequences since some of the stress-strain paths not were 
adaptable. Results for each specimen are to be found in Dahl (2008). 
 

       Table 2   Shear moduli estimates Ĝij (MPa) for the various configuration types ij 
 

Type  Density Loading Unloading Reloading Average 

(ij )  (kg/m3)     

Mean 388 650 669 754 702 

CV 0.05 0.15 0.17 0.30 0.24 

r - 0.25 -0.15 0.03 0.31 
LR 

n 12 7 8 12 12 

Mean 400 642 828 734 738 

CV 0.10 0.25 0.20 0.20 0.23 

r - 0.02 0.10 0.37 0.28 
RL 

n 23 17 19 20 22 

Mean 409 597 701 586 631 

CV 0.06 0.55 0.50 0.27 0.45 

r - -0.46 -0.64 0.30 -0.50 
LT 

n 12 7 8 7 9 

Mean 415 674 718 657 681 

CV 0.07 0.31 0.36 0.27 0.31 

r - 0.15 0.05 0.17 0.13 

TL 

n 15 13 13 15 15 

Mean 381 30.5 37.7 32.0 33.4 

CV 0.10 0.30 0.24 0.31 0.29 

r - 0.62 0.54 0.17 0.39 

RT 

n 10 9 9 10 10 

Mean 381 34.3 41.5 36.7 37.5 

CV 0.11 0.30 0.24 0.26 0.27 

r - 0.13 0.25 0.16 0.18 
TR 

n 12 12 12 12 12 

 
From the table, it can be seen that the Ĝij values from ij and ji configurations clearly resemble each 
other, and thus substantiate the assumption of orthotropy. The highest deviation in average modulus 
between mutual configurations occurs for the rolling shear, i.e. ĜRT and ĜTR, with a difference of 
15%. This can be explained by configuration effects, as investigated below. The overall coefficients 
of variation CV lie between 0.23 and 0.45, which is relatively high. The correlations to density are 
correspondingly low.  
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Configuration study 
In order to study the mechanical behaviour of the shear specimens in more detail, finite element 
models of the test configurations were modelled with the commercial FEM code ANSYS 10.0. 
Each of the configurations ij was modelled with geometry given in Fig. 5 and Table 1. The average 
shear modulus estimate Ĝij was used for the corresponding configuration ij, while values in Table 3 
were used for the eight remaining orthotropic material parameters, where Eii denotes moduli of 
elasticity and vij denotes Poisson’s ratios. These parameters are based on values available in the 
literature for different spruce species, and are determined as average values from assignments in 
Jenkin (1920), Carrington (1923), Stamer (1935), Doyle et al. (1945), Kollmann and Côté (1968), 
Goodman and Bodig (1970),  Bodig and Goodman (1973), FPL (1999) and NS 3470 (1999). It must 
be noted that none of the references specifically refer to Norway spruce (Picea Abies (L.) Karst). 
 
Table 3  Linear elastic parameters for spruce used in simulation. E and G are given in MPa 
 

ELL ERR ETT GLR GLT GRT VLR VLT VRT ρ 

10 991 716 435 682 693 49 0.42 0.48 0.50 390 

 
The aluminium brackets were modelled as isotropic with E = 70 000 MPa, v = 0.3 and with a 
density ρ of 2700 kg/m3. The weight of the clamps was included in the model as point loads at 
appropriate locations with masses based on weighing. The bolted joints at each end of the fixture 
were modelled as hinged supports allowing rotation in the xy-plane. The lower support was 
restricted against translation in all directions, while the upper was subjected to the vertical test load 
P and hence free to move in the vertical (y) direction. The magnitude of P was set to correspond to 
approximately 50% of the assumed elastic limit stresses in the wood for the various configurations, 
in order to achieve a representative effect of the fixture weight on the total linear elastic behaviour. 
The adhesive between aluminium and wood was simulated by means of contact elements enforcing 
equal x and y displacement in adjacent nodes of the two materials in the glued areas. First-order 
eight noded hexahedral elements (SOLID45) with reduced integration were used for both materials 
providing constant stress and strain fields within the elements. Different meshes, ranging from 5000 
to 80 000 elements, were used. 
 
The analyses revealed that the shear stiffness measured by the experiments is typically higher than 
the real moduli characterizing the material. This must be due to the fact that the measurement area 
covers a quadratic area which is larger than the critical cross section. On each side of the critical 
section, the shear stress is distributed over a larger area because of the notched specimen form. The 
shear strain is thus decreasing with increasing horizontal distance from the critical section. 
Consequently, the average shear strain over the 18 mm  18 mm area will be lower than for a case 
where only the critical section is considered. The system stiffness measured is therefore too stiff, 
resulting in an apparent shear modulus that is too high. This may indicate that the measurement area 
could have been reduced, although a larger area is preferred in order to avoid encumbered values 
due to inhomogeneity effects.  
 
The experimental strain data were based on coordinates of quadratic arrays consisting of 49 dots 
applied as a 7  7 grid pattern on the central section of the wood surfaces, and post-processed as 36 
constant strain “elements” as described in Dahl and Malo (2009). In order to enable a direct 
comparison basis between experimental and numerical data, the volume was meshed so that in-
plane numerical shear strain values γij could be collected from the same location on the specimen. 
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The strain values were subsequently averaged over the field for direct comparison to experimentally 
based strain. Based on the average shear strain resulting from the load P and the cross-section 
dimensions h and t, a numerically based shear modulus was estimated. This estimate could then be 
directly compared to the Ĝij value used for the simulation, and a modulus modification factor aij was 
calculated as the ratio between them; 
 

ˆ
ij ij

ij

G h t
a

P

  
          (4) 

 
Because of the form of the notched specimen, the shear strain typically showed nonuniform 
distributions over the measurement areas. As a consequence, the aij factors showed some sensitivity 
to the element size used in the measurement region of the numerical analyses. In order to approach 
the real behaviour, a very large number of elements should ideally have been used. Restricted by 
model size and CPU limitations, it was decided to use a strategy by which aij was determined from 
values obtained by models with different element sizes e in the measurement region. Linear 
regression was used to obtain a best fit relation, which subsequently was used to estimate the value 
of aij for e ≈ 0 by extrapolation. The points and corresponding best fit lines for the various 
configurations are shown in Fig. 13, while modification factors aij determined for e ≈ 0 are given in 
Table 4. 

 
 

Fig. 13   Modifications factors aij plotted against numerical element-size e (mm) 
 
It can be seen that the two configurations with the stress oriented in the longitudinal directions (LR 
and LT) show a similar trend. This is also the case for the resembling configurations RL and TL, and 
the two rolling shear configurations RT and TR. As opposed to the others, both rolling shear 
configurations demonstrate a slightly decreasing trend with decreasing e. This can be explained by 
nonuniform strain fields in the outer range of the measurement area, overestimating the strain for 
increasing e, and thus contributing to a too high average shear strain. 
 
Table 4 Modification factors aij for shear moduli estimate Ĝij extrapolated for e ≈ 0 
 

LR RL LT TL RT TR 

0.960 0.846 0.948 0.842 0.866 0.858 
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Different numerical models are shown in Fig. 14 and Fig. 15 with mesh sizes e = 3 mm and e = 0.5 
mm, respectively. It can be noted that the notch was modelled with a fillet radius of 1 mm to avoid 
stress singularities. 

 
 

 
 
 

Fig. 14   Numerical model of the test (e = 3 mm) Fig. 15   Close-up of specimen (e = 0.5 mm)

 
 
By multiplying the experimentally based apparent shear moduli estimates Ĝij by the modifications 
factors in Table 4 , improved shear moduli values Gij are obtained: 
 

ˆ
ij ij ijG G a            (5) 

 
Hence, the modification accounts not only for the measurement technique, but also for the test 
configuration in general, including effects from geometry, orthotropic material properties and 
boundary conditions. An inherent assumption made by the modification strategy is that the 
configuration behaves linearly, which is reasonable as long as no material yielding takes place, 
although the correction in principle could have been undertaken in an iterative manner. However, 
this methodology would have been hard to carry out in a sufficient way, since the number of 
elements in the critical section with this approach ideally should have approached infinite for an 
accurate prediction of the nonuniform strain fields. Simulations with modified shear moduli Gij and 
e = 0.5 mm resulted in numerical   values deviating less than 0.3% from the experimental average 
  values, which supports the applicability of the approach used herein. With a smaller e-value, the 
deviation could have been expected to be even smaller. Moreover, it should be noted that similar 
modification factors for the analogous Iosipescu test have been proposed by Pierron and Vautrin 
(1994), Pierron (1998), Dumail et al. (2000) and Xavier et al. (2004). Oliveira (2004) studied three 

P 
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of the Arcan configurations with application to pine, and found somewhat less corrective factors 
than determined herein, especially for ij = TR.  This is presumably due to the fact that Oliveira used 
strain gauges measuring a smaller area than the video extensometer, which in particular results in 
differences for the very soft rolling shear plane. 
 
It was assumed that the material axes LRT in general coincided with the Cartesian geometry axes of 
the various configurations, i.e. that no off-axis loading occurred. It is clear that this is an 
idealization since material variation, annual ring curvature and carpentry makes it difficult to obtain 
specimens with a Cartesian material system unidirected with the geometric specimen axes. Study of 
the two numerically based in-plane normal strain components showed that the vertically oriented 
strain εii was very small for all configurations ij, while the horizontal strain εjj on average could 
approach values close to 10% of the shear strain level γij, particularly for the LR and LT 
configurations. This corresponds well with the overall tendencies of the experimental data. It should 
be noted that the experimental normal strain components could have been analyzed with a similar 
SSE technique as used for the shear strain. Comparison between the numerically and experimentally 
based strain responses would then have enabled determination of possible off-axis loading due to 
fibre inclination, which subsequently could have been used to improve the Gij estimates. This 
potential was not exploited herein since most tests showed very little normal strain. 
 

Shear moduli 
Each shear modulus estimate given in Table 2 was modified according to Eq. (5) for configuration 
and measurement effects. Mean values and coefficients of variation CV of the resulting moduli Gij 
are given in Table 5 with averaging between ij and ji estimates according to orthotropic theory. 
 
Table 5 Modified experimental shear moduli Gij (MPa) from n tests measured at plane ij and ji 
 

Loading  Unloading Reloading All  Total   ij 

Mean n  Mean n Mean n Mean Mean 

CV r 

LR 624 7  642 8 724 12 674 
GLR 

RL 543 17  701 19 621 20 625 
641 0.24  0.13 

LT 566 7  665 8 555 7 599 
GLT 

TL 567 13  605 13 553 15 574 
582 0.37  -0.08

RT 26.4 9  32.7 9 27.7 10 28.9 
GRT 

TR 29.4 12  35.6 12 31.5 12 32.2 
30.7 0.28 0.26 

 
The modified moduli are compared to values from the literature in Fig. 16 using the same 
references as stated for Table 3. It can be seen that the three experimental averages are within the 
minimum and maximum values of literature assignments, although they generally are somewhat 
lower than the literature averages, particularly GRT. The overall agreement is, however, quite good. 
The credibility of the three linear moduli is promising for subsequent assessment of nonlinear and 
failure parameters, which are certainly more difficult to detect and obscure to verify since hardly 
any literature references exist for such data. 
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Fig. 16   Literature values and modified experimental averages 

 
The determined shear moduli are plotted against specimen density in Fig. 17 to Fig. 19. The values 
exhibit generally low correlation with density. Analysis of the Pearson’s product-moment 
coefficient by statistical software Minitab (2006) resulted in significant correlation (p < α = 0.05) 
only for the rolling shear GRT, while GLR and GLT were uncorrelated. The determined correlation 
coefficients r are given in Table 5. By way of comparison, the literature values result in correlation 
coefficients of –0.05 for GLR, 0.25 for GLT and –0.46 for GRT, which are in poor agreement with the 
tabulated values. Hence, the overall sensitivity to density is low for both experimental and literature 
shear moduli values. JCSS (2006) reports correlation of 0.6 which, by comparison, seems very high. 
 

 
Fig. 17   Shear modulus GLR based on modified experimental data 
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Fig. 18   Shear modulus GLT based on modified experimental data 

 

      
Fig. 19   Shear modulus GRT based on modified experimental data 

 
 
The non-parametric Mann-Whitney test (Minitab 2006) was used to investigate if any difference 
exists between ij and ji determined Gij values. No significant difference was found (α = 0.05), 
neither for the modified nor the unmodified values. The two groups within the LT-plane, in 
particular, may be regarded as equal. According to the Mann-Whitney test, the differences were 
larger for the unmodified than the modified samples for each of the three moduli. This indicates that 
the modification procedure is viable. In summing up, it can therefore be concluded that both 
configuration types ij and ji are governed by the same modulus Gij, and hence satisfying orthotropic 
theory assumptions. 
 
The Mann-Whitney test was also used to investigate possible differences in shear moduli 
determined from the three loading sequences. In particular, the difference between loading and 
unloading was of interest since this could indicate creep or strain rate effects. Data from ij and ji 
configurations were treated as one sample in this context. The rolling shear resulted in significant 
difference in GRT between loading and unloading (p = 0.01 < α), with an unloading modulus median 
nearly 24% higher than the median determined from loading. However, no significant differences 
could be found for the other two moduli, GLR and GLT, even if the unloading sequences had the 
highest shear moduli with median values about 10% higher than obtained by loading. Except for the 
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rolling shear modulus GRT, averaging of the respective shear moduli between the different loading 
sequences was therefore deemed reasonable. 
 
The Mann-Whitney test also revealed that GLR and GLT are significantly different (p = 0.001 < α). 
Hence, none of the three orthotropic shear moduli of wood can be deemed equal, as opposed to 
assumptions made in many standards and simplified procedures. 
 

Statistical distributions 
The relatively high number of specimens enabled a probabilistic quantification of the shear moduli 
estimates. This effort was strongly motivated by the fact that wood is characterized by large 
variation in its parameter values, making a probabilistic approach desirable.  
 
The Anderson-Darling (AD) test was used to assess to what extent the samples corresponded to the 
various distributions. This is a powerful empirical distribution function test, which can be used even 
for small samples with n ≤ 25 (Anderson and Darling 1952). The test can be visualized through 
probability plots with percentile points for corresponding probabilities of the experimental data set. 
The linear middle line is the expected percentile from the distribution, and enclosing lines on each 
side represent the lower and upper bounds for the confidence intervals of each percentile (Minitab 
2006). The closer the experimental points lie to the linear line, the closer the data follow the 
specified distribution. Probability plot and histogram for the GRT values are shown in Fig. 20 with 
adaptation to the three-parameter Weibull distribution. 
 

Fig. 20   Rolling shear modulus GRT values (MPa) adapted to the Weibull distribution 

 
The AD test uses the hypotheses: 
 

 H0   - The specified distribution adequately fit the data 
 H1   - The specified distribution does not fit the data 

 
H0 is rejected if the p-value, i.e. the probability of incorrectly rejecting H0, is less than a critical 
level, say α = 5%, while a p-value larger than α indicates that the data follow the distribution. 
Different distributions can hence be quantitatively compared by means of the AD value, where the 
lowest value indicates the best correspondence, although any distribution with a nonsignificant p-
value is acceptable. 
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The normal, lognormal and Weibull distributions were considered as the most pertinent 
distributions to investigate, partly based on assignments for timber by JCSS (2006) and partly based 
on histogram plots. Each of the three shear moduli was analysed in MINITAB 15 and the results are 
summarized in Table 6. Loading and unloading data from both ij and ji configurations are treated as 
one sample for LR and LT since the aforementioned Mann-Whitney analyses indicated no 
difference between the underlying samples. RT characteristics are, on the other hand, treated both as 
one sample and isolated for loading (+) and unloading (–) since the behaviour was found to differ 
significantly. The probability density functions for the Lognormal and Weibull distributions are 
given in Appendix, defining the parameters used in Table 6. 
 

Table 6 Statistical distribution characteristics for the experimentally based shear moduli Gij (MPa) 

  Normal  Lognormal Weibull   

 
n 

Mean 
 μ  

StDev  
σ 

AD p  
 

Mean

ξ 

StDev

δ 

AD p Shape
k 

Scale 
m 

Location 
x0 

AD p 

GLR 83 640.6 152.4 0.487* 0.22  6.434 0.244 0.49 0.21  2.856 462.0 227.5 0.62 0.08 

GLT 63 582.4 213.4 2.80 <0.005  6.313 0.321 1.03 0.01  1.391 306.5 303.7 0.70* 0.08 

GRT 64 30.74 8.55 0.91 0.02  3.386 0.290 0.72 0.06  2.604 22.89 10.44 0.70* 0.05 

GRT 
+ 43 28.99 8.31 0.78 0.04  3.325 0.297 0.59 0.12  2.38 20.55 10.80 0.59* 0.11 

GRT 
- 21 34.34 8.05 0.80 0.03  3.510 0.236 0.81 0.03  1.177 11.41 23.47 0.77* 0.05 

* ) Lower AD-value 
 
The lower AD values are marked with asterisks (*), indicating the distribution with best 
correspondence to the experimental values for each modulus. The Weibull distribution gives the 
lowest values for GLT and GRT, and almost the same value as the normal distribution for GLR. Based 
on the p-values, the Weibull distribution is acceptable for all moduli, while the normal distribution 
is acceptable only for GLR. Histograms with adaptation to the Weibull distribution are given in Fig. 
21 and Fig. 22 for the two longitudinally oriented shear moduli. 
 
 

Fig. 21   Shear modulus GLR (MPa) Fig. 22   Shear modulus GLT (MPa) 
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Concluding remarks 
Design of structural applications of wood has traditionally been based on hand calculations. 
Numerical calculations, which to some extent have been used, have typically been focusing on the 
global behaviour and not on the detailed performance of e.g. connections. Consequently, the need 
for more accurate constitutive relationships suited for numerical implementation has been small. 
However, as the use of numerical methods is increasing within structural design of wood 
constructions, such knowledge is required on a more detailed level. The aim of this study has thus 
been to provide parameters characterizing the linear shear behaviour of Norway spruce for each of 
the three orthotropic planes. Nonlinear and failure characteristics will be treated in a later study. 
 
Based on a rather thorough study of various shear tests used in the past for clear wood, it was 
concluded that the so-called Arcan specimen was the most promising, even if only three studies 
have been reported on this particular type of test. The resemblance to the somewhat more frequently 
used Iosipescu specimen, as well as the simplicity of the test setup, supported the choice of the 
Arcan test. A strong motivation was the ability to provide data for both the linear and nonlinear 
range, including failure parameters, and also the fact that the test configuration can be used for all 
three shear types in an orthotropic material. 
 
The practical side of the testing worked well. Specimens were easy to produce, even if the 
deliberate correspondence between material and geometry axes required extra work and resulted in 
quite a few rejected specimens. By means of hot melt adhesives and clamps, the mounting to the 
brackets turned out to be both practical and efficient. The application of load worked well without 
hardly any occurrence of improper failure, even if some specimens broke during the first loading 
sequence. Deformation was measured by means of video extensometry, which eliminated physical 
contact with the specimen. A relatively large portion of the critical specimen section could thereby 
be measured for the three in-plane strain components, enabling a good basis for stiffness 
assessments. The values were evaluated by FEM simulations.  
 
The average shear moduli were found to be GLR = 640, GLT = 580 and GRT = 30 MPa. These values 
are somewhat lower than similar values reported in the literature, but the overall correspondence is 
quite good. The difference in average density between the two samples is low (390 vs. 398 kg/m3) 
and cannot explain discrepancies. However, some deviations can be due to the fact that the 
literature values are not based on Norway spruce specifically, but spruce in general. The testing 
method can be another cause of differences. This is; however; hard to assess, since a statistical 
approach is hampered by the fact that the values reported in the literature are average values, 
whereas the experimental values are based on a set of free-standing tests. 
 
Two different configurations ij were tested for each shear modulus. No significant difference could 
be found between corresponding samples ij and ji for any of the moduli. This agrees well with the 
findings for the LR plane for Sitka spruce by Yoshihara et al. (2001). Furthermore, it is interesting 
to note that the numerically based modification reduced the difference between the respective 
samples. These findings clearly support the assumption of the orthotropic theory that the same shear 
modulus Gij governs the shear deformation independent of i or j oriented driving shear load. 
Parameters determined by unloading resulted in higher values for all moduli compared to loading, 
but only GRT showed a significant difference. The correlation between density and the various 
moduli was found to be low, with a maximum determination coefficient r2 of about 7% for GRT. The 
coefficients of variation CV was found to equal 0.24 for GLR, 0.28 for GRT and 0.37 for GLT. The 
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difference in CV between corresponding ij and ji samples seems to be small. It should be noted that 
the variation may in fact be less than the stated CV values, since any unintended deviation between 
a specimen’s material and geometric coordinate systems certainly contribute to variation. The CV 
corresponds well with results from Iosipescu tests on spruce, reporting CV values of 0.20 for GLR 
(Yoshihara et al. 2001) and 0.27 for GRT  (Dumail et al. 2000). 
 
The tests indicated that each of the three orthotropic shear moduli is significantly different. The GLR 
average was found to be approximately 10% higher than GLT and about 20 times the value of GRT. 
The former difference corresponds quite well with a difference of 15% reported by Xavier et al. 
(2004) for maritime pine tested by the Iosipescu test; as opposed to a difference of about 1% in Fig. 
16 for literature values. 
 
A reasonably high number of specimens enabled a statistical quantification of the moduli values. It 
was found that the three-parameter Weibull distribution was most appropriate to fit the moduli, with 
nonsignificant p-values for all three types. JCSS (2006) states that the shear modulus of European 
softwood is lognormal distributed. According to the results presented herein, this is not statistically 
adequate for GLT. On the other hand, GLR satisfies both the lognormal and particularly the normal 
distribution well. 

 

Appendix 
The (3 parameter) Weibull probability density function f for x is given by 
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The parameter k (> 0) is the so-called shape parameter, m (> 0) is the scale parameter and x0 is the 
location parameter assigning the absolute lower limit of x. 
 
 
The (2 parameter) lognormal probability density function f for x is given by 
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The parameter ξ is the logarithmic mean value equal to the mean of ln(x), and δ is logarithmic 
deviation equal to the standard deviation of ln(x). 
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Abstract  
Shear properties of clear softwood from Norway spruce were investigated by means of the Arcan shear test. The test 
enabled fairly detailed measurements of pure shear until failure in each of the three orthotropic shear planes, where 
video extensometry was used for strain measurements. A total number of 85 specimens were tested in 6 different 
configurations. A varying degree of nonlinearity was observed between the different configurations and material planes, 
especially for rolling shear. The stress–strain curves were adapted with linear, bilinear and Voce models. Compared to 
the linearized variant, it was found that the bilinear model generally increases the model accuracy by a factor of 
approximately two, whereas the Voce model shows even higher accuracy, although its adaptive robustness is somewhat 
lower. The parameters demonstrated low correlations with density, whereas the correlations with the initial shear 
moduli in many cases were considerably higher and significant. The correspondence with similar values reported in 
literature was found to be fairly good. 
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Introduction 
Wood is normally assumed to behave linearly in shear, followed by brittle failure. This is an 
assumption which partly stems from standardized shear tests, which are less appropriate for 
assessing the shear behaviour near ultimate capacity. Moreover, the difficulty in measuring pure 
shear has probably contributed to the assumption of a linear elastic material model, for lack of more 
detailed knowledge. This idealization has proved to be sufficient for the conventional design of 
wooden constructions, where the design is mainly based on hand calculation procedures. However, 
for design based on numerical methods, a more thorough characterization of the shear behaviour is 
required. In order to enable applicable three-dimensional models, the characterization must 
naturally comprise the three principal material planes LR, LT and RT of wood, as well as possible 
non-linear shear behaviour and interaction between shear and normal stress components in failure. 
Such knowledge can only be achieved by means of experimental shear testing, of which several 
procedures are standardized for wood. It is crucial that test configuration effects like stress 
concentrations and other governing failure modes than pure shear are taken into consideration. Any 
results from numerical simulation based on crude experimental values can otherwise be severely 
corrupted. As an example, Ukyo and Masuda (2006) showed that the apparent shear strength of the 
frequently used ASTM D143 (1984) shear block test should be modified upwards, and that the 
assumed linear stress–strain relationship for shear in reality is nonlinear. Another standardized test 
is the plate twist test described by ASTM D3044 (1986). While the notched block can be used both 
for strength and stiffness evaluations, the plate twist test is mainly suited for measuring linear 
behaviour, and can hardly be used for assessment of ultimate shear capacities. This is also the case 
for methods based on short beam bending tests. NS-EN 384 (2004) states that the shear strength can 
be tested by displacing one steel plate relative to another with a wood specimen glued in-between, 
but so far it seems like the test has received limited use. 
 
It may be commented that none of the standardized methods seem particularly suited for producing 
a pure and uniform state of shear, which is required for a more detailed assessment of shear 
properties. Neither do they reflect the whole loading range; nor the rolling shear behaviour. It is 
moreover desirable that the normal stresses do not exceed their linear stress limits throughout 
loading, since any assessment of nonlinear shear otherwise requires that the nonlinearity of the 
normal stress components are known. The capability of testing a combination of shear and normal 
stress components in a uniform stress field is furthermore a desirable quality for evaluation of 
failure interaction effects. None of the aforementioned standardized methods seem to meet these 
demands in a sufficient way. 
 
Several non-standardized shear tests used for wood is examined by Dahl and Malo (2009a), 
including the off-axis tensile test, torsion tests, and the Iosipescu and Arcan shear tests. In 
particular, several interesting studies have emerged from torsion studies, i.a. by Yamasaki and 
Sasaki (2003, 2004) who documented linear and nonlinear properties including failure of different 
wood species. Shear proportional limits/yield values as low as 40% of the ultimate shear stresses 
were found. Combinations of axial and torsional loading proved that the Hill criterion and in 
particular the Tsai-Wu criterion were in good agreement with both yield and failure data. Similar 
results have also been presented by Yoshihara and Ohta (1995a, b, 1996) and Yoshihara et al. 
(1997), although numerical simulations indicated that the real yield values were 20–30% lower than 
the apparent values observed. Moreover, it should be noted that the underlying theory for obtaining 
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orthotropic shear characteristics by means of torsion is quite complex, and that nonuniform strain 
fields and the presence of normal stress components complicate the assessments.  
 
The Iosipescu shear test, consisting of a notched beam loaded so that the bending moment over the 
notch is zero, has been applied to clear wood in several studies. Even if this results in adequate 
shear moduli, it seems like the failure shear stresses can be somewhat encumbered by improper 
failure due to bending moment beside the critical section. In particular radially and tangentially 
oriented specimens are vulnerable due to low tensile capacities in these directions. It is interesting 
to note that Yoshihara et al. (1999, 2001) and Yoshihara and Matsumoto (2005) found yield and 
failure values approximately 30% lower than the apparent values obtained by torsion, 
corresponding well with numerical results for the torsion test. 
 
The much resembling Arcan test has also been applied to clear wood in some studies. Its shear 
moduli are reported to correspond well with the notched shear block, although somewhat lower 
shear strengths were found. Liu and Ross (1998) asserted it to be the most reliable shear test for 
wood. Oliveira (2004) tested shear strength and stiffness by the Arcan method in each of the three 
orthotropic material planes of pine, and found reasonable results. Yoshihara and Matsumoto (2005) 
used a slightly modified version, and found good accordance with results from the Iosipescu test. 
The Arcan test is consequently regarded to be the most suited test for a general study of the shear 
properties of wood, comprising all material planes and the complete loading ranges. The simplicity 
of the test setup, and the relatively pure and uniform shear stress and strain situation is particularly 
appealing. Improper failure reported for the Iosipescu specimen can moreover be avoided by means 
of test bracket design. The test was consequently used by Dahl and Malo (2009a), wherein linear 
shear properties are treated, whilst the nonlinear and failure properties are reported herein. 
 

Materials and methods 
Arcan specimens were made of Norway Spruce (Picea Abies (L.) Karst.) taken from eight different 
trees collected at four different locations in Norway, with log diameters as large as possible to 
obtain material with a minimum of annual ring curvature. The material was conditioned to 
approximately 12% moisture content and 20˚C, with densities ranging between 300 and 500 kg/m3 
with an average of 398 kg/m3 and a coefficient of variation (CV) of 9%. The specimen geometry is 
shown in Fig. 1. 
 
Six different specimen types were produced, each designated by ij where i ≠ j and {i, j} = {L, R, T}, 
see  Fig. 2. The first index i assigns the direction of the component load P relative to the material 
orientation, while the second index j equals the direction of the normal vector of the loaded plane. 
Specimen type ij corresponds thus to testing of σij – γij shear. Six configurations were chosen instead 
of three in order to investigate if i or j oriented load P possibly could affect the ij shear properties. 
The specimens were cut from the outer part of the stems in order to obtain specimens with a 
Cartesian material axis system coinciding with the geometry axis. Any fibre inclination to load 
orientation was thus tentatively avoided. Inhomogeneities and macroscopic defects such as knots 
and resin pockets were kept at a minimum. 
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Fig. 1   Specimen ij with dots and local axes xy 
for strain measurements (Dahl and Malo 2009a) 

 Fig. 2   Shear specimen types ij oriented with principal material 
axes (Dahl and Malo 2009a) 

 
In order to account for different shear strengths of the three material planes, different cross section 
thickness t and height h were used for the various specimen categories. Between 20 and 30 
specimens were manufactured for each plane, and a total number of 85 specimens were tested. 
Compared to the original Arcan test, a somewhat modified fixture was used, consisting of L-shaped 
aluminium brackets glued to the specimen with hot melt adhesives and strengthened with clamps. 
The brackets were provided with a hole for pin loading. A loading rate of 0.3 mm/min was chosen 
for all tests, resulting in maximum capacities typically reached between 200 and 400 s. The tests 
were run in an acclimatized atmosphere of 20˚C and 65% relative humidity. For more details see 
Dahl and Malo (2009a). 
 
Deformation was measured by means of video extensometry technique described by Dahl and Malo 
(2009b). A grid of target dots was prior to the test applied on the wood surfaces at the critical 
section as Fig. 1 illustrates, and in-plane xy coordinates were continuously measured by the camera 
throughout loading until failure. A post processing routine calculated normal and shear strain based 
on the coordinate values, where the dots were interpreted as the nodes of an array of 36 quadratic 
elements, and a FEM formulation was utilized for the strain calculation. Estimates of the three in-
plane strain components εii, εjj and γij averaged over the measurement area could thus be held 
together with the contemporary nominal shear stress estimate ˆij for evaluation of the overall 

experimental material behaviour. Each specimen was exposed to loading till 40% of assumed 
component capacity, followed by unloading and finally reloading until failure. The latter sequence, 
comprising nonlinearity and failure, is reported herein.  
 
The nominal shear stress ˆij  was estimated for each experimental timestep by  
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where h and t are the measured cross section dimensions at the initial configuration and P is the 
load level. The nominal stress estimate implies a uniform distribution over the cross section, and is 
estimated analogously as for the resembling Iosipescu test by Yoshihara et al. (1999) and Dumail et 
al. (2000). 
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Experimental stress–strain curves for the various configurations are shown in Fig. 3. It can be seen 
that several configurations exhibit nonlinearities. Moreover, the initial stiffness as well as the 
nonlinear behaviour and ultimate stresses vary considerably between the three different shear types 
ij, and also between specimens of the same test type. It should be emphasized that the stress–strain 
curves reflect nominal stress data versus averaged strain over the measurement area, and thus 
represent apparent values, which implies that the real material behaviour not necessarily 
corresponds exactly with the indicated progress. The curves must therefore be assessed as apparent 
behaviour possibly influenced by configuration effects. 
 

Fig. 3    Experimental shear stress–strain curves for the various configuration types ij (Dahl and Malo 2009a) 
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Linear and nonlinear material models 
Estimates Ĝij for the three linear elastic shear moduli were reported in Dahl and Malo (2009a). The 
determination was based on a least sum square error method of the experimental stress–strain 
curves confined to maximum 40% of the ultimate capacities. The estimates Ĝij were subsequently 
modified by means of finite element calculations in order to obtain improved values for Gij 
independent of configuration effects. The available Ĝij values are used in the subsequent treatment 
herein to secure consistency between the linear and the nonlinear regimes. 
 
In order to characterize the nonlinear behaviour, the bilinear and the Voce models were chosen for 
the nonlinear range. While the former has a linear progress after the linear elastic stress limit, the 
latter increases with a descending exponential progress. In addition, a completely linearized model 
over the whole stress range was investigated. 
  

Bilinear model 
Given that the stress level σij has reached some level above the linear limit stress σij

lin , the elastic 
and plastic strain increments dγij

e and dγij
p, respectively, can be related to the stress increment dσij 

by the shear modulus Gij and the tangent shear modulus Gij
T; or the plastic modulus Gij

P; as 
illustrated in Fig. 4 (not sum over indices), where 
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By rearranging, an explicit expression for the plastic modulus Gij

P appears as 
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Fig. 4   Bilinear shear stress–strain relationship for configuration and shear type ij 
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With {i, j} = {L, R, T} for i ≠ j, the three orthotropic shear stresses can be expressed by 
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Voce model 
The Voce model is formulated exponentially by the plastic strain: 
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where i, j, γij

p and γij
lin are as denoted for the bilinear model; and σij

lin, Rij and Hij are material 
parameters referring to material plane ij, see Fig. 5. 
 

 
Fig. 5   Voce shear stress–strain relationship for configuration and shear type ij 

 

Parameter determination 
The bilinear and Voce material parameters were determined by a SSE minimization for each 
specimen, writing 
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where mod
ij t   was calculated for each experimental timestep according to Eqs. (4) and (6) for the 

bilinear and Voce models, respectively, wherein the specimen specific Ĝij values reported in Dahl 
and Malo (2009a) were utilized. The experimental average shear strain modified for strain paths 
deviating from the origin by coefficients Ag was used, writing 
 

 ' p '
ˆ

,
ˆ ˆ

g ij t
ij t ij t ij t ij t

ij ij

A

G G


    

   

   
         

   
      (8) 

 
A subset consisting of k timesteps was analysed, upwards limited by the ultimate load, whereas 
steps in the lower range showing initial disturbances were removed. Typically, k contained between 
2000 and 5000 steps. It can be noted that the linear part was included to enable flexibility of the Ag 
coefficient values, and required adaptation on a total strain basis. This was deliberately done to 
account for possible shifted linear parts above the 40% limit confining the linear parameter 
determination range. Different values of Ag and linear limit stresses linˆ

ij  were allowed for the Voce 

and the bilinear models, although the Ag values turned out to be quite similar between the models. 
The nonlinear parameter values were restricted as stated in Table 1, and no values were pursued in 
cases where fulfilment of the constraints led to unfeasible results. 
 

Table 1   Restrictions in determination of nonlinear shear material parameters 

Model Parameters Restriction 
linˆ
ij  Linear limit stress 

linˆ
ij  < ultˆ

ij  

ˆ T

ijG  Tangent shear modulus ˆ ˆ0 T

ij ijG G   Bilinear 

Ag Initial stress offset  Ag  < 
linˆij  

linˆ
ij  Linear limit stress 

linˆ
ij  < ultˆ

ij   

ˆ
ijH  Plastic exponent ˆ

ijH  > 0 

ˆ
ijR  Plastic multiplier ˆ

ijR  > 0 
Voce 

gA  Initial stress offset Ag  < linˆ
ij  

 
 
The relationships resulting from the determined parameters were automatically plotted together 
with the experimental data, as visualized in Fig. 6, allowing an efficient reasonability check of 
parameters. Note that both total strain and plastic shear strain are shown. 
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Fig. 6   Bilinear (left) and Voce adaptation of experimental shear stress–strain curve (ij = LR) 
 
Since many specimens followed an almost pure linear behaviour, it was moreover relevant to adapt 
the whole stress–strain progress by means of a completely linear model, as indicated in Fig. 7. This 
was in particular pertinent for the very linear LT and TL configurations; as opposed to the rolling 
shear RT and TR, which clearly show nonlinear behaviour for all specimens, see Fig. 3.  
 
 

 
 

Fig. 7   Linearized adaptation Gij
LIN of the complete experimental shear stress–strain curve (ij = LR) 
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Results 
Average parameter values, coefficients of variation (CV) and correlations with density r(ρ) are 
tabulated for all configuration types ij in Table 2. The number of values each estimate is based on n 
is moreover included to give an indication of the respective models suitability. Estimates of the 

plastic moduli Pˆ
ijG  and the linear strain limits lin

îj  are not included since they explicitly are given by 

Eqs. (3) and (5), respectively. The ultimate stress ultˆij  and the corresponding ultimate strain ult
îj  

observed are stated as the determined interrelation is less evident, and both can be used for 
restricting the elastoplastic domain, i.e. in an enveloping surface for failure prediction. The initial 
stress offset Ag from the bilinear model is used for the determination of ult

îj . It should be 

emphasized that the tabulated parameters are apparent estimates based on averaged strains and 
nominal stresses, and that the suitability judgements to some extent were subjective, as rejection 
was done manually. Results for each specimen are to be found in Dahl (2008). 
 
Table 2   Shear parameter estimates for each configuration ij  

Gij, σij and Rij are given in MPa 
 
 
The ultimate load Pult was followed by an immediate loss in component capacity. For the LR, LT, 
RT and about 60% of the TR configurations, the material separated completely by a vertical failure 

Linear Bilinear Voce 
Type ij  

Density 

(kg/m3) ˆ
ijG  LINˆ

ijG  linˆ
ij  Tˆ

ijG  linˆ
ij  ˆ

ijR  ˆ
ijH  

ultˆ
ij  ult

îj  

 Mean 388 754 614  4.08 406  4.33 2.50 794 6.06 0.0120 

 CV 0.05 0.30 0.42  0.29 0.28  0.15 0.28 0.36 0.25 0.33 

  r(ρ) - 0.03 0.00  0.11 0.40  0.05 0.20 -0.28 0.33 -0.05 
LR 

  n 12 12 12  10 10  8 8 8 12 10 

 Mean 400 734 604  4.26 434  4.09 2.59 749 6.12 0.0106 

 CV 0.10 0.20 0.23  0.27 0.21  0.27 0.42 0.39 0.20 0.24 

  r(ρ) - 0.37 0.44  0.39 -0.07  0.22 -0.34 0.05 0.20 -0.06 
RL 

  n 23 20 21  19 19  16 16 16 23 19 

 Mean 409 586 580  2.85 336  2.95 1.42 500 4.17 0.0086 

 CV 0.06 0.27 0.31  0.42 0.30  0.37 0.31 0.00 0.24 0.53 

  r(ρ) - 0.30 -0.03  -0.52 0.43  -0.46 -0.99 -1.00 -0.50 -0.61 
LT 

  n 12 7 8  3 3  3 3 3 11 3 

 Mean 415 657 607  3.09 469  3.75 2.10 484 4.54 0.0081 

 CV 0.07 0.27 0.30  0.30 0.36  0.07 0.53 0.07 0.19 0.30 

  r(ρ) - 0.17 0.15  -0.05 0.10  0.70 0.13 -0.48 -0.05 -0.13 
TL 

  n 15 15 15  13 13  5 5 5 15 13 

 Mean 381 32.0 19.0  0.93 12.4  1.00 0.83 37 1.65 0.092 

 CV 0.10 0.31 0.33  0.27 0.31  0.16 0.38 0.53 0.28 0.51 

 r(ρ) - 0.17 0.02  0.07 0.37  0.09 0.41 -0.15 0.31 0.13 
RT 

  n 10 10 10  10 10  8 8 8 10 10 

 Mean 381 36.7 17.0  0.93 11.0  0.88 1.01 33 1.64 0.091 

 CV 0.11 0.26 0.31  0.13 0.49  0.15 0.40 0.73 0.23 0.29 

 r(ρ) - 0.16 0.24  0.14 0.34  0.29 0.02 0.26 0.22 -0.04 
TR 

  n 12 12 12  12 12  11 11 11 12 12 
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at the critical section, and the capacity consequently dropped to zero. The cracks propagated very 
fast, and could not be perceived with the human eye. It was thus hard to assess where the crack was 
initiated along the critical section. The remaining TR specimens, in addition to RL and TL 
configurations, failed with a horizontal crack initiated at the notch root and propagating towards the 
loading brackets, which prevented further opening. Due to this and redistribution of stresses, the 
component capacity did not drop to zero, although the loss was considerable for all three types. For 
an idealized specimen not benefiting from the reinforcing effect of the brackets, a completely brittle 
failure would probably have been observed. 
 

        
 

Fig. 8   Typical failure for LR (left) and RL specimens 
 

Fig. 9   Typical failure for LT (left) and TL specimens 
 
Typical failures for each of the four configuration types comprising the longitudinal direction (L) 
are shown in Fig. 8 and Fig. 9. It is noteworthy that the resembling configurations LR and LT both 
fail vertically, and correspondingly horizontally for RL and TL. Typical failures of the rolling shear 
configurations are shown in Fig. 10, where a characteristic TR specimen possessed by both failure 
types is depicted. 

 

  
 

Fig. 10   Typical failure for RT (left) and TR specimens 
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It is interesting to note that Xavier et al. (2004) reported exactly the same failure modes for LR and 
TL specimens of pine tested by the resembling Iosipescu test. For the TR configuration, they 
observed either a vertical failure outside the notched section; or failure oriented 45˚ from the notch 
root. As Fig. 10 shows, the horizontal TR–failure observed here is also somewhat inclined. 
Moreover, it should be noted that failures outside the critical section did not occur for any of the 
Arcan specimens used in this study, which hence are to be preferred to the Iosipescu setup for this 
particular configuration. 
 

Discussion 
No significant differences between mutual configurations ij and ji could be found for any of the 
parameters stated in Table 2 by statistical analysis (Mann–Whitney test, p–values > α = 0.05). This 
indicates that the material behaves symmetrically within each plane. The linear limit stresses linˆij for 

the bilinear model demonstrate particularly good correspondences (p–values > 0.87) between 
mutual configurations. This is also the case for the ultimate stresses ultˆij  with <1% difference in 

average stresses between both LR and RL, and between RT and TR (p–values > 0.35). Consequently, 
it was assessed as reasonable to treat parameter values from mutual configurations ij–ji as one 
sample. Mean values, CV and p–values for these samples are given in Table 3 together with 
correlations with densities r(ρ) and with initial shear moduli r(Ĝ). 
 

Table 3   Experimental shear parameter statistics 
 

Linear  Bilinear  Voce 
  ˆ

ijG  LINˆ
ijG   linˆ

ij  Tˆ
ijG   linˆ

ij  ˆ
ijR  ˆ

ijH  
ultˆ
ij  ult

îj  

             

LR–RL 742 608  4.20 424  4.17 2.56 764 6.10 0.0110 

LT–TL 634 598  3.04 444  3.45 1.85 490 4.38 0.0082 Mean 

RT–TR 34.6 17.9  0.93 11.7  0.93 0.94 34.4 1.64 0.0914 

             

LR–RL 0.24 0.31  0.27 0.23  0.23 0.38 0.38 0.21 0.28 

LT–TL 0.27 0.30  0.31 0.37  0.21 0.51 0.06 0.21 0.33 CV 

RT–TR 0.28 0.32  0.20 0.40  0.16 0.39 0.63 0.25 0.39 

             

LR–RL 0.95 0.32  0.87 0.32  0.31 0.93 0.88 0.96 0.35 

LT–TL 0.50 0.63  1.00 0.14  0.37 0.37 0.18 0.35 0.69 p–value 

RT–TR 0.25 0.49  0.92 0.62  0.23 0.34 0.90 0.62 0.77 

             

LR–RL 0.21 0.24  0.33 0.02  0.18 -0.28 -0.01 0.22 -0.08 

LT–TL 0.24 0.11  -0.12 0.16  -0.13 -0.10 -0.32 -0.23 -0.24 r(ρ) 

RT–TR 0.16 0.14  0.09 0.34  0.22 0.12 0.13 0.26 0.05 

             

LR–RL - 0.85*  0.51* 0.34   0.40 0.07 -0.06 0.31 -0.12 

LT–TL - 0.88*  -0.05 0.86*  -0.61 -0.28 0.20 0.18 -0.63* r(Ĝ) 
RT–TR - 0.56*  0.51* 0.56*  0.37 0.40 0.17 0.49* -0.18 

             

Gij, σij and Rij are given in MPa   *) Significant correlation (p–value < 0.05) 
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The linearized stiffness values Ĝij

LIN over the whole loading range comprise on average 
approximately 80% of the initial shear modulus Ĝij for LR–RL. For the relatively soft rolling shear 
plane configurations RT–TR the values constitute roughly 50% of the initial modulus. For the LT–
TL configurations, on the contrary, Ĝij

LIN attains approximately the same value as the initial 
modulus, which indicates little or no nonlinearity tendencies. This is moreover supported by the 
relatively few specimens from the LT–plane being adaptable by the nonlinear models. It can 
moreover be seen from Table 2 that the Voce model in general is somewhat less robust in 
describing the shear behaviour than the bilinear one. 
 
The ratio between the apparent linear limit stress linˆij and the ultimate shear stress ultˆ

ij  estimates is 

in the following referred to as the yield ratio. The rolling shear configurations RT–TR demonstrate 
in this sense most nonlinearity with yield ratios of 0.56 for the bilinear model. The other 
configurations (LR–RL, LT–TL) result in peculiarly similar ratios of 0.68, i.e. a somewhat smaller 
nonlinear portion than in the rolling shear plane. This is close a ratio of 0.60 obtained for the LR–
plane by both torsion and Iosipescu tests of Sitka spruce by Yoshihara and Ohta (1995a, b, 1996), 
Yoshihara et al. (1999, 2001) and Yoshihara and Matsumoto (2005), and approximately in the 
middle of a yield ratio range of 0.40–0.90 obtained by torsion tests for the LR and LT planes of 
beech and cypress species (Yamasaki and Sasaki 2004). For the Voce model, the yield ratios are a 
bit more contradictory between mutual configurations. There does not seem to be any clear trend 
between the linear limit stress for bilinear versus Voce models. It should be noted that this is partly 
due to the fact that the Voce model; in its mathematical formulation; is quite flexible, so that the 
linear limit stress cannot necessarily be interpreted as the physical stress limit. 
 
Similar to the yield ratio, a modulus ratio can be defined as the ratio between the estimated shear 
tangent modulus Ĝij

T and the initial shear modulus Ĝij. In such sense, the rolling shear (RT–TR) has 
the lowest modulus ratios of 0.34. In combination with low yield ratios, this implies a relatively 
high degree of nonlinear strain when approaching ultimate capacity. The other configurations (LR–
RL, LT–TL) have modulus ratios around 0.6, i.e. a relatively stiffer behaviour also beyond the linear 
limit. 
 
The CV for the various parameters determined lie between 20–30%. It is interesting to note that the 
two shear strengths comprising the longitudinal direction both have relatively low CV’s of 21%. By 
way of comparison, corresponding CV’s obtained for spruce by means of the notched shear block 
test are reported to 16% by Foslie (1971), 20% by Liu et al. (1996) and 14% by FPL (1999). 
Yoshihara et al. (1999, 2001) obtained CV’s of 23% for the LR and LT yield values of Sitka spruce 
by means of the Iosipescu test, which corresponds well with the values found herein. 
 
It can be seen from the tabulated values that all correlations r(ρ) to density are nonsignificant and 
with absolute values lower than 0.35, corresponding with a determination coefficient r2 <12%. It 
should be noted that the CV of the densities ρ are only about 10% or lower, and that higher 
correlations could have emerged in samples with higher density variation. It is, however, interesting 
to see that that several parameters attain high correlations r(Ĝ) to the shear modulus Ĝij. All 
linearized moduli Ĝij

LIN are significantly correlated to Ĝij, with determination coefficients r2 of 
approximately 75% for the LR and TL material planes. Also the two bilinear parameters linˆ

ij  and Tˆ
ijG  

demonstrate rather high correlation to Ĝij, as illustrated in Fig. 11, while the Voce parameters seem 
less predictable. It should be noted that due to the mathematical flexibility, several sets of the three 
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Voce parameters can satisfy adaptation to an experimental curve well, and that this can naturally 
reduce the correlation. The ultimate strains ult

îj are typically negatively correlated to the shear 

modulus, which is logical since a higher modulus reduces the deformation. The ultimate shear 
stresses and strains demonstrate relatively low correlations with both density and initial shear 
moduli values. 
 
 

  

  

 

Fig. 11   Bilinear parameter estimates ˆ T
ijG  and ˆ lin

ij  plotted against initial shear moduli ˆ
ijG for each ij 

 
It is evident that the rolling shear configurations have considerably lower stiffness and strength than 
configurations from the two other material planes. Moreover, it is noteworthy that the LR–RL 
configurations have significantly higher values than the LT–TL for the shear modulus Ĝij, the 
bilinear stress limit linˆij and the ultimate stress and strain ultˆij  and ult

îj . The differences for linear 
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limits and ultimate stresses are both around 28%. This corresponds well with results from torsion 
tests of Sitka spruce, where differences for both stiffness and strength of approximately 10% are 
reported by Yoshihara and Ohta (1995a, b, 1996). The ultimate nominal stresses observed herein 
are plotted in Fig. 12 for each of the three planes. 
 

 
 

Fig. 12   Ultimate shear stress estimates ultˆij observed for the different material planes 

 
The average shear strengths were found to equal 6.1 MPa for the LR–plane, 4.4 MPa for the LT–
plane and 1.6 MPa for the RT–plane. The two former values are only about 80 and 60%, 
respectively, of the strengths obtained for Norway spruce by the notched shear block test by Foslie 
(1971). This trend corresponds to findings by Liu et al. (1996), who reported lower strengths for 
spruce by means of the Arcan test than by the notched shear block. When combining the LR and LT 
data herein into one sample, it was found that the strengths satisfied the normal distribution well 
with a mean value of 5.37 MPa and a standard deviation of 1.43 MPa. The corresponding 5% lower 
percentile of this distribution is 3.0 MPa, which is identical to the shear strength specified for 
grading class C30 in NS-EN 338 (2003). 
 

Model accuracy 
The material parameters for each specimen represent average values in the sense that they are 
determined by optimization of experimentally data consisting of numerous stress–strain points. The 
parameters are thus a set of values describing a best fit of the overall behaviour. 
 
In order to document strain prediction accuracy for the different material models applied to different 
shear types, the SSE values were collected for each optimization. By dividing by the number of 
steps k extracted for optimization from the stress–strain path, and taking the square root, the 
experimental mean stress residual Δσij can be estimated: 
 

ij
ij

SSE

k


    {i, j} = {L, R, T} ; i ≠ j    (9) 

 
This should be reasonable since the deviation from the optimized model behaviour in general 
seemed to be more or less randomly distributed over the stress range, see Fig. 13.  
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Fig. 13   Stress residual contributions (MPa) for values adapted to the Voce model 

 
The mean residuals were subsequently averaged over the n specimens of the same configuration 
type ij adapted to the models, and are presented in Table 4 for the various models and configuration 
types ij, where N assigns the total number of ij specimens. Comparisons between the linearized and 
the bilinear; and between the bilinear and the Voce models, are given as ratios in separate columns. 
It should be noted that the transformation from total strains γij to plastic strains γij

p in Eq. (5) 
removes some strain variation, affecting SSE comparison of the differently formulated models. The 
bilinear model is thus presented in dual columns comprising both total and plastic strain formulation 
to enable comparison with the Voce model; formulated by plastic strains only, and with the 
linearized model; formulated by total strains only. Comparison between the two bilinear variants is 
thus not of pertinent interest. The Voce model can, for the same reason, only be compared indirectly 
with the linearized model via the bilinear one. 
 
 
Table 4   Average stress residuals (MPa) for the different shear configuration types ij  
 

    Linearization  Bilinear (total) Bilinear (plastic) Voce 

ij N  
ij  n  ij   n Ratio (%)  

ij  n  
ij  n Ratio (%)

LR 12 0.205 12  0.093 10 45 0.207 10 0.127 8 61 

RL 23 0.244 21  0.140 19 57 0.351 19 0.199 16 57 

LT 12 0.153 8  0.083 3 54 0.122 3 0.108 3 89 

TL 15 0.149 15  0.106 13 71 0.332 13 0.158 5 48 

RT 10 0.090 10  0.052 10 58 0.078 10 0.067 8 86 

TR 12 0.132 12  0.053 12 40 0.105 12 0.064 11 61 

 
It can be seen that the bilinear model holds average residuals between 40 and 71% compared to the 
linearized model residuals. The fraction (n/N) of specimens which feasibly could be adapted by the 
model is moreover high for all configuration types except LT, which turned out to be troublesome 
for nonlinear adaptation in general. By changing from a linearized model to a bilinear one, the 
overall accuracy of stress prediction can thus be considered to increase by a factor of approximately 
two. The bilinear model is thus quite robust and applicable, and relatively accurate for adapting 
shear behaviour of Norway spruce. 
 

γij

σij
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The Voce model holds average residuals between 48 and 89% compared to the bilinear model. 
Particularly the LR–plane show stable results around 60% with a relatively high adaptation fraction 
(n/N) near 0.7 for both configurations. Compared to the bilinear model, it is, however, noteworthy 
that (n/N) is lower for all material planes, particularly for the LT–plane. In general, the Voce model 
can thus be said to be less adaptive, but more accurate than the bilinear model in cases where it is 
applicable. The residuals are illustrated in Fig. 14, where the nonlinear LT and TL values are 
stippled to indicate their low n/N fraction. 
 
 

 
Fig. 14   Average stress residuals 

ij  (MPa) for different models and shear types ij 

 
 
Since the residual values can be interpreted as the expected deviation between modelled and 
experimentally based stress for a given strain level, the values, from a design viewpoint, express the 
uncertainty numerical results on average can be encumbered with. It should be noted that the 
experimental strain in this study is averaged over a measurement area of 18 mm 18 mm. Any 
strain variation within the area is thus not reflected by this consideration. The residual values are, 
due to the same reason, only representative for areas and volumes of the same order of size as 
measured in the study, i.e. the representative volume element (RVE) of the utilized test. 
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Concluding remarks 
The Arcan shear test was used to investigate shear properties of softwood from Norway spruce. The 
tests comprised the three orthotropic material planes, and covered the load range up till failure. Six 
different configurations were used, comprising two mutual types within each material plane; with 
the test load oriented along either of the two inherent material axes. Linear and failure data in 
addition to nonlinear effects were observed. The linear elastic properties are treated in Dahl and 
Malo (2009a) where details and suitability of the test is assessed, while the observed nonlinear and 
failure data are reported herein. 
 
No significant differences could be found between any of the parameters obtained by mutual tests 
within the same material plane. This indicates that the material behaves in a symmetric manner. 
Especially the linear limit stresses and the ultimate stresses proved to be equal between mutual 
configurations. 
 
It was found that the stress–strain curves from the LR–plane, and in particular the rolling shear 
plane RT, exhibit nonlinear behaviour in shear, while the LT–plane follows a relatively linear 
progress. The bilinear and the Voce models were used to adapt the data, requiring two and three 
parameters, respectively, for each material plane.  It was found that the model accuracy on average 
can be considered to increase by a factor of approximately two by using a bilinear model compared 
to a completely linear model. The Voce model improved the prediction accuracy even further, but 
was in some cases infeasible to adapt, and therefore less robust in characterizing the generalized 
shear behaviour of softwood. 
 
For the bilinear model, the ratio between the observed linear limit and the ultimate shear stress was 
0.56 for the RT–plane, and 0.68 for both the LR and LT–planes. The results for the Voce model 
seems a bit more contradictory between mutual configurations, which can be explained by the fact 
that the parameters cannot be separated and evaluated in the same straightforward manner. The ratio 
between the tangent and the initial shear modulus was in the range 0.3–0.4 for the rolling shear 
tests, while the other configurations resulted in ratios around 0.6. 
 
The average shear strengths were 6.1 MPa for the LR–plane, 4.4 MPa for the LT–plane and 1.6 MPa 
for the RT–plane. The fact that the values are somewhat lower than values obtained by the notched 
shear test on the same subspecies corresponds well with other findings in the literature. The failures 
were oriented either vertically or horizontally depending on test type, and in all cases located at the 
critical section of the specimen. Improper failure types reported for similar tests were avoided, 
making the utilized Arcan setup attractive for shear studies of the whole loading range and the three 
orthotropic material planes. 
 
It should be noted that the reported parameters herein are estimates not necessarily reflecting the 
true material behaviour. Configuration and measurement effects, including inhomogeneous and 
nonuniform stress and strain fields, can influence the determined values, which therefore must be 
considered as apparent. More detailed studies by means of numerical methods should therefore be 
undertaken in order to better understand the shear properties of softwood. 
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Nonlinear Shear Properties of Spruce Softwood:  
Numerical Analyses of Experimental Results 
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Abstract  
Determination of material parameters from experimental tests often rely on simplifying assumptions like the existence 
of uniform stress and strain fields within the considered part of the test specimen. However, more detailed analyses 
usually show that the stress and strain fields differ from the assumed (nominal) uniform distributions. In order to utilize 
the potential of numerical analyses of wooden structures by the FEM method, the nominal material parameters 
measured directly from tests need to be re-evaluated in order to make them more useful for FEM models and to make 
FEM models more reliable. 

Experimental data from shear testing of clear wood from Norway spruce was analysed numerically with a 
bilinear material law in shear. The inherent material parameters were fitted to the experimental behaviour by means of 
optimization methods in conjunction with FEM analyses. The study included six Arcan test configurations comprising 
the three orthotropic material planes of wood, and covered the whole loading range until failure. Compared to numerical 
results, it was found that stiffness values measured were too high, and that downward adjustments in the range of 5–
30% were required. Linear limit stresses between 40% and 60% of the nominal shear strengths were found, whilst the 
tangent moduli ranged between 30% and 70% of the linear elastic shear moduli. The rolling shear plane RT showed 
most nonlinearity and the LT plane least. Analyses with modified bilinear parameters showed good correspondence with 
experimental findings. The parameters were found to be relatively well adapted by Weibull distributions. 
 
 
Keywords – Wood, Nonlinear behaviour, Orthotropy, Finite element analysis, Probabilistic methods 
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Abstract  
Experimentally based shear strengths of clear wood from Norway spruce were analysed numerically with an orthotropic 
material law comprising bilinearity in shear. The study included six Arcan shear test configurations covering all 
orthotropic material planes. Three configurations were found applicable for determination of shear strengths. The Tsai-
Wu and the maximum stress criteria were assumed as failure functions. Analyses with the former showed that the 
nominal strengths are measured 15–25% too low depending on material plane. The modified shear strengths were on 
average found to equal 7.1 MPa (LR), 4.8 MPa (LT) and 2.0 MPa (RT). All quantities were adequately represented by 
normal distributions. High correlations with the linear shear stress limits were found. 
 
 
Keywords – Wood, Orthotropy, Shear strength, Tsai-Wu, Finite element analysis, Probabilistic methods 
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Abstract  
The 3 moduli of elasticity and the 6 Poisson’s ratios of Norway spruce were tested by compressive and tensile 
specimens of clear wood oriented in each of the three orthotropic directions LRT of the material. In-plane strains were 
measured by means of bi-dimensional video extensometry, and orthotropic parameters were determined for loading and 
unloading for each of the approximately 350 specimens. The average moduli equalled ELL = 9 040 MPa, ERR = 790 MPa 
and ETT = 340 MPa. ELL was significantly dependent on grading class, whereas the Poisson’s ratios showed significant 
dependency on strain rate, and were somewhat higher than earlier reported. The two minor ratios were hardly 
measurable, and are probably obtained most conveniently by orthotropic symmetry considerations. Correlation with 
density was generally low, whereas the parameter variation was quite high. Many specimens showed a slight degree of 
shear strain, indicating fibre inclination in an orthotropic material like wood. 
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and Fibre Inclinations Effects 
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Abstract  
Fibre inclination is one of the main causes of inhomogeneity in wood. Since wood has orthotropic characteristics, such 
deviations between principal material orientations and axial loads result in shear strains, which are rarely measured in 
on-axis testing of wood. Moreover, the fibre inclination may result in encumbered material parameter values. This study 
reports unintentional shear strains measured by bidimensional video extensometry in tensile and compressive specimens 
of clear softwood, tentatively oriented in each of the three principal orthotropic directions LRT. It was found that 
roughly 50% of the various specimens responded with shear strain, for which average inclination angles of 
approximately 3 degrees occurred. Probabilistic analyses were used to quantify the sensitivities between measured 
strains and inclination angles in and out of the measurement planes, and the potential deviations were outlined. Analytic 
theory in conjunction with numerically determined modification factors were used to modify apparent moduli of 
elasticity Eii and Poisson’s ratios vij for test configuration and inclination effects. The on-axis configuration effects were 
found to be relatively small (<2%), indicating suitable specimens, whereas effects from fibre inclinations were 
considerably higher. The modifications resulted in an increase of the 3 Eii of approximately 3%, whereas the 6 vij 
changed within ±12%. Although the alterations are relatively small for a highly variable material like wood, it is worth 
being aware of the potential error, especially as unintentional shear strains are likely to be measured in wood specimens. 
The differences in parameter estimates from different specimen types were reduced in most cases. The 3 moduli of 
elasticity were found to be lognormal distributed, whereas the Poisson’s ratios are relatively well adapted by normal 
distributions. 
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Abstract  
This paper reports nominal strengths and nonlinear behaviour of clear wood from Norway spruce tested in tension and 
compression in the three orthotropic directions. The tensile specimens responded relatively linearly with brittle failures, 
although some deflection could be found. The compressive specimens were ductile, especially perpendicular to grain, 
and were limited to small strains <2% at maximum. Approximately 350 specimens were tested in total. Bilinear models 
were adapted to active and passive strains observed, taking into account the different behaviour on the compressive and 
tensile sides. The tensile strengths were on average found to equal 63.4 MPa longitudinally, 4.9 MPa radially and 2.8 
MPa tangentially. On the compressive sides, the strengths equalled 28.9 MPa longitudinally, 3.6 MPa radially and 3.8 
MPa tangentially. It should be noted that the two latter are conditional on the small strain limitation, as no distinct 
ultimate stresses were observed perpendicularly. Linear limit stresses were found to lie at 65–70% of tensile strengths 
and at 63–80% of compressive strengths. The tensile tangent moduli range from 58–74% of the initial moduli, whereas 
all compressive lie at approximately 30%. Compared to completely linearized models (secants) for the various tensile 
configurations, the stress prediction accuracies increase 10–50% by applying bilinear models, with linearized moduli 
lying 5–10% lower than the initial moduli values. Except for the tangent moduli, the coefficients of variations were 
found to be lower than 0.3 for most parameters. Significant correlations between many parameters were found. The 
three-parametric Weibull distribution was found most applicable to represent the various parameters. 
 
 
Keywords –Wood, Orthotropy, Nonlinearity, Ductility, Strengths, Experimental testing
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